
Statistical identification 

of major genes in pigs 



Promotor: dr. ir. E.W. Brascamp 

hoogleraar in de veefokkerij 

Co-promotor: dr. ir. J.A.M, van Arendonk 

universitair hoofddocent veefokkerij 



2£o o 

Statistical identification 

of major genes in pigs 

L.L.G. Janss 

Proefschrift 

ter verkrijging van de graad van doctor 

op gezag van de rector magnificus 

van de Landbouwuniversiteit Wageningen, 

dr. C.M. Karssen, 

in het openbaar te verdedigen 

op vrijdag 10 januari 1997 

des namiddags te één uur dertig in de aula 

van de Landbouwuniversiteit te Wageningen. 

•.J „s J 



Abstract 

Janss, L.L.G., 1996. Statistical identification of major genes in pigs. Doctoral thesis, 

Department of Animal Breeding, Wageningen Agricultural University, P.O. Box 338, 

6700 AH Wageningen, The Netherlands. 

This thesis considers use of segregation analysis for detection of major genes in 

livestock populations. Segregation analysis has not found widespread use in livestock 

because of the general impossibility to perform the required computations in the large 

and complicated population structures encountered. In this thesis, a Bayesian approach 

to segregation analysis is developed, which makes use of Markov Chain Monte Carlo 

(MCMC) methodology to perform the otherwise intractable computations. The 

Bayesian approach combined with the MCMC computing methodology, proved very 

flexible in the construction of realistic models for the analysis of livestock data. Several 

analyses are reported from data on crossbred pigs, demonstrating the likely existence 

of several major genes affecting traits of biological importance. 
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Stellingen 

1. Wanneer verschillende allelen van een hoofdgen in ouderlijnen gefixeerd zijn, 

kan met fenotypische waarnemingen aan een F2-kruising zulk een hoofdgen 

slecht opgespoord worden. 

Dit proefschrift 

2. Bij het gebruik van gecombineerde gegevens van een Fj- en een F2-kruising zal 

in een model waarin slechts een hoofdgen een variantieverhoging kan verklaren, 

elke variantieverhoging verklaard worden door een hoofdgen. 

Dit proefschrift 

3. Met behulp van hoofdgenen, zoals de aangetoonde genen voor intramusculair 

vet en rugspek, kan een fokkerij-organisatie efficient en flexibel een divers 

produktenpakket leveren. 

Dit proefschrift 

4. In de toepassing van statistiek zijn Bayesiaanse methodes een logische 

voortzetting van reeds aanwezige trends om absoluut gestelde zekerheden te 

vervangen door gemodelleerde onzekerheden. 

Dit proefschrift 

5. Door het grote aantal afstammingslussen zijn simpele recursieve pel-algorithmes 

ongeschikt voor toepassing in uitgebreide afstammingen van landbouw

huisdieren, dit in tegenstelling tot bijvoorbeeld de suggestie van Fernando et al. 

(1993, Theor. Appl. Genet., 87: 89-93). 

Dit proefschrift 

6. Het herhaald trekken van realisaties uit een set van conditionele kansverdelingen 

construeert niet noodzakelijk een valide Gibbs keten. 

Naar: Hobert en Casella, 1994, Techn. rapport BU-1221-M, Cornell University. 



7. Kwantitatieve genetici maken al snel de fout te veronderstellen dat de 

aanwezigheid van additieve variantie en additieve fokwaardes de aanwezigheid 

van onderliggende additieve genen zou impliceren. 

8. Door de complexiteit van genetische regulatie zal het enthousiasme voor het 

vinden van genen die kwantitatieve kenmerken beïnvloeden slechts stand houden 

tot daadwerkelijk zulke genen zijn gevonden. 

9. Wetenschappelijke kennis of implicaties van wetenschappelijke technieken 

dienen publiek te zijn opdat de maatschappij grenzen kan stellen aan de 

toepassing van deze kennis of technieken. 

10. Het theoretische genetische onderzoek van de verschillende genetica-vakgroepen 

van de LUW zou samengebracht moeten worden in een "theoretische genetica" 

groep. 

11. Gezien de gebruikelijke betekenis van "fokken" in het Nederlands (Van Dale: 

doen voorttelen, aankweken van vee) is "veefokkerij" een onjuiste benaming 

voor het vakgebied dat zich bezig houdt met de genetische verbetering van vee. 

12. Computersystemen evolueren als levende organismes. 

13. De toegenomen emancipatie van de vrouw blijkt onder andere uit het verhoogde 

aandeel vrouwen onder de hardrijders en bumperdrukkers. 

14. Rode koeien zonder billen zijn eigenlijk zwart. 

15. De geest is onlosmakelijk verbonden met het lichaam. 

naar: Edelman, "Bright air, brilliant fire. On the matter of the mind", Basic 

Books, 1991. 

Stellingen bij het proefschrift van L.L.G. Janss "Statistical identification of major genes 

in pigs", Landbouwuniversiteit Wageningen, te verdedigen op 10 januari 1997. 
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General introduction: the Dutch Meishan chapter 

crossing experiment and aim of this thesis 1 

Development of a synthetic line with Meishan could be an interesting 

approach to improve fertility of Western pig lines. To investigate the potential 

of such approach, Dutch pig breeding companies have produced Ft and F2 

Meishan x Western crossbreds. Aim of this thesis is development of statistical 

methodology to model major gene inheritance, and analysis of data collected 

on the produced Meishan crossbreds for presence of major genes. 

Meishan crossing experiment 

One of the activities of commercial pig breeding companies is the marketing of young, 

generally hybrid, sows, to be used for commercial weaner-production. The ideal hybrid 

sow should produce many piglets with high quality for fattening. The breeding goal for 

selection in the so-called dam-lines used to breed such hybrids, therefore, includes 

reproduction traits, mainly litter size, and production traits, mainly growth and backfat 

(Smith, 1964). Study of the economic values of genetic improvement for these traits 

in dam lines, shows high marginal profit for improvement of litter size under usual 

Western marketing conditions (De Vries, 1989) and is argued to increase further, due 

to decreasing marginal profits for improvement of production traits (e.g., Haley, 1988; 

Bidanel, 1990). Improvement of litter size, therefore, is, and will remain, a main 

objective in breeding dam-lines. 

A first choice to improve litter size is selection within available lines. Avalos 

and Smith (1987) computed that, in theory, considerable annual genetic gain for litter 

size should be reachable, but in practice it is generally considered that large resources 

and consistently continued selection for several generation will be required to improve 

litter size (Bichard and David, 1985). Large resources can be found by using hyper-

prolific schemes (Legault and Gruand, 1976), but such schemes know long generation 

intervals, which is not beneficial (Avalos and Smith, 1987), and seem typically 

designed for large herdbook-type organisations. Progress by selection within lines, in 

whatever manner performed, therefore, will be slow. An alternative to improve litter 
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size is use of new genetic material from highly fertile breeds, where the Chinese 

Meishan breed may be of interest. Bidanel et al. (1990) summarised comparisons of 

Meishan with Large White, indicating that Meishans had an advantage in litter size of 

about 3 piglets, but had a disadvantage in growth (200 gr/day from 2-j to 5 months of 

age) and a disadvantage in carcass lean meat content (20% at 5 months of age). For 

commercial application, Bidanel et al. (1991) indicated that development of an 

improved synthetic line with 50% Meishan, to be used as one of the parents of 

commercial hybrid sows, could be an interesting approach. Such approach is expected 

to be quickest to produce a dam-line with a commercially interesting advantage in litter 

size and with acceptable levels for fattening traits. Actual details, however, on how 

well and how fast such a synthetic line could be developed are relatively vague, 

because genetic aspects of important traits in such a line are unknown. Genetic aspects 

could be very relevant, for instance, presence of a major gene affecting one of the 

important traits could be an important aid, while a strong unfavourable genetic 

correlation between litter size and lean meat contect could be a large impediment for 

development of such a synthetic line. 

To investigate relevant genetic aspects for development of synthetic lines with 

Meishan, five Dutch pig breeding companies and Wageningen Agricultural University 

have collaborated in a crossbreeding project. This project consisted in the production 

of F] and F2 Meishan-crossbreds, which was set-up in such a way that one large, 

genetically linked, population was formed. In this project, several phenotypic 

measurements were collected on traits like growth, backfat and litter size, and also part 

of the F2 crossbreds was slaughtered to take measurements on several meat quality 

traits. The initially foreseen project did not consider molecular genetic analyses, but 

blood samples of all animals were stored, in case such analyses would appear 

interesting after analysis of the collected phenotypic measurements. Based on results 

from genetic analyses of the produced data, each company could decide whether to 

pursue development of a synthetic line with Meishan by further breeding with the 

jointly produced crossbreds. The Meishans used in this crossbreeding project are from 

a pure-bred Meishan population of Euribrid BV (Boxmeer, The Netherlands), housed 

at Wageningen Agricultural University, and which descends from the French Meishan 

population. 



Major genes 

One of the relevant genetic aspects for development of a synthetic line, is the genetic 

mechanism behind the inheritance of traits, where one interesting aspect is the number 

of genes affecting traits. Full monogenic control of the complexely regulated 

quantitative traits considered is not expected, but a possible interesting variant is 

control by a major g~ne. Control by a major gene implies a partly monogenic 

determination, with additional effects of polygenic background genes. For genetic 

improvement, also oligogenic control of traits would be of interest, but by statistical 

methods analysing phenotypic measurements, oligogenic control is expected not 

distinguishable from polygenic control (when genes would have similar effects), or 

control by a major gene (when one gene has markedly larger effect than the other 

genes). As a relevant hypothesis to be investigated for the Meishan crossbreds, control 

of traits by a major gene, vs. polygenic control, therefore is considered. 

In formation of a synthetic line, influence of a major gene could be discovered 

by multimodality in the trait distribution in the F2 generation. However, by plotting the 

mixture distributions expected due to segregation of a major gene, one can find that 

appearence of multimodality requires effects of genes (difference between 

homozygotes) of at least 4 residual standard deviations for dominant genes or 6 

residual standard deviation for additive genes. For the traits considered in the Meishan 

crossing experiment, line differences are too small to expect genes with such large 

effects causing multimodality in trait distributions. Further approaches to detect 

presence of major genes are based on statistical modelling, which can be based on 

phenotypic data only (segregation analysis) or based on phenotypic as well as 

molecular genetic data (linkage analysis). Throughout this thesis, use of only 

phenotypic data is considered, therefore remaining in the field of segregation analysis. 

Segregation analysis can be considered as a first screening for presence of major genes, 

indicating traits for which further molecular genetic analyses will be promising. 

Segregation analysis 

Segregation analysis (Elston and Stewart, 1971; Morton and MacLean, 1974) is a 

generally known term for a method for major gene detection, based on statistical 

modelling of a monogenic and a polygenic component to explain observed phenotypes, 
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and use of a (close to) exact mathematical treatment of such model. The (close to) 

exact mathematical treatment poses large problems, for instance in requiring to consider 

all possible (relevant) combinations of genotypes in a population. In animal breeding 

populations, this is generally impossible when considering three or more generations: 

in animal populations large numbers of so-called pedigree loops arise due to the typical 

application of multiple matings (see also Chapter 3). Further mathematical 

complications arise due to the additional modelling of polygenic effects, which require 

to be integrated out from the already intractable mixture distributions resulting from the 

monogenic effects. As a result, in animal breeding segregation analysis is, so far, 

mainly considered in theoretical studies for application to simple population structures 

of (assumed) independent families of one father, possibly several mothers, and 

offspring (e.g. Le Roy et al., 1989) and with little possibilities to also model non-

genetic effects. Approaches for general application of segregation analysis are lacking. 

Aim and outline of this thesis 

The ultimate aim of this thesis is to investigate whether traits in the Meishan crosses 

are influenced by a major gene. Due to the lack of insight in detectability of major 

genes in crosses, and due to the lack of flexible and efficient statistical methodology 

to model a major gene inheritance, a large part of this thesis also is dedicated to more 

general theoretical aspects related to major gene detection and major gene modelling. 

In Chapter 2, by use of simulation studies, power of statistical tests is investigated to 

detect a major gene using the first two generation of a synthetic line, i.e., the data 

available from the Meishan crossing experiment. In Chapters 3 and 4, two approaches 

are developed for practical application of segregation analysis in animal populations. 

The first approach (Chapter 3) is an analytical approach, tackling the problem of the 

generally highly looped pedigrees in animal populations by development of an 

approach for computing approximate likelihoods in looped pedigrees. The second 

approach (Chapter 4) considers use of Markov chain Monte Carlo methodology, which 

allows for a Bayesian approach to segregation analysis. This second approach was fully 

developed through for general modelling of major gene inheritance. Chapters 5 and 6 

then describe analyses of data from the Meishan crossing experiment for presence of 

major genes, using the developed Bayesian approach to segregation analysis. Chapter 
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5 presents results of analyses of a number of meat-quality traits, while Chapter 6 

considers analyses of commercially important traits litter size, growth and backfat. In 

a general discussion (Chapter 7) relevance of the developed statistical methodology and 

relevance of the findings in Chapters 5 and 6 are discussed in general animal breeding 

context and in the context of development of synthetic lines with Meishan. In a second 

discussion chapter (Chapter 8) change of genetic variance in a synthetic line is 

described, which could further aid in development of synthetic lines. 
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Identification of a major gene in Fj and F2 data chapter 

when alleles are assumed fixed in the parental O 

lines 

A maximum likelihood method is described to identify a major gene using F2, 

and optionally F,, data of an experimental cross. A model which assumed 

fixation at the major locus in parental lines was investigated by simulation. 

For large data sets (1000 observations) the likelihood ratio test was 

conservative and yielded a type I error of 3%, at a nominal level of 5%. The 

power of the test reached more than 95% for additive and completely 

dominant effects of 4 and 2 residual standard deviations, respectively. For 

smaller data sets, power decreased. In this model assuming fixation, polygenic 

effects may be ignored, but on various other points the model is poorly 

robust. When F, data was included any increase in variance from Fj to F2 

biases parameter estimates and leads to putative detection of a major gene. 

When alleles segregate in parental lines, parameter estimates were also biased, 

unless the average allele frequency was exactly 0.5. The model uses only the 

non-normality of the distribution and corrections for non-normality due to 

other sources can not be made. Use of data and model in which alleles 

segregate in parents, e.g. F3 data, will give better robustness and power. 

Introduction 

In animal breeding, crosses are used to combine favourable characteristics into one 

synthetic line. It is useful to detect a major gene as soon as possible in such a line, 

because selection could be carried out more efficiently, or repeated backcrosses be 

made. Once a major gene has been identified it can also be used for introgression in 

other lines. 

Major genes can be identified using maximum likelihood methods, such as 

segregation analysis (Elston and Stewart, 1971; Morton and MacLean, 1974). 

Segregation analysis is a universal method and can be applied in populations where 

alleles segregate in parents. However, when applied to Fj, F2 or backcross data 
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assuming fixation of alleles in parental lines, genotypes of parents are assumed known 

and all equal and this analysis leads to the fitting of a mixture distribution without 

accounting for family structure. 

Fitting of mixture distributions has been proposed when pure line and backcross 

data as well as Fj and F2 data are available, and when parental lines are homozygous 

for all loci (Elston and Stewart, 1973; Elston, 1984). Statistical properties of this 

method, however, were not described, and several assumptions may not hold. For 

example, not much is known concerning the power of this method when only F2 data 

are available, which is often the case when developing a synthetic line. Furthermore, 

homozygosity at all loci in parental lines is not tenable in practical animal breeding. 

Here it is assumed that many alleles of small effect, so called polygenes, are 

segregating in the parental lines. Alleles at the major locus are assumed fixed. Fj data 

could possibly be included, but this is not necessarily more informative because Fj and 

F2 generations may have different means and variances due to segregating polygenes. 

The aim of this paper is to investigate by simulation some of the statistical 

properties of fitting mixture distributions, such as Type I error, power of the likelihood 

ratio test and bias of parameter estimates, when using only F2 data. To study the 

properties of the major gene model, polygenic variance is not estimated. The robustness 

of this model will be checked when polygenic variance is present in the data, and when 

the major gene is not fixed in the parental lines. The question whether Fj data can and 

should be included will be addressed. 

Models used for simulation 

A base-population of F[ individuals was simulated, although the Fj generation may not 

have had observed records. Consider a single locus A with alleles A j and A 2, where 

A j has frequencies ƒ and fm in the paternal and maternal line. Genotype frequencies, 

values and numeration are given for Fj individuals as : 

Genotype 

Number 

Frequency 

Value fil fi2 Mi 

AXAX 

1 

J p> m 

A{A2 

2 

fPV-fJ+f„,0-fp) 

/\ jfl •y 

3 

0-fp)V-fm) 



Genotypes of Fj animals were allocated according to the frequencies given above using 

uniform random numbers. For the F2 generation, genotype probabilities were calculated 

given the parents' genotypes using Mendelian transmission probabilities and assuming 

random mating and no selection. A random environmental component e( was simulated 

and added to the genotype. The observation on individual ; (Fj or F2) with genotype 

r (yj) is: 

yri = Mr
+er 0 ) 

with e(. distributed N(0, cr). Polygenic effects are assumed to be normally distributed. 

For base individuals polygenic values were sampled from N(0, oz), where at is the 

polygenic variance. No records were simulated for Fj individuals when polygenic 

effects were included. For F2 offspring, phenotypic observations y? were simulated as: 

ylj'
B/tr+2ap+2am + ^ + eij' (2) 

where fy is the Mendelian sampling term, sampled from N(0, yO"„ ), a and am are 

paternal and maternal polygenic values and e-tj is distributed A (̂0, cr). Additionally, 

data were simulated with no major gene or polygenic effect : 

y, = e„ (3) 

where e( is distributed N(0, o" ). A balanced family structure was simulated, with an 

equal number of dams, nested within sire, and an equal number of offspring for each 

dam. Random variables were generated by the IMSL routines GGUBFS for uniform 

variables and GGNQF for normal variables (Imsl, 1984). 

Models used for analysis 

The test for the presence of a major gene is based on comparing the likelihood of a 

model with and without a major gene. Polygenic effects are not included in the model, 

and the model without a major gene therefore contains random environment only. 

Apart from major gene or no major gene, models can account for only F2 data, or for 
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both Fj and F2 data. This results in a total of 4 models to be described. 

Model for F2 data with environment only 

For F2 data, with n observations, the model can be written : 

y, = ß+e, (4) 

with E(y(.) = ß 

var(y(.) = var(e() = cr 

The logarithm of the joint likelihood for all observations, assuming normality and 

uncorrelated errors, is : 

Ll = - f ln(27to-2) + r'i=l-(yrß)2!2cr (5) 

Maximising (5) with respect to ß and cr yields as the maximum likelihood (ML) 

estimate for the mean, ß = E, y/n, and the ML estimate for the variance is cr = E, 

(yrß)2/n. 

Model for Fj and F2 data with environment only 

Data on Fj and F2 are combined, with «j + «2 = Af observations. The observation on 

animal j from generation / (/=1, 2) is: 

yy-ßi + ey (6) 
with E(yiJ) = ßi 

var(yiy) = var(e/y) = cr 

where ßt is the mean for generation /'. Observations for ¥l and F2 are assumed to have 

equal environmental variance. The joint log-likelihood is given as: 

! , * = - £ ln(2KCT2) - T.WZjLi bij-Pi)2^2 (7) 

The ML estimates for ß( are simply the observed means for each generation, i.e. p^ = 

Y,j y, • In,, and ß2 = ^ ƒ %• lni- ^ n e ML estimate for the variance is o2 = E, E (y;y-p,) IN. 
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Model with major gene and environment for F2 data 

When alleles are assumed fixed in parental lines, all Fj individuals are known to be 

heterozygous. If no polygenic effects are considered, this means that all F2 individuals 

have the same expectation, and conditioning on parents is redundant. In the likelihood 

for such data, summations over the parents' possible genotypes can be omitted and 

families can be pooled. The model is given as : 

y I = Pr + e, (8) 

with e(. ~ N(0, a2) 

and the log-likelihood equals : 

L2 = L%MZU Prf^i I Grr) } (9) 

In (9) Gj is the genotype of individual /, Pr denotes the prior probability that Gj=r, 

which e q u a l s j . y and 4-forr=l, 2 and 3 (or A,Aj, AjA2 and A2A2). The total number 

of F2 individuals is given as n, and the function ƒ is given as : 

ßyi | Grr) = (27UO-2)-0-5 exp { -(y(.-//,.)
2/2a2} (10) 

Model with major gene and environment for Fj and F2 data 

In the Fj generation only one genotype occurs; hence Fj data are distributed around 

a single mean, with a variance equal to the residual variance in the F2 generation. Due 

to possible heterosis shown by the polygenes, a separate mean is modelled, but the 

possible heterogeneity in variance caused by polygenes is not accounted for. The model 

for individual j from generation / for genotype r is: 

with etj ~ N(0, a2) 

where ßt is a fixed effect for generation /'. Model (11) is overparameterised because 

genotype means and 2 general means are modelled. We chose to put y#2=0. In that case 
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the mean of Fj individuals, which all have known genotype r=2, can be written as //F1 

= /J2 + ßi- The joint log-likelihood for Fj and F2 data, using //F1 is: 

V = S ; i l ( - T >n(2*c72) - (y l y-^F1)2 /2a2 } 

+ Z ;£ l ln{Z 3
r = 1 i ' ryö '2 / - lGr r r )} (12) 

where nl and «2 are number of observations in the Fj and F2 generation. The ML 

estimate for /JFI is equal to pl in (6). 

ML estimates for ftf (r=l,2,3) and er in models (8) and (11) cannot be given 

explicitly. These parameters were estimated by minimising minus log-likelihoods L2 

in (9) and L2* in (12), using a quasi-Newton minimisation routine. A 

reparameterisation was made using the difference between homozygotes ^u^ -u^ , and 

a relative dominance coefficient d=(\i2-\il)/t, as in Morton and MacLean (1974). By 

experience, this parameterisation was found more appropriate than the parameterisation 

using three means / / j , /J2 and fi^, because convergence is generally reached faster due 

to smaller sampling covariances between the estimates. The mean was chosen as the 

midhomozygote value: n = y //j + y p.3. 

Parameters I and d are easier to interpret than 3 means, and therefore results are 

also presented using these parameters. Parameter t indicates the magnitude of the major 

gene effect and can be expressed either absolutely or in units of the residual standard 

deviation. Parameter t was constrained to be positive, which is arbitrary because the 

likelihood for the parameters /J, t and d is equal to the likelihood for the parameters //, 

-/ and (\-d). Parameter d was estimated in the interval [0,1]. Problems were detected 

when this constraint was not used, because t could become zero, leading to infinitely 

large estimates for d. This occurred frequently when the effects where small and 

dominant. Minimisation by IMSL routine ZXMIN (Imsl, 1984) specified 3 significant 

digits in the estimated parameters as the convergence criterion. 

Hypothesis testing 

The null hypothesis (H0) is "no major gene effect", whereas the alternative hypothesis 

(//() is "a major gene effect is present". The log-likelihoods Ll in (5) and L2 in (9) are 
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the likelihoods for each hypothesis when only F2 data are present. When Fj data are 

included the likelihoods Z-j* in (7) and L2* in (12) apply. A likelihood ratio test is 

used to accept or reject H0. Twice the logarithm of the likelihood ratio is given as: 

T= 2(L2 - ^1), for ?2 c ' a t a o n 'y 

or r = 2(L2* - L^*), for Fl and F2 data. 

Two important aspects of any test are the type I and type II errors. The type I error is 

the percentage of cases in which H0 is rejected, although it is true. The H0 model is 

simulated by (3). The type II error is the percentage of cases in which H^ is rejected, 

although it is true. Here, the type II error is not used, but its complement, the power, 

which is the percentage of cases in which Hl is accepted, when Hy is true. The 7/j 

model is simulated by model (1). Fixation of alleles in parental lines is simulated by 

taking / p = l and/m=0. 

Type I error 

The distribution of T when H0 is true is expected asymptotically to be % with 2 

degrees of freedom, because the Hl model has 2 parameters more than the H0 model 

(Wilks, 1938). Since in practice data sets are always of finite size, it is interesting to 

know whether and when the distribution of x is close enough to the expected 

asymptotic distribution, so that quantiles from a % distribution can be used as critical 

values. Type I errors were estimated for data sets of 100 up to 2 000 observations, 

simulating 1 000 replicates for each size of data set. Three critical values were used, 

corresponding to nominal levels of 10, 5 and 1%. The nominal level is defined as the 

expected error rate, based on the asymptotic distribution. Exact binomial probabilities 

were used to test whether the estimates differed significantly from the nominal level. 

When the observed number of significant replicates does not differ significantly, a % 

distribution is considered suitable to provide critical values. Also, when the observed 

number is lower than expected the asymptotic distribution might remain useful. The 

nominal type I error is in that case an upper bound for the real type I error. 

Power of the test and estimated parameters 

The power is investigated for additive (d=0.5) and completely dominant (d=l) effects, 
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with a residual variance of 100, and / varying from 10 to 40, i.e. from 1 to 4 residual 

standard deviations. The additive genetic variance caused by this locus equals / /8, 

when / is absolute. Heritability in the narrow sense therefore varies from 0.11-0.67. 

Each data set contained 1 000 observations, and each situation was repeated 100 times. 

The power of the test for smaller data sets was investigated for one relatively small 

effect and one relatively large effect. 

Robustness 

Investigation of the type I error and the power considered situations where either H0 

or// j was true, satisfying all assumptions in the models. The robustness of this test and 

usefulness of the assumption of fixation in parents for parameter estimation was 

investigated for situations which violate two assumptions: 

when there is a covariance between error terms. This was induced by simulation 

of polygenic variance by model (2). The total variance was held constant at 100, 

so that the power of the test could not change due to a change in total variance, 

when fixation of alleles is not the case. The data were simulated by model (1), 

in which ƒ and fm were not equal to 0 and 1, resulting in segregation of alleles 

in the F, parents. Firstly, 3 situations were simulated where the average allele 

frequency remains 0.5. In that case only the assumption that all Fj parents are 

heterozygous was violated. Secondly, 3 situations were simulated where the 

average allele frequency was not 0.5. In that case, the assumption that genotype 

frequencies in F2 are j - , y and 4- was also violated. 

Inclusion of F, data 

A major gene, which starts segregating in the F2 not only renders the distribution 

non-normal, but also increases the phenotypic variance in the F2 relative to the Fj. 

When Fj data are included, this increase in variance may be taken as supplementary 

evidence, apart from any non-normality, for the existence of a major gene. Assessing 

the relative importance of the 2 sources of information is useful so as to judge the 

robustness of the model including Fj data. The effects on non-normality and increased 

F2 variance due to the major gene should therefore be distinguished. This was 

accomplished by simulating different residual variances in Fj and F2. Four situations 

were investigated, combining all combinations of non-normality in F2 and increased 
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variance in F2 (Table 1). In general, 500 Fj and 1 000 F2 observations were simulated. 

For situation 3 data sets with 1 000 Fj and 1 000 F2 observations were also 

investigated. Data for situations 1 and 3 were simulated by model (3), whereas data for 

situations 2 and 4 were simulated by model (1). 

Table 1 The effect on variance and non-normality in the F2, when Fj and F2 

data are combined, for various situations investigated. 

Situation Description F2 distribution Larger variance 

normal in F2 

1 H0 (no major gene) 

2 //j (major gene) 

3 HQ with increased F2 variance 

4 ƒƒ, with decreased F2 variance 

Results 

Type I error and parameter estimates under the null hypothesis 

Estimated type I errors, based on 1 000 replicates, have been given in Table 2 for 

different sizes of the data set. Estimates decreased, and more or less stabilised when 

the size of the data set exceeded 1 000 observations, especially for a nominal level of 

10%, which were most accurate. For these large data sets, however, the type I errors 

were too low ( / ,<0.01), which means that critical values obtained from a % (2) 

distribution would provide a too conservative test. For example, application of the x (2) 

95-percentile to data sets with 1 000 observations will not result in the expected type 

I error of 5%, but rather in a type I error of «3%. 

When no major gene effect was present, still on average a considerable effect 

could be found. Parameter estimates for the major gene model have been given in 

Table 3, simulating just a normally distributed error effect with variance 100. The 

empirical standard deviation for estimated /-values ranged between 7 (N=100) and 5 

{N=2 000) (not in Table). The average estimate for / is therefore biased, and many of 

the individual estimates were significantly different from zero if a West was applied. 
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The average estimated d is 0.5, which is expected because the simulated distribution 

was symmetrical. 

Table 2 Estimated Type I errors (%) at 3 nominal levels for different size 

of the data set 

Nominal level 

N 

100 

250 

500 

1000 

2000 

Estimate 

9.5 

7.8 

6.9 

6.1 

6.0 

10% 

P 

0.3216 

0.0099 

0.0004 

0.0000 

0.0000 

5% 

Estimate P 

5.0 

3.3 

2.9 

3.1 

2.5 

0.5375 

0.0059 

0.0007 

0.0022 

0.0001 

l°/c 

Estimate 

0.8 

0.9 

0.4 

0.5 

0.6 

P 

0.3317 

0.4573 

0.0287 

0.0661 

0.1289 

N: Number of observations in the data set 

P: critical level for test whether estimate is equal to the nominal level, 

based on exact binomial probabilities 

Table 3 Average major gene parameter estimates for genetic effect (t), 

dominance coefficient (d) and variance (cr) under the null-hypothesis for 

varying size of the data set 

N 

100 

250 

500 

1000 

2000 

/ 

15.90 

13.72 

12.54 

11.35 

10.51 

d 

0.50 

0.50 

0.49 

0.51 

0.50 

a1 

57.1 

67.0 

73.2 

77.2 

81.3 

Simulated: cr = 100; N: Number of observations in the data set 

Parameter estimates and power of the test 

Results for the different situations studied under a major gene model have been given 

in Table 4. The % (2) 95-percentile was used as critical value for the test. The power 
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reached over 95% for additive effects (d=0.5) with a / value of 40, which is 4cr 

(residual standard deviations). For complete dominant effects (d=\), 100 % power was 

reached for an effect of t=2Q (2CT). Phenotypic distributions for these 2 cases are 

unimodal, although not normal (Figure 1). 

Table 4 Power of the test and average parameter estimates for genetic 

effect (/), dominance coefficient (d) and variance (<r) in different 

situations (data sets with 1 000 observations, 100 replicates) 

Simulated parameters 

a2- d 

100 

100 0.50 

100 1.00 

/ 

0 

10 

15 

20 

25 

30 

35 

40 

10 

15 

20 

25 

30 

35 

40 

Power 

3.1 

3 

7 

12 

29 

38 

82 

96 

1 

70 

100 

100 

100 

100 

100 

Estimated parameters 

t 

11.4 

12.6 

14.0 

18.2 

23.4 

28.1 

34.9 

39.8 

14.1 

18.2 

22.4 

27.2 

32.7 

37.6 

40.9 

d 

0.51 

0.44 

0.47 

0.47 

0.48 

0.50 

0.50 

0.50 

0.93 

0.83 

0.87 

0.89 

0.90 

0.90 

0.96 

o2 

77.2 

84.7 

95.4 

100.2 

104.4 

108.6 

99.2 

103.3 

61.6 

90.9 

94.0 

95.6 

94.0 

94.8 

97.4 

Power: Number significant at nominal 0.05 level (total=100) 

First line: based on 1 000 simulations under H0 (Tables 1 and 2). 

For small genetic effects (t<\0, i.e. ICT) / was overestimated, in particular when /=0, as 

was already mentioned. For larger genetic effects, / was overestimated for d=\ and was 

underestimated for d=0.5. For d=0.5, average estimates for / and d differed from the 

simulated values by less than 1%, when the power reached near 100 %. For d=\, 
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however, the bias in / was still 10% when the power had reached 100%. This bias 

reduced gradually, and was less than 1% for a genetic effect of /=40. 

0.40 

-20 o 20 
Phenotypic value 

40 

F i g u r e 1 P h e n o t y p i c 

distributions on which over 95% 

power was reached for the 

identification of a major gene: 

/=40, d=0.5 (solid line) and 

t=20, d=\ (dashed line); a=10. 

In Figure 2 power of the test is depicted for varying sizes of the data set. Two 

additive effects were chosen, with t=2S and f=35. Each point in the figure is on average 

of 100 replicates. The power increased with increasing number of observations. 

Increasing the number of observations above 1 000 gave relatively less improvement 

in power, especially for the smaller effect (?=25). For a small number of observations 

this graph is expected to level off at the type I error (nominally 5%), but sampling 

makes results somewhat erratic. 

Robustness when ignoring polygenic variance 

Data following model (2) were simulated with d=0.5 and /=35 and different proportions 

of polygenic and residual variance. The data set contained 20 sires with 5 dams each 

and 10 offspring per dam; each situation was repeated 100 times. Estimated parameters 

and resulting power are in Table 5. Parameter estimates for t and d, and the power of 

the test were not affected when a part of the variance was polygenic. The total 

estimated variance was equal to the sum of simulated variances. 
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Figure 2 The power for 

detection of a major gene in 

relation to the size of the data 

set shown for 2 situations: t=25 

(solid line) and t=35 (dashed 

line); c/=0.5 and a=10. 

Table 5 Power of the test and average parameter estimates for genetic 

effect (/), dominance coefficient (d) and variance (o~ ) when polygenic 

variance is present (data sets with 1000 observations, 100 replicates) 

Simulated 

°«! 

0 

20 

40 

60 

80 

100 

parameters 

- e ' 

100 

80 

60 

40 

20 

0 

Power 

82 

87 

80 

78 

90 

80 

Estimated parameters 

t 

34.9 

35.0 

34.4 

34.5 

35.3 

34.5 

d 

0.50 

0.50 

0.51 

0.50 

0.50 

0.50 

a 2 

99.2 

99.6 

102.5 

101.4 

96.7 

100.0 

—_ ^ 

e : simulated polygenic and residual variance 

Other parameters simulated: /=35, d=Q.5 

Power: number significant at nominal 0.05 level (total=100) 

Robustness when ignoring segregation in the parental lines 

Data following model (1) were simulated with ^=0.5, /=35, o" =100 and various values 
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for ƒ and fm. The genotype probabilities in parents (Fj) and offspring (F2) are in Table 

6. For the first three situations, genotype probabilities in the F2 were -^ , y and -5- as 

assumed under the fixation assumption. For the last three situations, however, genotype 

probabilities were different, because the allele frequency was not 0.5 on average. High 

average allele frequencies were simulated, but because only additive effects are 

considered, results are equally valid for low allele frequencies. The power remained 

equal, as long as genotype probabilities in F2 remained ^ , y and 4- and parameter 

estimates are unbiased (Table 7). In case the allele frequency did not average 0.5, 

however, parameter estimates were biased. The power of the test increased, because in 

this situation the distribution became skewed. The situation with d=0.5 and t=35 for 

data where the gene is fixed in parental lines (Table 4), with a power of 82 %, may 

serve as a reference. 

Table 6 Genotype probabilities in Fj and F2 for different allele 

frequencies in the parental lines 

fp 

0.9 

0.8 

0.6 

0.9 

0.9 

0.9 

•Mil 

0.1 

0.2 

0.4 

0.3 

0.5 

0.7 

Fj probabilities 

A,A, 

0.09 

0.16 

0.24 

0.07 

0.05 

0.03 

AjA2 

0.82 

0.68 

0.52 

0.66 

0.50 

0.34 

A2A2 

0.09 

0.16 

0.24 

0.27 

0.45 

0.63 

F2 probabilities 

A,A, 

0.25 

0.25 

0.25 

0.16 

0.09 

0.04 

AjA2 

0.50 

0.50 

0.50 

0.48 

0.42 

0.32 

J\'y/\'y 

0.25 

0.25 

0.25 

0.36 

0.49 

0.64 

fp'fm- f recluency of Aj allele in paternal and maternal line 

Inclusion of Fj data 

Five hundred, or 1000, Fj observations were also simulated, with additive major gene 

effects (Table 8). With no major gene effect (t=0 and hence cr =0), and with equal 

variances in F] and F2 (situation 1) the average estimated t was much smaller than in 

the model using only F2 data (Table 3). In the second situation (Table 8) a major gene 

effect of /=20 was simulated, which corresponds to the given major gene variance of 

50. 
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Table 7 Power of the test and parameter estimates for genetic effect (t), 

dominance coefficient (d) and variance (a ) when alleles are segregating 

by various frequencies in the parental lines (data sets with 1000 

observations, 100 replicates) 

fp 

0.9 

0.8 

0.6 

0.9 

0.9 

0.9 

•'m 

0.1 

0.2 

0.4 

0.3 

0.5 

0.7 

Power 

76 

83 

76 

81 

92 

99 

t 

34.37 

34.66 

34.14 

31.99 

26.02 

21.17 

d 

0.50 

0.51 

0.50 

0.58 

0.77 

0.96 

a2 

103.9 

101.5 

105.6 

113.4 

127.2 

115.9 
— ; — x 

Simulated : /=35, d=0.5, a -100; ƒ , / m : allele frequency in paternal and 

maternal line; Power : number significant at nominal 0.05 level (total=100) 

Table 8 Power of the test and parameter estimates for genetic effects (/) 

and variance (a ) in different situations when 500 Fj and 1 000 F2 

observations are combined 

Situation 

1 

2 

3 

3 

3* 

4 

Fl 

°.2 

100 

100 

100 

100 

100 

150 

F2 

^ 

100 

100 

150 

110 

110 

100 

„ 1 

0 

50 

0 

0 

0 

50 

Power 

1 

100 

100 

15 

25 

2 

Estimated 

t 

3.03 

19.43 

19.62 

7.72 

8.11 

5.05 

parameters 

a1 

97.9 

100.8 

99.3 

99.1 

99.3 

145.3 

Situation: refers to Table 2 

3*: alternative with 1 000 F, observations instead of 500 
2 2. 

' mg' 

Power: number significant at nominal 0.05 level (total=100) 

0"e', O"' : simulated residual and major gene variance 

When using only F2 data, the test had a power of only 12 % for detection of an 

additive effect of /=20 (Table 4). When including F, data, however, the power was 100 
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% (Table 8). From the situations 3 and 4 considered in Table 8, however, it becomes 

apparent that when Fj data were included, the major gene was only detected by its 

effect on variance, considering a power near the type I error rate as non relevant. When 

the variance in F2 increased by 50%, but when in fact no major gene was present, a 

major gene was found in 100 % of the cases. For smaller increases of the variance 

(10%) major genes were still detected, and the probability of detection increased with 

the size of the data set (alternative 3* with more Fj observations). A major gene was 

totally not detectable, on the other hand, when the total variance in Fj was equal to the 

total variance in F2 (situation 4). This shows that the ability to detect a major gene can 

even be worsened when Fj data are included. If only F2 data was used, a major gene 

with similar effect was detected in 12 % of the cases (Table 4). 

Discussion and conclusions 

Type I error 

Nominal levels for type I errors were based on Wilks (1938) who proved asymptotic 

convergence of the likelihood ratio test statistic to a % distribution. Type I errors 

decreased and stabilised for larger data sets, as expected. The estimated type I errors, 

however, were significantly too low. It is unlikely that the type I error, after having 

first decreased, would increase for even larger data sets as studied here. It can be 

concluded therefore, that type I errors are significantly lower than expected in the 

asymptotic case, and that for large data sets the likelihood ratio test is conservative. It 

has been investigated whether the constraint used on the dominance coefficient could 

have caused the too low type I errors. However, this was not the case, because even 

with no constraint, too low type I errors were found of 7.5% and 3.9% at nominal 

levels of 10 and 5%. 

For the investigation of power we have chosen to use the theoretical asymptotic 

quantiles, although they were shown to give a conservative test. The nominal level for 

the type I error is then an upper bound, and the experimenter still has a reasonable 

good idea of the risk of making a type I error. When the actual type I error would be 

above the expected level, however, the test would become of less use. 

A second reason for still using theoretical asymptotic quantiles is that adapting 

the test is difficult and of little practical use. A difficulty is, for instance, that estimated 
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quantités would be subject to sampling and the obtained point estimate is therefore only 

expected to give the correct test. Therefore, 2 experimenters investigating the same test, 

will find different critical values and the test applied will depend on the experimenter. 

Also in practice such a procedure would be difficult to apply since the calculated 

quantité would only hold for the same model and data sets of similar size and structure. 

Power of the test 

Using only F2 data, the power of this test was poor for additive effects (dominance 

coefficient = 0.5). This can be explained by the resulting symmetrical distribution 

which is similar to the distribution under H0. In this case, the genetic effect has to be 

about 4o" to be detectable, which corresponds to an heritability of 0.67 in the F2 

generation. When the dominance coefficient is 1, an effect of 2o" was detectable. These 

results are based on data sets with 1 000 observations, but it was shown that the power 

decreased dramatically for smaller data sets. 

Power increased when Fj data was included in the analysis, and additive effects 

of 2o" could be detected. In that case the increase in variance in F2, caused by the 

major gene, was taken as an important indication for the presence of a major gene. The 

power to detect a major gene in F2 data may also increase if alleles were not fixed in 

the parental lines, or alternatively F3, instead of F2, data were used. This corresponds 

more to the situation in a usual population, where between-family variation will arise. 

For F3 data, for example, when pure lines were homozygous, the allele frequency will 

be 0.5, and parents will be in Hardy-Weinberg equilibrium. For such a situation, Le 

Roy (1989) found a power of 25% for an additive effect of 2c in a data set of 400 

observations (20 sires with 20 half-sib offspring each). In Figure 2, the power for a 

data set of similar size can be seen to be only «10 % for an even larger effect of 2.5o" 

(t=25). This indicates that an increase in power may be expected when the F3 

generation is observed, despite that more parameters have to be estimated, and that 

parents' genotypes are no longer known. 

The power for detection of a major gene is related to the unexplained variance 

in the model of analysis. The inclusion of fixed and polygenic effects will therefore 

make the major gene easier to detect, provided that all these effects can be accurately 

estimated. 
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Parameter estimates 

For additive effects simulated (d=0.5), bias for the average estimated genetic effect t 

and dominance coefficient d was less than 1% when the power approached 100%. For 

dominant effects (d=\), however, / was overestimated by 10% when the power for 

detection of a major gene reached 100%. This overestimate is probably related to the 

underestimate for d, which resulted from the applied constraint. As mentioned, this 

constraint was applied to prevent / from going to zero, at which point d tended to go 

to infinity. When such a constraint was not applied with, for instance, an effect of f=10 

and d=\, gave in 100 replicates an average estimated d of 2.93. This is an average 

overestimate of =200%. The average estimate using the constraint was 0.93, showing 

that indeed better estimates were obtained under the restriction, even when the true 

value was on the border of the allowed parameter space. In practice, of course, 

overdominance can not be excluded and parameter estimates could be compared with 

and without this constraint. A small, near zero, estimate for / and a large estimate for 

d would suggest a possible overestimation of d. 

For very small or absent effects, the ML estimates were considerably biased. In 

this situation, the asymptotic properties of ML estimates, i.e. consistency, are far from 

being attained. In the absence of a major gene, average estimates were presented for 

increasing size of the data set. This showed that the average estimate decreased, and 

will probably reach the true value when the number of observations is very much 

larger. Bias of ML estimates in finite samples also resulted in significant ^-values when 

no effect was present. This indicates that the presence of a major gene should not be 

judged by the estimates and their standard errors. The standard errors discussed here 

were empirical standard errors. In practice such standard errors will have to be obtained 

using the inverse of an estimated Hessian matrix, or some other quadratic 

approximation of the likelihood curve in the optimum. Using the estimated Hessian 

matrices, we found roughly the same standard errors, although they were not very 

accurate. In our study, the quasi-Newton algorithm was started close to the optimum 

and not enough iterations are then carried out to estimate the Hessian matrix accurately. 

Robustness of model and test 

Inclusion of Fj data results in a poorly robust test when differences in variances would 
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arise between the Fj and F2 due to other causes than a major gene. An increase in 

variance from Fj to F2, can result in a putative major gene being detected. An increase 

in variance of 10% for instance gave 25% false detections when 1 000 Fj and 1 000 

F2 observations were combined. Such increases are not unlikely, due to, for instance, 

polygenes. The major gene test is then merely a test for homogeneous variance in Fj 

and F2. The inclusion of Fj data could also worsen the detection of a major gene, when 

the environmental variance in F2 was less. Therefore any differences in variance, due 

to other causes than the major gene effect, will bias the parameter estimates. Also in 

a model that allows for segregation, such biases will remain. 

It was shown that the model is robust when polygenic effects were ignored. This 

can be explained by the fact that the test uses only the non-normality of the distribution 

as a criterion. It must be noted however that, when polygenic effects can be accurately 

estimated, including a polygenic effect in the model will increase power because it 

reduces the residual variance. 

Another aspect of robustness concerns the assumption of fixed alleles in parental 

lines. It was shown that parameter estimates were not biased when alleles segregated, 

as long as the average frequency in the 2 lines was 0.5. In that case the assumed fitting 

proportions -j , y and -j are still correct. If the average frequency in parental lines 

differed from 0.5, / was underestimated and, because skewness was introduced, 

estimates for d deviated from 0.5. This second situation is more likely to occurr than 

the situation where the average frequency is exactly 0.5. Because it could be difficult 

to justify the fixation assumption a-priori, application of a more general model that 

allows for segregation in parental lines, might have to be considered. 

A final aspect of robustness concerns non-normality of the distribution not due 

to a major gene. As stated earlier a mixture distribution is fitted and the detection of 

a major gene in F2 data, assuming fixation, relies solely on the non-normality caused 

by the major gene. This means that in fact only a significant non-normality is proven. 

The method would therefore be poorly robust against any non-normality due to another 

cause. The robustness might be improved using data in which alleles segregate in 

parents. This is guaranteed in F3 data, but may also arise in F2 data, when alleles were 

not fixed in parental lines. If segregation in parents is the case, evidence for a major 

gene is no longer only in the non-normality of the overall distribution, but also for 

instance in heterogeneous within family variances. Therefore a model that allows for 
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segregation is not only preferred to increase power, but also is preferred to improve 

robustness. 
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Computing approximate monogenic model chapter 

likelihoods in large pedigrees with loops j 

In this chapter 'iterative peeling' is introduced, a method equivalent to the 

traditional recursive peeling method for computing exact likelihoods in non-

looped pedigrees, but which also can be used to obtain approximate 

likelihoods in looped pedigrees. Iterative peeling is an interesting tool for 

animal breeding, where exact recursive peeling is generally infeasible due to 

the abundant number of loops in animal pedigrees. In simulations, hypothesis 

testing and parameter estimation were compared based on approximated 

likelihoods in looped pedigrees and exact likelihoods in non-looped pedigrees, 

showing no biases being introduced by the approximation in looped pedigrees. 

Introduction 

Research into the use of major gene models in animal breeding has been aimed mainly 

at approximations to a mixed inheritance model, including polygenes, in one generation 

half-sib structures (Hoeschele, 1988; Le Roy et al., 1989; Knott et al., 1992). Because 

of the pedigree loops that arise in animal breeding situations, extension to 

multigeneration pedigrees is difficult. A pedigree loop arises when two individuals are 

connected by more than one path of descendance or marriage relationships. Lange and 

Elston (1975) described various types of loops, among which inbreeding loops, 

marriage rings and marriage loops. In animal breeding pedigrees these kinds of loops 

are very common. In particular, multiple matings which are generally applied to males 

and often to females, result in many marriage loops and marriage rings. 

For genotype probability and likelihood computation, loops can be dealt with in 

an exact manner only in pedigrees with a few simple non-overlapping loops using the 

traditional recursive peeling method (Elston and Stewart, 1971; Cannings et al., 1976; 

Cannings et al., 1978). However, in highly looped pedigrees, common in animal 

breeding, exact recursive peeling is too demanding computationally and recursive 

peeling also is not flexible to allow for approximate computations. 

In this study we introduce 'iterative peeling'. Iterative peeling is developed as an 
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exact method for application in non-looped pedigrees, equivalent to recursive peeling, 

but which, unlike the original recursive variant, can be used without modifications in 

looped pedigrees to obtain approximate likelihoods. The main objective of this paper 

is to introduce iterative peeling for such approximations in looped pedigrees, allowing 

for a more general application of major gene models in animal breeding. Using 

simulations, the usefulness of the approximation for likelihood-based hypothesis testing 

and parameter estimation in looped pedigrees is investigated. A monogenic model will 

be considered, which can be extended to a mixed inheritance model, as will be 

discussed. 

Recursive and iterative peeling 

In the first section, recursive peeling is described for obtaining monogenic model 

likelihoods in non-looped pedigrees. In the second section, 'iterative peeling' is 

introduced as an equivalent method for exact computations in non-looped pedigrees. 

The equivalent exact method in non-looped pedigrees can be used as an approximate 

method in looped pedigrees. 

Recursive peeling 

Probability and likelihood computations in non-looped pedigrees can be done by 

recursive peeling (Elston and Stewart, 1971; Cannings et al., 1976; Cannings et al., 

1978) using two basic peeling operations of'peeling up' and 'peeling down'. Roughly, 

considering a single family, a peel-up operation represents the information in a family 

in probabilities for the genotype G( of a parent ;', and a peel-down operation represents 

this information in probabilities for the genotype Gk for an offspring k. Here, notation 

based on Van Arendonk et al. (1989) is used, where the result of the peel-up operation 

is denoted by prog{G^) and the result of the peel-down operation is denoted by 

prior(Gk). The corresponding notation in Cannings et al. (1976, 1978) is the R*(..;G,) 

function for peeling up and the R (..;Gp function for peeling down. 

Peeling operations are used recursively, e.g. computation of a prog term for a 

parent based on progeny data, may include previously computed prog terms of those 

progeny, representing information from grand-progeny. The aim of peeling is to 

condense all information from a pedigree into a prior and prog term for a single 
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individual /, obtaining the likelihood L for all data in the pedigree as : 

L = S G / prioriG,) f(y, \ Gj) prog(G,) ( 1 ) 

where fiyt \ Gj) is the penetrance function, which is the probability for the observed data 

y I on individual /, given it has genotype G,. The individual / may be an individual from 

the base population, in which case the base-population genotype frequency P(Gj) is 

used in place of prioriGj). Individual / also may have no own data or no progeny, in 

which case the corresponding penetrance term or prog term is removed. 

Computationally this is implemented using a penetrance or prog term containing l's. 

Peeling equations 

A peeling equation for an individual is obtained by considering the collection of 

possible base-population genotype frequencies, genotype transmission probabilities, 

penetrance probabilities and other peeling terms pertaining to the individuals in its 

family and summing over all possible genotypes of the family members. The terms thus 

entering in a peeling equation are difficult to give in general. Here, equations will be 

given to use peeling in a pedigree structure with dams nested within sires. In this 

structure a family is a half-sib family of one sire with several mates, containing groups 

of full sibs which are, across groups, paternal half-sibs. Three different peeling 

equations are considered, two for peeling up, dependent on whether this is done for a 

sire or a dam, and one for peeling down. In the peeling equations, prior, prog and 

penetrance functions on family members are specified in all places where they can 

enter. When these are not relevant, e.g. when a progeny does not have progeny of its 

own, these are removed or, computationally, terms containing l's are used. Prior terms 

for individuals in the base population are substituted with base-population genotype 

frequencies. 

To condense all information in a prog term for a sire /' the following is used : 

progiGf) = UJZGJ prioriG j) flypp UkZGk P(Gk |G,,G.) f(yk V}k)prog{Gk) (2) 

where 7=1 to «, are mates of/', each mate having k=\ to n-- progeny, and P(Gk | G,,G.) 

is the genotype transmission probability of sire / and a dam j to offspring k. To 
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condense all information from a half-sib family into a prog term for one particular dam 

j * of the family, the following is used : 

prog(Gj*)=ZGi prioriG^ ßyJG,) prog.jt(G^ 

KkZak p(°k M y ) fok tek)prog{Gk) (3) 

where ; is the sire of the family, prog *(Gj) is like in equation (2), but excluding dam 

j * and k=\,n-„ are progeny of dam j * . To condense all information in a prior term for 

one particular progeny k* with dam 7*, the following is used : 

prior(Gk.) = ZG / prioriGj) fly, IG,) phs(G^ 

ZGy prior{Gr) ßyJt b y ) /*(G,,Gy) P(Gk. b„Gy) (4) 

where /' is the sire of the family, phs{G^} is a term that includes information on the 

paternal half-sibs of k*, which is a function of the genotype of its sire /' and is 

computed as : 

phsiG^Ujj^ -Lajpriorißpflyfij) Uk I G t J\Gk b„Gy) fiyk \Gk) prog(Gk) 

and where in (4) fs(Gj,G•«) is a term that includes information on the full-sibs of k*, 

which is a function of the genotypes of its sire ; and dam j * , and is computed as : 

/v(G„Cy)=n,,,*,* Zc;, P(Gk]Git,Gr)ßyk\Gk) prog{Gk) 

Iterative peeling 

Iterative peeling is equivalent to recursive peeling used in non-looped pedigrees. 

Iterative peeling is based on an algebraic partitioning of the likelihood and on repeated 

computation of peeling equations, based on the idea of iterative computation of 

genotype probabilities (Van Arendonk et al., 1989). 

Partitioning of likelihood 

The aim of obtaining the likelihood of all data using equation (1) requires families to 

be handled in a certain order and requires peeling, within each family, to be in a 
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certain direction. Peeling operations can be used to partition the likelihood pertaining 

to parts of the pedigree. This partitioning is continued until parts are obtained 

pertaining to single families. This allows a family-wise evaluation of the likelihood, 

and the requirement of peeling to have a direction within each family becomes 

obsolete. 

Figure 1 Example pedigree to demonstrate 

partitioned computation of the likelihood 

Consider the pedigree with 5 individuals in Figure 1. In this pedigree two 

families are present, a first family with individuals 1, 2 and 3, and a second family 

with individuals 3, 4, and 5. Here, one partitioning above and below individual 3 

divides the pedigree in two families, with individual 3 being in both families. 

Individual 3 is called a linking individual. The likelihood for a monogenic model, 

assuming data is available on all 5 individuals, is computed as : 

L = E G 1 E G 2 E G 3 E G 4 E G 5 P{G,) P(G2) P(G3 I G{,G2) P(G4) P(G5 j G3,G4) 

AVi I G,) f(y2 I G2)f(y3 | G3)fiy4 | G4)f(y5 | G5) 

Now, L is multiplied and divided by Ll = E G 1 E G 2 E G 3 /'(Gj) P(G2) P(G3 | Gj,G2) 

f(yy \Gl)f(y2 \G2), which is the likelihood of family 1, ignoring data on progeny 3. 

Some reordering yields : 

L = LX* EG 3EG 4EG 5 { EG 1EG 2 P(Gl)P(G2)P(G31 G1,G2yi>1 | G{rf(y2 \ G2)ILl } 

* P(GA)P(G5 | G3,G4]fiy3 I G3W4 \ G^(y5 \ G5) 
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where the part EGiEG2P(Gi)P(G2)P(G3 | Gl,G2)f(yl | G{)f(y2 I G2) has been isolated. 

This part isprior(G3). The term defined as Z,j can be rewritten as £ G 3 E G 1 E G 2 P(Gi) 

P(G2) P(G3 | Gl,G2)ßyl | Gj) f(y2 | G2), which is Y^Q^priotiG^). This simplifies Z, to : 

i = Lx { £G 3£G 4£G 5 /WC (G 3 )P(G 4 )P(G 5 | G3,G4)/Î>3 I G3My4 I G^/Ö's I G5) } 

wherepriorsc(G-i) stands for a scaled, or normalised, prior term. Now the likelihood can 

be written as L = L{L2, or ln(Z,) = ln(Z,j) + ln(Z,2),
 w>th one likelihood term per family. 

This is a partitioning using a prior term for the linking individual. It shows that for this 

type of partitioning (i) in the family where the linking individual is a progeny, after the 

partitioning, information on the linking individual, i.e. own data and progeny data, is 

ignored and (ii) in the family where the linking individual is a parent, a scaled prior 

term is used for the linking individual. This term is used in a manner like a base-

population genotype frequency for base individuals. The scaled prior term for a linking 

individual /, is computed in general as : 

prio^iGf ) = prioriG/ ) / E G / priorißl ). 

Although the partitioning is only shown for one example, the partitioning is very 

general. The term Z,j above is in general the sum of the prior term for a linking 

individual /, which is the collection of all probability terms pertaining to anterior 

individuals of / and the transmission probability to /, summed over all possible 

genotypes of/ and of its anterior individuals. At the same time this term represents the 

likelihood of the entire anterior part of the pedigree and /, excluding data on /. The 

remaining part after the partitioning, L2 in the example, is the likelihood of the 

posterior part of the pedigree of /, including / with a scaled prior term. In larger 

pedigrees this partitioning is repeated to yield parts corresponding to single families. 

When repeating the partitionings, results of earlier partitionings must be taken into 

account, e.g. the result that, after a partitioning, information on a linking individual is 

ignored in the family where the linking individual was a progeny. 

The likelihood of a pedigree can be partitioned entirely using prior terms. 

However, the iterative computation, as will be introduced hereafter, can be speeded up 

by using also a partitioning of the likelihood using a prog term. Showing this based on 
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the example, the likelihood L is multiplied and divided by a term representing the 

likelihood of family 2, ignoring data on individual 3, L2* = E G 3 E G 4 E G 5 P(G4) 

P(G5 | G3,G4)yi>3 | G3yi>4 | G4), which leads to : 

Z, = E G 1 E G 2 E G 3 P(Gl)P(G2)P(G3 | G , ^ ) / ^ , | G,)/(y2 | G2)/j>3 | G3) 

* { E G 4 E G 5 P(G4)P(G5 | G3,G4W4 I G ^ s | G5)/L2* } L2* 

Here a term E G 4 E G 5 P(Gi)P(G5 | G3,G4)/0>4 | G4)/(y5 | G5) has been isolated, which is 

prog{G^). The division by Z,2* scales this term, L2* being E G 3 progiG^)- Hence, L is 

written as : 

L= {EGIEÜ2EG3/XG,)/XG2)/XG31 G^Wy | G,My2 I G2)Ay31 G3)^gsc(G3)}£2* 

where pro^iG-^) denotes the scaled or normalised prog term. For a partitioning using 

& prog term it is seen that (i) in the family where the linking individual is a progeny, 

a.proffc term is added as information for the individual and (ii) in the family where the 

linking individual is a parent, all information from observations and from prior terms 

is ignored. The scaled prog term for a linking individual /, is computed in general as: 

prog?c{G, ) = prog(Gl ) / EG / prog(G, ) . 

Partitioning in a nested design 

In a nested design, partitionings are carried through until parts are obtained 

corresponding to sire families. In such families, several female parents can be present. 

The linking individuals are all the sires and dams of the families, except when they are 

in the base population. In this design we consider a partitioning using a prog term for 

each male and a prior term for each female that is a linking individual. When all 

parents of a family are in the base population, the part of the likelihood pertaining to 

such a family is computed as : 
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Ls={ZGlP(Gi)flyl\Gl) 

TiPajIXGßfiyjlGj) 
n Ä a PiGk I G„Gj)ßyk | Gk) pm^(Gk) 
U^Piß^Gfip 
nm^GmnGm\Gi,Gj)ßym\Gm)} (5) 

where /' indicates the sire of family s,j sums over the dams of the family, k indicates 

male progeny that are linking individuals, / indicates female progeny that are linking 

individuals and m indicates all other progeny. When the sire of the family is not in the 

base population, the term P(Gj)f(yj I G,-) on the first line of (5) is removed and for each 

dam that is not in the base population the term P(G) on the second line of (5) is 

replaced with priofc(G). The considered partitionings using prog terms for all male 

linking individuals lead to this removal of information from sires on the first line of 

(5) when sires are not in the base population and lead to the inclusion of the prog*0 for 

males on the third line of equation 5. The considered partitionings using prior term for 

all female linking individuals, lead to the inclusion of aprioi*0 term on the second line 

of (5) when dams are not in the base population and the removal of all information of 

females on the fourth line of equation 5. Based on the results from the previous 

paragraph, after the partitionings the likelihood of the entire pedigree is : 

ln(i) = E, ln(I,) (6) 

Repealed computation of peeling equations 

Iterative peeling uses repeated computation of peeling equations. The repeated 

computation is a method to establish the order in which equations should be handled. 

Therefore, iterative peeling does not require to know such an order beforehand, as is 

required for recursive peeling. 

For each individual a prior and a prog term is computed and remains stored 

because results of peeling terms can be required as input for the computation of other 

peeling terms. Iterative peeling computes a series of solutions prior ', prior ', etc. for 

these terms. Starting values are taken for individual / as prior '(G(.)=.P(G.), the 

genotype frequencies in the base population and prog*°\Gt) equals 1 for all G;. 

Iterative computation starts by computing prior \G) for each individual /', in order of 
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descending age. Evaluation of these prior terms is based on prior * terms of parents, 

which are available because older individuals are updated before younger individuals, 

and on prog* ' terms of sibs. Subsequently, prog* '(G() is computed for each individual 

/, in order of ascending age. Evaluation of these prog terms is based on prior ' terms 

of mates, on prog* ' terms of progeny, which are available because now younger 

individuals are updated before older individuals, and for female parents on a prog* * 

or prog* ' term of their male mate. Whether this last term is already updated as prog* * 

depends on the order in which prog terms are computed. After computation of all 

prior * and prog* * terms is completed, a new iteration starts computing prior * and 

prog\2\ etc. 

Starting values are such that prior ' terms are correct for all individuals in the 

base population, and prog* ' terms are correct for all individuals without progeny. 

Terms that can be correct after the first cycle of computations are for instance prior ' 

terms of individuals descending from two base individuals and prog* * terms of parents 

without grandprogeny. Correct computation of a term shows, when in the next cycle 

recomputed terms are equal to old terms. Once it is found that a term is correctly 

computed, recomputation can be omitted in following iterations of the algorithm. The 

order in which terms are found correct gives information on the order in which 

recursive peeling could be used. Generally, in each iteration, reasonably large groups 

of terms appear correct, keeping the number of cycles required to compute all terms 

correctly reasonably small, typically about the number of generations in the data set. 

When all terms are found correctly computed, likelihood of the data can be obtained 

using (5) and (6). 

Application in looped pedigrees 

The series of solutions prior *, prior \ etc., obtained with iterative peeling can be 

considered as temporary solutions for the required terms, corresponding to solutions 

based on a not yet fully determined peeling order. Also 'temporary' likelihoods can be 

computed using (5) and (6) based on a not yet fully determined order. In non-looped 

pedigrees, a peeling order can eventually be found and temporary solutions become 

exact. In looped pedigrees, a peeling order for recursive peeling can not be determined. 

In the iterative peeling algorithm the impossibility to find a peeling order in looped 

pedigrees shows from continuing changes in peeling terms. In looped pedigrees, these 
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changes were found to decrease in size quickly and temporary likelihoods were found 

to stabilise, supplying an approximation. Because in iterative peeling every following 

update of terms includes information from 50% less related individuals, a geometric 

rate of convergence is plausible. As a stopping rule to use the approximation in looped 

pedigrees, we used the average absolute difference between subsequent normalised 

heterozygote probabilities, based on computed peeling terms. For convenience, only the 

heterozygote probability, which changed the most, was monitored. 

Simulation study 

Application of iterative peeling to obtain approximate likelihoods in looped pedigrees 

was the aim of this study. Simulations were therefore performed to investigate the 

usefulness of this approximation. Because exact computations are infeasible in large 

looped pedigrees, approximate likelihoods could not be compared with exact ones. 

Hence, an indirect way to study the approximation was found by studying the 

distribution of test statistics and of parameter estimates over a number of replicated 

analyses in looped as well as non-looped pedigrees. In non-looped pedigrees exact 

likelihoods could be computed, serving as a reference. Simulations and analysis are 

based on a biallelic autosomal locus and a normal penetrance function. 

Simulated data 

Data sets had a nested structure each generation, with full sibs nested within paternal 

half-sibs. Three different data structures were used (Table 1), one structure without 

loops and two structures with loops. The data structures were designed to contain 

approximately the same number of observations, the same number of base individuals 

(structure 1 vs. 2) and the same family sizes (1 vs. 3). In structures 2 and 3, the third 

generation was produced by taking one son from each sire and one daughter from each 

dam, maintaining the same breeding structure across generations. No directional 

selection was practised, and breeding females for a male were taken each from a 

different sire-family. Half and full-sib matings were avoided, so that inbreeding was 

absent within the 3 generations considered. The additional third generation in structures 

2 and 3 caused many pedigree loops in the form of marriage loops. All individuals 

used for breeding the last generation, i.e. 120 for structure 2 and 60 individuals for 
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structure 3, were involved in one or more of such loops, often overlapping. 

Table 1 Possible structures of simulated data sets 

Generations 

Structure (including parents) 

1 

2 

3 

2 

3 

3 

Sires, Dams and 

Progeny per dam 

(per generation) 

20, 5, 10 

20, 5, 5 

10, 5, 10 

Total 

Observations 

1120 

1120 

1060 

Genotype Gt of an individual equals 1, 2, or 3 corresponding to genotypes A J A J , 

AjA2 and A2A2 on an autosomal locus. Genotypes for individuals in the base 

population were randomly sampled using genotype frequencies according to Hardy-

Weinberg proportions, after which genotypes of other individuals were randomly 

sampled based on realised parental genotypes assuming Mendelian transmission 

probabilities. For each individual a random normally distributed environmental 

component was sampled and added to a pre-determined effect of each genotype to 

obtain a phenotypic observation. Random numbers were generated using GGUBFS and 

GGNQF (IMSL, 1984). Details on the parameters used for these simulations are given 

in the following sections. 

Model and model fitting 

The statistical model can be specified by the probability terms in (2), (3) and (4) which 

are P(Gj), genotype frequency in the base population for individual /', PiGj \ Gs, GJ), 

transmission probability for individual /' given genotype of its sire 5 and dam d, and the 

penetrance function ßyt | G;), probability for the data j ( on individual / given the 

genotype G, of individual /'. From these three, transmission probabilities are assumed 

known to be Mendelian. Genotype frequencies in the base population depend on the 

unknown frequency ƒ of the A! allele, assuming Hardy-Weinberg proportions of 

genotypes. The penetrance function for an individual / is taken as : 
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ßy, I G/.)=(27ia-)-'/2exp{4Cy/.^G(.)
2/a

2} 

This penetrance function is a normal probability density function with variance cr 

around the mean /iGj for genotype Gr No dominance is assumed. For analysis, means 

attributed to the genotypes are expressed as ft y = fi-lAt, M2
 = M a n d ^ 3 = H+'/z', where 

/ is the difference between homozygotes, referred to as the gene effect. The unknown 

parameters in the model are then/, u, /, and cr. 

Likelihoods were computed using iterative peeling. For structure 1, without 

loops, computations were done exactly by repeating the computations until no further 

changes occurred, having found the order for recursive computation. For the looped 

pedigrees of structures 2 and 3, iterative peeling was used to obtain approximate 

likelihoods. The stopping rule was a change less than 10" for the average absolute 

heterozygote probabilities of all individuals. The maximum of the likelihood was 

searched using the downhill simplex algorithm (Neider and Mead, 1965), using as 

convergence criterion the variance of likelihood values of points in the simplex to be 

less than 10"12. 

Comparisons 

Looped and non-looped pedigrees were compared in hypothesis tests and parameter 

estimation. In hypothesis testing, a null hypothesis postulating the absence of a major 

gene is used, described by a model with parameters ft and cr, and an alternative 

hypothesis postulating the presence of a major gene is used, described by a model with 

parameters/, //, /, cr. Tests are based on the likelihood ratio (LR) test statistic, which 

is twice the natural logarithm of the ratio of maximum likelihoods under each 

hypothesis. Type I error and power, the complement of Type II error, were investigated 

at their nominal level, i.e. assuming the expected classicial asymptotic % distribution 

for the LR test statistic under the null hypothesis (Wilks, 1938). Using the classical 

rules, rejection thresholds were obtained from a % distribution with 2 degrees of 

freedom, being the difference in number of parameters between the null- and alternative 

hypothesis. It should be noted that for testing mixtures, these classical rules do not lead 

exactly to the nominal Type I errors (Titterington et al., 1985), but this is not of 

importance for the comparisons between looped and nonlooped pedigrees to be made 

here. The likelihood LQ for the null-hypothesis is computed as: 



39 

L0 = n j (2TIo2)"'72 expl-ICy,-//)2/^ } 

where yt are observations with i=\, ... , N, the total number of observations, assumed 

normally and independently distributed. Under the null-hypothesis, the maximum 

likelihood estimate for the mean is fi=YyjlN and for the variance is cr = ZOv^o) IN. 

Type I error of the test for a major gene was investigated by simulating 1000 

data sets of each structure (Table 1), generating for each individual only a randomly 

distributed error term with cr= 100 as phenotype. Likelihoods for the null hypothesis 

and the alternative hypothesis were computed in each of these replicated data sets, and 

the likelihood ratio test statistic was obtained. The number of significant tests in these 

1000 data sets was counted using rejection thresholds of 4.605 and 5.991, 

corresponding to nominal Type I errors of 10% and 5%. Power to detect a major gene 

was investigated by simulating 100 data sets of each structure (Table 1) for three 

different gene effects /=5, /=7.5 and /=10 and using allele frequency f=0.5 and residual 

variance cr=100. Hence, relative gene effects //cr were 0.5 0.75 and 1. Power was 

based on a nominal Type I error of 5%, using a rejection threshold of 5.991. Parameter 

estimates were compared using the 100 data sets of each structure (Table 1) used to 

investigate power with /=10. 

Results 

Type I errors were significantly lower than their nominal, i.e. asymptotically expected, 

level, but comparison of Type I errors between looped and non-looped structures does 

not show significant differences (Table 2). This indicates that absolute values of 

approximate likelihoods obtained are at average close to expected and that the 

distribution of the test statistic over a number of replicates is not significantly altered 

when loops are present. Similar conclusions can be drawn by comparing power of the 

test under the alternative hypothesis (Table 3). Parameters estimates for gene effect 

under the alternative hypothesis are biased in general, but estimates for gene effect as 

well as allele frequency do not differ between looped and non-looped structures (Table 

4). This indicates that location of the maximum is, at average over replicates, not 

altered for approximate likelihoods. 
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Table 2 Estimated Type I errors (%) under the null hypothesis of no 

major gene, given for non-looped structures (1) and for looped structures 

(2,3) based on 1000 simulated data sets for each structure 

Nominal level 

Structure 

1 

2 

3 

10% 

2.8 

3.2 

2.5 

5% 

1.4 

1.4 

1.7 

Table 3 Estimated power (%) for a major gene test under the alternative 

hypothesis of presence of a major gene, given for non-looped structures 

(1) and for looped structures (2,3) based on 100 simulated data sets for 

each structure and for each of three different genetic effects 

Genetic Effect tla 

Structure 0.5 0.75 1 

i 20 66 96 

2 13 58 94 

3 15 72 92 

Table 4 Average parameter estimates for genetic effect (() and allele 

frequency (/) with empirical standard errors of the mean (±SEM) under 

the alternative hypothesis of presence of a major gene, given for non-

looped structures (1) and for looped structures (2,3), based on 100 

simulated data sets for each structure 

Structure ? ± SEM ƒ ± SEM 

i 10.95 ± 0.30 0.479 ± 0.021 

2 11.33 ±0.23 0.499 ±0.021 

3 10.87 ± 0.25 0.501 ± 0.021 

Simulated parameters : /=10 and ,/=0.5 
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Discussion and conclusions 

An alternative peeling algorithm, called iterative peeling, was presented. The iterative 

peeling algorithm includes an algorithm to find an order for evaluating peeling 

equations. When an order can not be found, as in looped pedigrees, an approximate 

likelihood is supplied. Hereto, use of a partitioned computation of the likelihood also 

is crucial. Traditional recursive peeling does not know such approximations, because 

this method considers only to the compute the, exact, likelihood once a peeling order 

is found and computes the likelihood by representing all pedigree information in terms 

for a single individual. Usefulness of iterative peeling as an approximate method in 

looped pedigrees was investigated by simulations. At an aggregate level, i.e. compared 

at average over a number of replicated data sets, no difference were found between 

looped and non-looped pedigrees. Exact computations were infeasible due to the large 

number of loops in the typical animal breeding pedigrees we considered, and properties 

of iterative peeling could not be studied comparing exact and approximated likelihoods 

in individual data sets. 

The iterative peeling method may be of interest for application in animal 

breeding. In human populations, pedigrees are generally small and loops are not 

abundant so that exact computations can be considered using more complicated forms 

of peeling (see Cannings et al., 1978). These more complicated forms of peeling 

consider genotypes on sets of individuals jointly. Larger pedigrees and more abundant 

looping in animal breeding, however, makes the sets of genotypes considered jointly 

too large to make exact computations feasible. Therefore, approximate methods are 

required for application in animal breeding. Iterative peeling seems very suited, being 

exact without loops, and automatically supplying approximate likelihoods when loops 

are present. Note that, due to the partitioned computation of likelihood, iterative peeling 

also automatically handles pedigrees consisting of independent families, i.e. data 

traditionally handled with sire- or sire and dam models. Equations and partitionings 

given here could be extended to allow for more general pedigrees. In particular, 

allowance could be made for females being mated with several males. Hereto, 

partitionings should accommodate for 'linking individuals' being parents in several 

families, rather than just one. The monogenic model used, could also be extended to 

a mixed inheritance model, the model usually required for analysis of animal breeding 
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data. In iterative peeling only uni- and bivariate functions of genotypes are considered 

on single families. This can be combined with for instance a hermitian integration (Le 

Roy et al., 1989; Knott et al., 1992) to include a polygenic component. 
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Application of Gibbs sampling for inference in chapter 

a mixed major gene-polygenic inheritance 4 

model in animal populations 

Application of Gibbs sampling is considered for inference in a mixed 

inheritance model in animal populations. Implementation of the Gibbs 

sampler on scalar components, as used for human populations, appeared not 

to be efficient and an approach with blockwise sampling of genotypes was 

proposed for use in animal populations. The blockwise sampling by which 

genotypes of a sire ad its final progeny were sampled jointly, was effective in 

improving mixing, although further improvements could be looked for. From 

Gibbs samples posterior densities of parameters were visualised, from which 

highly marginalised Bayesian point- and interval estimates can be obtained. 

Introduction 

Gibbs sampling has been proposed for making inferences in a mixed inheritance model 

in human populations (Guo and Thompson, 1992). The Gibbs sampler is a sampling-

based computational tool to perform marginalisations without analytical approximation 

(Geman and Geman, 1984; Gelfand and Smith, 1990). As such, it can marginalise the 

joint density of unknowns from a mixed inheritance model with respect to polygenic 

effects as well as genotypes. Using analytical approaches (e.g. Le Roy et al., 1989; 

Knott et al., 1992; Kinghorn et al., 1993) this is an impossible task in general 

pedigrees. Due to its potential, Gibbs sampling, or related techniques, may soon 

dominate other computational methods for making genetic inferences, in particular 

when modelling single loci, such as in major gene detection and in QTL- and marker 

mapping. For a review on recent applications of Gibbs sampling in animal breeding see 

Sorensen et al. (1994). 

Use of the Gibbs sampler implementation for human populations (Guo and 

Thompson, 1992) in animal breeding, may show very slow mixing of genotype states, 

resulting in difficulty in achieving convergence. Large progeny groups in animal 

breeding are responsible for this effect. The aim of this study was to describe the 
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construction of a markov chain using a modified sampling scheme, more suited for 

inference in animal populations. Because this study is the first report of using Gibbs 

sampling in a mixed inheritance model in animal breeding, we will describe in detail 

the construction of the required markov chain. The effect of the modified sampling 

scheme on mixing will be demonstrated. A small simulation study will be presented 

showing the types of marginal posterior densities that can be obtained with discussion 

of possible methods of inference based on these marginal densities. 

Mixed inheritance model 

In a mixed inheritance model a trait is influenced by the genotype at a single locus and 

by a polygenic effect, which is the aggregate effect of a large number of loci unrelated 

to the single locus. The single locus is assumed to be an additive, biallelic, autosomal 

locus with Mendelian transmission probabilities. Alleles at the single locus are Aj and 

A2 with genotypes AjA,, AjA2, A2A, and A2A2. The heterozygotes AjA2 and A2Aj 

are distinguished to provide a simple and yet flexible notation for their covariance 

structure. In an alternative notation, the genotype of individual / is denoted w(. with four 

possible realisations coe/-, a row vector, corresponding to genotype AeA,- : co11=(l 0 0 

0), co12=(0 1 0 0), co21=(° 0 1 0) and co22=(° 0 0 1). We assume a homogeneous 

population of base individuals with genotypes in Hardy-Weinberg proportions. 

Relaxation of these assumptions is feasible by increasing the number of parameters to 

be estimated, which poses no particular difficulty. We also assume that each individual 

has one observation for the trait. Inbreeding will be accounted for in the computations. 

The statistical model for the observations is : 

y = Xß + Zu + ZWm + e (1) 

where ß is a vector of fixed nongenetic effects, X is a design matrix relating nongenetic 

effects to observations, u is a vector of random polygenic effects for all individuals in 

the pedigree, Z is a design matrix relating polygenic effects to observations, Wm is a 

vector of random effects at the single locus for all individuals and e is a vector with 

errors. The effects at the single locus are expressed using W={w(}, a matrix containing 

information on the genotype of each individual, and m, a vector with genotype means, 
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where m'=(-a 0 0 a). Hence, the A2 allele is assumed to increase the trait value, 

hereafter called the favourable allele, no dominance is assumed and no distinction is 

made between the effects of the two heterozygotes A|A2 and A2Aj. 

The distribution of e is N(0, lae ), where N denotes the normal distribution. The 

covariance structures for polygenic effects can be expressed as u~N(0, Acru ), where 

A is the numerator relationship matrix and (Tu the polygenic variance. The covariance 

structure for genotypes, however, cannot be expressed in matrix notation. To show the 

parallels between polygenic and monogenic effects, therefore, we will specify both in 

scalar notation. For individual /', the polygenic effect uj is : 

M-~ Af(0, a ), when / is an individual in the base population (2a) 
1 1 9 

u{ ~N(-f uMy j+YuD h ^/'°u ' ' w n e n ' ' s n o t ' n t n e base population (2b) 

where us t and uDj in (2b) are polygenic effects of the sire and dam of/, and ^,=(y -

j'Fg j - ~jFDj) is the Mendelian sampling term for individual /, where Fs t and FDi are 

inbreeding coefficients of the sire and dam of/'. An analogous scalar notation for the 

covariance structure for the genotype w( of individual ; is : 

PÇyr, = <aef) = pcpf (3 a) 

^ K = < V I "S^glr wD,r%-7,') = Te.ghTf.gV (3b) 

where P denotes probability,/;( and p2 (=l-/ ;i) a r e frequencies of alleles A| and A2 in 

the base population, ri , is the probability of transmission to an offspring of an Aj 

alelle from a parent with genotype A A/( and ^2 . = l-rj .. In (3b) w^ ( and wDj are 

genotypes of sire and dam of /. Assuming Mendelian probabilities of transmission, 

r l , l l = 1 ' r l , l 2 = x l . 21 = T a n d r1.22=0-

Flat priors are assigned for nongenetic effects ß, for variance components 0"e 

9 9 9 

and cru , and for allele effect a and allele frequency p^, i.e. / (ß , rjg , 0"u , a, p^ oc 

constant. Variance components are apriori positive, i.e. excluding zero, and the allele 

frequency is bounded between zero and one, including the bounds. The joint density 

of all unknowns, given data y, is symbolically denoted : 

ffl, ii, W, C7e
2, au\ a, Pi | y) (4) 
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Gibbs sampling 

The Gibbs sampler is based on a markov chain which is primarily used to generate 

samples from a joint density (Geman and Geman, 1984; Gelfand and Smith, 1990). 

These samples allow the study of all marginal densities from that joint density. For 

statistical problems, the joint density is for the set of unknowns from a statistical 

model, given observed data, e.g. as in (4). In statistical problems, the Gibbs sampler 

is generally used to study marginal posterior densities of parameters, i.e., considering 

other parameters as nuisances. Using the primary joint structure in the samples, also 

sampling correlations between parameter estimates and, e.g., two-parameter countour 

plots can be obtained. In analytical approaches, the study of marginal densities would 

require integrations or summations, often not feasible to compute, but which are 

circumvented when using Gibbs sampling. 

Validity 

Using Gibbs sampling is valid when the joint density considered has a non-zero 

probability over its entire domain (Tanner, 1993), which is similar to the requirement 

of irreducibility of the Gibbs markov chain. An irreducible chain can be characterised 

as a chain which, from any state, has a positive probability of transition to each other 

state. Irreducibility is not always straightforward, e.g., a model with a single locus with 

more than two alleles or a discrete penetrance function leads to a reducible chain 

(Sheehan and Thomas, 1993; Lin et al., 1993). Also, chains may be 'practically' 

reduced, i.e., transition probabilities to certain states are so low that, in practice, these 

states are never reached. For the model described here, the Gibbs markov chain is 

theoretically irreducible; possible practical reducibility will be discussed later. 

The use of an improper joint density, i.e., a non-integrable function, is also 

invalid for application of Gibbs sampling. Hobert and Casella (1994) showed that 

priors (cr) for variance component estimation in linear models lead to a proper 

posterior density when b<0. Hence, a flat prior, corresponding to b=-\ yields a proper 

posterior (see also Besag et al., 1991; Wang et al., 1993; Wang et al., 1994). We 

assume that the result of Hobert and Casella (1994) obtained for linear models is also 

valid for the mixed inheritance model. 
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General construction 

The Gibbs markov chain is a continuing series of realisations for the unknowns ß, u, 

W, o-e
2, <ru

2, a znàpy. Let Gl'1=(ß1'1, u1'1, W1'1, <re
2w, tru

2l'\ aW,/>j'1) denote the set of 

realisations for the unknowns at state or cycle t in the Gibbs chain. Construction of the 

Gibbs chain requires a set of realisations 0''+ ', given the current set of realisations 0'('. 

To initiate the chain, a set of starting realisations 0' ' is required, for which we used 

zeros for ß and u and initial guesses for <re , <ru , a andpy. Genotypes W were initiated 

as all heterozygotes AjA2. 

In the most straightforward implementation of the Gibbs sampler, 0'' ' is 

obtained by sampling for each 6t (i=\,r) a new realisation from the conditional 

distribution of 9h given the available realisations 0j}'+l\..., 0iA
[,+l\ 0i+i[t\-, &}'] and 

given the data y (e.g., Gelfand and Smith, 1990). The form of the conditional densities 

required, often appear to be simple. For model (1), conditional densities are normal for 

ß/s, Uj's and a, discrete for w/s, inverted chi-square for ae and <ru and beta for pv 

The simple form of the conditional densities allows implementation of a Gibbs chain 

for a mixed inheritance model based on sampling from the exact small sample 

distributions in each step. Further, for computations on pedigrees, the 'neighbourhood 

set' of an individual (e.g., Sheehan and Thomas, 1993) plays an important role. This 

neighbourhood set consists of the polygenic values or genotypes of the parents, 

progeny and mates of an individual, together with the data on itself. To compute 

conditional densities for sampling the polygenic effect or genotype of an individual, 

only the elements in this neighbourhood set are required, because of redundancies 

arising in the conditional densities. One side-effect in particular is that exact 

computations of conditional genotype probabilities are automatically made in looped 

pedigrees, whereas analytical approaches become intractable in pedigrees containing 

loops. Animal pedigrees generally contain many loops due to common occurence of 

multiple matings and inbreeding. 

Mixing and blocking 

The most straightforward implementation of the Gibbs chain, sampling single 

parameters, may not be an efficient way to obtain Gibbs samples because strongly 

dependent parameters may show slow mixing (Smith and Roberts, 1993; Tanner, 1993). 

By mixing we generally refer to the speed of movement of the chain in the parameter 
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space. In the initial phase of a markov chain, mixing is important for convergence to 

the equilibrium distribution and for burn-in time. In the later phase, mixing determines 

the serial correlations in the chain which affect efficiency by which accurate inferences 

can be made from the chain. In a mixed inheritance model, genotypes often show slow 

mixing due to the dependence between genotypes of parents and progeny. This 

dependence is stronger and mixing is poorer when progeny groups are larger. 

As described by e.g., Smith and Roberts (1993) and Tanner (1993), mixing can 

be improved by applying Gibbs sampling to subvectors, treating components as a 

'block', rather than using a complete breakdown of the parameter vector in its scalar 

components. In practice, blocking can be implemented using one or more reduced 

conditional densities. Use of reduced conditionals densities, as in substitution sampling, 

was also considered by Gelfand and Smith (1990) for improving convergence. 

Efficiency of the Gibbs sampler was improved here by blocking genotypes of each sire 

and its final progeny. Final progeny are progeny that are not parents themselves. By 

considering only final progeny, the number of individuals involved in computing 

conditional densities is not increased and remains based on parents, progeny and mates. 

But, for final progeny, phenotypes are used instead of genotypes. Efficiency was 

improved further by updating genotypes starting with the youngest families. In this 

manner, changes appearing in younger families can cause changes in older families 

within the same update cycle of the Gibbs chain. The blockwise treatment of genotypes 

of each sire and its final progeny was also applied to polygenic effects. In the results 

section the effect of blocking on the changes of genotypes in a Gibbs chain will be 

demonstrated. 

Random number generator 

Construction of the Gibbs markov chain requires sampling of many random deviates, 

which are based on pseudo-random number generators. Because parameters in the 

markov chain are updated repeatedly in the same order, the absence of serial 

correlations in the deviates is important. We used the RANI, GASDEV and GAMDEV 

routines (Press et al., 1986), which seemed to meet that requirement. The GAMDEV 

routine was used to generate chi-square deviates with even-numbered degrees of 

freedom. Deviates with odd-numbered degrees of freedom were generated by adding 

one squared random normal deviate. 
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Sampling of realisations in the Gibbs chain 

In this section obtaining 6' ' given G''' will be described. This represents computation 

of one 'Gibbs cycle'. Repeating this procedure constructs the Gibbs markov chain. The 

described blockwise treatment for genotypes and polygenic effects of sires and final 

progeny is incorporated, as well as the order of sampling starting with the youngest 

individuals. In the Gibbs chain, sampling is applied to all unknowns, including genetic 

parameters to allow for Bayesian inferences. Parameters are updated in the order given 

in the joint density (4). 

Nongenetic effects 

Assume first that nongenetic effects ß are levels of one factor. Then step (SI) in the 

construction of state /+1 from / i s : 

(SI) sample ß}'+i] from #(?,/«,., er^/n,). 

(SI) is based on conditional solutions to the linear model and on conditional standard 

errors for nongenetic effects. Conditioning on polygenic effects, genotypes and allele 

effect results in the use of corrected data y=(y-Zu't'-ZW't'm't'), with m't'=(-a't', 0, 0, 

a'1'), where yh is the total of observations from y pertaining to level / and ni is the 

number of observations in level /. More effects would be handled one at a time, 

correcting y also for other nongenetic effects. For two effects, ß is partitioned as [ßj 

ß2] and X as [Xj X2], and ß] is updated to state t+\ as above using y=(y-X2ß2'''-Zu'''-

ZW'''m'''), after which ß2 is updated in the same manner using y=(y-Xjßj''+ ' -Zir '-

z w l ' l m I ' l ) . Note the direct use of ß,' '+11. 

Polygenic effects 

Steps to update polygenic effects are based on BLUP equations for the linear 'animal 

model' (Henderson, 1988) and on conditional standard errors for polygenic effects. The 

neighbourhood set of polygenic effects (e.g., Sheehan and Thomas, 1993) to be 

considered is represented exactly in BLUP equations. Updating polygenic effects is 

based on using step (S2.1) for dam j , and step (S2.2) for sire / with its final progeny 

/: 
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(52.1) sample u}'+l] from N(cJdj, cre
2l']/dß, 

(52.2) sample w,"+11 from N(c/d,, <re
2"W,) and 

sample w/'+ ' from N^c/d/, crt '/dj) for each final progeny / of sire /, 

where the BLUP equations are duj=C: to solve for the polygenic effect w of dam j ; 

djiij^Cj to solve for the polygenic effect w( of sire /' after absorption of all final progeny 

of ;; and diUf=cl to solve for the polygenic effect ut of final progeny /. Step (S2.2) is 

sampling of new realisations for a sire and its final progeny jointly as a block, done 

in two steps. The first step draws a new realisation for the sire effect from the reduced 

conditional density, after absorption of final progeny. The second step finalises the joint 

sampling by obtaining new realisations for final progeny, conditional on the new value 

for the sire. Based on BLUP equations, elements in (S2.1) and (S2.2) are : 

Cj = yj + iaSj(usJ' 1 + uDW) - a £ , ( K » W
M " T<W' + 1 1 ) 

dj=.\+a{Si + \i:kôk) 

c, = y, + \a6fj,sp + uDJ'b - aZ„,(}SmuDJl - H,»-1*"> 

-E/{ ±aSjuDß - (y, + |a^/A/l)/(l+«^/) } 

«/,.= ! + aiS^E^) - \T.HaS^I(\+aSji 

d,= 1+aS/ 

where for individual /', u$ ; and uD ; denote polygenic effects of the sire and dam of /, 

>>j is the element pertaining to / from the corrected data y=(y-Xß''+ '-ZW'('ni'''), 8t is 

the reciprocal of the Mendelian sampling term fa from (2b); the premises are similar 

for other individuals j , k, I or m. In the equation for c , Hk is evaluated for each 

progeny k ofj; in the equation for ct, 32/ is evaluated for each final progeny / of /' and 

£„, is evaluated for each nonfinal progeny m of /'. In the equation for Cj, i is the sire of 

/. Finally, a is the variance ratio cre /o"u • When it is unclear whether a polygenic 

value used is from state / or H-l, the state is not specifically indicated. 

Genotypes 

Obtaining new realisations for genotypes is done similarly as for polygenic effects, 

except that discrete distributions are sampled. Conditional probabilities for genotypes 
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are obtained by peeling (e.g., Cannings et al., 1978), but taking genotypes of the 

individuals in the neighbourhood set, i.e., parents, progeny and mates, as known. 

Analogous to polygenic effects, updating all genotypes is based on step (S3.1) for dam 

j , and step (S3.2) for sire /' and its final progeny / : 

(53.1) sample w, according to the probabilities : 

P(yvj=(Oef) oc ßjj | wy=œc/)P(Wy=«)e/1 w s ƒ », wD ƒ 1) 

•n*/W'+1,l "s.kl]."r<°eß 

(53.2) sample w(. according to the probabilities 

Aw,.=coc/) oc./(y,|w,=co,y) /Xw,=a>e/I w 5 / ' , w a / " ) 

and for each final progeny / of sire /, sample W/ according to: 

where notation is analogous to that for polygenic effects, and P denotes probability. 

Here y=(y-Xßu+l]-Zu[,+\ f(yi\yvr(oef) oc exp{-j<yr©e/m
w)2/o-e

2W} is the normal 

penetrance function for /, and P(w(=eoe/-| wS j ' ' ' , wD/,''') is a transmission probability 

for /, available from (3b). When parents of; are unkown, the transmission probability 

is replaced by p} p)''- The products over ky I and m are evaluated for the same 

individuals as the sums over k, I and m for polygenic effects and the sum within FI/ 

is evaluated over the possible genotypes of progeny /, for g=l,2 and A=l,2. Step (S3.2) 

is the sampling of the genotypes of a sire and its final progeny, where in the first part 

a new genotype for the sire is sampled from a reduced conditional density. In the 

reduced conditional density for a sire, phenotypes of final progeny are used. The actual 

sampling of genotypes is done by evaluating the above probabilities for all possible 

realisations C0j,, co12, OÖ2I>
 ar>d Ö>22>

 a n c ' sampling of a new genotype according to these 

probabilities. Probabilities are given to proportionality, and so need to be normalised. 

Residual and polygenic variance 

Variance components follow inverted chi-square distributions, with new realisations for 

<Te and o"u obtained as: 
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(54) sample cre
2l'+1' as e'e/x2(«-2) 

(55) sample cru
2"+1l as u"+,l'A-1ul /+1l/X

2(9-2) 

where e=(y-Xß''+1,-Zu['+11 - ZW1'+1'm''1), A is the numerator relationship matrix, n is 

the number of observations, q is the number of individuals, and % (w-2) and % (q-2) are 

random deviates from chi-squared distributions with w-2 and q-2 degrees of freedom. 

Using degrees of freedom n-2 and q-2, a flat prior for variance components is used 

(Wang et al., 1994). The quadratic u[/+1,'A"1u[(+11 is computed as EjW,2 + Y,fij{uj-\uSj-

yw^, ) , a scalar computation due to the factorisation of A (Quaas, 1976). The first 

summation is over all base animals and the second summation is over all non-base 

animals. Further notation is as in sampling steps (S2.1) and (S2.2). To prevent 

accidental rounding-off of variance components to zero, variances were not allowed to 

be smaller than 10" . Whenever a realised value fell below 1 0 , the sampling, i.e. 

(S4) or (S5), was repeated. 

Allele effect 

Using genotypes as a known classification factor, effect of an allele is estimated as the 

deviation of homozygotes from an assumed mean of zero, yielding a linear model 

equation (nl+n4)a=(yi. -y^ ). This leads to : 

(56) sample a | ,+ 11 from N((y4. - yx. )/(,nl+n4), cre
2"+1V(«1+rt4)) 

where «;. is diagonal element / of W''+ ' 'Z'ZW''+ ', giving the number of genotypes of 

each type; yh is element ; of W''+ ''Z'y, containing sums of corrected data per genotype 

with y=(y-Xß''+ '-Zu'/+ '). When all genotypes are AjA, or A2A2, i.e., nl or «4 is 

equal to the total number of animals, the effect of the allele is nonestimable and the 

new realisation for a is taken as zero. 

A llele frequency 

Given genotypes of base individuals, allele frequency in the base generation has a beta 

distribution. This leads to : 

(57) samplePl
[ l+l] from fip^p*I(\-p f 2 
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where Bl is number of A] alleles and B2 number of A2 alleles in genotypes of base 

individuals. An acception-rejection technique is used to sample a new allele frequency. 

A 'suggested' sample pf is generated from a uniform density. This/»j* is accepted as 

the new sample forp^ with probability/(pj*)/^"max(/?1), wherefmax(P\) is the maximum 

value of fipi), attained for pl=Bi/(Bl+B2). When pf is rejected, the procedure is 

repeated. 

Statistical inference 

In the following we will describe a straightforward use of a Gibbs chain for making 

statistical inferences. In the discussion section, we will elaborate on alternative 

approaches. For statistical inference, a long markov chain is produced, repeating the 

update scheme described in the previous section to obtain vectors with subsequent 

realisations for parameters. The subsequent realisations, or states in the markov chain, 

will show serial correlations, so that not every state is used to obtain Gibbs samples. 

Instead, virtually independent samples are obtained by "thinning the chain". From the 

original chain, every K sample is taken, which is referred to as thinning 'by K'. 

Determining a suitable A'-value or thinning parameter will be described first. 

Thinning parameter 

An initial run of the Gibbs sampler is required to determine a suitable K value. 

Following Raftery and Lewis (1992), thinning is based on a transformation of the 

original output into a binary process, for which transition probabilities are studied. Let 

(r* be the value for a certain parameter at state / in the test run. The binary process is 

defined as Z'' ' = 8((f''<c), where 5 is the indicator function and c, in our application, 

is the mean of &'''s. Thus, Z' ' ' indicates whether the realisation at state t was below 

or above the mean. The mean was taken because we are primarily interested in a 

central location parameter for the posterior densities. A suitable thinning parameter is 

obtained as follows, using for computations the binary process Z''': 

(i) a thinning parameter ki is determined such that Z''', thinned by kly is 

approximately first order markov (Raftery and Lewis, 1992); 

(ii) Z' ' ' thinned by k\, being first order markov, can be described by a simple 

transition mechanism with transition probabilities a and ß, which are estimated 
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from Z'1' thinned by k^, 

(iii) an additional thinning parameter k2 is determined, such that the transition 

probabilities in z ' ' ' , thinned by K=klk2, differ only s from the transition 

probabilities for £2-»co, i.e., for K—>oo. Based on estimated transition probabilities 

from (ii) and powers of the corresponding transition probability matrix, 

k2=\n{e)l\n{\-a-ß). In our application, we took £=0.001. 

Step (iii) differs from the approach suggested by Raftery and Lewis (1992), who 

thinned only by £1? yielding serially correlated realisations. Raftery and Lewis (1992) 

also determined the number of 'burn in' cycles to be \n(e(ctf-ß)/max(a,ß))/ln(l-a-ß), 

which, for small E and a and ß approximately equal, is close to K. Therefore, taking 

the first Gibbs sample at state K, therefore, generally allows for a sufficient burn in as 

well. In practice this was indeed observed. 

Determining K can be repeated for various parameters, or for functions of 

parameters in the Gibbs chain, e.g., a heritability as a ratio of variance components. 

Different parameters or different functions of parameters may yield different K's. The 

approach we used is to determine K for various parameters and functions and choose 

the largest K to be applied to all. Hence, the Gibbs chain can be constructed and, at 

every Kl* cycle, realisations for parameters at that cycle are saved as being a "Gibbs 

sample" for the set of model parameters. Using the same thinning for all parameters, 

the primary joint structure in the samples is retained, allowing, e.g., computation of 

sampling correlations between parameter estimates. 

Inference from marginal densities 

So far, we have considered sets of realisations 0''' arising in the Gibbs chain as 

coherent units, being joint samples. Marginal densities of parameters are studied by 

observing realisations of a single parameter in these samples, irrespective of realisations 

for other parameters. We will focus on the genetic hyper parameters, i.e., variance 

components and effect and frequency of the major gene. However, non-genetic effects, 

polygenic effects and genotypes could be studied as well from the Gibbs chains. A 

very general inference is made by visualising the marginal posterior densities in a 

density estimate. In this study, we supply nonparametric density estimates in the form 

of average shifted histograms (Scott, 1992). At boundaries of parameter spaces, a 

reflection boundary technique (e.g., Scott, 1992, pg 149) was used to smooth the 
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histogram up to the boundary. The posterior density can be summarised by one or more 

statistics. Straightforward cases are, approximately, symmetric densities where mean 

and standard deviation are appropriate for describing the density. To describe more 

complicated densities, the mode often is a valuable third statistic. For symmetric 

densities, the mean will correspond to a maximum likelihood or maximum a-posteriori 

point estimate and the standard deviation will correspond to the small sample standard 

error of this parameter estimate. Parameter estimates based on Gibbs samples are 

subject to Monte Carlo (MC) error. Because our analysis is based on nearly independent 

Gibbs samples, empirical MC error on the posterior mean simply can be assessed from 

the estimated standard deviation of the posterior density and the number of Gibbs 

samples generated. 

In the Gibbs chain, allele effect a may appear positive as well as negative. The 

sign of a, however, is not relevant, being based on the arbitrary assignment of A2A2 

as the genotype with value +a. From the Gibbs samples, therefore, we studied the 

absolute values of a. For consistency, we also studied the frequency of the favourable 

allele, denoted plv The favourable allele is A2 when a is positive and Aj when a is 

negative. 

Simulated data 

A population was simulated in which 10 males were mated with 4 dams each, 

producing 5 progeny per female, yielding 200 offspring per generation. A sex was 

assigned to each progeny at random on a 1:1 ratio, but requiring at least one male and 

one female in each full-sibship. For each subsequent generation, each sire was replaced 

by a son and each dam was replaced by a daughter. Generations were non overlapping 

and no intentional selection was practiced. Mating was at random; unintentional 

inbreeding could be present from the second generation onwards because of finite 

population size. The theoretical rate of inbreeding was =0.8% per generation. The 

population was simulated for 5 generations, which resulted in a population of 1050 

individuals, including the 50 base generation individuals. 

For all individuals observations were simulated according to the model of 

analysis. This simulation included polygenic effects from the normal densities (2a) for 

base animals and from (2b) for non-base animals, genotypes according to probabilities 
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from (3a) and (3b) and sampling of normally distributed random errors. Two data sets 

were simulated for which genetic parameters are in Table 1. In data set 0 no effect at 

the single locus was simulated. This set was used to demonstrate results found when 

no single gene effect is present. In data set 1 a single gene effect was simulated with 

a difference (25) between extreme genotypes of «2 standard deviations of the variation 

within single genes. The effect of the single gene in set 1 was expected to be clearly 

detectable. Average inbreeding coefficients in generation 5 were 4.1% in data set 1 and 

4.2% in data set 2, matching theoretical predicted rate. Numbers of individuals with 

nonzero inbreeding coefficients were 450 in data set 0 and 430 in data set 1. This 

indicates a large number of pedigree loops in these data sets already due to inbreeding 

alone. Multiple matings applied in this simulated breeding structure resulted in an 

additional large number of loops. Inbreeding was taken into account in the simulation 

of polygenic effects and in the analysis at steps (S2) and (S4). An effect of sex was 

simulated which favoured males by +2 units and sex was used in the analysis as an 

explanatory nongenetic effect. 

Table 1 Parameter values used in simulation 

Parameter 

^ 

-u2 

a 

Pi 

*J=2P\P2<? 

Data set 0 

100 

50 

0 

-

0 

Data set 1 

100 

50 

12.5 

0.3 

65.6 

Results 

Mixing and the effect of blocked Gibbs sampling 

For data set 1, with a simulated effect of a major gene, changes of genotypes were 

studied for three classes of individuals : final progeny, dams and sires. In Table 2 the 

average number of genotype changes per cycle is given for each class of individuals. 

Without blocking, virtually non of the sire-genotypes changed in the majority of the 
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Gibbs cycles. Results were such that about once in 100 cycles, one sire-genotype was 

changed. Hence, the genotype configuration for sires remains practically the same over 

many hundreds of cycles and movement of the markov chain is restricted to a small 

subspace. In this case, changes appearing for final progeny and dams are relatively 

meaningless, because these changes are limited due to the near fixation of all sire 

genotypes. With the blocking technique, mixing is improved, changing about 5% of the 

sire-genotypes each cycle. The increased changes in sire genotypes resulted in a general 

increase of changes in the entire pedigree, which can be seen in particular for dam 

genotypes. 

Table 2 Average number of genotype changes per Gibbs cycle for three 

groups of individuals with a scalar updating of genotypes ('scalar') and 

with a block updating of genotypes of sires and final progeny ('block') in 

data set 1 (average of 10000 Gibbs cycles) 

Average number of changes per Gibbs cycle 

Group (total number) s c a i a r block 

Finals (800) 234 (29%) 258 (32%) 

Dams (200) 12.7 (6.4%) 39.8 (20%) 

Sires (50) 0.008 (0.02%) 2.62 (5.2%) 

Data without a major gene 

Determination of a thinning parameter K for data set 0 was based on an initial run of 

the Gibbs chain of 10000 cycles. Starting realisations for genetic parameters were taken 

as the simulated values (Table 1) which represented a pure polygenic mechanism. 

Allele frequency pl was initiated as 0.5. Thinning parameters were determined for the 

variance components for errors, oj, , for polygenic effects, cru , and for major gene 

effects, <rm -Ip^jCT, for the absolute value of the effect of the allele \a\, and for the 

frequency of the favourable allele, ph. Allele frequency ph showed the strongest 

dependencies, requiring K&890 to yield independent samples. 

For data set 0, two Gibbs chains were run, each initiated with different seeds for 

the random number generator. From each chain, 250 Gibbs samples were obtained 
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using K=890. Results from each set of Gibbs samples are in Table 3, presenting the 

estimated contributions of the two genetic components and error in terms of variances. 

Runs were consistent in the estimate for major gene variance. In each case, a unimodal 

density for major gene variance was found with a mode at zero (Figure 1). From such 

densities, we infer the variance component to be zero, which means an absence of the 

major gene effect. 

Table 3 Estimated means and standard deviations of posterior densities 

for genetic parameters in data set 0 (no major gene) in two runs of the 

Gibbs sampler, based on 250 samples per run. 

Parameter 

ri 

„2=2^,/;2a
2 

Mean (Standard deviation) 

Run 1 

98.0 (7.4) 

38.1 (14.3) 

5.3 (4.9)a 

Run 2 

95.7 (6.8) 

48.5 (11.4) 

4.8 (5.3)a 

Mode is zero 

0.20 

5 10 15 20 

Major gene variance (am
2) 

25 

Figure 1 Estimated posterior 

densities (averaged histogram 

frequencies) for major gene 

variance in data set 0 for run 1 

(solid line) and run 2 (dashed 

line) of the Gibbs sampler, 

based on 250 samples per run. 
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Estimates for variance components were different in the two runs, especially for 

polygenic variance. Posterior means for au differed about 10 units, which cannot be 

explained by Monte Carlo (MC) error. The empirical MC error on the means for au was 

estimated as 0.9 for run 1 and 0.7 for run 2. Differences in these estimates must be 

caused by a near reducibility of the chain, with allele frequency moving in a few 

subspaces between which mixing is relatively bad. When the probability of moving to 

a different subspace is low this type of behaviour is unlikely to be spotted in the tuning 

phase, which we based on 10000 cycles only. 

Table 4 Estimated means and standard deviations of 

posterior densities for genetic parameters in data set 1, 

based on 500 Gibbs samples. 

Parameter Mean (Stand, dev.) 

T 
a/ 104.6 (10.4) 

cru
2 35.6 (16.6) 

| or | 12.5(1.82) 

ph 0.56(0.12) 
2_ 2plp2a

1 73.5 (19.5) 

Data with a major gene 

Posterior means and standard errors for parameter estimates in data set 1 are in Table 

4. These estimates are based on 500 Gibbs samples from a single Gibbs chain, using 

AT=400. Starting values for data set 1 represented a pure polygenic model, i.e., <ru ~116 

and a=0, which does not correspond to the simulated parameters. From this polygenic 

starting point, the Gibbs chain was observed to move to a mixed inheritance model in 

a few hundred cycles. Density estimates for <xu , | or j , ph and crm =2plp2cr are in 

Figure 2. The density estimate for au shows a unimodal density with a mode for 

cru >0, indicating the significance of the polygenic component in the model. The 

density estimate for am shows a local mode for <Jm =0, and a global mode for am >0. 

The odds are 1:26 between the estimated density for <xm =0 and for am >0, which is 

taken as evidence for a significant single gene component. Neither posterior means nor 
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modes agree perfectly with the simulated values, but in each case the simulated value 

was well within a 90% highest posterior density region of the estimate. 

5 10 15 

Allele Effect (a) 
25 50 75 

Polygenic variance (au
2) 

0.25 0.50 0.75 1.00 

Frequency favourable allele (ph) 

£•0.12-

50 100 

Major gene variance (am
2) 

Figure 2 Estimated posterior densities (averaged histogram frequencies) 

for genetic parameters in data set 1, based on 500 Gibbs samples 

Allele frequency in data set 1 was poorly estimable, showing values in a range 

between 0.15 and 0.9 (Figure 2). The influence of allele frequency on estimated 

polygenic variance and major gene variance is large. Two more analyses of data set 1 

were performed, fixing the allele frequency of the favourable allele at 0.74 or at 0.60 

(Table 5). The value of 0.74 was the true realised value in the simulation of data set 

1 and the value of 0.60 was around the mode of the marginal posterior of allele 

frequency. Each value, therefore, can be taken as a plausible estimate which, based on 

the posterior from Figure 2, are not dramatically different from each other. Use of an 

estimated value, treated as a true value without error in a further estimation step, is a 

procedure common for classical inference from a joint likelihood function. Fixing allele 
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frequency, the portion of polygenic variance in the total genetic variance ranged from 

38% for ph=0.74 to 28% for p^O.60. The MC error on the posterior means for 

polygenic variance is about 0.5% of the estimated total genetic variance and, therefore, 

is too small to account for these differences. Hence, fixing the unknown allele 

frequency at some value substantially affects estimates for the two genetic variances. 

In contrast, the 'marginal' estimates (Table 4), which are averaged over all possible 

allele frequencies, are not affected by the arbitrary choice of a point estimate. 

Table 5 Estimated means and standard deviations of posterior densities 

for genetic parameters in data set 1 fixing allele frequency at two 

different values, based on 500 Gibbs samples per case 

Parameter 

°t 
- u 2 

\a\ 

°m=2P\PT? 

Mean (Stan 

Ph=0J4 

102.0 (10.5) 

40.1 (13.9) 

13.1 (1.39) 

66.7 (13.5) 

dard deviation) using 

ph=0.60 

104.1 (10.0) 

31.0 (12.4) 

12.6 (1.25) 

81.3 (15.1) 

Discussion 

Mixing in the Gibbs chain 

In this study we described the construction of a Gibbs markov chain for inference in 

a mixed inheritance model. Efficiency of the Gibbs sampler depends on the 

parameterisation used and on the sampling scheme applied. A Gibbs sampling approach 

for a mixed inheritance model applied to human populations (Guo and Thompson, 

1992) is inefficient when applied to animal populations. We suggested a blockwise 

treatment for genotypes, yielding faster changes in the Gibbs chain without 

considerable complications in computing. The blocking is typically applied to parents 

with large progeny groups. We applied this for sires, but the technique can also be 

applied to dams. Without blocking, markov chains remain stuck in a subspace of the 
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parameter space, making a proper inference impossible. With blocking, mixing was 

improved, although inference in data set 0 remained difficult. Here, two Gibbs chains 

did not yield exactly similar results for all parameters, possibly the result of a more 

subtle type of bad mixing. Multiple runs of the Gibbs sampler, preferably with various 

starting values, can be used to spot, but not to solve, such problems of mixing. The 

blocking technique, therefore, is possibly only a first step to improve mixing and more ' 

methods could be developed and added. Note further that the efficiency of blocking 

will depend on the data structure, in particular, on the progeny group sizes and. on the 

allele effect at the major locus. In animal breeding practice, progeny groups are 

generally sufficiently large to recommend the use of blocking. 

A Iternative uses of Gibbs chains 

Efficiency in using realisations from a markov chain for statistical inference can 

possibly be improved. For instance, use of independent samples is not required. 

Posterior means and other density features, including the density itself, can be 

estimated direclty using serially correlated states in the chain (Geyer, 1992; Wang et 

al, 1994). Advantages of our approach of using independent samples is that accuracy 

of output from a Gibbs chain can be appreciated directly, simply by the number of 

samples. Independent samples also allow comparison of output from multiple chains 

by standard analysis-of-variance methods. A further measure to increase accuracy of 

the estimate of a mean is the use of Rao-Blackwell estimates (Gelfand and Smith, 

1990). This procedure uses from every state the expected value for a certain parameter, 

rather than the realised value in the chain. Expected values are often directly available 

from the intermediate computations in the Gibbs chain, and vary less because the 

disturbance from the conditional variance is eliminated. 

Statistical inference 

In the mixed major gene-polygenic inheritance model, maximum likelihood (ML) 

inference is classically employed (e.g., Elston and Stewart, 1971; Morton and MacLean, 

1974). Gibbs sampling can also be used to obtain such ML estimates (e.g., Guo and 

Thompson, 1992). Specification of prior densities is then circumvented by updating a 

parameter, e.g., a variance component, not with samples from the specified densities 

but with the expectation for that parameter given realisations of other parameters. This 



63 

technique is known as Monte Carlo EM (Tanner, 1993). In our model, a REML inference 

could be made by omitting the sampling steps for ae , <JU , a and p^, and by updating 

these parameters as their expectation. A ML inference could be implemented by also 

updating elements of ß with their expectation. In this manner, based on the Gibbs 

sampler, a hierarchy of inferential methods can be obtained by suppressing certain 

sampling steps in the construction of the chain. Note that when using this Monte Carlo 

EM technique, fluctuations in the chain will not correspond to standard errors of 

parameter estimates, and density estimates of posteriors cannot be made. 

M L inference and associated hypothesis testing in major gene models, however, 

have several shortcomings. For instance, REML (Patterson and Thompson, 1971) was 

developed to overcome biases in ML point estimates for variance components, and ML 

standard errors and likelihood ratio tests are based on asymptotic normal 

approximations. For application of the likelihood ratio test, moreover, assumed 

asymptotic distribution of the test statistic is questionable when dealing with mixture 

distributions (Titterington et al., 1985). Using Gibbs sampling, alternatives for ML 

inference are available. 

Inference could possibly be improved by using the Gibbs chain as implemented 

in this study, including the sampling steps for all genetic hyper parameters, and making 

use of the marginal posterior densities of parameters obtained. This approach is 

generally Bayesian, and for our implementation with flat priors for all hyper parameters 

could be classified as 'empirical' Bayesian. With this approach, standard errors of 

parameter estimates, or, in general, interval estimates in any form, are directly 

available. Interval estimates will be based on small sample distributions and respect the 

natural bounds on parameter spaces. As point estimates, mean or mode of the posterior 

density could be used, which would be respectively marginal APE (a-posteriori 

expectation) or marginal MAP (maximum a-posteriori) estimates. APE is simple to 

compute from Gibbs chains, and AFE estimates are considered more optimal than 

estimators locating a marginal or joint mode (Henderson, 1953; Harville, 1977). 

However, absence of a variance component shows a density with a gobal mode at zero, 

as we showed, in which case the posterior mode is an appealing point estimate. This 

favours, from a more practical point of view, use of MAP estimates. Further, making 

use of the Gibbs chains as we presented, highly marginalised densities are used, 

considering for each parameter all other parameters as nuisances. This provides a richer 
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summary and may improve estimation of the two genetic components in the mixed 

inheritance model. We showed for instance when fixing allele frequency, that estimates 

for genetic variances in the mixed inheritance model depend on the value used for 

allele frequency. Marginal estimates, however, take into account the error in estimating 

allele frequency, or any other parameter. This gives a more realistic inference, 

representing better uncertainty in the estimates and providing a better disentanglement 

between, e.g., polygenic and major gene variance. 

Hypothesis testing 

We did not thoroughly consider power to detect single genes or test of significance of 

the single gene component. It was shown for major gene variance, am , that absence 

of a single gene effect leads to a global mode for am =0. As discussed, the MAP 

estimate would be zero in this case, correctly indicating absence of a single gene effect. 

Presence of a single gene effect showed a density with a global mode for cr >0, and 

a local mode for am =0. We used the odds ratio of the densities at both modes as a 

criterion, assuming significance at a 5% level when the odds ratio is above 1:20. This 

criterion, however, may be very severe. An alternative would be to assume a mixed 

mode of inheritance as soon as the mode for <xm >0 dominates the mode for <rm =0. 

When experimenting with smaller effects of the major gene, a gradual increase of the 

density at <xm =0 was indeed observed, indicating less likely action of a major gene. 

It would be of interest to further develop hypothesis testing because a test based on 

small sample distributions obtained from the Gibbs sampler has the potential to 

improve the likelihood ratio test for presence of a major gene. Gibbs sampling 

approaches also can handle very large data sets, e.g., as shown using a polygenic model 

by Van der Lugt et al. (1994), because Gibbs sampling implementations require little 

memory and do not accumulate round-off errors. This facilitates use of the generally 

abundant amount of information in animal populations, which is a simple measure to 

increase power. Additional simulations showed, for instance, that a major gene with 

o=6 and other parameters as in data set 1, i.e. explaining about onequarter of all genetic 

variance, was detected easily in a data set with 5000 individuals. 
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Bayesian statistical analyses for presence of chapter 

single genes affecting meat quality traits in a J 

crossed pig population 

Presence of single genes affecting meat quality traits was investigated in F2 

individuals of a cross between Chinese Meishan and Western pig lines using 

phenotypic measurements on 11 traits. A Bayesian approach was used for 

inference about a mixed model of inheritance, postulating effects of polygenic 

background genes, action of a bi-allelic autosomal single gene and various 

non-genetic effects. Cooking loss, drip loss, two pH measurements, 

intramuscular fat, shearforce and back-fat thickness were traits found to be 

likely influenced by a single gene. In all cases, a recessive allele was found, 

which likely originates from the Meishan breed and is absent in the Western 

founder lines. By studying associations between genotypes assigned to 

individuals based on phenotypic measurements for various traits, it was 

concluded that cooking loss, two pH measurements and possibly backfat 

thickness are influenced by one gene, and that a second gene influences 

intramuscular fat and possibly shearforce and drip loss. Statistical findings 

were supported by demonstrating marked differences in variances of families 

of fathers inferred as carriers and those inferred as non-carriers. It is 

concluded that further molecular genetic research effort to map single genes 

affecting these traits based on the same experimental data has a high 

probability of success. 

Introduction 

Since the advent of modern DNA techniques, identification of single genes is receiving 

increased attention in fundamental and applied sciences. Study of effects of single 

genes can aid in unravelling physiological processes which has relevance for many life 

sciences, and often has relevance across species. For instance, the finding of an obesity 

gene in mice (Zhang et al., 1994) may have relevance for several other mammals such 

as humans or pigs. Use of animal populations for identification of single genes can 

have several advantages unseen in human populations, such as large amounts of data, 
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designed experiments and controlled breeding. This makes the use of animal 

populations, in this respect, worthy of further attention. 

In commercial livestock populations, phenotypic observations are often 

abundantly available at low costs, making preliminary statistical analysis a worthwhile 

first step in the identification of single genes. Segregation analysis (Elston and Stewart 

1971; Morton and MacLean, 1974) is the most powerful statistical method for 

identification of single genes (Hill and Knott, 1990) but, so far, has not found 

widespread use in animal genetics. Exact computations involved in application of this 

method are impossible in common situations arising in animal populations, and 

analytical approximations (e.g., Le Roy et al., 1989; Knott et al., 1992) limit 

application to simple models and simple pedigree structures. Recently, however, Gibbs 

sampling and related Markov chain Monte Carlo methods (Geman and Geman 1984; 

Gelfand and Smith 1990; Smith and Roberts, 1993) have been introduced which can 

facilitate computations in many statistical applications. Gibbs sampling has been used 

in human genetics for both likelihood based as well as Bayesian based inferences in 

variance component estimation (Guo and Thompson, 1991), segregation and linkage 

analysis (Guo and Thompson, 1992; Thomas and Cortessis, 1992), computation of 

genotype probabilities (e.g., Sheehan and Thomas, 1993) and gene mapping (as an 

example in Smith and Roberts, 1993). In animal genetics, Gibbs sampling has been 

introduced in Bayesian approaches for variance component estimation in linear models 

(e.g. Wang et al., 1993), and in non-linear models (Sorensen et al., 1995), for analysis 

of selection response (Sorensen, et al., 1994) and for segregation analysis (Janss et al., 

1995). 

The aim of this paper is to investigate whether single genes may exist which 

affect meat quality traits, measured in the F2 of a cross of Chinese Meishan and 

Western pig lines. Detection of single genes is based on a statistical modelling 

approach, using a Bayesian approach to segregation analysis described by Janss et al. 

(1995). The secondary aim of this paper is to demonstrate the flexibility, by virtue of 

applying Gibbs sampling, of this Bayesian approach, which so far has not been used 

for the analysis of field data. This highlights details in application of this new 

methodology and shows the types of inferences that are produced, which are different 

from inferences made by classical likelihood-based segregation analysis. 
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Material 

Data 

F2 crossbreds between the Chinese Meishan pig breed and Western pig lines were 

available from an experiment involving five Dutch pig breeding companies (Figure 1). 

Crossbreds were produced in two batches at the same time in all companies. For each 

batch, purebred Western females at the companies were artificially inseminated by a 

group of 19 purebred Meishan males from a centrally housed population of Meishan 

animals, producing crossbred F! litters. Purebred females at the breeding companies 

were of Dutch Landrace and Large White types. In total, 126 Fj crossbred litters were 

produced. From Fj litters, a random selection of young males and females were taken 

as parents to produce F2 crossbred litters, each female producing one F2 litter. In total, 

264 F2 litters were produced, descending from 39 F, fathers. The 39 Fj fathers were 

used across breeding companies through the formation of a central pool and use of 

artificial insemination; Fl females remained at the breeding companies where born. 

This yielded a 75% similar genetic background for all F2 crossbreds. From performance 

tested F2 animals, about 1200 in total, approximately 350 animals were retained for 

further breeding. The majority of these animals were gilts (>300), chosen at random 

within the framework of the experiment. The additional animals (<50) were retained 

by the breeding companies, likely with selection on a combination of production and 

reproduction traits. Due to the low number involved and emphasis on different traits, 

the effect of this selection on the traits used in the current analyses is expected to be 

negligible. Performance tested F2 animals not retained for breeding were slaughtered 

at approximately 90 kg in a central slaughter-house. On these slaughtered animals, 

several meat quality traits were measured. For genetic analyses, a pedigree file was 

constructed including Fj parents and pure line (Meishan and Western) grand-parents 

of the observed F2 individuals. Presence of Halothane susceptibility (Eikelenboom and 

Minkema, 1974), a common known genetic defect affecting meat quality traits in 

western lines and which is known as malignant hyperthermia in man, was excluded, 

by molecular typing of pure Meishan founders and Fj fathers, which were all found 

free of this Halothane susceptibility mutation. Molecular typing was done by Van 

Haeringen Laboratorium BV (Wageningen, The Netherlands), using methods as 

described by Otsu et al. (1992). 
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Meishan males 
(central pool) 

F.'s. 

Western females 
(5 populations 
at 5 companies) 

females 
(remaining at 
companies) 

(« 1200 
performance tested) 

Experi- Non-experi- Slaughtered for 
mental mental meat quality 
breeding breeding measurements 
stock (= 300) stock (» 50) (•= 850) 

Figure 1 Design of the crossing experiment to produce F 2 crossbreds 

between Chinese Meishan and 5 Western pig lines. Step 1: 126 Fj litters 

were produced from 19 Meishan males and 126 females of 5 Western 

lines in 5 companies. Step 2: 264 F 2 litters were produced from 39 

centrally housed F , males taken equally from all companies, and from 

265 Fj females having remained in the companies. Step 3: from produced 

F 2 crossbreds, animals not used for breeding were centrally slaughtered 

to measure meat quality traits. All selection steps were random, except 

selection of non-experimental F 2 breeding stock. 

Measurements 

In Table 1 numbers of observations, raw means and standard deviations for the traits 

measured are given. In samples of M. Longissimus (loin muscle), pH, drip loss, 

cooking loss, shearforce, intramuscular fat and color were measured; additionally, a pH 
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measurement was taken in a sample of M. Semimembranosus (a ham muscle) and back 

fat- and lean thickness were measured. Color was measured as three coordinates 

according to the CIELAB L*a*b* system, where L* is a general indication of lightness, 

a* represents the degree of green-redness and b* represent the degree of blue-

yellowness (MacDougall, 1986). Fat- and lean thickness are based on a single 

measurement with the Hennessy Grading Probe between the 3rd and 4th rib, 6 cm from 

the spine, as routinely done in The Netherlands to predict carcass meat percentage. 

Predicted meat percentages, however, were not analyzed in this study, because the 

employed prediction equation to predict meat percentage from fat- and lean thickness 

might not hold for the relatively fat Meishan crossbreds. All traits were measured 24 

hours after slaughter, except fat- and lean thickness which were measured directly after 

slaughter. Exact details on measurement procedures for these traits can be found in 

Hovenier et al. (1992). In the following, abbreviations for trait names will be used as 

given in Table 1. 

Table 1 Overview of meat quality traits measured", the numbers of observations 

(N) and raw means and standard deviations. 

Trait Full name, measurement unit N Mean Std 

Drip Drip Loss, % 

Cook Cooking loss, % 

Shear Shear force, N 

Imfat Intramuscular fat, % 

pH pH 

pH-s pH in M. Semimenbmnosus 

Light CIELAB L* color coordinate 

Red CIELAB a* color coordinate 

Yellow CIELAB b* color coordinate 

Fat HGP Back-fat thickness, mm 

Lean HGP Back-lean thickness, mm 844 

"Measurements are in M. Longissimus, except for pH-s, Fat and Lean 

844 

845 

845 

831 

845 

846 

844 

846 

845 

846 

844 

2.70 

26.4 

39.6 

1.84 

5.66 

5.82 

53.9 

17.3 

9.59 

22.0 

40.6 

1.54 

3.46 

10.5 

0.87 

0.26 

0.30 

4.83 

1.90 

1.92 

5.69 

6.69 
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Non-genetic influences 

Meat quality traits can be largely influenced by genetic background and by 

environment. Well known environmental effects are transport conditions, leading often 

to large effects of slaughter day- or week (Cameron, 1990; Hovenier et al., 1992). Data 

analyzed here were collected on 26 different slaughter-days. In the described data, also 

an effect of breeding company where the crossbred was produced (5 levels) could be 

expected. This effect could have a partial genetic background, as the maternal grand-

dam of the crossbreds was company specific, and may additionally have a non-genetic 

basis, e.g. in housing or feeding conditions at the different companies. Because semen 

of Fj fathers was exchanged between companies, the genetic basis of a company effect 

could be separated from non-genetic sources. The design of the experiment was such 

that also possible effects of breeding company could be separated from effects of 

slaughter days by slaughtering animals from at least two companies on most of the 

days. Besides slaughter day and breeding company, sex of the animal (measurements 

were made on females and on intact males) and its carcass weight were recorded as 

they may have non-genetic influences on the recorded traits. Significance of these non-

genetic effects was investigated by use of a fixed linear model (SAS-GLM, SAS 

Institute INC, 1988) fitting slaughter day, breeding company, sex and carcass weight 

simultaneously. Each variable was found to have a significant effect {P<0.0\) on at 

least several traits; slaughter day was significant for all traits. In further genetic 

analyses, all non-genetic effects considered were used, thus maintaining for simplicity 

the same non-genetic effects for analysis of each trait. 

Methods 

Statistical model 

A model was used with non-genetic effects of slaughter-day, breeding company, sex 

and carcass weight, and genetic effects of polygenic background genes and a single 

gene. Polygenic effects were modelled to be strictly additive. The model for the single 

locus assumed an autosomal biallelic locus with Mendelian transmission probabilities. 

A possible dominance effect at the single locus was allowed for. Estimation of 

polygenic variance in the described data will be based on variation between F2 

families, and this will not include possible segregation variance at polygenic loci. 
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Segregation variance refers to the increase of genetic variance that can arise in the F2 

due to allele frequency differences in founder lines (e.g., Lande, 1981). However, 

assuming the polygenic loci to be large in number and assuming no gene with large 

effect to be present among the polygenes, segregation variance at polygenes will be 

negligible. At the single locus, segregation variance was accounted for by modelling 

of different allele frequencies for the founder groups. The statistical model to describe 

phenotypic observations on F2 crossbreds for each trait y is : 

y = Xß + Zu + ZWm + e (1) 

In (1), ß is a vector of fixed non-genetic effects and X is a design-covariate matrix 

containing 0/1 dummy variables relating effects of slaughter day, breeding company 

and sex to observations and containing a column with carcass weights of those 

individuals with observations in y. Vectors u and Wm contain genetic effects of all 

individuals in the pedigree considered, which here included genetic effects of F2 

crossbreds, their parents and grandparents. Genetic effects are seperated in polygenic 

effects in u and single-gene effects in Wm. Matrix Z is an incidence matrix relating the 

genetic effects to observation in y; Z contains empty columns for individuals without 

an observation. Vector e contains random errors. Single-gene effects are expressed 

using W, a four-column matrix with 0/1 variables to indicate genotypes of individuals, 

and the vector m=(-a, d, d, a)' which contains the genotypic values. Four genotypes are 

considered here for notational convenience only; in computations, three genotypes are 

considered, not distinguishing between the two heterozygotes. In W, the four columns 

correspond to the possible genotypes denoted as ALA^, ALA^, Ay^A^ and A^A^. 

Allele AL, with 'L' of 'Low', is defined as the allele which decreases the values of 

phenotypic measurements in y; A^, with 'H' of'High', is defined as the allele which 

increases the values of phenotypic measurements in y. Alleles are defined in this 

manner, because 'Low' and 'High' are unique attributes that can be assigned to alleles. 

In m, a and d are referred to as the additive and dominance effect at the single locus, 

where a is positive, so that definition of the 'Low' and 'High' attributes is consistent. 

Actual computations were based on non-uniquely defined alleles A j and A2
 w ' t n 

unrestricted a; uniquely defined alleles A^ and / 1 H with a>0 were obtained as a 

transformation (see Appendix). 
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Above, distinction between the two heterozygotes is made to allow for a flexible 

notation of pedigree genotype probabilities as follows: Pr(AcAy) = pe p, for Meishan 

founder animals, Pr(AeAy) = re r, for Dutch founder animals, with e, ƒ e {L, H} and 

where pL and /?H ( PL+ />H = 0
 a r e t n e frequency of alleles AL and A^ in Meishan 

founders and rL and rH (>L+/-H=1)
 a fe the frequency of alleles AL and ^ H in Dutch 

founders; Pr(A,Ay) = r /(îy- »/(», for all non founder individuals, with e, ƒ, g, h, g*, h* 

e {L, H}, and where A Ah and A »AA* are the genotypes of the sire and dam of the 

individual considered, xL . is the transmission probability for genotype AgAh to 

transmit an AL allele and t H . = 1 -xL A is the corresponding probability to transmit the 

/4H allele. With Mendelian inheritance t L L L = l , *L LH=TL HL=1//2 a n c ' XL HH=(^ 

Distributional assumptions for e are specified as e~N(0,lcre ) and for u are specified as 

u~Af(0,Acru ), where A is the numerator of the relationship matrix. Statistical inference 

was based on a Bayesian approach. Specification of the statistical model for the 

Bayesian approach is completed by specifying use of uniform prior distributions for 

non-genetic effects, variance components, effects at the single locus and allele 

frequencies. These prior distributions were defined on (-00,00) for the non-genetic 

effects and effects at the single locus, on (0,oo) for the variance components and on 

[0,1] for the allele frequencies. Variances were assumed a-priori positive, which was 
— 1 *) 

computationally implemented by defining the prior on [10" , 00). The prior defined on 

(-00,00) for the additive effect at the single locus corresponds to the situation in the 

actual computations as shortly described above and as exemplified in the Appendix. 

With defined distributional assumptions, the complete set of parameters for model (1) 

then was 0j=(ß, u, W, a" afr a, d, pL, rL). In this set of parameters, the variance 

components, effects at the single locus and the allele frequencies are referred to as the 

(genetic) hyper-parameters. 

As well as a model postulating mixed inheritance, a model postulating pure 

polygenic inheritance was used by suppressing the term for single gene effects in (1), 

leading to the model: 

y = Xß + Zu + e (2) 

with all specifications equal to those of model (1) and with parameters 02=(ß, u, <\, 

cfy. The pure polygenic model was used to supply an overall quantification of genetic 
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variance for the traits analysed. As a third model, a mixed model of inheritance with 

a restriction on the degree of dominance was used. This model is the same as model 

(1) except that genotypic values are defined by m- ( - a , ca, ca, a), where c defines the 

imposed degree of dominance. This model was used to impose complete dominance 

of the/4L allele (c=-l) or complete dominance of t h e ^ H allele (c=l). In this model 

also one of the allele frequencies was assumed known, arbitrarily taken to bepL, such 

that the set of parameters for this model was 03=(ß, u, W, o£, ojj, a, r^). 

Gibbs sampling 

Bayesian marginal posterior distributions of model parameters were obtained using 

Gibbs sampling. In such an approach, a Markov chain is constructed which is known 

to have a stationary distribution equal to the joint posterior distribution of all model 

parameters, here all parameters in 9j for the main model (1), 02 for the polygenic 

model, or 03 for the model with restricted degree of dominance. From such a Markov 

chain samples of marginal posterior distributions of model parameters and of functions 

of model parameters were obtained. The construction of such a Markov chain was 

described by Janss et al. (1995) and implemented in a software package (see 

Appendix). This implementation includes blocked sampling of genotypes of each sire 

with those of its final progeny and similar blocked sampling of polygenic effects of 

each sire with those of its final progeny (Janss et al., 1995). This blocked sampling 

facilitates convergence of the Gibbs sampler when analyzing typical animal breeding 

data sets with relatively large progeny groups. Additionally, a model-relaxation 

technique (Sheehan and Thomas, 1993) was applied to further improve convergence 

of the Gibbs sampler for the single gene component, by relaxation of transmission 

probabilities. Such a relaxation uses TL L L = 1 -pnM and TL HH^nmp w n e r e Pnmi ' s a 

small probability for 'non-Mendelian transmission'. Inference about the strict Mendelian 

model of interest is made by using from the constructed markov chains only those 

samples where the genotype configuration was Mendelian. Sheehan and Thomas (1993) 

showed that the rate at which Mendelian samples randomly appear in a relaxed chain, 

equals the likelihood ratio between the strict Mendelian model and the relaxed model, 

dependent therefore not only on the parameter pnml, but also on the data. To achieve 

a certain rate of Mendelian samples, some trial runs are required to determine, for each 

data set analyzed, a suitable value of/) ,. In order for the relaxation technique to have 
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a reasonable impact on convergence, relaxation may be relatively strong, leading to a 

low rate of Mendelian samples in the relaxed chains: in the analyses performed here, 

we aimed at a rate of Mendelian samples of 1 to 10%. Gibbs chains computed for 

inferences in the mixed inheritance model were started as a 'hot' chain (in the 

terminology of Lin et al., 1993), using initially />nmt=0.5, which defines a non-genetic 

transmission model by allowing random transmission of alleles. Subsequently, such a 

hot chain was annealed by slowly reducing pnmt to near zero, which restricts movement 

of the chain to the Mendelian and near-Mendelian space. In the construction of the 

Gibbs sampler, sampling of random realizations for various types of distributions was 

based, directly or indirectly, on the uniform random number generator RAN2 (Press et 

al., 1992). For construction and sampling details see Janss et al. (1995) and the 

Appendix. 

Convergence of the Gibbs sampler was judged for the hyper-parameters by 

comparison of samples from replicated chains by analysis-of-variance (ANOVA), testing 

for a significant chain effect. In this approach, Gibbs chains are run that are sufficiently 

long to obtain a number of independent samples from each chain. This, then, allows 

to test for equality of the within- and between chain variances with a standard ANOVA 

F-test. Significant differences between chains are considered an indication of (practical) 

reducibility, in which case Gibbs sampling theory (Geman and Geman 1984; Gelfand 

and Smith 1990) does not hold and the samples generated are not from the correct 

marginal distributions. In this case, the Gibbs sampler is said not to have converged. 

Significance of differences was assumed when the F-statistic exceeded the 1% 

significance level. The ANOVA requires independence of the samples, hence only a 

number of states from each chain, sufficiently spaced, are used. Determination of a 

suitable spacing yielding virtually serially independent samples was done according to 

the procedure exemplified by Janss et al. (1995), mainly based on Raftery and Lewis 

(1992). The same spacing was used for all parameters of interest. The ANOVA also acts 

as a post-check on the presumed independence of the Gibbs samples: when the spacing 

between samples is not sufficient and the assumption of independence does not hold, 

computed F-statistics will be inflated and chain-effects could be found significant. 

Insufficient spacing can be verified by increasing the spacing between samples used in 

the ANOVA by running longer Gibbs chains that keep the same number of samples in 

the ANOVA in order not to affect power to detect differences between the chains. 
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Statistical inference 

Generated independent samples used in the ANOVA as described above for assessing 

convergence, are subsequently used for statistical inferences. From samples of marginal 

posterior distreibutions, non-parametric density estimates of posteriors were made in 

the form of average shifted histograms (Scott, 1992). Such a graph provides a more 

general and broad inference, than a specific point- and/or interval estimator. For 

parameters with natural boundaries on their parameter space, density estimates were 

smoothed up to the bound(s) of the parameter space by a reflection boundary technique 

(Scott, 1992). Secondly, samples from marginal posterior distributions were used to 

compute estimates of mean and standard deviation of the posterior distributions, which 

were estimated by mean and standard deviation of the Gibbs samples. These estimates 

converge stochastically, with increasing number of Gibbs samples generated, to the true 

mean and standard deviation of the marginal posterior distributions of the respective 

parameters (Smith and Roberts, 1993). The posterior mean was chosen used as a point 

estimator, falling in the class of APE (A-Posteriori Expectation) estimators. Such APE 

estimators have the general property of minimizing quadratic posterior loss. The higher 

marginalized Bayesian estimators, compared to classical maximum likelihood 

estimators, are expected to have the same asymptotic properties and superior non-

asymptotic properties from a Bayesian viewpoint (Gianola and Foulley, 1990). In 

analogy to frequentist approaches for statistical inference, the posterior standard 

deviation can be interpreted as a standard error of the parameter estimate, but is not in 

general equal to a frequentist standard error. 

Of primary interest for statistical inferences were the variance components 0"u 

for polygenic variance and o"w for the variance explained by the single gene. These 

two genetic variances were used to judge significance of the genetic model and, in 

particular, to judge significance of the single gene component in the model. The 

variance of single gene effects a w was computed as a function of effects at the single 

locus and of allele frequencies in each Gibbs sample as 2pq(a4-d(q-p))2+(2pqd)2 

(Falconer, 1989), where a and d are as defined previously, p is the frequency of the 

favorable / 1 H allele, and q=\-p. The variance of single gene effects was computed to 

represent the variance in the F2 generation, by using/>=(/?H+/"H)/2 in this formula. Non-

significance of a variance component (shortly o" ) was empirically shown to lead to a 

posterior distribution with global mode at a =0 (Janss et al., 1995). Significance of a 
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variance component shows a global mode for <J >0, which may still be accompanied 

by a local mode or a non-zero density at cr =0. For variance of single gene effects, 

aw , a penalty is used in order to reduce the error of falsely accepting presence of a 

single gene, by considering CTW
2 to be significant only when a global mode for crw

2>0 

has a density 20-fold larger than the density at crw
2=0, corresponding to a 5% 

significance level. In this manner the usual conservatism is applied, accepting presence 

of a single gene only when abundant evidence is available, or else not rejecting the null 

hypothesis of polygenic inheritance. The mode(s) and density ratios were determined 

from the non-parametric density estimates. Once a mixed inheritance model is found 

likely, further inferences focussed on the effects at the single locus and on allele 

frequencies. Allele frequencies are not uniquely identifiable with the available data on 

F2 crossbreds only. For instance, it is not possible to distinguish between a case with 

Plj=\ and rL=0 (origin of /4L from Meishan founders) and a case with /?L=0 and /*L=1 

(origin of A^ from Dutch founders). The available data only allows unique 

determination of the genotype frequencies in Fj parents, yielding estimable functions 

of allele frequencies being / »J /L ' PLrH+PnrL an(^ PnrH' representing the frequencies of 

^\A\s ^\Aw ^ ^H^L' and/4H/4j_[ genotypes in the F, generation. 

From the Gibbs chains, also marginal posterior distributions of individual 

genotypes, referred to as genotype probabilities, were estimated from the frequency 

counts of the genotypes sampled in the Markov chain. Genotype probabilities could be 

estimated from Gibbs chains sampling (ß, u, W) conditional .on some point estimates 

for the hyper-parameters. Here, however, genotype probabilities were estimated from 

Gibbs chains sampling all model parameters, which will supply estimates of genotype 

probabilities not conditional on any point estimates for hyper-parameters and where 

uncertainty from estimation of hyper-parameters will be included. Estimates of 

genotype probabilities were used to study whether various traits found to be influenced 

by a single gene, actually could be influenced by the same gene, as follows: the 

interval [0,1] in which genotype probabilities fall, was discretized into k-\, ...., K 

smaller intervals; for a group of« individuals, the number of individuals was counted 

with a genotype probability for a first trait falling in interval k and with a genotype 

probability for a second trait falling in interval k*, the count being denoted ckk*, for 

k=\, ..., K and k*=\, ..., K; the quantities c^.» were collected in a K-by-K table in 

which association between the genotypes was tested by a chi-square test for association 
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with (K-\)(K-l) degrees of freedom; a significant association was considered to be an 

indication that two traits, found to be influenced by single genes, could actually well 

be influenced by the same gene affecting both traits. This procedure works best with 

large K, but the choice for K is bounded by the number of individuals n because 

counts ckj.» must be reasonably large in order for the approximate chi-square test to be 

valid. Choice of the interval cut-points is arbitrarily and also can be chosen such that 

all counts ckk» are reasonably large. Estimated genotype probabilities preferably should 

have high and similar accuracy. 

Results 

Polygenic model 

For inference in the polygenic model, for each trait a trial Gibbs chain of 10000 cycles 

was run. From these chains, it was determined that virtually independent samples could 

be obtained using a spacing of 800 cycles. Subsequently, for inferences, for each trait 

5 Gibbs chains of 40000 cycles were run, obtaining 50 independent Gibbs samples per 

chain and 250 samples in total per trait. Using an estimate of phenotypic variance from 

a model fitting non-genetic effects only, starting values for polygenic variances in the 

five replicated chains were chosen as 10, 20, 30, 40 and 50% of this estimate of 

phenotypic variance, and with error variance equal to the remainder. Starting values for 

non-genetic effects and polygenic effects were zero. A burn-in period of 1600 cycles 

was used to allow the Gibbs chains to reach equilibrium. Estimated posterior means 

and posterior standard deviations for variance components and heritability are in Table 

2. Features of the posterior distribution for heritability (h ) were obtained by computing 

from each Gibbs sample of variance components the corresponding value of h and 

subsequently using these values to summarize the posterior distribution of h . Tests for 

convergence of the Gibbs sampler by comparison of multiple chain output using 

ANOVA on the independent samples, showed no significant differences between 

replicated chains for all parameters in Table 2, demonstrating convergence of the Gibbs 

sampler. Results indicate general existence of genetic variation for the various traits. 

Absolute values of heritability are generally low: Hovenier et al. (1993) indicate in a 

review average heritabilities for water-holding capacity traits (Cook, Drip) and pH of 

0.20, for Shear and color traits of 0.30, and for Imfat of 0.50. Heritabilities in the data 
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analyzed are 0.10 to 0.20 below these average literature values. 

Table 2 Estimated marginal posterior means (mpm) and marginal posterior 

standard deviations (mpsd) for error variance (<Je ), polygenic variance (o"u ) and 

heritability (h ) in the polygenic model, based on a total of 250 independent 

Gibbs samples from 5 replicated chains. 

Trait 

Cook 

Drip 

Shear 

Imfat 

pH° 

pH-s" 

Light 

Red 

Yellow 

Fat 

Lean 

°> 
mpm 

7.31 

1.71 

51.2 

0.429 

4.39 

5.06 

15.8 

2.63 

2.60 

19.4 

33.4 

mpsd 

0.503 

0.134 

2.93 

0.0544 

0.348 

0.385 

1.35 

0.200 

0.190 

1.79 

2.76 

^ 

mpm 

1.07 

0.272 

2.45 

0.258 

0.567 

0.551 

3.61 

0.431 

0.294 

6.26 

8.08 

mpsd 

0.578 

0.127 

2.07 

0.0757 

0.313 

0.354 

1.47 

0.198 

0.163 

2.36 

3.25 

hJ 

mpm 

0.126 

0.136 

0.045 

0.372 

0.114 

0.098 

0.184 

0.140 

0.101 

0.241 

0.193 

mpsd 

0.064 

0.061 

0.038 

0.094 

0.061 

0.060 

0.071 

0.061 

0.054 

0.081 

0.073 

"For pH and pH-s variance components are in hundreds 

Mixed inheritance model 

For the mixed inheritance model, trial Gibbs chains were run to determine suitable 

values of the relaxation parameter and the spacing to be used between Gibbs cycles to 

yield independent Gibbs samples. Such trial runs showed that for some traits, too 

strong relaxation could lead to Gibbs chains settling at non-Mendelian states, without 

further realisations of Mendelian samples. Therefore, a variety of approaches was used 

to obtain Mendelian samples for the mixed inheritance model: for 'well behaved' traits, 

which were Cook, Imfat, Fat, Lean, White and Yellow, a relatively large relaxation was 

used leading to a low rate of Mendelian samples of 1 to 2% and virtually independent 

Mendelian samples were obtained by taking every 20th Mendelian sample occurring; 
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for the remaining 'less behaved' traits, a smaller relaxation was used leading to a larger 

rate of Mendelian samples of 5 to 10% and virtually independent Mendelian samples 

were obtained by taking, varying between traits, every 50th to 180th Mendelian sample 

occurring. In this manner, one Mendelian sample was obtained about every 1000 to 

2000 cycles for all traits analyzed. Values for the relaxation parameter pnml to obtain 

the mentioned rates of non-Mendelian samples ranged from 2.0x10" to 6.5x10" . For 

inferences, 5 chains per trait were run, obtaining 50 independent Mendelian samples 

per chain and 250 in total per trait. All chains started with the described annealing of 

a hot chain, which was taken over 1000 cycles, and was followed by a burn-in of 

another 1000 cycles. Gibbs chains were started using the following parameter values: 

zeros for non-genetic effects, polygenic effects and effects at the single locus, 

heterozygotes for all genotypes, posterior mean estimates from the polygenic model 

(Table 2) for variance components and 0.5 for allele frequencies. It was observed that 

the approach of annealing a hot chain was quite effective in letting the Gibbs sampler 

converge to its equilibrium, even from such a crude starting point. 

Estimated marginal posterior distributions for the two genetic variance 

components in the mixed inheritance model are in Figure 2 and estimated marginal 

posterior means and standard deviations of all three variance components are in Table 

3. Analysis of differences between replicated chains indicated two traits where lack of 

convergence of the Gibbs sampler was diagnosed: pH-s and Fat, for parameters residual 

variance and polygenic variance. Convergence was found for estimation of single-gene 

variances for all traits. 

(Cook) (Drip) (Shear) 

0 5 10 15 20 25 30 35 

Variance 
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(Imfat) (pH) (pH-s) 

Variance (0.01) Variance (0.01) 

(Light) (Red) (Yellow) 

0.0 0 J 1.0 
Variance 

(Fat) (Lean) 
Figure 2 (starting page 81) 

Estimated marginal posterior 

d i s t r ibut ions (averaged 

histogram frequencies) for 

polygenic variance (o~u ) and 

single gene variance (o~w ) in 

the mixed inheritance model 

10 is 20 as for ] i m e a t quality traits. 
Variance 



83 

Table 3 Estimated marginal posterior means (mpm) and marginal posterior 
9 7 

standard deviations (mpsd) for error variance (o"e ), polygenic variance (au ) and 

single gene variance (<TW ) in the mixed inheritance model, based on a total of 

250 independent Gibbs samples from 5 replicated chains. 

Trait 

Cook 

Drip 

Shear 

Imfat 

pH" 

pH-s° 

Light 

Red 

Yellow 

Fat 

Lean 

"e* 

mpm 

5.03 

0.582 

35.2 

0.260 

2.03 

2.72** 

12.9 

2.29 

2.29 

12.6** 

21.7 

mpsd 

0.417 

0.0697 

3.32 

0.0310 

0.165 

0.377 

2.61 

0.304 

0.274 

1.82 

3.97 

<* 

mpm 

0.931 

0.142 

2.55 

0.120 

0.220 

0.344** 

3.34 

0.302 

0.233 

3.34** 

5.01 

mpsd 

0.399 

0.0627 

1.98 

0.0416 

0.156 

0.216 

1.42 

0.209 

0.156 

1.94 

3.19 

°w* 
mpm 

3.73 

1.29 

18.7 

0.351 

3.28 

2.85 

3.59 

0.501 

0.436 

9.92 

14.4 

mpsd 

1.30 

0.158 

4.79 

0.0914 

0.663 

0.623 

2.46 

0.314 

0.797 

2.24 

3.81 

"For pH and pH-s variance components are in hundreds 

**Significant differences between replicated chains (P<0.01) 

Based on the marginal posterior distributions depicted in Figure 2, traits were grouped 

according to significance of the two genetic variances as follows: (1) traits Cook, Drip 

and Imfat showing significant influence of a single gene in presence of additional 

significant polygenic variance; (2) traits Shear, pH, pH-s, Fat and Lean, showing 

significant influence of a single gene, but with low polygenic variances showing non-

negligible densities at o"u =0; (3) color traits Light, Red and Yellow, showing non

significant single gene variance. Group (2) includes the two traits with no convergence 

of the Gibbs sampler for some parameters. The total of genetic variance inferred in the 

mixed inheritance model appears larger than genetic variance inferred in the pure 

polygenic model. This can be explained by the segregation variance at the single locus, 

which will be attributed to error variance in the polygenic model, but can be included 
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in genetic variance in the mixed inheritance model. 

Table 4 Estimated marginal posterior means (mpm) and marginal posterior 

standard deviations (mpsd) for additive effect (a) and dominance effect (d) at the 

single locus, and estimated 95% highest posterior density (HPD) regions for their 

difference in the mixed inheritance model, based on a total of 250 independent 

Gibbs samples from 5 replicated chains, shown for traits with significant 

contributions of single gene variance. 

Trait 

Cook 

Drip 

Shear 

Imfat 

pH 

pH-s 

Fat 

Lean 

a 

mpm 

4.67 

1.40 

5.72 

1.14 

0.319 

0.233 

4.39 

4.39 

mpsd 

0.436 

0.0886 

0.844 

0.0767 

0.0170 

0.0202 

0.584 

1.05 

d 

mpm 

4.64 

-1.53 

-8.54 

-1.09 

-0.313 

-0.269** 

-3.85** 

-4.16 

mpsd 

0.562 

0.175 

1.74 

0.128 

0.0241 

0.0493 

1.07 

1.67 

a-\d\ 

region 

from 

-1.08 

-0.631 

-5.99 

-0.239 

-0.0475 

-0.139 

-2.32 

-4.83 

95% HPD 

to 

1.29 

0.323 

1.21 

0.359 

0.0651 

0.0831 

3.38 

4.67 

Significant differences between replicated chains (.P<0.01) 

The eight traits in groups (1) and (2) described above were considered for further 

investigations on estimates of effects at the single locus (Table 4) and Fj genotype 

frequencies (Table 5). Estimates for additive effect a and dominance effect d at the 

single locus indicated that d was likely to be of the same absolute value than a: Table 

4 shows the estimated 95% highest posterior density (HPD) regions for the difference 

a - |< / | , which in all cases included the value zero. HPD regions were obtained by 

computing, from each Gibbs sample of a and d, the difference a - | t / | , subsequently 

making a non-parametric density estimate for this difference and obtaining from this 

density estimate the left- and right 2.5% quantiles. Hence, a single gene with complete 

dominance for one of its alleles was inferred for all traits listed in Table 4. 
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Reservations on this conclusion should be made for pH-s and Fat, where non-

convergence of the Gibbs sampler was diagnosed for estimation of the dominance 

effect at the single locus. Estimates of genotype frequencies in the Fj (Table 5) 

indicated absence of the homozygote recessive genotype in the Fj parents. The 

frequency of homozygote récessives in Fj is p^r^ for Cook (with d positive) and /?HrH 

for other traits (with d negative). Posterior distributions for/7L/"L for Cook and/>H/"H for 

other traits are in Figure 3 for the eight traits considered, and show global modes at 

zero for all these frequencies. Absence of the homozygote recessive genotype in Fl 

indicates that the recessive allele must be absent in one of the founder lines, although 

the observations on F2 used here, do not allow one to determine the founder line. 

Convergence of the Gibbs sampler for estimation of the genotype frequency of the 

homozygote récessives was confirmed for all traits. 

Table 5 Estimated marginal posterior means (mpm) and marginal posterior 

standard deviations (mpsd) for estimable functions of allele frequencies /?L and 

rL in the mixed inheritance model, based on a total of 250 independent Gibbs 

samples from 5 replicated chains, shown for traits with significant contributions 

of single gene variance. 

Trait 

Cook 

Drip 

Shear 

Imfat 

pH 

pH-s 

Fat 

Lean 

/VL " 
mpm 

0.0189* 

0.161 

0.381 

0.495 

0.427 

0.294** 

0.254 

0.129 

mpsd 

0.0166'' 

0.0575 

0.105 

0.0666 

0.0601 

0.111 

0.101 

0.0905 

Pi/H + Pu 

mpm 

0.379 

0.806 

0.568 

0.471 

0.551 

0.673** 

0.702 

0.778 

l" 
mpsd 

0.0631 

0.0657 

0.106 

0.0639 

0.0606 

0.115 

0.108 

0.113 

PHrHa 

mpm 

0.602 

0.0325A 

0.0515* 

0.0334* 

0.0218* 

0.0337* 

0.043 1* 

0.0937* 

mpsd 

0.0683 

0.0309* 

0.0419* 

0.0265* 

0.0208* 

0.0305* 

0.0409* 

0.0749* 

Estimable functions of allele frequencies represent genotype frequencies in Fj 

Global mode at zero 

** Significant differences between replicated chains (P<0.0\) 
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0.15 

Frequency 
0.30 

Figure 3 Estimated marginal posterior 

distributions (averaged histogram 

frequencies) for the frequency of the 

double recessive genotype in Fj parents for 

8 meat quality traits; vertical positions of 

trait names indicate starts of the graphs at 

the left boudary for the respective traits. 

Restricted model 

Results presented in Tables 4 and 5 led to the conclusion that a number of traits might 

be influenced by a recessive gene, absent in one of the founder lines. However, for 

traits pH-s and Fat, convergence of the Gibbs sampler was not observed, which did not 

allow one to draw definite conclusions. Also, the finding of several traits being 

influenced by a single gene, brings up the interesting hypothesis of whether all or some 

traits might actually be influenced by the same gene, acting pleiotropically. By using 

a restricted model, which assumed complete dominance and absence of the recessive 

allele in one of the founder lines, it was attempted to improve inference for pH-s and 

Fat, and to obtain a more accurate estimation of genotype probabilities compared to an 

unrestricted model. It was not considered to obtain genotype probabilities conditional 

on some point estimates for all hyper-parameters because we thought that such an 

approach could endanger attempts to elucidate pleiotropic effects of the genes. 

Restrictions to impose complete dominance and absence of the recessive allele 

in one of the founder lines were applied as follows (cf Tables 4 and 5): for Cook, d=a, 

P]_=0 and/>H=1; for all other traits, d=-a,p}j=\ and/?H=0. Application of the restriction 

to allele frequency />L is arbitrary from a modelling viewpoint, as only the genotype 

frequencies in F( are uniquely estimable, but was thought to be better from a 
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Computing viewpoint: fixing /;L, frequency in the (smaller) paternal founder line, and 

estimating rL, frequency in the (larger) maternal founder line was thought to supply a 

more stable Gibbs chain. Gibbs chains were started using the following parameter 

values : zeros for non-genetic effects and polygenic effects, heterozygotes for all 

genotypes, posterior mean estimates in the mixed inheritance model (Table 3, Table 4) 

for variance components and additive effect at the sintgle locus a, and 0.5 for allele 

frequency rL. For inference in this restricted model, an initial phase where a hot chain 

was annealed was omitted: starting with plausible values for effects at the single locus, 

the Gibbs sampler converged equally well without such phase. Other details were the 

same as for the full mixed inheritance model, generating a total of 250 Gibbs samples 

per trait, from 5 replicated chains. 

Table 6 Estimated marginal posterior means (mpm) and marginal posterior standard 

deviations (mpsd) for additive effect at the single locus (a) and allele frequency for 

allele A^ in one of the founder lines (rH) in a restricted mixed inheritance model", 

based on a total of 250 independent Gibbs samples from 5 replicated chains, shown 

for traits with significant contributions of single gene variance. 

Trait mpm mpsd mpm mpsd 

Cook 

Drip 

Imfat 

Shear 

PHA 

pH-s h 

Fat 

Lean 

4.64 

1.44 

1.12 

6.29 

0.316 

0.240 

4.18 

4.32 

0.368 

0.0460 

0.0665 

0.720 

0.0153 

0.0154 

0.365 

0.475 

0.614 

0.842 

0.504 

0.676 

0.565 

0.734 

0.782 

0.91** c 

0.0652 

0.0590 

0.0580 

0.1000 

0.0606 

0.0905 

0.0852 

0.0752 

Restrictions: for Cook, d=a, and allele A^ is dominant; for other traits, d—-a, and 

allele/4H is recessive; the recessive allele was forced absent in the other founder line 

For pH and pH-s variance components are in hundreds 
c global mode at rH=l 

** Significant differences between replicated chains (Z'0.01) 
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Estimates of variance components with the restricted model confirmed estimates for the 

full model (not shown). Estimates for the effect at the single locus and frequency of 

the favorable >4H allele are in Table 6. Due to the restriction in the genetic components 

of the model, estimates of genetic variances were slightly lower, and estimates of error 

variance were slightly higher. The Gibbs sampler showed good convergence for the 

estimation of variance components for all traits, except for the estimation of residual 

variance for Lean and results showed significant contributions of single gene variance 

for all traits. For Lean, influence of a single gene was rejected, firstly because of poor 

convergence of the Gibbs sampler, and secondly, because for Lean frequency of the 

recessive allele, which was forced to zero in one of the founder lines, was estimated 

very close to one in the other founder line (Table 6). In such case, inferred significant 

single gene variance could be caused by a general non-normality in the data (see the 

discussion section). For the seven remaining traits, Cook, Drip, Shear, Imfat, pH, pH-s 

and Fat, influence of a single gene is considered very likely. 

From the Gibbs chains used to estimate genetic parameters in the reduced model 

(partly in Table 6), estimates of genotype probabilities were obtained as well. Using 

genotype probabilities inferred for different traits, association tests were carried out as 

described in the Methods section to obtain indications of whether traits presumed to 

be affected by a single gene could actually be affected by the same gene. Associations 

were studied between seven traits, which were all traits in Table 6 except Lean. Tests 

for associations were based on estimated probabilities of female Fj parents to be 

heterozygote. Use of the female parents supplied a reasonable compromise between 

requiring a large number of individuals and requiring individuals with precise 

estimates. Using female parents, 251 individuals were available and the genotype 

probabilities were counted in three intervals: those falling between 0 and 0.65, between 

0.65 and 0.80 and between 0.80 and 1. These intervals supplied a good distribution of 

numbers of probabilities falling in all combinations of intervals for pairs of traits and 

resulted in an appropriate use of the chi-square approximation to test for association 

for all combinations of traits except one. Using a discretization into three intervals, 

tests for associations were based on a 3-by-3 table and test-statistics followed a x 

distribution with four degrees of freedom under the null-hypothesis. Significant 

associations were considered as those where the test-statistic exceeded the 1% level of 

significance. 
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24.1** 

34.7** 

-

6.14 

5.44 

13.6** 

-

3.20 

10.1A 

5.09 

1.98 

-

5.83 

1.94 

5.05 

6.91 

20.7** 

6.72 

6.61 

5.14 

3.20 

3.83 

21.3** 

Table 7 Chi-square tests statistics for test of association between inferred 

genotypes for traits influenced by single genes a 

Trait pH pH-s Fat Imfat Shear Drip 

Cook 57.7** 

pH 

pH-s 

Fat 

Imfat 

Shear 

" Probabilities (Pc) were estimated for 251 female Fj parents to carry the 

recessive allele. Estimation was done from Gibbs chains for inference in the 

restricted model assuming complete dominance and absence of the recessive allele 

in one of the founder lines. Test for association was based on transformation of 

estimated probabilities to a three-class variable, indicating whether P < 0.65, 0.65 

<PC< 0.80, or Pc > 0.80. 

Chi-square approximation not good 

** Significant association (P<0.0\) 

Test statistics for associations between genotypes for the seven traits considered are in 

Table 7. Traits in this table are ordered corresponding to a suggested division into two 

groups: Cook, pH, pH-s and Fat as a first group and Imfat, Shear and Drip as a second 

group. Test statistics for association of genotypes between pairs of traits across these 

groups are non-significant, whereas associations between pairs of traits within groups 

often are significant. In the first group, clear associations were found between 

combinations of Cook, pH and pH-s, which strongly suggest that these three traits are 

influenced by the same gene. Also Fat may be influenced by this Cook/pH gene, but 

here the situation is not clear: Fat was associated with pH-s, but not with any of the 

other traits in this group. In the second group, the situation also is not fully clear: here 

Imfat is associated with Shear, Shear with Drip, but Imfat is not associated with Drip. 
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Discussion 

Validation 

To argue for presence of a single affecting the traits considered, one must demonstrate 

the presence of typical data characteristics, and argue that these characteristics are due 

to segregation of a single gene, rather than some other mechanism. The data 

characteristics that are typical for traits influenced by a single gene are heterogeneous 

within family variation for the traits measured and general- or family specific skewness 

and/or kurtosis in the distribution of the trait. These characteristics, when they can be 

observed in certain families but not in others, are fairly robust identifiers for presence 

of a single gene. However, non family specific data characteristics such as general 

skewness or kurtosis, are much less robust identifiers (Le Roy and Elsen, 1992). For 

the trait Lean, the recessive allele was inferred to be fixed in the founder line where 

it originated from. This implies that all Fj parents were inferred to be heterozygous 

and, apparently, the trait did not show differences in within family variation or family 

specific skewnesses. This led us to reject influence of a single gene on this trait: the 

general skewness could be the result of a segregating single gene, but not necessarily, 

so that convincing evidence is not supplied. 

For the remaining traits, Cook, pH, pH-s, Fat, Imfat, Shear and Drip, the 

recessive allele was inferred to segregate in the founder line where it originated from. 

This implies presence of two genotypes in Fj parents: parents which carry the recessive 

allele, and parents which do not carry the recessive allele. When mating various 

combinations of such parents, heterogenous within-family variation and family specific 

skewnesses should arise. Such effects were indeed present for the traits analyzed (Table 

8): families of carrier fathers showed markedly higher variance in the measured traits 

than families of non-carrier fathers. This heterogeneity in within family variances is not 

easily explained by effects other than the segregation of a single gene because design 

and analysis of the experiment excluded confounding with any common factors known 

to cause possible heterogeneity in variance. In particular, animals were raised at the 

same time in all locations/companies, which were geographically not widely spread, 

slaughtered in one slaughter house and a confounding between fathers/families and 

locations/companies was eliminated by formation of the described central pool of 

fathers, so that each resulting father-family was a mix of individuals from different 
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locations/companies. This all supplies sufficient evidence in favor of the heterogeneity 

in family variances for Cook, pH, pH-s, Fat, Imfat, Shear and Drip to be of genetic 

origin, caused by segregation of a single gene. 

Table 8 Number of observations (N), mean and standard deviation of raw 

phenotypic measurements for traits inferred to be influenced by single genes, in 

families of non-carrier fathers, families with dubious status of the father and in 

families of carrier fathers" 

Trait 

Cook 

Drip 

Imfat 

Shear 

pH 

pH-s 

Fat 

Non-

fami 

N 

322 

0 

227 

62 

162 

47 

26 

carrier 

ies 

mean 

26.5 

-

1.65 

34.8 

5.60 

5.71 

19.9 

father 

std 

2.87 

-

0.654 

6.89 

0.161 

0.137 

4.48 

Dubi 

fami 

N 

205 

97 

260 

408 

107 

149 

225 

ous father 

ies 

mean 

26.4 

2.04 

1.75 

36.5 

5.65 

5.77 

20.4 

std 

3.12 

0.943 

0.704 

8.51 

0.229 

0.240 

4.76 

Carrier father 

famil 

N 

318 

747 

344 

375 

576 

650 

595 

es 

mean 

26.2 

2.78 

2.02 

43.7 

5.68 

5.84 

22.7 

std 

4.15 

1.58 

1.05 

11.4 

0.289 

0.322 

5.92 

" Probabilities (Pc) were estimated for Fj fathers to carry the recessive allele. 

Estimation was done from Gibbs chains for inference in the restricted model 

assuming complete dominance and absence of the recessive allele in one of the 

founder lines. Fathers with P < 0.20 were considered 'non-carriers', fathers with 

P> 0.80 were considered 'carriers', and those remaining were considered 

'dubious'. For Drip, non of the fathers was found 'carrier'. 

Single genes 

By simple association tests between inferred genotypes, indications were obtained 

whether (groups of) traits actually could be influenced by the same gene. We 

postulated as a working hypothesis that the effects observed could be caused by two 

genes: one gene that influences cooking loss, pH and possibly backfat thickness, and 

a second gene that influences intramuscular fat, shearforce and possibly drip loss. The 
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presumed first gene is called Meishan Cooking loss gene (MC), the second gene is 

called Meishan Intramuscular fat gene (MI). A joint effect of the MC gene on cooking 

loss and pH is physiologically well understandable and estimated effects of the inferred 

recessive allele to decrease cooking loss and increase pH agree with expectations from 

a physiological viewpoint. Whether the MC gene also influences backfat thickness 

remains unclear: an association was found between backfat and one of the pH 

measures, but not with cooking loss and a second pH measure, and physiologically 

such an association is also not immediately obvious. For the presumed MI gene, the 

situation is less clear: from a physiological viewpoint, higher intramuscular fat could 

be associated with lower shearforce, indicative of more tender meat, but from the 

analyses, higher intramuscular fat appeared associated with higher shearforce. For the 

MI gene, a possible relationship with drip loss is also debatable, as such an association 

was only made via shearforce. Therefore, the working hypothesis of only two genes, 

MC and MI, influencing the traits analyzed could well be too restrictive and could 

require extension, postulating effects of more genes. 

The recessive alleles of the inferred single genes were found to originate from 

one of the founder lines only. This raises the interesting question whether this was the 

Chinese Meishan founder line or the collection of Western founder lines. In the data, 

some additional evidence for one or the other hypothesis was available. In the analyses, 

Western founder animals were treated as a homogeneous group, but in fact these 

founders consisted of different lines, one from each company (Figure 1). Among Fj 

fathers that were carriers of the recessive allele for various traits, descendants from all 

Western founder lines were present. Using this additional information, it is unlikely that 

such recessive allele would have been present in all these Western lines, and a more 

plausible explanation is that these recessive alleles originated from the common 

Meishan fathers of F] fathers. 

The above described MC gene, affecting pH, superficially might be presumed 

to be actually the known Halothane gene (Eikelenboom and Minkema, 1974), or the 

RN gene (Le Roy et al., 1990), either of which also affects pH in meat. However, 

presence of the mutation causing Halothane susceptibility was excluded by molecular 

typing and presence of the RN~ allele of the RN gene is unlikely because this allele is 

thought to be specific for the Hampshire pig breed. Moreover, effects of the presumed 

MC gene are opposite to those known for the mutation of the Halothane gene and for 
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the VW-allele: these two alleles are (partly) dominant and increase cooking loss and 

decrease pH, whereas the dominant allele of the MC gene decreases cooking loss and 

increases pH. 

Bayesian segregation analysis 

The secondary goal of this study was to apply a recently developed Bayesian approach 

for segregation analysis in extensive field data analyses. The approach uses Gibbs 

sampling for computing marginal posterior distributions and appeared generally 

feasible. The approach was effective in generating a reasonable number of independent 

samples from the marginal posterior distributions of parameters, and convergence was 

found, at least for the variance components, in practically all cases. Gibbs sampling 

allows use of looped pedigrees, incorporation of many relationships, and circumvents 

the intrinsic problems (e.g., Hasstedt, 1982) in marginalizing a joint distribution with 

respect to both discrete parameters (genotypes) and continuous parameters (polygenic 

effects and others). Because of these advantages, Gibbs sampling can, and has, also 

been used in maximum likelihood approaches to segregation analysis (e.g., Guo and 

Thompson, 1992). In combination with the Bayesian approach, Gibbs sampling 

provides even more flexibility than a maximum likelihood approach, for instance in the 

estimation of means. Models used in analysis of livestock data often comprise a large 

number of means; in the analysis presented here 33 means and one regression 

coefficient were fitted. In a Bayesian approach, these means are straightforwardly 

included in the Gibbs chains and treated as nuisance parameters, yielding a REML-type 

approach by accounting for uncertainty originating from the estimation of these fixed 

effects. Accounting for such uncertainty is known, from linear model applications, to 

remove bias in estimation of variance components. Apart from flexibility in the model, 

the Bayesian approach supplies posterior distributions and small-sample 'standard 

errors' of parameters, while the maximum likelihood approach relies on asymptotic 

properties. 

Conclusions 

The primary aim of this study was to investigate whether meat quality traits in a 

crossed pig population were influenced by single genes. The statistical analyses 
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presented showed convincingly that seven meat quality traits measured in this 

population are indeed influenced by single genes, which most likely originate from the 

Chinese Meishan breed. These genes are different from genes so-far identified to affect 

meat quality and further study of this population will be worthwhile. Currently the 

animals are being genotyped for a large number of genetic markers which will enable 

a linkage analysis to estimate location of the genes. Based on the results of the present 

study it can be concluded that the material from the F2 cross is very suited to locate 

genes affecting meat quality. The results of the linkage analysis will, in particular, be 

helpful to determine the number of genes that are actually responsible for the observed 

effects on the seven traits analyzed. As a working hypothesis we postulated presence 

of two genes, called MC and Ml, but the analysis based on phenotypic measurements 

only leaves considerable uncertainty about this point. 

Acknowledgements 

Dutch breeding companies participating in the described crossing experiment were 

NVS, Bovar, Euribrid, Fomeva and Nieuw-Dalland. Meishan founders used in the 

crossing experiment are from a pure Meishan herd at Wageningen Agricultural 

University, made available by Euribrid (Boxmeer, The Netherlands). Research was 

supported financially by the Dutch Product Board for Livestock, Meat and Eggs, and 

by the aforementioned breeding companies participating in the experiment. 

References 

Cameron ND (1990) Genetic and phenotypic parameters for carcass traits, meat and eating 

quality in pigs. Livest. Prod. Sei. 26: 119-135 

Eikelenboom G, Minkema D (1974) Prediction of pale, soft, exudative muscle with a non-

lethal test for the halothane-induced porcine malignant hyperthermia syndrome. 

Tijdschr. Diergeneeskunde 99: 421-426 

Elston RC, Stewart J (1971) A general model for the genetic analysis of pedigree data. 

Hum. Hered. 21: 523-542 

Falconer DS (1989) Introduction to quantitative genetics, 3rd ed. Longman, Harlow, 

London 



95 

Gelfand AE, Smith AFM (1990) Sampling based approaches to calculating marginal 

densities. J. Am. Stat. Assoc. 85: 398-409 

Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions and the Bayesian 

restoration of images. IEEE Trans. Pattn. Anal. Mach. Intell. 6: 721-741 

Gianola D, Foulley JL (1990) Variance estimation from integrated likelihoods (VEIL). 

Genet Sel Evol 22: 403-417 

Guo SW, Thompson EA (1991) Monte carlo estimation of variance component models 

for large complex pedigrees. IMA J Math Appl Med Biol 8: 171-189 

Guo SW, Thompson EA (1992) A monte carlo method for combined segregation and 

linkage analysis. Am. J. Hum. Genet. 51: 1111-1126 

Hasstedt SJ (1982) A mixed-model likelihood approximation on large pedigrees. Computer 

and Biomedical Research 15: 295-307 

Hill WG, Knott SA (1990) Identification of genes with large effects. In: Advances in 

statistical methods for genetic improvement of livestock, edited by D. Gianola and 

K. Hammond, Springer-verlag 

Hovenier R, Kanis E, Van Asseldonk Th, Westerink NG (1992) Genetic parameters of pig 

meat quality traits in a Halothane negative population. Livest. Prod. Sei. 32: 

309-321 

Hovenier R, Kanis E, Van Asseldonk Th, Westerink NG (1993) Breeding for meat quality 

in Halothane negative populations - a review. Pig News and Information 14: 

17N-25N 

Janss LLG, Thompson R, Van Arendonk JAM (1995) Application of Gibbs sampling for 

inference in a mixed major gene-polygenic inheritance model in animal 

populations. Theor. Appl. Genet. 91: 1137-1147 

Knott SA, Haley CS, Thompson R (1992) Methods of segregation analysis for animal 

breeding data : a comparison of power. Heredity 68: 299-311 

Lande R (1981) The minimum number of genes contributing to quantitative variation 

between and within populations. Genetics 99: 541-553 

Le Roy P, Elsen JM (1992) Simple test statistics for major gene detection: a numerical 

comparison. Theor. Appl. Genet. 83: 635-644 

Le Roy P, Elsen JM, Knott SA (1989) Comparison of four statistical methods for 

detection of a major gene in a progeny test design. Genet. Sel. Evol. 21: 341-357 

Le Roy P, Naveau J, Elsen JM, Sellier P (1990) Evidence for a new major gene 

influencing meat quality in pigs. Genet. Res. 55: 33-40 

Chapter 4 of this thesis 



96 Analysis of meat quality traits 

Lin S, Thompson E, Wijsman E (1993) Achieving irreducibility if the Markov chain 

Monte Carlo method applied to pedigree data. IMA J Math Appl Med Biol 10: 1-7 

MacDougall DB (1986) The chemistry of color and appearance. Food Chemistry 21: 

283-299 

Morton NE, MacLean CJ (1974) Analysis of family resemblance III. Complex segregation 

of quantitative traits. Am. J. Hum. Genet. 26: 489-503 

Otsu K, Phillips MS, Khanna VK, De Leon S, MacLennan DH (1992). Refinement of 

diagnostic assays for a probable causal mutation for porcine and human malignant 

hyperthermia. Genomics 13: 835-837 

Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes; The art 

of scientific computing, 2nd Ed. Cambridge University Press, Cambridge, Mass 

Raftery AE, Lewis SM (1992) How many iterates in the Gibbs sampler? In: Bayesian 

statistics IV, edited by Bernardo JM, Berger JO, David AP, Smith AFM, Oxford 

University Press 

SAS Institute Inc, 1988 SAS/STAT Users Guide, release 6.06. Cary, North Carolina 

Scott DW (1992) Multivariate density estimation. Wiley and Sons, New York 

Sheehan N, Thomas A (1993) On the irreducibility of a Markov chain defined on a space 

of genotype configurations by a sampling scheme. Biometrics 49: 163-175 

Smith AFM, Roberts GO (1993) Bayesian computation via the Gibbs sampler and related 

markov chain monte carlo methods. J. Roy. Stat. Soc. B 55: 3-24 

Sorensen DA, Wang CS, Jensen J, Gianola D (1994) Bayesian analysis of genetic change 

due to selection using Gibbs sampling. Genet. Sel. Evol. 26: 333-360 

Sorensen DA, Andersen S, Gianola D, Korsgaard I (1995) Bayesian inference in threshold 

models using Gibbs sampling. Genet. Sel. Evol. 27: 229-249 

Tanner MA (1993) Tools for statistical inference. Springer, Berlin Heidelberg New York 

Thomas DC, Cortessis V (1992) A Gibbs sampling approach to linkage analysis. Hum. 

Hered. 42: 63-76 

Wang CS, Rutledge JJ, Gianola D (1993) Marginal inferences about variance components 

in a mixed linear model using Gibbs sampling. Genet. Sel. Evol. 25: 41-62 

Zhang Y, Proenca R, Maffei H, Barone M, Leopold L, et al. (1994) Positional cloning of 

the mouse obese gene and its human homologue. Nature 372: 425-432 



97 

Appendix 

Details on construction of gibbs samplers for inference in mixed 

inheritance models 

A software package was developed to construct Gibbs samplers for inference in the 

mixed inheritance model (1) described in the Methods section. The main theory on the 

construction of the required Gibbs sampler is described by Janss et al. (1995). 

Hereafter, some general information on the developed package is given and extensions 

to Janss et al. (1995) used in the present study and some computational remarks are 

described. 

General: The set-up of the package is largely a 'help-yourself tool-kit', 

consisting of a set of FORTRAN-variables, corresponding to model-parameters, and a set 

of FORTRAN-77 routines to sample (groups of) parameters. By repeatedly calling these 

routines, Gibbs samplers are generated. Additional routines are supplied which read, 

order and code pedigree and data files and which make information from these files 

available to the routines for sampling model parameters. Set-up of the package also 

allows fitting of sub-models of the mixed inheritance model, e.g. the pure polygenic 

model, and allows suppressing the sampling of parameters, in which case parameters 

are updated by their 'current' expectation. As described by Janss et al. (1995), the latter 

allows application of a hierarchy of inferential approaches, for example a Monte Carlo 

EM likelihood-approach or Gauss-Seidel schemes for iteratively solving of linear model 

equations can be specified. The software package can be obtained from the authors. 

Sampling details: The Gibbs sampler constructed by Janss et al. (1995) included 

the following: sampling of levels of one or more fixed categorical non-genetic effects; 

sampling of polygenic effects assuming each individual in the pedigree has one 

observation and applying blocking of effects of each sire and those of its final progeny; 

sampling of genotypes in similar blocks as polygenic effects; sampling of variance 

components using flat priors; sampling of an additive effect at the single locus; and 

sampling of allele frequency in the (one) founder population. The software package 

developed contains routines to sample these parameters. For inference in the mixed 

inheritance models used in the analyses presented here, the following features were 

added: 
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covariates were allowed for by allowing the design matrix X for a non-genetic 

effect to be a single column vector, containing measured covariates; 

modelling of a dominance effect and modelling of additive and domiance effect 

with restricted relative dominance effect at the single locus were allowed for. 

The equation to sample the additive effect a at the single locus given by Janss 

et al. (1995) can be shown to be based on a linear model to regress the 

corrected data on a dummy vector W'Z'(-1, 0, 0, 1). By analogy, sampling of 

the dominance effect d at the single locus uses the dummy vector W'Z'(0, 1,1, 

0); and sampling of the additive effect at the single locus, assuming d=ca, uses 

the dummy vector WZ' ( -1 , c, c, 1). In the model with restricted dominance 

effect, after sampling of a new a, d is set to ca. 

missing observations were allowed for. For polygenic effects and effects at the 

single locus this follows straightforwardly from linear model methodology by 

allowing the Z matrix to contain columns with all zero's. For the single gene, 

a missing observation for an individual is accommodated for by use of a 

penetrance function which equals 1 for each genotype. 

identification of several groups within founder individuals was allowed for, and 

the procedure to sample allele frequency in a single founder population was then 

extended to sample allele frequencies in each founder group separately. 

For general use of the package, more extensions were made, allowing, for instance, for 

categorical non-genetic effects to be random and for repeated measurements. These 

extensions are not described in detail, not being relevant for the Gibbs sampler 

implementations used in the analyses presented here. 

In the software package, alleles for the single gene are referred to by labels '1' 

and '2' and the additive effect at the single locus a is not restricted to be positive, so 

that these allele labels will not be unique. Unique labels to identify alleles and, for 

instance, allele frequencies, are the 'Low' and 'High' labels as defined in the Methods 

section. Correspondence between the two sets of labels is obtaines as follows: for a>0, 

label '1 ' corresponds to 'Low' and label '2' corresponds to 'High'; for a{0, label '2' 

corresponds to 'Low' and label '1 ' corresponds to 'High'. Using the so obtained 'Low' 

and 'High' labels, unique inferences could subsequently be made on allele frequencies, 

genotypes and genotype frequencies. For the additive effect at the single locus, only 

the absolute value was considered. 
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Segregation analyses for presence of major chapter 

genes to affect growth, backfat and litter size in 

Dutch Meishan-crossbreds 

Presence of major genes was investigated for two growth traits, backfat 

thickness and two litter size traits in the F, and F2 population of a cross 

between Meishan and Western pig lines. Segregation analyses were performed 

in a Bayesian setting, estimating the contribution of background polygenes 

and the contribution of a possible major gene to the expression of the traits 

considered. In a first analysis, joint analysis of ¥l and F2 crossbred data was 

performed, in which different error variances were fitted for F, and for F2 

observations. In this first analysis, significant contributions of major-gene 

variance were found for the two growth traits, for backfat, and for litter size 

at first parity. In a second analysis, analysis of F2 data only was performed 

to check whether no biases were introduced in the joint analysis of F, and F2 

data. In the second analysis, no major genes were found for growth tr.'i.ts. 

Major genes affecting backfat and litter size at first parity were confirmed. 

The gene identified to affect backfat is a dominant gene, where the 

homozygote recessive genotype has an increased level of backfat of about 6 

mm. The gene identified to affect litter size at first parity also is a dominant 

gene, where the homozygote recessive genotype has a decreased litter size of 

about 5 to 6 piglets. 

Introduction 

The Chinese Meishan pig-breed has characteristics that are quite different from those 

found in Western breeds (e.g., Bidanel et al., 1990; Haley and Lee, 1990; Haley et al., 

1992). In particular the extreme fertility of the Meishan breed has attracted the attention 

of physiological research (e.g., Bolet et al., 1986) and of commercial pig-breeding 

companies. In order to investigate the potential of the Meishan breed for commercial 

pig-breeding, the Dutch pig-breeding companies Bovar, Euribrid, Fomeva, Nieuw-

Dalland and NVS have set up an experiment to produce Fj and F2 crossbreds between 
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Meishan and Western lines. One aim of this experiment, considered in the present 

study, was to investigate presence of major genes affecting traits of interest in these 

crossbreds. Presence or absence of major genes will be a main criterion to decide on 

further utilization of the crossbreds: when major genes are present, backcrossing of the 

crossbreds to one of the parental lines could be used to develop a lean Meishan line 

or to develop a fertile Western line; when major genes are absent, continued 

intercrossing and selection of the crossbreds could be used to develop a synthetic line. 

At present, a few indications for presence of major genes in Meishan crosses have been 

obtained: the estrogen receptor locus was found associated with litter size (Rothschild, 

1996) and in a previous analysis of meat quality data from Dutch Meishan F2-crosses, 

presence of major genes affecting pH, intramuscular fat and backfat were found (Janss 

et al., 1996). 

In the Dutch Meishan crossing experiment typing of animals for genetic markers 

was not a priori considered. Therefore, as also in Janss et al. (1996), segregation 

analyses are considered to investigate the presence of major genes and to see whether 

typing of animals could be interesting. Application of segregation analysis has become 

well-feasible by use of Markov chain Monte Carlo methodology as developed by Guo 

and Thompson (1992) and, for animal populations in particular, by Janss et al. (1995). 

For analysis of animal populations, a Bayesian approach to segregation analysis appears 

interesting, for instance because many non-genetic 'fixed' effects can be included in the 

model as nuisance parameters. In contrast, a classical likelihood-based segregation 

analysis is based on a joint maximization for genetic parameters and fixed effects. 

In this paper we report on analysis of growth, backfat and litter size, measured 

on Fj and F2 crossbreds from the Dutch Meishan crossing experiment, for presence of 

major genes. A Bayesian segregation analysis is considered, as also used by Janss et 

al. (1996). 

Material and methods 

Meishan crossbreds 

Fj and F2 crossbreds between Chinese Meishan and Western pig lines were available 

from an experiment involving five Dutch pig breeding companies. Western females at 

the companies were of Dutch Landrace and Large White types. Figure 1 shows the 
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design of the crossbreeding experiment and the numbers of litters produced. 

Meishan boars 
(central pool) 

Western sows 
(5 populations 
at 5 companies) 

(central pool) (remaining at 
companies) 

F2 sows 
(remaining at 
companies) 

F igure 1 Design of the crossing experiment to produce Fj and F 2 

crossbreds between Chinese Meishan and Western pig lines: (1) 126 Fj 

litters were produced from 19 Meishan boars and 126 Western sows of 

5 lines in 5 companies; (2) from Fj litters, a selection of boars was 

transferred to a central location and a selection of sows remained at the 

companies; (3) 265 F 2 litters were produced from 39 Fj boars and 265 

Fj sows; (4) from F2 litters, a selection of sows was maintained at the 

companies to obtain data on litter size. All selection steps were random 

within family. 

The design created genetic links between the crossbreds produced at the five breeding 

companies, firstly by use of one pool of pure Meishan boars, and secondly by creation 

of a central pool of F ( boars, which were taken equally from all companies and 
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subsequently used to inseminate sows at all companies. Due to this design, boar-

families of pure Meishan boars and of F( boars were not confounded with companies. 

Mating was at random, apart from avoiding mating of full-sibs in Fj matings. From 

performance tested Ff animals, a selection of young boars and gilts were taken as 

parents to produce F2 crossbred litters, where F2 litters were born from first litters of 

F] sows. From performance tested F2 animals, only a selection of gilts was maintained 

(Figure 1). Selection in both cases was done at random within families, i.e., preserving 

each parental lineage in the selected offspring. Sows were kept to obtain data on litter 

size at first and second parity; for the second parity of Fj sows and for first and second 

parity of F2 sows, these sows were inseminated with boars from a commercial sire line. 

Each company used its own commercial sire line to obtain these litters. This implies 

that, if the line-type of these commercial sires influenced the sizes of the litters they 

conceived, such effect will be accounted for by a general effect of company. Litter size 

at each parity was considered a different trait, denoted LSI and LS2 and was the litter 

size at birth, i.e. the total of alive and stillborn piglets. Numbers of observations for 

each litter-size trait in Fj and F2 are given in Table 1. 

Table 1 Abbreviations, computing details, units of measurement and number of 

measurements in Fj and F2 for considered traits. 

Trait Description and details 

N° of measurements 

F, F2 

LGR life-growth : weight/age at approx. 90 kg 1057 1250 

life-weight (gr/day) 

TGR test growth : (weight gain) / (days) from 758 1022 

approx 25 to 90 kg life-weight (gr/day) 

BF backfat thickness at approx. 90 kg life- 1056 1222 

weight, ultrasonic measurement (mm) 

LSI littersize (piglets born dead or alive) at 262 268 

1st farrowing 

LS2 littersize (piglets born dead or alive) at 246 222 

2nd farrowing 
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Group: 

F, Batch 1 

Fj Batch 2 

F2 Batch 1 

F2 Batch 2 

B T 

B 

LI 

T 

B 

L2 

LI 

T 

B 

L2 

LI 

T 

L2 

LI L2 

1 2 3 4 5 6 7 

Time-period (23-week interval) 

Figure 2 Lay-out of production, performance testing and farrowing of 

crossbreds in time, indicating the periods where crossbreds were born 

(B), finished performance test (T), and produced first litter (LI) and 

second litter (L2). F-, crossbreds born were from first litters of Fj 

crossbreds. 

Crossbreds were produced at the same time at the five companies in two batches. 

Synchronization between the companies was achieved by insemination of all sows at 

a similar age in three-week-periods, where batches and generations followed each other 

in 23-week intervals, leading to the scheme for production, testing and farrowing 

shown in Figure 2. Figure 2 shows that for recorded performance tests batches and 

generations are completely confounded with periods, such that a period-effect is 

sufficient to account for batch- and generation effects in the current analyses. The same 

holds for recorded litter sizes at first parity and for recorded litter sizes at second 

parity. In order to be able to compare mean levels of the different batches and 

generations, measurements on control lines were obtained as well, but such comparison 

of mean levels is outside the scope of the present study and data on control lines is not 

considered. 

Performance tests 

In performance tests, measurements were obtained on life-growth (LGR), test-growth 

(TGR) and on backfat thickness (BF). Performance tests were conducted for a 
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minimum of 2 boars and 3 gilts per litter. Table 1 shows definition of these traits and 

numbers of observations for each trait in Fj and F2. Performance test results were 

available on boars and gilts and on a small number of castrates; these castrates 

occurred in one of the Fj batches at one of the companies and were included in the 

analyses regrouped with the gilts. 

Table 2 Numbers of observations, housing system, feeding regime and raw means 

and standard deviations for production traits per company and per sex. 

Company: A B D 

Males 

66, 100 126,81 95, 100 

individual individual group 

ad lib ad lib ad lib 

605±85.8 580±89.0 552±91.6 

777±145 845±154 674±140 

15.1±2.88 16.6±3.69 15.9±3.52 

86, 102 136, 126 121, 143 

group group group 

ad lib restricted ad lib 

569±87.4 494±62.7 560±88.0 

694±132 

16.6±3.55 17.6±3.54 20.4±4.53 

Indicated is the number of animals with one or more traits observed, with 

generally few missing records except for trait TGR in Fj males at company D, 

where 77 observations were missing. Also see Table 1 for exact total numbers per 

trait in F ( and F-,. 

N° F,, F2" 

Housing 

Feeding 

LGR 

TGR 

BF 

Females 

N° F,, F2° 

Housing 

Feeding 

LGR 

TGR 

BF 

94,178 

group 

ad lib 

557±75.5 

699±123 

14.1±2.64 

87, 174 

group 

restricted 

550±77.0 

686±126 

I5.0±3.08 

68, 100 

group 

ad lib 

550±93.4 

662±139 

13.3±3.07 

132, 148 

group 

ad lib 

573±78.2 

706±116 

16.9±3.36 

Testing conditions were not uniform between companies and/or sexes. To illustrate this, 

Table 2 shows housing system, feeding regime and unadjusted means and standard 

deviations for the traits per company and sex. Sex-differences appeared not to be 



105 

constant over the 5 companies, showing even different signs for growth: individually 

housed males grew faster than (group-housed) females, but group housed males grew 

slower than (group-housed) females. Also standard deviations for the traits varied 

between companies and sexes, but differences in standard deviations did not appear to 

be associated with housing, feeding, sex, mean levels for the traits or, over traits, with 

particular companies. For analyses, traits measured at the various companies and on the 

two sexes were considered as the same traits, after correction for possible differences 

in mean level between companies and sex-difference within company. 

Non-genetic effects 

A first main effect considered in analysis of the traits was time-period. As described, 

due to the scheme for producing, testing and farrowing of the crossbreds (Figure 2), 

the period-effect also accounts for differences between the generations (Fj and F2) and 

for differences between the batches within each generation. A second main effect 

considered was a sex by company interaction, accounting also for any differences 

arising due to different housing and feeding of males and/or females at the companies, 

as described in Table 2. Significance of effects was investigated using a fixed linear 

model (SAS-GLM, SAS Institute Inc, 1988), considering initially sex, company, period, 

and all two-way and the three-way interaction between these effects. This model was 

applied to the production traits life-growth, test-growth and backfat thickness. In this 

model, the three-way interaction appeared not significant (/*>0.01) for all three 

production traits and the period by sex interaction was not significant for the two 

growth traits. The three-way interaction and the period by sex interaction were then 

dropped for all traits. Remaining significant interactions were a company by sex 

interaction, as expected from the data presented in Table 2, and a company by period 

interaction, showing that periodical fluctuations are not uniform over companies. 

Subsequently, it was investigated whether the company by sex interaction could be 

replaced by effects company, sexe, housing system and feeding regime, by considering 

type I sums of squares for the company by sex interaction after fitting of housing 

system and feeding regime effects. For the two growth traits, company by sex 

interaction remained significant (/J<0.01 ) in such model, so that it was decided to keep 

the company by sex interaction in the model. The remaining model can be reformulated 

as consisting of one sex by company effect (10 levels for backfat and life-growth, 8 



106 Analysis of growth, backfat and litter size 

levels for test-growth) and one period by company effect (20 levels). For litter size, 

sex-effect is not relevant, and only period by company was considered as non-genetic 

effect. 

Genetic models 

For analyses on presence of major genes, a model was used with non-genetic effects, 

effects of background polygenes and effect of a single gene, called major gene. The 

major gene was modelled as an autosomal bi-allelic locus with Mendelian transmission 

probabilities. Two groups of founders, differing in allele frequency, were modelled, one 

group being the paternal Meishan founders of F! crossbreds, and one group being the 

maternal Dutch founders of F ( crossbreds, similar to the model used by Janss et al. 

(1996). Modelling of these two founder populations with different allele frequencies 

allows to model a deviation of genotype frequencies from Hardy Weinberg proportions 

in the Fj population caused by unequal frequencies of alleles in paternal and maternal 

gametes forming Fj individuals. The use of two founder populations also allows to 

explain a possible difference in variance at the major locus in the Fj and F 2 population 

caused by an allele frequency difference at the major locus in the paternal and maternal 

founder line. In the founder populations and in the F 2 population, genotypes were 

assumed in Hardy-Weinberg proportions with the frequency in F 2 equal to the average 

of the frequencies in the founder populations. 

Janss and Van der Werf (1992) showed that differences in error variance 

between the Fj and F 2 population led to biased estimates of major gene parameters and 

affected testing for significance of the major gene component. A larger error variance 

in F 2 was found to lead to over-estimation of the effect of the major gene and to 

increased probability of falsely identifying a major gene. For the present analyses, 

therefore, the model used by Janss et al. (1996) was extended to fit different error 

variances for F | and F 2 observations. To further safeguard against possibly erroneous 

interpretation of results obtained from combined analysis of Fj and F 2 data, also 

analyses using F2 data only were performed. 

Main model 

The main model, applied to the 5 traits described, was: 
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y = Xß + Zu + ZWm + e (1) 

where y are observations, ß non-genetic effects, u polygenic effects, W genotypes, m 

genotype means, e errors and X and Z incidence matrices for non-genetic effects and 

polygenic effects, respectively. The vector with observations is partitioned as y'=(yi' 

y2'), where yj contains observations on Fj individuals and y2 contains observations on 

F2 individuals; similarly, errors are partitioned as e'=(e|' e2'), where ej contains the 

residuals of observations on Fj individuals and e2 contains the residuals of observations 

on F2 individuals. Non-genetic effects in ß include effects of company by period (for 

all traits) and of company by sex (for growth traits and backfat thickness), as described 

in the previous paragraph. 

To denote genotypes at the major locus, distinction is made between an allele 

A^, with 'L' of 'Low', which is defined as the allele that decreases the value of 

phenotypic measurements, and A H, with 'H' of'High', which is defined as the allele that 

increases the value of phenotypic measurements. Attributes 'Low' and 'High' are unique 

and allow unique assignment of alleles and related parameters, such as allele 

frequencies. Matrix W is a four-column matrix indicating the genotype of each animal, 

where columns correspond to the possible genotypes A^A^A yA H, A H/l L and A -^A H. 

Four genotypes were considered because this allowed a flexible notation of genotype 

probabilities in founder populations and of genotype transmission probabilities. In 

actual computations, however, only three genotypes were considered, i.e. not 

distinguishing between the two heterozygotes. Effects of the genotypes are represented 

by m, with m'=(-a, d, d, a), where a is referred to as the additive effect and d is 

referred to as the dominant effect at the major locus. The additive effect can only take 

positive values, so that in is consistent with the definition of the 'Low' and 'High' allele-

attributes. Genotype frequencies in the founder populations are modelled defining allele 

frequencies for A L and A H to be pM L and pM H in Meishan founders, and pD L a r ,d 

^D,H i n D u tch founders, with ^M.L+/;M.H=1 a n d ^D.L^D.H" ' • 

Distributional assumptions for genotypes are specified by genotype probabilities 

for founder animals and genotype transmission probabilities for non-founders, given 

their parental genotypes (see Janss et al., 1995). Assuming Hardy-Weinberg proportions 

in the founder populations, this yields Pr(A e A f) = pM e pM r for Meishan founder 

animals and Pr(At,AA = pD e pD , for Dutch founder animals, with e,f e {L,H}. For 
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non-base animals, Pr(A e A A = xc v/li, m/l*, with e, f, g, h, g*. It* e {L,H J and where 

AA^ and A *4 tl* are the genotypes of the sire and dam of the animal considered, 
XL eh ' s t n e transmission probability for genotype A Ah to transmit an A^ allele, and 
TH P/J = 1 " TL gh ' s t n e corresponding probability to transmit the AH allele. To specify 

Mendelian transmission, TLLL= 1> TL LH= TL HL= 2"> a n c ' TL HH=^- Distributional 

assumptions for polygenic effects are specified as u~N(0, Ao"u
2), where A is the 

numerator relationship matrix. Errors are assumed distributed as e^A^O, Io"el ) and 

e2~N(0, Io"e2 ). Alternatively, the variance structure for errors can be denoted e~N(0, 

R), where R=diag(Io~cl , Io"e2 }, as used in the Appendix. Specification of the 

statistical model for the Bayesian approach is completed by specifying use of uniform 

prior distributions on <-oo,oo> for non-genetic effects and effects at the major locus, 

uniform prior distributions on <0,°o> for variance components, and uniform prior 

distributions on [0,1] for allele frequencies. In the prior distribution for variances, 

a-priori a value of zero is excluded, which is computationally implemented by use of 

priors defined on [10" , oo>. The restriction for the additive effect at the major locus 

to be positive was not imposed through its prior distribution. Rather, a transformation 

was applied to obtain uniquely identified alleles and to obtain strictly positive additive 

effects at the major locus (see the Gibbs Sampling section). 

Parameters-

The complete set of unknowns used for the model (1) with specified distributional 

assumptions is denoted 0Gib = (ß, u, W, o"c]
2, o"e2

2, o-,,2, a, d, pML, / ^ D L ) . All the 

parameters in 0Gil) are used in the construction of Gibbs samplers, but non-genetic 

effects, polygenic effects and genotypes were not of interest in the present analyses. 

Further, the two allele frequencies pM L and /;D L are not uniquely estimable because 

the data contained observations on crossbreds only. If, for instance, only heterozygotes 

were found present in Fj, it can not be distinguished whether pM L=0 and / ; D L =l , or 

whether pM L= 1 and /)D L=0. One estimable function of /?M L and /.>D L is the allele 

frequency in the crossbreds. The frequency ofA^ in crossbreds is denoted pc L, and 

was assumed equal to the average of the allele frequencies in founders, hence, pç L
 = 

T^M L + PD 0- T' le frequency of A H in crossbreds is denoted pç H and pc ^+PQ H = 1 • 

A second set of estimable functions of/;M L and/;D L is the set of genotype frequencies 

in the F ( . These genotype frequencies can deviate from Hardy-Weinberg proportions 
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and, therefore, can deviate from genotype frequencies in F2, although allele frequencies 

in the two crossbred populations are the same. These genotype frequencies in Fj are: 

PFI,LL
 =

 PMÏPDJL
 f o r t h e frequency of A LA L, PFULH+PFlMh= PM,LPD.H

 +
 PMXPDÏ 

for the frequency of heterozygotes ALAH and A ̂ A L, and ppi H H = p M H / ? D H for the 

frequency ofA^A^. Based on 9Gib, also the variances explained by the major gene in 
2 2 • 

Fj, denoted o w l , and in F2, denoted 0"w2 > were computed. Major-gene variances were 

computed from the genotypic effects (a, d) and from genotype frequencies in Fj, or 

genotype frequencies in F2, the latter computed from PQ^ and/?QH assuming Hardy-

Weinberg proportions. This computation of major gene variance therefore is based on 

assumptions of random mating and absence of directional selection. The computed 

variances include both additive and dominance variance at the major locus. In 

conclusion, the set of parameters of interest for statistical inferences was 0]lir = (<xe] , 
°e22> °i .2 ' CTwl2- a*22' a> C / . / , F 1 . L L ' / ' F 1 . L H + / , F 1 . H L » / , F 1 . H H . ^ C , L ) -

Sub-models 

Two sub-models of model (1) were used. The first sub-model used was a polygenic 

model, specified as y = Xß + Zu + e, with all specifications equal to those for model 

(1), including the heterogeneous error variance. The parameters of interest for statistical 

inferences in the polygenic model were error variances, polygenic variance and 

heritability in the F2, h2 = a /(cr 2 +CT„ )• A second sub-model used was a model for 

analysis of F2 data only, which can be specified as y2 = Xß + Zu + ZWm + e2. In this 

model, Fj observations are not included and consequently cJel is not estimated. In this 

'F2-only-analysis', the non-genetic effect of time-period contained two levels instead of 

four (see Figure 2). The parameters of interest for statistical inferences in analysis of 

F2 data were those given in 9] | l f except aci . 

Gibbs sampling 

Construction of Gibbs samplers 

Marginal posterior distributions of model parameters were obtained using Gibbs 

sampling, constructing a markov chain with stationary distribution, equal to the joint 

posterior distribution of 6Gil). Construction of a markov chain using these parameters 

was based on Janss et al. (1995), extended to allow for the dominance effect at the 
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major locus, for two founder populations differing in allele frequency and for two error 

variance components. Inclusion of the dominance effect at the major locus and of more 

than one allele frequency were described in the application of Janss et al. (1996). 

Inclusion of two error variances is described in the Appendix. 

The implementation of the Gibbs sampler generally applied single-variate 

sampling for all model parameters except for genotypes. For genotypes, 'blocks' were 

constructed containing the genotype of a sire with all its final offspring, and where 

genotypes in each block were sampled from their joint distribution conditional on 

remaining parameters and data (Janss et al., 1995). Blocked sampling of polygenic 

effects, also considered by Janss et al. (1995), was not applied here. Full single-variate 

sampling of polygenic effects was used instead, which could easier be modified to 

allow for two error variance components (see Appendix). To improve mixing of 

genotypes the relaxation technique of Sheehan and Thomas (1993) was applied. This 

involves relaxation of the transmission probabilities to slightly non-Mendelian 

probabilities by use of xL L^= 1 -pK\, and xL HH^/VI- Here, p^ is referred to as the 

relaxation probability, which is taken small and specifies the probability of non-

Mendelian transmission of alleles. From a Gibbs chain with relaxed transmission 

probabilities, cycles with a Mendelian genotype configuration are filtered out, providing 

a correct set of samples for inferences on a strict Mendelian model (Sheehan and 

Thomas, 1993). In order for the relaxation technique to have a reasonable impact on 

mixing, relaxation may be relatively strong (high ^rci), leading to a low rate of 

Mendelian samples in the relaxed chain. In the analyses performed here, we aimed at 

a rate of Mendelian samples of 1 to 5%. Trial runs are required to find a suitable 

corresponding value for /;rc|, which may be different for each data set. 

The Gibbs sampler is implemented on alleles denoted Al and A2, with 

corresponding aUde-frequencies/^ M, p2 M, etc., and with additive genotypic effect at 

the major locus a defined on <-»,<»>. To make inferences on uniquely defined alleles 

AL and A H with allele frequencies pL M , pH M, etc., and with strictly positive a, the 

following was done: for a>0, the label '1 ' was set to correspond to the label 'L' and the 

label '2' was set to correspond to the label 'H', i.e. then />L M = ^ 1 M e t c > t ' l e r e v e r s e w a s 

applied for a<0. For inferences on a, always the absolute values of o were taken. To 

start computation of Gibbs chains, parameters were generally initialized as: 

heterozygotes for genotypes; some positive value for variances; 0.5 for allele 
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frequencies; and zeros for all others. Sampling of random realizations in construction 

of Gibbs samplers was based, directly or indirectly, on the uniform random number 

generator RAN2 (Press et al., 1992). 

Initial trials 

Trial Gibbs chains were constructed to investigate convergence behavior, burn-in 

periods, suitable values for p{cl and the degree of dependency in the chains for 

parameters given in 0lnr. The following applies to the main model (1). Convergence 

behavior was investigated by 'annealing a hot chain'. Lin et al. (1993) refer to a hot 

chain as a chain with a high relaxation probability, showing therefore very liberal 

movement and virtually no Mendelian samples. An initially hot chain with /?re|=0.5 was 

annealed by slowly decreasing the relaxation probability to 10"" over 1000 cycles. This 

gradually restricts movement to the Mendelian and near-Mendelian space and increases 

the proportion of Mendelian samples appearing in the chain. The same procedure was 

used by Janss et al. (1996) and was found to lead efficiently to convergence of the 

chain. From cycle 1000 onwards, the relaxation probability was kept constant at 10"'' 

and another 5000 cycles were computed to observe the parameter values for the 

Mendelian model to which the chain had converged. Such a procedure of an annealed 

hot chain was repeated to investigate whether the Mendelian parameter-space consisted 

of two or more separated sub-spaces. Secondly, dependency in the Gibbs chains was 

investigated by producing relaxed chains with /'rej= 10"" and of 12 000 cycles in total, 

including a burn-in of 2000 cycles. Mendelian samples filtered out from such chains, 

were analyzed using the method of Raftery and Lewis (1992) to determine serial 

dependency by analyzing transition of values in the chains around the mean of the 

chain. From transition rates, spacing between Gibbs cycles that should yield virtual 

independence was predicted as exemplified by Janss et al. (1995). For the polygenic 

model, only dependency in the Gibbs chains was studied for the three relevant variance 
7 2 9 

component (o"cl~, o"c2 , <7(1 ). For analysis of F2 data only no specific pre-investigations 

were performed. 

Estimation nins 

Estimation of posterior distributions of parameters for each model and trait was based 

on five replicated Gibbs chains of such length that each chain produced 50 virtually 
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independent samples for all parameters in 6jn(-. Chain-length was determined as 5\k, 

where k is the largest predicted spacing for any of the parameters in 0Inf. From such 

chain, samples of parameters in 8lnp were stored from cycles 2k, 3k, ...., 5lk, totalling 

50 samples per chain. Cycles 1 to 2k allowed for burn-in of the chains. Only 

independent samples were stored in order to largely reduce output from the Gibbs 

samplers and to facilitate and speed-up post-analyses. Post-analyses supplied a final 

check to see whether the produced samples could indeed be considered independent 

(see below). In estimation runs, relaxation probability was kept constant from the first 

cycle onwards. 

Post-analyses and statistical inference 

Convergence of the Gibbs sampler was judged by use of the generated 250 samples 

from 5 chains in an analysis-of-variance (ANOVA), testing for a significant chain-effect. 

Significant differences between chains are considered as an indication of (practical) 

reducibility, in which case Gibbs sampling theory (Geman and Geman, 1984; Gelfand 

and Smith, 1990) does not hold. In such case, the Gibbs sampler is said not to have 

converged and generated samples are not from the correct posterior distribution. 

Significance of chain-effects was assumed when the F-statistic exceeded the 1% 

significance level. The significance level of 1%, compared to a more usual level of 5%, 

was applied to account for the multiple tests which were performed. Wrongly assumed 

independence will increase the F-statistics and also can lead to significance of chain-

effects. Hence, the ANOVA at the same time acts as a post-check whether the obtained 

samples could indeed be considered independent. When significant chain effects were 

found, the estimation procedure was repeated with a larger spacing between samples, 

to see whether this could improve convergence. 

Statistical inferences were based on summarizing the generated samples in the 

form of estimated marginal posterior distributions or estimated features thereof. Non-

parametric density estimates of posteriors were made in the form of average shifted 

histograms (Scott, 1992). At natural boundaries of parameter-spaces, these histograms 

were smoothed up to the boundaries using a reflection boundary technique (Scott, 

1992). Such a histogram provides a general and broad inference, combining information 

on various point- and interval estimates. As features of the marginal posterior 

distributions, estimated means and standard deviations are presented. Posterior means 
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were used as point estimates for the parameters. Posterior means fall in the class of APE 

(A-Posteriori Expectation) estimators which have the general property of minimizing 

quadratic posterior loss. The higher marginalized Bayesian estimators, compared to 

classical ML estimators, are expected to have the same asymptotic properties and 

superior non-asymptotic properties from a Bayesian viewpoint (Gianola and Foulley, 

1990). Statistical inferences first focussed on the genetic variance components (o"u , 

0"\vl , 0"w2 ) and in particular on major gene variance in F2 (o"w2 ) to determine 

significance of the major gene in the model. Judgements are based on the shapes of 

estimated posterior distributions of variance components (Janss et al., 1995), where a 

non-significant variance shows a distribution with global mode at cr =0 and significance 

of a variance shows a global mode for o~ >0. Major gene variance was concluded to 

be significant when the global mode had a density 20-fold larger than the density at 

0"w2 =0. This reflects the general conservatism for accepting presence of a major gene. 

Once significant major gene variance is found, further inferences focussed on the 

effects at the major locus and on estimable functions of allele-frequencies. 

Results 

Polygenic model 

Inferences for a polygenic model were obtained for the full data set, estimating two 

error variance components, by omission of the major gene component from model (1). 

Required chain lengths to obtain 50 independent samples per chain were determined 

in initial trials to be 7 500 for traits LGR, TGR and BF, and 50 000 for traits LSI and 

LS2. Analysis of the 5 Gibbs chains with 50 samples each indicated good convergence: 

all F-values for chain-effects were non-significant (.P>0.01) for the variance components 

for each trait. Posterior means of variance components and heritabilities in the F2 are 

in Table 3. Considerable differences in error variance for F, and F2 were estimated, 

with F2 variance being higher for all traits. Largest differences were found for TGR, 

BF and LSI, with error variances in F2 more than 50% higher than in Fj. Estimated 

standard deviations of the marginal posterior distributions of these variance components 

(not shown) indicated that these differences were significant except for LS2. Hence, use 

of the model with two error variances appears warranted. Estimated polygenic variances 

indicated reasonable amounts of genetic variance to be present: indicated heritabilities, 
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computed relative to estimated phenotypic variance in F2, were 0.15 and 0.20 for the 

litter size traits and ranged from 0.29 to 0.41 for the production traits (Table 3). 

Table 3 Estimated marginal posterior means (mpm) for variance components in 

a polygenic model (environmental variance in Fj, 0"e] , environmental variance 

in F2, C7e2 , general polygenic variance, 0"„ , and heritability in F2> h2 ), based on 

a total of 250 independent Gibbs samples from 5 replicated chains 

Trait 

LGR 

TGR 

BF 

LSI 

LS2 

mpm c e l 

3024 

5889 

6.568 

5.851 

6.658 

2 
mpm CTC2 

4224 

9444 

9.987 

9.070 

8.510 

mpm cru 

2251 

6502 

4.074 

1.706 

2.126 

2 

mpm h2 

0.347 

0.407 

0.289 

0.158 

0.199 

Mixed inheritance model 

Initial trials 

For the mixed inheritance model (1), convergence behavior of the Gibbs sampler was 

investigated using the described method of annealing a hot chain, which was repeated 

four times for each trait, using the data set with F( and F2 observations. For BF, LSI 

and LS2, the Gibbs sampler was found to converge to the same region of the parameter 

space in the different runs. For LGR and TGR, however, the Gibbs sampler converged 

to two different regions of the parameter-space: one region with t/<0 and a^0, and one 

region with d>0 and a>0 where J was much larger than a. No mixing was observed 

between these two regions. Both cases appear to describe a similar phenomenon of a 

low and a high group with random transmission between groups. For estimation of 

parameters for LGR and TGR we focussed on the case with d>0 by starting Gibbs 

chains with positive c/'s. The relaxation probability of 10"" used in the initial trials led 

to 8 to 13% Mendelian samples in the chains. For the remaining of this study 

relaxation probabilities were slightly increased to 1.5x10"" for TGR and 2x10"" for 

other traits in order to obtain the desired rate of 1 to 5% Mendelian samples. Analysis 



115 

of dependencies in the chains indicated that chain lengths from 80 000 to 150 000 

cycles were required in order to obtain 50 independent samples per chain. 

Table 4 Estimated marginal posterior means (mpm) and marginal posterior 

standard deviations (mpsd) for variance components in a mixed inheritance model 

(environmental variance in Fj, c c ) , environmental variance in F2, o e2 , general 

polygenic variance, o~u , major-gene variance in Fj, 0"wl and major-gene variance 

in F2, a 

chains. 

in F2, crw2 ), based on a total of 250 independent Gibbs samples from 5 replicated 

Trait 

LGR 

TGR 

BF 

LSI 

LS2 

mpm 

mpsd 

mpm 

mpsd 

mpm 

mpsd 

mpm 

mpsd 

mpm 

mpsd 

« c . 2 

1770 

256 

4246* 

721 

4.28 

0.471 

3.54 

0.658 

5.29 

1.13 

-J 
2496 

299 

7707* 

1443 

6.37 

0.614 

5.42 

1.21 

6.85 

1.25 

" „ ' 
1630 

279 

4927* 

901 

2.92 

0.562 

1.51 

0.658 

1.23 

0.84 

°w.2 

1264 

296 

2501 

980 

2.36 

0.683 

3.19 

1.16 

2 .40N S 

1.18 

°J 
1475 

332 

3853 

1518 

3.19 

0.919 

3.99 

1.46 

3.09 N S 

1.35 

* convergence not good, using ANOVA F-test for comparison of within and 

between chain variances (}'<0.0\). 

Not significantly different from zero: ratio of maximum density and density 

at zero less than 20. 

Full-data analyses 

The full data set was analyzed using the described mixed inheritance model (1), 

estimating two error variance components. Table 4 shows means and standard 

deviations of the estimated marginal posterior distributions of variance components for 

all traits. Analysis of samples from repeated chains showed good convergence for 

major gene variances for all traits, enabling to draw conclusions on the presence or 
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absence of a major gene to affect the traits. Other variance components also showed 

good convergence except for TGR. Non-convergence of the error variance and 

polygenic variance for TGR is likely related to non-convergence of the additive effect 

at the major locus for this trait, as is described later. 

(LGR) (TGR) (BF) 

O 0.05 

Variance. (1000) Variance (1000) 

(LSI) (LS2) 

Viiriiincr. 

Figure 3 Estimated marginal posterior distributions (averaged histogram 

frequencies) of polygenic variance (o"u ) and of major gene variance in F2 (o"w2 ) 

for traits life growth (LGR), test-growth (TGR), backfat thickness (BF), litter size 

at first parity (LSI) and litter size at second parity (LS2). 
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To judge significance of the genetic variance components, density estimates for the 

marginal posterior distributions of polygenic variance (<TU ) and major gene variance 

in F 2 (CJW2 ) are shown in Figure 3. The posterior distribution of major gene variance 

in F 2 for LS2 shows a non-negligible density at c w 2 =0. The density ratio of the 

density at o~w2 =0 relative to the maximum density was estimated as 1:6.0, so that 

presence of a major gene affecting LS2 was rejected. For other traits, significant 

contributions of major gene variance in F 2 were found (Figure 3), and the same 

conclusions were obtained for major gene variance in Fj (densities not shown, 

conclusions in Table 4). Major gene variances in F[ were all lower which results from 

differences in genotype frequencies as is described below. 

For those traits with significant major gene variances (LGR, TGR, BF, LSI) , 

Table 5 shows estimated posterior means and posterior standard deviations for the 

effects at the major locus, genotype frequencies of homozygotes in Fj and the allele 

frequency of A L in the crossbreds. Estimation of effects at the major locus showed 

good convergence, except for the additive effect a for TGR. Bad convergence of a for 

TGR was found caused by some chains showing estimates around 100, while other 

chains showed estimates around 150. These between-chain differences in estimates for 

the additive effect likely caused the bad convergence of error variances and polygenic 

variance for TGR as well. Evidence was found for dominance or over-dominance of 

t h e / i H allele for genes affecting LGR and LSI and dominance of the A L allele for a 

gene affecting BF. Estimation of genotype frequencies in Fj showed non-convergence 

for a number of traits, which in these cases appeared caused by insufficient spacing 

between the samples. Estimates for the frequency of the A L allele in crossbreds ( /)CL) 

showed good convergence. Comparison of the frequencies of homozygotes in Fj with 

the allele-frequency in crossbreds, pc L , reveals a departure from Hardy-Weinberg 

proportions in Fj. For instance for BF, estimated frequency ofAL in crossbreds is 0.68, 

which corresponds to Hardy-Weinberg genotype frequencies of 0.46 for A ^A L and 0.10 

forv4H/4H . In the F j , however, estimated genotype frequencies for these homozygotes 

were 0.44 and 0.07. The computation of major gene variance in the Fj is based on 

these latter frequencies, whereas for major gene variance in the F 2 the frequencies 

according to Hardy-Weinberg proportions were used, which explains the differences 

between major gene variances in Fj and F 2 in Table 4. Estimates of genotype 

frequencies in F | indicate low frequency of the/I L/l L genotype for TGR and LSI , and 
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low frequency of the A^A^ genotype for BF, which in all cases is the recessive 

genotype. 

Table 5 Estimated marginal posterior means (mpm) and marginal posterior 

standard deviations (mpsd) for major-gene parameters in a mixed inheritance 

model (additive effect a and dominant effect d at the major locus, frequency of 

the 'double low' genotype A^A^ in Fj, frequency of the 'double high' genotype 

^H^H ' n ^ 1 ' anc^ frequency of the 'low' allele A^ in crossbreds pc L ) , based on 

a total of 250 independent Gibbs samples from 5 replicated chains. 

Trait 

LGR 

TGR 

BF 

LSI 

mpm 

mpsd 

mpm 

mpsd 

mpm 

mpsd 

mpm 

mpsd 

a 

37.4 

7.39 

122* 

39.4 

2.97 

0.271 

3.12 

0.423 

d 

75.0 

7.06 

151 

16.5 

-2.84 

0.350 

4.36 

0.534 

Fl 

f r e q ^ L ^ L 

0.115* 

0.040 

0.036* 

0.020 

0.442 

0.094 

0.065* 

0.029 

freqy4H^H 

0.347* 

0.093 

0.548* 

0.139 

0.073 

0.025 

0.490 

0.104 

Pcx 

0.384 

0.060 

0.244 

0.077 

0.684 

0.056 

0.288 

0.062 

between chain variances (P<0.01) 

F2-only analyses 

The analyses as described above were repeated for analysis of F2 data only for traits 

LGR, TGR, BF and LSI. Analysis of LS2 was not considered, since the previous 

analysis indicated absence of a major gene for this trait. Tables 6 shows means and 

standard deviations of the estimated marginal posterior distributions of variance 

components for the four traits. Analysis of samples from repeated chains showed good 

convergence for all variances for all traits except again for error variance and polygenic 

variance for TGR. Compared to the analysis of the full data set, lower genetic variance 

was inferred for LGR and higher genetic variance was inferred for BF and LSI. 
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Opposite differences were found for the error variances for these traits. For TGR, 

peculiarly, all variances were lower in the analysis of F2 data only, but here actually 

no further conclusions could be drawn because in both analyses non-convergence was 

diagnosed for some of the variances. Except for the estimate of CTW2 for BF, all 

posterior standard deviations were larger in the analysis of F2 data only, as expected 

due to the smaller amount of data considered. Figure 4 shows non-parametric density 

estimates of the posterior distributions of polygenic and major gene variance in F2 for 

the four traits. The same horizontal and vertical scales were used as in Figure 3 and, 

consequently, the spread and height can be compared directly with the posterior 

distributions shown for analysis of the full data set. Major gene variances were not 

significantly different from zero for LGR, TGR and LSI, due to decreased means 

(LGR, TGR) and increased standard deviations (LGR, TGR, LSI) of the posterior 

distributions. The ratios of the densities at 0"w2 =0 and the global mode for 0 w 2 were 

1:1.2 for LGR, 1:2.7 for TGR and 1:5.0 for LSI. 

Table 6 Estimated marginal posterior means (mpm) and marginal posterior 

standard deviations (mpsd) for variance components in a mixed inheritance model 
2 2 

using F2 data only (environmental variance in F2, o"c2 , polygenic variance, au , 

and major-gene variance in F2, o"w2 ), based on a total of 250 independent Gibbs 

samples from 5 replicated chains. 
Trait 

LGR 

TGR 

BF 

LSI 

mpm 

mpsd 

mpm 

mpsd 

mpm 

mpsd 

mpm 

mpsd 

*J 
3172 

465 

7453* 

1827 

5.21 

0.767 

4.03 

2.23 

" „ ' 
1165 

505 

3202* 

1268 

2.66 

0.887 

2.66 

1.57 

*«? 
784NS 

473 

3292NS 

1663 

4.34 

0.850 

4.51NS 

1.97 

* convergence not good, using ANOVA F-test for comparison of within and 
NS between chain variances (/'<0.0I); Not significantly different from zero: ratio 

of maximum density and density at zero less than 20. 
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(LGR) (TGR) 

a °«5- a ,2 

Variance; (1000) 

Q 0.02 

Variance (1000) 

(BF) (LSI) 

Figure 3 Estimated marginal posterior distributions (averaged histogram 

frequencies) of polygenic variance (o~u ) and of major gene variance in 

F2 (o"w2 ) in analysis of F2 data only for traits life growth (LGR), test-

growth (TGR), backfat thickness (BF) and litter size at first parity (LSI). 

Table 7 shows estimated posterior means and posterior standard deviations for effects 

at the major locus, genotype frequencies of homozygotes in F, and the allele frequency 

of AL in the crossbreds. Genotype frequencies in F( and possible departures from 

Hardy-Weinberg proportions of these genotype frequencies are also estimable from the 

analysis of F2 data. Major gene parameters are shown for traits which did not show 
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significant major gene variance, because these estimates provide additional evidence 

for the presence or absence of major genes when compared to the results in Table 5. 

Table 7 Estimated marginal posterior means (mpm) and marginal posterior 

standard deviations (mpsd) for majore-gene paramteres in a mixed inheritance 

model using F2 data only (additive effect a and dominant effect d at the major 

locus, frequency of the 'double low' genotype A^_A^ in Fj, frequency of the 

'double high' genotype A^A^ in Fj, and frequency of the 'low' allele A^ in 

crossbreds pc L), based on a total of 250 independent Gibbs samples from 5 

replicated chains. 

Trait 

LGR 

TGR 

BF 

LSI 

mpm 

mpsd 

mpm 

mpsd 

mpm 

mpsd 

mpm 

mpsd 

a 

21.6 

14.3 

45.3* 

24.1 

2.92 

0.325 

2.56 

0.776 

d 

12.0 

48.2 

39.7* 

83.9 

-2.85* 

0.549 

4.43 

1.90 

Fl 

freq A LA L 

0.190 

0.133 

0.167* 

0.116 

0.255 

0.095 

0.085 

0.098 

freq A HA H 

0.255 

0.157 

0.232* 

0.140 

0 .024M Z 

0.026 

0.433 

0.136 

PCX 

0.467 

0.133 

0.468 

0.111 

0.615 

0.050 

0.326 

0.108 

* convergence not good, using ANÔVÀ F-test for comparison of within and 

between chain variances (/'<0.01); (Global) mode at zero 

For LGR and TGR, estimates of effects at the major locus and genotype- and allele 

frequencies were very different from those found in the analysis of the full data. TGR 

again showed non-convergence for all parameters except for the allele frequency in 

crossbreds. The differences in estimates between the two analyses do not support 

presence of major genes influencing LGR and TGR as found in the analysis of the full 

data. For BF, analysis of F2 data showed different F, genotype frequencies, now 

indicating a larger portion of heterozygotes and absence of theA^Aii genotype in Fj. 
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Overall, analysis of BF using F2 data only was considered to agree well with the 

analysis using the full data set. Major gene variance for LSI was not significant in the 

analysis of F2 data (Table 6, Figure 4), but similar estimates for effects at the major 

locus and for genotype- and allele frequencies were found as in the analysis of the full 

data. Therefore, we concluded that analysis of F2 data for BF and LSI confirmed 

presence of major genes affecting these traits. 

Discussion and conclusions 

In this study, segregation analyses were used to investigate presence of major genes 

affecting five commercially important traits measured on Meishan crossbreds. For 

combined analysis of data on Fj and F2 crossbreds in segregation analysis, a concern 

was brought up by Janss and Van der Werf (1992), showing that biases arose and that 

major genes could erroneously be found when error variances were different in the two 

generations. In the present analyses, therefore, care was taken to safeguard against such 

biases and false conclusions, firstly by estimating two error variance components when 

Fj and F2 data were combined, and secondly by considering also F2 data only for 

analyses. 

For life-growth and test-growth, large discrepancies were found between analysis 

of the full data and analysis of F2 data, showing different estimates for effects at the 

major locus and allele frequencies and with major gene variance significant in the 

analysis of the full data, but not in the analysis of F2 data. This indicates that the Fj 

data had certain features which led to a significant estimate of major gene variance, and 

that these features were not present in the F2 data. For example, the Fj data may have 

been more skewed than the F2 data. However, differences between the analyses of 

growth traits may also have been caused by analysis on the observed scale, whereas 

log-scale would be more appropriate, or by presence of more than one gene, or a gene 

with more than 2 alleles. Further investigation of the growth data therefore remains of 

interest. Due to the discrepancies found for the analyses of growth traits, it is 

concluded that presence of a single major gene affecting these traits is not likely. 

Results from the analysis of the full data and the F2 data for backfat and litter 

size (at first parity) agreed reasonably well, with only one marked difference in 

estimated genotype frequencies in F| for backfat. In the analysis of backfat using F2 
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data, a lower frequency for the A L/J L genotype and absence of the ^ H ^ H genotype 

was found. Due to generally well comparable estimates for major genes affecting 

backfat and litter size in the analysis of the full data and in the analysis of F2 data, 

presence of major genes affecting these traits was found likely. Differences between 

homozygote genotypes were estimated as 6 mm for the gene affecting backfat and 5 

to 6 piglets for the gene affecting litter size. Raw means in the F2 were 16.8 mm 

backfat and 11.0 piglets at first parity, so that for backfat the 'normal' genotype 

corresponded to a mean level of around 16 mm vs. a level of 22 mm for the 

homozygous recessive genotype. For litter size, these figures would be 11.5 piglets for 

the 'normal' genotype and 6 piglets for the homozygous recessive genotype. 

In the present study, backfat was measured ultrasonically on the life animal. 

Finding of a major gene for backfat is supported by the previous finding of a major 

gene affecting backfat measured on carcasses of F2 crossbreds using a HGP 

measurement (Janss et al., 1996). In the analysis of Janss et al. (1996) a recessive allele 

was found that increased backfat and with absence of the homozygote recessive 

genotype in the F (. Recessiveness of the allele to increase backfat agrees with the 

present analysis, and absence of the homozygote recessive genotype in the Fj agrees 

with the present analysis of F2 data. It is plausible therefore, that the gene identified 

here to affect backfat is the same as the gene found to affect backfat identified by Janss 

et al. (1996). Effect of the previously found major gene was larger (8.4 vs 5.8 mm), 

which may be explained by use of the different measurement of backfat and by use of 

older animals in the previous analysis. Frequencies in crossbreds of the recessive allele 

were very close, i.e. 0.39 in the analysis of Janss et al. (1996) and likewise 0.39 in the 

current analysis of F2 data. To validate presence of the major gene affecting backfat, 

Janss et al. (1996) showed differences in family-variances, with larger variances in 

families of boars that carried the recessive allele. They also concluded that the 

recessive allele most likely originates from the Meishan breed. 

Validation of presence of a major gene affecting litter size was found in plotting 

the distributions of the raw data for the Fj and F2 observations (Figure 5). These plots 

showed a slightly left-skewed distribution in the Fj, and a markedly more left-skewed 

distribution, even a faint bimodality, in the F2. The difference in these distributions for 

F[ and F2 is a strong indication for an underlying genetic mechanism. The group of 

animals with extreme low litter sizes appearing in the F2 were found at all five 
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companies and were descendants of specific boars only. This also implicitly is apparent 

from the statistical analyses, in which company-effects were fitted and in which two 

different genotypes were found present in the F,. Due to the well-balanced design of 

the data, confounding with some non-genetic effect is unlikely. Estimated effects of the 

gene found to affect litter size showed some over-dominance and genotype frequency 

estimates in Fj indicated presence of the homozygote recessive in the Fj and, hence, 

presence of the recessive allele in both founder populations. However, presence of a 

dominant gene with the recessive allele present in one of the founder populations only, 

could also explain the finding. In that case, one needs to attribute the slight left-

skewness seen in F( (Figure 5) to a general natural skewness of the observations, rather 

than to the effects of a major gene. This would also imply that parameter estimates 

must be somewhat biased due to such natural skewness, and that the difference between 

homozygotes could actually be larger than the difference estimated. 
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Figure 5 Distribution of raw observations 

for litter size at first parity for Fj and F2 

animals. 

The major gene identified to affect litter size is unlikely to be the ESR-effect identified 

by Rothschild et al. (1996), due to the larger magnitude of the effect found here. The 

major gene identified here results in a 5 to 6 piglets difference between homozygotes, 

whereas the effect for 50% Meishan animals associated with the ESR locus was 

reported to be about 2y at first parity. The major gene found to affect litter size affected 
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litter size at first parity. In the analysis of litter size at second parity, no significant 

effect of a major gene was found. This could imply that the currently found gene is 

specific for first litters, or that the effect of the same gene on second litters is smaller, 

and therefore could not be identified. In the experiment, mating of young sows was at 

fixed age, such that variation in the onset of puberty can affect the litter size at first 

parity. It can, therefore, not be excluded that the major gene found is (partly) related 

to the onset of puberty. 

A possible reason for appearance of a group of F2 sows with small litters, could 

also be an infection of animals by PEARS (Porcine Epidemic Abortion and Respiratory 

Syndrome). Such an infection prevailed in The Netherlands during the experiment. 

PEARS generally infects all animals at a farm at the same moment, and then may have 

variable effects on litter size, dependent on the pregnancy-stage of animals at that 

moment. When considering litter size at birth including stillborn piglets, which was the 

trait analyzed, the group of animals with reduced litter size should have been markedly 

earlier in pregnancy at the moment of infection than the other animals (P.C. Vesseur, 

Research institute for pig husbandry, Rosmalen, The Netherlands, personal 

communication). In the experiment, however, pregnancy-stage of the animals was very 

similar, such that PEARS should have had similar effect on all animals within each 

company. Also, animals with reduced litter sizes should then show increased numbers 

of mummified piglets, which was not found when comparing the percentages of 

mummified piglets in litters of size <7 with those in litters of size >8. PEARS, or any 

disease, can therefore not have caused appearance of the group of F2 sows with small 

litters. 

For breeding, the recessive alleles of the major genes identified (A-^ for the gene 

affecting backfat, A^ for the gene affecting litter size), will be unfavorable. Selection 

against the recessive alleles in a constituted 50% Meishan synthetic line, would 

somewhat improve the line, i.e. given estimates of effects and frequencies of the genes 

identified, the gene affecting backfat accounts for an increased level of backfat of about 

1 mm, and the gene affecting litter size accounts for a decreased level of litter size of 

about 0.5 piglet. For application of a Meishan synthetic line as grandparent-line in a 

breeding program, presence of these genes is not directly important, assuming that the 

recessive unfavorable allele originates from Meishan only and, hence, would not be 

present in white breeds used in commercial crosses. As already noted above, Janss et 
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al. (1996) found that the recessive allele for the gene affecting backfat appeared to 

originate from Meishan, but further validation of this assumption will be important for 

commercial use of the Meishan crossbreds. 
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Appendix 

Sampling of parameters in the Gibbs sampler in a model with two 

error variance components 

Construction of Gibbs samplers to make inferences in model (1) uses the set of 

parameters given by 9Gib in the main section. Sampling of the linear model 

components of 0Qib, which are non-genetic effects, polygenic effects and effects at the 

major locus, is straightforward by construction of 'conditional' linear model equations 

for these parameters in turn, i.e. taking other parameters as known (e.g., Wang et al., 

1994). In general, solutions from linear model equations are used as means and the 

inverse of the left-hand-side of the linear model equations is used as variance of a 

(multivariate) normal distribution from which new effects are sampled. The 

heterogeneous variance structure for errors is accounted for by considering the most 

general form of linear model equations, which implicitly involves the variance structure 

for errors, as defined with model (1) by R. Conditioning on other linear model 

components can conveniently be described by use of'corrected data', which is the data 

corrected for current values of all effects other than the effect updated (e.g., Janss et 

al., 1995). 

Sampling of non-genetic effects is based on linear model equations (X'R~ X)ß 

= (X'R~ y), where y is the corrected data. To update the level /' of a non-genetic effect, 

this leads to sampling: 

ß; ~ N((yll,/(«lla21)+j>2/,/(/i2l.a22)), ( a * , / « , , ^ / / ^ ) ) 

where yJh is the total of observations from y from generation F in level / and n.. is the 

number of observations from generation F in level /'. Sampling of polygenic effects 

was based on linear model equations (Z'R Z+o~u A )u=(Z'R y), where y again is 

corrected data. A single-variate equation to solve polygenic effect ;/, of individual /' 

with one observation and of generation F,, can be obtained from this set of linear 
O J' 

model equations as t/////=c,
/-, where 
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c,= JvV2 +
 2^U"25,-("S./+"D.;) - V ^ C Ï V N U - - ih"k) 

which is the equation given for dams by Janss et al. (1995), but with of. and c( divided 

by error variances. Based on this equation, !/;- is sampled N(c;/c/(, c/T'). In this equation, 

assuming no inbreeding, 5,= 1 when ;' is a founder and 8 ;=2 when /' is a non-founder, 

1/5 (- and ;/D j are polygenic effects of the sire of / and dam of ;', sums over k sum over 

all progeny of; (when present), where uk is the polygenic effect of progeny k, i<Mk is 

the polygenic effect of the mate of ;', other parent of k. When ;' is a founder, ;/g ( and 

u-Q j are taken as zero and for individuals without an observation, a . in d- and _V,o"e 

in ci are omitted. Polygenic effects were sampled individually, using the above given 

equation to sample polygenic effect of all individuals. Sampling of the additive effect 

at the major locus was based on linear model equation k'Z'R" Zka=k'Z'R y, where y 

is again corrected data and where k=W(- l , 0, 0, 1)', i.e. a dummy-vector which 

indicates individuals with the>fL/fL genotype by - l ' s and individuals with t he / l H y4 H 

genotype by +l ' s . The equation can be worked out to yield 

I = k'Z'R-'Zk = « l .HH / a d 2 + »2.HH/Gc22 + " l .LL / ücl2+"2.LL / c je22 

;-= k'Z'R-'y = j ~ , H H . /a c l
2+J)2 H H . /CT c 2

2 -J5, LL./o-c l
2-552LL./o-c2

2 

which leads to sampling «from N(/-//,/~ ), and where y, HH- ' S t n e t o t a ' of corrected data 

on individuals with the ^ i _ | ^ H genotype in generation F , «. ^H ' s t n e n u m D e r °f 

individuals with an observation in F- and with the / l ]_ |^H genotype, and_y. L L . and « M L 

is similarly for individuals with the A-^A^ genotype. For sampling of the dominant 

effect at the major locus, k=W(0, 1 ,1 , 0)', which leads to similar sampling of d from 

N(r//,/~ ), but where / and ;• can be worked out to be: 

1 = ' i.LH&HL/o"cl + / 7 2 .LH&HL / G C2 

/" = ->'l.LH&HL-/lJci + >'2.LH&HL-/crc2 

where now J 'MH&HL- anc* "/LH&HL a r e t o t a ' s ° f corrected data and numbers of 

individuals with an observation in F for individuals with the heterozygous genotype. 
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Sampling of genotypes and error variances are not based on linear model 

equations. Sampling of genotypes is affected by the heterogeneous variance structure 

for errors through modification of the penetrance function, which is used to compute 

(relative) probabilities for an observation on an individual, given alternative statuses 

for the genotype of the individual. The modified penetrance function used was: 

ßyß I *) x exp{ -kyjrvtfloj) 

where J'Y denotes corrected data on individual / of generation F , k indicates the various 

possible genotypes, and genotype k has mean \ik. Computation of conditional genotype 

probabilities and sampling of new genotypes then follows as given by Janss et al. 

(1995). Sampling of error variances uses quadratics e^ej for error variance in ¥i and 

e2'e2 for error variance in F2, and subsequently follows the sampling procedure as 

exemplified by Janss et al. (1995). Sampling of polygenic variance and of allele 

frequencies is not affected by the heterogeneous variance structure for errors, and 

therefore follows directly from the steps described by Janss et al. (1995). 

http://backf.it
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General discussion 1. Application of segregation chapter 

analysis and use of major genes / 

Statistical methodology to model and detect major genes in livestock is 

advanced by introduction of a Bayesian approach to segregation analysis, 

feasible by virtue of Gibbs sampling methodology. Use of Bayesian approaches 

fits in a general trend to better account for uncertainty in statistical 

estimation procedures. In the statistical analyses of data from crossbred 

Meishan pigs, evidence was found for the presence of several major genes 

affecting traits of interest. Search for the actual genes and their gene products 

could generate more knowledge on the regulation of quantitative traits in 

general. Actual utilisation of these major genes in pig-breeding will require 

further genetic analyses, for instance to determine multivariate effects of the 

genes. For practical breeding, selection against the unfavourable recessive 

alleles of major genes affecting backfat and litter size will improve 

performance of a synthetic line. Utilisation of the favourable recessive allele 

of the major gene affecting intramuscular fat would require a sire-line that 

also contains the recessive allele. Then, litters can be produced that contain, 

for instance, 50% 'high intramuscular fat' piglets. 

Statistical methodology 

The main aim of this thesis was to investigate the presence of major genes in Meishan 

crosses. To do so, a large part of this thesis (Chapter 2-4) concentrated on development 

of statistical methodology to generally model a mixed inheritance and on tests to detect 

major genes in crossbreds. 

Detection of major genes 

Chapter 2 focused on power to detect major genes using Fj and F 2 data using classical 

likelihood-ratio tests. The conclusions from Chapter 2 are expected to be equally valid 

for other inferential procedures, such as the Bayesian approaches applied in Chapters 

5 and 6. Chapter 2 showed that identification of a major gene by segregation analysis 

using F 2 data is not very powerful when alleles at the major locus were fixed in the 
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founder populations. A separate study (Janss and Van der Werf, 1991) indeed showed 

that genes with smaller effects could be identified when alleles at the major locus 

segregated in the founder lines. In later analyses, therefore, segregation of alleles in 

founder lines was allowed for. The major genes identified all showed dominant gene-

action. This appears plausible because dominant genes were found easier to identify 

and because dominant genes are more likely to segregate in the founder populations. 

Additive genes are more difficult to detect and would more likely have alleles fixed in 

the founder populations, therefore limiting the possibility to find additive genes. 

Chapter 2 also showed that inclusion of Fj data can lead to biased estimates and 

false conclusions regarding presence of a major gene when residual variances are not 

equal in Fj and F2. Hence, two residual variances were modelled when Fj and F2 data 

were analysed jointly in Chapter 6. Results from Chapter 6, where inferences from a 

combination of Fj and F2 data were compared with inferences from F2 data only, 

nevertheless showed that robustness could remain poor when F( and F2 data were 

combined. Likely, not only residual variances should be equal in Fj and F2, but also 

other distributional properties of the data such as skewness. Concerns raised in Chapter 

2 on the robustness of segregation analysis when Fj and F2 data are combined, 

therefore, were confirmed in the practical analyses, and in general it can be concluded 

that care should be taken when Ff and F2 data are combined. 

Analytical approaches to segregation analysis 

Analytical approaches have been extensively investigated in human genetics, but 

approaches developed in human genetics can not be applied in large animal breeding 

pedigrees due to presence of many pedigree loops. Therefore, typically, software 

packages developed for analysis of human pedigrees can not be applied to analyse 

animal breeding pedigrees (e.g., Strieker et al., 1995). The iterative peeling approach 

described in Chapter 3 offers a solution to handle looped pedigrees. An alternative 

approach to handle looped pedigrees was proposed by Strieker et al. (1995). Both 

approaches recognised that exact computations were infeasible and developed an 

approximation by ignoring some dependencies arising due to pedigree loops. The 

approximations were developed using monogenic models, and extensions to also treat 

a mixed inheritance model with the same type of approximations are possible. 

Therefore, these approximations offer a significant advancement for the application of 
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analytical approaches to segregation analysis in animal breeding. The current value of 

such approaches lies mainly in the computations of genotype probabilities, for instance 

in genetic evaluations. Kinghorn et al. (1993) developed an iterative linear model 

approach for a mixed inheritance based on the same idea of iterative peeling which 

appears suited for such genetic evaluations. 

Bayesian approaches to segregation analysis using Gibbs sampling 

Gibbs sampling, or any Markov chain Monte Carlo method, offers another solution to 

handle pedigree loops, but then without requiring analytical approximation. At the same 

time, by use of Gibbs sampling, also some weaknesses in the estimation- and testing 

procedures of the likelihood-based analytical approaches to segregation analysis (see 

Chapter 4, 5) can be improved by applying this methodology in a Bayesian inference. 

In my view, the Bayesian approach to segregation analysis is to be preferred over the 

Maximum Likelihood (ML) approach from a theoretical viewpoint as well as from a 

practical viewpoint. A theoretical argument to reject ML approaches is that the 

properties of ML are only known asymptotically, and, hence, are not defined for any 

real situation. One practical argument to adopt the Bayesian approach is the handling 

of fixed effects. In the Bayesian approach, fixed effects are treated as nuisance 

parameters in a 'REML'-way, instead of an 'ML'-way. 

Use of a Bayesian approach can be set in a wider perspective. In the application 

of statistics, better modelling of uncertainty is a general trend: BLUP, compared to BLP 

(selection index), takes into account uncertainty from the estimation of means or 'fixed 

effects'; REML, compared to ML, similarly takes into account uncertainty from the 

estimation of means in estimation of variance components. Marginal Bayesian 

estimators take into account uncertainty in a single parameter due to uncertainty in all 

other parameters in the model, and therefore seem a logic further step in this trend. 

Marginal Bayesian estimators have been proposed already, e.g. by Gianola and Foulley 

(1990) for the estimation of variance components. Here, for each variance component 

uncertainty was taken into account from estimation of other variance components. 

Harville and Carriquiry (1992) suggested the use of marginal Bayesian estimators for 

the estimation of breeding values accounting for uncertainty on variance components, 

and a similar idea was proposed by Sorensen et al. (1994) for the estimation of 

selection response accounting for uncertainty on variance components. In this thesis, 
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marginal Bayesian estimators were proposed for hyper-parameters in a mixed 

inheritance model, which can be viewed as a logic extension of the estimators proposed 

by Gianola and Foulley (1990) for linear models. 

With the methodology presented in this thesis, use of segregation analysis can 

be expected to become a valuable aid in animal breeding for the identification of major 

genes affecting quantitative traits. Segregation analysis can be used complementary to 

linkage analysis, as each method has its strengths and weaknesses in particular 

situations. Segregation analysis will be valuable for analysis of field data which is 

primarily collected for different purposes. In such situations, genetic markers are 

generally not available, while phenotypic data is abundant. In contrast, linkage analysis 

would be a typical method for analysis of small experiments, where genetic markers 

are likely obtained as well and where segregation analysis would probably lack power. 

A combination of both approaches seems appropriate when in a large data set some 

animals are genotyped for genetic markers. In the search for functional genes, there are 

some subtle differences between the methods: segregation analysis directly identifies 

a functional gene and could genotype animals for such a functional gene, whereas 

linkage analysis is based on associations. Here, therefore, the two methods also could 

be used complementary to aid molecular geneticists in the identification of functional 

genes affecting quantitative traits. 

Use of Gibbs sampling 

From the experiences in using Gibbs sampling, I will shortly review here what can be 

considered to be the main problems in the use of Gibbs sampling: 

(1) Model building: When using Gibbs sampling for Bayesian inferences, the 

statistical model should correspond to a proper (integrable) joint posterior distribution. 

This may not always be the case when certain non-informative priors are used. The 

danger is particularly apparent because 'Gibbs samplers' also can be constructed for 

such invalid applications (e.g. Hobert and Casella, 1993). One example of a model with 

an improper joint posterior distribution is a variance component model with so-called 

'naive' priors for variance components (Hobert and Casella, 1993), notably a commonly 

used variance-component model (e.g. Box and Tiao, 1973). In our application we did 

not use the naive priors for variance components, but uniform priors. Hobert and 

Casella (1993) proved that use of uniform priors for variance components leads to a 
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proper joint posterior distribution in linear models. It seems plausible to assume that 

this conclusion is correct for a mixed inheritance model as well, as was done in 

Chapter 4, because the mixed inheritance model can be seen as a weighted sum of 

many linear models. It may be possible to detect construction of an improper joint 

posterior distribution by computation of the normalising constant for the (likelihood) 

x (prior) function (Hoeschele and Tier, 1995). When such an approach would not be 

feasible, integrability of the joint posterior distribution will have to be shown 

theoretically. 

(2) Construction of a (practically) irreducible chain: Certain sampling schemes to 

construct Markov chains can lead to a reducible chain, or to a practically reducible 

chain, i.e. a poorly mixing chain. When modelling a single locus and using a single-

variate sampling scheme to construct Gibbs samplers, irreducibility often does not hold 

(see e.g. Sheehan and Thomas, 1992). Moreover, also practical reducibility can arise, 

which can not be excluded a-priori on theoretical grounds. Therefore, a convergence 

diagnosing tool that compares output from multiple chains is to be preferred (see 

below). To alleviate (practical) reducibility, many variations on a straightforward 

single-variate sampling scheme can be developed and many such variations already 

have been proposed. In Chapter 4, for instance, so-called blocked sampling was used, 

as described by e.g. Smith and Roberts (1993) and Tanner (1993). Other variations can 

be described as using Metropolis schemes: the relaxation technique used in Chapters 

5 and 6, which was suggested by Sheehan and Thomas (1992), can be seen as a 

Metropolis scheme within a single chain where Mendelian samples are accepted with 

probability 1 and others are rejected; Lin et al. (1993) also proposed Metropolis 

schemes using multiple chains. Further research in this area of Gibbs sampling schemes 

is expected to generate a large number of algorithms, a development which also has 

been seen for algorithms to solve linear models or to compute and maximise 

likelihoods. 

(3) Assessing convergence: A good convergence diagnostic should give confidence 

that constructed chains moved freely through the entire parameter space. This will 

indicate practical irreducibility and, hence, one can be confident that the Markov chain 

indeed converged to the correct posterior distribution, provided that a proper joint 

posterior distribution was used. Comparison of between and within chain variances 

seems a simple and powerful method to conclude that chains moved freely through the 
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entire parameter space. Such comparison was suggested by Gelman and Rubin (1992), 

but their method lacked a definite test to conclude whether the between and within 

chain variance could be considered equal. The ANOVA approach used in Chapters 5 and 

6 does supply such a test, which therefore appears to be a valuable extension. A 

practical difficulty to apply the ANOVA approach is that samples within a chain should 

be independent, or otherwise F-statistics will be inflated and non-convergence could 

be diagnosed. This procedure could be improved by computing within- and between 

chain variances based on dependent samples, and subsequently assume, for the 

computation of the F-statistic, variances having been computed on a fictitious smaller 

number of independent samples. This would not require to estimate before-hand a 

spacing to obtain independence of the samples. Further, in assessing convergence, it 

is important to realise that convergence will only occur for uniquely estimable 

parameters. When, for instance, fixed effects are over-parameterised, as was the case 

in our applications, only estimable contrast of fixed effects will appear to be equal in 

replicated chains and, hence, will appear to have converged. 

Use of identified major genes 

The application of the developed statistical methodology to the Meishan crosses 

demonstrated the presence of a number of major genes. Some of the genes identified 

could be of interest for pig-breeding, for instance genes influencing litter size, backfat 

thickness and intramuscular fat. However, showing presence of such genes only is a 

first step towards use of identified genes in actual breeding. 

General genetic inferences of interest 

Inferences on single genes presented in this thesis were based on univariate use of 

phenotypic data. When a major gene is found for two traits there is little information 

to determine whether this results from action of a pleiotropic gene or from action of 

two different genes. In this study, genotype probabilities were used to identify a 

possible pleiotropic effect, but such an approach may lack power. Although in certain 

cases, such as for the MC. gene affecting cooking loss and pH measures, action of a 

pleiotropic gene is very plausible, in other cases reasonable uncertainty remains on this 

point. Further genetic inferences could therefore focus on: 
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(1) Multivariate segregation analysis: Phenotypic data could be exploited better by 

the use of multivariate approaches for segregation analysis. Models could be envisaged 

in which two linked genes affect two traits, and where recombination rate between the 

two loci is estimated. In such a model, also environmental and genetic variances and 

covariance should be estimated, in order to account for covariances between the 

observations. Significant non-linkage would then confirm existence of two different 

genes, while significant linkage confirms that genes affecting two traits are, at least, 

closely linked and possibly the same. 

(2) Linkage to a marker-map: In pigs, a map with genetic markers has been made 

available (in Europe by Archibald et al., 1995), which can be used to link inferred 

major genes to specific linkage groups and to chromosomes. The aim of such analyses 

would be the same as the aim of the previously mentioned multivariate segregation 

analysis, i.e. to infer linkage between genes affecting different traits. The approach of 

investigating linkage to markers will be more powerful. The approach could also be 

applied to univariate data. 

(3) Search for functional genes: The functional gene affecting a trait is identified 

when the gene-product is known and when mutations resulting in two or more different 

alleles can be identified at the DNA level. Finding of the actual gene affecting a trait 

allows unequivocal determination of the effects of such a gene on various other traits, 

and selection on one of the alleles, for instance for introgression, can be done with 

maximum efficiency. Also, determination of the physiological mechanism underlying 

the joint action of the gene on two or more traits will be the ultimate proof for 

pleiotropic action of such gene and will contribute to the understanding of the 

regulation of quantitative traits. As shortly discussed, major genes identified are 

functional genes and segregation analysis could aid in locating such genes by 

genotyping of the individuals for these genes. 

Inferences and validation for use in breeding 

For practical breeding, investigation of multivariate effects of the genes identified will 

generally suffice. For this purpose, the multivariate segregation analysis, possibly 

including information from markers, could be used. Resolving the existence of 

pleiotropic genes which cause an unfavourable association between traits would be an 

important aim for such an analysis. Existence of such pleiotropic genes could seriously 
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impair selection in the synthetic line. Using linked markers, also a two-step approach 

could be taken to investigate multivariate effects of genes. Firstly, chromosomal 

segments could be identified which likely carry one of the major genes identified; then, 

effects of such a chromosomal segments on various traits could be studied. 

Identification of the chromosomal segments that likely carry the major genes identified 

also would be beneficial for selection on the major genes and could indicate possible 

candidate genes which could be the major genes identified. Use of linked markers 

could additionally validate presence of the presumed autosomal genes with 2 alleles. 

Theoretically, the observed pattern of inheritance, for instance, could also have been 

caused by a two-locus system with interaction and such a situation could not simply 

be resolved by use of the phenotypic data alone. 

An important validation for use in practical breeding also would be to validate 

effect of the alleles in different genetic backgrounds. In evolutionary genetics (e.g., 

Dawkins, 1976) it is argued that the effect of a gene depends on the genetic 

background present, i.e. on the collection of alleles at the same and at other loci. Such 

a dependency actually implies presence of dominance- and epistatic interactions, which 

seems plausible for loci affecting complexly regulated quantitative traits. As a result 

of such interactions, introgression could fail for a major locus affecting a quantitative 

trait (a QTL). In the context of development of a synthetic line, effect of a major gene 

could change as a result of selection on background loci, when alleles disappear which 

were necessary for expression of the gene in the original founder population or in the 

Fj or F2 population. Hence, it would be important to monitor traits and effects of a 

major gene during selection or introgression in order to avoid the loss of favourable 

alleles at background loci. 

Selection on and use of identified major genes 

In Chapter 6 value of the major genes found to affect litter size and backfat thickness 

were shortly discussed. Selection against the unfavourable recessive alleles of the major 

genes affecting litter size and backfat will slightly improve the level of the synthetic 

line. Not discussed was the impact on reduction of phenotypic variation, which could 

also be of importance for commercial pig-breeding. In the F2, major genes affecting 

litter size and backfat accounted for a rough 30% of the phenotypic variation. Other 

advantages of eradication of the unfavourable alleles would be higher returns from 
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culled breeding stock when backfat is reduced, increased selection pressure when litter 

size is increased and higher accuracy of genetic evaluations when variance caused by 

the major gene is reduced. 

As long as major genes segregate in the synthetic line, it will be beneficial for 

selection to include this knowledge in the model for genetic evaluation. If such a 

procedure is not used, animals with high merit on polygenes could be discarded 

because having low merit for the major gene, and this may not be optimal. When a 

mixed inheritance model is used, polygenic merit of animals and merit on the major 

locus can be obtained separately, which allows selection on each component 

independently. The finding of several major genes raises the problem of multivariate 

genetic evaluations considering several major genes and of optimisation of multivariate 

selection in such a situation. Such problems have not been addressed yet in theory. 

For the major gene affecting intramuscular fat (MI), the recessive allele that 

increased intramuscular fat, here denoted MI*, can be considered favourable, unless it 

is associated with, for instance, higher amounts of visible fat. From analyses so-far, Ml 

did not appear to be the same as the gene influencing backfat, but this does not exclude 

that Ml could have an effect on backfat in another way. When MI* is not unfavourable 

for other traits, maintaining and increasing its frequency in the synthetic line could be 

interesting. For use of MF to increase intramuscular fat in commercial crossbred 

slaughter pigs the allele also should be present in a sire-line, because of its recessive 

nature. Screening of Western breeds used as sire-lines for presence of the MI* allele 

would therefore be interesting. If no such sire-line exists, one could introgress this 

allele in an existing sire-line, but in that case use of My will require large investments. 

If a sire-line would be found, or developed, that also contains the MI* allele, crossbred 

litters of slaughter pigs can be produced containing homozygous Mi animals with 

increased intramuscular fat. Production of crossbred litters containing 100% 

homozygous Mi animals may be difficult. A more interesting approach could be to 

produce litters containing 50% homozygous MI* animals by crossing aMI*MI* boar, 

e.g. a pure-line boar from a line containing MI*, with a heterozygous sow, e.g. a hybrid 

sow with one parent from a Meishan-synthetic line. By use of genetic markers, 

preferably a marker for the gene itself, homozygous Mi animals in such litters could 

be identified early after birth, and these animals could be placed in a special program 

to produce extra-tasty quality meat with an increased level of intramuscular fat. 



140 General Discussion: Major genes 

References 

Archibald AL, Brown JF, Couperwhite S, McQueen HA, et al. (1995) The PiGMaP 

consortium linkage map of the pig (Sus scrofa). Mamamalian Genome 6: 57-175 

Box GEP, Tiao GC (1973) Bayesian statistical inference in statistical analysis. Addision-

Wesley, Reading 

Dawkins R (1976) The selfish gene. Oxford Univ Press, Oxford 

Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. 

Stat Sei 4: 457-472 

Gianola D, Foulley JL (1990) Variance estimation from integrated likelihoods (VEIL). 

Genet Sel Evol 22: 403-417 

Harville DA, Carriquiry AL (1992) Classical and Bayesian prediction as applied to an 

unbalanced mixed linear model. Biometrics 48: 987-1003 

Hobert JP, Casella G (1994) Gibbs sampling with improper prior distributions. Technical 

report BU-1221-M, Biometrics Unit, Cornell University 

Hoeschele I, Tier B (1995) Estimation of variance components of threshold characters by 

marginal posterior modes and means via Gibbs sampling. Genet Sel Evol 27: 

519-540 

Janss LLG, Van der Werf JHJ (1991) Identification of a major gene in F2 data when 

alleles are fixed in the parental breeds (abstract). Proc 42nd meeting of the Europ 

Assoc Anim Prod, september 1991, Berlin, Germany, vol 1: 121 

Kinghorn BP, Kennedy BW, Smith C (1993) A method of screening for genes of major 

effect. Genetics 134 : 351-360 

Lin S, Thompson E, Wijsman E (1993) Achieving irreducibility of the Markov chain 

Monte Carlo method applied to pedigree data. IMA J Math Med & Biol 10: 1-17 

Sheehan N, Thomas A (1993) On the irreducibility of a Markov chain defined on a space 

of genotype configurations by a sampling scheme. Biometrics 49: 163 - 175 

Smith AFM, Roberts GO (1993) Bayesian computation via the Gibbs sampler and related 

markov chain monte carlo methods. J Roy Stat Soc B 55: 3-24 

Strieker C, Fernando RL, Elston RC (1995) An algorithm to approximate the likelihood 

for pedigree data with loops by cutting. Theor Appl Genet 91: 1054-1063 

Tanner MA (1993) Tools for statistical inference. Springer-verlag, New York 



141 

General discussion 2. Change of genetic chapter 

variance in crosses and in selected (synthetic) O 

lines 

Understanding the changes of genetic variance in crosses and in synthetic lines 

derived thereof could be an aid to optimise (multivariate) selection in such a 

synthetic line. Expected changes are an increase of genetic variance in the F2, 

and a decrease of genetic variance relative to the F2 in the later generations. 

Some indicative quantifications of these variance changes are made. To model 

and possibly extrapolate changes of genetic variance in a synthetic line due 

to selection, a finite locus model is proposed. 

When a major gene is identified, selection on background genes will remain important 

in development of synthetic lines and likely also in approaches to introgress QTL's. 

Optimising selection schemes, especially when multiple traits are considered, will 

require knowledge on heritabilities of the traits and genetic and environmental 

correlations between the traits considered. In synthetic lines a complication arises, 

because genetic variances and covariances could change relatively quickly in the first 

generations after crossing of the founder lines, due to various effects: (1) change of 

allele frequencies in the cross to the average of allele frequencies in the founder lines; 

(2) change of genotype frequencies from non-Hardy-Weinberg proportions in the F[ 

to Hardy-Weinberg proportions in the F2 ; (3) change of allele frequencies in the 

synthetic line under selection; (4) introduction of linkage disequilibrium in the F2 , 

which is slowly broken down in the subsequent generations. 

We define here 'true' change of genetic variance as the change in genetic 

variance caused by change of allele frequencies. The effect mentioned under (1) will 

then result in such true change of genetic variance in the cross relative to genetic 

variances in the founder lines and the effect mentioned under (3) will result in true 

change of genetic variance in the synthetic line. True change of genetic variance is 

excluded in the infinitesimal genetic model, in which a large number of genes, each 

with small effect, is assumed. However, in crosses between extreme lines and in 

synthetic lines derived from such crosses, one or a few genes with large effect could 
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segregate. In that case, ignoring changes in allele frequencies and ignoring true change 

of genetic variance is hardly tenable. 

In the sequel, the above mentioned changes in genetic variances are described 

in more detail. In some cases, attempts are made to quantify these changes, although 

these quantifications largely remain indicative. 

Change of genetic variance in the Fj and F2 of a cross 

In the Fj of a cross allele frequency will change to the average values of allele 

frequencies in the founder lines and genotype frequencies in the Fj will show a 

departure from Hardy-Weinberg proportions. Linkage disequilibrium is not present in 

the ¥l because gametes of founder individuals that formed Fj individuals can be 

assumed to have been in linkage equilibrium. The departure from Hardy-Weinberg 

proportions generally counterbalances the effect of allele frequency change and the F, 

has similar genetic variance as the average of genetic variances in the founder lines; 

under additivity of gene-effects, genetic variance in the Fj actually is equal to the 

average of genetic variances in the founder lines, as follows, e.g., from Lande (1981). 

In the F2 population more marked changes will occur. Here, assuming random 

mating, genotypes will be in Hardy-Weinberg proportions. This allows the effect of 

allele frequency change that appeared in the Fj to become apparent. This always causes 

an increase of genetic variance. Secondly, in F2> a linkage disequilibrium will be 

created: for two loci on the same chromosome in an Fj gamete, the probability for 

locus 1 to carry an allele that is more prevalent in, say, the paternal founder line 

depends on whether locus 2 carries an allele that is more or less prevalent in the 

paternal founder line. 

Genetic variance in the F0 

Variance change due to allele frequency change, as becomes apparent in the F2, equals, 

for each locus /, ~^dj , where dj is the difference between founder lines explained by 

locus /' (e.g. Lande, 1981). Then, for a number of loci n explaining the total difference 

between founder lines D, variance increase in the F2 will depend on n and on the 

variation of dj values (Lande, 1981, eq. 5). In general, when n is smaller and Va r^ ) 

is larger, variance increase in F2 will become larger. For n approaching infinity, 

variance increase in the F2 will approach zero. When there is reasonable variation in 
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dg values, the few loci with largest df generally account for a large portion of the 

variance increase. When, for instance, «=10 and d-s are 1, y , y , y,...., y 0 , the two loci 

with largest rf/s account for 81% of the total increase of genetic variance arising in the 

cross. When n=10 and d-s are 1, y , y , y> ••••» To> the two loci with largest d-s account 

for only 47% of the total increase of genetic variance arising in the cross. In this 

second case, Var(d() is smaller relative to the total difference between founder lines, 

and there is no markedly 'major' locus, because the second largest locus explains about 

the same difference as the largest locus. 

Variance increase arising in the F2 also conveniently can be described by use 

of a conceptual 'effective number of loci', «e, defined to explain equal differences 

between the founder lines (Castle, 1921). For such an effective number, variance 

increase in the F2 is described as -yD /«e, and «e is a parameter that describes the 

proneness of genetic variance to change (increase) in a cross for a particular trait. For 

the above example with d-s 1, y,...., «e=5.5, indicating reasonable proneness of genetic 

variance to change, and for the example with d-s 1, y , ...., n =7.9, indicating less 

proneness of genetic variance to change. In these comparisons, change of genetic 

variance is relative to D . For practical application to crosses between outbred lines, 

such as the Meishan x Western cross, increases of genetic variance in the F2 generally 

corresponding to we values between 5 and 10 (Lande, 1981), and therefore could 

typically range from D /40 to D /80. However, presence of a major gene which 

explains a large portion of a difference between two extreme lines could make the 

variance increase much larger, while for crosses between relatively similar lines 

variance increases could be much smaller. It should be noted that the variance increases 

reported by Lande (1981) are totals of variance increase as commonly observed in 

practice, which will include effects of change of allele frequencies as well as effects 

of linkage disequilibrium. 

A second effect contributing to change of genetic variance in the F2 is the 

mentioned linkage disequilibrium. In the F2, linkage disequilibrium creates a 

covariance c.- between two loci / and j on the same chromosome of c(-=-g-(l-2r(-.)d/;(/., 

where r,, is the recombination rate between locus ;' and locus /', d, the difference 

between founder lines explained by locus /' and d. the difference between founder lines 

explained by locus,;' (Lande, 1981). When considering loci ; and j to affect the same 

trait, variance of this trait is increased with twice the given covariance. The given 
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covariance can be positive as well as negative, dependent on the signs of dj and d,. 

In a cross df and d, will tend to be more frequently of the same sign, such that the 

overall effect of created linkage disequilibrium will be an increase of genetic variance. 

A value for the expectation of the minimum increase of genetic variance due to 

linkage disequilibrium can be obtained using an effective number concept as 

(l-2r)D /8. Here ? is an average recombination rate between all loci over 

chromosomes. This minimum expected value does not depend on the (effective) 

number of loci n£. Therefore, this variance increase due to linkage does not approach 

zero when the number of loci approaches infinity, as was the case for the increase of 

genetic variance due to change of allele frequencies. For pigs, assuming randomly 

placed loci, r is =0.48. This value is close to 0.5 because most loci will not be on the 

same chromosome, having r=0.5. A value of 0.48 for r results in a minimum expected 

increase of genetic variance due to linkage of D 1200. Because this is an expected 

minimum, actual variance increase due to linkage could well be larger and could be a 

non-negligible proportion of the total increase of genetic variance in the F2. This is 

generally noted; for instance, Zeng et al. (1990) considered linkage to be a significant 

disturbance for estimation of the effective number of loci. 

Change of genetic covariances 

Above mentioned effects on genetic variances, also can affect genetic covariances. 

Change of genetic covariances due to change of allele frequencies can arise for 

pleiotropic loci affecting traits. When such pleiotropic loci segregated in founders, these 

loci also would have caused genetic covariances within the founder lines, but at 

average smaller due to differences in allele frequencies. Pleiotropic loci that did not 

segregate in founders would not have caused genetic covariances within the founder 

lines, but only genetic covariances between founder lines. Such mechanism of change 

of allele frequencies at pleiotropic loci is one mechanism that can introduce genetic 

covariances in the cross formerly not (strongly) present within the founder lines. 

Linkage disequilibrium also can cause change of genetic covariances when loci 

affecting two traits are linked. For covariances between loci affecting different traits, 

dj and d, values will tend to be of the same sign as the between founder line 

covariance. For the cross between Meishan and Western lines, for instance, a positive 

covariance exists between founder lines for fertility and fatness, so that linkage 
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disequilibrium is expected to introduce a similar genetic association in Meishan-

Western crossbreds. This mechanism of linkage between loci affecting two traits is a 

second mechanism that can introduce genetic covariances in the cross formerly not 

present within the founder lines. Both mechanisms will introduce genetic covariances 

that, in most practical applications, will be unfavourable. 

Genetic variances in generations after the F2 

No selection 

When no selection would be practised, allele frequencies will not change except by 

random drift, and increased genetic variance in F2 caused by change of allele 

frequencies will remain in the generations following the F2. Also increased genetic 

covariances caused by change of allele frequencies at pleiotropic loci will remain in the 

generations following the F2. Linkage disequilibrium is expected to reduce due to 

recombination of chromosome segments. Due to this break-down of linkage 

disequilibrium, the parts of increased genetic variances and covariances caused by 

linkage will gradually vanish. The rate of linkage break-down for each locus will be 

geometric in the covariances, i.e. cUcJ will be constant. But, the rate of break-down 

for the total of all covariances will not be geometric, and this rate will decrease: in the 

first generations, reduction of covariance is mainly caused by the loosely linked loci, 

with a fast rate of break-down, but in the later generations loosely linked loci will 

approach equilibrium and the rate of break-down will be determined more by the 

tightly linked loci. The fact that the rate of break-down in a given generation will be 

at most equal to the rate of break-down in the preceding generation would be valuable, 

but the absolute level of this rate remains difficult to determine because it requires 

knowledge on the proportion of variance increase in the F2 that can be attributed to the 

effect of linkage disequilibrium. 

Selection 

In order to describe the change of genetic variance under selection, here a finite locus 

model based on the 'effective number' concept is introduced. For a finite number of 

loci, selection will change allele frequencies, and hence will change the 'true' genetic 

variance. Such a possible change is considered here, because in a synthetic line a few 

genes with relatively large effect may segregate, such that genetic variance may indeed 
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be prone to change under selection. Proneness of genetic variance to change under 

selection in the synthetic is intuitively related to proneness of genetic variance to 

change from founder lines to the F2, as could be described by the effective number of 

loci «e. The finite locus model introduced here similarly uses «e to describe proneness 

of genetic variance to change under selection. Using the concept of an effective number 

of loci, the relationship between change in genetic mean u„ and change in genetic 

variance V can be expressed by the differential equation (Park, 1977): 

W e d F g = - u g d u g (1) 

Derivation of this equation assumes additivity and equal effects and equal frequencies 

of the 'effective loci' and the obtained relationship depends on the genetic mean ug, 

which should generally be considered unknown. From equation (1) many known 

estimators for the effective number of loci from crossbred data can be deduced (see 

Park, 1977). Also interesting is that for one particular estimator of the effective number 

of loci from crossbred data, Ollivier and Janss (1993) showed an extension to include 

dominance effects. When such extension also would be possible for the general 

equation (1), this could supply means to model inbreeding depression with a finite 

locus model. To describe variance change under selection using (1), consider for a 

generation 1 to a generation 2 changes in genetic mean from u j to u 2
 a nd changes 

in genetic variance from V j to V 2- Then, integrating equation (1) between the 

bounds set by these changes, leads to: 

» e (^g,2-^ , l ) = T ( ^ , 2 2 - " g , l 2 ) 

and on substituting u 2=Hg i
+R, where R is the selection response, 

Fg,2-^g,l = - Hg.l*/«e - \RlK (2) 

Equation (2) shows that using the concept of an effective number, change in genetic 

variance is a function of the squared response with an additional linear term in 

response dependent on the genetic mean. Use of three or more generations in which 

genetic variances and population means (transformed to responses) are measured, 
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allows to fit the second order linear function suggested by (2) and allows estimation 

of the effective number. For an application to predict variance changes in a synthetic 

line derived from an F2, an initial crude approximation could use u„ (=0, which 

corresponds to assuming all 'effective loci' to have allele frequencies of j - When some 

generations of the synthetic line are obtained, prediction of further changes can be 

improved by also estimating u j . Hence, «e can be used to describe proneness of 

genetic variance to change in the F2 of a cross, as well as proneness of genetic variance 

to change under selection for a particular trait in a particular population. In some 

limited simulation studies, equation (2) was found quite apt to model variance change 

and to extrapolate such change even up to the selection limit. In these simulations, a 

number of additive loci with variable effects and frequencies was used. 

Selection would also interfere with the break down of linkage disequilibrium. 

Variance increase due to linkage disequilibrium is based on favourable alleles 

originating from one of the founder lines to remain coupled in the cross, and selection 

will favour individuals in which this coupling is still present. For such loci, therefore, 

linkage break down will be retarded. For linked loci that cause an unfavourable genetic 

covariance between two traits, however, recombinants, which no longer show the 

unfavourable association, would be favoured in selection. Hence, in such a case, 

selection would speed up linkage break-down and would more rapidly reduce 

unfavourable covariances then expected under random mating. 

Conclusions 

Knowledge of the changes of genetic variance that occur when two lines are crossed 

and when a line is selected could aid to optimise selection in a synthetic line. In the 

F2, increased genetic variances and covariances are generally expected. For univariate 

selection, the increased genetic variance could be used to advantage, but increased 

covariances will generally be unfavourable and will limit selection pressure to be 

applied on each single trait. As part of these increases are caused by linkage, the 

generally unfavourable covariances will reduce, offering better opportunities for 

selection in later generations. Because of this, Bidanel et al. (1991) suggested random 

breeding of a few generations before start of selection in the synthetic line. Use of a 

large population and a mild selection pressure could also be a valuable strategy to 

increase the chances of favourable recombinants appearing and to maintain individuals 
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with a favourable recombination for breeding. 

Part of the increased variances and covariances, however, may have a more 

permanent nature, caused by change of allele frequencies. Change of allele frequencies 

at pleiotropic loci could introduce unfavourable genetic covariances which form an 

impediment for selection in the synthetic line. It seems very difficult, but also very 

important, to determine whether an unfavourable genetic covariance is caused by 

linkage and will gradually reduce, or whether an unfavourable genetic covariance is 

caused by segregation at pleiotropic loci and will not reduce. Search for (major) genes 

affecting the traits could be useful to better understand the genetic covariances and to 

determine whether selection in the synthetic line can be successful. In this context, 

future molecular genetic research on the Meishan crossbreds could aid to determine the 

value of a Meishan synthetic line for commercial pig-breeding. 

To optimise multivariate selection, knowledge on genetic variances and 

covariances will be important. As these parameters may change in a synthetic line, 

monitoring of these parameters is useful. A finite locus model was introduced which 

could be valuable to extrapolate trends in genetic variances and covariances, although 

in practice the estimation of such trends could suffer from large inaccuracy. This finite 

locus model could also be of use to describe change of genetic variance under selection 

in general outbred populations. 
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Summary 

Litter size is an important characteristic in pig breeding. Apart from selection within 

available lines, also the development of a synthetic line with the Chinese Meishan 

breed could be an interesting approach to obtain a line with an increased level of litter 

size. To investigate genetic aspects of traits of interest in such a synthetic line, Dutch 

pig breeding companies have produced Fj and F2 Meishan x Western crossbreds. This 

thesis focusses on one important genetic aspect, the presence of major genes. In 

Chapters 2 to 4, statistical methodology to model a major gene inheritance is 

investigated and developed; Chapters 5 and 6 consider analysis of data collected on the 

produced Meishan crossbreds for presence of major genes. To develop a synthetic line 

with Meishan, presence of major genes affecting litter size, growth and fatness is of 

interest. Additionally, the presence of major genes is investigated for meat quality 

traits. 

Statistical methodology 

In Chapter 2, the possibility to detect major genes by use of Fj and F2 is investigated. 

Here, special attention is paid to the situation where alleles at the major locus are fixed 

in the founder populations. Using 1000 F2 observations, the power to detect major 

genes reaches more than 95% for additive and completely dominant effects (difference 

between homozygotes) of 4 and 2 residual standard deviations, respectively. When Fj 

data is included, any increase in variance from Fj to F2 biases parameter estimates and 

leads to putative detection of a major gene. Also when in reality alleles at the major 

locus segregate in the founder populations, parameter estimates become biased, unless 

the average allele frequency in the founder populations is exactly 0.5. Use of data and 

use of a model in which alleles segregate in parents, e.g. F3 data, is concluded to give 

better robustness and larger power. The latter is confirmed in a separate study, as 

referenced in Chapter 7, which shows that effects up to 4 times as small can be 

detected when alleles at the major locus segregate in the founder lines. Based on the 

findings in Chapter 2, Chapters 3 and 4 focus on the development of general models 

for a mixed inheritance. Use of such models is referred to as 'segregation analysis'. 

In Chapter 3, an advancement is made for use of analytical approaches to 

segregation analysis. It is noted that animal breeding pedigrees, as opposed to human 
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pedigrees, generally contain many loops, such that exact computation of likelihoods is 

infeasible. Loops in animal breeding pedigrees arise due to multiple matings, i.e. sires 

are generally mated to several dams, and due to inbreeding. Multiple matings generally 

already create many loops when considering 3-generation pedigrees. In Chapter 3, 

'iterative peeling' is introduced, a method equivalent to the traditional recursive peeling 

method to compute exact likelihoods in non-looped pedigrees, but which also can be 

used to obtain approximate likelihoods in looped pedigrees. In simulations, hypothesis 

testing and parameter estimation are compared based on approximated likelihoods in 

looped pedigrees and exact likelihoods in non-looped pedigrees. This shows that no 

biases are introduced by the approximation in looped pedigrees. Iterative peeling is 

developed and investigated using a monogenic model, but could be extended to 

compute likelihoods for a mixed inheritance model. Such extension, however, was not 

made because an alternative non-analytical approach became available and was 

developed in Chapter 4. 

In Chapter 4, the application of Gibbs sampling is considered for inference in 

a mixed inheritance model. Gibbs sampling is a Markov chain Monte Carlo procedure 

which does not require analytical approximation. The approximation in such an 

approach is of a different nature: a marginal posterior distribution, or a feature thereof, 

is estimated based on a finite sample from the true posterior distribution. To generate 

such a sample, a Markov chain is constructed with an equilibrium distribution equal 

to the posterior distribution to be approximated. For application of Gibbs sampling to 

a mixed inheritance model, an implementation on scalar components, as used for 

human populations, appears not efficient because mixing of parameters in the Markov 

chain is slow. Therefore, an approach with blockwise sampling of genotypes is 

proposed for use in animal populations. The blockwise sampling, by which genotypes 

of a sire and its final progeny were sampled jointly, is effective to improve mixing. In 

Chapter 4 it is concluded that further measures to improve mixing could be looked for. 

In later Chapters such a further improvement is found in the additional use of a 

relaxation technique. In Chapter 4, inferences are made from a single Gibbs chain. In 

later Chapters, this approach is improved by use of multiple chains from which 

convergence of the Gibbs sampler is assessed by comparison of between- and within 

chain variances in an analysis-of-variance. The use of Bayesian estimators, which is 

feasible when using Gibbs sampling, is found preferable over the use of classical 
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maximum likelihood estimators. In Chapter 7, it is discussed that the use of Bayesian 

procedures fits in a general trend to better account for uncertainty in statistical 

estimation procedures. 

Analysis of data 

In Chapters 5 and 6, analysis of data obtained on the Meishan crossbreds is presented. 

In Chapter 5, presence of major genes affecting meat quality traits is investigated using 

data from F2 individuals. Cooking loss, drip loss, two pH measurements, intramuscular 

fat, shearforce and back-fat thickness (by HGP measurement) are found to be likely 

influenced by a major gene. In all cases, a recessive allele is found, which originates 

from one of the founder lines, likely the Meishan breed. By studying associations 

between genotypes for major genes affecting the various traits, it is concluded that 

cooking loss, two pH measurements and possibly backfat thickness are influenced by 

one gene, and that a second gene influences intramuscular fat and possibly shearforce 

and drip loss. The statistical findings are supported by demonstrating marked 

differences in variances of families of fathers inferred as carriers and families of fathers 

inferred as non-carriers. 

In Chapter 6, presence of major genes is investigated for two growth traits, 

backfat thickness (by ultrasonic measurement) and litter size at first and second parity, 

using data from Fj and F2 crossbreds. Here, two analyses are performed for each trait. 

In a first analysis, joint analysis of F[ and F2 crossbred data is performed, in which 

different error variances are fitted for F | and F2 observations. In this first analysis, 

significant contributions of major-gene variance are found for the two growth traits, for 

backfat, and for litter size at first parity. In a second analysis, analysis of F2 data only 

is performed to check whether no biases are introduced in the joint analysis of Fj and 

F2 data. In the second analysis, no major genes are found for growth traits. Major 

genes affecting backfat and litter size at first parity are confirmed. Effects of the gene 

affecting backfat are similar to the effects of the gene affecting backfat identified in 

Chapter 5, and this likely is the same gene. The major genes affecting backfat and litter 

size are dominant genes, of which the recessive alleles can be considered unfavourable: 

the recessive alleles of these genes cause an increase of backfat and a decrease of litter 

size. 

General results from the statistical analyses indicate that further molecular 
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genetic research effort to map these genes will have a high probability of success. In 

Chapter 7 benefits are discussed from selection against the recessive alleles of the 

genes influencing backfat and litter size, as well as use of the gene affecting 

intramuscular fat to produce extra-tasty quality meat. 

Conclusions 

In this thesis, segregation analysis (SA) is made applicable for use in animal 

populations. SA will be a valuable addition to linkage analysis, where SA will be more 

typically applied to large amounts of data which are routinely collected. In the search 

for genes affecting quantitative traits, SA can directly identify functional genes, and can 

estimate genotypes of animals for such a functional gene. In combination with linkage 

analyses, this could supply important aids for molecular geneticists to locate functional 

genes. In this thesis, a number of major genes was identified to affect traits in the 

Meishan crosses. Further genetic analyses could generate more knowledge on the 

regulation of the quantitative traits involved and will aid in assessing the value of these 

genes for practical breeding. Chapter 8 additionally describes expected variance 

changes in a synthetic line, which could aid to optimise selection in such a line. 
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Samenvatting 

Inleiding 

De veredeling van varkens in Nederland wordt gedaan door gespecialiseerde fokkerij

organisaties. Zulke fokkerij-organisaties verkopen, onder andere, jonge moederdieren 

die op vermeerderingsbedrijven gebruikt worden voor de produktie van slachtvarkens. 

De ideale moederdieren moeten veel biggen werpen die vitaal zijn en die goede 

eigenschappen hebben voor de mesterij. De worpgrootte van de moederdieren is deels 

genetisch bepaald, en daarbij van grote economische waarde, zodat worpgrootte een 

van de belangrijke aandachtspunten is in de veredeling van de zogenaamde 

moederrassen of -lijnen. 

Worpgrootte zou verbeterd kunnen worden door het benutten van genetische 

variatie binnen een lijn middels selectie. Een tweede mogelijkheid is het benutten van 

genetische variatie tussen lijnen of rassen door kruising. Gekruiste dieren kunnen dan 

gebruikt worden als stamouders voor een nieuwe zogenaamde 'synthetische' lijn. 

Afhankelijk van de genetische achtergronden van de belangrijke kenmerken kunnen in 

een dergelijke synthetische lijn de eigenschappen van de uitgangslijnen mogelijk 

gecombineerd worden. In Nederland hebben 5 fokkerij-organisaties een kruisings

experiment uitgevoerd om te onderzoeken of verbetering van de toomgrootte mogelijk 

is door zulk een synthetische lijn te ontwikkelen. Hierbij werden kruislingen (eerste 

generatie kruislingen of Fj's, en tweede generatie kruislingen of F2's) geproduceerd 

tussen het zeer vruchtbare Chinese Meishan ras en lokale Europese rassen. Waar

nemingen aan deze Meishan kruislingen werden gebruikt voor statistisch-genetische 

analyses om de genetische achtergrond van belangrijke kenmerken te onderzoeken en 

zodoende de haalbaarheid voor de vorming van een synthetische lijn te bepalen. 

Onderzoek naar de genetische achtergrond van kenmerken in de Meishan 

kruislingen is in dit proefschrift toegespitst op één onderwerp, de mogelijke aanwezig

heid van hoofdgenen. Een hoofdgen is een enkel gen dat in belangrijke mate, maar niet 

geheel, de vererving van een kenmerk bepaalt. De genen welke het resterende deel van 

de overerving bepalen worden achtergrondgenen genoemd. De vererving van een ken

merk dat beïnvloed wordt door een hoofdgen is daarom deels discreet en deels continu: 

het hoofdgen zorgt voor een discrete overerving waarbij doorgaans slecht 2 of 3 

verschillende genetische varianten of'genotypen' bestaan; de achtergrondgenen zorgen 
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voor een continue overerving waarbij er een continuüm van genetische varianten 

bestaat. Het genetische model waarbij uitgegaan wordt van een hoofdgen en achter

grondgenen, wordt dan ook wel een gemengd overervingsmodel genoemd. In de 

Hoofdstukken 2 tot en met 4 van dit proefschrift worden statistische methodes voor het 

modelleren van een gemengde overerving onderzocht en ontwikkeld. In de Hoofd

stukken 5 en 6 worden vervolgens analyses gepresenteerd van waarnemingen aan de 

Meishan kruislingen om te onderzoeken of hoofdgenen inderdaad een rol spelen bij de 

overerving van bepaalde kenmerken. Voor de ontwikkeling van een synthetische lijn 

met Meishan is de aanwezigheid van hoofdgenen voor worpgrootte, groei en vetheid 

interessant (Hoofdstuk 6). Daarnaast worden er ook analyses van aantal vleeskwaliteits-

kenmerken gepresenteerd (Hoofdstuk 5). 

Statistische methoden 

In Hoofdstuk 2 wordt onderzocht of het mogelijk is de aanwezigheid van een hoofdgen 

te bepalen door gebruik te maken van waarnemingen aan de F( en F2 kruislingen. 

Hierbij is speciaal aandacht gegeven aan een situatie waarbij de verschillende allelen 

van het hoofdgen gefixeerd waren in de stamlijnen. Door gebruik te maken van 1000 

waarnemingen aan de F2's is de kans meer dan 95% om aanwezigheid te detecteren van 

een additief hoofdgen met een effect (verschil tussen homozygoten) van 4 residuele 

standaard deviaties of een dominant hoofdgen met een effect van 2 residuele standaard 

deviaties. Wanneer ook waarnemingen aan de Fj kruislingen worden gebruikt leidt elke 

verhoging van variantie tussen de F['s en F2's tot onzuiverheid van de schatting van 

met name het effect van het hoofdgen en tot een mogelijke abusievelijke detectie van 

een hoofdgen. Ook wanneer in werkelijkheid de allelen van het hoofdgen segregeren 

in de stamlijnen worden effecten onzuiver geschat, tenzij de gemiddelde allelfrequentie 

in de stamlijnen exact 0.5 is. Er wordt geconcludeerd dat hoofdgenen beter te 

detecteren zijn door waarnemingen te gebruiken waarbij allelen van het hoofdgen 

segregeren in de stamlijnen, of door waarnemingen van een F3 te gebruiken. Dit is 

bevestigd in een aparte studie, aangehaald in Hoofdstuk 7, waarin wordt getoond dat 

hoofdgenen met een tot 4 keer kleiner effect detecteerbaar zijn wanneer allelen van het 

hoofdgen segregeren in de stamlijnen. Gebaseerd op de conclusies uit Hoofdstuk 2 is 

in Hoofdstukken 3 en 4 de aandacht gericht op het ontwikkelen van algemene modellen 

voor het beschrijven van een gemengde overerving. Het gebruik van zulke modellen 
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en detectie van een hoofdgen op basis van zulke modellen wordt aangeduid als 

segregatie analyse. 

In Hoofdstuk 3 wordt een bijdrage geleverd voor een analytische toepassing van 

segregatie analyse. Een analytische toepassing is erg moeilijk omdat de benodigde 

berekeningen onuitvoerbaar worden wanneer in een populatie afstammingslussen 

voorkomen. Afstammingslussen worden veroorzaakt door meervoudige paringen en 

door inteelt en blijken in populaties van landbouwhuisdieren veelvuldig voor te komen. 

Daarom is een iteratieve peeling-methode voorgesteld die equivalent is aan de 

traditionele recursieve peeling-methode voor het exact berekenen van 

waarschijnlijkheden wanneer afstammingslussen niet voorkomen, maar die ook 

bruikbaar is om een benaderde waarschijnlijkheid te berekenen wanneer 

afstammingslussen wel voorkomen. Met simulatiestudies worden statistische toetsen en 

parameterschattingen vergeleken gebaseerd op exact berekende waarschijnlijkheden bij 

afwezigheid van afstammingslussen en gebaseerd op benaderde waarschijnlijkheden bij 

aanwezigheid van afstammingslussen. Hieruit blijkt dat er geen onzuiverheid 

geïntroduceerd wordt door het gebruik van de benadering bij aanwezigheid van 

afstammingslussen. De iteratieve peeling-methode is ontwikkeld en onderzocht voor 

een monogene overerving (een enkel gen zonder additionele achtergrondgenen), maar 

zou uitgebreid kunnen worden naar een gemengde overerving. Een dergelijke 

uitbreiding echter is niet gemaakt omdat een alternatieve niet-analytische benadering 

bekend werd en ontwikkeld is in Hoofdstuk 4. 

In Hoofdstuk 4 is de toepassing van Gibbs-sampling beschreven om parameters 

van een gemengd overervingsmodel te kunnen schatten. Gibbs sampling, in tegen

stelling tot de hiervoor beschreven analytische benadering, is een Monte-Carlo-Markov-

keten benadering. Deze benadering heeft een geheel ander karakter: met zulk een 

benadering wordt een marginale a-posteriori verdeling, of een kenmerk daarvan, 

geschat middels een beperkt aantal trekkingen die gegenereerd worden uit de werkelijke 

marginale a-posteriori verdeling. Om de gewenste trekkingen te genereren wordt een 

Markov keten geconstrueerd waarvan de evenwichtsverdeling de te benaderen 

a-posteriori verdeling is. Een toepassing van Gibbs sampling waarbij de parameters van 

het gemengde overervingsmodel als scalairen worden behandeld, blijkt te resulteren in 

een slecht mengen van de parameters in de Markov keten. Daarom is een toepassing 

voorgesteld waarbij genotypen in blokken worden behandeld, hetgeen resulteert in een 
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beter mengen van de parameters. In latere hoofdstukken is nog een verdere verbetering 

van het mengen van de parameters in de Markov keten bereikt door ook een relaxatie

techniek te gebruiken. Parameterschattingen in Hoofdstuk 4 zijn gebaseerd op een 

enkele Markov keten. In latere hoofdstukken is deze procedure verbeterd door meerdere 

Markov ketens te gebruiken waarbij convergentie van de Gibbs-sampler bepaald is door 

de vergelijking van binnen- en tussen keten-varianties in een variantie-analyse. Het 

gebruik van Bayesiaanse schatters, wat mogelijk is wanneer Gibbs-sampling wordt 

gebruikt, wordt geprefereerd boven het gebruik van klassieke hoogste-

waarschijnlijkheids-schatters. In Hoofdstuk 7 wordt bediscussieerd dat het gebruik van 

zulke Bayesiaanse schatters past in een algemene trend om beter rekening te houden 

met onnauwkeurigheid in statistische schattingsprocedures. 

Data-analyse 

In Hoofdstukken 5 en 6 worden analyses gepresenteerd van de waarnemingen aan de 

Meishan kruislingen. In Hoofdstuk 5 wordt de aanwezigheid van hoofdgenen 

onderzocht voor vleeskwaliteitskenmerken, gebruikmakend van waarnemingen aan F2 

kruislingen. Hier wordt aangetoond dat kookverlies, vochtverlies, pH, intramusculair 

vet en snijweerstand van het vlees, alsmede de rugspekdikte (middels een HGP-

meting), waarschijnlijk door een hoofdgen worden beïnvloed. Voor al deze kenmerken 

is een recessief allel gevonden dat afkomstig is van een van de uitgangslijnen, 

waarschijnlijk het Meishan ras. Door de associaties te bestuderen tussen de genotypen 

van dieren voor de hoofdgenen voor elk van de kenmerken, is geconcludeerd dat 

kookverlies, pH en mogelijk rugspekdikte beïnvloed worden door hetzelfde gen, terwijl 

een tweede gen intramusculair vet en mogelijk snijweerstand en vochtverlies 

beïnvloedt. Deze bevindingen worden ondersteund door het aantonen van markante 

variantieverschillen tussen families van vaders die geïdentificeerd zijn als drager van 

het recessieve allel en families van vaders die geïdentificeerd zijn als niet-drager van 

het recessieve allel. In Hoofdstuk 6 wordt de aanwezigheid van hoofdgenen onderzocht 

voor twee groeikenmerken, rugspekdikte (middels een ultrasone meting) en worpgrootte 

bij eerste en tweede pariteit, gebruikmakend van waarnemingen aan Fj en F2 

kruislingen. Hier worden twee analyses per kenmerk beschreven. In een eerste analyse 

zijn waarnemingen van Fj en F2 kruislingen gezamenlijk geanalyseerd, waarbij voor 

de Fj en F2 verschillende residuele varianties worden gemodelleerd. In deze eerste 
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analyse worden significante bijdragen van een hoofdgen gevonden voor de groei-

kenmerken, rugspekdikte en voor de worpgrootte bij eerste pariteit. Vervolgens wordt 

voor elk kenmerk een tweede analyse beschreven waarbij alleen waarnemingen van de 

F2 kruislingen worden gebruikt om te controleren of er in de eerste gezamenlijke 

analyse geen onzuiverheden in de schattingen geïntroduceerd zijn. In deze tweede 

analyse worden geen hoofdgenen gevonden voor de groeikenmerken. Invloed van een 

hoofdgen op rugspekdikte en op toomgrootte wordt bevestigd. De effecten van het 

hoofdgen dat rugspekdikte beïnvloedt komen overeen met de effecten van het gevonden 

hoofdgen voor rugspekdikte in Hoofdstuk 5, en deze genen zijn waarschijnlijk dezelfde. 

De hoofdgenen voor rugspekdikte en worpgrootte hebben recessieve allelen die als 

ongunstig aangemerkt kunnen worden: respectievelijk rugspek verhogend en 

worpgrootte verlagend. De algemene resultaten van de statistische analyses tonen aan 

dat moleculair-genetisch onderzoek om de geïdentificeerde genen op het genoom te 

lokaliseren een goede kans van slagen heeft. In Hoofdstuk 7 worden de voordelen 

bediscussieerd van selectie tegen de ongunstige recessieve allelen van de hoofdgenen 

voor rugspekdikte en worpgrootte, alsmede de mogelijkheid om extra smakelijk 

kwaliteitsvlees met een verhoogd gehalte intramusculair vet te produceren. 

Conclusies 

In dit proefschrift is segregatie analyse (SA) algemeen toepasbaar gemaakt voor 

gebruik in populaties van landbouwhuisdieren. SA kan een nuttige aanvulling zijn op 

koppelingsanalyse, waarbij SA typisch toepasbaar is voor grote aantallen waarnemingen 

die routinematig zijn verzameld. In onderzoek naar genen welke kwantitatieve ken

merken beïnvloeden kan SA direct een functioneel gen identificeren en kunnen 

genotypen van dieren voor een dergelijk functioneel gen geschat worden. In combinatie 

met koppelingsanalyse kan dit een belangrijk hulpmiddel zijn voor moleculaire genetici 

bij het lokaliseren van functionele genen. In dit proefschrift worden een aantal 

hoofdgenen geïdentificeerd die kenmerken in Meishan-kruislingen beïnvloeden. Verder 

genetisch onderzoek kan de kennis over de regulatie van de onderzochte kenmerken 

vergroten en zal van belang zijn in het bepalen van de waarde van deze genen voor de 

praktische veredeling. Als toevoeging is in Hoofdstuk 8 beschreven hoe de genetische 

variantie kan veranderen in kruislingen en in een synthetische lijn, wat behulpzaam kan 

zijn voor de optimalisatie van een selectieprogramma in een synthetische lijn. 
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