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Scope 

In seed plants, sexual reproduction is initiated by pollen transfer from anther to stigma. One of the 

two sperm cells carried by the pollen grain fertilizes the egg cell in the flower's carpel, giving rise to a 

fertilized egg cell or zygote. The subsequent developmental process that represents the transition of 

the zygote to a multicellular seedling is termed zygotic embryogenesis. Zygotic embryos develop 

through a series of characteristic morphological stages, in dicots the globular, heart, torpedo, and 

bent-cotyledon stages. During this development, all distinct organs and tissues present in the seedling 

are arranged in their proper positions, a process called pattern formation. Along the apical-basal or 

longitudinal axis, the pattern consists of the shoot apical meristem, cotyledons (embryonic leaves), 

hypocotyl (embryonic stem) and radicle (embryonic root), including the root cap and root meristem. 

Along the radial axis, another pattern is apparent as a concentric arrangement of tissue types from 

outside to inside: the epidermis, ground tissue, and central vascular system. In the model plant 

Arabidopsis (wall cress), the sequence of cell divisions during zygotic embryogenesis is highly 

invariant, so that the origin of seedling organs and tissues appears traceable to specific cells in the 

early embryo. However, except for the early epidermal cell fate, no clonally transmitted lineages 

appear to be instrumental in pattern formation. Currently, numerous studies focus on the molecular 

events underlying plant embryo development. The current stage of this research area is discussed in 

chapter 1. 

A widely followed approach to identify genes involved in pattern formation has been to screen 

for mutants with defects in the establishment of the embryo body plan. These genetic screens have 

yielded numerous embryo-defective mutants. However, a major difficulty that has emerged during 

these screens concerns the recognition and interpretation of informative phenotypes. Many different 

embryo-lethal mutants show quite similar phenotypes and the assessment of the precise effects of a 

mutation is often hampered by the inability to determine cell- or regional identity in the embryo mutant 

background. One way to partly circumvent these difficulties is to study the expression pattern of well 

defined molecular markers in embryo mutants. Markers reflecting cell- or regional identity or polarity 

in the developing embryo provide criteria other than morphology for the evaluation of the precise 

effects of an embryo mutation. 

Chapter 2 describes the analysis of three embryo mutants using the Arabidopsis thaliana lipid 

transfer protein (AtLTPl) gene as a marker. In wild-type embryos, the AtLTPl gene is initially 

expressed in all epidermis cells, and later in the epidermal cells of the cotyledons and upper 



hypocotyl, together representing the apical part of the embryo. Therefore, AtLTPl expression was 

used as tissue-layer specific marker for the epidermis to study the phenotypic defects in the knolle and 

keule mutants, both reported to have defects in the establishment of the epidermis. AtLTPl 

expression was used as marker for the apical part of the embryo to investigate effects of the gnom 

mutation on apical-basal embryo polarity. 

Unfortunately, few other embryo marker genes are available to date, especially for the early 

stages of embryogenesis. This shortage of suitable molecular markers greatly hampers the recognition 

and interpretation of embryo phenotypes informative for the process of pattern formation. Therefore, 

we have performed an enhancer and gene trap insertional mutagenesis screen to identify Arabidopsis 

lines with GUS expression in embryos. This screen is described in chapter 3, and exploits two types 

of transposable Ds elements each carrying a GUS reporter gene that can respond to cw-acting 

transcriptional signals at the site of integration. The selected lines provide a set of markers that can be 

used to determine cell- or regional identity and polarity in Arabidopsis embryo mutants, and will 

allow the isolation of genes identified on the basis of their expression pattern in the Arabidopsis 

embryo. 

Chapter 4 outlines the spectrum of GUS expression patterns observed in embryos during the 

screening of 431 enhancer trap and 373 gene trap lines. Four lines exhibiting remarkably early or 

localized GUS expression are described in more detail. Furthermore, electronic databases for the 

recording of screening data, and sequence analysis of genomic DNA flanking the transposon 

insertions in four enhancer trap and two gene trap lines are presented. Finally, the efficiency of 

enhancer and gene trap mutagenesis as a means of identifying genes that are important for embryo 

development is discussed. 

Chapter 5 describes the identification of one specific enhancer trap line, WET368, that already 

shows uniform GUS expression in the 8-celled embryo. Later during embryogenesis, expression 

becomes restricted to a previously undefined region encompassing the shoot apical meristem and part 

of the cotyledon primordia. After germination, all aerial plant parts where meristems are or have been 

present are marked by WET368 GUS expression. Analysis of WET368 GUS expression in different 

mutants defective in the control of shoot meristem size or function provides an example of the way 

marker gene expression can extend morphological descriptions of mutant phenotypes. 

Finally, a summarizing discussion of the research presented in this thesis is provided in 

chapter 6. 
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flowering plant embryogenesis 

Introduction 

An important area in plant developmental biology concerns the molecular basis of pattern formation, 

cell differentiation and organ development in the embryo. The majority of this work is being done in 

the model species Arabidopsis thaliana, and this plant species therefore features prominently in this 

chapter. 

Although embryogenesis formally commences at fertilization, a brief introduction into the 

structure of female gametophyte or the embryo sac will be given first in order to describe the setting in 

which early embryogenesis occurs later. The embryo sac develops within the ovule, which is in turn 

found in the flower's carpel. The most common embryo sac form, usually called the polygonum-type 

embryo sac, is shown in Figure 1.1. It consists of seven cells: three antipodal cells at the chalazal 

pole, two synergids and one egg cell at the micropylar pole and one central cell with two polar nuclei 

in the center (reviewed by Reiser and Fischer, 1993). In some species, this is the final form of the 

embryo sac. In Arabidopsis however, the three antipodal cells degenerate and in maize they proliferate 

into as many as 100 cells in the mature embryo sac (Drews et ah, 1998). Sexual reproduction in seed 

plants is initiated when pollen is transferred from anther to stigma. Double fertilization of the egg cell 

and central cell by two sperm cells lead to the development of the zygotic embryo and the endosperm 

respectively. After fertilization, the zygote expands in a longitudinal direction. In Arabidopsis, the 

first division is asymmetric and results in an apical and a basal cell. The basal cell produces the 

suspensor and also contributes to the root meristem of the embryo, while from the apical cell the 

entire embryo except for part of the root meristem is formed (Figure 1.2). 

embryo sai 

chalazal pole 

antipodal cells 

central cell 
polar nuclei 
synergids 
egg cell 
integuments 
micropylar pole 

Figure 1.1: Schematic representation of an ovule with polygonum-type embryo sac. The orientation is such that the 

chalazal end is at the top and the micropylar end at the bottom of the drawing. From Mordhorst et al. (1997) with 

permission. 
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Figure 1.2: Pattern formation in the Arabidopsis embryo. 

A: Two-cell stage. Asymmetric division of the zygote has yielded a small apical cell (ac) and a larger basal cell (be). 

B: Octant stage embryo. The apical cell has generated an embryo proper consisting of four upper tier (ut; grey) and four 

lower tier (It; light grey) cells. The basal cell has given rise to the hypophyseal cell (hy; dark grey) and the suspensor 

(su; white). 

C: Dermatogen stage embryo. Periclinal divisions have generated eight protoderm and eight inner cells. 

D: Globular stage embryo. The inner cells of the lower tier have divided periclinally to yield ground tissue and vascular 

tissue. The hypophyseal cell has set off a lens-shaped cell that will give rise to the quiescent center (QC). The lower 

hypophyseal cell derivative will develop into the central root cap (crc). 

E: Heart stage embryo. The apical domain, derived from the upper tier, has been partitioned into cotyledon (cot) 

primordia and shoot apical meristem (SAM). The central domain, derived from the lower tier, has been subdivided 

conceptually into the upper-lower (ult) and lower-lower (lit) tiers. 

F: Seedling. The SAM and the largest part of the cotyledons are derived from the upper tier. The upper-lower tier has 

contributed to the cotyledon shoulders (cot. shoulder), while the lower-lower tier has formed the hypocotyl (he), root (it) 

and initials of the root meristem. The quiescent center and the central root cap are descendants of the hypophyseal cell. 

Corresponding regions along the apical-basal axis of the developing embryo and seedling have corresponding grey 

scales. Tissue types along the radial axis are indicated by different fill patterns. Individual cells are shown in A to C and 

cell groups in D to F. Adapted from Laux and Jurgens (1997). 

In contrast to animals, where the body pattern of the adult organism is complete after 

embryogenesis, most of the structures of adult higher plants are formed during postembryonic 

development from groups of proliferating cells, the root and shoot apical meristems (Kerstetter and 

Hake, 1997; Steeves and Sussex, 1989), both of which are formed during embryogenesis. 
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flowering plant embryogenesis 

Studying pattern formation in the zygotic Arabidopsis embryo has the advantage that cell 

divisions are very regular, so that pattern elements can be traced back to their origins in the early 

embryo (Jurgens etal, 1994a; Jiirgens etal, 1994b; Mansfield and Briarty, 1991; Scheres et al., 

1994). However, a regular pattern of early divisions is found in only a minority of plant species, and 

in certain Arabidopsis mutants and embryos of non-zygotic origin of this species (Mordhorst et al., 

1998; Wu et al., 1992) there is very little regularity. Despite the variations in early divisions in such 

embryos, pattern formation appears normal and results in the correct positioning of all major pattern 

elements. 

When compared to embryogenesis in other higher eukaryotes, plant embryogenesis is a 

unique process because it can be initiated not only from the zygote but also from other cells of the 

reproductive apparatus, including the gametes, and even from somatic cells. The plant zygote is 

therefore not unique in its property to develop into the entire multicellular organism. One of the 

challenges in plant embryogenesis is to unravel the molecular mechanisms that lead to the formation 

of a cell destined to form an embryo, whether the product of fertilization or of spontaneous or induced 

embryo development. 

Pattern formation, cell differentiation and organ development in the 
plant embryo 

The plant embryo and the seedling derived from it after germination are arranged in a number of 

elements along an apical-basal or longitudinal axis, and along a radial or outside-to-inside axis (Figure 

1.2). Along the apical-basal axis, the body pattern of a dicot embryo consists of the shoot apical 

meristem (SAM), cotyledons (embryonic leaves), hypocotyl (embryonic stem) and radicle (embryonic 

root), including the root cap and root meristem (RM). Along the radial axis, another pattern is 

apparent as a concentric arrangement of tissue types from outside to inside: the epidermis, ground 

tissue (cortex and endodermis), and central vascular system (pericycle, xylem and phloem) (Goldberg 

etal, 1994; Jurgens, 1995; Jurgens etal, 1994a; Jurgens etal, 1994b; Mayer etal, 1991; Vroemen 

et al, 1996). The basic plant body pattern can be viewed as a superimposition of the apical-basal and 

radial patterns. In this section, recent insight obtained from molecular-genetic analysis in the events 

that generate this pattern in the Arabidopsis embryo will be described. 

The apical-basal pattern 

In many plant species, the unfertilized egg cell as well as the zygote exhibit apical-basal polarity 

aligned with the chalazal-micropylar axis of the embryo sac (Figure 1.1). This is demonstrated by the 
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unequal distribution of cytoplasm and vacuoles (Mogensen and Suthar, 1979; Schulz and Jensen, 

1968b). Before its first division, the Arabidopsis zygote elongates in the apical-basal direction. This 

elongation coincides with a re-orientation of microtubules to transverse cortical arrays (Webb and 

Gunning, 1991). The first division is an unequal transversal division, resulting in two cells of 

different developmental fates (Figure 1.2A). The basal daughter cell divides by a series of transversal 

divisions and finally gives rise to a filamentous suspensor consisting of 7 - 9 highly vacuolated cells 

(Figure 1.2B-E; Figure 1.3A-E; Mansfield and Briarty, 1991). The hypophyseal cell is the uppermost 

cell of the suspensor (Figure 1.2B-E; Figure 1.3A-E), and contributes to the embryo by forming part 

of the root, namely the central (columella) root cap and the quiescent center (Scheres et al., 1994). 

The suspensor reaches maximum cell number by the globular stage. Subsequently, suspensor cell 

number decreases (Mansfield and Briarty, 1991; Mardsen and Meinke, 1985), until only a few remain 

at maturity. 

Figure 1.3: Arabidopsis embryogenesis. Differential interference contrast (A through E) and light (E) microscopic 

images of embryos and seedling at developmental stages as represented in Figure 1.2. 

A: One-celled embryo proper. The suspensor already consists of approximately four cells. 

B: Octant stage embryo. 

C: Dermatogen stage embryo. 

D: Globular stage embryo. 

E: Heart stage embryo. 

F: Seedling. 

Scale of F is different from scale of A through E. 

The apical daughter cell of the zygote undergoes two longitudinal divisions at right angles, 

followed by one transversal division (Jurgens and Mayer, 1994; Mansfield and Briarty, 1991). The 

latter plane of division divides the eight celled "embryo proper" (octant stage) into an upper and a 

lower tier (Figure 1.2B; Figure 1.3B). From the upper tier the shoot apical meristem and the main 

parts of the cotyledons are formed, while the lower tier contributes to the cotyledon shoulder, the 

entire hypocotyl, and part of the radicle (Scheres etal, 1994); Figure 1.2C-F; Figure 1.3C-F). Until 
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the octant stage, there is a remarkable decrease in relative cell size (Mansfield and Briarty, 1991). As 

the octant embryo develops into a globular embryo of approximately 64 cells (Figure 1.2C, D; Figure 

1.3C, D), the cells of the lower tier produce cell files along the apical-basal axis through oriented 

divisions and cell elongation, while most cells of the upper tier divide in more or less random 

orientations. 

A dramatic change in embryo morphology occurs during the transition from the globular to the 

heart stage (Figure 1.2E; Figure 1.3E), as observed by the formation of juxtaposed cotyledon 

primordia at the apical side of the embryo (Jurgens and Mayer, 1994). At the heart stage the 

hypocotyl region also becomes visible due to further cell elongation in the lower tier, which is 

conceptually subdivided into an upper-lower tier and a lower-lower tier (Figure 1.2E). At the same 

stage, the root meristem initials are defined from the most basal cells in the lower tier. With the 

completion of the apical-basal pattern in the form of cotyledons, hypocotyl and radicle the body plan 

of the seedling (Figure 1.2F; Figure 1.3F) is essentially complete in the heart stage embryo. The 

subsequent torpedo stage embryo is a result of cell elongation and expansion rather than continued 

division. The SAM can now for the first time be distinguished morphologically as a small group of 

cells between the bases of the cotyledons. The SAM therefore does not appear before the RM is 

nearly fully formed and functional (Barton and Poethig, 1993). During the transition from the torpedo 

to the final bent cotyledon stage, the cotyledons expand further and are finally folded backwards. 

In conclusion, the subdivision of the octant embryo into upper tier, lower tier and 

hypophyseal cell is elaborated during subsequent stages of embryogenesis, to generate an ordered 

array of structures along the apical-basal axis. Through the regular pattern of cell divisions, and 

through fate map analysis (Scheres et al, 1994), the origin of these structures can be traced back to 

progenitor cells in the early embryo with reasonable accuracy. 

Establishment of early apical-basal polarity 

In Arabidopsis the apical-basal axis of the embryo always forms in the same orientation relative to the 

surrounding embryo sac. This orientation can be dependent on the morphological polarity of the 

unfertilized egg cell, or imposed by the polar organization of the surrounding maternal tissues. Until 

now, only one gene, SHORT INTEGUMENT 1 (SIN1), has been identified that has a maternal effect 

on the apical-basal axis of the progeny upon mutation (Ray etal., 1996). Seedlings descending from 

sinl mutant mother plants show variable defects in the apical-basal axis. However, maize zygotes 

formed by in vitro fusion of isolated egg and sperm cells acquire polarity before undergoing an 

asymmetric division (Breton etal., 1995). Egg cells of certain plant species appear apolar, or their 

polarity can be reversed upon fertilization (Johri, 1984), suggesting that no stable axis of polarity 

exists within the unfertilized egg cell, from which the polarity of the embryo is derived. 
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Suspensor cells can form secondary embryos if the primary embryo is aborted or arrested in 

development, such as in the sus, twin, and raspberry mutants (Schwartz et al, 1994; Vernon and 

Meinke, 1994; Yadegari et al, 1994; Yadegari and Goldberg, 1997). This suggests that the apical 

part of the embryo normally inhibits an 'embryo' fate in suspensor cells. In twin! (twn2) mutants, the 

development of the apical daughter cells of the zygote arrests after one or two zygotic divisions, and 

subsequently multiple embryos are formed from suspensor cells (Zhang and Somerville, 1997). In 

twinl (twnl) mutants, aberrant divisions occur in the embryo, and subsequently a secondary embryo 

is formed from the suspensor (Vernon and Meinke, 1994). Strikingly, the axis of polarity of the 

secondary embryo is either in the same, or in reverse orientation as that of the primary embryo. This 

raises the possibility that during normal embryo development, the position of the suspensor relative to 

the early embryo proper is instrumental in establishing the basal embryo pole. In this scenario, the 

basal pole of suspensor-derived twin embryos can form on either side, since the early secondary 

embryo is flanked by suspensor cells on both sides. Alternatively, the basal pole of suspensor-

derived embryos may be established at random because in contrast to normal embryos, these embryos 

do not originate from a polarized zygote. 

The acquisition of different cell fates after the first division of the zygote is reflected by the 

expression of the ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1) gene in the apical, 

but not in the basal cell (Lu et al, 1996). This homeobox containing gene continues to be expressed 

in all derivatives of the apical cell until the octant stage. Mutations in the Arabidopsis GNOM/EMB30 

(GN) gene affect the asymmetric division of the zygote, resulting in an enlarged apical cell at the 

expense of the basal cell (Mayer et al, 1993; Shevell et al, 1994). While in gnom embryos the apical 

cell gives rise to an embryo proper that displays abnormal divisions, a shortened suspensor is formed 

from the basal cell. The ARABIDOPSIS THALIANA LIPID TRANSFER PROTEIN1 (ATLTPI) 

gene, whose expression is normally restricted to the apical end of later stage embryos, and the 

POLARIS gene, that is normally only expressed in the "root pole", display variable and occasionally 

completely reversed expression along the apical-basal embryo axis (Topping and Lindsey, 1997; 

Vroemen et al, 1996). The GNOM gene is zygotically required and the encoded protein shows 

sequence similarity to yeast guanine-nucleotide exchange factors involved in vesicle transport (Busch 

et al, 1996; Peyroche et al, 1996). This raises the possibility that directional vesicle transport is 

involved in stabilizing the apical-basal axis of the embryo, which would be reminiscent of the 

proposed axis stabilization mechanism in the brown algae Fucus (Kropf, 1997; Shaw and Quatrano, 

1996). 

Thus, the available evidence suggests that the formation of the apical-basal axis of the embryo 

is not yet fixed before fertilization, requires segregation of cell fates after the first division, but may 

only be completely stabilized later in embryo development. It has not been demonstrated 

unequivocally whether the maternal tissues surrounding the early embryo influence the orientation of 

the apical-basal axis, but the physical attachment of the embryo to the suspensor might be 
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instrumental in establishing the basal embryo pole. 

Establishment of embryonic domains along the apical-basal axis 

The different components that make up the final apical-basal pattern elements of the embryo do not 

originate simultaneously, but are established in steps. Thus, the establishment of the apical-basal 

pattern may be viewed conceptually as a series of partitioning events that sequester increasingly more 

specialized regions (West and Harada, 1993). The subdivision of the octant stage embryo into upper 

tier, lower tier and hypophyseal cell is elaborated during subsequent stages of embryogenesis. The 

upper tier gives rise to an apical domain, consisting of the shoot apical meristem and most of the 

cotyledons. The lower tier generates a central domain which comprises the "cotyledon shoulder", 

hypocotyl, root and the root meristem initials above the quiescent center. The remaining part of the 

root meristem, i.e. the quiescent center and the central root cap, is derived from the hypophyseal cell 

(Figure 1.2). It is evident that the three regions in the early globular stage embryo do not correspond 

precisely to the primordia of the different components of the apical-basal pattern in the later stage 

embryo. For example, the cotyledons are derived partly from the upper, and partly from the lower tier 

of the octant stage embryo, and the root meristem is composed of descendants from both the lower 

tier and the hypophyseal cell (Figure 1.2). Nevertheless, the significance of these three early regions 

for apical-basal patterning can be deduced from mutant embryonic phenotypes that affect one or more 

domains of the apical-basal pattern. 

Mutations in the GURKE/EMB22 (GK) gene affect the apical domain of the embryo (Torres-

Ruiz et al, 1996). The mutational defects are first seen in the derivatives of the upper tier in early 

heart-stage embryos, where abnormal or no divisions occur in the cotyledonary primordia. Later, the 

SAM and cotyledons are severely reduced or abolished, and in the most extreme manifestation of the 

phenotype, even the cotyledon shoulders and part of the hypocotyl, which are clonally derived from 

the lower tier, are deleted. This could mean that the cotyledons are initiated in the apical domain, 

which subsequently induces cells from the central domain to form the cotyledon shoulders and upper 

hypocotyl. Alternatively, GK may be functional in both apical and central domains of the embryo, gk 

mutants have a normal root and radial pattern. 

Mutations in the MONOPTEROS (MP) gene cause deletion of the entire root and hypocotyl in 

the embryo and seedling (Berleth and Jurgens, 1993), and the mp mutant has thus been classified as 

an apical-basal pattern mutant affecting the central and basal regions of the embryo. The earliest 

deviation from wild-type is observed at the octant stage, when the mp embryo proper consists of four 

rather than two tiers of cells. Subsequently, cells of the central and basal domains, which are derived 

from the lower tier and the hypophyseal cell, divide abnormally. The inner cells of the central domain 

fail to produce elongated cell files that normally make up the vascular tissue of the hypocotyl and root. 
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At the same time, the basal cell that would normally become the hypophyseal cell divides like a 

suspensor cell to generate a central pile of cells continuous with the suspensor. The latter defect has 

been interpreted as an indirect consequence of the aberrations in the lower tier. In this view, the 

uppermost suspensor cell only becomes the hypophyseal cell after signalling from the lower tier cells. 

In an alternative view the MP product could be required in both the lower tier and the hypophyseal 

cell. The ability of mp seedlings to form adventitious roots was used to study the post-embryonic 

defects caused by the mp mutation. Although mp plants can make largely normal aerial structures, all 

organs contain differentiated, but insufficiently interconnected vascular strands, and polar auxin 

transport is reduced (Przemeck et al, 1996). These observations led to the conclusion that the MP 

gene is primarily involved in "axialization", and the absence of MP gene activity would result in the 

formation of non-continuous cell files. The MP gene encodes a transcription factor also identified by 

others as a regulator of an early auxin-induced gene, possibly involved in relaying auxin signalling 

(Hardtke and Berleth, 1998). MP is expressed in all subepidermal cells of the globular embryo, and 

becomes gradually confined towards the sites of vascular differentiation during further embryonic and 

post-embryonic development. The MP gene is proposed to promote the formation of continuous cell 

files, that are required to relay axial information at the onset of the hypocotyl-root axis in the early 

embryo. Thus, basal embryonic patterning is either dependent on correct vascular differentiation, or 

both processes are directed by common apical-basal signalling. 

Mutations in the FACKEL (FK) gene specifically delete the hypocotyl (Mayer et al, 1991). In 

the globular staged embryo, the cells of the lower tier do not form the elongated vascular precursor 

cells of the future hypocotyl. fk mutants have, in contrast to mp mutants, a normal root. Since the 

root is derived from both the hypophyseal cell and the lower tier, this raises the possibility that the 

hypophyseal cells induce adjacent lower tier cells to become root meristem initials, which can then 

produce the root. 

The radial pattern 

Periclinal divisions (perpendicular to the radial axis) of all cells of the octant stage embryo (Figure 

1.2B; Figure 1.3B) lead to the dermatogen stage (Figure 1.2C; Figure 1.3C). The formation of an 

outer cell layer of epidermal precursor cells (protoderm) and an inner cell group, each consisting of 

eight cells, is the first visible sign of radial pattern formation. The protoderm will then be maintained 

by continued anticlinal (circumferential) divisions and develop into the epidermis of the entire embryo 

(Jurgens and Mayer, 1994; Mansfield and Briarty, 1991). The inner cells divide again and contribute 

in the lower tier to the innermost vascular tissue (procambium) and the parenchymal ground tissue. 

Together with the protoderm, three concentric tissue layers are thus established that make up the three 

radial pattern elements of the embryo. As such, the radial pattern is established in a preliminary form 
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when the embryo reaches the globular stage. At the late-globular stage, the procambium cells perform 

a periclinal division to generate the pericycle and the innermost vascular bundle. The ground tissue of 

the upper-lower tier forms an additional layer of ground tissue cells characteristic of the hypocotyl 

region. In the lower-lower tier, only one ground tissue layer is maintained, characteristic of the 

radicle. During the heart stage, the ground tissue of the hypocotyl and radicle splits into an inner layer 

of endodermis and an outer layer of cortex cells. 

The progenitor cells of the epidermis, cortex-endodermis, and vascular tissue therefore 

become clonally distinct by the early globular stage of embryogenesis. At the late heart stage all tissue 

layers, from outside to inside the protoderm, one (in the radicle) or two (in the hypocotyl) cortex 

layers, the endodermis, pericycle, and vascular bundle, have been established. From then on, the 

tissue layers are extended by mitotic activity of the root meristem initials (Scheres et al, 1995). 

Establishment of embryonic tissue types along the radial axis 

Like the components of the apical-basal pattern, the different tissue types that make up the radial 

pattern of the embryo are established in steps. The radial pattern is established in a preliminary form 

when the embryo reaches the early globular stage. At this stage, the protoderm, ground tissue and 

vascular tissue are present as three concentric tissue layers. Later during embryogenesis, the radial 

pattern is further elaborated in the central domain of the embryo, giving rise to a pericycle layer 

surrounding the vascular bundle, a double cortex layer in the hypocotyl, and separate cortex and 

endodermis layers in hypocotyl and radicle (see below under "Elaboration of the preliminary radial 

pattern in the central domain of the embryo"). 

Radial pattern formation is initiated when all eight cells of the octant stage embryo divide 

periclinally, yielding eight protoderm cells overlying eight inner cells. The ATML1 gene is expressed 

in the apical daughter cell of the zygote and in all cells of the octant stage embryo (Lu et al., 1996). 

Separation of the protoderm and inner cells coincides with restriction of ATML1 expression to the 

protoderm. This raises the possibility that epidermal cell fate, as reflected by ATML1 expression, is 

already established in the apical daughter cell of the zygote, and that the internal cells formed by 

periclinal divisions in the octant stage embryo represent the first non-epidermal cells. This idea was 

originally proposed for the determination of epidermal cell fate in Citrus embryos on the basis of the 

observation that the zygote and its apical daughter cells are already coated with a cuticular wax layer, 

which is a morphological marker for epidermal cells (Brack and Walker, 1985a). Soon after inner 

cells are separated from protodermal cells, the latter start to express the ARABIDOPSIS THALIANA 

LIPID TRANSFER PROTEINI (ATLTP1) gene. 

In knolle mutants incomplete cell walls are formed, and the radial organization of the embryo 

is not established properly (Lukowitz et al., 1996). In early kn embryos, inner cells cannot be 
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distinguished from the protodermal layer. This coincides with the lack of restriction of ATLTP1 

expression to the outer cell layer (Vroemen et al, 1996). Apparently, the establishment and stable 

maintenance of cell fates along the radial axis requires the proper separation of tissue layers. The 

finding that fluorescent dye spreads within the hypocotyl epidermis of Arabidopsis seedlings, but not 

into the underlying ground tissue, demonstrates that these tissue layers are normally cytoplasmically 

isolated (Duckett et al, 1994). In kn embryos, incomplete cell wall formation results in cytoplasmic 

connections between the outer and inner cell layers. As a result, hypothetical protoderm and inner cell 

fate determinants might not be segregated to the adjacent cell layers. More generally, the uncoupling 

of cytoplasmic connections may be instrumental in segregating different cell fates. Internal cells in kn 

embryos later discontinue ATLTP1 expression and differentiate into vascular tissue. These changes 

may reflect the increased distance of the innermost cells from the outer cell layer. Alternatively, they 

could be the result of more complete cell wall formation, and thus an increased separation of tissue 

types. The KN gene is expressed in a "patchy" pattern of cells throughout the embryo from the octant 

stage onward, and encodes a syntaxin-like protein. Syntaxins are involved in vesicle trafficking 

during for example cell plate formation, which explains the observed incomplete cell walls in kn 

embryos (Lukowitz et al, 1996). 

keule (keu) mutant embryos have a protoderm layer consisting of bloated and irregularly 

arranged cells, while the ground and vascular tissues look normal. Detailed phenotypic analysis 

suggests that, like KN, KEULE is involved in cytokinesis (Assaad et al, 1996). However, normal 

protoderm-specific ATLTP1 expression in keu embryos suggests that the establishment of the radial 

pattern is unaffected by the keu mutation (Vroemen et al, 1996). 

In conclusion, only one mutant with an early embryonic defect in the establishment of the 

radial pattern has been identified so far. Most likely, no mutations have been identified yet in genes 

that convey specific information for radial pattern formation before the globular stage of 

embryogenesis. The ATML1 gene may be such an instructive gene, but this awaits the phenotype 

upon inactivation of the gene. 

Elaboration of the preliminary radial pattern in the central domain of the embryo 

Several mutations in the radial pattern of the later stage embryo have been described (Benfey et al, 

1993; Scheres et al, 1995). In shortroot (shr) and scarecrow (scr) mutants, the ground tissue layer 

does not segregate separate cortex and endodermis layers, shr embryos have a cortex layer, but fail to 

establish the endodermis. By contrast, the single cell layer in scr expresses both cortical and 

endodermal traits. Both phenotypes become apparent at the heart stage, when the periclinal division of 

the ground tissue cells that normally generates cortex and endodermis does not occur. Is the absence 

of a specific cell layer in shr and scr caused by defective cell fate specification in the ground tissue, or 
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by a defect in cell division that prevents the ground tissue cells from making the periclinal division 

necessary to generate two separate cell layers? To address this question, double mutants were made 

with ib& fass mutant (Scheres et al., 1995). fass mutant embryos display an irregular sequence of cell 

divisions in the early embryo, which results in an increased number of cell layers along the radial axis 

(Torres-Ruiz and Jurgens, 1994; Traas et al, 1995). shr fass double mutants have more ground 

tissue layers, but none of these display endodermis characteristics. These observations suggest that 

SHR specifies endodermal cell fate. By contrast, scrfass double mutants have one endodermal layer 

surrounded by multiple cortical layers. Apparently, SCR is required for the periclinal division in the 

ground meristem that leads to separate cortex and endodermis layers. The SCR gene encodes a novel 

putative transcriptional regulator (Di Laurenzio et al, 1996), and is expressed in the ground tissue 

from the late heart stage onward. After the separation of ground tissue into cortex and endodermis, 

SCR expression continues in the endodermis. In the post-embryonic root, SCR is expressed in the 

cortex-endodermis initial and also in the endodermis (Di Laurenzio et al., 1996; Malamy and Benfey, 

1997). Therefore, SCR may not only be involved in regulating the division separating cortex and 

endodermis, but could also be involved in expressing endodermal attributes (Dolan, 1997). 

Mutations in another gene, WOODEN LEG (WOL), result in a reduction of the number of 

vascular cells. Normally, vascular cells differentiate into xylem or phloem vessels late during 

embryogenesis. In wol mutant embryos, all vascular cells differentiate into xylem vessels, and no 

phloem is specified (Scheres et al, 1995). An increased number of vascular cells in the wol fass 

double mutant restores phloem specification. This implies that WOL, like SCR, affects cell division 

rather than specifying a specific cell fate. It is noteworthy that the radial pattern mutations described 

here display the same defects in post-embryonically formed lateral roots (Scheres et al, 1995), 

implying that mechanisms of pattern formation that operate in the embryo are also used in other 

developmental contexts. 

The scr and wol phenotypes suggest that the number of cells or cell layers available is critical 

for the establishment of specific cell fates. The formation of xylem in wol mutants may consume all 

the available vascular cells, and as a result no phloem forms. The fact that xylem is formed, and not 

phloem, implies that xylem is normally specified before phloem. This "first-come-first-served" 

mechanism has also been suggested for the sequential allocation of cells to floral organ primordia 

(Lauxefaf., 1996). 

Taken together, the radial pattern of the embryo is established in steps, starting with the 

separation of inner cells from protodermal cells in the octant stage embryo. Several mutants have been 

identified that lack specific radial pattern elements in later stage embryos, and one of these (shortroot) 

seems primarily affected in specifying cell fate. A minimum number of cells seems to be required for 

the proper separation of all tissue-specific cell fates. The fact that the radial pattern is not elaborated in 

the same way in each of the regions along the apical-basal axis suggests that apical-basal positional 

cues influence the response of cells to radial patterning signals. 
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Establishment of the root and shoot meristems 

The root and shoot meristems are established at opposite ends of the apical-basal axis of the embryo. 

They are elements that are part of the apical-basal and the radial pattern, and for this reason are 

discussed here separately. While the shoot meristem originates entirely from the upper tier, the root 

meristem is derived from two clonally distinct regions, namely the lower tier and the hypophyseal cell 

(see Figure 1.2). 

The shoot apical meristem 

Although its precise origin cannot be deduced directly from histological data (Barton and Poethig, 

1993; Irish and Sussex, 1992), the SAM becomes first recognizable at the torpedo stage of 

Arabidopsis embryogenesis as a small group of cytoplasmic dense cells between the bases of the 

cotyledons. The SAM is organized in three cell layers, LI, L2 and L3 (Satina et al, 1940; Figure 

1.4). The outermost LI layer derives from the embryo protoderm cells that originate from the upper 

tier in the octant stage embryo. The L2 and innermost L3 layers derive from subepidermal cells 

located in the center of the apical region of the embryo. Strictly anticlinal divisions in LI and L2 form 

two clonally distinct "tunica" layers, whereas the cells in L3 divide in various orientations to form the 

"corpus" (Barton and Poethig, 1993; Clark, 1997; McConnell and Barton, 1995). 

Superimposed on the three horizontal cell layers, the SAM can be divided conceptually into 

three zones, the central zone (CZ), peripheral zone (PZ), and rib zone (RZ), although their 

Figure 1.4: Schematic representation of the shoot apical meristem. The LI and L2 tunica layers overly the L3 

corpus. The zonation of the SAM includes a central zone (CZ) of undifferentiated stem cells, a peripheral zone (PZ) in 

which cells are incorporated into organ primordia, and a rib zone (RZ) that contributes to vascular tissue and interior 

stem structures. On each side of the meristem, a leaf primordium (lp) is indicated. The leaf primordia are formed late 

during Arabidopsis embryogenesis perpendicular to the cotyledons (not indicated; Laux and Jiirgens, 1997). 
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morphology in the embryo is indistinct (Figure 1.4). The CZ consists of undifferentiated stem cells at 

the very center of the meristem. These produce daughter cells that adopt specific developmental fates 

as they enter the surrounding PZ, or the underlying RZ (Endrizzi et al, 1996; Kerstetter and Hake, 

1997; Steeves and Sussex, 1989). In the PZ, cells are incorporated into organ primordia, the first 

being two leaf primordia that are established perpendicular to the cotyledons before the embryo 

reaches maturity (Laux and Jurgens, 1997; Figure 1.4). Cells in the RZ contribute post-embryonically 

to the vasculature tissue and internal stem structures (Steeves and Sussex, 1989). 

Mutations in the SHOOT MERISTEMLESS (STM) gene eliminate the entire SAM in embryos 

and seedlings (Barton and Poethig, 1993; Endrizzi et al, 1996). The mutational defect becomes first 

apparent in mature embryos, when the characteristic bulge of cytoplasmic dense cells does not form 

between the bases of the cotyledons. Post-embryonically, adventitious shoots can form but terminate 

prematurely, likely to be due to a depletion of undifferentiated cells in the meristem center (Endrizzi et 

al, 1996). STM activity is required to specify the meristematic nature of SAM cells during 

embryogenesis and thus to maintain a pool of undifferentiated cells in the center of the SAM. STM 

encodes a putative homeodomain transcription factor of the KNOTTED class (Long et al, 1996), and 

is first expressed in one or two cells in the apical domain of the globular embryo, long before the 

visible presence of the SAM and the aberrant SAM morphology in stm mutant embryos (Long et al, 

1996). STM expression expands to include the entire histologically visible embryonic SAM, and 

during post-embryonic development, covers a central region of all shoot and floral meristems. It is 

unknown whether STM is sufficient for meristem formation, as is the case for its maize homologue 

KNOTTED1 (Smith et al, 1995). Ectopic expression of the Arabidopsis KNOTTED-like gene 

KNAT1 (KNOTTED ARABIDOPSIS THALIANA1) is sufficient to induce ectopic shoot meristems 

on seedling leaves (Chuck et al, 1996). 

The AINTEGUMENTA (ANT) gene is expressed in two cell groups flanking the STM 

expressing cells in the apical domain of the globular stage embryo, and subsequently in the cotyledon 

primordia (Elliot et al, 1996). The expression patterns of STM and ANT indicate that the apical 

domain of the globular embryo is partitioned into a central area destined to become the shoot meristem 

and a surrounding area from which the cotyledons develop. 

Mutations in the CLAVATA1 (CLV1) and CLV3 genes result in an enlarged shoot meristem 

caused by accumulation of excessive numbers of undifferentiated cells in the CZ, a phenotype 

opposite to that of stm (Clark et al, 1993; Clark et al, 1995; Leyser and Furner, 1992; Weigel and 

Clark, 1996). The civ phenotypes become morphologically visible in the mature embryo, clvl clv3 

double mutants suggest that the two corresponding genes act in the same pathway (Clark et al, 

1995). There are two possible models for the action of the CLV and STM genes. First, CLV genes 

may promote differentiation, and thus the transition of cells from the CZ into the PZ. Second, CLV 

genes may restrict the rate of cell division in the CZ, and thus the size of the CZ. In these models, 

STM would either limit differentiation, or promote cell division in the CZ. The CLV1 gene encodes a 
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leucine-rich repeat transmembrane receptor kinase, and is expressed in the L3 layer of the meristem 

center, but in a region larger than the CZ. CLV1 may perceive positional information directed to cells 

expressing the receptor (Clark et al, 1997). civ and stm mutants can dominantly suppress each others 

phenotypes, indicating that CLV and STM play opposite and possibly competitive roles in the 

regulation of meristem activity and size. Moreover, these data suggest that CLV and STM either both 

influence differentiation, or both affect cell division (Clark et al, 1996) 

An enlarged shoot apical meristem is found in mutant altered meristem 

programming 1/primordia timing (ampllpt) embryos. This phenotype is already apparent at the 

globular stage, when cells in the entire apical domain of the embryo acquire the dense cytoplasmic 

appearance typical of cells in the shoot meristem (Conway and Poethig, 1997). Unlike civ, the 

ampllpt mutation has little effect on the post-embryonic shoot meristem. The highly pleiotropic 

effects of the ampllpt mutation imply that AMP1 function is not limited to the shoot apical meristem, 

but functions in many aspects of plant development. 

wuschel (wus) mutants, like stm mutants, also lack a functional embryonic shoot meristem, 

which is first visible in the mature embryo. In contrast to stm shoot meristems, wus shoot meristems 

still contain central cells, but they are larger and more vacuolated than wild-type shoot meristem cells. 

wus seedlings have a flat rather than a convex shoot meristem, and no histological differences 

between cells of the central and peripheral zones are evident, wus seedlings repetitively initiate 

defective shoot meristems, that terminate prematurely during primordia initiation across the whole 

mutant shoot meristem, including the meristem center. Collectively, these observations suggest a role 

for WUS in specifying cell identity in meristem centers, rather than in the initiation of the shoot 

meristem (Endrizzi et al., 1996; Laux et al., 1996). This is in line with the epistasis of STM over 

WUS (Evans and Barton, 1997), so STM may act before WUS. 

Mutations in the ZWILLE (ZLL) gene cause embryonic defects similar to those observed in 

wus mutant embryos (Endrizzi et al., 1996). zll embryos and seedlings have a non-functional shoot 

meristem, whose cells are larger and more vacuolated than wild-type shoot meristem cells. However, 

post-embryonically formed adventitious shoot meristems can be initiated in zll mutants, as is also the 

case in pinhead (pnh) mutants (McConnell and Barton, 1995), in which the most extreme phenotype 

resembles zll. These observations correlate with a downregulation of STM expression in the zll 

meristem center of late stage embryos, suggesting that the cells in the CZ of the zll SAM have initiated 

differentiation. STM expression is normal during early embryonic stages and during post-embryonic 

development. Collectively, these data suggests that SAM initiation is not affected by the zll mutation, 

and that ZLL is specifically required to maintain meristematic cell fate in the CZ of the embryonic 

SAM. The ZLL gene encodes a novel protein, and is expressed in the SAM center of mature 

embryos, which correlates with the observed phenotypic defect. Surprisingly, ZLL expression was 

also observed in vascular cells, starting as early as the globular embryo stage (Moussian et al, 1998). 

Although the significance of the ZLL expression in vascular cells is unclear, it could point towards a 
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transient requirement for signals from the vascular system for the partitioning of the embryonic SAM 

into a CZ of undifferentiated cells and a PZ of differentiating cells. 

One other class of mutants has been identified that affects the formation of the SAM. 

Mutations in CUP-SHAPED COTYLEDON (CUQ genes result in embryos and seedlings without a 

SAM (Aida et al., 1997). However, the most pronounced defect in cue embryos seems to be an 

incomplete separation of the cotyledons. In cue flowers, incomplete separation of sepals and stamens 

was observed. The mutant phenotype becomes apparent first in the heart stage embryo, when no 

distinct cotyledon primordia are visible, but is more pronounced during later stages of 

embryogenesis, when a collar-like structure forms at the apical end of the embryo. The SAM is 

completely lacking in cue embryos, and post-embryonic adventitious SAM formation is partly 

inhibited by the cue mutation. Whether the SAM and organ separation defects in cue mutants are 

causally related is unclear. The CUC gene encodes a putative transcriptional activator and is 

homologous to the petunia NO APICAL MERISTEM (NAM) gene, that is expressed at boundaries of 

meristems and organ primordia, and mutation of which results in a similar phenotype as the cue 

phenotype (Souer et al, 1996). 

The genetic and molecular data available so far show that a controlled balance between cell 

division and cell proliferation is required to maintain a functional SAM. The embryonic SAM seems 

to be established in at least two phases. First, cells in the apical domain of the globular embryo 

become specified towards SAM fate and initiate expression of specific genes such as STM. Second, a 

functional meristem is formed through partitioning of the SAM primordium into a central zone 

harboring undifferentiated cells, and peripheral and rib zones in which cells differentiate into organ 

primordia. It is thus far unknown whether the genes controlling this partitioning primarily regulate 

cell division, cell differentiation, or both. In any case, the ZLL expression pattern suggests that 

signalling from the vascular tissue may play a role. 

The root meristem 

The primary root meristem (RM) in the Arabidopsis embryo consists of two tiers of initial cells 

surrounding a group of four mitotically inactive cells, the quiescent center (QC; Dolan, 1998; Dolan et 

ah, 1993; Scheres et al, 1994). The RM arises from two distinct groups of cells that are clonally 

separated at the first division of the zygote. The QC and the central root cap arise from the 

hypophyseal cell, that is, in turn, derived from the basal daughter cell of the zygote (Figure 1.2). The 

initials above the QC arise from the apical daughter cell of the zygote. The hypophyseal cell sets off a 

lens-shaped cell during the globular stage (Figure 1.2D; Figure 1.3D). The descendants of this cell 

will form the QC, while the lower hypophyseal cell derivative develops into the initials of the central 

root cap. Starting at the late heart stage, these initials will produce additional layers of central root cap 
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cells. 

The initials above the QC display essentially the same radial organisation as the radicle: at the 

early heart stage, one layer each of epidermis, ground tissue, and pericycle surround a core of 

vascular precursor cells. At the late heart stage, the lowermost epidermal cell divides periclinally, 

giving rise to the lateral root cap initial and the epidermal initial. Further periclinal divisions of the 

lateral root cap initial produce additional layers of lateral root cap cells. Periclinal divisions in the 

daughters of the ground tissue initial give rise to the cortex and endodermis, turning the ground tissue 

initial into a "cortex-endodermis initial". 

In conclusion, the RM is derived from two clonally distinct regions of the early embryo, and 

arises through a highly invariant sequence of cell divisions. The radial pattern of the RM is evident by 

the late heart stage of embryogenesis. Within the meristem, initial cells and their daughters perpetuate 

this pattern by ordered cell divisions. 

The "hypophyseal cell group" mutants hobbit (hbt), bombadil, gremlin, and ore specifically 

affect the formation of the root meristem (Scheres etal, 1996). The first recognizable defect in all 

these mutants is the aberrant development of the hypophyseal cell, indicating that the correct 

specification of the hypophyseal cell is essential for the establishment of a functional root meristem. 

The hbt defect becomes first apparent at the four-celled embryo stage, where atypical divisions occur 

in the uppermost suspensor cell, that normally forms the hypophyseal cell (Willemsen et al, 1998). 

Subsequently, the cell-types normally derived from the hypophyseal cell, the quiescent center and the 

central root cap cells, are not specified. Furthermore, divisions of the lower-lower tier cells occupying 

the position of the root meristem initials in wild-type are strongly reduced or absent, and lateral root 

cap formation is disturbed. These defects can be explained by assuming that the HBT gene is 

involved primarily in the specification of the hypophyseal cell, which subsequently induces the 

adjacent lower-lower tier cells to form root meristem initials. This scenario has also been proposed on 

the basis of the fackel phenotype (see above under "Establishment of embryonic domains along the 

apical-basal axis"), and receives further support from the observation that laser ablation of a quiescent 

center cell at the seedling stage results in the differentiation of the normally undifferentiated adjacent 

initial cells (Dolan, 1998; van den Berg et al, 1997). However, the current data cannot rule out the 

possibility that HBT is directly involved in the specification of all cell types of the root meristem, 

comprising the quiescent center, the central and lateral root cap, and the root meristem initials. 

Based on the monopteros, fackel (see above under "Establishment of embryonic domains 

along the apical-basal axis) and hobbit mutant phenotypes, and the results from laser ablation studies 

(Dolan, 1998), a tentative model for the establishment of the root meristem includes two successive 

induction events across the clonal boundary between the lower tier and the hypophyseal derivatives. 

Initially, the lower tier cells induce the upper suspensor cell to develop into the hypophyseal cell, and 

later, the hypophyseal cell or its derivative, the quiescent center, induces the adjacent cells of the 

lower tier to form root meristem initials. 
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Role of auxin in pattern formation and organ formation 

The natural plant growth regulator indole 3-acetic acid (IAA), belonging to the auxins, is an important 

molecule affecting almost all aspects of plant growth and development. However, its role in embryo 

pattern formation has not been addressed until fairly recently. Except perhaps for the Arabidopsis 

MONOPTEROS gene product (Przemeck et al, 1996), that is believed to be involved in the 

transduction of a polar signal (possibly auxin), and whose absence results in embryos and seedlings 

lacking a RM (see above under "Establishment of embryonic domains along the apical-basal axis"), 

embryo mutant analysis has not yet provided clues concerning the nature of the signals that are 

instrumental in setting up the embryo pattern. The question whether auxin gradients are instrumental 

in apical-basal pattern formation has been addressed by in vitro culturing of excised immature zygotic 

embryos. Inhibition of polar auxin transport in in vitro cultured globular zygotic embryos of Indian 

mustard (Brassica juncea), by application of 2,3,5-triiodobenzoic acid (TIBA) or 9-hydroxyfluorene-

9-carboxylic acid (HFCA), led to the formation of a collar-like extension of fused cotyledons at the 

apical end of the embryo (Liu et al, 1993). This fused cotyledon phenotype has similarities to the 

embryo phenotype observed in the cue mutant (described above under "The shoot apical meristem"). 

The treated Brassica embryos formed shoot and root meristems (Liu et al, 1993), suggesting that the 

specification of these pattern elements is either not dependent on polar auxin transport, or is 

completed before the globular stage. From further studies, employing the same system of immature 

Brassica zygotic embryo culture, Hadfi etal. (1998) concluded that auxin is not only involved in 

cotyledon formation, but also in establishing other elements of the apical-basal axis. Upon exposure 

of early globular embryos to appropriate concentrations of the natural auxin indole 3-acetic acid 

(IAA), ball- or egg-shaped embryos were formed that showed some normal cell differentiation and 

greening in the hypocotyl region, but no development of the shoot apical meristem. Inhibition of 

auxin transport in transition stage embryos resulted in different aberrations, most notably in collar-like 

cotyledons. In some embryos, more extreme abnormalities, such as axis duplication or axis 

broadening were observed (Hadfi et al, 1998). In in vitro cultured globular wheat zygotic embryos, 

the addition of the polar auxin transport inhibitor TIBA influenced the position and development of 

the SAM while no RM was formed. The application of strong synthetic auxins prevented the 

development of bilaterally symmetric embryos. A model was proposed in which a non-homogenous 

distribution of auxin in the globular embryo is instrumental in mediating the transition between radial 

symmetry (as in the globular embryo) to bilateral symmetry (as in the transition stage embryo), finally 

leading to SAM formation (Fischer and Neuhaus, 1996). Later studies in the wheat system showed 

that application of NPA (Af-1-naphthylphthalamic acid) and another polar transport inhibitor, 

3,3',4',5,7-pentahydroxyflavone (quercetin) led to the formation of multiple shoot and root 

meristems, and in some cases even to a multiplication of embryonic axes, giving rise to zygotic 

polyembryos (Fischer et al, 1997). 
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These results collectively suggest an important role of polar auxin transport in establishing at 

least certain elements of the apical-basal embryo pattern. From the available evidence, it is likely that 

the proposed auxin gradients are already established in the pre-globular embryo, preceding the 

establishment of some of the apical-basal pattern elements. Although intracellular levels of the 

synthetic auxin 2,4-D and the endogenous auxin indole-3-acetic acid (IAA) in entire cell clusters and 

embryos have been measured (Ivanova et al, 1994; Michalczuk et al, 1992; Ribnicky et al, 1996), 

auxin gradients have not been determined so far in immature embryos. Whether auxin gradients are 

required for all aspects of apical-basal pattern formation in the embryo remains to be determined. The 

finding that some of the embryos treated with polar auxin transport inhibitors phenocopy certain 

Arabidopsis zygotic embryo mutants seems to support the idea that auxin gradients are instrumental in 

the establishment of the apical-basal embryo pattern. It is clearly a task of the immediate future to 

study auxin content and distribution in Arabidopsis zygotic embryo mutants. 

Flexibility in the initiation and in the early division pattern of 
embryogenesis 

In plants, single cells other than the zygote are capable of setting course for an embryogenic pathway. 

This phenomenon occurs naturally in plants in the form of apomictic embryogenesis, commencing 

from a cell or cells of the female gametophyte or of the surrounding maternal somatic tissues 

(Koltunow, 1993). We assume that the mechanisms of embryo pattern formation by which plant 

embryos from non-zygotic origin develop are essentially the same as outlined above for the zygotic 

Arabidopsis embryo. However, there is no formal proof for this assumption yet. 

From a comparison between zygotic and non-zygotic embryos of the same plant species, it is 

clear that, especially in the early stages, significant differences in cell division patterns exist 

(Mordhorst et al, 1997). Evidence for this came from studies on microspore embryogenesis in rape 

seed, a close relative of Arabidopsis. Rape seed microspores at the unicellular stage can switch 

developmental fate from pollen development to embryogenesis. This process can be induced by 

applying heat shock to isolated microspores, and results in fully fertile plants (see Mordhorst et al. 

(1997)). The first division in microspore embryogenesis takes place inside the pollen coat or exine 

and is symmetric, in contrast to the asymmetric first division of the normal gametophytic pathway 

(Yeung et al, 1996). While zygotic embryogenesis in rape seed follows the highly regular cell 

division pattern described for Arabidopsis (Yeung et al, 1996), early divisions in embryogenic 

microspores appear to be random (Dolan, 1997; Malamy and Benfey, 1997; Telmer et al, 1995; 

Yeung et al, 1996). The resulting multicellular structure representing the early microspore embryo, 

while still developing inside the exine, exhibits an equal distribution of starch granules in all cells, 

implying that at that stage the embryo has not yet attained morphologically discernible polarity (Hause 
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et al, 1994). After local rapture of the exine and release of the multicellular structure into the culture 

medium, starch granules disappear at the "broken side" (the future apical pole) and persist at the 

opposite side (the future root pole; Hause et al, 1994; Yeung et al., 1996). The multicellular structure 

released from the exine therefore appears to be 'self-organizing' in becoming a globular embryo. No 

typical suspensor nor a hypophyseal cell is observed (Yeung et al, 1996), though the hypophyseal 

cell is considered to play a central role in the formation of the RM in zygotic embryogenesis (Scheres 

et al., 1995). Based on these observations, one can conclude that it is apparently possible in 

microspore embryos to delay fixation of the apical-basal embryo axis until a multicellular stage is 

reached, and that essential functions attributed to certain cell types such as the hypophyseal cell are 

either not common to all types of embryogenesis, or can be taken over by other cells. 

The most striking example of flexibility in plant embryogenesis remains the observation that in 

vitro somatic embryo development is possible in suspension cultures of carrot cells (Reinert, 1959). 

In carrot cell suspensions, it has been unequivocally demonstrated that single cells can develop into an 

embryo in completely synthetic media with only an auxin, usually the synthetic auxin 2,4-D, as 

growth regulator (Komamine et al (1990) and Figure 1.5). Video analysis of many thousands of 

individual cells ("cell tracking") has shown that single embryo-forming cells are highly variable in 

morphology (Toonen et al, 1994). In search of a molecular marker for single embryo-forming cells, 

Schmidt et al (1997) identified the SOMATIC EMBRYO RECEPTOR-LIKE KINASE (SERK) gene 

that is expressed in single embryo-forming suspension cells, as monitored by SERK promoter driven 

luciferase expression (Figure 1.5). The SERK gene is one of the very few genes described so far that 

appears to be expressed only in embryos and not in meristems or other parts of the adult plant. It is 

expressed during the few first cell divisions in the developing embryo and is turned off again at the 

globular embryo stage. The SERK protein encodes a transmembrane receptor kinase with some 

resemblance to the Drosophila Toll receptor kinase. The function of the SERK protein may be to 

luciferase 
if 

day 1 day 1 day 2 day 3 day 6 day 9 day 13 

Figure 1.5: Luciferase expression under control of carrot SERK regulatory elements correlates with embryogenic 

competence of single cells or small cell clusters. Luciferase activity of immobilized cells from an embryogenic carrot 

cell culture was recorded at day 1, and subsequently the development of cells was recorded by video cell-tracking for a 

period of 13 days (Schmidt et al., 1997). 
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transduce a signal that is instrumental in conferring an 'embryo-fate' to plant cells (Schmidt et al, 

1997). 

The establishment of somatic embryogenesis in Arabidopsis (Mordhorst et al, 1998) now 

allows to apply the molecular and genetic approaches used in the analysis of zygotic embryogenesis to 

the experimentally more accessible system of embryogenesis in cell culture. Embryogenic suspension 

cultures of Arabidopsis have been obtained by culturing immature zygotic embryos of the ecotype 

Columbia (Pillon et al, 1996), and always arise from the SAM under in vitro conditions (Mordhorst 

et al, 1998). Cell lines with a much higher embryogenic capacity in vitro were obtained from 

recessive mutants such as primordia timing-1 (pt-1) and civ. These mutants were originally identified 

in genetic screens for SAM formation and altered flowering, respectively. Their most conspicuous 

embryo and seedling phenotype is a large SAM with a higher than normal number of dividing cells. 

While the CLV1 gene encodes a Leucin Rich Repeat (LRR) type receptor kinase (Clark et al, 1997), 

the PT-1 gene has not yet been identified. A positive correlation between the size of the SAM in single 

and double mutants of civ and pt and the number of embryogenic cells that could be obtained under in 

vitro conditions suggests that the larger number of cycling SAM cells in the mutants may be the 

reason for the enhanced somatic embryogenesis phenotype (Mordhorst et al, 1998). 

Comparing early stages of zygotic and somatic embryo development in carrot (McWilliam et 

al, 1974; Toonen et al, 1994) and alfalfa (Dos Santos et al, 1983) revealed that the early divisions 

in somatic embryos are less regular than those in their zygotic counterparts. Moreover, somatic 

embryos usually lack a suspensor (Fischer et al, 1997; Toonen et al, 1994; Xu and Bewley, 1992) 

and can develop via morphologically different cell clusters (Toonen et al, 1994). In Arabidopsis 

somatic embryos, the number of cell files and the number of cells per file are higher and more variable 

than the highly regular numbers in zygotic embryos. Zygotic embryos formed on plants derived from 

somatic embryos display the normal regularity of the zygotic Arabidopsis embryo, indicating that the 

variability in cell numbers is associated with somatic embryogenesis (Mordhorst et al, 1998). 

Both microspore and somatic embryogenesis have frequently been used in screens for genes 

specifically expressed in embryos (e.g. Giroux and Pauls, 1996; Lin et al, 1996; Schmidt et al, 

1997). Expression patterns of embryogenesis related mRNAs identified during these screens (Franz 

et al, 1989; Osborne et al, 1991; Sterk et al, 1991; Wurtele et al, 1993) turned out to be similar 

during somatic and zygotic embryo development, demonstrating that somatic and zygotic embryo 

development have common molecular characteristics. 

In conclusion, non-zygotic embryos can develop from different types of plant cells, and can 

exhibit considerable morphological variability under in vitro conditions, while retaining common 

molecular characteristics. The fact that recessive mutations in two genetically unrelated genes, PT and 

CLV, result in highly increased embryogenic capacity in vitro may imply that embryogenic capacity is 

a trait that is suppressed in wild-type plants. The eventual number of mutants with increased 

embryogenic capacity and the identity of the corresponding genes will be important to understand the 
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concept of plant cell totipotency. 

Signalling molecules in somatic embryogenesis 

In somatic embryogenesis, cells may switch from the somatic to the embryogenic state in a cell-

autonomous way under the influence of exogenous growth regulators. Alternatively, they may 

depend on the perception of specific signals from neighboring cells. The identification of the SERK 

gene (see above under "Flexibility in the initiation and in the early division pattern in embryogenesis") 

suggests that the embryogenic transition process requires specific signalling events. 

The beneficial effect of suspension cell cultures (Kranz et al, 1991) or embryogenic 

microspore cultures on development of in vitro cultured zygotes (Holm et al, 1994; Leduc et al, 

1996) proves the importance of cell-cell communication during initiation of embryogenesis. Similar 

effects have been observed in somatic embryogenesis after addition of medium conditioned by 

developing somatic embryos (De Vries et al, 1988). By virtue of the accessibility of embryogenesis 

tissue culture systems, the compounds responsible for these beneficial effects have been purified from 

the conditioned medium and identified as proteins or proteoglycans that may be involved in cell-cell 

signalling events in early plant embryogenesis. 

The carrot EP3 endochitinase genes (Kragh et al, 1996) encode proteins secreted into the 

culture medium that are able to rescue somatic embryo development in the temperature sensitive 

mutant tsll (De Jong et al, 1992; De Jong et al, 1995). The EP3 genes are not expressed in somatic 

embryos, but in other cell types present in the suspension culture (Van Hengel et al, 1998). Given 

the effect of the endochitinase proteins on somatic embryos these proteins may be part of a cell-cell 

communication system involved in somatic embryogenesis. Several recent studies indicate a role for 

certain arabinogalactan proteins (AGPs) in plant cell-cell communication. AGPs are 90-100 kD 

proteoglycans with a small protein core and consist of more than 90 % carbohydrate, predominantly 

in the form of arabinose and galactose, with minor amounts of other sugars. AGPs can promote 

embryogenesis in suspension cultures of carrot (Kreuger and Van Hoist, 1993 and 1995; Toonen et 

al., 1997) and Pinus (Egertsdotter and Von Arnold, 1995). Removal of a population of non-

embryogenic single cells reduced embryogenesis but this negative effect could be counteracted by 

adding AGPs, suggesting that AGPs were the causative agent produced by the single cell population 

(Toonen et al, 1997). AGPs react with the B-glycosyl Yariv reagent (Fincher et al, 1983; Kreuger 

and Van Hoist, 1996). Binding of this reagent to cell wall AGPs of rose (Rosa sp.) suspension cells 

inhibited growth in a reversible fashion, probably due to suppression of the cell cycle, possibly in 

combination with prevention of cell expansion (Serpe and Nothnagel, 1994). 

It has been proposed that carrot suspension cells decorated with the JIM8 AGP cell wall 

epitope are in a transition between the competent and embryogenic state (Pennell et al, 1992). This 

32 



chapter 1 

suggestion was based on the labelling of a subpopulation of single cells with the JIM8 antibody only 

in embryogenic cultures. Cell tracking of JIM8 labelled cell populations however failed to 

demonstrate a causal relationship between JIM8 labelling and embryo formation (Toonen et al, 

1996). Given the demonstrated promotive effects of certain AGPs, it is possible that the JIM8 

decorated cells perform some accessory function in embryogenesis. Support for cell-cell signalling by 

a JIM8 epitope-containing molecule comes from a study where soluble molecules, possibly AGPs 

bearing the JIM8 epitope, are able to initiate somatic embryogenesis in suspension cells (McCabe et 

al, 1997). This soluble JIM8 epitope is reminiscent of the one that labels a class of single cells in 

culture and may represent a component that is produced by one cell type and acts on another. These 

results suggest that AGPs may play a role in determining cell fate and regulating cell differentiation in 

plants (Chasan, 1994; Knox, 1995; Touraev et al, 1996). The JIM8 epitope is found on suspensor 

cells and on the hypophyseal cell in the zygotic embryo, but not on descendants of the apical cell 

(Pennell et al, 1991). Taken together, these findings point to signalling between suspensor and 

globular embryo, while suspension cells that have retained certain aspects of suspensor cells may take 

over the role of the suspensor cells in vitro. 

If components of the conditioned medium of plant cell cultures such as chitinases and AGPs 

have a beneficial effect on somatic embryo formation, it is of interest to determine where such 

molecules are found during zygotic embryogenesis. Developing seeds have proven to be a rich source 

of AGPs able to promote embryogenic cell formation in tissue culture (Kreuger and Van Hoist, 

1993), while the carrot EP3 chitinase genes appear to be expressed in the integuments of the seed coat 

and in the endosperm (Van Hengel et al, 1998). 

In conclusion, the available evidence from genetic and in vitro studies points to cell-cell 

communication between different domains in the early embryo, and also between the embryo and the 

surrounding endosperm and maternal tissues. These processes can now also be studied genetically 

through Arabidopsis fertilization independent endosperm (fie) and fertilization independent seed (fis) 

mutants, that show endosperm development without fertilization (Chaudhury et al, 1997; Ohad et al, 

1996). While fie and fis mutants prove that endosperm development can take place without concurrent 

embryo development, no mutants have been identified so far in which embryo development takes 

place in the absence of endosperm. This finding may support the notion that embryo development is 

dependent on the surrounding endosperm. 

Outlook 

It is evident that considerable progress is made towards understanding the initiation and maintenance 

of, for instance, the SAM. The genes that have been cloned based on meristem phenotype appear to 

be important regulators of the cellular differentiation state in the meristem. While extensive screens for 

early embryo mutants in Arabidopsis have been performed and novel screens are underway, one of 
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the emerging difficulties is the recognition of informative phenotypes. This problem appears less 

serious for SAM defectives than for mutations that affect polarity in the zygote or the two-celled 

stage. The inherent flexibility associated with embryogenesis in plants may greatly hamper 

identification of informative mutants based on morphology only. Additional efforts employing 

suitable marker genes are most likely of importance to make progress in this area. Unfortunately, very 

few genes are available that allow to detect early deviation from apical or basal cell fate. Precise 

molecular markers are necessary to determine cellular or regional identity in embryo mutants with 

phenotypes that are difficult to interpret. Enhancer and gene trap insertional mutagenesis screens have 

recently proven successful in identifying genes expressed during Arabidopsis embryogenesis 

(Vroemenefa/., 1998). 

The discovery that interference with the polar auxin transport and thus endogenous auxin 

distribution creates embryo phenotypes reminiscent of genetically defined phenotypes appears to be a 

very promising lead to verify whether the classical plant growth regulator auxin is indeed a key 

molecule in embryo pattern formation. 

The understanding of the mechanisms controlling the transition from a somatic or 

gametophytic cell into an embryogenic cell can be expected to help elucidate processes of early zygotic 

embryogenesis, as exemplified by studies on the SERK gene in both somatic and zygotic embryos. 

AGPs produced by non-embryogenic cells are candidate molecules that may perform an important 

role in conferring 'embryo identity' to plant cells. These effects of AGPs may reflect putative 

suspensor and endosperm functions in zygotic embryogenesis. Additional insight in the role of 

molecules such as AGPs in plant embryogenesis may be obtained by employing for instance reverse 

genetics approaches. Clearly, AGP synthesis and the precise modes of AGP action, including 

transport and recognition by target cells, are areas that need to be developed in the immediate future. 

In vitro embryogenesis could also provide clues on subjects such as the origin of polarity in 

seemingly unorganized clusters of embryogenic cells. Moreover, these systems should be amenable 

to sophisticated ways of experimental manipulation, such as cell ablation and in vitro 

complementation. 

Summary 

Mutant screens have identified genes whose products are required for apical-basal and radial pattern 

formation in the embryo. Although not all of the genes identified by mutation have been cloned so far, 

and the precise mode of action of genes that have been cloned largely remains to be determined, the 

available evidence provides some conceptual insight into plant embryo development. 

It appears that the acquisition of different cell fates during the establishment of the apical-basal 

embryo pattern is initially dependent on correct segregation of cell fates through specific and unequal 
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divisions. Mutations in genes such as KNOLLE and GNOM that affect the initial divisions of the 

embryo create severe embryo phenotypes that support this notion. The octant stage embryo is 

subdivided along the apical-basal axis into the upper and lower tiers, and the hypophyseal cell. Not all 

of the genes that are required to properly specify these regions are directly conferring regional 

identity, as demonstrated by for example the MP gene. Establishment of the different pattern elements 

along the apical-basal axis may require signalling between the three early embryonic regions. The gk 

phenotype suggests signalling between the upper and lower tiers, and the mp,fk, and hbt phenotypes 

a two-way signalling between the lower tier and hypophyseal cells. 

Radial pattern formation starts when inner cells are separated from protoderm cells in the 

dermatogen stage embryo. Morphological and molecular observations suggest thct protodermal cell 

fate is already established in the apical daughter cell of the zygote. Further elaboration of the radial 

pattern in the central domain of the embryo requires genes that specify cell fate, such as SHR, and 

genes, such as SCR and WOL, that affect cell division and are involved in the generation of sufficient 

concentric cell layers for the proper separation of all tissue-types. 

The establishment of a functional SAM may require signals from the lower-tier derived 

vascular tissue, as suggested by ZLL expression, and signalling between the CZ and PZ, possibly 

involving STM, CLV, and ZLL. 

The identification of LRR type receptor kinases as SERK and CLV, and transcriptional 

regulators such as STM appears to confirm the existence of elaborate systems of cell communication. 

The identified LRR receptors are of a type comparable to that found in animal cells, where they are 

commonly activated by peptide ligands. This may point towards the involvement of peptide-based 

growth factors (van de Sande et al, 1996) in plant embryogenesis. 

Positional information mediated through cell-cell communication appears of importance in 

making plant embryos. Evidence comes from mutant analysis and laser ablation studies (Dolan, 

1998). The observation that the complete embryo pattern can be established in vitro without the 

precise sequence of oriented cell divisions characteristic of the zygotic Arabidopsis embryo also 

underscores the importance of positional information for the establishment of cell fates and pattern. 

This implies the existence of a flexible mechanism, independent of precise cell numbers and cell 

division patterns, to establish pattern. Polar auxin transport and unequal auxin distribution may be 

involved in embryo pattern formation or organ differentiation. 

In vitro embryogenesis systems, in which non-zygotic embryos develop outside of the 

"normal" context of the seed, have provided evidence for the existence of cell-cell communication 

between non-embryogenic and embryogenic cells. AGPS have emerged in several systems as 

molecules that could be involved in or even responsible for the formation of embryogenic cells. 
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Pattern formation in the Arabidopsis embryo revealed by 
position-specific lipid transfer protein gene expression 

During Arabidopsis embryogenesis, the zygote divides asymmetrically in the future apical-basal axis; 

however, a radial axis is initiated only within the eight-celled embryo. Mutations in the GNOM, 

KNOLLE, and KEULE genes affect these processes: gnom zygotes tend to divide symmetrically; 

knolle embryos lack oriented cell divisions that initiate protoderm formation; and in keule embryos, an 

outer cell layer is present that consists of abnormally enlarged cells from early development. Pattern 

formation along the two axes is reflected by the position-specific expression of the Arabidopsis lipid 

transfer protein (AtLTPl) gene. In wild-type embryos, the AtLTPl gene is expressed in the 

protoderm and initially in all protodermal cells; later, AtLTPl expression is confined to the cotyledons 

and the upper end of the hypocotyl. Analysis of AtLTPl expression in gnom, knolle, and keule 

embryos showed that gnom embryos can also have no or reversed apical-basal polarity, whereas 

radial polarity is unaffected, knolle embryos initially lack but eventually form a radial pattern, and 

keule embryos are affected in protoderm cell morphology rather than in the establishment of the radial 

pattern. 

Casper W. Vroemen, Sandra Langeveld, Ulrike Mayer1, Gabriela Ripper1, Gerd Jiirgens1, Ab van 

Kammen, and Sacco C. de Vries (1996) Plant Cell 8,783-791 
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Introduction 

In flowering plants, the primary body plan of the seedling is laid down during embryogenesis 

(Steeves and Sussex, 1989). This body plan has been described as the superimposition of an apical-

basal and a radial pattern (Mayer et al, 1991). The apical-basal pattern visible in the seedling consists 

of distinct elements: two cotyledons, shoot meristem, hypocotyl, and root, including the root 

meristem. In Arabidopsis, the apical-basal polarity is already evident in the zygote, which elongates 

approximately threefold in the apical direction. An asymmetric division then generates a small apical 

cell from which all pattern elements are derived, except for part of the root, that is, the columella root 

cap and the quiescent center (Scheres et al, 1994), and the suspensor, which are derived from the 

larger basal cell. Mutations resulting in a deletion of regions of the apical-basal pattern include gurke, 

fackel, monopteros, and gnom (Berleth and Jiirgens, 1993; Mayer et al, 1993; Mayer et al, 1991) 

and rootless, shoot meristemless, and topless (Barton and Poethig, 1993). 

In gnom embryos (Busch et al, 1996; Mayer et al, 1993; Mayer et al, 1991), also called 

emb30 embryos (Franzmann et al, 1995; Shevell et al, 1994), the zygote tends to divide 

symmetrically, producing an enlarged apical cell at the expense of the basal cell, gnom embryos have 

no root meristem and reduced or no cotyledons, and most gnom seedlings are cone shaped, retaining 

apical-basal polarity, although the pattern is severely compromised. Some gnom seedlings, however, 

are ball shaped, displaying no morphologically apparent apical-basal polarity (Mayer et al, 1993). 

The radial pattern is arranged in three concentric layers of tissues: the outer protoderm, the inner mass 

of ground tissue, and the centrally located vascular bundles. This pattern is initiated within the first 

eight cells formed from the small apical cell (Jiirgens et al, 1991; Meinke, 1991). Each of these eight 

cells divides tangentially to give an outer epidermis precursor, or protodermal cell, and an inner cell. 

Repeated divisions of the inner cells generate the ground and vascular tissues. The protodermal cell 

layer expands by anticlinal cell divisions only and is thus maintained as a distinct cell layer. 

Mutations in two genes, KNOLLE and KEULE, affect the radial pattern but also cause other 

major morphological defects; knolle and keule embryos and seedlings are strongly compressed in the 

apical-basal direction (Mayer et al, 1991). In knolle embryos, the initial cell divisions are abnormal, 

so no inner cells can be clearly distinguished from an outer layer. At later stages, however, vascular 

tissue forms in the center of knolle embryos, knolle embryos and seedlings are round or tuber 

shaped. In keule embryos, a distinct outer cell layer is present, but it consists of abnormally enlarged 

cells, whereas the cells of both the ground tissue and the vasculature look normal. Thus, in this 

mutant, the shape rather than the initial formation of the protoderm cells seems to be affected (Mayer 

etal, 1991). 

The embryo protoderm is the precursor of the plant epidermis. During postembryonic 

development, the epidermis of aerial plant organs performs a number of functions essential for the 

stability of turgescent tissue. The most important function is to control water loss. In addition, the 
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epidermis provides mechanical and chemical defences against pathogens (Clark et al, 1992). In the 

plant embryo, the protoderm may play a role in restriction of turgor-driven water uptake through the 

formation of a cuticular layer and also may act to protect the embryo from hydrolytic endosperm-

degrading enzymes (Sterk et al, 1991). Additional evidence for the importance of the protoderm for 

embryo development was found in somatic embryos of the temperature-sensitive carrot mutant line 

ts l l . At the nonpermissive temperature, tsll embryos arrest at the globular stage and have an 

aberrant, irregular protoderm with enlarged, vacuolated cells. At the permissive temperature or after 

rescue with a 32-kD endochitinase, tsl 1 embryos have a correctly formed protoderm (De Jong et al, 

1992; De Jong et al, 1993). The protoderm of Citrus jambhiri embryos, once formed, could not be 

replaced by respecification of ground tissue after experimental removal (Brack and Walker, 1985b), 

emphasizing the importance of protodermal differentiation for embryo development. 

Sterk et al. (1991) identified the carrot EP2 gene as a marker for the embryo protoderm in 

carrot. The EP2 gene encodes a 10-kD lipid transfer protein (LTP) secreted into the medium of 

embryogenic carrot cell cultures. The EP2 gene is expressed in protoderm cells of somatic and zygotic 

carrot embryos, starting at the early globular stage. The LTP is proposed to be involved in cuticle 

formation on the outer surface of protodermal cells (Sterk et al, 1991). In arrested tsll embryos, 

which have a morphologically aberrant protoderm, the EP2 gene was found to exhibit either a 

uniform (De Jong et al, 1993) or a diffuse subepidermal pattern of expression (Sterk et al, 1991). 

In this study, we show that in Arabidopsis, pattern formation along the apical-basal and radial 

axes is reflected in the position-specific expression of the AtLTPl lipid transfer protein gene (Thoma 

et al, 1994), which is the Arabidopsis homolog of the carrot EP2 gene (Sterk et al, 1991). The 

AtLTPl gene is expressed in the protoderm soon after this cell layer is evident in the early globular 

embryo stage. AtLTPl expression was initially observed along the entire apical-basal embryo axis, 

but later became confined to the apical pole, including the cotyledons and the upper end of the 

hypocotyl. In a recent study, Yadegari et al. (1994) used AtLTPl expression to show that raspberry 

embryos, although they are morphologically arrested at the globular stage and have a grossly 

abnormal outer cell layer, initiate a protoderm-specific gene expression program in the outer cell layer 

of both the embryo proper and the suspensor. This indicates that in these mutant embryos, cell 

differentiation is uncoupled from morphogenesis. We have compared AtLTPl expression of wild-

type embryos with that of gnom, knolle, and keule mutants. Our results suggest that embryo apical-

basal polarity is still fully reversible in the zygote and that radial polarity is established in a centripetal 

fashion and employs more than one independent mechanism. Moreover, we emphasize the 

importance of using well-characterized tissue-specific markers in mutant embryo analysis. 
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Results 

Expression of an AtLTPl prowioter-p-glucuronidase gene fusion in wild-type and 

gnom embryos 

Embryos from transgenic plants homozygous for a fusion of a 1149-bp region of the AtLTPl 

promoter and a promoterless /}-glucuronidase (GUS) gene (Thoma et al, 1994) were analyzed 

histochemically for the presence of GUS activity. The results are presented in Figure 2.1. GUS 

expression was detected from the early globular stage, through the heart and torpedo stages, to the 

maturation stage (Figures 2.1 A to 2.1C; data not shown). At the globular stage, GUS expression was 

uniform along the entire apical-basal axis of the embryo proper, including in the cells derived from the 

hypophyseal cell (Figure 2.1 A). This staining pattern persisted in the heart-stage embryo (Figure 

2.IB), whereas during the transition from the heart stage to the torpedo stage, GUS expression 

became confined to the apical pole of the embryo, including the cotyledons and the upper end of the 

hypocotyl (Figure 2.1C). 

In maturation-stage embryos, GUS expression was most prominent in the cotyledons, 

especially in their tips, and less intense in the embryo hypocotyl (data not shown). No GUS staining 

was observed in the embryonic root of torpedo- and maturation-stage embryos. GUS staining was 

variable in the suspensor of globular- and heart-stage embryos (Figures 2.1 A, 2. IB, and 2.ID), 

whereas after the heart stage, suspensor staining was never observed. The AtLTPl expression pattern 

in the mature embryo corresponds to the expression pattern observed in seedlings just after 

germination, at which time AtLTPl expression is highest in the tips of the cotyledons (Thoma et al, 

1994). In addition to embryo-specific GUS staining, intense GUS staining was evident in the 

developing seed coat (Figures 2.ID and 2.1H; data not shown). No GUS staining was observed in 

plants not containing the AtLTPl promoter-Gf/5 fusion (data not shown). 

We have used the gradual restriction of AtLTPl-GUS expression toward the apical end of the 

embryo to monitor changes in pattern formation caused by mutations in the GNOM gene (Mayer et 

al., 1993). To localize AtLTPl promoter activity in gnom embryos, plants homozygous for the 

AtLTPl-GUS fusion were crossed to plants heterozygous for the gnom mutation. Histochemical 

GUS staining was performed with siliques of Fi plants in which one-fourth of the embryos were 

mutant. Figures 2.ID to 2.11 show GUS-stained gnom embryos. Mutants clearly have a smooth 

surface due to the presence of a morphologically normal protoderm (Mayer et al., 1993). In cone-

shaped gnom embryos, the time course and a restriction of GUS expression to the apical end of the 

embryo were observed to be similar to those of wild-type embryos. 

Temporal expression can be determined by comparing mutant and wild-type embryos in the 

same silique. In Figure 2. IE, which shows a cone-shaped gnom embryo of the same developmental 
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Figure 2.1: Histochemical localization of GUS activity in transgenic wild-type and gnom embryos containing an 

AtLTPl promoter-GUS fusion. 

A to C: Developing wild-type embryos at the globular (A), heart (B), and torpedo (C) stages. Apical sides are oriented 

upward. 

D to I: Developing gnom embryos from siliques in which wild-type embryos were at the globular (D), torpedo (E), and 

maturation (F to I) stages. Embryos in E and F are of the cone-shaped phenotype. Embryos in G to I are of the ball-

shaped phenotype. Apical sides are oriented upward, 

c, cotyledon; ep, embryo proper; er, embryonic root; h, hypocotyl; s, suspensor; sc, seed coat. Bars = 50 Mm. 
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Figure 2.2: Localization of AtLTPl mRNA in wild-type, tnoHe, fceu/e, andgnom embryos. 
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age as a wild-type torpedo-stage embryo, GUS staining is evident in the hypocotyl and in the fused 

cotyledons but is already reduced in the root. In cone-shaped gnom embryos from siliques that 

contain maturation-stage wild-type embryos, GUS staining is intense in the tips of the cotyledons, 

which are strongly reduced, sometimes fused, and aberrantly shaped (Figure 2.IF). 

Among later stages of the ball-shaped gnom embryos, which represent the morphologically 

apparent loss of apical-basal polarity most dramatically, there are three distinct patterns of GUS 

expression. As in wild-type and cone-shaped gnom embryos, expression can be confined to the apical 

end of the embryo (Figure 2.1G), but it also can be completely reversed and restricted to the basal 

region of the embryo (Figure 2.1H; see also Figure 2.2L). 

Finally, GUS expression can remain distributed uniformly (Figure 2.11; see also Figure 

2.2K). Of 51 ball-shaped gnom embryos, 18 displayed normal polarity, that is, apical staining; 21 

displayed reversed polarity, that is, basal staining; and 12 were apolar, that is, they displayed uniform 

staining. Orientation in the 51 ball-shaped embryos was determined by the presence of the suspensor 

or part of the suspensor. Except for GUS staining, no other clear morphological change was found 

among the 51 ball-shaped embryos. GUS staining patterns in F2 embryos derived from crosses of 

plants homozygous for the AtLTPl-GUS construct, and wild-type Landsberg erecta plants were 

equal to the GUS staining patterns in embryos from transgenic AtLTPl-GUS plants. These 

observations indicate that apical-basal polarity of the embryo is apparently still completely reversible 

in the zygote, because GNOM is a zygotic gene (Mayer et ai, 1993). 

Sections (7 |im thick) were hybridized with AtLTPl antisense RNA probes, which were labelled with either -"S-UTP 

(B to I, K, and L) or digoxygenin-UTP (A and J), as outlined in Matherials and Methods. Silver grains are visible as 

black dots in the bright-field images (D to F) and as bright white dots in dark-field images (B, C, G to I, K, and L). 

Digoxygenin labelling is visible as a blue-purple color (A and J). Staging of mutant embryos was performed according 

to the approximate corresponding developmental stages of wild-type embryos within the same silique. 

A to C: Wild-type embryos. Stages shown are globular (A; =50 cells), bent cotyledon (B; oblique section not showing 

embryonic root), and maturation (C). 

D to I: knolle embryos. Stages shown are globular (D and G), bent cotyledon (E and H), and maturation (F and I). 

J : keule embryo (heart stage) deliberately overstained to show the absence of signal from inner cells. 

K: Ball-shaped gnom embryo (bent cotyledon stage) with uniform protoderm-specific accumulation of AtLTPl mRNA. 

L: Ball-shaped gnom embryo (bent cotyledon stage) with basal protoderm-specific accumulation of AtLTPl mRNA. 

Apical side is oriented upward. 

c, cotyledon; e, endosperm; er, embryonic root; h, hypocotyl; p, protoderm; s, suspensor; sc, seed coat. Bars = 50 |j.m. 

Bars in D to F apply to G to I. 
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Cell-specific accumulation of AtLTPl mRNA in wild-type, knolle, keule, and gnom 

embryos 

The spatial expression pattern of the AtLTPl gene was examined in more detail by in situ 

hybridization in sections of wild-type, knolle, keule, and gnom embryos at different stages. As 

shown in Figures 2.2A to 2.2C, AtLTPl transcripts accumulate exclusively in the protoderm of wild-

type embryos from the globular stage (Figure 2.2A), the bent cotyledon stage (Figure 2.2B), and the 

maturation stage (Figure 2.2C). In the mature embryo (Figure 2.2C), AtLTPl expression is higher in 

the protoderm of the cotyledons than in the protoderm of the hypocotyl and is absent in the protoderm 

of the embryonic root. AtLTPl expression in wild-type embryos, as determined by in situ mRNA 

hybridization, is identical to the pattern of AtLTPl promoter activity, as determined by AtLTPl 

promoter-GC/5 expression studies. 

In contrast to the protoderm-specific accumulation of AtLTPl transcripts in wild-type 

embryos, early knolle embryos show uniform AtLTPl mRNA accumulation in all cells (Figures 2.2D 

and 2.2G). At a developmental stage corresponding in time to the wild-type bent cotyledon stage, the 

AtLTPl mRNA level begins to be reduced in some cells in the center of knolle embryos (Figures 

2.2E and 2.2H). At this moment, some vascular tissue appears in the center of the embryo (Mayer et 

al, 1991). At the maturation stage, no AtLTPl mRNA was detected in most cells in the center of 

knolle embryos (Figures 2.2F and 2.21). In the knolle embryos analyzed, AtLTPl mRNA was never 

confined completely to the outer cell layer at any stage of development. 

To determine the specificity of the knolle defect, we also investigated AtLTPl expression in 

keule embryos. In these embryos, an outer cell layer is present, but it consists of abnormally enlarged 

cells from early development. The ground and vascular tissues in keule embryos are morphologically 

normal. Figure 2.2J shows that in keule embryos at a developmental stage comparable to the wild-

type heart stage, AtLTPl mRNA is located specifically in the outer cell layer of the embryo proper. 

This indicates that keule embryos, although abnormal in protoderm cell morphology, have a spatially 

normal AtLTPl expression pattern. It also suggests that AtLTPl expression is not dependent on 

protodermal cell morphology. 

Figures 2.2K and 2.2L show sections of ball-shaped gnom embryos at a developmental stage 

comparable to the wild-type bent cotyledon stage. AtLTPl mRNA is confined to the protoderm in 

both cone-shaped (data not shown) and ball-shaped (Figures 2.2K and 2.2L) gnom embryos. This 

indicates that the radial pattern, as exemplified by the protoderm-specific AtLTPl expression pattern, 

is unaffected in gnom embryos. Figure 2.2L shows a ball-shaped gnom embryo with basal 

protoderm-specific AtLTPl mRNA accumulation. Together with the uniform protoderm-specific 

mRNA accumulation (Figure 2.2K) and the apical protoderm-specific expression (data not shown) 

this confirms the observations made with the AtLTPl-GUS fusions (Figures 2.1G to 2.11). In 

addition to the protoderm-specific signal, a signal is evident in the developing seed coat, also seen in 
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transgenic plants carrying the AtLTPl promoter-Gf/5 fusion (see also Figures 2. ID and 2.1H). No 

signal above background was observed after hybridizing wild-type, knolle, keule, and gnom embryo 

sections with AtLTPl sense probes (data not shown). 

Discussion 

AtLTPl expression pattern in wild-type Arabidopsis embryos 

In this study, we examined the expression pattern of the AtLTPl gene during early Arabidopsis 

embryogenesis by in situ hybridization and by histochemical determination of AtLTPl promoter 

activity. Both gave essentially the same result, which was in contrast with a similar study of 

postembryonic development (Thoma ef al, 1994). By using digoxygenin-uridine 5'-triphosphate 

(UTP)-labelled AtLTPl probes for in situ hybridization and histochemical determination of AtLTPl 

promoter activity, we were able to detect AtLTPl gene expression in protodermal cells of embryos as 

early as the globular stage. By using in situ hybridization with 35S-UTP-labeled AtLTPl probes, we 

could not detect AtLTPl transcripts earlier than the torpedo stage. By using the same method, 

Yadegari et al. (1994) did not detect AtLTPl transcripts before the bent cotyledon stage. Thus, in our 

hands, the detection of AtLTPl mRNA with digoxygenin-UTP-labeled probes is more sensitive than 

with radiolabelled probes. 

The AtLTPl expression pattern in Arabidopsis is temporally and spatially identical to that of 

the EP2 gene in zygotic and somatic carrot embryos, although in carrot, this expression could be 

detected with 35S-labelled probes (Sterk et al, 1991). AtLTPl expression in the protoderm of 

globular Arabidopsis embryos is consistent with the proposed role of the AtLTPl protein in the 

assembly or deposition of cell wall or cuticular structural material (Sterk et al, 1991; Thoma et al, 

1994), because globular-stage Arabidopsis (Rodkiewicz et al, 1994), maize (Van Lammeren, 1986), 

Capsella (Rodkiewicz et al, 1994; Schulz and Jensen, 1968a), and Stellaria (Rodkiewicz et al, 

1994) embryos are all reported to be covered with acuticular layer. Although histochemical 

determination of AtLTPl promoter activity and in situ hybridization results matched perfectly in 

developing embryos, a discrepancy was seen in the developing seed coat. In situ hybridization 

showed the presence of AtLTPl transcripts in the seed coat of developing seeds containing embryos 

only up to the torpedo stage, whereas GUS staining was observed in seed coats of developing seeds 

containing embryos up to the maturation stage. Similar discrepancies were noted in a study of 

AtLTPl expression in postembryonic development (Thoma et al, 1994). They could be due to a 

difference in stability between AtLTPl transcripts and the GUS protein, the result of additional, 

negative control elements not included in the AtLTPl promoter region used, or the result of promoter-
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independent GUS expression (Uknes et al, 1993). 

From the combined results of AtLTPl-GUS expression and in situ hybridization in wild-type 

Arabidopsis embryos, we conclude that pattern formation in the Arabidopsis embryo is reflected by 

the position-specific expression of the AtLTPl gene: the AtLTPl gene is a marker for the protoderm 

from the globular stage to the maturation stage, and its expression is restricted to the apical end of the 

embryo after the heart stage. Thus, the temporal and spatial aspects of AtLTPl expression can be 

used to study cell identity and polarity in mutant embryos. 

AtLTPl expression pattern in gnom, knolle, and keule embryos: implications for 

pattern formation in the Arabidopsis embryo 

In embryos of all three mutants examined here, the temporal regulation of AtLTPl expression is 

similar to that observed in wild-type embryos. This agrees with observations of Yadegari et al. (1994) 

for the embryo mutant raspberry. The spatial pattern of AtLTPl expression is changed, however, 

when compared with the wild-type pattern in gnom and knolle (but not in keule) embryos. In gnom 

embryos, the apical-basal expression pattern is changed, whereas the radial expression pattern is as 

usual. Cloning of the GNOM gene (Busch et al, 1996; Shevell et al., 1994) has revealed that it 

encodes a protein that has similarity with the yeast SEC7 protein, which is involved in protein 

transport in the yeast secretory pathway. The significance of this sequence similarity for the role of 

the GNOM gene in apical-basal pattern formation remains unclear. In contrast, in knolle embryos, 

apical-basal AtLTPl expression is similar to that in wild-type embryos (Figure 2 and data not 

shown), but the radial distribution of AtLTPl mRNA is strikingly different. Interestingly, the 

AtLTPl expression pattern observed in knolle embryos shows remarkable similarities to the carrot 

EP2 expression pattern of arrested embryos of the temperature-sensitive carrot mutant line ts 11. 

In arrested globular embryos of t s l l , which, like knolle embryos, do not form a 

morphologically normal protoderm, EP2 expression was found to be uniform or diffuse in 

subepidermal cells. In addition, the EP2 gene was found to be expressed uniformly in 

proembryogenic masses of embryogenic carrot cell cultures (De Jong et al., 1993; Sterk et al., 1991). 

Recently, positional cloning of the KNOLLE gene (Lukowitz et al., 1996) revealed that the predicted 

KNOLLE protein is similar to syntaxins, a family of proteins involved in vesicular trafficking. More 

detailed analysis of knolle embryos revealed many incomplete cell walls. The cell wall defects are 

variable and range from merely fragments of cross-walls to walls with small holes. These 

observations suggest that knolle embryos have groups of interconnected cells as a result of incomplete 

cytokinesis. Based on the finding that fluorescent dye taken up by hypocotyl cells of Arabidopsis 

seedlings readily spreads within the epidermis but not into the underlying ground tissue (Duckett et 

al., 1994), one could envision that the failure of knolle embryos to establish a complete radial pattern 
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is the result of a continued connection between protodermal and internal cells. Such an 

interconnection of cells in the radial direction could prevent the initial cells in the knolle embryo from 

acquiring a nonepidermal cell fate. 

In this scenario, the presence of AtLTPl mRNA in cells other than the outer cells, whether the 

result of a direct centripetal transport of AtLTPl mRNA or of expression of the AtLTPl gene in 

internal nuclei, illustrates the failure to specify internal cells with a fate different from that of the outer 

cells. Because the radial pattern defect of knolle embryos might be a consequence of a primary defect 

in cytokinesis, this implies that the KNOLLE gene does not convey specific information for radial 

patterning. In all scenarios, the exclusion of AtLTPl mRNA from the center of knolle embryos at 

later stages of development and the correct formation of provascular tissue (Mayer et al., 1991) 

suggest that additional mechanisms not dependent on KNOLLE gene action are involved in radial 

patterning. In keule embryos, AtLTPl mRNA is confined to the grossly abnormal outer cell layer, as 

has also been seen in mutant raspberry embryos (Yadegari et al., 1994), indicating that AtLTPl gene 

expression is not dependent on protodermal cell morphology. 

In gnom embryos, the protoderm-specific accumulation of AtLTPl mRNA is unchanged, 

whereas the apical-basal AtLTPl expression pattern deviates from the usual. This finding supports 

the notion that the two body axes form independent of each other. AtLTPl-GUS expression is 

invariably confined to the apical end of wild-type advanced-stage embryos but variably distributed in 

gnom embryos of the same age, which may reflect an inherent variability of apical-basal polarity 

caused by the lack of GNOM activity in the zygote. Unfortunately, other molecular markers that 

would reveal polarity at an earlier stage of embryogenesis are not currently available. Nevertheless, 

the evidence presented here strongly suggests that the apical-basal polarity of the embryo is not fixed 

before fertilization, although the Arabidopsis egg cell is morphologically polar. 

In other flowering plants, the egg cell appears apolar or polarity is reversed upon fertilization 

(Johri, 1984). Thus, apical-basal polarity of flowering plant embryos appears to be established within 

the zygote and fixed by its first division. Radial polarity presents a different case. Uniform AtLTPl 

expression observed in all cells of early knolle embryos suggests that in knolle, the inner cells retain 

protodermal character, knolle embryos therefore may not be defective in the specification of 

protodermal cells but instead fail to mark off the inner cells against the outer cell layer. This 

observation supports the notion that the epidermis may be a "ground state" (Bruck and Walker, 

1985a) in plant embryogenesis that is associated with the presence of an outer cell wall partially 

inherited from the zygote. 

It has been suggested that, based on the presence of a cuticle around C. jambhiri zygotes, the 

zygote develops an epidermal character perpetuated in all external cell derivatives of the zygote (Bruck 

and Walker, 1985a). Internal derivatives, finally giving rise to ground tissue and vascular bundles, 

would then diverge along a developmental route separate from their epidermal starting point. In this 

scenario, the walls of the inner cells may lack a wall-associated component of the zygote, and this 
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would be instrumental in determining radial polarity. Analogies for such a scenario exist in the 

Drosophila embryo, where the apical but not the basolateral cell membrane of blastoderm cells directly 

derives from the oocyte plasma membrane (Campos-Ortega and Hartenstein, 1985), and in the fate-

determining ability of Fucus cell walls (Berger et al, 1994). 

The observation that knolle mutant embryos eventually show a reduction of the AtLTPl 

mRNA level internally and also form vascular tissue suggests that vascular differentiation, viewed as 

differentiation of the most internal radial pattern element, involves an additional mechanism that is not 

dependent on the initial ordered cell divisions in the early Arabidopsis embryo. This agrees with the 

observations that embryos of many plant species, such as cotton, grape, and Datura (Johri, 1984), as 

well as Arabidopsis mutant fass embryos (Torres-Ruiz and Jurgens, 1994) do not show an ordered 

pattern of early cell division yet develop complete body plans with all pattern elements present. 

Materials and methods 

Plant strains and plant growth conditions 

The wild-type strain used was of the Landsberg erecta ecotype and was kindly provided by M. 

Koornneef (Department of Genetics, Wageningen Agricultural University). The mutants knolle, 

keule, and gnom are described by Mayer et al. (1991). Transgenic seed of the Rschew ecotype, 

carrying an Arabidopsis thaliana lipid transfer protein (AtLTPl) promoter-(}-glucuronidase (GUS) 

fusion, was kindly provided by C. Somerville (Carnegie Institution, Stanford, CA) (for description, 

see Thoma etal. (1994)) 

Seeds were sown on wet filter paper (595 Rundfilter; Schleicher & Schuell, Inc., Keene, NH) 

in Petri dishes. The Petri dishes were stored at 4°C in the dark for at least 24 hr to break dormancy 

and then transferred to a room at 25°C with a 16-hr photoperiod (7 W/m2). Seedlings were transferred 

to sterilized potting soil and grown in an air-conditioned greenhouse (at 18 to 23°C), with additional 

light during the winter (16-hr photoperiod; HP1-T, 400W lights; Philips, Eindhoven, the 

Netherlands). 

Seeds from transgenic AtLTPl-GUS plants were surface-sterilized for 2 min in 70% ethanol, 

followed by three rinses of sterile distilled water. Seeds were placed on Murashige and Skoog 

medium (Murashige and Skoog, 1963) containing 1% sucrose and 50 mg/L kanamycin and 

germinated as described above. Kanamycin-resistant seedlings were transferred to sterilized potting 

soil and grown in a 25°C growth chamber at 80% humidity, with light cycles as described above. 
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Genetic crosses 

Plants heterozygous for knolle, keule, and gnom, respectively, were used as female parents; plants 

homozygous for the AtLTPl-GUS construct were used as males. Three flower buds of the plants to 

be used as female parent were emasculated by removing the anthers with forceps. These flowers were 

pollinated by touching the stigma with anthers from the male parent. 

Histochemical localization of GUS activity 

Siliques were opened longitudinally and fixed in 0.3 % paraformaldehyde in 100 mM NaPi, pH 7.2, 

for 1 hr under vacuum. After washing in 100 mM NaPi, pH 7.2, they were immersed in the 

enzymatic reaction mixture containing 1 mg/ml X-gluc (5-bromo-4-chloro-3-indolyl p-D-glucuronic 

acid), 0.5 mM potassium ferricyanide, 0.5 mM potassium ferrocyanide as catalysts in 100 mM NaPi, 

pH 7.2. The reaction was conducted overnight at 37°C in the dark (Jefferson et al, 1987). After the 

reaction, ovules were mounted in 8:1:2 chloral hydrate-glycerol-water on a microscope slide with a 

cover slip and left for a period of 1 to 16 hr, depending on the stage. Embryos were removed from 

the ovules by applying pressure on the cover slip. Staining patterns were analyzed with an Optiphot-2 

(Nikon Corp., Tokyo, Japan) using bright-field optics. 

In situ mRNA hybridization 

In situ hybridization was performed essentially as described by Cox and Goldberg (1988). To 

facilitate handling, siliques or ovules were embedded in agarose before fixation and embedding in 

paraffin (Sterk et al, 1991). RNA probes labelled with either 35S-UTP or digoxygenin-uridine 5'-

triphosphate (UTP), were transcribed from the plasmid pJ5-3, which contains a cDNA of the 

Arabidopsis AtLTP 1 gene (kindly provided by C. Somerville (Thoma et a/., 1994)), or from the 

plasmid pAtEP2, which contains a 201-bp genomic insert from an Arabidopsis LTP gene, using 

either the T7 (sense controls) or the T3 (antisense) promoter. Hybridization was performed for 16 hr 

at 42°C. 

For detection of 35S-UTP-labeled probes, slides were coated with LM-1 nuclear emulsion 

(Amersham), exposed for 3 weeks at 4°C, and developed (D19 developer; Kodak). Sections were 

stained with toluidine blue and photographed with an Optiphot-2 (Nikon), using bright- and dark-

field optics. The more sensitive detection of digoxygenin-UTP-labeled probes was performed using a 

digoxygenin nucleic acid detection kit (Boehringer Mannheim), essentially according to the 

manufacturer's recommendations. 
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Identification of genes expressed during 
Arabidopsis thaliana embryogenesis using 

enhancer trap and gene trap Ds-transposons 

The technique of enhancer trap and gene trap mutagenesis has been exploited to identify new 

molecular markers for specific cell-types, tissues and regions in the Arabidopsis thaliana embryo and 

seedling. Screening of a population of 373 independent gene trap and 431 enhancer trap lines revealed 

that 25% of the gene trap insertions, and 81% of the enhancer trap insertions displayed GUS 

expression patterns in the embryo, seedling, silique, seed coat, or flower. A total of 39 lines 

expressed the GUS gene in the embryo. Except for one, all of these also displayed GUS expression 

at other stages of development. The insertion lines with specific GUS expression patterns in the 

embryo provide valuable markers for establishment of cell fate or position in embryo mutant 

backgrounds. Genomic DNA flanking the insertions was amplified by TAIL-PCR, and found to 

contain transcribed regions of a gene in all gene trap insertions, and in about a quarter of the enhancer 

trap insertions. Thus, enhancer trap and gene trap mutagenesis allow isolation of genes expressed 

during Arabidopsis embryogenesis based on expression pattern. 

Casper W. Vroemen, Nicole Aarts, Paul M.J. In der Rieden, Ab van Kammen and Sacco C. de Vries 

(1998) In Cellular integration of signalling pathways in plant development (Lo Schiavo, F., Last, R. 

L., Morelli, G. and Raikhel, N. V., eds.). Berlin Heidelberg: Springer-Verlag, pp. 207-232. 
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Introduction 

A fundamental question in developmental biology concerns the molecular mechanisms underlying the 

establishment of polarity and body pattern. In plants, the stereotyped body organization of the 

seedling is laid down during embryogenesis, and may be viewed as the super-imposition of two 

patterns, one along the apical-basal or longitudinal axis, and one along the radial axis (Mayer etai, 

1991). Arabidopsis provides an excellent model system for the genetic dissection of pattern formation 

during embryogenesis, since, as in other crucifers, the cell division pattern is largely invariant. Also, 

numerous mutations affecting the body organization of the embryo have been described (reviewed by 

Mordhorst et al. (1997)). A serious problem in the analysis of embryo pattern formation is the 

shortage of molecular markers for specific cells and regions in the embryo (Jiirgens, 1995). Such 

markers are important, because it is often difficult to establish cell-identity in mutant embryo 

backgrounds (Devic et al, 1996; Vroemen et al, 1996; Yadegari et al, 1994). Molecular markers for 

specific cells or regions in the developing Arabidopsis embryo identified so far, include the AtLTPl 

gene, expressed in the embryo protoderm (Thoma et al, 1994; Vroemen et al, 1996; Yadegari et al, 

1994), the SCARECROW gene, expressed in the endodermal cell lineage (Di Laurenzio et al, 1996), 

the STM gene (Long et al, 1996) and the CLV1 gene (Clark et al, 1997), expressed in the 

presumptive shoot apical meristem, and the ATML1 gene, which is expressed in all cells of the 

embryo proper until the eight-cell stage, in the protoderm from the sixteen cell-stage until the late 

heart-stage, and in the LI layer of the shoot apical meristem in the mature embryo (Lu et al, 1996). 

GUS markers for regions in the Arabidopsis embryo, such as the root tip (POLARIS), cotyledons 

and shoot and root apices (EXORDIUM), and root cap (COLUMELLA) have recently been used to 

investigate mechanisms involved in establishing polar organization in Arabidopsis embryos and 

seedlings (Topping etal, 1994; Topping and Lindsey, 1997). 

As part of a strategy to identify molecular markers for specific cell-types and regions in the 

Arabidopsis embryo, we have undertaken a gene / enhancer trap insertional mutagenesis screen, using 

the Ac I Ds-transposon based system described by Sundaresan et al (1995). The gene and enhancer 

trap elements carry a GUS reporter gene that can respond to cw-acting transcriptional signals at the 

site of integration. A particularly useful aspect of this system is that it allows the identification of 

genes not only by mutant phenotype, but as well by their expression pattern. Many genes that have no 

visible phenotype upon disruption, because they are functionally redundant or their mutant phenotype 

is only visible under certain conditions and could be missed in screens for mutant phenotypes (Goebl 

and Petes, 1986), may be identified by expression pattern in gene trap and enhancer trap screens. 

Moreover, gene trap and enhancer trap mutagenesis can identify genes that are essential in both the 

development of the early embryo and later development. The function of such genes in later 

development can be obscured by an early lethal phenotype (Mlodzik et al, 1990; Springer et al, 

1995). 
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Here we describe the use of gene and enhancer trapping to identify genomic sequences that are 

expressed or direct gene expression in the Arabidopsis embryo. The collection of insertions we have 

obtained provides a set of molecular markers for specific cell-types, tissues, organs and regions in the 

developing embryo, and can also be used to clone the corresponding genes. 

Design of the gene and enhancer trap elements 

The two-element transposon system used in this study employs Ac starter lines, homozygous for an 

immobilized Ac element, that are crossed to one of two different Ds starter lines, DsG or DsE, 

homozygous for a non-autonomous gene trap or enhancer trap Ds transposon, respectively. This 

system was developed by Sundaresan et al. (1995). Figure 3.1 outlines schematically the Ac, DsG, 

and DsE T-DNA vectors and transposons. The Ac element contains a CaMV 35S promoter-Ac 

transposase fusion that causes high frequencies of Ds excision in trans (Swinburne et al, 1992), and 

is "wings-clipped", meaning that it cannot transpose because it lacks one of the Ac termini. 

The gene trap element DsG is designed to detect expression of a chromosomal gene when 

inserted within the transcribed region. For this purpose, the DsG element contains a promoterless 

GUS gene, whose expression relies on transcription from the tagged chromosomal gene (Friedrich 

and Soriano, 1991; Gossler etal, 1989; Kerr et al, 1989). Upstream of the GUS ATG startcodon, 

an intron of the Arabidopsis GPA1 gene (Ma et al, 1990) and a synthetic oligonucleotide containing 

two additional consensus splice acceptors have been fused, to provide for a splice acceptor in every 

reading frame. If DsG should insert into an intron, with the GUS gene in the same orientation as the 

tagged gene, as shown schematically in Figure 3.2A, splicing occurs from the splice donor of the 

chromosomal intron to the splice acceptors upstream of the GUS gene (Nussaume etal, 1995). By 

contrast, if inserted in an exon in the correct orientation (Figure 3.2B), multiple splice donor sites, 

naturally existing at the 3' end of the Ds element and covering all possible reading frames (Wessler et 

al, 1987), are exploited. The sequence between these splice donor sites and the splice acceptors just 

upstream of the GUS gene can be spliced out from the transcript, resulting in a fusion of the 

endogenous transcript and the Ds borne GUS transcript. The presence of three splice acceptor 

sequences, covering all three reading frames, in combination with multiple splice donors, also in each 

possible reading frame, ensures that for each possible reading frame the DsG element could insert 

into, at least one combination of splice donor and acceptor sequences generates an in-frame fusion 

between the endogenous and the GUS RNA (Nussaume et al, 1995). As is clear from Figure 3.2C, 

no functional GUS fusion transcript is formed if the DsG element inserts into a gene in an orientation 

opposite to that of the tagged gene, which is expected to occur in half of the insertions. 

With the DsE element, expression of the GUS reporter gene is dependent on DsE insertion 

near to chromosomal enhancer sequences. As shown in Figure 3.1, DsE contains a GUS gene fused 
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Figure 3.1: T-DNA vectors and transposon constructs used in this study. 

Ac : T-DNA carrying immobilized Ac element. 

DsG : T-DNA carrying gene trap element DsG. 

DsE : T-DNA carrying enhancer trap element DsE. 

5' (drawn left) and 3' (drawn right) borders of the Ds element are represented as open triangles. (35S) CaMV 35S 

promoter; (1AAH) indole acetic acid hydrolase gene conferring sensitivity to NAM; (NPTII) neomycin 

phosphotransferase gene, conferring resistance to kanamycin; (1' and 2') 1' and 2' T-DNA promoter, respectively; (ocs3') 

octopine synthase terminator; (nos3') nopaline synthase terminator; (LB and RB) left border and right border sequences, 

respectively, of the T-DNA; (GUS) ^-glucuronidase gene; (ATG) ATG-startcodon of GUS gene; (A) triple splice 

acceptor; (I) fourth intron of Arabidopsis G-protein gene GPA1; (SD) multiple splice donor sites at 3' end of Ds-

element, covering all three reading frames; (A35S) -1 to -46 bp region of CaMV 35S promoter. Broken and dotted 

arrows in DsG represent splicing if insertion is into an intron or exon, respectively. This figure has been adapted from 

Sundaresan etal. (1995). 
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Figure 3.2: Different possibilities for chromosomal insertion of DsG and DsE elements. 

A: GUS expression from DsG element after insertion into an intron. 

B: GUS expression from DsG element after insertion into an exon. 

C: no GUS expression from DsG element due to insertion in opposite orientation. 

D and E: GUS expression from DsE element after insertion near a chromosomal enhancer, independent of orientation. 

(SD1, SD2, and SD3) splice donor sides at 3' end of Ds element, each in a different reading frame; (SA1, SA2, and 

SA3) splice acceptor sites, each in a different reading frame; (E) Chromosomal enhancer. 

For further details see Figure 3.1. This figure has been adapted from Sundaresan era/. (1995). 
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to a minimal -1 to -46 bp CaMV 35S promoter, which is not active in the absence of enhancer 

sequences (Benfey et al, 1989). When the DsE element inserts in the proximity of a chromosomal 

gene, within or outside of the coding region, GUS gene expression can be activated by a neighboring 

chromosomal enhancer (Bellen et al., 1989; Bier ef al., 1989; Klimyuk et al, 1995; O'Kane and 

Gehring, 1987; Sundaresan et al., 1995; Wilson et al., 1989). Since enhancers are known to act in an 

orientation-independent manner, insertions in either orientation may result in GUS expression 

(Figures 3.2D and 3.2E). In addition to the GUS reporter gene, both types of Ds elements carry a 

NPTII gene, which confers resistance to kanamycin as a selection marker. 

Selection for plants carrying transposed Ds elements 

A limitation of the Ac I Ds transposable element system for transposon tagging is the preferential 

transposition to sites that are closely linked to the donor locus (Bancroft and Dean, 1993; Belzile and 

Yoder, 1992; Dooner and Belachew, 1989; Greenblatt, 1984; Jones etal, 1990; Keller et al, 1993; 

Osborne et al., 1991). In the selection scheme used in this study, local transpositions are eliminated, 

because donor-T-DNA located enhancers could directly cause GUS expression in lines carrying a Ds 

insertion close to the donor T-DNA (Klimyuk etal, 1995). Moreover, by selecting against local 

transpositions, a more or less random distribution of Ds insertions throughout the genome can be 

obtained. 

Figure 3.3 outlines the selection scheme used to generate lines carrying a stable Ds insertion at 

a location unlinked, 'or loosely linked, to the donor T-DNA. These lines are referred to as 

transposants (Bellen etal, 1989), and their selection is accomplished by selecting for the presence of 

the Ds element and, simultaneously, against both the Ac T-DNA and the Ds donor-T-DNA. Selection 

for the presence of the Ds element is possible due to the NPTII gene, conferring kanamycin 

resistance, that is located on both the DsG and DsE elements (Figure 3.1). Selection against the Ac 

and Ds donor-T-DNA is accomplished using the indole acetic acid hydrolase (IAAH) gene, present on 

the Ac-T-DNA, the DsG donor-T-DNA, and the DsE donor-T-DNA (Figure 3.1). The IAAH gene 

can be used as a counter selectable marker (Karlin-Neumann et al., 1991), because it confers 

sensitivity to naphtalene acetamide (NAM), by converting it to the potent auxin naphtalene acetic acid 

(NAA), which causes severely stunted seedlings. Due to the selection against the presence of the DsG 

and DsE donor T-DNA, the recovery of transposed Ds elements depends on the recombination 

frequency between the Ds donor-T-DNA and the transposed Ds element. Only Ds elements that have 

transposed to locations unlinked or loosely linked to the donor-T-DNA are recovered. 

Transposition of Ds elements is initiated by crossing Ds starter lines, homozygous for the DsE 

or DsG donor-T-DNA, to Ac starter lines, homozygous for the Ac T-DNA (Figure 3.3). In the 

resulting Fl plants, Ds transposition can occur under the influence of Ac transposase. After allowing 
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Figure 3.3: Generation of transposants, i.e. lines carrying transposed Ds elements by selection for stable, unlinked 

transposition events. 

(NAM^) NAM sensitivity caused by IAAH gene; (Kan^) kanamycin resistance caused by NPTII gene. Transposable 

element Ds is represented by a triangle. This figure has been adapted from Sundaresan era/. (1995). 

the Fl plants to self-fertilize, the F2 seed families are germinated on plates containing kanamycin and 

NAM, and the double resistant seedlings are recovered as transposants. Transposant lines are 

maintained as F3 seed batches, obtained by self-fertilization of selected F2 plants. By selecting 

against Ac, the Ds element in selected transposant plants will not be able to re-transpose. Thus, the 

transposant lines obtained this way represent a collection of stable DsE and DsG insertion lines that 

serves as source for further screening and characterization. 
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Results 

Generation of independent gene and enhancer trap lines 

Gene trap and enhancer trap Ds elements were induced to transpose by crossing plants from DsG or 

DsE starter lines to plants from Ac starter lines. Table 3.1 outlines the different combinations of Ac 

and DsG or DsE starter lines used, and the numbers of independent F2 families that resulted from 

crosses of each combination. Each of two Ac starter lines were crossed to each of four DsG and each 

of four DsE starter lines, resulting in 2610 Fl plants heterozygous for DsE and Ac, and 1975 Fl 

plants heterozygous for DsG and Ac. Self-fertilization of the Fl plants and collection of F2 seed from 

each individual Fl plant yielded DsG and DsE F2 families. In the F2 generation, selection was 

performed by plating approximately 750-1000 F2 seeds on NAM-Kan plates, as described in 

Materials and Methods. Out of 1975 DsG F2 families, 373 independent gene-trap lines were 

established. Out of 2610 DsE F2 families, 431 independent enhancer-trap lines were recovered. 

Thus, 19% of the DsG carrying Fl plants (373/1975) and 17% of the DsE carrying Fl plants 

(431/2610) generated NAMRKanR F2 progeny (transposants) in a frequency high enough to allow 

detection of at least one transposant per selection plate. 

Over 80% of the Fl plants had no NAMRKanR progeny, suggesting that in these plants there 

were either no Ds transpositions, only transpositions without re-integration, or only transpositions to 

sites closely linked to the donor locus, which are known to occur frequently in the Ac-Ds transposon 

system (Bancroft and Dean, 1993; Belzile and Yoder, 1992; Dooner and Belachew, 1989; Greenblatt, 

1984; Jones et ai, 1990; Osborne et ai, 1991). Fl plants that did have NAMRKanR progeny 

typically generated between 0.1% and 3% (i.e. 1-30 per 1000 F2 seedlings) NAMRKanR F2 

seedlings. In accordance with the results obtained by Sundaresan and co-workers (Sundaresan et ai, 

1995), the majority of Fl plants that did have NAMRKanR progeny, yielded between 0.1% and 1% 

of NAMRKanR F2 seedlings. It should be noted that, since only one-sixteenth (6.25%) of the 

progeny of an Fl plant is expected to be NAMR, and the frequency of forward transposition, defined 

as the proportion of F2 plants in which the Ds element has excised from the donor locus, with the 

35S-Ac transposase fusion used ranges from 5 - 50% in the F2 generation (Long et al., 1993), a 

single transposition event is unlikely to result in more than 3% of NAMRKanR progeny. 

Molecular analysis of transposants 

To ascertain whether the NAM selection effectively selected against both the Ac T-DNA and the Ds T-

DNA, and whether the kanamycin selection resulted in selection for inheritance of a Ds element, DNA 

58 



chapter 3 

Table 3.1: Numbers of F2 families generated from different combinations of Ac and DsE 

or DsG starter lines, respectively, and numbers and frequencies of recovered transposant lines. 

starter lines 

DsEl x Acl 

DsEl x Ac2 

DsE2xAcl 

DsE2 x Ac2 

DsE3 x Acl 

DsE3 x Ac2 

DsE6x Acl 

DsE6 x Ac2 

No. of F2 families 
generated 

477 

584 

225 

455 

70 

657 

60 

82 

No. of transposant 
lines 

107 

65 

38 

55 

39 

93 

13 

21 

% of F2 families 
yielding a transposant 
line 

22 

11 

17 

12 

56 

14 

22 

26 

Total 2610 431 17 

DsGl x Acl 

DsGl x Ac2 

DsG6 x Acl 

DsG6 x Ac2 

DsG7xAcl 

DsG7 x Ac2 

DsG8x Acl 

DsG8 x Ac2 

519 

409 

95 

349 

123 

419 

12 

49 

103 

82 

32 

20 

38 

89 

5 

4 

20 

20 

34 

6 

31 

21 

42 

Total 1975 373 19 
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from independent transposant seedlings was checked for the presence of the IAAH gene (which is 

located on both the Ac and Ds T-DNAs) and the GUS gene (which is located only on the Ds element). 

PCR using different sets of IAAH and GUS specific primers showed that all transposant lines 

contained the GUS gene, confirming inheritance of the Ds transposon, and not the IAAH gene, 

providing evidence for the absence of both Ac and Ds T-DNAs (data not shown). As expected, both 

the GUS gene and the IAAH gene were detected in DsG and DsE starter lines, whereas only the 

IAAH gene was detected in Ac starter lines. These results prove that the NAM-Kan selection 

procedure effectively selected for transposed Ds elements and against Ac and Ds T-DNAs. The 

selection against the Ds T-DNA results in selection against nearby re-insertion of the Ds element 

(Sundaresanera/., 1995). 

Figure 3.4 shows Southern blot analysis of DNA from 21 selected gene trap and enhancer trap 

transposant plants. Genomic DNA was digested with Pstl, which cuts once in the NPTII coding 

sequence within the Ds element. Probing with the entire GUS coding sequence showed that 20 of the 

transposants carried a single copy of the Ds element, whereas 1 transposant (WET115) contained 2 

Ds elements inserted at different chromosomal locations. The different fragment lengths observed in 

the lanes in Figure 3.4 are indicative of the different chromosomal locations, and thus different 

flanking genomic sequences of Ds insertions in the selected transposants. A single transposed DsG or 

DsE element is essential for efficient screening of the transposant lines for specific GUS expression 

patterns, since more than one transposed Ds element, at different chromosomal locations, could result 

in overlapping or combined GUS expression patterns, under the control of regulatory regions at 
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Figure 3.4: Southern blot of DNA from 21 selected gene trap and enhancer trap transposants. 

The DNAs were digested with Pstl, and the probe used was the entire GUS coding sequence. 
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different sites in the genome. This would of course complicate interpretation of GUS expression 

patterns during the primary screen. 

Screening transposants for GUS expression patterns 

All 373 gene trap (WGT) transposants and 431 enhancer trap (WET) transposants were examined for 

GUS expression patterns at various stages of plant development: seedling, flower, silique, 

developing seed and embryo. The results of the GUS staining data are summarized in Table 3.2. 27% 

of the WGT lines (100 out of 373) displayed GUS expression at some stage of the plant life cycle. 

The frequency of Gf/S-expressing WET lines amounted to 81% (317 out of 431), much higher than 

the frequency of GUS expressing WGT lines. In 58% of the GUS expressing WET lines (184 out of 

317), GUS staining was only found in pollen grains. Due to the high frequency of this staining 

pattern in this and other screens employing a minimal 35S-promoter-G£/S fusion for detection of 

enhancer action (Klimyuk et al, 1995), and taking into account other reports on possible artefactual 

GUS staining in pollen (Klimyuk et al, 1995; Mascarenhas and Hamilton, 1992; Uknes et al, 

1993), lines displaying this "pollen only" staining pattern are put in a separate class. It is unclear what 

the significance of the pollen GUS staining is. The fact that it occurs at much higher frequencies in 

enhancer trap lines than in gene trap lines (Table 3.2) suggests that it is not only the result of 

artefactual expression of the GUS gene independent of its genetic context, but that it can also be 

caused in some way by the minimal 35S promoter included in the enhancer trap Ds element. If the 

"pollen only" staining lines are excluded, the over-all GUS staining frequency of the WET lines 

(34%) is roughly similar to that of the WGT lines (25%). The lower staining frequency of the WGT 

Table 3.2: Numbers and frequencies of GUS expressing WGT and WET lines. 

WGT-lines WET-lines 

No. screened 

No. showing GUS expression (%) 

No. showing "pollen only" expression 

No. other than "pollen only" (%) 

373 

100 

7 

93 

(27%) 

(25%) 

431 

317 

184 

133 

(81%) 

(34%) 
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lines could be explained by both the orientation dependency of gene trap Ds insertions (see Figure 

3.2), and the necessity of DsG insertion into the transcribed region of a gene, to be able to cause 

GUS expression. 

Table 3.3 shows a summary of the frequencies of GUS staining patterns of WGT and WET 

lines found at different developmental stages and in different plant organs. Since our screen was 

primarily focused on detection of GUS expression in embryos and seedlings, GUS staining in other 

plant organs, such as the different flower organs, the silique and the seed coat, is put in a single 

category. The fact that "pollen only" staining occurs at high frequency among WET, but not among 

WGT lines, would complicate comparison of the staining frequencies in WGT and WET lines. 

Therefore, the class of "pollen only" staining lines is not included in Table 3.3. In a total of 39 lines, 

12 WGT and 27 WET lines, GUS expression was detected in the embryo. The number of embryo-

staining lines was rather low as compared to the total number of staining lines: only 13% of the GUS-

positive WGT lines and 20% of the GUS-positive WET lines showed staining in the embryo. This 

corresponds to overall frequencies of 3-4% and 6-7% GUS expression in embryos, among gene and 

enhancer trap lines, respectively. Most of the lines that showed GUS staining in the embryo also had 

GUS staining in the seedling: 9 out of 12 for the embryo staining WGT lines, and 23 out of 27 for the 

WET lines. In some cases, the seedling staining pattern corresponded precisely to that in the embryo, 

whereas in other cases it was either completely different or resembled the embryo pattern only 

partially (data not shown). None of the WGT lines, and only one WET line showed embryo-specific 

GUS expression, taken as GUS expression only detectable in the embryo and not at any other stage 

of development or in any other plant organ. In this line, WET393, GUS expression is restricted to the 

suspensor (see Figure 3.5), which is senso stricto not even part of the embryo proper. In all other 

embryo staining lines, GUS expression was not restricted to the embryo, but also seen at other 

developmental stages, or in more than one organ or tissue. Among this class are also lines with a 

specific staining pattern in the embryo, that is perpetuated in the seedling. Other lines show, for 

example, GUS staining in the embryo and also in one or more flower organs. GUS expression in 

different organs or at different developmental stages could point to genes that are expressed in 

different developmental programs, or towards genes which are expressed in similar cell types or 

tissues in different plant organs (Sundaresan et al, 1995). The frequency of lines that show GUS 

expression in seedlings is higher than the frequency of embryo staining lines. Among both the WGT 

and WET lines, more than half of the staining lines show GUS expression at the seedling stage (52% 

and 60%, respectively), and in approximately one third of these (17/48 and 24/80, respectively), 

GUS expression is restricted to the seedling stage. The majority of the GUS positive WGT and WET 

lines (77% for both) shows GUS staining somewhere in the flower, silique and / or seed coat. It 

should be noted that these include lines with staining patterns in, for example, a single flower organ, 

as well as lines with expression in different organs, and lines that are also expressed at the embryo 

and / or seedling stage. 
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Table 3.3: Summary of GUS expression in WGT and WET lines at different developmental stages. 

WGT-lines WET-lines 

Total no. of GUS staining lines3 

Stain observed in: 

embryo (% of total staining lines3) 

from which also in seedling 

from which embryo-specific 

seedling (% of total staining lines3) 

from which seedling specific 

93 133 

12 (13%) 

9 

0 

27 (20%) 

23 

1 

48 (52%) 80 (60%) 

17 24 

flower / silique / seed coat 
(% of total staining lines3) 

72 (77%) 102 (77%) 

3Lines with "pollen only" expression are not included. 

Figure 3.5 shows an example of an enhancer trap line with a restricted GUS expression 

pattern, that was found in our screen for GUS staining patterns in the embryo. In this line, WET393, 

GUS expression is restricted to the basal cells of the suspensor from the pre-globular to the late heart 

stage (Figure 3.5 A-C). In later stage embryos, from the torpedo stage up to the mature embryo stage, 

GUS expression was seen in the entire suspensor, but not in the embryo proper (Figure 3.5 D-F). 

Screening transposants for mutant phenotypes 

During our screen for GUS expression patterns in the embryo, we observed two WGT lines with 

morphological defects in the embryo (not shown). One of these lines segregated for embryos with 

strongly reduced cotyledons, and exhibited a good correlation between mutant phenotype and 

cotyledon specific GUS expression pattern. Our screening protocol for detection of GUS expression 

patterns in the developing embiyo was optimised for detection of GUS staining in the embryo, and 
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Figure 3.5: GUS expression pattern of enhancer trap line WET393. 

A: developing seed with globular stage embryo. 

B: transition stage embryo. 

C: histological section of a developing seed with transition stage embryo. 

D: developing seed with early torpedo stage embryo. 

E: developing seed with bent cotyledon stage embryo. 

F: basal region of bent cotyledon stage embryo after dissection out of the seed. The upper suspensor cell is still attached 

to the embryo proper. 

Arrow points at GUS stained cells in the basal part of the suspensor in A-C, and in the entire suspensor, but not in the 

embryo proper, in D-F. Bar = 50 |j.m. 
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did not allow visualisation of subtle morphological aberrations in the embryo. This was caused by the 

fact that after the GUS staining reaction, clearing of the seed coat with Hoyers solution was much less 

efficient than without prior GUS staining. Therefore, it is likely that subtle phenotypic aberrations in 

the embryo were missed during our primary screen. A detailed screen of the GUS positive WGT and 

WET lines for phenotypically visible mutations in the developing embryo is currently being 

performed. In the case of gene trap lines, DsG insertion within the transcribed region of a gene is a 

prerequisite for GUS expression. Mutant embryo phenotypes caused by disruption of genes that are 

expressed in the embryo are, therefore, expected to occur at higher frequencies among embryo-

staining WGT lines than among embryo-staining WET lines. 

Morphologically visible phenotypes were more easily observed at developmental stages later 

than the embryo stage. Although not studied in detail, putative mutant phenotypes were observed in 

26 out of 366 WGT lines (7%), and in 16 out of 400 WET lines (4%). Assuming an equal 

transposition behaviour for the DsG and DsE transposons, the frequency of insertion into a gene, 

possibly causing a mutant phenotype, is expected to be equal among gene trap lines and enhancer trap 

lines. Putative mutants included pigmentation mutants (chlorotic leaves), dwarfs, plants with retarded 

development, male steriles, plants with aberrant floral morphology, bushy plants and plants with 

aborted seeds. Detailed analysis, including verification of cosegregation of the mutant phenotype and 

the Ds element is in progress for some of the putative morphological mutants. 

Amplification of genomic DNA flanking DsG and DsE insertions 

Genomic DNA flanking DsG and DsE insertions has been generated by TAIL-PCR (Liu et al, 1995) 

for 27 of the 39 WGT and WET lines with GUS expression in the embryo. Typically, 50 bp to 1.5 

kb of flanking DNA was obtained using this procedure. In our hands, the success rate of the TAIL-

PCR procedure was on average 60%, meaning that in a successful experiment, flanking DNA was 

generated for approximately 60% of the lines. The sequence of flanking DNA from two gene trap 

lines showed that in both lines, the DsG element had inserted within the putative open reading frame 

of a gene. For three out of four enhancer trap lines from which flanking DNA was sequenced, no 

open reading frame could be detected in the sequence of the DNA flanking the DsE insertion. If an 

open reading frame is detected in the sequence of the flanking DNA, it may be possible to predict the 

function of the tagged gene from its sequence. This was the case for one of the two gene trap 

insertions of which flanking DNA was sequenced. Taken together, the TAIL-PCR procedure proved 

efficient in generating flanking DNA from WGT and WET insertions. In general, the generation of 

flanking DNA provides sequence information and molecular probes which can be used to determine 

the map position of the Ds insertions, and in library screening. For a selected number of lines, this 

work is currently in progress. 
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Discussion 

In this study, we have used the Ac I Ds based gene / enhancer trap system developed by Sundaresan 

and co-workers (Sundaresan et al., 1995) to detect genes that exhibit position-, cell-type- or tissue-

specific expression in the Arabidopsis thaliana embryo. The modification of insertional mutagens to 

contain a reporter gene overcomes the limitation of conventional insertional mutagens that only allow 

detection of genes that give a phenotype when disrupted. The reporter gene carried by a gene or 

enhancer trap element permits the detection of genes by expression pattern rather than by mutant 

phenotype only. Previously, Fedoroff and Smith (1993), Smith and Fedoroff (1995), and Klimyuk et 

al. (1995) have described the successful use of an enhancer trap Ds element for detection of plant 

enhancers. A serious limitation on the use of these elements as enhancer traps is imposed by the 

preferential transposition of Ac I Ds elements to closely linked sites. Enhancer sequences located on 

the DsE donor T-DNA could directly cause GUS expression in lines carrying a DsE insertion close to 

the donor T-DNA. Klimyuk et al. (1995) found that almost half of the lines that showed GUS 

expression revealed expression patterns similar or identical to those of the DsE starter lines they 

originated from. The parental GUS staining resulting from T-DNA located enhancers could partly or 

totally obscure novel GUS staining patterns conferred by endogenous enhancers. For this reason, and 

to obtain a more random distribution of Ds insertions across the genome, the mutagenesis scheme 

applied in this study includes a one-step plate selection against the Ds donor T-DNA, thus enriching 

for unlinked transpositions (Sundaresan et al, 1995). At the same time, this procedure selects against 

lines carrying unexcised Ds elements, against the presence of the Ac T-DNA, and for re-insertion of 

the Ds element after excision from the donor T-DNA. This alleviates the need of large-scale PCR or 

Southern hybridization analyses, necessary in other systems (Klimyuk et al, 1995) for selection of 

transposant lines. As an inevitable consequence of the relatively infrequent transposition of Ds 

elements to unlinked or loosely linked sites, only about one-fifth of the Fl plants yielded F2 progeny 

that survived our selection scheme: 19% for gene trap lines, and 17% in case of enhancer trap lines. 

These frequencies are somewhat lower than the frequency of plants with unique transposition events 

reported by Klimyuk et al. (1995), who obtained 87 of these plants starting from 314 Fl plants 

(28%). However, the mutagenesis scheme used in that study neither included selection against local 

transposition events, nor against the Ac T-DNA. 

From the frequencies of recovered transposant lines resulting from crosses of each 

combination of starter lines (Table 3.1), it is apparent that particular combinations, such as for 

example DsG6 Ac2, and DsGS Ac2, gave a very poor recovery of transposants. Such a poor 

recovery of NAM^Kan^ progeny could arise if the Ac and Ds T-DNA loci from two starter lines 

were linked in repulsion. In this case, F2 progeny would only survive NAM-Kan double selection if 

recombination would occur between the two loci. From recombinant inbred mapping (Lister and 

Dean, 1993), it is known that DsGl , DsEl, DsE2, and DsE3 are not linked to either Ac\ or Ac2 
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(Sundaresan et al, 1995). For the other starter lines used in this study, such mapping data are 

currently unavailable. The fact that, in the case of the DsG6 Ac2 and DsGS Ac2 combinations, only 

14 transposant lines were recovered from nearly 400 F2 families, clearly points out the importance of 

testing each combination of Ds and Ac starter lines before proceeding with large scale mutagenesis. 

Determination of the map position of T-DNA donor loci might also help to select for more optimal 

combinations of Ac and Ds starter lines. In future large scale mutagenesis programs, the over-all 

yield of transposant lines might be improved by selecting combinations of starter lines based on the 

frequencies found in this study. 

Molecular analysis of transposants obtained through the described selection procedure showed 

that 95% of the insertions generated by Ds transposition were single copies. This almost eliminates 

the possibility of detecting GUS expression patterns arising from more than one independent or 

multiple tandem insertions. This is in contrast to T-DNA promoter trap insertion methods (Kertbundit 

et al, 1991; Koncz et al, 1989; Topping et al, 1994; Topping and Lindsey, 1995; Topping et al, 

1991), in which only 50-60% of the lines carried T-DNA at a single locus (Lindsey et al, 1993). 

Moreover, these loci often contained rearranged or multiple tandem insertions of the T-DNA, which 

could influence reporter gene expression and complicate amplification of flanking DNA sequences. 

From the results of our screen, it is clear that the selection against local transpositions, and the fact 

that the vast majority of our lines has a single insert, greatly facilitates screening of transposant lines 

for GUS expression patterns. 

GUS expression in gene I enhancer trap transposants 

The fraction of transposants that showed GUS expression at some stage of the plant life cycle was 

27% for gene trap lines and 81% for enhancer trap lines. After correction for the very abundant class 

of "pollen only" expressing lines found among enhancer traps, these frequencies were 25% for gene 

traps, and 34% for enhancer traps. Sundaresan and co-workers obtained a similar frequency of GUS 

expressing gene trap lines (26%, Sundaresan et al, 1995). Our frequency of 34% for GUS 

expression among enhancer trap lines is somewhat lower than the 48% reported by Sundaresan et al. 

(1995). This could be due to differences in the developmental stages at which transposants were 

assayed for GUS expression between the two different screens. Although not explicitly mentioned in 

their paper, Sundaresan and co-workers also found very frequent pollen staining among their 

collection of enhancer trap lines (R. Martienssen, pers. comm.). 

Klimyuk et al. (1995) reported an over-all GUS staining frequency of 60% among a collection 

of enhancer trap lines. However, almost half of the GUS expressing lines revealed expression 

patterns similar or identical to the parental staining patterns, and besides those, the majority of the 

GUS-stained lines showed common staining patterns, such as pollen, stigma or stipule specific 
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staining. Only a limited number of lines (11%) showed unique expression patterns. It could be 

possible that, in some lines, the high level of parental GUS staining obscures weaker levels of GUS 

expression under the control of endogenous enhancers. 

In our collection of WGT and WET lines, the frequency of GUS staining in embryos was relatively 

low as compared to the total frequency of GUS staining lines. The overall frequencies of GUS 

expression in embryos (3-4% among WGT lines and 6-7% among WET lines) compare well with the 

3-4% frequency of GUS expression in embryos obtained with a T-DNA-based promoter trap 

approach, in which lines with T-DNA insertions at a single locus were studied (Topping et al, 1994). 

The overall frequencies found by us for GUS expression in seedlings were 13% and 19%, for 

WGT and WET lines, respectively. This is significantly higher than the frequencies of GUS 

expression in embryos. The low number of lines that show GUS expression in the embryo may 

reflect a relatively low number of genes expressed in the embryo, or may partly be caused by a low 

expression level of the GUS reporter gene in some lines, in combination with a low accessibility of 

the embryo for the GUS substrate. Surprisingly, only one line out of 39 lines in which GUS staining 

was observed in the embryo, showed GUS expression during embryogenesis only, and not during 

post-embryonic development. This enhancer trap line has restricted GUS expression in the basal cells 

of the suspensor, and during later stages of embryogenesis in all suspensor cells, indicating that in 

fact no real embryo-specific GUS expressing line was recovered. All other lines displaying GUS 

expression in the embryo also show GUS staining at other developmental stages, such as the 

seedling, flower, silique, or seed coat. These include lines with similar expression patterns in the 

embryo and the seedling, such as lines displaying hypocotyl or cotyledon specific staining in both 

embryo and seedling, and lines staining in tissues that exist in the embryo, seedling and mature plant, 

such as the shoot meristem and vascular tissue. In these lines, GUS expression seems to remain 

associated with a specific tissue or position in the plant throughout development. Thus, in our screen, 

far more tissue- and position-specific than embryo-specific expression patterns were detected. 

Examples of Arabidopsis genes exhibiting such tissue- or position-specific expression pattern include 

AtLTPl (Thoma et al., 1994; Vroemen et al., 1996), ATML1 (Lu et al, 1996), SCARECROW (Di 

Laurenzio et al, 1996), and STM (Long et al, 1996). 

The detection of lines with expression patterns in multiple organs was not surprising: such 

expression patterns could be explained by the occurrence of common cell types or activities, such as 

cell division (Springer et al, 1995) or photosynthesis, in different organs, or by the repeated use of 

the same gene products in different developmental programs. Examples of the latter are commonly 

found in animal systems. For example, the components of the ras signalling pathway are involved in 

specifying cell fates during Drosophila embryogenesis, wing vein formation, eye development and 

oogenesis (e.g. reviewed by Ruohola-Baker et al. (1994)). So far, none of the genes identified in 

embryo mutant screens in plants, such as Bio-1 (Schneider et al, 1989), EMB30/GNOM (Busch et 

al, 1996; Shevell et al, 1994), FUSCA-1 (Castle and Meinke, 1994), PROLIFERA (Springer et al, 
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1995), KNOLLE (Lukowitz et al, 1996), STM (Long et al, 1996), SCARECROW (Di Laurenzio et 

al, 1996), and CLAVATA1 (Clark et al, 1997), exhibit an expression pattern that is restricted to the 

embryo. A rare example of a gene expressed exclusively during early plant embryogenesis is the 

carrot SERK gene (Schmidt et al, 1997), whose expression ceases after the early globular embryo 

stage. 

Mutant phenotypes in gene I enhancer trap transposants 

The frequency of aberrant phenotypes observed among the transposant lines was 4 and 7% for WET 

and WGT lines, respectively. This is consistent with frequencies found in previous screens using Ac I 

Ds systems in Arabidopsis (2.1% (Bancroft et al, 1993), 8% (Altmann et al, 1995), 5% (Bhatt et 

al, 1996)). This frequency is significantly lower than the frequency of transposant lines that show 

GUS expression. This can partly be attributed to the fact that the screening conditions applied were 

predominantly aimed at the detection of GUS staining and, in most cases, did not allow visualisation 

of very subtle phenotypic aberrations. Nevertheless, from our data it is clear that the frequency of 

mutants is low as compared to the frequency of expression patterns. This difference is not surprising 

for a number of reasons. First, many insertions, especially enhancer trap insertions, may result in 

GUS expression without gene disruption, if the insertion is upstream, downstream, or in a non

essential region of the coding region of the gene. In these cases, the generation of mutant alleles could 

be possible by inducing secondary transposition using Ac. Second, even in case of gene disruption, 

the resulting phenotype might be subtle, or only visible under non-standard growth conditions, and 

would therefore be missed in our screen. Finally, the tagged gene might be functionally redundant, so 

that even in case of a severe disruption of gene function, no phenotype arises. Together, these data 

imply that gene / enhancer trapping is particularly useful for the identification of genes that would be 

missed in genetic screens for mutant phenotypes. 

Gene isolation 

Analysis of the genomic regions responsible for the observed GUS expression patterns has not been 

completed yet, but it is evident that TAIL-PCR amplification of genomic DNA flanking the DsG and 

DsE insertions is a straightforward method. In this context, an advantage of gene traps over enhancer 

traps is that in GUS expressing gene trap lines, the DsG element should be inserted within the coding 

region of the gene of which expression is visualised by the GUS reporter gene. This greatly facilitates 

isolation of the tagged gene, and sequence information may directly allow prediction of its function 

(Springer et al, 1995). In fact, both gene trap insertions from which we sequenced flanking DNA 
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were inserted within the putative open reading frame of a gene, and for one of these, gene function 

could be predicted based on sequence homology to known genes. Although enhancer traps might also 

insert into the coding region of a gene, they do not rely on it for GUS expression. Flanking DNA 

sequences from four of our enhancer trap insertions revealed only one putative open reading frame. 

Little is known about the distance over which enhancers can act in plants. A large physical distance 

between an enhancer trap insertion and the gene(s) activated by the enhancer would seriously 

complicate gene isolation. An enhancer trap insertion conferring GUS expression in the root 

endodermis of Arabidopsis had inserted approximately 1 kb upstream of the SCARECROW gene, 

whose expression is also restricted to the root endodermis (Di Laurenzio et al., 1996). This suggests 

that isolation of genes detected by enhancer trapping would be feasible using flanking DNA probes 

for genomic library screening, followed by expression analysis of the genes found to be close to the 

site of insertion. 

Conclusions 

We have used gene trap and enhancer trap transposons to detect genes expressed during embryo 

development in Arabidopsis. Based on the data presented here, it appears that gene and enhancer 

trapping are particularly useful in the study of embryo development in different ways. First, the GUS 

expression patterns represent markers for specific cell-types, tissues, organs, and regions in the 

developing embryo. Such markers can be valuable for establishment of cell fate or position in embryo 

mutant backgrounds, and can supplement existing markers. Secondly, gene / enhancer trap insertions 

allow isolation of genes expressed during embryogenesis, without the requirement for a visible 

phenotype caused by gene disruption. This is particularly important if gene disruption does not cause 

a mutant phenotype, or if the mutant phenotype is embryo- or seedling-lethal. Thirdly, an advantage 

of gene / enhancer trapping over differential screening approaches is provided by the fact that gene / 

enhancer traps directly provide detailed information on the expression pattern of a gene, which can be 

an important criteria for selection of lines of interest. From our screen, enhancer traps appear to be 

more efficient in detecting expression patterns than gene traps. On the other hand, gene trap insertions 

only confer GUS expression if inserted into the transcribed region of a gene. This can greatly 

facilitate the cloning of the gene responsible for the observed GUS expression pattern, and may 

directly cause disruption of the tagged gene, possibly resulting in a mutant phenotype. By contrast, 

enhancer trap insertions that confer GUS expression might be outside of the coding region of the 

gene(s) activated by the enhancer. If so, gene disruption can only be achieved after remobilization of 

the DsE element, or by sequence based detection of a T-DNA or transposon insertion into the gene 

responsible for the observed GUS expression pattern. Taken together, the use of gene and enhancer 

trapping provides a powerful tool to dissect the molecular events involved in Arabidopsis 
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embryogenesis. 

Materials and Methods 

Mobilization of Ds elements 

DsG elements were mobilized by crossing plants from Ac starter lines Acl and Ac2, both 

homozygous for the Ac T-DNA, to plants from DsG starter lines DsGl, DsG6, DsGl and DsGS, all 

homozygous for the DsG T-DNA, in all possible pairwise combinations. In these crosses, Ac starter 

lines were used as the male and Ds starter lines as the female parental line. Likewise, DsE elements 

were mobilized by crossing plants from Ac starter lines Acl and Acl to plants from DsE starter lines 

DsE\, DsE2, DsE3 and DsE6, all homozygous for the DsE T-DNA, in all possible pairwise 

combinations. Fl seeds from the Ac x DsG and the Ac x DsE crosses were planted individually and 

the resulting Fl plants were allowed to self-fertilize. 1000-5000 seeds from each Fl plant were 

collected to establish independent F2-families. 

NAM-Kan selection for transposants 

750-1000 (15-20 mg) F2 seeds from each F2 family were surface-sterilized by successive washes 

with 70% ethanol for 10 min, diluted bleach solution (containing 0.9% sodium hypo chlorite, and 

0.1% Tween 20) for 10 min, and twice with sterile water. The seeds were then suspended in 5 ml of 

liquid MS-agar (containing 0.46% (w/v) MS salts (Duchefa, (Murashige and Skoog, 1963) adjusted 

to pH 5.7 with KOH, 1% sucrose and 0.7% agar (Difco)), and plated onto square 12 x 12 cm 

selection plates containing MS-agar supplemented with 50 |0.g / ml kanamycin sulphate (Duchefa), and 

3.5 \lM NAM (cc-naphtalene-acetamide, Sigma). After 1-4 days at 4 °C, the plates were incubated for 

4 days in a growth chamber at 25 °C with 16h light / 8h dark photoperiod. Transposant seedlings 

resistant to both NAM and kanamycin, recognizable by their green cotyledons, normal size and 

normal root development, were transferred to 60 mm round selection plates and further incubated to 

verify the double resistance. After reaching the second-leaf stage, transposants were transplanted to 

soil and allowed to self-fertilize. Flowers and siliques, that contained immature seeds, from these F2 

plants were screened for Gt/5-expression. Mature seeds (the F3 generation) were harvested and 

stored as a transposant line, i.e. a gene trap (referred to as Wageningen Gene Trap lines WGT1 

through WGT373) or enhancer trap line (Wageningen Enhancer Trap lines WET1 through WET431). 
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Histochemical localization of GUS expression 

For localization of GUS expression in seedlings, seeds from each gene trap and enhancer trap line 

were germinated in microliter wells containing 400 ul of sterile water. After 5 days of incubation at 25 

°C in the light, one volume of two times concentrated GUS staining solution was added, to make up 

final concentrations of 100 mM NaPi pH 7.2, 10 mM EDTA, 0.1% Triton X-100, 100 (Xg/ml 

chloramphenicol to inhibit bacterial growth, and 1 mg/ml X-Gluc (5-bromo-4-chloro-3-indolyl (J-D-

glucuronic acid). The seedlings were vacuum infiltrated with GUS staining solution for 1 hour, and 

the reaction was allowed to proceed for up to 48 hours at 37 °C in the dark. After the reaction, 

seedlings were cleared through several washes in 70% alcohol at 37 "C. GUS staining patterns were 

viewed using a Nikon binocular (Nikon Corp., Tokyo, Japan). 

Localization of GUS expression in flowers, developing seeds and embryos was performed 

either directly in the F2 plant generation (i.e. mature transposant plants after transplantation from 

selection plates to soil) or in the F3 generation. Prior to planting in soil, F3 seeds were germinated on 

MS agar plates containing 50 |J.g/ml kanamycin to select for individuals carrying the gene or enhancer 

trap transposon. Flowers were sampled from the plants and incubated in GUS staining solution as 

described above. Siliques with immature seeds covering all stages of embryo development (typically 

3 - 5 siliques per line) were sampled from the plants, opened longitudinally, and incubated in GUS 

staining solution as described above. After the reaction, flowers and siliques (containing immature 

seeds) were cleared for a minimum of 16 hours in Hoyers solution (100 g chloral-hydrate, 2.5 g 

Arabic gum, 15 ml glycerol, 30 ml water). Flowers and immature seeds were mounted in Hoyers 

solution on a microscope slide. GUS staining patterns were viewed with a binocular and with a 

Nikon Optiphot-2 equipped with Normarski optics. If GUS staining was observed in embryos, the 

staining reaction was repeated in GUS staining solution containing 1.25 mM, or even 5 mM each of 

potassium ferrocyanide and potassium ferricyanide (Jefferson et ai, 1987), to minimize diffusion of 

the reaction intermediates and thereby improve the specificity of the localization of GUS expression in 

embryos. Very weak GUS staining, however, was in most cases only visible in the primary staining 

reaction, i.e. in the absence of ferricyanide and ferrocyanide. 

Histological sections 

After the GUS staining reaction, immature seeds were transferred to FAA fixative (2% formaldehyde, 

5% acetic acid, 65% ethanol). The fixative was vacuum infiltrated and the seeds were fixed for at least 

3 days at 4 °C. After dehydration through an ethanol series, the seeds were infiltrated in Technovit 

7100 resin (Heraeus Kulzer, Wehrheim, Germany) according to the manufacturer's instructions. In 

brief, subsequent changes of Technovit preparation solution (1 g hardener I, 2.5 ml PEG 400, 100 ml 
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Technovit 7100) of increasing concentrations in 96% ethanol (1:3, 1:1, 3:1) were done for one hour, 

followed by a one hour and an overnight incubation in 100% Technovit preparation solution. Seeds 

were embedded in Technovit embedding solution (1 ml hardener II, 15 ml Technovit preparation 

solution) and polymerization was allowed to proceed for one hour at 37 °C. Serial sections (3 u.m 

thick) were cut with a Reichert-Jung microtome, transferred to microscope slides, stained with 0.01% 

Ruthenium Red (Sigma) for 1-10 min, and mounted in Euparal (Agar Scientific, Stansted, UK). 

Sections were analyzed with a Nikon Optiphot-2 using bright-field and dark-field optics. 

Southern blot analysis 

Genomic DNA from individual transposant plants was isolated according to Bouchez (1996). 1-2 (Xg 

of genomic DNA was digested with Pstl, separated on a 1% agarose gel and blotted onto a Nitran 

Plus membrane (Schleicher & Schuell, Keen, NH, USA). Blotting and hybridization were performed 

according to the manufacturer's recommendations. A 2.2 kb [a^2p-dATP] random prime labelled 

GUS fragment, covering the entire coding sequence, was used as probe. The blot was washed for 15 

min with 2 x SSC, 0.1% SDS and for 15 min with 0.1 x SSC, 0.1% SDS at 65 °C (Sambrook et al, 

1989), before exposure to X-ray film (Amersham, 's Hertogenbosch, the Netherlands). 

PCR-analysis 

For PCR detection of the Ds element, either a set of GUS primers was used, with sequences GUS-1, 

5'-AGA CTG TAA CCA CGC GTC TG-3' and GUS-2, 5'-CCG ACA GCA GTT TCA TCA ATC-

3', or a combination of a GUS specific primer and a primer specific for the 3' end of the Ds element, 

with sequences GUS-4, 5'-GCT CTA GAT CGG CGA ACT GAT CGT TAA AAC-3' and Ds3, 5'-

TAT TTA ACT TGC GGG ACG GAA ACG AAA AC-3'. For detection of both the Ac and the Ds 

donor T-DNA, IAAH specific primers were used, with the following sequences: NAM3, 5'-CAT 

TCC CCA CCT TGA CGA ACT G-3' and NAM4, 5-GGT CTG AAT CCG CTA ATC CA-3'. PCR 

conditions for all primer pairs were 5 min at 94°C, followed by 35 cycles of 94°C (1 min), 55°C (1 

min 30 sec) and 72°C (1 min 30 sec). PCR products were separated on a 1% agarose gel. 

Transposant plants are expected to be positive for the GUS gene, and negative for the IAAH gene, 

whereas Ds starter lines should be positive for both. Ac starter lines should be negative for GUS and 

positive for IAAH. 
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TAIL-PCR 

Genomic DNA flanking Ds insertions was amplified by thermal asymmetric interlaced (TAIL) PCR, 

essentially as described by Liu et al. (1995). A set of three nested primers for the 5' end of Ds, Ds5-

1, Ds5-2, and Ds5-3, was used in combination with one arbitrary primer, AD2 (Liu et al, 1995), to 

amplify genomic DNA flanking the 5' end of either DsG or DsE insertions. The sequences of the 

primers are as follows: Ds5-1, 5'-CCG TTT ACC GTT TTG TAT ATC CCG-3'; Ds5-2 5'-CGT 

TCC GTT TTC GTT TTT TAC C-3'; Ds5-3, 5'-GGT CGG TAC GGA ATT CTC CC-3' and AD2, 

5'-NGT CGA (G/C)(A/T)G ANA (A/T)GA A-3'. After three subsequent rounds of TAIL-PCR, the 

primary, secondary and tertiary reaction products were separated on a 3% agarose gel. In successful 

reactions, the tertiary reaction product should be 71 bp smaller than the secondary product. Typically, 

the reaction products of successful amplifications ranged in size from 200 to 1500 bp. Secondary and 

tertiary reaction products were either sequenced directly using Ds5-2 and Ds5-3 as sequencing 

primer, respectively, or cloned into the pGEM-T vector (Promega, Madison, WI, USA) and 

subsequently sequenced using T7 and SP6 sequencing primers. 
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Molecular characterization of Arabidopsis 
enhancer trap and gene trap lines that 
exhibit GUS expression in embryos 

We identified 39 Arabidopsis lines that exhibit GUS expression in embryos by enhancer and gene 

trap insertional mutagenesis. These lines provide a source of molecular markers that define not only 

different cell types and tissues, but also mark previously unidentified regions in the developing 

embryo. GUS expression observed before the heart stage of embryogenesis is mostly uniform in all 

cells of the embryo, and in some lines early uniform expression becomes spatially restricted during 

later stages of embryo development. The expression pattern in five lines with early or localized GUS 

expression was analysed in detail. Electronic searchable databases were established to record 

screening data. Analysis of genomic DNA sequences flanking the transposon in two independent 

gene trap lines revealed putative open reading frames (ORFs) in both, and in one of these lines gene 

trap insertion had taken place into the 5' untranslated leader of an expansin gene. In the genomic DNA 

sequences flanking four independent enhancer trap insertions, only one putative ORF was identified. 

The corresponding enhancer trap line displays GUS expression and a mutant phenotype in the 

suspensor. Together, the selected lines provide a set of markers that can be used to determine cell- or 

regional identity and polarity in Arabidopsis embryo mutants, and will allow the isolation of genes 

identified on the basis of their expression pattern in the Arabidopsis embryo. 

Casper W. Vroemen, Paul M.J. In der Rieden, Ab van Kammen and Sacco C. de Vries 
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Introduction 

The architecture of the adult plant is established in a preliminary form during embryogenesis. Many 

studies have been devoted to the elucidation of the molecular mechanisms underlying plant embryo 

development (reviewed by Vroemen and De Vries (1998)). The most widely followed approach has 

been to identify mutants with defects in the establishment of the embryo body plan, in some cases 

followed by the isolation of the mutated gene. These genetic approaches have yielded numerous 

embryo-defective mutants in Arabidopsis (Jiirgens et al, 1991; Mayer et al, 1991; Meinke, 1991; 

Scheres et al, 1995), maize (Sheridan and Clark, 1993), and rice (Hong et al, 1995). However, a 

major difficulty that has emerged during genetic screens for embryo mutants defective in the 

establishment of the body plan concerns the recognition and interpretation of relevant phenotypes. 

Many embryo-lethal mutants show similar phenotypes (Feldmann, 1991; Meinke, 1991), and the 

assessment of the precise effects of a mutation is often hampered by the inability to establish cell- or 

regional identity in embryo mutants (Topping and Lindsey, 1997; Vroemen et al, 1996; Yadegari et 

al, 1994). 

One way to partly circumvent these difficulties is to study the expression pattern of well 

defined molecular markers in embryo mutants. Markers reflecting cell- or regional identity or polarity 

in the developing embryo offer criteria other than morphology for the evaluation of the precise effects 

of an embryo mutation. Examples of this approach include the study of the AtLTPl expression 

pattern in mutant knolle, keule, gnom (Vroemen et al, 1996), and raspberry (Yadegari et al, 1994) 

embryos, and more recently, the expression analysis of the promoter trap markers POLARIS, 

EXORDIUM and COLUMELLA in mutant hydra and emb30/gnom embryos (Topping and Lindsey, 

1997). Unfortunately, besides the ones mentioned above, few suitable embryo marker genes are 

available to date, especially for the early stages of embryogenesis. Therefore, we have performed an 

enhancer and gene trap insertional mutagenesis screen to identify Arabidopsis lines with GUS 

expression in embryos (Vroemen et al, 1998). The Ds transposon based enhancer and gene trap 

elements used (Sundaresan et al, 1995) carry a GUS reporter gene that can respond to cw-acting 

transcriptional signals at the site of integration. Apart from the generation of marker lines, an added 

benefit of enhancer and gene trap screens is that they allow the identification of genes that do not 

mutate to obvious phenotypes, for example due to functional redundancy or because the phenotypes 

are very subtle under the screening conditions employed. Subsequent gene isolation is facilitated by 

the transposon insertion in or close to the gene corresponding to the observed GUS expression 

pattern (Springer et al, 1995). 

Here, we describe the spectrum of GUS expression patterns observed during the screening of 

431 enhancer trap and 373 gene trap lines. Furthermore, we present electronic searchable databases 

for the recording of screening data, and sequence analysis of genomic DNA flanking the transposon 

insertions in four enhancer trap and two gene trap lines. Finally, the efficiency of enhancer and gene 

76 



chapter 4 

trap mutagenesis as a means of identifying genes that are important for embryo development is 

discussed. 

Results 

Screening enhancer trap and gene trap lines for GUS expression in the embryo 

In order to identify GUS markers expressed in the Arabidopsis embryo, all enhancer and gene trap 

lines were examined for GUS expression in siliques containing seeds with (pre-)globular stage to 

mature embryos. Simultaneously, all lines were also assayed for GUS expression at other stages of 

the plant life cycle, such as the seedling and flower. A total of 39 lines, 27 WET lines and 12 WGT 

lines, exhibited GUS expression in the embryo. This corresponds to overall frequencies of 6% GUS 

expression in embryos among the WET lines, and 3% among the WGT lines (Vroemen et al, 1998). 

Table 4.1 lists the results of a qualitative analysis of GUS expression patterns in plants of the 39 

embryo-positive WET and WGT lines, and Figure 4.1 shows GUS staining in embryos and 

immature seeds of twenty of these lines. Since the aim of our screen was primarily the identification 

of GUS markers expressed in the embryo, Table 4.1 focuses mainly on GUS expression patterns in 

the embryo, seed and silique. GUS staining in pollen grains is mentioned in a separate column, since 

its significance in enhancer trap lines is unclear: 67% of all enhancer trap lines display GUS staining 

in pollen grains, compared to only 5% of all gene trap lines (Vroemen et al, 1998). On the basis of 

their GUS expression pattern in developing embryos, the lines in Table 4.1 have been classified in 

four distinct classes. Class A represents lines in which GUS expression is initially uniform in the 

embryo, and becomes spatially restricted during later stages of embryogenesis. Examples include 

expression restricted to the hypocotyl and root (WET133, Figure 4.1), the vascular tissue of the 

hypocotyl (WET272, Figure 4.1), the shoot apical meristem and part of the cotyledon primordia 

(WET368, chapter 5), the shoot and root apices and the vasculature (WGT39, Figure 4.2), the shoot 

and root apices only (WGT142, Figure 4.1), the entire vascular tissue (WGT236, Figure 4.1), the 

cotyledons (WGT316, Figure 4.1), the root tip (WGT351, Figure 4.1), and to a region just above the 

root tip (WGT6, Figure 4.1). Class B harbors lines in which GUS expression marks a distinct 

embryonic region or tissue from the onset of expression onwards. Lines of this class display GUS 

staining in the internal embryonic tissues (WET42, Figure 4.1), the hypophyseal cell group 

(WET215, Figure 4.4), the shoot apex (WET233, Figure 4.5), the root and basal hypocotyl 

(WET45, Figure 4.1), the shoot apex and later the root apex (WET115, Figure 4.1), the cotyledon 

tips and root cap (WET6, Figure 4.1), a region encompassing the upper hypocotyl, the shoot apex 

and the bases of the cotyledons (WET16, Figure 4.1), the hypocotyl (WET17, Figure 4.1), the root 
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Table 4.1: Histochemical localization of GUS activity in plants of WET and WGT lines with GUS staining in the 

embryo or suspensor. 

Line 

A 

B 

C 

WET 133 

WET272 

WET368 

WGT39 

WGT 142 

WGT236 

WGT316 

WGT351 

WGT357 

WGT6 

WET42 

WET215 

WET233 

WET45 

WET115 

WET6 

WET 16 

WET17 

WET60 

WGT320 

WET347 

WET393 

WET 103 

WET175 

WET400 

WET411 

WGT42 

WGT96 

WGT 165 

WGT323 

WET24 

WET227 

WET352 

WET222 

WET322 

WET50 

WET406 

1 WET167 

WET308 

(pre-) 
globular 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+? 

+? 

+ 

+? 

+ 

+ 

Embryo 

heart 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+? 

+? 

+ 

+? 

+ 

+ 

+ 

+ 

+ 

torpedo 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+? 

+? 

+ 

+? 

+ 

+ 

+ 

+ 

+ 

+ 

mature 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+? 

+? 

+ 

+? 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

suspensor seedling 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

n.d. 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

n.d. 

+ 

+ 

seed coat/ 
endosperm 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

funicle 
attachment 

point 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

funicle 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

placenta 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

silique 
wall 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

sepal/petal 
abscission 

zone 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

lower 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

pollen 
grains 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ , GUS activity detected; n.d., not determined; +?, GUS activity in embryo unsure due to GUS activity in seed coat. 
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Figure 4.1: GUS expression patterns, in seeds and embryos of twenty WET and WGT lines listed in Table 4.1. 

79 



lines with GUS expression in embryos 

tip (WET60, Figure 4.1), the cotyledons (WET347, Figure 4.1), a region just above the root tip 

(WGT320, Figure 4.1), and the suspensor (WET393, Figure 4.3). Class C lines exhibit uniform 

GUS staining in the embryo. In some lines, such as WGT165 (Figure 4.1), this uniform expression 

is already seen in pre-globular embryos, whereas in other lines, expression starts at a later stage (e.g. 

WET24 and WET227, Figure 4.1). Finally, class D consists of lines exhibiting early transient GUS 

expression, that disappears at later stages of embryo development. In the two class D lines, GUS 

expression is seen not only in the embryo, but instead, the entire developing seed, including seed 

coat, endosperm, and embryo show intense GUS staining. An example of such a line is WET167 

(Figure 4.1), in which GUS expression in the embryo, endosperm and seed coat disappears after the 

heart stage of embryogenesis. Examination of GUS expression patterns in the subsequent generations 

showed that in all lines, the patterns of GUS expression were stably transmitted to the next 

generations, and were linked with the Ds elements (data not shown). 

GUS expression patterns in WET393, WET215, WET233, WGT39 

On the basis of early or localized GUS expression observed during the primary screen, the class A 

line WGT39 and the class B lines WET393, WET215, and WET233 were chosen for a more detailed 

analysis of GUS expression patterns during the development of seeds, seedlings and mature plants. 

Class C lines exhibit uniform staining in the embryo, and both of the class D lines identified in our 

screen display uniform staining in the early embryo and the seed coat. Because our main interest was 

to identify lines exhibiting early and tissue-, cell-type- or region-specific GUS expression in 

developing embryos, no class C or D lines were subjected to more detailed analyses up to now. 

WGT39 provides an example of a class A type of GUS expression pattern (see Table 4.1). Up 

to the globular stage, GUS expression is uniform in all cells of the embryo proper (Figure 4.2A). 

Figure 4.2: GUS expression pattern in WGT39. 

A: developing seed with globular stage embryo. 

B: transition stage embryo. 

C: early heart stage embryo. 

D: early torpedo stage embryo. 

E: late torpedo stage embryo. 

F: developing seed with bending cotyledon stage embryo. 

G: root tip of seedling, 10 days post-germination. 

H: lateral root of seedling, 10 days post-germination. 

I: shoot apex of seedling, 5 days post-germination. 
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Commencing at the transition stage, expression becomes gradually restricted to the internal cells of the 

embryo (Figure 4.2B and 4.2C), until it is only seen in the vascular tissue of the hypocotyl and 

cotyledons, and in the root apex at the early torpedo stage (Figure 4.2D). In late torpedo stage 

embryos, GUS expression becomes apparent in the shoot apex at the expense of the root apex 

expression (Figure 4.2E). During the final stages of embryogenesis, GUS staining remains 

associated with hypocotyl and cotyledonary vascular tissue and the shoot apex (Figure 4.2E and 

4.2F). GUS expression in WGT39 seedlings is confined to the vascular tissue (Figure 4.2G, 4.2H, 

and 4.21), the root meristem in early primary (data not shown) and lateral (Figure 4.2H) roots, and 

the shoot meristem (Figure 4.21). GUS staining in primary and lateral roots initially covers the 

vascular tissue and most of the meristem (Figure 4.2H). Later during root development, GUS 

expression in the meristem decreases, until it is seen only in the root vasculature, where it abruptly 

ends in the cells adjacent to the quiescent center (Figure 4.2G). In mature WGT39 plants, GUS 

expression is observed in flowers and siliques, where it is most prominent in the vasculature, and in 

part of the seed coat (cf. Figure 4.2A, and data not shown). 

GUS staining in WET393 plants is restricted to the embryo, meaning that no GUS staining is 

observed at any other stage of development or in any other plant organ (Vroemen et al., 1998). 

However, in WET393 plants there is GUS staining in pollen, but this is considered to be artefactual 

(Klimyuk et al, 1995; Mascarenhas and Hamilton, 1992; Uknes et al, 1993; Vroemen et al, 1998). 

At the globular embryo stage, GUS expression is observed in the entire suspensor including the 

hypophyseal cell (Figure 4.3A). This is the precise opposite of the expression pattern in early 

WET368 embryos, that show expression in all "apical" cells of the (pre-)globular embryo, but not in 

the hypophyseal cell and the suspensor (chapter 5). Beginning in the transition stage embryo, 

expression is gradually restricted to the lowermost cells of the suspensor (Figure 4.3B and 4.3C). 

During the torpedo (Figure 4.3D) and bent cotyledon (Figure 4.3E and 4.3F) stages, GUS 

expression is seen in the entire suspensor, but is completely absent from the embryo proper. 

In heart stage embryos of WET215 plants, GUS expression is confined to all cells derived 

from the hypophysis, collectively designated as the hypophyseal cell group (Figure 4.4A). Figure 

4.4B shows a section through the embryonic root of a torpedo stage WET215 embryo within the 

developing seed. Indigo blue crystals are present in all cells belonging to the hypophyseal cell group. 

At the bent-cotyledon stage (Figure 4.4C) GUS staining is most prominent in the hypophyseal cell 

group, while weaker GUS staining, most likely due to diffusion of reaction intermediates, was 

observed in a region just above the hypophyseal cells. In seedlings 5 days post-germination, 

expression is seen in the root cap, the hypocotyl and the base of the cotyledons (Figure 4.4D and 

4.4E). Since GUS staining is much weaker in the hypocotyl and cotyledon bases as compared to the 

root cap, the seedling shown in Figure 4.4D and the seedling from which details are shown in 

Figures 4.4E, 4.4G and 4.4H were incubated in GUS staining solution for 48 hours. As a 

consequence, staining in the root cap was very intense and possibly not only restricted to cells 
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Figure 4.3: GUS expression pattern in WET393. 

A: developing seed with globular stage embryo 

B: section of developing seed with transition stage embryo 

C: transition stage embryo 

D: developing seed with early torpedo stage embryo 

E: developing seed with bent cotyledon stage embryo 

F: basal end of bent cotyledon stage embryo after dissection out of the seed. The upper suspensor cell is still attached to 

the embryo proper, and the staining reaction was performed under conditions that minimize diffusion of the reaction 

intermediates (see Materials and methods). 

expressing the GUS gene. In order to precisely determine which cells of the root cap expressed GUS, 

WET215 seedlings 7 days post-germination were stained for 4 hours under staining conditions that 

minimize diffusion of reaction intermediates. These experiments indicated that GUS expression in the 

83 



lines with GUS expression in embryos 

84 



chapter 4 

columella root cap of primary (not shown) and lateral roots (Figure 4.4F) of WET215 seedlings is 

restricted to the upper two layers, which include columella root cap initials and their immediate 

daughters, and epidermal initials. Expression in the hypocotyl is restricted to the epidermis (Figure 

4.4G). In the cotyledon bases, GUS staining is associated with the stomata (Figure 4.4H). In true 

leaves, strong GUS staining is seen in trichomes (Figure 4.41). 

In WET 233 embryos, GUS expression is confined to a region encompassing the shoot apical 

meristem (SAM) from the heart stage onwards (Figure 4.5A, 4.5B, and 4.5C). Unlike WET368 

embryos, that display a similar GUS staining pattern at these stages of embryogenesis (chapter 5), 

WET233 embryos do not show GUS expression before the heart stage. Moreover, in contrast to 

WET368 seedlings (chapter 5), GUS staining in WET233 seedlings is not restricted to the SAM 

region, but is also seen in the cotyledons and upper hypocotyl (data not shown). No GUS expression 

is seen at developmental stages other than the embryo and seedling in WET233 plants. 

Databases containing information on WET and WGT lines 

We established electronic searchable FileMaker Pro 2.0 (Claris™) databases based on a database 

format developed at Cold Spring Harbor Laboratory (R. Martienssen and V. Sundaresan). These 

databases allowed efficient recording of screening data, such as expression patterns and mutant 

phenotypes, of the WET and WGT lines, with emphasis on developing embryos. Two independent 

databases, one for WET lines and another, with identical set-up, for WGT lines, were established. 

An outline of the WET database, that consists of three different layouts, is shown in Figure 

4.6. The "list" layout (Figure 4.6, upper panel) represents a complete administration of all lines listed 

by number, and includes seed stock number of the parental Fl plant, genotype of the Fl parent (i.e. 

Figure 4.4: GUS expression pattern in WET215. 

A: heart stage embryo. 

B: section of embryonic root of torpedo stage embryo in developing seed. 

C: embryonic root of bent cotyledon stage embryo. To increase staining intensity, staining was performed for 3 days 

without inclusion of ferro / ferricyanides. 

D: seedling, 5 days post-germination. 

E: root tip of seedling, 5 days post-germination. 

F: lateral root of seedling, 7 days post-germination. 

G: hypocotyl of seedling, 5 days post-germination. 

H: cotyledon of seedling, 5 days post-germination. 

I: leaf of seedling, 7 days post-germination. 
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V 

Figure 4.5: GUS expression pattern in WET233. 

A: heart stage embryo. 

B: torpedo stage embryo. 

C: bent cotyledon stage embryo. 

combination of DsE and Ac starter lines that were initially crossed to generate Fl seed), homo- or 

hemizygosity of the WET-line (i.e., the "pooled" F3 seed stock, see below and Materials and 

methods) for the DsE element, screening status at the seedling and embryo stage, and the last 

Figure 4.6: Outline of the database containing information on all WET lines generated during our screen. An identical 

database exists for WGT lines. Upper ("list") layout contains genetic history, molecular data and screening status of 

each WET line. WET, Wageningen Enhancer Trap line; WAU, Wageningen Agricultural University seed stock; seedl., 

seedling; embr., embryo. "Embryo" layout contains observed GUS expression patterns and mutant phenotypes in 

embryos, seeds, siliques, flowers and other plant parts of each WET line screened, emb., embryonic; spor., sporophytic; 

cot., cotyledon; fun. att., funicle attachment point; absc. zone, sepal/petal abscission zone. "Seedling" layout contains 

observed GUS expression patterns and mutant phenotypes in seedlings of each WET line screened, vase, vasculature; 

hypo, hypocotyl; lat., lateral; prim., primordia. Each layout contains buttons (dotted rectangles) to switch to either of 

the two other layouts of the same WET line. The "list" layout contains a "new" button to generate a new, empty record. 

"1" indicates weak, "2" intermediate, and "3" strong GUS staining. No entered number, or "0" indicates that no GUS 

staining was observed. 
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WET-line F1 parent F1 genotype 
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modification date of either of the three layouts of the WET-record. To the right of each record, two 

buttons allow access to the "seedling" and "embryo" layouts of the same WET-line. The "NEW" 

button adds a new empty record to the bottom of the list layout, to accommodate for newly generated 

WET lines. It should be noted that during the generation of WET lines, generally the seeds harvested 

from two NAM-kan resistant F2 plants were pooled to generate one single F3 seed batch, or WET-

line (see Materials and Methods). 2/3 of the NAM-kan resistant F2 plants on a selection plate are 

expected to be hemizygous for the Ds transposon, and 1/3 homozygous. Only WET lines that were 

100% kanamycin resistant were annotated "homozygous", and all WET lines segregating for 

kanamycin sensitivity as "hemizygous". Consequently, only 1/9 of all WET-lines are expected to be 

"homozygous". The number of 43 homozygous WET-lines (data not shown) obtained among the 

total population of 431 lines (10%) is well in line with this prediction. 

The "Embryo" layout (Figure 4.6, middle panel) contains the results of the screening of each 

WET line for GUS expression patterns and mutant phenotypes in embryos, seeds, siliques, flowers 

and other parts of the adult plant. Since the aim of our screen was primarily the identification of GUS 

markers expressed in the embryo, GUS expression patterns in the embryo are documented in more 

detail than those in other plant organs. The embryo layout contains fields for mutant embryo and plant 

phenotypes and their segregation ratio, a "staining pattern" section that gives an overview of the 

stages at which GUS expression is observed, and an elaborate section which allows semi-quantitative 

description of the temporal and spatial GUS expression pattern. The latter section is subdivided in 

five columns, each representing a different stage of embryo and seed development, and a column 

listing extra-embryonic plant organs and tissues. The level of GUS expression is indicated in a 

numerical way, in which "1" indicates weak, "2" intermediate, and "3" strong GUS expression. No 

entered number, or "0" indicates that no GUS staining was observed. The section "embryo tissue" 

allows the recording of restrictions or differences in the level of GUS expression along the radial 

axis. 

The "Seedling" layout (Figure 4.6, bottom panel) is similar to the "Embryo" layout, but 

concerns GUS expression patterns and mutant phenotypes at the seedling stage. The section 

harboring the observed GUS expression pattern consists of three columns for three different seedling 

elements (cotyledons, hypocotyl, and root) and a column listing the three main tissue types along the 

seedling's radial axis. The heading of the first three columns is followed by a numerical value that 

indicates the highest level of GUS expression in the corresponding seedling element. 

The categorized and numerical fashion in which the GUS expression patterns are recorded in 

our databases enables searches for lines expressing GUS in any plant organ, tissue or region, or 

combinations thereof, that is defined in the "Embryo" or "Seedling" layouts. On the other hand, the 

spectrum of defined categories is not sufficient to describe all observed staining patterns in full detail. 

Therefore, both the "Embryo" and the "Seedling" layouts contain a field, named "notes" and 

"remarks", in which, where necessary, a more detailed description of the staining pattern and other 
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information can be recorded. Taken together, the combination of layouts in our databases provides a 

framework that first allows a detailed recording of screening data, and later permits easy identification 

of any set of lines of interest. 

Genomic DNA sequences flanking DsE and DsG insertions 

GUS expression in gene trap lines relies on DsG insertion within the transcribed region of a gene. By 

contrast, GUS expression in enhancer trap lines can be activated from DsE elements inserted within 

or outside of the coding region of chromosomal genes. In order to determine whether the genomic 

sequences tagged by DsG and DsE insertions in GUS positive WGT and WET lines correspond to 

putative coding regions of chromosomal genes, DNA sequences flanking the 5' Ds ends in WET393, 

WET215, WET233, WET42, WGT39, and WGT236 were amplified by TAIL-PCR (Liu et al., 

1995; Vroemen et al., 1998). Each product was cloned into a T/A cloning vector and sequenced. In 

all cases, the expected 5' Ds sequences were present, and only in line WGT236, Ds insertion had 

resulted in a 3 bp truncation of the 5' Ds end. 

For WET393, a 645 bp PCR product was generated, that contained 532 bp of plant genomic 

DNA (Figure 4.7). Translation of the genomic DNA sequence into an amino acid sequence using the 

Sequence Navigator software (Applied Biosystems) revealed one putative open reading frame (ORF), 

spanning the entire 532 bp sequence. The predicted amino acid sequence contains four putative N-

glycosylation sites, and is rich in serine and proline residues, reminiscent of certain cell wall proteins 

like extensins and hydroxyproline-rich glycoproteins. Furthermore, homopolymeric stretches of 

glutamine, serine, threonine, and proline residues account for 37% of the predicted amino acid 

residues (Figure 4.7). Domains rich in these residues have been shown to activate transcription 

(Johnson et al, 1993), and are implicated to serve such role in the Arabidopsis SCARECROW 

protein (Di Laurenzio et al, 1996). Thus, WET393 may encode a transcriptional regulator or a cell 

wall protein. It may also provide an example of an enhancer trap line in which the DsE element has 

inserted into the coding region of a transcribed gene. Further support for this possibility comes from 

the recent observation that developing embryos in WET393 plants display aberrant cell division 

patterns in the suspensor and hypophyseal cell group (data not shown). This mutant phenotype may 

be caused by gene disruption due to the DsE transposon insertion. 

For WET215, a 514 bp PCR product containing 401 bp of genomic DNA was produced. The 

nucleotide sequence was found to be A/T rich, and no apparent ORF was identified, suggesting that 

the DsE element in WET215 is inserted outside of the coding region of chromosomal genes. 

Likewise, the 442 bp genomic flanking sequence from the 491 bp PCR product of WET42, and the 

327 bp genomic flanking sequence from the 363 bp PCR product of WET233, did not contain clear 

putative ORFs. 
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1 GATAAGAGCTGTAACTCCTCCGGCGATTCCTCCGCCGTATCCGCCTCTGCAACGAGTAGT 60 
D K S C IN S SI G D _S S_ A V S_ A _S A T S S 

61 ACCGGTAACAATACAACGAACAGAGATCATTACCTGAGACAACTCAATAAGCTGTCTCAT 12 0 
T G IN N T! T N R D H Y L R _ Q L N K L _ S H 

121 AAGATATCAAAACCGACGAACTCTTCCTCCTCCGTCTCCGTCGCGAATCGTGAAATTGAT 180 
K I _S K _P T IN S Si S S V _S V A N R E I D 

181 CTTCCACCTCCTCCACCGCTGCAAATCAATCAAGGGAATCTCCATCAACATCAACCTCCT 240 
L P P P P P L _Q_ I N _ Q _ G N L H _ Q _ H Q P P 

241 GTTTACAATATCAACAAGAACGATTTCAGAGATGTTGTTCAGAAACTAACCGGTTCACCT 300 
V Y N I N K N D F R D V V _ Q _ K L _ T _ G _S P 

301 GCACATGAACGGATCTCTGCTCCGCCGCAACAACCGATTCATCACCCTAAACCTCAACAG 360 
A H E R I S A P P Q Q P I H H _P K P Q Q 

360 AGTTCGCGTCTACATAGGATCCGTCCTCCTCCTTTGGTTCACGTTATCAATCGTCCTCCT 42 0 
S S R L H R I R P P P L V H V I N R _P P 

421 GGTTTGTTAAATGACGCACTTATCCCTCAAGGTTCTCATCACATGAATCAAAACTGGACC 480 
G L L N D A L I _P Q G _S_ H H M N _Q_ I N W T! 

481 GGCGTTGGATTTAACCTTCGACCAACGGCGCCGCTTTCTTCTACACTCGACG 532 
G V G F N L R P T A P L S S T L D 

Figure 4.7: Nucleotide and predicted amino acid sequence of genomic DNA flanking the DsE element in WET393. 

Putative N-glycosylation sites are boxed, and glutamine (Q), serine (S), threonine (T) and proline (P) residues (see text) 

underlined. 

The 701 bp PCR product obtained from WGT39 contained 589 bp of genomic flanking DNA 

(Figure 4.8), that shows sequence similarity to expansin genes from Arabidopsis and other plant 

species. Expansins represent a highly conserved multigene family of proteins that mediate cell wall 

extension in plants (Shcherban et al, 1995), and can have a role in mediating cell fate (Fleming et al, 

1997). The WGT39 flanking sequence was found to be most homologous on both the nucleotide and 

the amino acid level (Figure 4.9) to the Arabidopsis thaliana AtEXP-1 cDNA (Shcherban et al., 

1995). Analysis of the nucleotide and amino acid sequence homologies revealed the presence of an 89 

bp intron in the isolated flanking DNA. Further nucleotide sequence comparisons revealed an exact 

match of the WGT39 flanking DNA sequence with part of the genomic sequence of a B AC contig 

(Figure 4.8). Analysis of this genomic sequence indicated that the DsG element in WGT39 is located 

in the untranslated leader of a previously unidentified putative expansin gene, 117 bp upstream of the 

predicted ATG start codon (Figure 4.8). This implies that the observed GUS activity in WGT39 is the 

result of transcription of the DsG borne GUS gene under the control of the expansin promoter, 

followed by translation initiated from the ATG start codon of the GUS gene. Since GUS expression 
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does not rely on the formation of a translational fusion of the endogenous and the GUS gene 

products, the DsG element in WGT39 acts as a promoter trap rather than a gene trap. Thus, WGT39 

represents an example of a GUS expressing gene trap line, in which the DsG element has inserted in 

the transcribed region, but outside of the coding region of a chromosomal gene. 

For line WGT236, TAIL-PCR resulted in a 315 bp product, that contained 205 bp of genomic 

flanking DNA. The predicted amino acid sequence corresponding to the genomic flanking DNA 

revealed one putative ORF spanning the entire 205 bp. No significant similarity to known sequences 

was found on either the nucleotide or the amino acid level. Because gene trap lines are only expected 

to display GUS expression if the DsG element has inserted into the transcribed region of a 

chromosomal gene, this could mean that WGT236 carries a DsG insertion in an unknown gene. 

Alternatively, the DsG element in WGT236 could have inserted into an intron, a possibility that 

would be supported by the high (71%) A-T content of the flanking DNA (Bevan et al, 1998). 

Collectively, sequence analysis of genomic DNA flanking Ds insertions in six lines displaying GUS 

staining in the embryo revealed one gene trap insertion into a gene with high sequence similarity to 

plant expansin genes, and one enhancer trap insertion into a putative gene with sequence motifs 

reminiscent of certain classes of cell wall proteins and transcriptional activators. Further molecular 

analysis will reveal whether the identified ORFs correspond to transcribed genes, and library 

screening will yield cDNA and genomic clones of genes whose expression pattern is mimicked by the 

GUS staining pattern in the corresponding gene or enhancer trap lines (Vroemen et al., 1998). 

Discussion 

Previously, we reported on the collection of 431 independent Arabidopsis enhancer trap lines and 373 

independent gene trap lines, screened for GUS expression in the embryo and seedling. 27 WET lines 

and 12 WGT lines were found to exhibit GUS expression in the embryo (Table 4.1 and Figure 4.1), 

representing 6% of the WET lines, and 3% of the WGT lines (Vroemen et al, 1998). The latter 

frequency is similar to the frequency of embryo GUS expression obtained with T-DNA based 

promoter traps (Topping et al, 1994). Here, we show that the WET and WGT lines selected provide 

a source of molecular markers that define not only different cell types and tissues, but also mark 

different regions in the developing Arabidopsis embryo that were not identified as such in previous 

screens. As becomes immediately apparent from Table 4.1, only line WET393 displays GUS 

expression specific to the embryo, if we exclude the possibly artefactual pollen-staining observed as 

well (Vroemen et al, 1998). The vast majority of all WET and WGT lines with GUS staining in the 

embryo also express GUS at other developmental stages. This includes lines in which GUS 

expression is associated with a specific tissue or region that exists in the embryo, seedling or mature 

plant, as exemplified by the shoot meristem region staining in WET368 (chapter 5). Such expression 
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0 aatgaacattctataaattccacttcaaccatcaaccttcttcactcccatcaaagcaaa 60 

61 actatctttctccttctcattcctttttctctcactctcctccattaaagctctgcactt 120 

121 tctcaaagagaatgttcatgtaatataacatcttcctttcaaagtctttcttttactgtt 180 

181 ttttttcttctatctttctaataaccaataaaggtataatttttgtttgaaatttgttct 240 

241 attgcaggggtaagATGGGTCTTTTGGGAATTGCTCTGTTTTGTTTTGCTGCAATGGTGT 300 
M G L L G I A L F C F A A M V 

3 01 GCTCTGTTCATGGCTATGACGCTGGATGGGTCAATGCTCATGCTACCTTCTATGGTGGAA 3 60 
C S V H G Y D A G W V N A H A T F Y G G 

3 61 GTGATGCTTCAGGAACAATGGgtatgtgcttctcactttgttctctaaaatgtctcagag 420 
S D A S G T M 

421 aaaacgaaaatctaggatatttacaatcttgttgatgttgttgtctctagGTGGAGCTTG 480 
G G A C 

481 TGGCTACGGGAACCTCTACAGTCAAGGTTACGGGACCAACACGGCGGCGTTGAGCACTGC 540 
G Y G N L Y S Q G Y G T N T A A L S T A 

541 TCTGTTCAACAACGGTCTTAGCTGCGGGGCTTGTTTTGAGATCAAGTGTCAGAGCGACGG 600 
L F N N G L S C G A C F E I K C Q S D G 

601 CGCGTGGTGTTTACCTGGTGCTATCATTGTCACAGCC ACCAATTTCTGTCCTCCTAACAA 660 
A W C L P G A I I V T A T N F C P P N N 

661 CGCTCTTCCCAATAACGCTGGTGGTTGGTGTAACCCTCCGCTTCATCATTTCGATCTCTC 720 
A L P N N A G G W C N P P L H H F D L S 

721 TCAGCOTi GTTTTTCAACGCATTGCTCAGTACAAAGCTGGTGTTGTCCCTGTTTCCTACAG 780 
Q P V F Q R I A Q Y K A G V V P V S Y R 

7 81 AAGgtaaaacataaatctatagtctttactgttacaaagtcttgatcttttatgcagttt 840 
R 

841 cttgattaggtgtcaaatttcttgttatgggtcttcataattgctctgtttgttgataaa 900 

901 agtttcaatctttattcactttcgtatctgggtcatcgtaacttgttaatggtttcgtta 960 

961 tttaaatgactctgttatttaactgatggttttttttttttttttgcttcatgtgtagGG 1020 

1021 TTCCGTGTATGAGAAGAGGAGGTATAAGATTCACAATCAACGGTCACTCTTACTTCAACC 1080 
V P C M R R G G I R F T I N G H S Y F N 

1081 TTGTCTTGGTGACCAATGTTGGTGGTGCTGGAGATGTTCATTCGGTTGCGGTTAAAGGTT 1140 
L V L V T N V G G A G D V H S V A V K G 

1141 CTAGAACAAGGTGGCAACAAATGTCAAGAAACTGGGGACAGAACTGGCAAAGCAACAATC 1200 
S R T R W Q Q M S R N W G Q N W Q S N N 

1201 TCTTAAACGGTCAAGCATTGTCATTTAAGGTGACTGCTAGTGATGGTCGTACCGTCGTCT 1260 
L L N G Q A L S F K V T A S D G R T V V 

12 61 CTAACAACATTGCTCCAGCTAGTTGGTCCTTTGGACAAACCTTCACCGGCCGTCAATTCC 132 0 
S N N I A P A S W S F G Q T F T G R Q F 

1321 GTTAAaattgagtcaagttcggttttatatagttttagggtttgtgtagtagttggttga 1380 
R * 
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patterns could represent genes encoding products involved repeatedly or continuously in 

developmental programs, such as meristem formation or maintenance, executed at different stages of 

development. Examples of such genes are commonly found in animals (e.g. reviewed by Ruohola-

Baker et al. (1994)). In Arabidopsis, the CLAVATA1 (Clark et al, 1997), SHOOT 

MERISTEMLESS (Long et al, 1996), and SCARECROW (Di Laurenzio et al, 1996) genes provide 

examples of genes with putative regulatory functions during the development of both the embryo and 

the adult plant. Other lines exhibit more complex staining patterns throughout the plant life cycle. 

Such expression patterns could be associated with common cell types or activities, such as cell 

division (Springer et al, 1995), in different plant organs or at different stages of plant development 

(Vroemenera/., 1998). 

Molecular markers reveal polarity and the establishment of regions, cell- and tissue-

types 

We have studied the expression patterns of lines WET368 (chapter 5), WET393, WET215, WET233 

and WGT39 in more detail. WET368 and WET393 show complementary expression patterns in 

preglobular embryos: WET368 marks all cells descending from the apical, and WET393 all cells 

descending from the basal daughter cell of the zygote. As a consequence, these two expression 

patterns precisely reflect the segregation of cell fates along the apical-basal axis after the first zygotic 

division. All cells expressing WET368 at this stage have acquired embryo fate, whereas the cells 

marked by WET393 generate a file of cells of which all but the uppermost differentiate into the 

suspensor. The uppermost cell expressing WET393, the hypophyseal cell, will give rise to the 

quiescent center of the root meristem and de columella root cap. It has been proposed on the basis of 

the monopteros (Berleth and Jiirgens, 1993), hobbit (Willemsen et al., 1998), and bodenlos (Mayer 

and Jiirgens, 1998) mutant phenotypes, that the hypophyseal cell only becomes part of the embryo 

proper after an inductive signalling event across the clonal boundary between the derivatives of the 

apical and basal daughter cells of the zygote (Mayer and Jiirgens, 1998). The disappearance of 

WET393 GUS expression from the hypophyseal cell around the globular stage may coincide with its 

Figure 4.8: Nucleotide sequence of genomic DNA flanking the DsG insertion in WGT39. The sequence represents 

part of a BAC contig (GenBank AC004138). The putative coding sequence of an expansin gene is in uppercase, and its 

predicted amino acid sequence is shown below the nucleotide sequence. The position of DsG insertion (between 

nucleotides 137 and 138) is indicated by a triangle, in which the direction of transcription of the GUS gene is marked by 

an arrow. A putative TATA box is underlined. The TAIL-PCR product generated from WGT39 DNA extended from the 

DsG element up to nucleotide 726 (marked by an arrow). 
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Figure 4.9: Comparison of the deduced amino acid sequence of the WGT39-expansin to expansin amino acid 

sequences of Arabidopsis thaliana (AtEXP-1, Accession Number gill041702), Pinus taeda (PtEXP, Accession Number 

gill778107), Cucumis sativus (expansin SI precursor CsEXP SI, Accession Number gill040875), and Oryza sativa 

(OsEXP, Accession Number gill815681). Amino acid residues identical to the WGT39 residue are shaded; similar 

amino acids are indicated in bold face. Similar amino acids are grouped as follows: acidic (D, E); basic (H, K, R); 

hydrophobic (A, F, I, L, M, P, V, W); polar (C, G, N, Q, S, T, Y). Horizontal bars represent gaps introduced during 

alignment. 

switch from suspensor to embryonic fate. The subsequent further restriction of GUS expression 

towards the basal cells of the suspensor indicates that suspensor cells express genes according to their 

relative positions, and reflects the existence of an apical-basal axis of polarity within the suspensor 

region. Thus, while initially marking all derivatives of the basal daughter cell of the zygote, WET393 

expression is gradually restricted to the most basally located derivatives of the zygote during further 

embryo development. In this context, it is noteworthy that WET368 expression, while initially 

marking all derivatives of the apical daughter cell of the zygote, is gradually restricted to the SAM 
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region, which gives rise to the most apically located descendants of the zygote during post-embryonic 

development. In fact, mature plants display WET368 expression in all aerial meristems, and even in 

ovules, representing the last organ determined from the shoot meristem (see chapter 5). As such, 

WET393 and WET368 not only display opposite expression patterns in the early embryo, but also 

during later stages of embryo and plant development. The absence of WET393 expression after 

germination would in this scenario be the result of the absence of the suspensor, representing the 

most basally located descendants of the zygote, during post-embryonic development. 

WET215 shows GUS expression in the hypophyseal cell group from the heart stage of 

embryogenesis onwards. In seedlings, columella root cap initials and their daughter cells, epidermal 

initials, hypocotyl epidermal cells, cotyledonary stomata and leaf trichomes show expression. This 

expression pattern coincides with the embryonic as well as the post-embryonic morphological 

aberrations in the hobbit (hbt) mutant (Willemsen et al, 1998; V. Willemsen and B. Scheres, pers. 

comm.). Molecular mapping of the DsE insert in WET215 revealed that its map position is linked to, 

but does not coincide with the map position of hbt (V. Willemsen and B. Scheres, pers. comm.), and 

thus the WET215 expression pattern may reflect a component functioning in the same pathway as 

HOBBIT. The fact that cells marked by WET215 expression are either columella or epidermal cells 

implies that some intrinsic properties of epidermal cells are shared by columella root cap cells. 

GUS expression in WET233 is similar to that in WET368 (chapter 5) from heart up to bent 

cotyledon stage embryos. Unlike WET368 expression, WET233 expression is not seen before the 

heart stage, and does not persist later than the seedling stage. Thus, while WET368 represents a 

marker for shoot meristem position throughout most of the plant life cycle, WET233 rather marks the 

shoot meristem region only in later stage embryos and seedlings, and not beyond the seedling stage. 

WET233 expression apparently reflects a gene function that is required in the SAM region in a more 

restricted developmental time frame than WET368. 

In WGT39, DsG insertion has occurred just downstream of the promoter region of a 

previously unidentified putative expansin gene. WGT39 is initially expressed uniformly in the 

embryo proper, and becomes restricted to the vascular tissues and the root and shoot apices of later 

stage embryos and seedlings. Expansin proteins mediate cell wall extension in growing plant cells. 

Interestingly, the embryonic and post-embryonic WGT39 expression pattern has a remarkable, but 

not complete, similarity to the expression pattern of the MONOPTEROS (MP)gene, that encodes a 

transcription factor involved in embryo axis formation and vascular development (Hardtke and 

Berleth, 1998). The MP gene is expressed in embryonic and post-embryonic regions that undergo 

"axialization", meaning that continuous cell files are generated from previously isodiametric cells 

(Hardtke and Berleth, 1998). It seems plausible that changes in cell shape and size in axializing 

regions require cell wall extension, that, based on the WGT39 expression pattern, may be mediated 

by expansins. 
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GUS expression patterns in WET and WGT lines reflect different aspects of embryo 

development 

On the basis of the observed GUS staining pattern in developing embryos, we have classified the 39 

embryo staining lines in four distinct classes. It should be noted that, due to the variety of observed 

staining patterns, such classification inevitably brings about difficulties in unequivocally assigning 

every single line to one of the predefined classes. As becomes clear from Table 4.1, the majority of 

lines in which GUS expression starts early during embryo development, meaning at or before the 

globular stage, falls into classes A and C. Thus, up to the globular stage, GUS expression is mostly 

uniform in the embryo proper. Only one line (WET42) with non-uniform expression in the embryo 

proper at the globular stage was identified. GUS expression in class C lines remains uniform at all 

stages of embryogenesis and might be associated with cellular processes that are common to all cell-

types present in the embryo. 

Two classes of lines display spatially restricted GUS expression at later stages of embryo 

development. In class A lines, the spatially restricted GUS expression is preceded by early uniform 

expression. Most class B lines do not show early, (pre)globular GUS expression, and GUS 

expression is restricted to a distinct embryonic region or tissue from its onset onwards. This indicates 

that the majority of lines exhibiting spatially restricted GUS expression in later stage embryos display 

either uniform (class A lines) or no (most class B lines) expression in (pre)globular embryos. 

A tentative model for early plant embryogenesis includes first global and then more locally 

specified regions, that together generate the final body pattern by cellular interactions (Jurgens, 1995; 

chapter 5). The early uniform and subsequently more restricted expression patterns characteristic of 

class A lines seem to fit with the predictions made in this model for expression of genes involved in 

embryo patterning. The expression of early and uniformly expressed genes could gradually be 

repressed in certain regions, thereby giving rise to global, partly overlapping territories of gene 

expression. The superimposition of different gene expression patterns could subsequently allow the 

demarcation of more locally specified regions, each defined by the combined expression levels of a 

characteristic spectrum of genes. In this scenario, the distinct pattern elements and regions that finally 

make up the final body pattern would, once established, be marked by restricted GUS expression 

found in class B lines. An analogy for the demarcation of locally specified regions through gradual 

repression of early and uniformly expressed genes is found in C. elegans, where repeated localization 

of the PIE-1 protein to the totipotent germline blastomere correlates with a general repression of 

transcription within the germline (Mello etal, 1996). The initially uniform and subsequently more 

restricted expression patterns of genes or enhancers such as those identified by class A lines could 

reinforce the notion that early acting patterning genes potentially mutate to early, not very informative 

embryo-lethal phenotypes (Meinke, 1991). The identification of such genes based on expression 

pattern appears to underscore the advantages of gene and enhancer trapping as one of the approaches 
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for unravelling the regulatory network governing embryo pattern formation. It is noteworthy that 

many of the regions marked by GUS expression in one or more of our gene or enhancer trap lines 

(Figure 4.1), do not correspond to regions previously identified by embryo morphology or histology, 

nor do they all consist of cells sharing a common clonal ancestry. An important implication of this 

would be that molecularly defined regions exist in the embryo, superimposed on morphologically or 

functionally recognizable regions. These molecularly defined regions could extend the description of 

the successive steps in the formation of a plant embryo (chapter 5). 

Sequence analysis of genomic DNA flanking DsE and DsG elements: identified 

genes and insight into the molecular functioning of gene and enhancer traps 

Sequence analysis of genomic DNA flanking the DsG insertion in WGT39 revealed that in this line, 

the gene trap transposon has inserted into the 5' untranslated leader of an expansin gene. 

Consequently, the DsG element in WGT39 acts as a promoter trap, expressing GUS under the 

control of the expansin promoter just upstream of its insertion site. This demonstrates that the gene 

trap element we used not only functions if inserted into an intron or exon of the coding region of a 

transcribed gene (Sundaresan etal, 1995), but also if inserted in the untranslated leader sequence. 

The genomic DNA sequence flanking the DsE element in WET393, and a putative mutant phenotype 

in WET393 embryos, collectively suggest the insertion of the enhancer trap element into the coding 

region of a gene, which might, based on the predicted amino acid sequence, encode a transcriptional 

activator or a cell wall protein. It is tempting to speculate that such a gene product is involved in the 

correct patterning of the suspensor or the hypophyseal cell group, or both. Both these cell groups 

descend from the basal zygotic daughter cell and initially show WET393 expression. In the flanking 

DNA of three other WET lines, no ORF was detected, nor was a mutant phenotype observed in plants 

of these lines, suggesting DsE insertion outside of the transcribed regions of chromosomal genes. 

This implies that GUS expression from the enhancer trap element used in this study can be activated 

after DsE insertion near a chromosomal enhancer, either within or outside of the transcribed region of 

a gene, as was the original purpose of the DsE element. 

Efficiency of isolating genes important for embryo development by enhancer and 

gene trap transposon mutagenesis 

In this study, we have generated lines that exhibit different GUS expression patterns in the embryo. 

These lines represent 5% of the total number of lines screened, a percentage that roughly corresponds 

to the frequency of lines with GUS fusion activity in embryos obtained with T-DNA based promoter 
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traps (Topping et al, 1994). Several other screens have been carried out, aimed at the isolation of 

genes transcribed in developing plant embryos. Most of these screens have focused on the isolation of 

"embryo enhanced" or "embryo specific" genes from carrot somatic embryos using a variety of 

differential screening approaches (Zimmerman, 1993). The frequencies of genes isolated on the basis 

of differential expression in somatic embryos or embryogenic cultures versus non embryogenic 

cultures, callus, or seedlings (Aleith and Richter, 1990; Choi et al, 1987; Lin et al, 1996; Sato et al, 

1995; Schmidt et al, 1997; Wurtele et al, 1993) vary widely, and are difficult to compare due to 

differences in screening criteria. Nonetheless, in all screens, the percentage of isolated clones was in 

the order of 0.01 % to 0.1 % of the total number of clones screened. Although this percentage is much 

lower than the percentage of enhancer and gene trap lines exhibiting GUS expression in embryos, it 

should be noted that each of the differential screens referred to above resulted in the isolation of 7 to 

38 unique embryo enhanced or embryo specific clones, a number that is in the same order of 

magnitude as the number of embryo staining lines identified in our enhancer and gene trap screen. 

Taking into account the considerable effort needed to establish and screen populations of independent 

enhancer, gene or promoter trap lines (Sundaresan et al, 1995; Topping et al, 1994; Vroemen et al, 

1998), a direct comparison between the efficiency of both types of screens, purely based on the 

frequency of isolated lines or clones, can be misleading. 

A more relevant evaluation of the results of different types of screens should take into account 

that attempts at cloning genes expressed in the embryo by differential screening were designed with 

the bias that genes that are important for embryo development should either not be expressed at all, or 

show greatly reduced expression in non-embryonic tissues. The recent cloning of genes with 

regulatory or putative regulatory functions during Arabidopsis embryogenesis, such as SHOOT 

MERISTEMLESS (Long et al, 1996), SCARECROW (Di Laurenzio et al, 1996), CLAVATA1 

(Clark etal, 1997), ZWILLE (Moussian et al, 1998), MONOPTEROS (Hardtke and Berleth, 

1998), and AtMLl (Lu et al, 1996), and other genes that mutate to embryo phenotypes upon 

disruption, such as KNOLLE (Lukowitz et al, 1996), EMB30/GNOM (Busch et al, 1996; Shevell 

et al, 1994), and CUC2 (Aida et al, 1997) has shown that the expression of none of these is 

restricted to the embryo. Therefore, any gene cloning scheme that involves differential or subtractive 

hybridization comparing embryo cDNA with cDNA from non-embryonic tissues will likely eliminate 

a substantial proportion of genes that are instructive in embryo development. So far, only few plant 

genes have been cloned that display embryo specific expression. Expression of the carrot EMB-1 

(Wurtele et al, 1993) and the Arabidopsis PEI1 (Li and Thomas, 1998) genes commences at the 

globular stage and continues up to the mature embryo stage. Expression of the carrot SERK gene 

(Schmidt et al, 1997), that encodes a leucin-rich repeat containing receptor-like kinase that may be 

involved in an early embryo specific signal transduction cascade, starts as early as the one-cell stage, 

and continues no later than the globular stage. The SERK cDNA was isolated from a cold plaque 

screen, comparing mRNAs from embryogenic and non-embryogenic carrot single cell cultures 
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(Schmidt et al, 1997). This indicates that, although embryo specific, the SERK mRNA was not 

abundant enough to allow detection by conventional differential screening approaches. 

With the foregoing in mind, it may not be surprising that only one line exhibiting GUS 

expression restricted to embryogenesis was identified in our enhancer and gene trap screen. The 

results of different screens performed so far suggest that both enhancer, gene or promoter trapping 

and differential screening are suitable ways to identify genes important for embryo development. The 

bias of differential screening procedures against genes whose embryonic and non-embryonic 

expression levels do not significantly differ, seems to reduce the efficiency of these screens for the 

isolation of genes important for embryo development. On the other hand, the elimination of genes 

whose expression is not restricted to embryogenesis by differential screening or subtraction should 

provide access to the apparently rare class of genes with strictly embryo specific expression. Thus, if 

highly embryo specific processes underlie the acquisition of embryogenic potential and early embryo 

development, differential screening or subtraction approaches should allow the discrimination of the 

corresponding genes from genes involved in processes which are required for, but not unique to 

embryo development, such as for example STM, CLV, and many other genes identified in genetic 

screens on the basis of embryo morphology. Enhancer, gene or promoter trap screens offer the 

advantage of allowing selection of lines not only on the basis of GUS expression in the embryo, but 

more importantly, also based on its precise timing and spatial distribution in embryonic and non-

embryonic tissues. The non-embryo specific expression pattern of recently cloned genes whose 

products are instructive in embryo development seems to underscore the importance of the latter 

criterion. Further molecular characterization of genomic regions tagged by our enhancer and gene trap 

elements will yield the identity of genes whose expression pattern is reflected by the observed GUS 

staining patterns. For gene trap lines this should be relatively straightforward, since GUS expression 

can only occur if the DsG element has inserted within the transcribed region of the corresponding 

gene, as appears the case for both gene trap lines from which flanking genomic DNA was sequenced. 

Analysis of genomic regions flanking our enhancer trap insertions should provide information on 

whether the observed GUS expression patterns in WET lines all precisely mimic the actual expression 

of a transcribed gene located close to the DsE insertion site. 

Materials and methods 

Plant material 

A collection of 431 Wageningen Enhancer Trap (WET) and 373 Wageningen Gene Trap (WGT) 

lines was generated as previously described in detail (Vroemen et al, 1998). WET plants contained 
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the enhancer trap transposable element DsE (Sundaresan et al., 1995), that carries a (^-glucuronidase 

(GUS) gene fused to a minimal 35S promoter, and a constitutively expressed neomycin 

phosphotransferase II (NPTII) gene conferring kanamycin resistance. WGT plants contained the 

gene trap transposable element DsG, that carries a promoterless GUS gene fused to a triple splice 

acceptor, and a constitutively expressed NPTII gene (Sundaresan et al, 1995). 

In order to establish lines carrying a stable enhancer or gene trap insertion at a locus unlinked 

or loosely linked to the original DsE or DsG T-DNA locus ("transposants" (Bellen et al, 1989)), 

DsE and DsG elements were mobilized from their original T-DNAs by crossing DsE and DsG starter 

lines to Ac starter lines carrying an Ac transposase gene. Counter selection against both the Ac T-

DNA and the original DsE or DsG T-DNA in the F2 generation of these crosses resulted in enhancer 

and gene trap transposants, of which the F3 seed (generally a pool of the seeds from two transposant 

plants) was harvested and stored as a WET or WGT line (Sundaresan et al, 1995; Vroemen et al, 

1998). WET and WGT lines were maintained by selecting seeds on MS plates (Murashige and 

Skoog, 1963) containing 50 \ig / ml kanamycin and bulking seeds from independent kanamycin 

resistant plants. 

Histochemical localization of GUS expression 

For localization of GUS expression, tissues were vacuum-infiltrated with GUS staining solution 

(100 mM NaPi pH 7.2, 10 mM EDTA, 0.1% Triton X-100, 100 mg/ml chloramphenicol (to inhibit 

bacterial growth), and 1 mg/ml X-Gluc (5-bromo-4-chloro-3-indolyl p-D-glucuronic acid)), and 

subsequently stained for up to 48 hours at 37 °C in the dark. Siliques with immature seeds covering 

all stages of embryo development (typically 3 - 5 siliques per line) were opened longitudinally prior 

to incubation in the staining solution. Stained tissues were cleared for a minimum of 16 hours in 

Hoyers solution (100 g chloral-hydrate, 2.5 g Arabic gum, 15 ml glycerol, 30 ml water). For the 

preparation of histological sections, plant tissues stained with X-Gluc were vacuum-infiltrated with 

100 mM NaPi pH7.2, 4% formaldehyde, 4% DMSO and fixed for at least three days at 4°C. Fixed 

tissues were dehydrated through an ethanol series, and embedded in Technovit 7100 resin (Heraeus 

Kulzer, Wehrheim, Germany) according to the manufacturer's instructions (Vroemen et al., 1998). 

Serial sections 3 \im thick were cut with a Reichert-Jung microtome, transferred to microscope 

slides, stained with 0.01% Ruthenium Red (Sigma) for 1-10 min, and mounted in Euparal (Agar 

Scientific, Stansted, UK). GUS staining patterns were viewed using a binocular (Nikon Corp., 

Tokyo, Japan) and a Nikon Optiphot-2 microscope equipped with Normarski optics. GUS staining 

patterns were examined in more detail using GUS staining solutions containing equal amounts of 

potassium ferrocyanide and potassium ferricyanide in concentrations between 1.25 mM and 5 mM. 

These reaction conditions are reported to minimize diffusion of the reaction intermediates and thereby 
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improve the specificity of the localization of GUS expression (Jefferson et al, 1987). 

TAIL-PCR amplification of DsE and DsG flanking sequences 

Genomic DNA flanking DsE and DsG elements was amplified by thermal asymmetric interlaced 

(TAIL) PCR, essentially as described by Liu et al. (1995). Genomic DNA from individual WET and 

WGT plants was isolated according to Bouchez (1996), and analyzed by Southern blotting using a 

probe against the entire GUS coding sequence to determine the number of Ds inserts, as described 

previously (Vroemen et al., 1998). For TAIL-PCR amplification, a set of three nested primers for the 

5' end of Ds, Ds5-1, Ds5-2, and Ds5-3, was used in combination with one arbitrary primer, AD2 

(Liu et al., 1995), to amplify genomic DNA flanking the 5' end of either DsE or DsG elements. The 

sequences of the primers were as follows: Ds5-1, 5'-CCG TTT ACC GTT TTG TAT ATC CCG-3'; 

Ds5-2 5'-CGT TCC GTT TTC GTT TTT TAC C-3'; Ds5-3, 5'-GGT CGG TAC GGA ATT CTC 

CC-3' and AD2, 5'-NGT CGA (G/C)(A/T)G ANA (A/T)GA A-3'. Genomic DNA (approximately 10 

ng) was used as substrate for the primary TAIL-PCR amplification, in the following 20 \i\ reaction 

mixture: 1 x PCR buffer (Promega, Southampton, UK), 0.2 mM (each) dNTPs, 0.2 |iM Ds5-1, 3 

(iM AD2, and 0.05 u per \il Taq polymerase. PCR amplification was carried out in a GeneAmp PCR 

System 9600 (Perkin Elmer Cetus) using the following cycling conditions: denaturation 95°C 2 min; 

five "linear" cycles of 94°C 30 sec, 62 °C 1 min, 72°C 2.5 min; one "touchdown" cycle of 94°C 30 

sec, 25°C 3 min, ramp to 72°C in 3 min, 72°C 3 min; 15 supercycles of 94°C 30 sec, 65°C 1 min, 72 

°C 2.5 min, 94°C 30 sec, 65°C 1 min, 72°C 2.5 min, 94°C 30 sec, 44°C 1 min, 72°C 2.5 min; 

extension 72°C 5 min. The primary reaction products were diluted 50 times in sterile distilled water, 

and 1 ill was used as template for the secondary TAIL-PCR amplification, in the following 20 |Xl 

reaction mixture: 1 x PCR buffer, 0.2 mM (each) dNTPs, 0.2 |XM Ds5-2, 2 .̂M AD2, 0.04 u per u.1 

Taq polymerase. Cycling conditions for the secondary TAIL-PCR reaction consisted of the 15 

supercycles applied in the primary reaction, with the two 65°C annealing steps performed at 64°C, 

followed by a 5 min 72°C extension. 1 |i.l of 50 times diluted secondary reaction products was used 

as template for the tertiary amplification. The reaction mixture was identical to that of the secondary 

amplification, with primer Ds5-3 instead of Ds5-2, and the cycling conditions were: 30 cycles of 

94°C 30 sec, 44°C 1 min, 72°C 2.5 min, followed by a 5 min 72°C extension. The primary, 

secondary and tertiary reaction products were separated on a 3% agarose gel. In successful reactions, 

the tertiary reaction product was 71 bp smaller than the secondary product. Secondary and tertiary 

reaction products were purified using the PCR Purification Kit (Boehringer, Almere, the 

Netherlands), and either sequenced directly using Ds5-2 or Ds5-3 as sequencing primer, respectively, 

or cloned into the pGEM-T vector (Promega) according to the manufacturer's instructions, and 

sequenced using T7 and SP6 sequencing primers. 
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Enhancer trap tagging of WET368, a regional 
marker for early Arabidopsis embryos 

In an enhancer trap screen for GUS markers expressed in the early Arabidopsis embryo, we identified 

line WET368 (for Wageningen Enhancer Trap line 368), that shows GUS expression commencing in 

the octant stage embryo. WET368 expression is initially uniform in all cells descending from the 

apical cell produced by the first division of the zygote. During later stages of embryogenesis, 

expression becomes restricted to a previously undefined region encompassing the shoot apical 

meristem (SAM) and part of the cotyledon primordia . After germination, WET368 expression 

remains associated with future, current and former positions of aerial meristems. Continued WET368 

expression in the aberrant shoot apex regions of mutant shoot meristemless, zwille, wuschel, and 

primordia timing seedlings indicates that WET368 expression is independent of shoot meristem 

formation or activity, but is linked to the position of shoot meristem development. We have classified 

WET368 as a regional marker for apical meristem position, and propose that its expression is 

associated with positions in which cells can acquire shoot or floral meristem identity. The early 

WET368 expression implies that all embryo proper cells in the octant stage embryo, except the 

hypophyseal cell, can initially acquire SAM identity. 

Casper W. Vroemen, Andreas P. Mordhorst, Thomas Laux1, Ab van Kammen, and Sacco C. de 

Vries 

'Lehrstuhl fur Entwicklungsgenetik, University of Tubingen, Auf der Morgenstelle 1, D-72076 Tubingen, Germany 
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Introduction 

Zygotic embryogenesis is the developmental process that represents the transition of a fertilized egg 

cell to a multicellular organism. During embryogenesis, different cell types, tissues and organs are 

arranged in a spatially defined pattern. In animals, pattern formation is essentially complete after 

embryogenesis, while most of the structures of adult higher plants are formed during postembryonic 

development from meristems (Kerstetter and Hake, 1997; Steeves and Sussex, 1989). The plant 

embryo develops into the seedling. The body plan of the seedling consists of shoot meristem, 

cotyledons, hypocotyl, and root including the root meristem arranged along the apical-basal axis of 

polarity, and epidermis, ground- and conductive tissue along the radial axis (Goldberg etal, 1994; 

Jurgens, 1995; Jurgens et ah, 1994a; Jurgens et ah, 1994b; Mayer et ah, 1991; Vroemen et ah, 

1996). In dicots, the body pattern of the seedling is established at the torpedo stage of 

embryogenesis. The origins of the apical-basal and radial pattern elements have been traced back to 

distinct cells or cell groups in the early embryo in Arabidopsis (Jurgens et ah, 1994a; Jurgens et ah, 

1994b; Mansfield and Briarty, 1991; Scheres et ah, 1994). During Arabidopsis zygotic 

embryogenesis, the asymmetric division of the zygote yields two unequal daughter cells of distinct 

developmental fates. The smaller apical cell gives rise to most of the embryo proper, whereas the 

larger basal cell produces the suspensor and the hypophyseal cell, that produces the columella root 

cap and the quiescent center as part of the root meristem. The apical cell develops through a series of 

precise divisions through the 2-cell, quadrant, octant and dermatogen stages to reach the globular 

stage. Then, the embryo establishes bilateral symmetry as it passes through the transition, heart, 

torpedo and bent cotyledon stages until it becomes mature (Jurgens et ah, 1991; Scheres et ah, 1994). 

While the cell divisions during early Arabidopsis embryo development are highly regular, clonal and 

genetic analyses suggest that pattern formation largely depends on cell-cell communication and 

position-dependent cell fate specification (Irish, 1991; Laux and Jurgens, 1997; Scheres et ah, 1994). 

During embryogenesis, two groups of stem cells are organized at opposite ends of the apical-

basal axis, the root meristem and the shoot apical meristem (SAM; Steeves and Sussex, 1989). It is 

not known at what stage during embryo development cells adopt shoot meristem fate. One view 

considers that the top half of the globular embryo is the earliest form of shoot apical meristem, from 

which both the "embryonic leaves", or cotyledons, and the future vegetative meristem are derived 

(Kaplan, 1969; McConnell and Barton, 1995). An alternative view, based on histology, is that SAM 

initiation first occurs at the torpedo stage, between the base of the cotyledons (Barton and Poethig, 

1993; Mansfield and Briarty, 1991). At this time point the LI, L2 and L3 layers of cells at the 

presumptive apex adopt division patterns that yield a tunica-corpus arrangement (Satina et ah, 1940). 

Divisions in the innermost L3 cell layer form the corpus, and anticlinal divisions in the L2 and 

uppermost LI layer form two clonally distinct tunica layers (Barton and Poethig, 1993; Clark, 1997; 

McConnell and Barton, 1995). The LI tunica layer derives from the embryo protoderm, reflected by 
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the expression patterns of the AtLTPl (Vroemen et al, 1996) and ATML1 (Lu et al, 1996) genes. 

Superimposed on the three horizontal cell layers, the SAM can be divided conceptually into three 

zones, although their boundaries are often indistinct. The central zone (CZ) consists of 

undifferentiated stem cells at the very center of the meristem. These produce daughter cells that adopt 

specific developmental fates as they enter the surrounding peripheral zone (PZ), or flank meristem, or 

the underlying rib zone (RZ; Endrizzi et al, 1996; Kerstetter and Hake, 1997; Steeves and Sussex, 

1989). In the PZ, cells are incorporated into organ primordia, whereas cells in the RZ contribute to 

the vasculature and internal stem structures (Steeves and Sussex, 1989). 

Genetic analyses have provided some insight into SAM organization and function. Mutations 

at the CLAY AT Al (CLV1) and CLV 3 loci cause accumulation of excessive numbers of 

undifferentiated cells in the CZ, suggesting that CLV genes either promote the transition of cells into 

the PZ, or restrict the rate of cell division in the CZ (Clark, 1997; Clark et al., 1993; Clark et al, 

1995; Leyser and Furner, 1992; Weigel and Clark, 1996). The CLV1 gene encodes a leucine-rich 

repeat transmembrane receptor kinase, and is expressed in the L3 layer of the meristem center, but in 

a region larger than the CZ. CLV1 may perceive positional information directed to cells expressing the 

receptor (Clark et al, 1997). Mutations in the PRIMORDIA TIMING (PT) gene result in a pleiotropic 

phenotype, including a broader embryonic and seedling SAM, polycotyly, and a higher number of 

rosette leaves than wild-type (Conway and Poethig, 1997; Mordhorst et al, 1998). Mutations in the 

SHOOT MERISTEMLESS (STM) gene, that encodes a putative homeodomain transcription factor of 

the KNOTTED class (Long et al, 1996), have effects opposite to those in CLV genes. A complete 

loss of STM function eliminates the entire SAM in embryos and seedlings (Barton and Poethig, 1993; 

Endrizzi et al, 1996; Long et al, 1996). Mutants with weak stm alleles retain a small number of 

cytoplasmic dense cells at the place were the wild-type SAM normally forms. Repetitively initiated 

shoot and floral meristems stop at the primordia stage, suggesting that the undifferentiated meristem 

cells are "used up". STM is first expressed in one or two cells in the apical hemisphere of the globular 

embryo, long before the visible presence of the SAM and the aberrant SAM morphology in mutants 

with strong stm alleles (Long et al, 1996). STM expression expands to include the entire 

histologically visible embryonic SAM, and, during post-embryonic development, covers a central 

region of all shoot and floral meristems. These data indicate that STM is required to specify the 

meristematic nature of cells of the embryonic SAM, and to maintain a pool of undifferentiated cells in 

the center of the SAM. 

Similar to stm mutants, wuschel {wus-1) mutant shoot and floral meristems terminate 

prematurely. In contrast to stm shoot meristems, embryonic and post-embryonic wus-1 shoot 

meristems still contain central cells, but they are enlarged and non-functional. This suggests a role for 

WUS in specifying cell identity in meristem centers (Endrizzi et al, 1996; Laux et al, 1996). wus-1 

shoot meristems terminate in flat enlarged apices, or occasionally form a single terminal leaf at the 

apex. Mutations in the ZWILLE (ZLL) gene (Endrizzi et al, 1996; Moussian et al, 1998) result in 
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embryos and seedlings with non-functional shoot meristems, that are reduced in size and display a flat 

organization compared to wild-type shoot meristems. zll seedlings give rise to adventitious shoot 

meristems at the base of the cotyledons. These meristems give rise to shoots that eventually form 

fertile flowers. Thus, the ZLL gene seems to be involved in the specification of cell identity in the 

meristem center primarily during embryogenesis (Jurgens et al, 1994b). Like wuschel seedlings, 

zwille seedlings either have terminated, flat apices, or form a single terminal leaf. Genetic analysis 

indicates that WUS and ZLL act downstream of STM. A model proposes that STM maintains a 

central pool of undifferentiated cells, and that WUS and ZLL are required for proper functioning of 

these cells (Endrizzi et al, 1996). 

So far, no mutants have been described that are instructive for the way SAM identity is 

established in cells of the early embryo, prior to the activity of STM. This could be due to a failure to 

recognize the relevant mutant phenotype. In addition, mutations in some developmentally important 

genes may not readily cause specific phenotypes due to functional redundancy (Aida et al, 1997; 

Goebl and Petes, 1986) or very early lethality (Mlodzik et al, 1990; Springer et al, 1995), and may 

thus have been missed in extensive screens for embryo mutants (Castle et al, 1993; Franzmann et al, 

1995; Jurgens et al, 1991; Mayer et al, 1991; Meinke, 1991). An approach to circumvent some of 

these problems would be the isolation of genes based on expression pattern, using gene or enhancer 

trapping (Devic et al, 1995; Klimyuk et al, 1995; Lindsey et al, 1993; Sundaresan, 1996; 

Sundaresan et al, 1995; Topping et al, 1994; Topping and Lindsey, 1995; Topping et al, 1991). 

We have established a collection of independent transgenic Arabidopsis lines containing gene and 

enhancer trap transposable elements and screened this collection for early embryo markers (Vroemen 

et al, 1998). Here we describe Wageningen Enhancer Trap line WET368, that already shows GUS 

expression in the octant stage embryo, and becomes restricted to a region encompassing the shoot 

apical meristem and part of the cotyledon primordia at later stages of embryogenesis. After 

germination, WET368 GUS expression remains associated with all future, current and former 

positions were aerial meristems will, or can normally be formed. Based on its expression in wild-type 

and stm, wus, zll, and pt mutant embryos and seedlings, we propose that WET368 expression 

predicts which regions can acquire SAM identity and reflects SAM position. The early WET368 

expression suggests that in the octant stage embryo, all embryo proper cells descending from the 

apical cell produced by the first division of the zygote, can initially acquire SAM identity. 
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Results 

GUS expression pattern of WET368 during embryogenesis 

In a screen for enhancer trap expression in Arabidopsis embryos (Vroemen et al, 1998), line 

WET368 was selected because it showed GUS expression in a region encompassing the shoot apical 

meristem and part of the cotyledon primordia. Southern analysis with the GUS coding sequence as 

probe showed a single DsE element insertion, ensuring that the observed GUS expression pattern is 

directly correlated with the place of insertion (Vroemen et al., 1998). A detailed analysis of the 

WET368 GUS expression pattern during embryogenesis was carried out using X-Gluc 

histochemistry. The WET368 enhancer trap confers uniform expression in all cells of the octant stage 

embryo, but not in the suspensor and the hypophyseal cell. Thus, at this stage, GUS expression is 

present in all 8 derivatives of the apical cell, but not in those of the basal cell of the two-celled embryo 

(Figure 5.1 A). Starting in the transition stage embryo, the expression gradually shifts towards the 

apical end of the embryo proper, to a region encompassing the future shoot apical meristem (SAM) 

and part of the cotyledon primordia (Figure 5. IB). Figure 5.1C shows a section of a transition stage 

embryo, in which indigo blue crystals, that appear yellow or purple under dark field optics (Klimyuk 

et al, 1995), are most abundant in the SAM region. From the early heart stage onwards, GUS 

expression becomes progressively restricted to the region encompassing the SAM and the base of the 

cotyledons, and becomes absent from the rest of the embryo proper (Figures 5. ID to 5. IF). Detailed 

analysis of serial sections through GUS stained WET368 embryos (Figure 5.1G) indicates that in the 

meristem itself, GUS expression is in LI, L2 and L3 and in both the central and the peripheral zone. 

In the base of the cotyledons, expression seems restricted to the epidermis. In mature embryos 

(Figure 5.1H) expression is mostly restricted to the SAM region. The dark field image of a GUS-

stained, mature WET368 embryo (Figure 5.11) shows that GUS expression is highest in the meristem 

itself, and decreases towards the periphery of the region. The same pattern of GUS activity was also 

observed under reaction conditions that prevent diffusion of the reaction intermediate through 

inclusion of high concentrations of the oxidative catalysts potassium ferri- and ferrocyanide (Jefferson 

et al, 1987; Mascarenhas and Hamilton, 1992). We conclude that the expression conferred by the 

WET368 enhancer is initially linked to an embryonic region consisting of all descendants of the apical 

cell of the two-celled embryo, and later becomes restricted to a region encompassing the shoot 

meristem. Thus, although initially precisely reflecting the first division of the zygote, WET368 

appears a regional marker rather than a marker reflecting a particular differentiation event. 
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Figure 5.1: GUS expression patterns in WET368. 
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GUS expression pattern of WET368 during post-embryonic development 

After germination, GUS expression in WET368 remains associated with regions in which aerial 

meristems develop or have developed. In seedlings 5 days after germination (Figure 5.1J), GUS 

staining was essentially the same as in mature embryos: prominent in the shoot apical meristem, but 

also extending into the cotyledonary petioles. In 10 day old seedlings (Figure 5.IK), GUS staining 

extended into the petioles of the newly formed true leaves. In mature flowering plants, continued 

GUS activity was found in the axillary meristems, that form in the axils of cauline leaves (arrow in 

Figure 5.1L). These meristems are under normal circumstances not active, indicating that WET368 

expression can precede axillary meristem activity. GUS activity was also observed in the axil of 

secondary inflorescences (arrowhead in Figure 5.1L) and in the axil of pedicels (arrowheads in 

Figures 5.1M, 5.IN, and 5.10), with somewhat stronger staining adaxially than abaxially. These are 

the positions where the indeterminate secondary inflorescence meristem, and the determinate floral 

meristem, respectively, have branched from the main inflorescence stem. Finally, GUS activity was 

found in de petal-sepal abscission zone at the base of the carpel and silique (arrows in Figures 5. IN 

and 5.IP), and in ovules, developing seeds just after fertilization, carpels and silique walls (Figure 

5.IP). 

A: Octant stage embryo. 

B: transition stage embryo. 

C: Section of a transition stage embryo (dark field image). 

D: early heart stage embryo. 

E: late heart stage embryo. 

F: bending cotyledon stage embryo. 

G: section of a bending cotyledon stage embryo. 

H: mature embryo. 

I: mature embryo (dark field image). 

J: seedling 5 days after germination. 

K: seedling 10 days after germination. 

L: axillary meristem in axil of cauline leaf, mature plant. 

M: inflorescence, mature plant. 

N: inflorescence stem with pedicels and siliques, mature plant. 

O: axil at base of pedicel, mature plant. 

P: base of silique just after fertilization, mature plant. 
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GUS expression pattern of WET368 in mutant backgrounds 

Because the WET368 enhancer confers GUS expression in a region encompassing the embryonic and 

seedling shoot apical meristem, its expression pattern was further investigated in different mutants 

defective in the control of shoot meristem size or function. Homozygous WET368 plants were 

crossed with plants carrying either the shoot meristemless, wuschel, primordia timing, or zwille 

mutation. Kanamycin resistant F2 progeny, homozygous for the mutation and containing the 

WET368 enhancer trap, were analyzed histochemically for the presence of GUS activity in 10 day-old 

seedlings, stm-1 seedlings have strongly reduced WET368 expression when compared to wild-type 

seedlings of the same age (Figure 5.2A, cf. Figure 5. IK). Expression is localized to a small group of 

cells just above the point where the two cotyledonary vascular strands separate. Weak WET368 GUS 

staining was also seen in a small region just below the point where the partially fused petioles separate 

(data not shown). 

wus-1 seedlings have shoot meristems, that contain non-functional central cells, and terminate 

in flat enlarged apices or form a single terminal leaf at the apex, wus-1 seedlings show almost wild-

type levels of WET368 GUS expression (Figures 5.2B and 5.2C, cf. Figure 5.IK). Apparently, the 

central cells in wus seedlings show continued WET368 driven GUS expression. The region 

surrounding the wus SAM shows normal GUS expression. In case a terminal leaf is formed (Figure 

5.2C), GUS staining marks the petiole of this leaf, just as the GUS staining in petioles of leaves in 

wild-type seedlings (cf. Figure 5.IK). 

Seedlings homozygous for the pt-1 mutation display strongly increased embryonic SAM size, 

and accordingly the region marked by the WET368 enhancer trap is increased (Figure 5.2D) when 

compared to wild-type seedlings of the same age (cf. Figure 5.IK). As in wild-type seedlings, the 

WET368 enhancer confers GUS expression in the petioles of the many leaves of the pt mutant 

seedling. 

Like wus seedlings, zll seedlings either have terminated flat apices, albeit smaller in size, or 

form a single terminal leaf. As shown in Figure 5.2E, the region marked by the WET368 enhancer 

trap is reduced in zll seedlings with a small terminated apex when compared to wild-type seedlings of 

the same age (cf. Figure 5.IK), zll seedlings with terminal leaf show, like wus seedlings with 

terminal leaf, continued WET368 GUS expression in its petiole (Figure 5.2F). In contrast to wus 

plants, fertile secondary shoots are formed in mature zll plants. These shoots show only minor 

defects. Accordingly, the WET368 GUS expression in zll shoots is similar to that observed in wild-

type shoots. GUS activity is present in axillary meristems in the axils of cauline leaves, in the axils of 

secondary inflorescences (Figure 5.2G, cf. Figure 5.1L), in the axil of pedicels, and in the abscission 

zone at the base of the silique (Figure 5.2H, cf. Figure 5. IN). Taken together, WET368 expression 

is strongly increased following the increased shoot meristem size in pt, and decreased in the reduced 

shoot meristematic region in stm. Continued GUS activity in the entire apices of stm, zll, and wus 

110 



chapter 5 

Figure 5.2: WET368 GUS expression patterns in shoot meristemless, wuschel, primordia timing, and zwille mutant 

backgrounds. All seedlings are 10 days after germination. 

A: stm-1 seedling. 

B: wus-1 seedling with terminated apex. 

C: wus-1 seedling with terminal leaf. 

D: pt-1 seedling. 

E: zll-3 seedling with terminated apex. 

F: zll-3 seedling with terminal leaf. 

G: zll-3 axillary meristem in axil of cauline leaf, mature plant. 

H: zll-3 inflorescence stem with pedicels and siliques, mature plant. 
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mutant seedlings indicates that WET368 expression is independent of meristem activity. This is in 

line with the onset of WET368 expression prior to the initiation of shoot meristem activity, and 

underlines the interpretation that WET368 represents a regional marker rather than a marker for active 

shoot meristematic cells. 

Discussion 

WET368 is an early marker of embryo polarity 

The aim of our screen was to obtain molecular markers for early Arabidopsis embryos. The results 

presented in this study indicate that GUS staining in WET368 embryos was already seen at the octant 

stage. At this early developmental stage, WET368 marks all cells descending from the apical cell 

produced by the first division of the zygote, and none of the cells descending from the basal cell. 

Consequently, WET368 provides an early molecular marker for apical polarity in the Arabidopsis 

embryo. Few other markers are available for the early stages of Arabidopsis embryogenesis, the 

earliest being the ATML1 gene (Lu et al., 1996), which is expressed just after the first division of the 

zygote in the apical cell and its descendants, but not in the basal cell. Such markers can be important 

in evaluating regional identity and polarity in early embryo mutants defective in the establishment of 

apical-basal polarity, and mutants with early defects in the region encompassing the plane of the first 

division of the zygote. The observed gradual restriction in WET368 GUS expression towards a 

region encompassing the SAM and part of the cotyledon primordia during the transition stage 

identifies a region that has so far not been defined in morphological descriptions of Arabidopsis 

embryos. It also has not become apparent from phenotypes observed in extensive screens for embryo 

mutants. Histological sections of GUS stained embryos expressing the WET368 enhancer trap show 

it to be expressed in a group of cells in and around the shoot apex, that have in common their position 

in the apex. This implies that WET368 is not a marker for the shoot meristem itself, but rather 

represents a marker of cell position. The fact that WET368 expression is already apparent in the octant 

stage embryo in all derivatives of the apical, but not in those of the basal zygotic daughter cell, and 

subsequently gets restricted to a region at the embryo apex, classifies WET368 as a marker that 

reflects apical embryo polarity. Examples of polarity or cell-position markers expressed later during 

Arabidopsis embryo development include the apical position marker AtLTPl (Vroemen et al, 1996), 

and the root tip position marker POLARIS (Topping and Lindsey, 1997). 

Post-embryonically, GUS expression in WET368 remains associated with regions in which 

aerial meristems develop or have developed, i.e. in the seedling SAM region and at the base of 

petioles, and in axillary meristem regions of flowering plants. Noteworthy, GUS activity was also 
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seen in the axils of secondary inflorescences and pedicels. At this place, the indeterminate secondary 

inflorescence meristem and the determinate floral meristem, respectively, have branched from the 

main inflorescence stem. Consequently, GUS activity at these positions might be considered a 

remnant of previous secondary or floral meristem position. Whether the remaining GUS activity is the 

result of continued WET368 enhancer driven gene expression, or is due to high stability of the GUS 

protein is not known. The fact that GUS staining in the axils is somewhat stronger adaxially than 

abaxially would be in line with the decreasing staining intensity towards the periphery of the meristem 

region marked by WET368: the abaxial side of the secondary inflorescence or pedicel is further away 

from the original meristem center than is the adaxial side. 

GUS activity in the petal / sepal abscission zone could also reflect its previous position at the 

base of the floral meristem region. However, the fact that many gene and enhancer trap lines (our 

unpublished results; Topping et al., 1994), as well as promoter-Gi/S transgenes (Thoma et al, 1994) 

display GUS activity in this zone could mean that this GUS staining is somehow artefactual. During 

flower and early silique development, continued GUS activity was seen in the ovule. Interestingly, 

the ATML1 gene, that is expressed in the LI layer of the vegetative SAM, inflorescence and floral 

meristems, and young floral organ primordia, also displays continued expression in the ovule (Lu et 

al, 1996). This was postulated to indicate that the ovule retains some meristematic properties, thereby 

supporting the assumption of the possible phylogenetic origin of the ovule from the shoot (Herr, 

1995; Lu etal, 1996). 

Taken together, WET368 expression initially precedes meristem formation, then accompanies 

the actual meristem, and finally remains behind after the meristem itself has moved more apically. 

Based on this expression pattern, it can be envisioned that WET368 expression demarcates regions of 

cells at positions in the plant where meristems can form. In this scenario, WET368 expression in a 

region would, independent of meristem activity, be a prerequisite for the acquisition of meristem 

identity by a subset of the cells in that region. Moreover, as a region marker that is independent of 

meristem activity (see below), WET368 remains expressed after meristem formation and even, in the 

case of floral and secondary inflorescence meristems, after the meristem itself has moved more 

apically. Therefore, we consider WET368 a marker of future, current and former positions of aerial 

meristems. 

WET368 expression is independent of shoot meristem formation or activity 

To investigate the nature of the region marked by WET368 GUS staining in more detail, WET368 

GUS expression was analyzed in stm, wus, pt, and zll mutants. Although no shoot meristematic cells 

are present in stm-1 seedlings, continued WET368 GUS expression marked the shoot apical region in 

these seedlings. In wus-1 and zll-3 seedlings, the shoot meristematic cells are replaced by non

functional central cells, and the entire shoot apical region, including the non-functional central cells, 
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was marked by WET368 GUS staining. Finally, the WET368 marked region in pt mutant seedlings is 

enlarged compared to wild-type, as a result of the increased size of the functional shoot meristem. The 

implication of these observations, in combination with the observed early and regional expression 

pattern in wild-type, is that WET368 expression is independent of shoot meristem formation or 

activity, but is linked to the position of shoot meristem development. Consequently, we propose that 

WET368 represents a regional marker not only for embryonic, but also for post-embryonic SAM 

position. Since WET368 expression is both earlier and more global than that of the STM gene, of 

which the expression starts in one or two cells in the apical hemisphere of the globular embryo 

(Figure 5.3), WET368 expression may lead the way to a regulatory function upstream of STM in 

SAM formation. 

WET368 expression and positional aspects of embryo development 

On the basis of its early and regional expression pattern, its persistent expression in later stages of 

development, and the fact that its expression precedes and is not dependent on STM, WUS, ZLL, and 

PT activity, we have classified WET368 as a regional marker for shoot apical meristem position. The 

region marked by WET368 GUS expression does not correspond to a region previously defined by 

embryo morphology or histology. An important implication of this would be that molecularly defined 

regions exist in the embryo, superimposed on morphologically or functionally recognizable regions. 

These molecularly defined regions could extend the description of the successive steps in the 

formation of a plant embryo. In this context, it is noteworthy that the early WET368 expression 

pattern in the globular embryo supports the view that SAM position is specified well before the 

meristem becomes histologically distinct at the torpedo stage of embryogenesis (Barton and Poethig, 

1993; Endrizzi etal, 1996; Kaplan, 1969). 

The initially uniform and subsequently more restricted expression patterns of genes or 

enhancers such as ATML1 (Lu et ai, 1996) and WET368 in the derivatives of the apical cell of the 

two-celled embryo could reinforce the notion that early acting patterning genes potentially mutate to 

early, not very informative embryo-lethal phenotypes (Meinke, 1991). If this were also the case for 

insertions into a gene or genes near the WET368 locus, it would be expected that such a gene or 

genes will have been missed in morphological screens for embryo pattern mutants. The identification 

of such genes based on expression pattern appears to underscore the advantages of gene / enhancer 

trapping as one of the approaches for unravelling the regulatory network governing embryo pattern 

formation. A tentative model for early plant embryogenesis suggests first global and then more locally 

specified regions, that generate the final body pattern by cellular interactions (Jurgens, 1995). How 

are such regions demarcated in the developing embryo? One possible mechanism that might account 

for the establishment of territories of differential gene expression in the embryo could involve gradual 
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Figure 5.3: Schematic representation of WET368 and STM expression during early stages of Arabidopsis 

embryogenesis. 

A: two-cell stage. 

B: octant stage. 

C: dermatogen stage. 

D: globular stage. 

E: heart stage. 

ac, apical cell; be, basal cell; su, suspensor; pd, protoderm; ult, upper lower tier; lit, lower lower tier; cot, cotyledon 

primordium; sm, shoot apical meristem; vi, vascular initials. 
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repression of early and uniformly expressed genes. An analogy for such a mechanism exists in C. 

elegans, where the PIE-1 protein is localized to the totipotent germline blastomere after each division 

in the early embryo. This localization correlates with a general repression of transcription within the 

germline, and thus PIE-1 may act as a localized general repressor that antagonizes the activity of a 

more broadly expressed set of transcriptional activators (Mello et ai, 1996). In plants, mechanisms 

exist that serve to continuously maintain a population of undifferentiated cells, as evidenced by the 

clavata, shoot meristemless, and zwille mutants. By analogy with PIE-1, WET368 could represent a 

broadly expressed transcriptional repressor that demarcates a region in which a population of 

undifferentiated cells is maintained. Noteworthy, our data show that WET368 confers GUS 

expression from the very early embryo, through the shoot meristem region, to the ovule, representing 

the last organ determined from the shoot meristem. Similar to the germ-line localization of PIE-1 in C. 

elegans, WET368 expression follows the region containing a population of undifferentiated cells 

throughout most of the diploid life cycle. 

Materials and methods 

Plant material 

The enhancer trap transposon tagging screen performed in this study has been described in detail 

elsewhere (Vroemen et ai, 1998). Two types of starter lines (Sundaresan et ai, 1995), were used. 

Ac starter lines are homozygous for a single T-DNA insert containing a 35S promoter:Ac 

transposase gene (Scofield et ai, 1993) and a constitutive indole-acetic acid hydrolase gene, IAAH, 

driven by the 2' T-DNA promoter (Bancroft et ai, 1992). DsE starter lines are homozygous for a 

single T-DNA insert containing the DsE transposable element and another IAAH gene. Both starter 

lines were in the Landsberg erecta background. 

A line heterozygous for the shoot meristemless (stm-1) mutation was obtained from Kathryn 

Barton (Barton and Poethig, 1993; Long et ai, 1996), and a homozygous primordia timing ipt-1) 

line (Conway and Poethig, 1997; Mordhorst et ah, 1998) from Igor Vizir (University of 

Nottingham, England). Crosses between enhancer trap line WET368 and mutant lines were 

performed using plants homozygous for the WET368 DsE element as one parental line, and plants 

heterozygous for wus-1 (Laux et ai, 1996), or stm, or homozygous for zil-3 (Endrizzi et ai, 1996; 

Moussian et ai, 1998) orpt, respectively, as the other parental line. 
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Mobilization of DsE elements 

DsE elements were mobilized by crossing plants from Ac starter lines Ac\ and Ac2, homozygous for 

the Ac T-DNA, to plants from DsE starter lines DsEl, DsE2, DsE3 and DsE6, all homozygous for 

the DsE T-DNA, in all possible pairwise combinations. Line WET368 was obtained from a cross 

between Ac2 and DsE3. Fl seeds from the Ac x DsE crosses were planted individually and the 

resulting Fl plants were allowed to self-fertilize. 1000-5000 seeds from each Fl plant were collected 

to establish independent F2-families. 

NAM-Kan selection for transposants 

Lines carrying transposed DsE elements were selected among the F2 progeny seed by sowing on 

agar plates containing a-naphtalene acetamide (NAM) and kanamycin. 750-1000 (15-20 mg) F2 

seeds from each F2 family were surface-sterilized by successive washes with 70% ethanol for 10 

min, diluted bleach solution (containing 0.9% sodium hypo chlorite, and 0.1% Tween 20) for 10 

min, and twice with sterile water. The seeds were then suspended in 5 ml of liquid MS-agar 

(containing 0.46% (w/v) MS salts (Duchefa; Murashige and Skoog, 1963) adjusted to pH 5.7 with 

KOH, 1% sucrose and 0.7% agar (Difco)), and plated onto square 12 x 12 cm selection plates 

containing MS-agar supplemented with 50 |0.g / ml kanamycin sulphate (Duchefa), and 3.5 \iM NAM 

(Sigma). After 1-4 days at 4 °C, the plates were incubated for 4 days in a growth chamber at 25 °C 

with 16h light / 8h dark photoperiod. Seedlings carrying either T-DNA insert were stunted, because 

of the IAAH gene that conferred sensitivity to NAM (Karlin-Neumann et al., 1991). Of the 

remaining seedlings, only those carrying a transposed DsE element survived on kanamycin, by virtue 

of a 1' T-DNA promoter: .NPTII gene fusion carried within the DsE element. This selection scheme 

allowed the generation of "transposant" lines (Bellen et al., 1989), carrying a stable Ds insertion at a 

location unlinked, or loosely linked, tot the DsE donor T-DNA. Transposant seedlings, resistant to 

both NAM and kanamycin, recognizable by their green cotyledons, normal size and normal root 

development, were transferred to 60 mm round selection plates and further incubated to verify the 

double resistance. After reaching the second-leaf stage, transposants were transplanted to soil and 

allowed to self-fertilize. Flowers and siliques, that contained immature seeds, from these F2 plants 

were screened for GUS expression. Mature seeds (the F3 generation) were harvested and stored as 

an enhancer trap line (Wageningen Enhancer Trap lines WET1 through WET431). 

117 



WET368 

Histochemical localization of GUS expression 

For determination of GUS expression in seedlings, seeds from each enhancer trap line were 

germinated in microtiter wells containing 400 (Xl of sterile water. After 5 days of incubation at 25 °C 

in the light, one volume of two times concentrated GUS staining solution was added, to result in 

final concentrations of 100 mM NaPi pH 7.2, 10 mM EDTA, 0.1% Triton X-100, 100 mg/ml 

chloramphenicol (to inhibit bacterial growth), and 1 mg/ml X-Gluc (5-bromo-4-chloro-3-indolyl b-

D-glucuronic acid). The seedlings were vacuum infiltrated with GUS staining solution for 1 hour, 

and the reaction was allowed to continue for up to 48 hours at 37 °C in the dark. Flowers and parts 

of the inflorescence were sampled from enhancer trap plants and incubated in GUS staining solution 

as described above. Siliques with immature seeds covering all stages of embryo development 

(typically 3 -5 siliques per line) were opened longitudinally and incubated in GUS staining solution 

as described above. After the reaction, tissues were cleared for a minimum of 16 hours in Hoyers 

solution (100 g chloral-hydrate, 2.5 g Arabic gum, 15 ml glycerol, 30 ml water). GUS staining 

patterns were viewed with a binocular (Nikon Corp., Tokyo, Japan) and with a Nikon Optiphot-2 

microscope equipped with Normarski optics. GUS staining patterns were examined in more detail 

using GUS staining solutions containing equal amounts of potassium ferrocyanide and potassium 

ferricyanide in concentrations between 1.25 mM and 5 mM. These reaction conditions are reported to 

minimize diffusion of the reaction intermediates and thereby improve the specificity of the localization 

of GUS expression (Jefferson et al, 1987). 

Histological sections 

After the GUS staining reaction, immature seeds were transferred to fixative (100 mM NaPi pH7.2, 

4% formaldehyde, 4% DMSO). The fixative was vacuum infiltrated and the seeds were fixed for at 

least 3 days at 4 °C. After dehydration through an ethanol series, the seeds were infiltrated in 

Technovit 7100 resin (Heraeus Kulzer, Wehrheim, Germany) according to the manufacturer's 

instructions. Briefly, subsequent changes of Technovit preparation solution (1 g hardener I, 2.5 ml 

PEG 400, 100 ml Technovit 7100) of increasing concentrations in 96% ethanol (1:3, 1:1, 3:1) were 

done for one hour, followed by a one hour and an overnight incubation in 100% Technovit 

preparation solution. Seeds were embedded in Technovit embedding solution (1 ml hardener II, 15 

ml Technovit preparation solution) and polymerization was allowed to continue for one hour at 37 

°C. Serial sections (3 mm thick) were cut with a Reichert-Jung microtome, transferred to microscope 

slides, stained with 0.01% Ruthenium Red (Sigma) for 1-10 min, and mounted in Euparal (Agar 

Scientific, Stansted, UK). Sections were analyzed with a Nikon Optiphot-2 using bright-field and 

dark-field optics. 
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Southern blot analysis 

Genomic DNA from individual transposant plants was isolated according to Bouchez (1996). 1-2 |ig 

of genomic DNA was digested with Pstl, separated on a 1 % agarose gel and blotted onto a Nitran 

Plus membrane (Schleicher & Schuell, Keen, NH, USA). Blotting and hybridization were 

performed according to the manufacturer's recommendations. A 2.2 kb [a-^^P-dATP] random prime 

labelled GUS fragment, covering the entire coding sequence, was used as probe. The blot was 

washed for 15 min with 2 x SSC, 0.1% SDS and for 15 min with 0.1 x SSC, 0.1% SDS at 65 °C 

(Sambrook et al., 1989) before exposure to X-ray film (Amersham, 's Hertogenbosch, the 

Netherlands). 
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Sexual reproduction in seed plants starts with the fertilization of the egg cell by one of the sperm cells 

of the pollen grain. The resulting zygote develops through a series of characteristic stages into a 

multicellular seedling, in which organs and tissues are arranged in a specific spatial context, or 

pattern. An important area of plant developmental biology concerns the molecular mechanisms that 

underlie the acquisition of polarity and the establishment of the body pattern during embryogenesis. 

As reviewed in detail in chapter 1, the majority of the research in this area focuses on the model 

species Arabidopsis thaliana. One of the advantages of studying embryogenesis in Arabidopsis is 

provided by the highly invariant sequence of cell divisions, which allows the origin of pattern 

elements present in the seedling to be traced back to distinct cells or cell groups in the early embryo 

(Jiirgens et al, 1994a; Jiirgens etal, 1994b; Mansfield and Briarty, 1991; Scheres etal, 1994). 

However, the rigid division pattern found in the Arabidopsis zygotic embryo might be misleading 

towards an understanding of the mechanisms underlying pattern formation. Numerous other plant 

species display a great plasticity in division patterns (Johri, 1984), yet develop complete body plans 

with all pattern elements correctly positioned. The same holds true for certain Arabidopsis mutants 

(Torres-Ruiz and Jiirgens, 1994) and embryos of non-zygotic origin (Koltunow, 1993; Mordhorst et 

al, 1998; Wu et al, 1992). Therefore, the question arises what molecular clues are responsible for 

the correct specification and positioning of pattern elements during plant embryogenesis. A widely 

followed approach to identify genes involved in pattern formation has been to screen for mutants with 

defects in the establishment of the embryo body plan (reviewed in chapter 1). These genetic 

approaches have yielded numerous embryo-defective mutants (Jiirgens et al, 1991; Mayer et al, 

1991; Meinke, 1991; Scheres et al, 1995). A major difficulty that has emerged during these screens 

concerns the recognition and interpretation of relevant phenotypes. Many embryo-lethal mutants show 

similar phenotypes (Feldmann, 1991; Meinke, 1991) and the assessment of the precise effects of a 

mutation is often hampered by the inability to establish cell- or regional identity in embryo mutants 

(Topping andLindsey, 1997; Vroemen etal, 1996; Yadegari etal, 1994). 

The subject of the research described in this thesis is the identification of genes expressed in 

the Arabidopsis embryo, and the use of such genes as molecular markers for the evaluation of the 

phenotypic effects of embryo mutations. The idea behind this approach is that molecular markers 

reflecting cell- or regional identity or polarity in the developing embryo can extend morphological 

observations in the interpretation of embryo mutant phenotypes. An example of a marker gene for 

developing Arabidopsis embryos is the Arabidopsis thaliana lipid transfer protein (AtLTPl) gene 

(Thoma et al, 1994), which is the Arabidopsis homolog of the carrot EP2 gene (Sterk et al, 1991). 

In wild-type embryos, the AtLTPl gene appeared to be expressed in a radially restricted fashion: 

expression was seen initially in all protoderm cells, and not in the underlying ground and vascular 

tissues. Later, AtLTPl expression also became restricted along the apical-basal axis: expression 

became confined to the protodermal cells of the cotyledons and upper hypocotyl, together 

representing the apical part of the embryo (chapter 2). Therefore, pattern formation in the Arabidopsis 

122 



chapter 6 

embryo is reflected by tissue- and position-specific AtLTPl expression along both the radial and the 

apical-basal axis. AtLTPl expression, measured by in situ mRNA hybridization and AtLTPl-GUS 

expression, was used as radial marker for the protoderm to study the phenotypic defects in the knolle 

and keule mutants, both reported to have defects in the establishment of the protoderm. In knolle 

mutants incomplete cell walls are formed as a result of disruption of a syntaxin gene involved in 

cytokinesis, and the radial organization of the embryo is not established properly (Lukowitz et al., 

1996). In early knolle embryos, inner cells cannot be distinguished from the protodermal layer. This 

coincided with uniform instead of protoderm-specific AtLTPl expression. Apparently, the 

establishment and stable maintenance of different cell fates along the radial axis requires the 

uncoupling of cytoplasmic connections and the proper separation of tissue layers. In knolle embryos, 

incomplete cell wall formation results in cytoplasmic connections between the outer and inner cell 

layers, such that hypothetical protoderm and inner cell fate determinants might not be segregated to 

the adjacent cell layers. The observation that this resulted in AtLTPl expression in outer and inner 

cells suggests that knolle embryos fail to specify inner cells, and that protoderm fate represents a 

"ground state" in embryogenesis (Bruck and Walker, 1985a), already present before the 

establishment of morphologically distinct outer and inner cells. This idea was originally proposed for 

the determination of epidermal cell fate in Citrus embryos on the basis of the observation that the 

zygote and its apical daughter cells are already coated with a cuticular wax layer, which is a 

morphological marker for epidermal cells (Bruck and Walker, 1985a). Later, it received support from 

the restriction of ATML1 expression to the protoderm, after initial expression in the apical daughter 

cell of the zygote and all cells of the octant stage embryo (Lu et al., 1996). Internal cells in knolle 

embryos later discontinued AtLTPl expression and differentiated into vascular tissue. These changes 

reflect the specification of internal cells with a fate different from that of the outer cells in later stage 

knolle embryos, possibly resulting from an increased distance of the innermost cells from the outer 

cell layer, or from more complete cell wall formation, and thus an increased separation of tissue 

layers, keule mutant embryos are, like knolle embryos, disturbed in cytokinesis. The protoderm layer 

of keule embryos consists of bloated and irregularly arranged cells, while the ground and vascular 

tissues look normal (Assaad etal, 1996). Normal protoderm-specific AtLTPl expression in keule 

embryos suggests that the establishment of the radial pattern is unaffected by the keule mutation. 

AtLTPl expression was used as marker for the apical part of the embryo to investigate effects 

of the gnom mutation (Mayer et al, 1993) on apical-basal embryo polarity. Mutations in the GNOM 

gene affect the normally asymmetric division of the zygote, and the resulting enlarged apical daughter 

cell gives rise to an abnormal embryo proper. AtLTPl expression appeared variable and occasionally 

completely reversed along the apical-basal embryo axis. This finding was later substantiated by 

variable expression of the POLARIS gene, which is normally confined to the root pole of the embryo 

(Topping and Lindsey, 1997). Since GNOM is a zygotically required gene, the observed variability in 

apical-basal marker gene expression in gnom embryos suggests that apical-basal embryo polarity is 
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not yet established before fertilization, although the Arabidopsis egg cell is morphologically polar. In 

fact, in other flowering plants the egg cell appears apolar, or apical-basal polarity is reversed upon 

fertilization. These observations collectively suggest that apical-basal embryo polarity is established 

after fertilization, and that the apical-basal axis of polarity may only be fixed after the first division of 

the zygote. 

The availability of other embryo marker genes, for example with expression patterns 

complementary to the AtLTPl expression pattern, would be useful to substantiate the results 

described in chapter 2. Because such markers were scarce, we performed an enhancer and gene trap 

insertional mutagenesis screen to identify Arabidopsis lines with GUS expression in embryos 

(chapter 3). The enhancer and gene trap system exploits two types of transposable Ds elements 

carrying a GUS reporter gene that can respond to cw-acting transcriptional signals at the site of 

integration. The enhancer trap element contains a minimal promoter, that only confers GUS 

expression if activated by a neighboring chromosomal enhancer, while the gene trap element carries a 

promoterless GUS gene whose expression is dependent on transcription from the tagged 

chromosomal gene. Over 800 enhancer and gene trap lines were generated using a novel selection 

scheme that only recovers lines with stable Ds insertions at chromosomal locations unlinked to the Ds 

donor-T-DNA. This selection has proven to yield stable lines, in which the Ds element does not re-

transpose. Moreover, it rules out "background" GUS staining that is caused by T-DNA located 

enhancers, and is not related to transcriptional signals at the integration site. Such "background" 

staining has proven a serious problem in enhancer trap screens that do not include selection against 

the original transposon-bearing T-DNA (Aarts, 1996; Klimyuk etal, 1995). 39 lines (27 enhancer 

and 12 gene traps) were found to exhibit GUS staining in embryos, including lines with GUS 

expression patterns that are confined to specific cell-types, tissues, organs, or regions of the 

developing embryo. The strategy of enhancer and gene trapping has thus proven successful towards 

the generation of molecular markers for the developing Arabidopsis embryo. 

Chapter 4 outlines the spectrum of GUS expression patterns observed among all 39 lines with 

GUS staining in the embryo. Despite the wide variety of staining patterns, some general notions came 

out after classifying lines according to their GUS expression pattern. For example, in all but one line 

in which GUS staining was observed before, or at, the globular stage, it was uniform in the embryo 

proper. A prominent part of these early GUS expressing lines showed a gradual restriction of GUS 

expression during later stages of embryogenesis, as is described in detail for line WET368 in chapter 

5. A tentative model for early plant embryogenesis suggests the demarcation of first global and then 

more locally specified regions, that generate the final body pattern by cellular interactions (Jiirgens, 

1995). The early uniform and subsequently more restricted expression patterns observed during our 

screen seem to fit with the predictions made in this model for expression of genes involved in embryo 

patterning. The expression of early and uniformly expressed genes could gradually be repressed in 

certain regions, thereby giving rise to global, partly overlapping territories of gene expression. The 
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superimposition of different gene expression patterns could subsequently allow the demarcation of 

more locally specified regions, each defined by the combined expression levels of a characteristic 

spectrum of genes. An analogy for the demarcation of locally specified regions through gradual 

repression of early and uniformly expressed genes is found in C. elegans, where repeated localization 

of the PIE-1 protein to the totipotent germline blastomere correlates with a general repression of 

transcription within the germline (Mello etal, 1996). 

If patterning genes also display early uniform and subsequently more restricted expression 

patterns, they could, as a result of an early and uniform requirement of their gene products, 

potentially mutate to early, not very informative embryo-lethal phenotypes (Meinke, 1991). Genes for 

which this is indeed the case may be missed in phenotypic screens for embryo mutants with pattern 

defects. The identification of such genes based on expression pattern appears to underscore the 

advantages of gene and enhancer trapping as one of the approaches for unravelling the regulatory 

network governing embryo pattern formation. 

Line WET368, identified during the enhancer trap screen, exhibits GUS expression as early as 

the octant stage (chapter 5). Expression is initially uniform in all cells descending from the apical 

daughter cell of the zygote, and later becomes restricted to a previously unidentified region 

encompassing the SAM and part of the cotyledon primordia. Therefore, WET368 exemplifies an early 

uniform, and subsequently more restricted, expression pattern that would support the above described 

model postulating that locally specified regions in the developing embryo are preceded by earlier more 

global regions. WET368 expression is not limited to embryogenesis, since after germination it 

remains associated with all aerial regions were meristem formation will occur or has occurred. 

Intriguingly, WET368 expression initially precedes meristem formation, then accompanies the actual 

meristem, and finally remains behind after the meristem itself has moved more apically. Based on this 

expression pattern, it can be envisioned that WET368 expression demarcates regions of cells at 

positions in the plant where meristems can form. In this scenario, WET368 expression in a region 

would, independent of meristem activity, be a prerequisite for the acquisition of meristem identity by 

a subset of the cells in that region. Moreover, as a region marker that is independent of meristem 

activity (see below), WET368 remains expressed after meristem formation and even, in the case of 

floral and secondary inflorescence meristems, after the meristem itself has moved more apically. 

The early embryonic expression pattern of WET368 identifies it as a molecular marker for 

early apical embryo polarity. Its subsequent gradual restriction to a region consisting of cells that have 

in common their position in or close to the SAM, but are not all part of the same cell lineage, classifies 

WET368 as a regional marker. Because the region marked by WET368 expression does not 

correspond to a region previously identified by morphology, histology, or function, molecularly 

defined regions can apparently extend existing descriptions of plant embryo development. WET368 

continues to be expressed in the SAM region of shoot meristemless, zwille, wuschel, and primordia 

timing mutant seedlings, which are all defective in SAM size or function (Barton and Poethig, 1993; 
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Conway and Poethig, 1997; Endrizzi et al., 1996; Laux et al, 1996; Mordhorst et al., 1998; 

Moussian et al, 1998). This observation indicates that WET368 expression is not dependent on SAM 

formation or activity, and is consistent with the fact that WET368 expression precedes STM and ZLL 

expression and morphologically visible SAM formation (Long et al, 1996; Moussian et al, 1998). 

Instead, WET368 expression is linked to the normal position of SAM development, thereby 

supporting the classification of WET368 as a regional marker. At this stage, it is difficult to predict 

the molecular nature of the gene product encoded by a gene of which the expression is mimicked by 

WET368. In the above described scenario of gradual repression of gene expression, WET368 could 

represent a transcriptional repressor. However, scenarios in which WET368 represents part of a 

signalling pathway that functions in regional specification by activating gene expression, or by a 

combination of activating and repressing mechanisms, can currently not be ruled out. As exemplified 

by the spectrum of genes, such as CLV, STM, and ZLL , that are involved in shoot meristem 

specification or maintenance, the components of such pathways can vary widely in molecular identity 

(see chapter 5 and Appendix A). 

We identified only one line in which GUS expression was limited to embryogenesis. In this 

line, WET393, GUS expression initially marks the entire suspensor, and subsequently becomes 

restricted to the most basal suspensor cells. Therefore, WET393 and WET368 represent 

complementary markers for basal and apical polarity, respectively, in the developing embryo. The fact 

that only one line with embryo-specific GUS expression was identified during our screen suggests 

that the vast majority of genes involved in embryo development is also involved in post-embryonic 

developmental programs. Indeed, expression of many recently identified genes with (putative) 

regulatory functions during Arabidopsis embryogenesis is not to restricted to embryogenesis (Aida et 

al, 1997; Busch et al, 1996; Clark et al, 1997; Di Laurenzio et al, 1996; Hardtke and Berleth, 

1998; Long et al, 1996; Lu et al, 1996; Lukowitz et al, 1996; Moussian et al, 1998; Shevell et al, 

1994). Therefore, any gene cloning scheme that involves differential or subtractive hybridization 

comparing embryo cDNA with cDNA from non-embryonic tissues will likely eliminate a substantial 

proportion of genes that are instructive in embryo development. On the other hand, if highly embryo 

specific processes underlie the acquisition of embryogenic potential and early embryo development, 

differential screening or subtraction approaches should allow the discrimination of the corresponding 

genes from genes involved in processes which are required for, but not unique to embryo 

development, such as for example shoot meristem maintenance. The carrot SERK gene (Schmidt et 

al, 1997), expressed during the few first cell divisions in the developing embryo and turned off again 

at the globular embryo stage, is one of the very few genes described so far that appears to be 

expressed only in embryos and not in meristems or other parts of the adult plant. Enhancer and gene 

trapping offer the advantage of allowing selection of lines not only on the basis of GUS expression in 

the embryo, but also based on its precise timing and spatial distribution in embryonic and non-

embryonic tissues. The use of the same regulatory genes in embryonic and post-embryonic 

126 



chapter 6 

developmental programs is not only found in plants, but has long been known in animal systems 

(Ruohola-Baker et ai, 1994), and seems to underscore the importance of the latter selection criterion. 

Molecular characterization of genomic regions tagged by enhancer and gene trap elements is 

necessary to identify the actual genes whose expression pattern is reflected by the observed GUS 

staining patterns, and thus to demonstrate the suitability of enhancer and gene traps for the cloning of 

genes identified by expression pattern. For gene trap lines this is relatively straightforward, since 

GUS expression can only occur if the DsG element has inserted within the transcribed region of the 

corresponding gene, as has been shown for the PROLIFERA gene (Springer etal., 1995). Analysis 

of genomic DNA sequences flanking the DsG transposon in two of our gene trap lines revealed 

putative open reading frames in both, and one of these appeared to represent a novel expansin gene. 

By contrast, GUS expression from an enhancer trap does not require DsE insertion within the open 

reading frame of a transcribed gene, and among four enhancer trap lines, only one displayed a 

putative open reading frame in the genomic DNA directly flanking the insertion. Further molecular 

analysis should reveal whether the observed GUS expression patterns in enhancer trap lines all mimic 

the expression of actually transcribed genes located close to the DsE insertion site. 

Epilogue 

The research described in this thesis has given ample support for the value of molecular markers for 

the recognition and interpretation of mutant phenotypes, relevant to the acquisition of polarity and the 

establishment of the body pattern during Arabidopsis embryogenesis. The employed enhancer and 

gene trap mutagenesis system has proven successful towards the isolation of GUS markers for 

distinct cell- or tissue-types and regions in the developing embryo. These markers can not only be 

used for the phenotypic analysis of embryo mutants, but can also refine the existing descriptions of 

plant embryogenesis by demarcating novel regions that have not been identified previously by 

morphology, histology or function. Besides generating markers, molecular analysis has shown that 

enhancer and gene traps also allow the isolation of genes identified on the basis of their expression 

pattern. In both ways, the established collection of enhancer and gene trap lines may contribute to a 

more comprehensive understanding of the molecular events underlying plant embryogenesis. 
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Moleculaire merkers in Arabidopsis embryo's: 
samenvatting 

Bij hogere planten begint de geslachtelijke voortplanting als stuifmeelkorrels afkomstig uit de 

meeldraden terechtkomen op de stempel van een bloem. Een van de twee zaadcellen uit een 

stuifmeelkorrel bevrucht daarna een eicel in de stamper, waardoor een onrijp zaadje met daarin een 

bevruchte eicel, of zygote ontstaat. Tijdens het proces dat zygotische embryogenese genoemd wordt, 

deelt de zygote vele malen zodat uiteindelijk na de zaadkieming een veelcellig kiemplantje ontstaat. 

Zygotische embryo's ontwikkelen zich via een reeks ontwikkelingsstadia, die aangeduid worden met 

de vorm van het embryo. In twee-zaadlobbigen zijn dit het globulaire, hart, torpedo en gebogen-cotyl 

stadium. Tijdens de embryo ontwikkeling worden alle verschillende organen en weefsels waaruit een 

zaailing is opgebouwd aangelegd en op de juiste manier gerangschikt. Dit proces heet 

patroonvorming. Het patroon bevat langs de lengte-, of apicaal-basale as, van boven naar beneden 

gezien de volgende elementen: het scheutmeristeem, de cotylen (kiemblaadjes of zaadlobben), de 

hypocotyl (embryo-stengel) en de wortel met het wortelmutsje en het wortelmeristeem. Loodrecht 

daarop is langs de radiale as een tweede patroon te onderscheiden, dat van buiten naar binnen gezien, 

bestaat uit een aantal elkaar omringende weefsels: de epidermis (opperhuid), het grondweefsel of 

cortex, en de vaatbundel. In de modelplant Arabidopsis (zandraket) is het verloop van de celdelingen 

tijdens de zygotische embryogenese heel constant, waardoor precies bekend is van welke cellen in het 

jonge embryo de verschillende zaailing-organen en weefsels afstammen. Veel minder is er bekend 

over de processen die de ontwikkeling van het embryo sturen en ervoor zorgen dat alle cellen 

uiteindelijk de juiste identiteit krijgen en de verschillende organen en weefsels op de juiste plaats 

aangelegd worden. Daarom proberen tegenwoordig veel ontwikkelingsbiologen de moleculaire 

mechanismen die hieraan ten grondslag liggen te ontrafelen. Hoofdstuk 1 van dit proefschrift geeft 

een uitgebreid overzicht van de huidige stand van zaken binnen dit onderzoeksveld. 

Een veel gevolgde methode om genen te vinden die betrokken zijn bij de patroonvorming 

bestaat uit het willekeurig aanbrengen van mutaties in het erfelijk materiaal van planten, om 

vervolgens te zoeken naar mutanten die afwijkingen vertonen in de aanleg van het patroon tijdens de 

embryogenese. Zulke genetische benaderingen hebben talrijke mutanten opgeleverd met fenotypisch 

afwijkende embryo's. Het blijkt echter een groot probleem om embryo fenotypes die relevant zijn 

voor de patroonvorming te herkennen en correct te interpreteren. De fenotypes van veel embryo-

lethale mutaties lijken sterk op elkaar, waardoor het vaak moeilijk is echte patroonmutanten te 

onderscheiden van mutanten die een afwijking hebben in een meer algemeen proces, zoals 
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bijvoorbeeld het celmetabolisme. Bovendien wordt het vaststellen van de precieze gevolgen van een 

mutatie vaak bemoeilijkt doordat het niet mogelijk is de identiteit van cellen en regio's in het mutante 

embryo te bepalen. Een strategic om deze problemen gedeeltelijk te omzeilen is de bestudering van het 

expressiepatroon van goed gedefinieerde moleculaire merkergenen in mutante embryo's. Zulke 

merkergenen komen in normale "wild-type" embryo's tot expressie in een specifiek celtype of in een 

bepaalde regio van cellen en kunnen daardoor dienen als moleculaire merkers die de identiteit van 

cellen en celregio's, of de polariteit in het ontwikkelende embryo aangeven. Naast bestudering van de 

morfologie, of vorm, van een mutant embryo worden door merkergenen dus extra criteria geboden 

om de precieze gevolgen van een embryo-mutatie vast te stellen. 

Hoofdstuk 2 van dit proefschrift beschrijft de analyse van drie embryo-mutanten met behulp 

van het "Arabidopsis thaliana lipide transport eiwit" (AtLTPl) gen als merker. In wild-type embryo's 

komt het AtLTPl gen aanvankelijk tot expressie in alle epidermiscellen en later tijdens de embryo 

ontwikkeling alleen in de epidermiscellen van de cotylen en het bovenste gedeelte van de hypocotyl, 

dus in de epidermiscellen van het bovenste of "apicale" deel van het embryo. AtLTPl expressie werd 

gebruikt als weefsel-laag specifieke merker voor de epidermis bij de bestudering van de fenotypes van 

de knolle en de keule mutanten. Van deze mutanten was beschreven dat ze afwijkingen vertoonden in 

de aanleg van de epidermis. In knolle embryo's is geen morfologisch onderscheid zichtbaar tussen 

epidermis en onderliggende cellen en de vorming van celwanden tussen de cellen in het embryo is niet 

compleet, waardoor cellen die normaal van elkaar gescheiden zijn met elkaar in verbinding staan. In 

knolle embryo's blijkt het AtLTPl gen aanvankelijk in alle cellen tot expressie te komen in plaats van 

alleen in de buitenste cellaag, hetgeen suggereert dat deze mutant niet primair gestoord is in het 

aanleggen van de epidermis, maar van de onderliggende cellen. Blijkbaar is een complete celwand, en 

dus een volledige scheiding van de verschillende cellagen in het embryo een vereiste voor de aanleg 

van verschillende celtypen langs de radiale embryo-as. In keule embryo's is wel een afzonderlijke 

buitenste cellaag te onderscheiden, maar de cellen ervan zien er abnormaal gezwollen uit. De vraag 

rees dus of de buitenste cellaag in keule embryo's wel epidermis identiteit heeft. AtLTPl expressie in 

keule embryo's is, net zoals in wild-type embryo's, alleen te zien in de buitenste cellaag, waaruit 

geconcludeerd kan worden dat keule embryo's wel een normale epidermis aanleggen, alleen zien de 

epidermiscellen er anders uit dan in wild-type embryo's. Omdat het AtLTPl gen tijdens de latere 

embryo ontwikkeling alleen tot expressie komt in de epidermiscellen in het apicale deel van het 

embryo, werd AtLTPl expressie gebruikt als apicale merker bij de bestudering van het effect van de 

gnom mutatie op de apicaal-basale polariteit van het embryo. Tijdens de ontwikkeling van gnom 

embryo's vindt geen normale aanleg plaats van de organen langs de apicaal-basale, of lengteas. 

AtLTPl expressie in gnom embryo's blijkt lang niet altijd beperkt tot het apicale deel van het embryo, 

en was soms zelfs alleen zichtbaar in het basale deel. Dit suggereert dat de apicaal-basale polariteit van 

gnom embryo's variabel en soms zelfs helemaal omgedraaid is. Omdat de gnom mutatie pas effect 

heeft na de bevruchting geeft dit tevens aan dat de apicaal-basale polariteit van het Arabidopsis 

embryo nog niet volledig vastligt voor de bevruchting. 
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Helaas waren er, vooral voor vroege stadia in de embryo ontwikkeling, weinig andere 

merkergenen beschikbaar. Dit tekort aan geschikte moleculaire merkers staat de herkenning en 

interpretatie van embryo fenotypes die informatief kunnen zijn voor het proces van patroonvorming 

danig in de weg. Daarom is tijdens het in dit proefschrift beschreven onderzoek gezocht naar meer 

genen die tot expressie komen in het Arabidopsis embryo. Met behulp van de techniek van "gene / 

enhancer trap insertie mutagenese" is gezocht naar Arabidopsis plantenlijnen die het GUS merkergen 

in embryo's tot expressie brengen. Cellen waarin dit GUS merkergen tot expressie komt kunnen door 

middel van een blauwkleuringsreactie zichtbaar gemaakt worden. Het gene / enhancer trap systeem en 

de manier waarop het door ons gebuikt is, is uitvoerig beschreven in hoofdstuk 3 van dit proefschrift. 

Het systeem maakt gebruik van twee verschillende typen transposons (stukken DNA die zich via 

excisie en insertie van de ene plaats binnen het celkern-DNA van de plant naar de andere kunnen 

verplaatsen): een gene trap transposon en een enhancer trap transposon. Deze transposons bevatten 

een GUS merkergen dat in specifieke cellen tot expressie kan komen, onder invloed van in die cellen 

aanwezige regulerende signalen. Zo zullen in bijvoorbeeld scheutmeristeemcellen signalen aanwezig 

zijn die genen met een functie in het meristeem tot expressie laten komen. Vangt het GUS merkergen 

in een bepaalde plantenlijn zo'n signaal op dan kan het in het scheutmeristeem tot expressie komen, en 

in de kleurreactie een blauw scheutmeristeem opleveren. Met behulp van dit systeem is een 

uitgebreide set van Arabidopsis plantenlijnen gevonden, die elk het GUS merkergen op een specifieke 

plaats in het embryo tot expressie brengen. Deze set plantenlijnen levert een collectie moleculaire 

merkers op die gebruikt kan worden om in mutante embryo's eel- of regio-identiteit, of polariteit vast 

te stellen, op een vergelijkbare manier als eerder is gedaan met het AtLTPl gen. Ook kan met behulp 

van moleculair biologische technieken het plantengen uit het celkern-DNA gei'soleerd worden dat in de 

buurt van de transposon-insertie ligt, en op dezelfde manier tot expressie komt als het GUS 

reportergen. 

Hoofdstuk 4 van dit proefschrift geeft een overzicht over het spectrum aan GUS 

expressiepatronen dat gevonden is in embryo's na het doorzoeken van 431 enhancer trap en 373 gene 

trap plantenlijnen. Vier lijnen waarin het GUS merkergen heel vroeg of op een heel precieze plaats 

tijdens de embryo ontwikkeling tot expressie komt worden meer gedetailleerd beschreven. Verder 

worden elektronische databanken gepresenteerd die ontwikkeld zijn om gegevens van alle 

verschillende gene en enhancer trap plantenlijnen op te slaan en eenvoudig te kunnen doorzoeken. 

Van vier enhancer trap en twee gene trap lijnen is het celkern-DNA waarin het transposon zich bevindt 

geanalyseerd. In een geval werd een gen gevonden waarvan de functie bekend is, en in twee andere 

mogelijk een onbekend gen. Aan het einde van hoofdstuk 4 wordt de efficientie van het gene / 

enhancer trap systeem voor het isoleren van genen die een rol spelen bij de embryo ontwikkeling 

besproken. Hierbij lijkt voornamelijk de mogelijkheid om genen op te sporen aan de hand van hun 

expressiepatroon in het embryo, zichtbaar gemaakt door middel van de expressie van het GUS 

merkergen, een voordeel van het gene / enhancer trap systeem. 

In hoofdstuk 5 van dit proefschrift wordt een van de gevonden enhancer trap lijnen, genaamd 
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WET368, besproken. In de WET368 plantenlijn wordt al in het 8-cellig embryo expressie van het 

GUS merkergen waargenomen. Wat later tijdens de ontwikkeling van het embryo wordt alleen nog 

expressie waargenomen in een niet eerder beschreven regio van cellen, die het scheutmeristeem en een 

deel van de kiemblaadjes omvat. Na de zaadkieming worden alle gebieden in de plant waar scheut- of 

bloemmeristemen aanwezig zijn of waren gekenmerkt door GUS expressie. Het zou kunnen dat door 

middel van WET368 expressie regio's in de plant aangelegd worden waarbinnen bepaalde cellen zich 

tot meristeemcellen kunnen ontwikkelen. De analyse van WET368 GUS expressie in een serie 

mutanten met afwijkingen in de grootte of functie van het scheutmeristeem laat zien hoe merkergen-

expressie de morfologische beschrijving van mutante fenotypes kan aanvullen. 

Aan het eind van dit proefschrift, in hoofdstuk 6, worden de belangrijkste resultaten van het 

beschreven onderzoek samengevat en bediscussieerd. 
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Nawoord 

Hoewel dit nawoord voor velen waarschijnlijk het meest begrijpelijke deel van dit proefschrift is, 

was het misschien wel het moeilijkste deel om te schrijven. Is het bij het schrijven van een 

wetenschappelijk stuk tekst al lastig de juiste afbakening te vinden, bij het schrijven van een 

dankwoord is dit welhaast onmogelijk. Vandaar dat ik op deze plaats wil beginnen met een ieder die 

op wat voor manier dan ook een bijdrage heeft geleverd aan de totstandkoming van dit proefschrift te 

bedanken. Zonder degenen die er na het lezen van dit nawoord achter komen dat ze niet genoemd zijn 

tekort te willen doen, wil ik een aantal mensen bij naam bedanken. 

Allereerst mijn begeleider en groepsleider Sacco de Vries. Sacco, het is een eer je eerste AIO te 

zijn, die jou promotor mag noemen in plaats van co-promotor! Onze discussies, je brede inzicht en je 

vele contacten die ertoe bijdroegen dat mijn werkterrein zich verder dan Wageningen uitstrekte, 

hebben mij de afgelopen jaren enorm gemotiveerd voor het doen van onderzoek. Daarnaast is je 

interesse in zaken die verder gingen dan onderzoek voor mij van grote waarde geweest. Ab van 

Kammen, mijn andere en lange tijd enige promotor. Leek je in het begin van mijn promotie iemand 

die ergens op de achtergrond de grote lijnen bewaakte, tijdens het schrijven van publicaties en dit 

proefschrift bleek dat je bijdragen en onze gesprekken voor mij zeer nuttig en fascinerend waren. Als 

ik dacht dat een publicatie echt af was, bleken er na het ontcijferen van je opmerkingen altijd weer wat 

nieuwe gezichtspunten te zijn. 

De collega's van de embryo-groep, zoals zij heet sinds ik aan Arabidopsis ging werken, 

hebben ieder een eigen bijdrage geleverd aan mijn promotie-onderzoek en bovenal aan een goede 

werksfeer. Dank aan mijn collega-AIOs Marcel, Arjon en Paul, de laatste eerst nog als student, en alle 

anderen die voor korte of lange tijd het embryo-lab bevolkten, met name Marijke, Ed, Andreas, 

Valerie, Theo, Ellen, Kim, Flavia en Arina. Een speciaal woord van dank gaat uit naar de doctoraal-

studenten die als afstudeeronderzoek een bijdrage geleverd hebben aan het in dit proefschrift 

beschreven onderzoek. Eddy van de Honing, Sandra Langeveld, Han Gerrits, Nicole Aarts en Paul in 

der Rieden, behalve jullie resultaten herinner ik mij vooral dat het gewoon erg leuk was met jullie 

samen te werken. Het doet mij goed jullie nog in het onderzoeksveld te zien werken. Verder bedank 

ik de andere "Molbi-mensen" voor hun praktische en soms puur sociale bijdragen, die de tijd op 

Moleculaire Biologie zo leuk maakten. 

In de categorie "buiten de vakgroep" ben ik dank verschuldigd aan Gerd Jiirgens en Ulrike 

Mayer voor de jarenlange prettige samenwerking, en aan Rob Martienssen, Venkatesan Sundaresan, 

Patricia Springer en Ueli Grossniklaus voor een mooie tijd op Cold Spring Harbor en het bieden van 
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de mogelijkheid te participeren in het gene / enhancer trap project. Voorts ben ik Bertrand Dubreucq 

en Harald Wolkenfelt erkentelijk voor hun onmisbare en leerzame hulp bij het screenen, en Maarten 

Koornneef voor zijn waardevolle adviezen en het op eigen initiatief markeren van mogelijk mutante 

planten in de Arabidopsis kas. 

Ook mijn nawoord wordt afgesloten met "het thuisfront", omdat dit wellicht de belangrijkste, 

maar in elk geval ook de minst concrete steunpilaar gevormd heeft tijdens het promotie-onderzoek. Op 

deze plaats wil ik dan ook mijn vrienden bedanken voor hun steun, interesse, en de mooie momenten 

in de afgelopen jaren; mijn lieve ouders Paula en Bert, en mijn broers Jeroen en Simon, omdat ze er 

altijd voor me zijn en zullen zijn; Loes en Henk, omdat zij de laatste jaren zo merkbaar dichtbij waren. 

En tenslotte mijn liefste Annemarie, jouw steun tijdens mijn promotie is niet met woorden te 

beschrijven; ik ben blij dat een heel klein stukje ervan voor iedereen in een oogopslag zichtbaar is! 
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Appendix A: Arabidopsis mutants discussed in this thesis 
(in order of appearance) 

Mutant 
knolle (kn) 

keule (ked) 

gnom/emb30 (gn) 

short integument 
{sinl) 

abnormal 
suspensor 
(SUS1 ,SUS2,SUS3) 

twin (twnl, twn2) 

raspberry (1,2) 

gurke/emb22 (gk) 

monopteros (mp) 

shortroot (shr) 

scarecrow (so) 

fass/tonneau (ton) 

wooden leg (wol) 

shoot 
meristemless (stm) 

aintegumenta (ant) 

clavata(clv1,clv2, 
clv3) 

altered meristem 
programming/ 
primordia timing 
(amp1/pt) 

wuschel(wus) 

embryo phenotype 
incomplete cell walls; radial 
tissue organization defects 

incomplete cell walls; radial 
tissue organization defects 

variable apical-basal 
polarity 

defects in apical-basal (and 
radial) axis; no cotyledons 

embryo formation from 
suspensor; arrest of 
primary embryo 

embryo formation from 
suspensor; twn2: arrest of 
primary embryo 

embryo formation from 
suspensor; arrest of 
primary embryo 

no / reduced SAM and 
cotyledons 

no root and hypocotyl; non-
continuous vascular strand! 

no endodermis 

no separate cortex and 
endodermis 

irregular early cell divisions; 
increased number of cell 
layers along radial axis 

no phloem 

no shoot meristem 

enlarged SAM 

supernumerary structures; 
enlarged SAM (pleiotropic) 

no functional shoot 
meristem 

proposed embryonic 
function of mutated 

gene 
cytokinesis 

cytokinesis 

asymmetric cell division 

apical-basal polarization 

suppression of embryo-
fate in suspensor 

suppression of embryo-
fate in suspensor 

embryo morphogenesis 

specification of upper tier 

axialization 

specification of 
endodermal cell fate 

periclinal division in 
ground tissue 

directional cell expansion; 
cell division plane 
allignment 

regulation of cell division 
in vascular tissue 

SAM specification and 
maintenance 

(cotyledon-) primordia 
initiation 

restriction of SAM size 

specification of cell identity 
in SAM center 

gene encodes 
syntaxin 

guanine nucleotide 
exchange factor ? 

spliceosome 
assembly 
factor (SUS2) 

valyl-tRNA synthetase 
vaIRS (TWA/2) 

transcription factor 

bZIP-transcription 
factor 

homeodomain 
transcription factor 

AP2-domain 
transcription factor 

leucin-rich repeat 
receptor kinase 
(CLV1); leucin-rich 
repeat transmembrane 
protein (CLV2); small 
protein (CLV3) 

reference 
Lukowitz etai, 1996 

Assaade/a/., 1996 

Shevell etai, 1994 
Buschera/.. 1996 

Ray etai, 1996 

Schwartz etai., 1994 

Vernon and Meinke, 
1994; Zhang and 
Somerville, 1997 

Yadegari et a/., 1994 

Torres-Ruiz etai, 
1996 

Hardtke and Berleth, 
1998 

Scheresefa/., 1995 

Di Laurenzioef ai, 
1996 

Torres-Ruiz and 
Jurgens, 1994; 
Traasefa/., 1995 

Scheresefa/., 1995 

Long etai, 1996 

Elliot et ai, 1996 

Clark etai, 1997; 
Jeongera/., 1998; 
Fletcher er ai, 1998 

Conway and Poethig, 
1997;Mordhorst 
etai, 1998 

Lauxefa/., 1996 
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zwille/pinhead 
(zll/pnh) 

cup-shaped 
cotyledon (cud, 
cuc2) 

hobbit(hbt) 

bombadil (bbl) 

gremlin 

fertilization 
independent 
endosperm/seed 
(fie/fis) 
rootless (rtl) 

topless 

biol 

fusca (fus) 

prolifera {prl) 

hydra (hyd) 

bodenlos {bdl) 

no functional shoot 
meristem 

fused cotyledons; no SAM 
( cud cuc2double mutant) 

misspecification of 
hypophyseal cell; no RM 
activity 

misspecification of 
hypophyseal cell; no RM 
activity 

misspecification of 
hypophyseal cell; no or 
limited RM activity 

misspecification of 
hypophyseal cell; no or 
limited RM activity 

endosperm / seed 
development without 
fertilization 

no RM;sometimes no SAM 
(pleiotropic) 

no SAM and cotyledons 

biotin auxotrophy; embryo 
lethality 

abnormal anthocyanin 
accumulation 

embryo lethality 

abnormal cell size and 
shape; morphological 
defects 

misspecification of 
hypophyseal cell 

specification of cell identity 
in SAM center 

organ separation 

specification of hypophyseal 
cell or RM 

specification of hypophyseal 
cell or RM 

specification of hypophyseal 
cell or RM 

specification of hypophyseal 
cell or RM 

linkeage of endosperm / 
seed development to 
fertilization 

specification of upper tier 

biotin synthesis 

signal transduction 

cell proliferation; initiation 
of DNA replication 

cell expansion 

lower tier-hypophyseal cell 
signalling 

Mayer ef a/., 1998 

Genes expressed in Arabidopsis embryos identified by approaches other then mutant screens 

protein of unknown 
identity 

putative transcriptional 
activator (CUC2) 

transcription factor 
(FIS2) 

7,8 diamino-pelargonic 
acid aminotransferase 

hydrophylic protein 
(FL/S6) 

yeast MCM2-3-5 like 
protein 

Moussian etal., 1998; 
McConnell and Barton, 
1995 

Aida etal., 1997 

Willemsen etal., 1998 

Scheres el a/., 1996 

Scheres ef al, 1996 

Scheres et al., 1996 

Ohadefaf., 1996; 
Chaudhury et al., 
1997;Luoefa/., 1998 

Barton and Poethig, 
1993 

Barton and Poethig, 
1993 

Pattonefa/., 1996 

Castle and Meinke, 
1994 

Springer et al., 1995 

Topping and Lindsey, 
1997 

ARABIDOPSIS 
THALIANA LIPID 
TRANSFER 
PROTEIN (ATLTP1) 

ARABIDOPSIS 
THALIANA 
MERISTEM LAYER 
1 (ATML1) 

POLARIS 

WAGENINGEN 
GENE TRAP 39 
(WGT39) 

PEI-1 arrest at heart stage (in 
antisense plants) 

cuticle formation on 
epidermis 

establishment of apical-
basal and radial embryo 
polarity; epidermal cell 
fate specification 

root pole specification 

cell wall extension 

specification of apical 
domain 

lipid transfer protein 

homeodomain 
transcription factor 

37 amino acid peptide 

expansin 

transcription factor 

Thoma etal., 1994; 
Vroemen etal., 1996 

Luera/., 1996 

Topping and Lindsey, 
1997; Lindsey ef a/., 
1998 

this thesis, chapter 4 

Li and Thomas, 1998 
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