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Stellingen 

1. De tijdelijke daling van de gemiddelde levensduur van de Nederlandse 
zwartbonte koeien in de jaren tachtig was te wijten aan de invoering van de 
melkquotering en de verdringingskruising van het Fries Hollandse door het 
Holstein Friesian melkveeras. (Dit proefschrift) 

2. Het scoren van het exterieurkenmerk " type" is overbodig. (Ditproefschrift) 

3. Fokken op ongecorrigeerde levensduur in een melkveefokprogramma voegt 
niets toe. (Dekkers, J.C.M., 1993. J. Dairy Sei., 76: 1433; Strandberg, E., 
1997. Paper G3.2 of 48th EAAP, Vienna; dit proefschrift) 

4. Als de productieve levensduur van koeien bekend is en als men de 
beschikking heeft over voldoende computercapaciteit, moeten 
levensduurgegevens geanalyseerd worden met behulp van de survival 
analysis. (Dit proefschrift) 

5. De correlatie tussen het percentage eiwit en het percentage vet in de melk 
van een koe wordt overschat als niet de percentages, maar de hoeveelheden 
eiwit en vet genetisch bepaald zijn. (naar Yule, G.U., 1910. J. Roy. Stat. 
Soc, series A, 73: 644) 

6. Het bouwen van geboorde, gesegmenteerde tunnels is ook in de slappe, 
natte Nederlandse bodem een goed alternatief voor het gebruik van 
traditionele bouwmethoden. 

7. Gezien het grote aantal "snelwegveeartsen" in Nederland is de 
ziekteregistratie van melkkoeien via dierenartsen geen haalbare kaart. 

8. Bij de milieu-inspectie wordt geen afweging gemaakt tussen ammoniak- en 
COx-uitstoot. 

9. Holsteinisering en de Elfstedentocht zijn beide voorbeelden van verdringing 
van het Friese erfgoed. 

10. Meepraten is niet hetzelfde als meedenken, maar het één kan niet zonder het 
ander. 

1 1 . Het gaat er niet om wat waar is, maar wat men denkt dat waar is. 

Stellingen bij het proefschrift van Ant R. Vollema: "Selection for longevity in dairy cattle." 
Wageningen, 2 september 1998. 
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Chapter 1 

Introduction 



Introduction 

The longevity of a dairy cow measures the time she produces in a herd, 

and it is determined by her milk production, health, fertility, and workability. 

Traits reflecting the production of a cow are usually called primary traits, and 

traits reflecting health, fertility, and workability secondary traits. The relevance 

of primary traits is easily seen because an increase in production directly results 

in a higher output of a farm. Improving secondary traits results in a decrease of 

costs, to which in the past little attention has been paid in animal breeding. Only 

the Nordic countries included direct selection on secondary traits in their 

breeding programs. Nowadays, interest in secondary traits has increased 

worldwide: many countries are working on or are already predicting breeding 

values for secondary traits like mastitis resistance, calving ease, and milking 

speed (Interbuli, 1996). The higher valuation also is expressed in their new 

name: functional traits (Groen et al., 1997). 

Culling reasons 
Apart from cows that die, the longevity of a dairy cow is completely 

determined by the culling decision-making of the farmer. Both Renkema and 

Stelwagen (1979), Sol et al. (1984), and Van de Venne (1987) concluded that 

7 0 % of the culling of dairy cows in The Netherlands was caused by a disease in 

the broad sense. Within this category unsatisfactory reproduction was the main 

reason for culling. Culling for low production mainly took place during the first 

lactation (Van de Venne, 1987). 

It has to be emphasized that the farmer determines the actual longevity of 

cows. The farmer weights the performance of cows for primary and functional 

traits and decides whether to cull a cow or not. In practice, this means that it is 

nearly impossible to make a clear distinction between culling for production and 

culling for functional traits. For example, a high producing cow will be bred more 

often before she is culled for low fertility than a low producing cow. Dohoo and 

Martin (1984) indicated that there are two methods to evaluate reasons for 

culling. The first method uses the farmer's stated reason for culling, which gives 

an impression of the most immediate and pressing shortcoming of the cow. 

However, this method does not give insight in the other reasons for culling. An 

improvement would be to ask farmers for more than one culling reason (e.g., Sol 

et al., 1984), but in this case, the relative weighting of the different culling 

reasons is probably not uniform and thus hard to interpret. The second method 
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of Dohoo and Martin (1984) evaluates indirect reasons for removal, such as 

disease history and previous milk production. To use this method, data on these 

indirect reasons, such as veterinary records, have to be known, which might not 

always be the case. 

Relevance of longevity 
Rendel and Robertson (1950) identified four ways by which increased 

longevity increases profit: 1. by reducing the annual costs of replacements per 

cow in the herd; 2. by increasing the average herd yield through an increase in 

the proportion of cows in the higher producing age-groups; 3. by reducing the 

replacements which have to be reared, and therefore allowing an increase in size 

of the milking herd for a given acreage; and 4. by an increase in the possibilities 

for voluntary culling. The actual profit from an increased longevity of cows 

depends on the production circumstances of a farmer: for instance, if there is a 

quota system, extra production of the herd is of no extra value. Renkema and 

Stelwagen (1979) concluded that the yield resulting from a longer longevity is 

subject to the law of diminishing returns. An increase in the genetic potential for 

longevity increases the realized longevity, but not as much as the genetic 

potential allows (Van Arendonk, 1985). Farmers will use the extra space for 

selection to cull more heavily on production or reproduction or both. Several 

authors (Dekkers, 1994; Stott, 1994; Van Arendonk, 1985) concluded that the 

proportion of involuntary culling governs the potential longevity and thus the 

economic advantage of longevity. 

The economic value of longevity has often been estimated. VanRaden and 

Wiggans (1995) made an overview of the relative economic values of yield and 

herd life from the literature, and concluded that the ratio between both values 

was on average 2.5:1 which was in line with their own estimate. All estimates 

were expressed on a genetic standard deviation basis. The variation between 

estimates was large (range 0.8:1 to 8.0:1) emphazising that the economic value 

of longevity depends on the production circumstances, although some variation 

is also caused by the difference in methods used to calculate the economic 

value. 

Renkema and Stelwagen (1979) calculated the optimum length of 

productive life of a cow with an average milk production without diseases as 10 

to 14 lactations. However, they did not consider variation in production and 
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functional traits within a herd. Van Arendonk (1985) showed that cows 

producing below the herd average had relatively a much lower optimal length of 

productive life than the cows producing above average. For instance, the 

optimal length of productive life of a cow producing at 7 0 % of the herd average 

will be 5 months, while this will be 8 years for a cow producing at 130% of the 

herd average. In 1979 the average actual length of productive life in The 

Netherlands was 4.5 lactations (Renkema and Stelwagen, 1979), and Van de 

Venne (1987) found an average length of productive life of 3.5 years in 1986. 

The reasons for this decline in realized longevity can be changed prices of 

replacement heifers, the carcass price of culled cows, the rapid introduction of 

Holstein Friesian genes in the population, and the fast genetic improvement for 

milk potential. However, there is a growing concern about this decrease in 

realized longevity of dairy cows. Nowadays much emphasis is on sustainability 

of production systems and welfare of animals, and it is felt that in this respect 

an increased realized longevity would be one of the desired changes in dairy 

production. However, as stated before, the actual longevity of dairy cows is 

largely determined by the farmer's decision making. Breeding programs can 

contribute to an increased longevity of dairy cows by including this trait into 

breeding programs. In this way at least the potential longevity of dairy cows can 

be improved, and by providing breeding values for longevity to the farmers they 

may become more aware of, and pay more attention to, the longevity of their 

own cows. 

Longevity in breeding programs 
The production of a cow is recorded routinely in many countries, and 

breeding values for production traits are easily obtained. Although in some 

countries health and fertility traits are recorded as well, in other countries they 

are not. Breeding value prediction for functional traits is then based on 

correlated traits, such as somatic cell count or conformation traits. An 

alternative is the use of longevity. The longevity of cows can be easily 

calculated from milk recording records, if one assumes that the last known test 

day is the last day of a cow's life. Because longevity is determined by 

production and functional traits, longevity corrected for milk production is a 

better measure for functional traits than uncorrected longevity (Dekkers, 1993). 

This corrected longevity is usually called functional longevity. Because culling 
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decisions are made within herds, the correction for production has to be on a 

within-herd basis as well (Van Arendonk, 1985). 

Breeding organizations have to make many choices if they want to include 

longevity in their breeding program. First, they have to decide what their 

breeding goal is, so what they want to breed for exactly: uncorrected longevity, 

functional longevity, or residual longevity, which is longevity corrected for other 

traits which are in the breeding goal. Uncorrected longevity can be seen as 

containing all traits that are relevant to the farmer, including milk production. 

Because in most breeding programs milk production is recorded routinely, 

functional longevity could be used to breed for all functional traits 

simultaneously. In breeding programs where some functional traits are measured 

directly, residual longevity might be used to avoid double-counting of traits. 

Second, it has to be decided which trait will be used to define longevity. A 

distinction can be made between traits that measure the whole lifetime of a 

cow, such as herdlife or length of productive life, and stayability traits which 

measure whether or not a cow survived until a certain moment in t ime, such as 

stayability until 36 months of age or survival of the third lactation. Lifetime traits 

can be measured only after a cow's death, but contain all information possible 

on a cow's longevity. Stayability traits are binary traits and contain less 

information (e.g., if a cow did not survive until 36 months of age it is unknown 

how far before that moment in time she was culled, if she did survive it is 

unknown how much longer she will live) but can be measured at any moment. 

Instead of looking at these different traits, a different method than the well 

known restricted maximum likelihood based on best linear unbiased prediction 

may be an alternative to analyse longevity traits. If a cow is still alive at the 

moment of data collection, her record on longevity is called censored. A 

censored record can be seen as the minimum longevity the cow will reach, and 

not using such records means loss of information. Cox (1972) described the 

method of survival analysis in which not the actual longevity of a machine, 

human being, or animal is analysed, but the risk of failure or death. In this 

procedure, censored records can be included in the analysis as well. Another 

advantage of the method is the possibility to model effects in a time-dependent 

way, thus it is expected that such models mimic reality better. Famula (1981) 

introduced this method in animal breeding. Smith and Quaas (1984) were the 

first to estimate genetic parameters with survival analysis. In 1987, Smith's 
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survival analysis program became available but it 's feasibilities were rather 

restricted (Smith, 1987). In 1994, Ducrocq and Solkner presented their 

programs for survival analysis, which are more general applicable (Ducrocq and 

Sölkner, 1994). The programs have been updated continuously since then and 

used by various researchers for different purposes (e.g., Gröhn et al., 1997; 

Ringmar-Cederberg et al, 1997; Vukasinovic et al., 1997). Of course other 

authors have written other programs as well. For instance, Korsgaard (1996) 

implemented a Gibb's sampling algorithm in her program. Thus, the third choice 

is which method a breeding company wants to use. 

Fourth, breeding organizations have to decide which traits they want to use 

in their index for longevity. Longevity itself is easily recorded but, as indicated 

before, it may take a long time before the information is available. Even when 

using stayability traits or survival analysis, there is a certain timespan needed to 

obtain enough information for a reliable breeding value prediction. Compared 

with a breeding program solely aiming at improved milk production, breeding for 

longevity only using information on longevity itself will always increase the 

generation interval. Therefore, it might be useful to include predictive traits in 

the index as well. Intuitively, conformation traits are good predictors of 

longevity. They can be measured early in a cow's life and attention is already 

paid to them in breeding programs because they are expected to have 

correlations with functional traits. Furthermore, if functional traits are recorded 

they also can be used to predict longevity, as good as longevity can be used to 

measure functional traits. However, if breeding for longevity is aimed at 

improving underlying functional traits it would be more effective to select for 

these functional traits directly. 

Aim and outline of this thesis 
The aim of this thesis is to investigate parameters that influence the 

choices breeding organizations have to make when they want to incorporate 

longevity into the breeding program. In Chapter 2 an overview of the literature 

containing estimates of heritabilities of longevity traits, correlations among 

longevity traits, and correlations between longevity and conformation traits is 

presented. Various factors influencing the results of these studies are identified 

and discussed. In Chapter 3 the heritability of longevity traits and genetic 

correlations among them are estimated using a REML algorithm on Dutch data. 
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The total data available was split into separate datasets according to the year of 

birth of the cows. The achieved longevity per cow was severely influenced by 

the large-scale crossing with Holstein bulls in the mid-eighties, as well as by the 

inplementation of the quota system in 1984. Also the heritability of longevity 

traits was influenced. In Chapter 4 the correlations between longevity and 

conformation traits are estimated, again using a REML algorithm on Dutch data. 

Again data on cows wi th different years of birth were used and differences were 

found between results from these separate datasets as well. In Chapter 5 the 

method of survival analysis was used to predict breeding values of sires and 

these breeding values were compared with those from the more traditional 

methods of phenotypic averages of daughters and best linear unbiased 

prediction. Because differences between methods were substantial and survival 

analysis was assumed to be the best way to analyze longevity data the 

relationship between longevity and conformation traits was investigated using 

survival analysis (Chapter 6). In the General Discussion issues concerning the 

incorporation of longevity in breeding programs that are addressed in previous 

chapters are summarized and related to the Dutch situation. Issues that have not 

been addressed in previous chapters are addressed here. 
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Abstract 
Heritability of longevity traits, genetic correlations among longevity traits, 

correlations between longevity and conformation traits, and regression models 
using conformation traits to explain longevity were reviewed. Estimates based on 
dairy cows from literature from 1970 onwards were incorporated. Lifetime and 
stayability traits, and functional and uncorrected longevity traits were considered. 
Heritability estimates were generally lower than 10%, and traits measured later in 
life had a higher heritability. Estimates were generally lower for functional than for 
uncorrected longevity traits. Genetic correlations among longevity traits were 
generally high. When using conformation traits to predict longevity, traits 
concerning the udder and feet and legs were most important. 

key words: genetic parameters, longevity, conformation, dairy cows, review 

Introduction 
Longevity is a trait of increasing importance in dairy cow breeding schemes. 

Much research has been done, and is still being done, on estimation of the 

genetic parameters which are needed to incorporate longevity into a breeding 

program. Many different definitions of longevity are used and many different 

methods of analysis, and results differ greatly. Because conformation traits can 

be measured early in life, their value as predictors of longevity has often been 

investigated. Reviews of the literature were made in the past, but they were 

either not published in a journal, or not very extensive. Moreover, many were 

published over ten years ago (Bumside et al., 1984; Dekkers and Jairath, 1994; 

Ducrocq, 1987; Harris, 1992; Strandberg, 1985). This paper aims to give an 

overview of the estimated heritability of longevity traits, genetic correlations 

among them, and correlations with conformation traits. It is confined to studies 

on data on dairy cows, which appeared as full papers in refereed journals, from 

1970 onwards. For every reference, the estimate, amount of information, 

model, method of analysis, and additional remarks (such as breed of the cows, 

opportunity groups) are given. Factors possibly influencing the estimates (e.g., 

grade versus registered cows, model of analysis) are discussed. This review 

may particularly be useful for researchers who need to know " the" genetic 

parameters of longevity traits, or " the" relationship between conformation and 

longevity traits, for, for instance, a simulation study or estimation of breeding 

values. 

13 
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Traits 
Longevity reflects a cow's ability not to be culled. Culling reasons include 

low production, disease, and low fertility. Culling for low production is usually 

referred to as voluntary culling, culling for disease and low fertility as invo

luntary culling. 

In the literature, various definitions of longevity are used. First one can make 

a distinction between "corrected" and "uncorrected" longevity traits. Corrected 

longevity traits are corrected for milk production, thus aiming to give better 

measurements of involuntary culling (Dekkers, 1993). Corrected traits are also 

called " functional" longevity traits, analogous to traits causing involuntary 

culling such as diseases, which are called "functional" traits. Second, one can 

make a distinction between "l ifetime" and "stayability" traits. Lifetime traits 

measure the whole lifespan of a cow. These can be measured only after the 

death of a cow, but contain complete information on longevity. Stayability traits 

measure whether or not a cow is alive at a certain point in time (e.g., at a fixed 

number of months from birth or first calving). These traits can be measured at 

any point in t ime, but because they are binary traits they do not contain 

complete information on a cow's longevity. For instance, a cow that did not 

survive up to 36 months of age can have any lifespan that is shorter than those 

36 months, and if she did survive, it is unknown how much longer she will live. 

A compromise between the higher information content of lifetime traits and the 

earlier availability of stayability traits is to use opportunity groups. Opportunity 

groups consist of animals with the same maximum lifespan that can be 

recorded. Instead of waiting until all have been culled, a maximum lifespan 

(opportunity) is assigned to cows: if they are culled before this maximum is 

reached, their actual lifespan is known, otherwise the maximum opportunity is 

taken as their lifespan. 

In this study, longevity traits are divided into four classes: lifetime, 

stayability, miscellaneous, and functional traits. The following definitions and 

abbreviations (used in the tables) are given: 

lifetime traits: 

- herdlife (HL): time period between birth and culling; 

- length of productive life (LPL): t ime period between first calving and culling; 

- total milk production (TMP): lifetime milk production summed over lactations; 

- number of days in lactation (NDL): lifetime milking days summed over 

14 
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lactations; 

- number of lactations (NLC); 

stayability traits (0/1): 

- stayability until a certain number of months of age (e.g., AGE36, AGE72); 

- stayability until a certain number of months after first calving (e.g., PL12, 

PL36); 

- survival of a certain lactation; 

miscellaneous traits: 

- total months in milk at 84 months of age (MIM84); 

- probability of surviving from one lactation to the other; 

functional traits: 

- longevity traits corrected for production are indicated by a prefix " functional" 

(abbreviated F, e.g., FHL, FNLC, FAGE72). 

Most studies are based on data retrieved from milk recording records, which 

means that only cows that calved at least once are included. In the literature, 

sometimes a different name for a certain trait is used. For instance, some 

researchers use the term "true" when they refer to uncorrected longevity traits 

(Boldman et al., 1992; Ducrocq et al., 1988; Harris et al., 1992). Also, 

"herdlife" is sometimes used when the length of productive life is meant 

(Dekkers et al., 1994; Short and Lawlor, 1992). In all cases, the name and 

definition as described above have been used in this review. Traits describing 

lifetime profit have been excluded, because they entirely depend on 

assumptions that have been made for cost components and prices. 

Most authors use well-known methods such as Henderson III and REML. An 

alternative method to evaluate longevity that is increasingly being used in animal 

breeding is survival analysis (e.g., Ducrocq et al., 1988; Smith and Quaas, 

1984). Instead of modelling longevity itself, the hazard of being culled is 

modelled wi th this method. Because the hazard is modelled, it is possible to 

include also the so-called "censored" records, i.e., records of cows that are still 

alive at the moment of data collection. Also with this method, non-linear models 

can be used in the analysis. Furthermore, it is possible to include time-

dependent variables. Disadvantage of the method is the relatively large amount 

of computer capacity that is needed to perform the analysis. 

15 



CO 

CO 

E 
CD 
CC 

-o 
O 

•»-» 

CD 

2 

15 
T3 
O 

CO 

5 
o 
o 
CD 
-o 
Cd 
O) 

2 
Lil 
DC 

"CD 
• o 
o 
E 
CD 

_ 1 

2 LU 
OC 

" Q 
•D 
O 

E 
CD 

CO 

g 
o 
o 
0) 

• o 
CO 
k_ 
O) 

c 
o 
co 
CD 

1 3 

c CD 
X 

"05 
X I 
o 
E 
CD 
k_ 

CO 
5 (o 
O co 
O T l 

• o "O 
CD m 

o S 
IS Xt 
— E 
CD ° ü CJ 

O 
co 

• * - * 

'co 
• 4 - " 

CD 

E 

-o 
CD 
+-» 
CJ 
ÇD 

O 
O 

c 
3 

CO 
CD 
4-» 
co 

E 
co 
CD 

X I 
co 

CD 

I 

. o 
co 

I -

a> 
co 
co 
o co co 

*- te "> 
ü œ • ; _: "> .5 Ü £ w 
.£ c c 
— CD > 

» E o 
» E m 

r -o CD 

S £ > 
C X I C 
£ CD 3 

.hs 
CO O . CO 

O 
00 
00 
CO 
i n 

co 
co 

LO 
o 
o 

^ . 0 0 CM 

-'S s 

•s m 

2 « 
3 C 
co C O 

!•§ 
CD o 

§ E 

00 
co 
co 
r»* 
00 

co 
x : 
CD 

• o i Q U I 
•P co OC 

E » 
• ' S 

r> co CM 
in oo co 
co 't *t 
co oo CD" 
o o) *-
CN > - . -

q 
o 

C O 

o 
o 

00 
CN 

o 

LO 
0 0 

o 

CN O CO 
CN CN CN 

o 6 o 

"t rt LO 

o 6 ó 

co «- in 
co co co 
q q o 
o ei o 

CD 

C 

CO ~ 

ES 
ö E? 
m Z 

CD 

c 
co 

JZ 
3 
CO 

x 
O Z 

co 
O) 
O) 

c 
CD 

û z 

CO 

CD 

O " 

o óo 
o 2 
3 m 

CD 
C 

CO 

73 
C 

c o ? 

co <n 
O) 

co 
CD 
co 
co 
O co co 

»- te °> o -ï '5 
. co > 

ü - S « 

. S e c 

E o 
E m 

co 

CD 

j j j co *_ 
1 3 
CD C 

CD _ 

E -° c 

£ CD D 

E te, Ç0 
cö a m 

CO w 

-"F o -1 
32 a LIJ 
*: co cc 

CD 

> 
co g 
O) * 

E » ID Q 
c œ 
o 5: 
c CD 

r~ co CM 
LO CO CO 
00 ' t ' t 

oo oo" co" 
O O ) « -
CN « - . -

co a i co 

o o 6 

co co co 

ó o ó 

co 
• o 

CD 

sz 

E 
o 

5 
o 
CJ 

c 
o 
co 
V-
<D 

c 
CD 

I 

CD 
1 3 
O 

, £ CD 

CO 
CN 

LO 
CN 

LO 
CN 

CO 
CN 

fü 

< 
• o 
C 
co 

U i 3 u ' te ° ' 

Z Q Z £ Z 

( O 

= °* 
b c 

Q. O . Q. 
Q. Q. Q. 
O O O 

O O O 

E E E » 
00 CN 00 g 

' t r » < t o 

> • > - > " 2 
CD CD CD ™ 
CO CO CO 

c c a 

CD 

CD CD CD 
3 3 3 

o o o 

co 
O) 
CD 

LU 
CC 

CD 
" O 
O 

E 

00 
co 
O l 

O CO 
« - LO 
en • * 
CD « -
CO CM 

c 
o 
co 
CD 

1 3 

c 
CD 

X 

CD 
-o 
O 

00 
CO 
Cv 

O 

co 

a> 
o 

LU 

cc 

CD 
T3 
O 

E 
CD 

'35 

LO 
co 
0 0 

CN 
00 

o 

O ) 
O 

LU 
O C 

CD 
" O 
O 

E 
CD 

'5) 

CN 
CN 
00 

0 0 

LO 
O 

O 

CN LO 00 
O O O 

CO r^ ' t 

o q q 
o o o 

CN 
a i 
O) 

CD 

CO 

CO 

X 

O 

c> 

oo 
o 

a> 
13 
O 
X 
13 
C 
CO 

CD Q 

S-oo 
* ° > X z 

;̂ 
CO 

cu 

£ ? 
co 0 ) 

CD - _ 

<D 

CO 05 

C ^ 



o 

CD 

CO 

£ 

-o 
CD 
D 

c 
o 
o 

CO 

co 
> co 
2 +-• 
O to 

CO O " O 

5 -o -o 
O CD CD 

-o .2? tz 
co •) 5 
»- m O 

O) ï O ^ ^ > 
CD CD CD » » « CD CD CD £ 

CO 

O CO 
O -o 

" O - o 
CD tl} 
CD . £ 

« | 
CD ° 

I C O 

CO 
" O 
l _ 
o 
o 
CU 

c -
O T3 
P £ c o 
CD CO 

T3 
C 
CD O 

-t-J o 
CD +3 
CO • = 
CD . E 
4-» » + -
CD CD 

• O XJ 

ca 

CD 
CC 

JZ 
CO 

T> 
CD 

g 

00 
I-» 
05 
1— c 

c 
o 

JD 

CO 

5 
o 
o 

CN 
0 0 
0 ) 

'— c 

c 
o 

. O 

CO 

g 
O 
o 

i n 
00 
O) 

*— c 

c 
o 

X I 

co 

g 
o 
o 

i n 
00 
05 

*— c 

c 
o 

JD 

CO 

g 
O 
ü 

Q. 
Q. 
O 

O 

E 
0 0 
«a-
co 
co 

g 
co 
c 
g 
o 
m 

Q. 
Q. 
O 

O 

E 
co 
CD 

CO 
co 

g 
(/) 
c 
g 
o 
m 

o. 
o. 
o 
o 
E 
' t 
0 0 

co 
co 

g 
co 
c 
g 
o 
m 

r\.. 

"CD 
T3 
O 

E 
CD 

'cö 

O) 
0 0 
CO 

«— 
*— 
6 

_ l 

^ 
LU 
CC 

"ÖJ 
T3 
O 

E 
CD 

'cö 
O 
O 
O 
O) 

A 

_ i 

2 
LU 
CC 

"CD 

-o 
o 
E 
CD 

'cö 

i n 

i n 

LO 
' t 

co 
CN 

O 
00 

0 0 
co 

i n 
CM 

co 

> > 
3 
co 

CD 

— CO 

~x 
O 
O 

o> 
o 
p * 
CM 
CN 

CO 
CO 

_ > • 

CO 
c 
CD 

"ÖJ 
T3 
O 

E 

LO 
CN 
co 

<J) 

' t 

_ l 

^ 
LU 
CC 

'S TJ 
O 

E 
CD 

'cö 

r-
CM 

O 

CM 

CO 
0 0 

0 0 

_ l 

2 
LU 
t r 

"CD 
TJ 
O 

E 
CD 

'cö 
0 0 
co 
o 

00 

en 

m 
00 
O 
O 

_ i 

^ 
LU 
or 

"ÖJ 
T3 
O 

E 
CD 

CO 

LO 
CO 
O) 

en 

CM 
co 
*— 
6 

o 
- t 

CD 
• o 
O 

E 
CD 

CO 

' t 
CN 
00 

CO 
CO 

00 
O) 
O 
6 

CO 

CD 
-o 
O 

E 
CD 

CO 

LO 
o> 
00 
co 

CM 

co 
o 
Ó 

00 

o 

CD 
" O 
O 

E 
"cö 
E 
' c 
co 

m 
en 
00 

co 

co co 
o 
O 

CN 
< * 
o 

_ i 

5 
LU 
CC 

"ÖJ 
"O 
o 
E 
CD 

CÖ 

' t 
CM 
CN 

O) 

_ l 

^ 
LU 
cc 

"CD 
•o 
o 
E 
CD 

CÖ 

CO 

CO 

co 
< * 

O) 

o 

CM ' t CO 

9 9 9 
o d d 

* o r» 
o «- o o o o 

co co 

«-; q 
d d 

o 
x: 
3 

< 

"O CM 
C r -
CD O) 

CD 

o » 
2 > 

-*; 
<u 

co «> 

tfo> 
CC U 

h _ 

O 

g 
CD 

_ J 

• o 
c 
co — 
~ fM 

* <*> 
f ^en 
co C 

co 
co 

O 
"O 

co 

JZ t 
t : co 
f = 0 J 

C/J C 

CO LO 

O O 

d d 

CM 
en 

CD 

• o 
c 
co 

o o o o 

CM •* •* r̂  
r̂  co o oo 
. - . - . - o 
d o d o 

co o co in 
co <- co co CN co ' t 
r- . - o o «- «- «-

co 
o 

o o o o o o o o 
co en o r-
co o ' t co 
«- «- o o 
d o d o 

co 
"O S 
c en 
co «-CD 

CO 

c 
CD 

T3 CD 
co ^ : 

co JS 

> * 

c 
CD 
O 

Ö 
C 
CO 

« O) 

ö m 

<0 

CD 

• O 

> 
o 
c 
>w in 
j°. cn 

> C 

co 

CD 

öi in 
.S'en 
CD en 

5 c 

CD 
> 

'4-J 
O 
D 

•D 
O 

Q . 

O 

T3 
C 
CD 

C 
O 

o 
co 

CD " O 
CD C 
CO CN 

15 
JD O 
CO +•> 

ü £ 
eb 5 
'S o 

o. o 

o 
CN 

co " 
"° c 
-o o 
CD _ 
*-" 5 
o o 
CD \ P 
"55 o 
co « 
c o> 

D CO 



Chapter 2 

Results 
Heritability of and genetic correlations among longevity traits are given in 

several tables and will be discussed per table. Phenotypic correlations between 

longevity and conformation traits are given in a separate table, as are genetic 

correlations. In each table the author(s), year of publication, estimates of either 

heritability or correlation, number of records used in the analysis, model and 

method of analysis, and additional remarks are given. Results of regression 

models are reported in the text. Unless mentioned otherwise, all data are on 

Holstein cows. 

Heritability 

Table 1 contains heritability estimates of uncorrected lifetime traits. For 

herdlife, most estimates are in the range of 0.03 - 0.13. The weighted average 

equals 0.081 (including all estimates in the table weighted according to the 

number of records). For length of productive life, most estimates are in the 

range of 0 .04 - 0 .15, wi th a weighted average of 0.092. The weighted average 

of all estimates for total milk production is 0.17. For number of days in 

lactation, heritability estimates are in the range of 0.04 - 0 .14, and the 

weighted average is 0.10. Heritability estimates of number of lactations are 

mostly in the range of 0.03 - 0.13. The weighted average of the estimates is 

0 .084. 

Apart from herdlife, all heritability estimates of Chauhan et al. (1993) are 

considerably lower than the estimates from other studies. In contrast, Gill and 

Allaire (1976) found extremely high estimates, which was explained by the 

limited number of data used in the analysis. However, the number of data used 

by Chauhan et al. (1993) was sufficient to have reasonably low standard errors 

on the estimates. The authors did not give an explanation. 

Two authors made use of survival analysis: Ducrocq et al. (1988) and Smith 

and Quaas (1984). Their heritability estimates are well within the range of the 

other estimates in this table. From Smith and Quaas (1984) it can be seen how 

the selection of data influences the estimation. In the first data set (227,091 

records) only cows with code "died or sold for beef" were considered to be 

culled, in the second data set (449,325 records) cows were also considered 

culled if the herd remained in the milk recording scheme but the cows 

disappeared from the data files. This phenomenon of data selection influencing 
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the results is not limited to survival analysis: Strandberg (1992) also found 

different heritability estimates from selected and unselected data by using a 

REML algorithm. 

Vollema and Groen (1996) estimated heritability by using data on cows with 

different years of birth. Estimates decreased with increasing year of birth. The 

authors claim that this is due to the implementation of the quota system, and 

the crossbreeding wi th Holstein-Friesian bulls in the mid-eighties. Analysing the 

same data file with both a sire and an animal model gave similar results, which 

is not very surprising because wi th low heritable traits, most information comes 

from the sire side even when using an animal model. 

Harris et al. (1992) and Vukaâinovic et al. (1995) used data from different 

opportunity groups. Heritability estimates differed between opportunity groups 

in Harris et al. (1992), but not very much in Vukasinovic et al. (1995). 

Estimates tended to be higher with increasing opportunity. 

In general, heritability estimates using data on Simmenthalers, Braunvieh, 

and Brown Swiss cows are higher than those using data on other breeds. 

Although the limited number of data in Vukasinovic et al. (1995) might be an 

explanation for the high estimates, the number of data in Fürst and Sölkner 

(1994) was sufficiently large and the estimates did not differ much. 

Heritability estimates of total milk production are generally higher than those 

of other lifetime traits, as can be expected, because total milk production is a 

product of length of productive life and the highly heritable milk production per 

day. Heritability estimates of number of lactations tend to be slightly lower; this 

trait contains less information. 

Table 2 contains heritability estimates of stayability until a certain number of 

months of age and of productive life. Most estimates of stayability until a 

certain number of months of age are in the range of 0.02 - 0.06, so lower than 

the heritability of lifetime traits. DeLorenzo and Everett (1986) found higher 

estimates (0.12 and 0.15 for stayability up to 41 and 54 months of age 

respectively) using a logistic linear model. Vollema and Groen (1996) also found 

relatively high estimates, ranging from 0.01 to 0.19. Most estimates of 

stayability until a certain number of months after first calving are in the range of 

0.01 - 0 .04. Compared with the heritability estimates of stayability until a 

certain number of months of age, those until a certain number of months after 

first calving are lower. Both types of stayability only differ by the age at first 
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calving, which seems to take away some of the genetic variance. Both 

DeLorenzo and Everett (1986) and Vollema and Groen (1996) corrected their 

estimates to an underlying normal scale, which in all cases caused a 

considerable increase. Heritability first tends to increase with increasing number 

of months at evaluation of stayability, and then decrease wi th further increasing 

number of months. Hudson and Van Vleck (1981) explained that the variance of 

a binomial trait increases with more equal proportions in each category. At an 

intermediate number of months, the frequency of cows surviving is 50%, so 

heritability is highest here. Table 3 contains heritability estimates of survival of a 

certain lactation. Most estimates are in the range of 0.01 - 0.12. Heritability 

first tends to increase with increasing lactation number, and decrease again 

with further increasing lactation number, except in Madgwick and Goddard 

(1989), where the heritability estimate of survival of the first lactation is 

relatively high compared wi th that of subsequent lactations. The authors give no 

explanation for this. They split their total data set wi th 235,000 records into 

two subsets: one wi th cows first calving prior to 1979, and one wi th cows first 

calving after 1979. Heritability estimates of cows before 1979 are generally 

higher than those of cows after 1979. As in Vollema and Groen (1996), 

estimates based on data from an earlier period are higher than those from a later 

period. The reason behind this might be the same for both studies: in The 

Netherlands and in Australia Holstein cows became more popular and 

superseded the Dutch Friesian and Jersey cows respectively. 

Dong and Van Vleck (1989) found relatively high heritability estimates for 

survival of the first lactation, which might be explained by the small number of 

data on a limited number of herds. Cue et al. (1996) found higher heritability 

estimates for Jersey than for Holstein cows, and even higher for Ayrshire cows. 

Visscher and Goddard (1995) also found a higher heritability for Jersey than for 

Holstein cows, both for survival of a certain lactation and for survival of a 

certain lactation given survival of the previous lactation. Heritability of the latter 

trait is generally lower. 

Heritability estimates of months in milk at 84 months of age are not 

presented in a table. VanRaden and Klaaskate (1993) introduced this trait and 

found a heritability of 0 .085. Weigel et al. (1995) found a heritability of 0.06, 

which is consistent wi th the earlier estimate. The weighted average of the two 

estimates is 0 .081 . 
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Table 4 contains heritability estimates of functional lifetime traits. For 

functional herdlife, estimates ranged from 0.02 to 0.10 with a weighted 

average of 0.065. The heritability estimates of functional length of productive 

life are in the range of 0.02 - 0 .10, and the weighted average is 0 .069. The 

heritability estimates of functional lifetime traits increase with increasing 

opportunity (Harris et al., 1992; VukaSinovié et al., 1995). Vollema and Groen 

(1996) were the only reference that considered functional total milk production, 

functional number of days in lactation, and functional number of lactations. The 

weighted averages of the heritability estimates were 0.10, 0.084, and 0.073 

respectively. Of all traits in this study, heritability decreased with increasingyear 

of birth. 

Heritability of functional traits are expected to be lower than heritability of 

uncorrected lifetime traits, because functional traits have been corrected for 

highly heritable production traits. In Table 1, the weighted average heritability of 

herdlife equals 0 . 081 , but most estimates are around 0.03. Boldman et al. 

(1992) found a heritability estimate of 0.03 for herdlife, using the same data 

and method wi th which they found an estimate of 0.03 for functional herdlife. 

Also Ducrocq et al. (1988) found the same heritability for functional length of 

productive life as for its uncorrected equivalent using the same data and 

method, as found Short and Lawlor (1992) and Rogers et al. (1991a). However, 

Harris et al. (1992), Vollema and Groen (1996), and Vukasinovic et al. (1995) 

found a lower heritability for functional than for uncorrected lifetime traits. 

Heritability estimates using data on Guernsey cows (Harris et al., 1992) are 

not substantially higher than estimates for Holstein cows. However, it should be 

noted that the maximum opportunity for Guernsey cows equals 72 months 

(approximately 4 lactations), and that this estimate is higher than the estimates 

of data wi th less opportunity. Estimates for Jersey and Brown Swiss cows are a 

little lower than for Holstein cows. For the Jersey cows (Rogers et al., 1991a), 

this may be caused by the linear and quadratic correction for yield. The other 

references corrected only linearly for production; due to the quadratic correction 

the heritability of functional length of productive life will be lower. 

Table 5 contains heritability estimates of functional stayability until a certain 

number of months of age and of productive life. Heritability of stayability until a 

certain number of months of age ranged from 0.01 to 0.06, increasing with 

increasing age at evaluation of stayability. Compared with the heritability 

25 
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estimates of uncorrected stayability until a certain number of months of age by 

the same authors (see Table 2), these estimates are lower. Heritability estimates 

of functional stayability until a certain number of months after first calving 

ranged from 0.003 to 0.08. Heritability by Rogers et al. (1991a) was the same 

as those of the uncorrected equivalents (Table 2), but that by Vollema and 

Groen (1996) was lower. 

For the heritability estimates of functional survival of the first lactation only 

one reference was found (Rogers et al., 1991a). Estimates were 0.05, 0.08, 

and 0.08 for grade, registered, and combined data respectively. Data were on 

Jersey cows. 

Genetic correlations among longevity traits 

Table 6 contains genetic correlations among uncorrected lifetime traits. 

Most correlations are very high, around 0.97. One exception is Chauhan et al. 

(1993), who estimated quite low genetic correlations among various lifetime 

traits (ranging from 0.290 to 0.890), especially between herdlife and other 

traits. 

Table 7 contains genetic correlations among stayability. The method of Calo 

et al. (1973) corrects for the different number of cows used for the breeding 

value estimation of each sire, and generally causes an increase in the estimated 

genetic correlation. In general, correlations are high (around 0.8), and increasing 

when the moments of measurement of two traits are closer together, as can be 

expected wi th two traits that have a part-in-whole relationship. Van Doormaal er 

al. (1985) found some very low correlations between stayability until 42 and 66 

months of age, and between stayability until 42 and 78 months of age (0.288 

and 0.219 respectively), but did not give an explanation. In the same study, the 

genetic correlations among stayability until a certain number of months of 

productive life were generally higher than those among stayablity until a certain 

number of months of age, using the same "milkers" data. 

Table 8 contains genetic correlations between lifetime traits and stayability. 

Estimates were very high, ranging from 0.86 to 1.00. In Vollema and Groen 

(1996), no difference was found between correlations between lifetime traits 

and stayability until a certain number of months of age, and correlations 

between lifetime traits and stayability until a certain number of months of 

productive life. 

29 



• ' 

X 
_ l 
a. 
a 

*•-

o 
> 'x; 
o D 

• o 
o t -

a 
»•— 

o 
T3 
C 
co 

'S? 
LU 
CO 
< 
dl 
O) 
(0 

"o 
co JZ 

c 
o 
E 
*•— o 
X 

'—' cü 

£ 
D 
C 
C 

'5 
(D 
O 
CO 

'Xi 
C 
D 

>-
*̂  
!5 
CD 

> CO 
+-» co 
T3 
CU 
+-» O 
0 

o 
u 
c 
3 

O) 

c o 
E 
CO 
CA 
C 
O 

'+-< 
S 
a> 
t 
o 
o 
o 

'+-I 
CU 
c 
cu 
O 

r»' 
V 
2 to 
1-

(0 

k . 

(0 

E 
CD 

tr 

• o 
o 
4-* 
CD 

2 

01 
• D 
O 

1 
,_ 

CO 
X> 

o 
o 
cc 
=t* 

co 
CD 

+-» CD 

E 
' • » - * 

co 
CD 

• a 
c 
co 
co 
• w 

CD 

W 

O 
*-* 
3 

< 

CO 
c 
o 
co 
CD 

O 
ü 

"CD 
• o 

o 
E 

CD 
k _ 

CO 

c 
CD 
CD 

CD 
X I 

CS 

CO 

< 
I -
Q. 

CO 
c 
o 
co 
ÇD 
O 
CJ 

"05 
73 O 

E 

cu 
*— 'co 
c 
CD 
CD 

5 
4-« CD 
X I 

OJ 

CO 

< h-
C L 

— 
c o 
co 
CD 

T3 
c 
CD 
X 

"CD 
- o 
o 
E 

co 
o 
co 
co 
co 
co 

r-s 
Uj 00 
CO oo 

^ 6 
00 

s 
co 

"ECN 
CO 00 

o " 
c 

9 ï 

CD 

o 
p-

't 
CM 

oo 
Ü j C D I D O O 
03 LO 00 O O 
^ O O ' - ' "^ 

CM 
IV. 
LU CM O) O 
Co «o en q 
% ó ó ^ 

o 
LU CM O 
CO oo O 
%X O -

00 

Uj ' t 
co °> 
^ 6 

co co O CM 
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Table 9 contains genetic correlations among survivals of different lactations. 

In most references, genetic correlations were high (0.72 - 0.99) and generally 

higher when the lactation numbers were closer together. This indicates that the 

main reason for culling is different in different lactations, as could be concluded 

from specific studies on this topic (Sol et al., 1984; Van de Venne, 1987; 

Westell et al., 1982). Only Madgwick and Goddard (1989) found much lower 

and more diverse estimates, ranging from -0.52 to 1.12. This is the only 

reference found where genetic correlations between different longevity traits 

were negative. The authors explain this by the low heritability of the longevity 

traits, and, therefore, the low accuracy of the sires' predicted transmitting 

abilities. The estimated genetic correlations have large standard errors possibly 

resulting in correlations greater than 1 or less than - 1 . 

Table 10 contains genetic correlations among miscellaneous traits. Months 

in milk at 84 months of age has very high genetic correlations with number of 

lactations, stayability at 48 months of age, and length of productive life (0.982 

- 0.992) (VanRaden and Klaaskate, 1993; Weigel et al., 1995). Visscher and 

Goddard (1995) estimated genetic correlations among probabilities of surviving 

from one lactation to the following. Their estimates were reasonably high, 

ranging from 0.37 to 0.96, and decreasing when the lactations considered were 

further apart, as could be expected. 

Table 11 contains genetic correlations between uncorrected and functional 

longevity traits. Genetic correlations were generally high (0.58 - 0.98), which is 

quite surprising. Longevity has a relatively strong correlation with within-herd 

production (e.g., Jairath et al., 1994; Norman et al., 1996; Visscher and 

Goddard, 1995; Vukasinovic" et al., 1995), so the correlation between 

uncorrected longevity and longevity corrected for milk production is expected to 

be low. However, it is not expected to be zero, because genetic correlations are 

dealt w i th, and correction for production is usually done at phenotypic level. 

Table 12 contains genetic correlations among lifetime traits for different 

opportunity groups. All correlations among either uncorrected or functional 

longevity traits were over 0.90. Genetic correlations were higher between 

opportunity groups that were closer together, as one could expect. Genetic 

correlations between uncorrected and functional longevity traits for different 

opportunity groups were lower, ranging from 0.72 to 0.92. 

Table 13 contains genetic correlations among longevity traits in grade and 
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Literature review 

registered cows. Results of Rogers et al. (1991a) indicate that especially 

functional length of productive life is a different trait in grade and registered 

cows (genetic correlation of 0.54). Both stayability traits (functional survival of 

the first lactation and functional stayability until 20 months of productive life) 

have genetic correlations close to unity. In Short and Lawlor (1992) all traits 

analysed had a genetic correlation less than 0.5 between grade and registered 

cows. Short and Lawlor (1992) also performed the same analysis using only 

transmitting abilities of sires with a minimum reliability of 50%. Results are not 

shown here, but the genetic correlations between grade and registered cows 

increased by a maximum estimate of 0.67. 

Phenotypic correlations between longevity and conformation traits 

Table 14 contains phenotypic correlations between longevity and 

conformation traits. For each reference, only the strongest correlation per 

longevity trait is given if more than one conformation trait was analysed. 

Correlations were generally low; the strongest one was 0.24 between number 

of lactations and dairy character for Milking Shorthorns (Norman et al., 1996). 

DeLorenzo and Everett (1986) and Everett et al. (1976) analysed only the 

phenotypic correlations between stayability and type, which appeared to be 

negative. 

Genetic correlations between longevity and conformation traits 

Table 15 contains genetic correlations between longevity and conformation 

traits. As for the phenotypic correlations, only the strongest correlation is given 

if more than one conformation trait was analysed. Genetic correlations are 

generally stronger than phenotypic correlations. The strongest correlation within 

its theoretical bounds is 1.00 between functional length of productive life and 

fore udder attachment for Jersey cows (Rogers et al., 1991b). Again the 

majority of the estimates was positive, although compared wi th the phenotypic 

correlations more negative values were found. Negative correlations were 

mostly found between longevity traits and type, and between longevity and 

conformation traits which relate to body measurements. There seems to be a 

difference between genetic correlations in grade and registered cows; not only 

in magnitude but also in which conformation trait is strongest correlated. 

43 
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Literature review 

Regression models of longevity traits on conformation 

phenotypic regressions 

Berger et al. (1973) used data on 6 herds and found that yield and type 

score accounted for 6 to 21 % of the variability in productive life. 

Brotherstone and Hill (1991a) calculated phenotypic linear and quadratic 

regression coefficients of survival of lactations 2, 3, and 4 on conformation and 

production traits. Nearly all regression coefficients were significant. When fitting 

a model to explain survival of the third lactation, the coefficient of multiple 

determination (R2, which measures how much variation in the dependent 

variable can be accounted for by the model) was 0.0256 when only milk 

production traits were f i t ted, 0.0507 when production and total score were 

f i t ted, and 0.053 when production, total score, and all linear conformation traits 

were f i t ted. Similar values were obtained for survival of the second lactation 

(0.0252, 0 .0483, and 0.0497 respectively). 

Burke and Funk (1993) concluded that linear conformation traits accounted 

for approximately 14% of the variation in longevity after herd and production 

effects were considered. Udder traits were the most important conformation 

traits, of which fore udder attachment had the highest marginal R2 (0.0136). 

Both the linear and the quadratic regression coefficients of all conformation 

traits were significant. 

Foster et al. (1989) found three linearly scored conformation traits with a 

linear and quadratic relationship with herdlife, namely stature, udder depth, and 

rump width. These traits had an optimum score. Dairyness and rear legs side 

view only had significant linear coefficients. For rump side view and foot angle 

significant cubic regression coefficients were found as well. A model containing 

herd and linear and quadratic effects of conformation traits to explain herdlife 

had an R2 of 0 .559. 

Honnette et al. (1980) found that final score had a significant quadratic 

regression coefficient when explaining length of productive life or total milk 

production. The R2 for length of productive life was 0.112 and for total milk 

production 0.152. 

Norman et al. (1981) calculated a maximum R2 of 0.242 when all 

conformation traits were used linearly to explain number of lactations, 0.246 

when both linear and quadratic effects were taken into account, and 0.254 

when the model contained linear and quadratic effects and interactions between 
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the linear components. For a model including milk and fat production besides 

conformation traits, these values were 0.323, 0.326, and 0.333 respectively. 

genetic regressions 

Regression coefficients of longevity on sires' estimated breeding values for 

conformation traits are often used to estimate genetic regressions. Brotherstone 

and Hill (1991a) calculated both linear and quadratic regression coefficients of 

survival of lactations 2, 3, and 4 on conformation traits for registered cows. 

Only a few of the quadratic coefficients were significant. Stature, body depth, 

rump angle, rump width, foot angle, fore udder attachment, rear udder width, 

udder depth, teat placement, teat length, and total score had significant linear 

regression coefficients. 

In a subsequent study, Brotherstone and Hill (1991b) used data on both 

registered and grade cows. Only linear regressions were performed. There was 

no evidence that regression coefficients were substantially different for grade 

than for registered cows. 

Burke and Funk (1993) found the highest marginal R2 for udder traits. The 

linear regression coefficients were always significant, and for most 

conformation traits the quadratic coefficient was significant as well. 

Dekkers et al. (1994) calculated linear, quadratic, and cubic regression 

coefficients of functional length of productive life of daughters on estimated 

transmitting abilities of sires, using data on grade and registered herds. Only a 

few cubic coefficients were significant, namely for rump, bone quality, and fore 

udder attachment in grade herds, and for feet and legs, rear udder, and rump 

width in registered herds. In grade herds, some traits had significant quadratic 

coefficients, which was not the case in registered herds. In registered herds, 

more linear coefficients were significant than in grade herds. The maximum 

percentage of variance in functional length of productive life of daughters 

explained by estimated transmitting abilities of sires for conformation traits was 

6 9 % in grade and 8 1 % in registered herds, including all traits with linear and 

quadratic coefficients. 

Rogers et al. (1988) regressed sire proofs for functional stayability until 54 

and 84 months of age on predicted difference for conformation traits, based on 

either grade or registered daughters. In grade cattle, functional stayability until 

54 months of age was significantly associated with stature, body depth, udder 
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depth, and teats rear v iew. Functional stayability until 84 months of age was 

only significantly associated with udder depth and teats rear view. In registered 

cattle, most conformation traits were associated with survival to both ages. 

Udder depth and teats rear view had the highest correlations with survival in 

both grade and registered cows. The maximum R2 of models containing yield 

and all conformation traits were 0.33 and 0.23 for functional stayability until 54 

and 84 months of age for grade cows, and 0.34 for both functional stayability 

until 54 and 84 months of age for registered cows. 

Van Doormaal et al. (1986) used three different data files to investigate the 

relationship between sire proofs for stayability and conformation traits. For the 

"milkers" data, none of the conformation traits had significant regression 

coefficients. For the "milkers paying attention to conformation" data, dairy 

character, feet and legs, and mammary system explained the highest 

percentage of the variation in stayability traits (R2 ranging from 0.04 to 0.12). 

For the "breeders" data, dairy character, general appearance, final class, 

mammary system, and rump explained the highest percentage of variation 

variation (R2 ranging from 0.17 to 0.24). 

Indirect prediction 

Boldman et al. (1992) found that indirect prediction of herdlife from 

conformation traits had a maximum reliability of 0.56, but it was more reliable 

than direct breeding value estimation with 75 or fewer progeny. Results were of 

grade cows. Brotherstone and Hill (1991b) gave an example in which it was 

more accurate to base selection on the sire's progeny test for longevity (40 

daughters) than on his own progeny test for type. Weigel et al. (1995) had a 

maximum reliability of indirect prediction of months in milk at 84 months of age 

of 0.52 if yield and conformation traits were included. If the predicted months 

in milk at 36 months of age was included as well, the reliability increased to 

0.72. 

Visscher (1995) showed that the genetic correlation coefficient estimated 

with a REML algorithm from a half sib design can be grossly overestimated, 

especially wi th few sires, few progeny per sire, and a large number of 

conformation traits. He used the estimates of Short and Lawlor (1992) to create 

a selection index combining milk and conformation traits to breed for functional 

length of productive life. The accuracy achieved was 0.795, while the optimum 
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accuracy was 0 .813, so a loss in response of 2 .2% occurred. This does not 

seem much, but an index containing milk and conformation traits only had a 

3 .6% higher accuracy compared wi th an index containing only milk. 

In none of the studies in this review the reliability of an index combining 

predictor traits and direct information on longevity has been investigated. In 

practice, breeding values of young bulls might be estimated using conformation 

data on daughters, and putting more weight on longevity when these data on 

their daughters become available. Also breeding values from earlier generations 

should be included in such an index. The method used to evaluate the bulls 

could be either BLUE, as is commonly used nowadays, or survival analysis. 

Survival analysis has great advantages, but requires a relatively large computer 

capacity. However, Ducrocq and Sölkner (1997) are working on a new version 

of their computer programs to perform survival analysis, which should make it 

possible to use survival analysis for national evaluation of bulls. 

Discussion 
Choice of longevity trait 

If longevity is to be incorporated into a breeding program, we should 

evaluate a trait wi th a high heritability that can be measured early in life. But 

before even considering heritability and generation intervals, it is important to 

define the breeding goal. If the interest is primarily in lifetime production of 

cows, total milk production as only selection criterium would be a good choice. 

However, often a distinction between longevity and production is desired. It 

should be noted that longevity is largely dependent on within-herd production. 

Therefore it is argued that functional longevity instead of uncorrected longevity 

should be incorporated into the breeding goal to avoid double counting and to 

have a measure for "potential longevity", or the ability of a cow to delay 

involuntary culling. Argument against this is that if proper adjustment is made 

for (genetic) correlations between longevity and production, it does not matter 

whether uncorrected or functional longevity is used. However, it is then 

assumed that unbiased genetic parameters are known (Kennedy et al., 1993). 

Dekkers (1993) outlined that estimates of genetic parameters for longevity from 

half sib correlations are biased as a result of culling on production. Adjustment 

of longevity for production does not remove all bias but it becomes smaller. So 

if a breeding goal wi th both longevity and production is desired, functional 
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longevity should be used. 

Considering only the heritability of a trait, total milk production would be the 

trait of choice. This trait has major drawbacks. Like all lifetime traits, its 

inclusion would increase the generation interval considerably compared with a 

situation where selection would only be for milk production. Moreover, total 

milk production is the product of longevity and production, so there is a danger 

of double counting production when selection is for both longevity and 

production. Functional total milk production is a trait that is hard to interpret. 

Also, in some countries only records of 305-d milk production are stored, so 

total milk production cannot be calculated. In general, the data available might 

limit the choice of the longevity trait. 

If a large increase in the generation interval is not desired, an alternative 

could be the use of stayability traits, which can be measured at any moment in 

time but contain less information and thus have a lower heritability than 

longevity traits that measure the whole lifespan of a cow. Genetic correlations 

between stayabilities and lifetime traits were high but part of these high 

correlations are due to part-in-whole relationships (Table 8). Comparing the 

heritability estimates of stayability until a certain number of months of age with 

those of stayability until a certain number of months after first calving (Table 2), 

the latter tend to have lower values. The two classes of traits only differ by age 

at first calving, which thus seems to contain some genetic variation as well. 

However, when comparing the heritability estimates of herdlife with those of 

length of productive life (Table 1), no clear difference is found. 

Correcting heritability estimates of binary traits to an underlying normal 

scale always increased the estimates obtained (DeLorenzo and Everett, 1986; 

Vollema and Groen, 1996). Van Vleck (1972) indicated that heritability on the 

normal scale as obtained by his method would be slightly overestimated, in 

particular wi th low or high values of the fraction of animals still alive and with 

high normal heritability. With stayability traits that are not measured very early 

or very late (so with a reasonable fraction of cows culled or still alive) the 

overestimation will not be great. If stayability traits are used in a breeding 

program, the uncorrected heritability estimates should be used. An alternative 

would be the use of threshold models, which already take into account the fact 

that binary traits contain less information than continuous traits. In none of the 

studies in this review it has been investigated whether the advantages of the 
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use of lifetime traits over the use of stayability traits outweigh the 

disadvantages. 

Another alternative for using lifetime traits might be the use of lifetime traits 

which are analysed at one moment that all cows have the opportunity to reach 

a certain age (e.g., 48 mo). Heritability of herdlife, length of productive life, 

functional herdlife, and functional length of productive life are generally higher 

at a higher number of months of opportunity (Harris et al., 1992; Vukaâinovic et 

al., 1995; Tables 1 and 4). This effect is stronger for the functional than for the 

uncorrected longevity traits. The genetic correlations among herdlife and length 

of productive life for different opportunity groups were high ( > 0.95; Table 12), 

as was the case for functional herdlife and functional length of productive life 

( > 0.92; Table 12). It seems that little information is lost when using data on 

cows wi th a smaller period of opportunity of being culled, although, of course, a 

minimum period of opportunity is necessary to obtain reliable estimates. 

A third alternative is the use of a different method instead of a different 

trait: survival analysis. This method uses information on cows that have not 

been culled yet at the moment of data collection, because the instantaneous 

hazard of being culled is analysed instead of the longevity achieved. For 

comparison, with the use of opportunity groups, cows that are still alive at that 

moment are treated as if their longevity achieved equals the period of maximum 

opportunity. Danner et al. (1993) concluded that survival analysis had clear 

advantages over BLUP for stayability traits, especially for early prediction of 

longevity. 

Reliability of estimates 

It does not seem wise to rely on a single estimate of the heritability of a 

longevity trait, given the large range observed in estimates. For instance, Gill 

and Allaire (1976) have high estimates of heritability, which is explained by the 

limited number of data they used, resulting in large standard errors of the 

estimates. However, even using large data sets might give extreme results (e.g., 

Chauhan et al., 1993; for heritability estimates of length of productive life, total 

milk production, and number of lactations in Table 1). Vollema and Groen 

(1996) showed that estimates by using data on an upgrading population are 

different from estimates using data on a more stable population. Something 

similar is seen in Madgwick and Goddard (1989). Thus it is recommended to 
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base estimates on data that resemble the current population as much as 

possible, and to re-estimate these parameters over time (Vollema and Groen, 

1996). Also the way in which culled cows are defined has an impact on the 

heritability estimates (Smith and Quaas, 1984; Strandberg, 1992). All 

references clearly indicate from which period their data are, and most references 

also indicate how culled cows were defined. However, it is hard to interpret this 

information if one is not familiar wi th the history and current situation of dairy 

cow breeding in the country in question. 

Grade versus registered herds 

Results of Rogers et al. (1991a, Table 13) indicate that not all functional 

longevity traits are the same for grade and registered Jersey cows. For 

Holsteins, Short and Lawlor (1992, Table 13) found that all longevity traits 

analysed had low genetic correlations between grade and registered cows. 

It is not clear whether or not heritability estimates differ between grade and 

registered cows. From Dentine et al. (1987) and Harris et al. (1992) it can be 

concluded that such a difference does not exist, but results of Short and Lawlor 

(1992) contradict this. Results of Rogers et al. (1991a) are not conclusive in 

this respect. Van Doormaal er al. (1985) found different heritability estimates 

from data of "breeders" and "milkers" herds, which might be compared with 

registered and grade herds respectively. 

Short and Lawlor (1992) did not find different genetic correlations among 

longevity traits for grade and registered cows (Tables 7, 8, and 11). Also Van 

Doormaal et al. (1985) did not find clear differences between breeders and 

milkers (Table 7). 

De Haan et al. (1992) and Short and Lawlor (1992) found different 

phenotypic correlations between longevity and final score for grade and 

registered cows. Other studies included conformation traits other than final 

score as wel l , and found different correlations for grade and registered cows. 

Not only were the correlations generally stronger in registered herds, but also 

the conformation trait w i th the strongest correlation with longevity differed. In 

grade herds, traits reflecting the mammary system seem most important, while 

in registered herds, traits such as type, final class, and general appearance are 

important as well. Only Rogers et al. (1991b) did not find considerable 

differences in genetic correlations between longevity and conformation traits 
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between grade and registered cows. 

From Brotherstone and Hill (1991b) no evidence could be found that genetic 

regression models differed between grade and registered cows. However, 

Dekkers et al. (1994), Rogers et al. (1988), and Van Doormaal et al. (1986) 

found different models for grade and registered cows. The maximum variance in 

longevity explained by conformation traits was higher for registered than for 

grade cows, as could be expected. 

In this review, only a distinction between grade and registered cows was 

made. However in general it seems likely that longevity is correlated with 

different traits if a different breeding goal is defined. The distinction in breeding 

goals between grade and registered herds is most obvious in the U.S.; in other 

countries different criteria may be used to distinguish herds wi th different 

breeding goals. 

Methods of analysis 

The heritability estimates through REML and Henderson III do not show 

significant differences, taking into account that the high estimates of Gill and 

Allaire (1976) using Henderson III are due to the limited number of data. 

Survival analysis gives better corrections for fixed effects in the model, so the 

heritability estimates are expected to be higher. However, results of Ducrocq et 

al. (1988) and Smith and Quaas (1984) using survival analysis do not differ 

from results of studies using REML or Hendersons's III method. 

Correction to functional traits 

Correcting longevity traits for production aims to correct for farmer's opinion 

about the production capacity of a cow. The resulting functional longevity trait 

is a better measurement for all other reasons a farmer might have for culling 

cows. The production trait that is used to correct should reflect the criteria used 

by the farmer to make culling decisions on production. So, because culling 

occurs within herds, correction for production should be on a within-herd basis 

as well. Rogers et al. (1991a) is the only reference found that does not correct 

within herds. In every country the culling criteria for production will be different, 

so having different correction factors is justified. Some references correct only 

for milk production, others include milk, fat, and protein production. Because 

milk, fat, and protein production have high correlations, the results may not 
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differ much. 

Some references correct for production in the first lactation, others use the 

production in the last lactation. In principle, using the last lactation production 

would be the most correct one because this is the actual production at culling. 

However, references that use production in the first lactation argue that 

production in the last lactation may be reduced due to illness. Using the 

production in the last lactation would then overestimate the functional 

longevity. Assuming that the repeatability of production over lactations equals 

one, it would be best to use production in the first lactation. However, this 

repeatability is approximately 0.5 (Maijala and Hanna, 1974), so both methods 

are suboptimal. Using survival analysis, production can be modelled in a time-

dependent way, so production records of all lactations can be taken into 

account. Ducrocq et al. (1988) applied such a model, and their heritability 

estimates of functional length of productive life were not different from other 

references. 

From the regression analyses, some references found a significant quadratic 

relationship between milk production (per lactation or per day) and longevity 

(results not shown). Reasoning behind this phenomenon is that if a cow 

produces too much milk, she will get problems wi th her health and/or fertility, 

which will decrease longevity. However, it is doubtful if a quadratic production 

trait reflects the farmer's appreciation of a high-producing cow. Harris et al. 

(1992) and Rogers er al. (1991a) corrected both linearly and quadratically for 

milk production. Their heritability estimates were slightly lower than those of 

other references. 

Non-additive effects 

Few references have included non-additive effects in their model of analysis. 

Fürst and Sölkner (1994) found that non-additive effects in models slightly 

decreased the heritability of longevity traits. Brotherstone and Hill (1994) 

estimated quite considerable effects of heterosis and recombination loss. 

Differences between breeds 

Holstein cows always had the lowest heritability. The references on 

Guernsey, Simmenthalers, crosses between Braunvieh and Brown Swiss, Brown 

Swiss, and Jersey cows consistently found a higher heritability of longevity 
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traits. Correlations among longevity traits were all strong, independent of breed 

of the cows. There was no indication that certain conformation traits would be 

more important for explaining longevity in one breed than in another. 

Opportunity groups 

From Harris et al. (1992) and Vukasïnovic et al. (1995) it can be concluded 

that heritability of lifetime traits increase with increasing opportunity of 

longevity. From Table 14 it can be concluded that if data on longevity are 

collected when not all cows have been culled yet, these data highly resemble 

data that are collected later. However, a minumum fraction of cows has to be 

culled at the moment of data collection to obtain reliable estimates. When using 

lifetime traits in a breeding program, it is not necessary to wait until all cows 

have really been culled. 

Conclusions 
In general, heritability of longevity traits are below 10%. Heritability of 

stayability traits are lower than that of lifetime traits. Heritability of functional 

longevity traits are lower than that of uncorrected longevity traits. 

Genetic correlations among longevity traits are generally high. Stayability 

might be a good alternative to lifetime traits in breeding programs, even though 

its information content and heritability are lower. In none of the studies in this 

review it has been investigated whether the disadvantage of a lower heritability 

of stayability traits outweighs the advantage of a shorter generation interval, if 

compared wi th lifetime traits. Genetic correlations between lifetime traits 

collected at different possible ages of cows are high, indicating that when using 

lifetime traits in breeding programs, it is not necessary to wait until all cows 

have been culled. 

Longevity traits differ between grade and registered cows. Heritability of 

longevity traits in grade and registered cows are of the same magnitude. 

Relationships between longevity and conformation traits are different: in grade 

cows, udder traits have the strongest relationships, whereas in registered cows, 

traits describing the general appearance of a cow have the strongest 

relationships. 

Especially conformation traits describing the mammary system of a cow, 

and to a lesser extent the feet and legs, appear to be useful to predict longevity. 
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In registered cows, also traits describing the overall appearance of a cow are 

important. Genetic correlations between longevity and conformation traits are 

stronger in registered than in grade cows, and thus prediction is more accurate 

for registered than for grade cows. Reliability of breeding value estimation of 

longevity using conformation traits of daughters is approximately 5 5 % at 

maximum. It would be best to have an index combining information on 

conformation and longevity, including information on relatives. 
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Genetic parameters of longevity traits 

Abstract 
Longevity reflects the ability of a cow to avoid culling for low production, low 

fertility, or illness. Longevity could be used in breeding programs if genetic 
parameters were known. Various measures are used for longevity. In this study, 
lifetime measures including number of lactations, total milk production, number of 
days in milk, herdlife, and length of productive life were analyzed. Also analyzed were 
stayability measures (dead or alive) to 36, 48, 60, or 72 mo of age and 12, 24, 36, 
or 48 mo of productive life. Measures of longevity were also analyzed after correction 
for milk production during first lactation (functional longevity traits). Data on 
1,727,988 cows were used to calculate average longevity traits per year of birth. All 
cows were known to have been culled. Longevity decreased from 1978 through 
1984 and increased in 1985. Possible causes for the decrease of longevity were 
implementation of the quota system and introduction of Holstein Friesian genes. 
Heritabilities of longevity traits were estimated for cows born in 1985 (38,957 
records), 1982 (166,324 records), and 1978 (94,935 records) after data were edited 
to require at least 25 daughters per sire and 10 cows per herd. Phenotypic and 
genetic correlations were estimated for the 1985 data file. Heritability estimates 
differed between years of birth, and estimates of functional traits were lower than 
those of uncorrected longevity traits. Genetic correlations between uncorrected 
longevity traits were high (0.733 to 1.000); phenotypic correlations were lower 
(0.131 to 0.980). Genetic correlations between uncorrected and functional longevity 
traits were high (0.577 to 0.975). 

Key words: longevity, dairy cattle, genetic parameters 

Abbreviation key: AGE36, AGE48, AGE60, AGE72 = stayability, mo of age (36, 48, 
60, or 72); F = functional (used as prefix); HL = herdlife; LPL = length of productive 
life; NDL = number of days in lactation; NLC = number of lactations; PL12, PL24, 
PL36, PL48 = stayability, mo of productive life (12, 24, 36, or 48); TMP = total 
milk production. 

Introduction 
The value of longevity traits in selection programs for dairy cattle is still a major 

point of discussion. In principle, there are two approaches to include longevity in 

a breeding program. The first is to select for longevity directly, the second is to 

select for the underlying functional traits as the breeding goal, using longevity in 

the information index. This latter approach indirectly selects for traits that are 

difficult to measure or that are not recorded routinely. 

Longevity is a measure of the succes of the cow to survive both voluntary and 

involuntary culling. Decreasing the level of involuntary culling improves the 

economic returns of a dairy enterprise by allowing a herd manager more flexibility 

for voluntary culling mainly for low milk production, and by reducing the 

replacement rate (18). A wide variety of measurements of longevity have been 

studied (Chauhanef a/., 1993; DeLorenzo and Everett, 1986, Dentine et al., 1987; 
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Ducrocq et al., 1988; Hoque and Hodges, 1980; Hudson and Van Vleck, 1981 ; 

Jairathef a/., 1994; Klassen et al., 1992; Short and Lawlor, 1992; Van Doormaal 

et al., 1985; Weigel et al., 1995). To improve longevity traits as a better 

measurement of involuntary culling, they can be corrected for milk production 

(Dekkers, 1993). Longevity traits can be categorized as lifetime or stayability traits. 

Stayability traits contain information about whether a cow is alive at a certain time 

point (e.g., at a fixed number of months from birth or first calving). These traits 

can be measured at any time point, but because the traits are binary traits, they 

do not contain all the information about cow longevity. If a cow has a stayability 

of 0, it is not known how far before the time point at which the stayability was 

assigned she was culled; if her stayability equals 1, it is unknown how much longer 

she will live. Lifetime traits do contain all information available, but can be 

measured only after the death of the cow. 

Before longevity traits are included in a breeding program, it is important to 

know the heritabilities and correlations of these traits. Many researchers (Chauhan 

eta/., 1993; DeLorenzo and Everett, 1986, Dentine era/ . , 1987; Ducrocq et al., 

1988; Hoque and Hodges, 1980; Hudson and Van Vleck, 1981 ; Jairath et al., 

1994; Klassen étal., 1992; Short and Lawlor, 1992; Van Doormaal et al., 1985; 

Weigel et al., 1995) have estimated these heritabilities and correlations, but only 

a limited number of traits have been considered. Also, all this studies used data on 

cows that were present during a certain time period. For instance, Chauhan et al. 

(1993) used data on cows having milk records in the period September 1979 to 

December 1987. This assumes that longevity traits were the same genetic traits 

across t ime. Because it was expected that changing population dynamics would 

influence the genetic parameters of longevity traits, this study uses data on cows 

born during different time periods and known to be culled. 

Objectives of this paper are to give an overview of the phenotypic trend in 

longevity of dairy cows in The Netherlands, to estimate the heritabilities of a wide 

variety of longevity traits (both lifetime and stayability traits), and the genetic and 

phenotypic correlations of those traits, and to determine whether the heritability 

estimates of longevity traits differ between time periods. 

Materials and methods 
Materials 

Complete lactation records of Dutch black and white cows (Holstein Friesian and 
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Dutch Friesian) born from 1978 through 1985 were obtained from the Royal Dutch 

Cattle Herdbook (Nederlands Rundvee Syndicaat, Arnhem, The Netherlands). From 

1978 on, detailed data on production and pedigree were available for Dutch dairy 

cows. To allow cows to die before the moment of data collection (December 

1994), 1985 was taken as the most recent year of birth. Using later years of birth 

was expected to give a substantial downward bias of the longevity traits. Only 

cows that had at least one test-day milk yield were in the data file. Cows had a 

complete longevity record (i.e., had been culled at the moment of data collection). 

Cows wi th unknown sire were excluded. Production and longevity information on 

cows that produced in more than one herd were accumulated across herds. In 

total, data on 1,727,988 cows were available. Numbers of cows per year of birth 

are in Table 1 . 

Table 1. Number of cows per year of birth. 

Year of birth 

1978 1979 1980 

Cows, no. 186,499 204,705 215,035 

1981 1982 

239,458 264,034 

1983 

270,506 

1984 

223,967 

1985 

123,784 

To estimate variances of longevity traits, three data files were used: cows born 

in 1978, 1982, or 1985. The most recent data file (1985) was used to estimate 

genetic correlations among longevity traits. To reduce computational efforts, data 

of each year of birth were further edited seperately so that each sire had at least 

25 daughters and each herd had at least 10 cows. Herds were defined as herd of 

first calving. Records on 94,935 cows (733 sires), 166,324 cows (908 sires), and 

38,957 cows (628 sires) were utilized in the 1978, 1982, and 1985 data file, 

respectively. 

Traits 

The following definitions and abbreviations of longevity traits were used. 

Lifetime traits were the number of lactations initiated (NLC), production over all 

lactations (total milk production regardless of lactation length, TMP, kilogrammes), 

days in milk summed over lactations (number of days in lactation, NDL), t ime 

between birth and last test day (herdlife, HL), and time between first calving and 

last test day (length of productive life, LPL). Stayability traits were stayability until 

36 (AGE36), 48 (AGE48), 60 (AGE60), or 72 (AGE72) mo of age; stayability until 

12 (PL12), 24 (PL24), 36 (PL36), or 48 (PL48) mo after first calving. 
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A second set of functional longevity traits was considered in which each trait 

was pre-corrected for milk production in first lactation. This correction was 

performed by a linear regression of lactation value for first lactation on each 

longevity trait. Lactation value is a net merit index used to compare phenotypic 

performances of cows within herd for milk, fat, and protein production 

(standardized for lactation length, season of calving, and age at calving)(Handboek 

NRS, 1993). Traits corrected for milk production are indicated by the prefix F: e.g. 

FNLC, FHL, FLPL, FAGE60, FPL36. All lifetime traits were tested for normality 

using the UNIVARIATE procedure (SAS, 1990) and were found to be normally 

distributed. 

Means by years of birth of HL, LPL, and TMP were computed to show 

phenotypic trends in longevity. Heritabilities and correlations were estimated for all 

longevity traits. Heritability of first lactation 305-d milk production was estimated 

as a reference. 

Methods 

Means were calculated using the MEANS procedure (SAS, 1990). Phenotypic 

correlations were calculated using the CORR procedure (SAS, 1990). Heritabilities 

and genetic correlations were estimated using the VCE program by Groeneveld 

(1993). Heritabilities for the 1985 data file were estimated using an animal model. 

For comparison, uncorrected longevity traits were analyzed wi th a sire model as 

well. Heritabilities for the 1978 and 1982 data files and genetic correlations were 

estimated using a sire model. The following model was used: 

yukimn = herdi + birthmOj + HFk + calvmo, + animalm/sirem + eijklmn 

where 

Yijkim = observation on the longevity trait, 

herd, = fixed effect of herd i, 

birthmOj = fixed effect of the month of birth j , 

HFk = fixed effect of the Holstein Friesian group k, 

calvmo, = fixed effect of the month of last calving I, 

animalm = random effect of the animal m (animal model), 

sirem = random effect of the sire m (sire model), and 
eükimn = random residual term. 

Nine genetic groups were defined according to the percentage of Holstein Friesian 
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genes: 0%, 12.5%, 25%, ... , 100%. If rounding was necessary, it occurred 

towards the race of the sire. To account for seasonal effects, month of last calving 

was included in the model. Reasons for seasonal effects could be a desired calving 

pattern or culling of cows mainly because the milk production quota of a given 

farmer was nearly attained. Because the quota year ends on April 1 , cows that 

have been culled in February or March might not have been culled if the quota was 

not close to having been met (Ducrocq, 1994). 

The pedigree file for the animal model contained all known pedigree information. 

The pedigree file for the sire model contained sire, maternal grandsire, paternal 

grandsire, and paternal great grandsire, if known. Of the cows born during 1978, 

26 .7% had unknown maternal grandsires. All cows were daughters of 733 bulls; 

of these, 0 .14% had unknown sires and 58 .3% had unknown maternal grandsires 

(paternal great grandsires for the cows). Of the cows born during 1982, 26 .7% 

had unknown maternal grandsires. Cows were daughters of 907 bulls; of these, 

0.11 % had unknown sires and 38 .9% had unknown maternal grandsires. Of the 

cows born during 1985, 16.9% had unknown maternal grandsires. Cows were 

daughters of 605 bulls, of which all sires were known and 32 .7% had unknown 

maternal grandsires themselves. 

Univariate analyses were performed to estimate heritabilities. Bivariate analyses 

were performed to estimate genetic correlations. Estimates of genetic correlations 

were only reported when the heritability estimates from the bivariate analyses 

corresponded to estimates from the univariate analyses. This was done because 

VCE does not clearly indicate the reliability of its output, so a seperate check was 

needed to avoid, for instance, reporting results from local maxima. Heritability 

estimates of binary traits (stayability traits) were corrected to an underlying normal 

scale by the method of Van Vleck (1972). 

Approximate standard errors of the estimates of heritability and genetic 

correlation were calculated using formula 10.15 and 19.4 from Falconer (1989), 

respectively. 

Results and discussion 
Trend 

Figure 1 shows average HL, LPL, and TMP per year of birth. Both HL and LPL 

show similar trends: a steady decrease until 1984 and a sudden increase in 1985. 

The difference between HL and LPL is age at first calving, which remains relatively 
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constant. In April 1984, the European Union quota system was implemented, and 

the total number of dairy cows in The Netherlands was reduced by 20%, which 

was the main reason for the decreased longevity of the cows born in the years 

directly before 1984. Another reason might be the introduction of Holstein Friesian 

genes. The percentage of Holstein Friesian genes of cows born during 1978 is 

6 . 1 % versus 53 .3% of cows born during 1985. This fast increase has been 

facilitated by short generation intervals. Less cows born during 1985 were in the 

data file (see Table 1). This small number can not only be due to the 2 0 % extra 

culling of cows. The quota system also caused a large tendency to breed the lower 

producing cows with beef bulls: inseminations with beef bulls increased by 13%. 

Calves from matings wi th beef bulls were not in the data. Also, wi th later year of 

birth, the chance of cows being still alive at the moment of data collection (and 

thus not in the data) increases. Mean HL and LPL of birth year 1985 were at the 

original level of 1978 (approximately 2100 and 1300 d, respectively). 
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Figure 1. Means of TMP ( + )(left X axis, 1000 kg), and HL (A) and LPL (»((right X axis, d), per year 
of birth. 
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Total milk production is a direct product of longevity and production per day. 

Both production per day of productive life and per day in milk largely increased over 

time (1978: 16.14 and 19.12 kg, respectively; 1985: 19.40 and 22.96 kg, 

respectively). The large increase in TMP for 1985 is a result of the increase in 

longevity and increased daily milk production. 

Heritabilities 

Heritability estimates of 305-d milk production during first lactation (Table 2) 

were within the range reported in the literature (Maijala and Hanna, 1974; Van der 

Werf and De Boer, 1989), but were different for the animal and sire models. 

Surprisingly, the estimate using an animal model was lower than that using sire 

models. Animal models account for the effect of prior selection, which might have 

been more heavily on milk production. When analyzing low heritable traits (such 

as longevity) wi th an animal model, most information comes from the sire 

component, and the difference between sire and animal models is expected to be 

small. Heritability estimates of longevity traits with both models were indeed found 

generally low and comparable. In general, heritability estimates for the 1978 data 

file were much higher than for the 1985 data file; estimates for the 1982 data file 

were intermediate. 

In the literature, heritability estimates of NLC were around 0.07 (Hoque and 

Hodges, 1980; Jairath et al., 1994; Klassen et al., 1992; Van Vleck, 1972), 

except for the 0.005 of Chauhan et al. (1993). Heritability estimates of TMP are 

around 0.11 (Hoque and Hodges, 1980; Jairath et al., 1994; Klassen et al., 1992), 

again except for Chauhan et al. (1993), who found an estimate of 0.017. 

Heritability estimates of NDL were around 0.08 (Jairath et al., 1994; Klassen et al., 

1992). Heritability estimates of HL were either around 0.03 (Chauhan eta/., 1993; 

Dentine et al., 1987) or around 0.10 (Hoque and Hodges, 1980; Short and Lawlor, 

1992; Smith and Quaas, 1984). Heritability estimates of LPL are around 0.08 

(Ducrocq et al., 1988; Hoque and Hodges, 1980; Jairath et al., 1994; Short and 

Lawlor, 1992; Weigel et al., 1995), again except for Chauhan et al. (1993), who 

found an estimate of 0 .006. 

Heritability estimates of stayabilities until a certain month of age were around 

0.03 (Dentine et al., 1987; Hudson and Van Vleck, 1981 ; Short and Lawlor, 1992; 

Van Doormaal et al., 1985) and generally increased as month of age increased. 

This increase was consistent in the 1985 data file as well, but not in the 
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Table 2. Heritability estimates of 305-d first lactation milk production and uncorrected longevity 
traits in the 1978, 1982, and 1985 data files, analyzed with an animal or a sire model (SE of 
estimates ranged from 0.01 to 0.02 for MILK, and from 0.003 to 0.01 for longevity traits). 

Trait' 

MILK 

NLC 

TMP 

NDL 

HL 

LPL 

AGE36 

AGE48 

AGE60 

AGE72 

PL12 

PL24 

PL36 

PL48 

1985 
Animal model 

0.238 

0.036 

0.087 

0.042 

0.037 

0.035 

0.007 

0.013 

0.023 

0.029 

0.007 

0.009 

0.025 

0.026 

(0.054)2 

(0.042) 

(0.041) 

(0.046) 

(0.040) 

(0.023) 

(0.043) 

(0.041) 

1985 
Sire model 

0.328 

0.032 

0.104 

0.048 

0.040 

0.036 

0.012 

0.012 

0.020 

0.032 

0.012 

0.008 

0.020 

0.028 

(0.092) 

(0.038) 

(0.036) 

(0.050) 

(0.069) 

(0.021) 

(0.034) 

(0.045) 

1982 
Sire model 

0.400 

0.098 

0.134 

0.116 

0.109 

0.110 

0.053 

0.076 

0.087 

0.072 

0.060 

0.080 

0.082 

0.071 

(0.129) 

(0.128) 

(0.137) 

(0.119) 

(0.129) 

(0.131) 

(0.128) 

(0.120) 

1978 
Sire model 

0.388 

0.132 

0.172 

0.140 

0.136 

0.136 

0.040 

0.080 

0.116 

0.108 

0.044 

0.088 

0.112 

0.108 

(0.115) 

(0.149) 

(0.187) 

(0.171) 

(0.106) 

(0.157) 

(0.177) 

(0.173) 

' MILK = milk production in first lactation; NLC = number of lactations initiated; TMP = total milk 
production; NDL = number of days in lactation; HL = herd life; LPL = length of productive life; 
AGE36, AGE48, AGE60, AGE72 = stayabilities until 36, 48, 60, or 72 mo of age; PL12, PL24, 
PL36, PL48 = stayabilities until 12, 24, 36, or 48 mo of productive life 
2 Heritabilities corrected to an underlying normal scale between parentheses 

1978 and 1982 data files (see Table 2). DeLorenzo and Everett (1986) estimated 

heritabilities of 0 .12 and 0.15 for stayabilities until 41 and 54 mo of age, 

respectively, which increased to 0.28 and 0.26 after correction to an underlying 

normal scale. In this present study, correction to a normal scale increased 

heritability estimates towards the level of the heritabilities of lifetime traits (see 

Table 2). If stayability traits are used in a breeding program without using a 

threshold model, the uncorrected heritabilities should be used. In the literature, 

heritability estimates of stayabilities until a certain number of months from first 

calving were around 0.03 (20), without correction to a normal scale. In Table 2, 

similarity is apparent for both types of stayability traits (AGE and PL). Heritability 

estimates of AGE36 and PL12 are comparable, as are those of AGE48 and PL24, 

AGE60 and PL36, and AGE72 and PL48. 

Heritability estimates of lifetime traits were generally higher than those of 
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stayability traits (see Table 2). However, because lifetime traits can be measured 

only after a longer t ime period, their superiority in breeding programs might be 

limited due to the prolonged generation interval they cause. Another alternative 

might be the use of survival analysis, because this method allows for uncomplete 

lifetime records. To make use of survival analysis at least a part of the cows needs 

to have a complete lifetime record. Furthermore, the method does not allow 

estimation of covariances. However, survival analysis would give a better, time 

dependent, correction for fixed effects. In the data files used in this study, not all 

competitive herdmates were included, as data files were made according to year 

of birth. Thus, the effect of herd in the model was based on only a limited number 

of cows from a herd, and was assumed to be constant over t ime. 

Table 3 contains heritability estimates of functional longevity traits in data files 

from 1985, 1982, and 1978. Estimates for the 1978 data file are much higher 

than for the 1985 data file, and estimates for the 1982 data file are intermediate, 

as for uncorrected longevity traits (see Table 2). In the literature, heritability 

estimates of FLPL were about 0.06 (Ducrocq et al., 1988; Short and Lawlor, 

1992). Heritability estimates of functional stayabilities were around 0.030, 

increasing as number of months increased (Hudson and Van Vleck, 1981). This 

increase is shown by Table 3 as well. 

Heritabilities of functional traits are usually lower than those of uncorrected 

traits, as might be expected because correction is for milk production, which is a 

highly heritable trait. However, the choice of which traits (functional or 

uncorrected) should be used in a breeding program depends solely on the breeding 

goal. 

In general, the difference between heritability estimates from the animal and sire 

model are minor, as might be expected from the structure of the data. Heritability 

estimates in this study are comparable with literature values. However, differences 

among the years of birth are quite large. There are at least three possible 

explanations. First, the dairy population has been under strong selection during the 

period considered. Selection was mainly on milk production, but because longevity 

is a correlated trait, its genetic variance might have been decreased as well. 

Second, the percentage of Holstein Friesian genes increased tremendously (from 

6 . 1 % in the 1978 data file to 53 .3% in 1985). Third, under the quota system, 

farmers base culling decisions on a shorter planning horizon, thus increasing 

environmental variation of longevity traits. The range in literature values 
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Table 3. Heritability estimates of functional longevity traits in the 1978, 1982, and 1985 data sets 
(SE of estimates ranged from 0.002 to 0.008). 

1985 1982 1978 
Trait1 Animal model Sire model Sire model 

FNLC 0.036 

FTMP 0.075 

FNDL 0.039 

FHL 0.036 

FLPL 0.035 

FAGE36 0.007 

FAGE48 0.010 

FAGE60 0.021 

FAGE72 0.028 

FPL12 0.003 

FPL24 0.005 

FPL36 0.023 

FPL48 0.025 

' FNLC = functional number of lactations; FTMP = functional total milk production; FNDL = 
functional number of days in lactation; FHL = funtional herd life; FLPL = functional length of 
productive life; FAGE36, FAGE48, FAGE60, FAGE72 = functional stayabilities until 36, 48, 60, 
or 72 mo of age; FPL12, FPL24, FPL36, FPL48 = functional stayabilities until 12, 24, 36, or 48 
mo of productive life 

is partly due to the mixture of birth years in the data used. Also studies differed in 

economic and population aspects. When longevity traits are used in a breeding 

program, heritability estimates should be from a population that resembles the 

population in the breeding program. Recommendations are to use the most recent 

data possible, and to reestimate heritabilities over time. IF population dynamics 

change, estimation of heritabilities that will hold for future generations is 

impossible, especially for longevity traits which are measured later than, e.g., milk 

production or conformation traits. 

Genetic and phenotypic correlations 

Table 4 contains genetic and phenotypic correlations among longevity traits. 

Because heritabilities were different for different years of birth, it was expected 

that genetic correlations were different as well. Genetic correlations were only 
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estimated for the 1985 data file, because this is the most recent data file and thus 

most useful for practical implementation nowadays. Most bivariate analyses 

involving NLC, TMP, and LPL did not converge. Number of iterations was not 

restricted. Different starting values were tried without success. In general, genetic 

correlations among longevity traits were high ( > 0.73). Genetic correlations were 

usually higher than phenotypic correlations, which is similar to literature results 

(Chauhan et al., 1993; Hudson and Van Vleck, 1981 ; Short and Lawlor, 1992; 

Van Doormaal et al., 1985). Both genetic and phenotypic correlations among 

lifetime traits were high ( > 0.87). In the literature, genetic correlations among 

lifetime traits were always higher than 0.90, usually with slightly lower phenotypic 

correlations (Chauhan eta/., 1993; Jairathef a/., 1994; Klassen et al., 1992; Short 

and Lawlor, 1992). Because of the high genetic correlations among lifetime traits, 

it does not matter much which trait is used in the breeding program. 

Table 4. Genetic (above diagonal) and phenotypic correlations (below diagonal) of uncorrected longevity traits 
in the 1985 data set (SE of estimates ranged from 0.0 to 0.1). 

Trait' NLC TMP NDL HL LPL AGE36 AGE48 AGE60 AGE72 PL12 PL24 PL36 PL48 

NLC . . .2 . . . 0.870 . . . 0.971 0.936 0.859 0.902 0.882 0.939 0.893 0.934 

TMP 0.880 

NDL 0.924 0.939 . . . 0.986 

HL 0.907 0 .9010.951 . . . 0.910 1.000 0.999 1.000 0.884 1.000 1.000 1.000 

LPL 0.928 0.916 0.970 0.980 

AGE36 0.312 0.305 0.345 0.367 0.351 0.872 0.847 0.995 1.000 0.776 0.867 0.954 

AGE48 0.500 0.477 0.522 0.555 0.538 0.506 1.000 1.000 0.798 0.985 1.000 1.000 

AGE60 0.686 0.668 0.713 0.747 0.733 0.254 0.502 0.971 0.882 1.000 0.998 0.976 

AGE72 0.735 0.733 0.767 0.807 0.791 0.145 0.286 0.570 0.996 1.000 0.996 . . . 

PL12 0.379 0.358 0.405 0.400 0.414 0.811 0.580 0.297 0.171 0.733 0.896 0.880 

PL24 0.581 0.546 0.596 0.596 0.616 0.413 0.799 0.596 0.343 0.501 1.000 1.000 

PL36 0.728 0.700 0.749 0.755 0.772 0.226 0.447 0.879 0.628 0.274 0.546 0.992 

PL48 0.747 0.742 0.778 0.790 0.803 0.131 0.259 0.515 0.894 0.159 0.316 0.579 

' NLC = number of lactations initiated; TMP = total milk production; NDL = number of days in lactation; HL 

= herd life; LPL = length of productive life; AGE36, AGE48, AGE60, AGE72 = stayabilities until 36, 48, 60, 

or 72 mo of age; PL12, PL24, PL36, PL48 = stayabilities until 12, 24, 36, or 48 mo of productive life 
2 No convergence 
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Lifetime traits had the highest phenotypic correlations with stayabilities that 

were measured at the longest time period (AGE72 and PL48). The same result 

would be expected, but was not always found, for the genetic correlations. 

Genetic correlations of 0.971 between AGE36 and IMLC, and of 0.910 between 

AGE36 and HL suggest that AGE36 has a high predictive value for lifetime traits. 

Phenotypic correlations among stayability traits were highest for the stayabilities 

differing least in time of measurement (e.g., phenotypic correlation between 

AGE36 and AGE48 equals 0.506; phenotypic correlation between AGE36 and 

AGE72 equals 0.145). Again, the same relationships would be expected for the 

genetic correlations but were not always found. This inconsistency has been 

reported in the literature as well (Hudson and Van Vleck, 1981 ; Van Doormaal et 

al., 1985). 

Five traits were selected to estimate genetic correlations between uncorrected 

and functional longevity traits: three lifetime (NLC, NDL, and HL) and two 

stayability (AGE36 and AGE72) traits. Selection was based on correlations 

between traits, heritabilities, and convergence in the bivariate analyses (Table 4 , 

except for NDL). Table 5 contains genetic correlations between these uncorrected 

and functional longevity traits for data from 1985. Bivariate analyses involving NDL 

and FNLC did not converge. Genetic correlations between uncorrected longevity 

traits and functional longevity traits were generally lower (0.577 to 0.975) than 

those among uncorrected longevity traits (0.733 to 1.000, see Table 4). Genetic 

correlations of FAGE36 with uncorrected longevity traits were lower than of the 

Table 5. Genetic correlations between uncorrected and functional longevity traits in the 1985 data 
set (SE of estimates ranged from 0.01 to 0.10). 

Trait' 

FNLC 

FNDL 

FHL 

FAGE36 

FAGE72 

NLC 

2 

0.809 

0.690 

0.641 

0.878 

NDL HL 

0.945 

0.902 

0.577 

0.964 

AGE36 

0.829 

0.916 

0.975 

AGE72 

0.952 

0.965 

0.642 

0.947 

1 FNLC = functional number of lactations; FNDL = functional number of days in lactation; FHL = 
functional herd life; FAGE36, FAGE72 = functional stayabilities until 36 or 72 mo of age; NLC = 
number of lactations initiated; NDL = number of days in lactation; HL = herd life; AGE36, AGE72 
= stayabilities until 36 or 72 mo of age 

2 No convergence 
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other functional longevity traits with uncorrected traits. No explanation was found. 

In the literature. Short and Lawlor (1992) estimated an average genetic correlation 

between LPL and FLPL of 0.93. In this study, the correlation between HL and FHL 

was 0 .902. The genetic correlation between AGE72 and FAGE72 was 0.947. 

Conclusions 
Longevity of Dutch dairy cattle has been strongly influenced by the 

implementation of the EU quota system and the introgression of Holstein Friesian 

genes. Heritability estimates of longevity traits systematically differed between 

years of birth, indicating that changes in the population structure affected genetic 

parameters. Heritability estimates of longevity traits corrected for within-herd 

differences in milk yield were lower than those of uncorrected longevity traits. 

Genetic correlations between uncorrected longevity traits were high (around 0.94, 

range 0 .733 to 1.000); phenotypic correlations were generally lower (around 0.59, 

range 0.131 to 0.980). Genetic correlations between uncorrected and functional 

longevity traits were high (around 0.84, range 0.577 to 0.975). 
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Genetic correlations with conformation traits 

Abstract 
Genetic correlations between longevity and conformation traits were 

estimated using data on Dutch black and white cows born in 1978 (11,558 
records), 1982 (39,252 records), and 1989 plus 1990 (58,864 records). 
Longevity traits considered were number of lactations, herdlife, and stayabilities 
until 36 and 48 mo of age, and their functional equivalents (i.e. the longevity traits 
corrected for production). For the 1989 plus 1990 data file, only stayabilities until 
36 and 48 mo of age were considered. Conformation traits were rear legs set, 
front teat placement, udder depth, suspensory ligament, and subjective scores for 
udder, feet and legs, and type. Also investigated was a possible nonlinear 
relationship between conformation and longevity traits. 

Genetic correlations between conformation and longevity traits differed 
between years of birth, mainly because farmers practiced large-scale upgrading 
with Holstein Friesian bulls during the period considered, which caused a change 
in desired type. Therefore, the predictive value of conformation traits for longevity 
based on data from an upgrading population might be limited. Estimates of genetic 
parameters should be based on the most recent data possible, and these 
parameters should be re-estimated over time. From the 1989 plus 1990 data file, 
subjective scores for udder and feet and legs had the highest predictive values for 
functional longevity. Quadratic relationships between conformation and longevity 
traits did exist, but generally the linear relationships prevailed. 

Key words: longevity, conformation, genetic parameters, nonlinearity 

Abbreviation key: AGE36, AGE48 = stayability, mo of age (36 or 48); F = 
functional (used as a prefix); HL = herdlife; LSS = subjective score for feet and 
legs; MP = 305-d milk production during first lactation; NLC = number of 
lactations initiated; RL = rear legs set (side view); SL = suspensory ligament; TP 
= front teat placement; TSS = subjective score for type; UD = udder depth; USS 
= subjective score for udder. 

Introduction 
Longevity is a trait of increasing importance in breeding programs. When 

lifetime performances of cows are used to measure longevity, the generation 

interval increases compared to a breeding program solely aimed at increased 

milk production. This prolonged generation interval causes a decrease in genetic 

progress per year (Rendel and Robertson, 1950). Using stayability traits as 

measures of longevity, the generation interval is likely to increase as well 

because, in practice, stayabilities are measured after the first lactation, at a 

minimum of 36 mo of age (DeLorenzo and Everett, 1982; Hudson and Van 

Vleck, 1981 ; VanRaden and Klaaskate, 1993). An alternative would be the use 

of traits that are correlated to longevity and can be measured earlier. Burnside 

and Wilton (1970) concluded that selection for longevity would be possible only 
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with predictors of longevity that could be measured early in life and show 

genetic variation. 

Conformation traits can be measured during the first lactation and have 

reasonable strong genetic correlations wi th longevity, especially conformation 

traits describing udder, feet and legs, and overall type (Dekkers et al., 1994; 

Klassen et al., 1992; Visscher and Goddard, 1995). Functional longevity traits 

are a measurement of involuntary culling, as are conformation traits (Burnside 

and Wilton, 1970; Lund etal., 1994). 

The Dutch dairy cattle population has been strongly influenced by the 

implementation of the quota system and large-scale crossbreeding with Holstein 

Friesian bulls during the 1980s (Vollema and Groen, 1996). These changes 

might affect the genetic correlations between longevity and conformation traits. 

The main objective of this study was to investigate the genetic relationship 

between longevity and conformation traits reflecting udder, feet and legs, and 

overall type, comparing these correlations for different years of birth to quantify 

the effect of intensive crossbreeding with Holstein Friesian bulls. 

Some conformation traits might have an optimum value with regard to 

longevity. Several researchers (Burke and Funk, 1993; Dekkers et al., 1994; 

Foster et al., 1989) found significant quadratic regression coefficients when 

using conformation traits to explain longevity. In standard programs used for 

estimation of covariance components, only the linear part of a relation between 

two traits is considered. A second objective of this paper was to investigate a 

possible nonlinear relationship between longevity and conformation traits. 

Material and methods 
Materials 

The Royal Dutch Cattle Syndicate (Nederlands Rundvee Syndicaat, 

Arnhem, The Netherlands) provided lactation and conformation records of Black 

and White cows (Dutch Friesian and Holstein Friesian cows) born in 1978, 

1982, and 1989 plus 1990. Three data files were created according to the year 

of birth. Cows in the data files had at least one testday milk yield, and their sire 

was known. Cows born in 1978 and 1982 were known to be culled before the 

moment of data collection. All cows used in the analyses were classified for 

conformation during first lactation. Table 1 contains information on the data. 

Classification started in 1980, and the percentage of farmers participating 
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Table 1. Data characteristics. 

Genetic correlations with conformation traits 

Year 
of birth 

1978 

1982 

1989 plus 1990 

Classified1 

(%) 
29 

36 

40 

Cows 
(no.) 

11,558 

39,252 

58,864 

HF2 

(%) 

6 . 1 % 

38.3% 

80.0% 

Sires 
(no.) 

517 

762 

2469 

1 Approximate percentage of participating farmers in the conformation classification program 
in the year that the cows in the data files were classified. 
2 Mean percentage of Holstein Friesian genes in data file. 

increased rapidly to 4 2 % in 1995 (Nederlands Rundvee Syndicaat, 1995). The 

mean percentage of Holstein Friesian genes increased substantially over the 

years of birth ( 6 . 1 % in 1978 to 80 .0% in 1989 plus 1990), showing the 

upgrading process during these years. The pedigree files of all three data files 

contained sire, maternal grandsire, paternal grandsire, and paternal great 

grandsire, if known. 

Traits 

The chosen longevity traits included two lifetime traits: number of 

lactations initiated (NLC) and days between birth and last test day or herdlife 

(HL). In a previous study (Vollema and Groen, 1996) these two lifetime traits 

converged best in bivariate analyses. Stayability until 36 mo of age (AGE36) 

was chosen as well. For the 1989 plus 1990 data file, stayability until 48 mo of 

age (AGE48) was included instead of lifetime traits NLC and HL, because most 

cows in this data file did not have sufficient time to complete a lifetime record, 

but all cows had the opportunity to survive to at least 48 mo of age. 

A second set of functional traits was analyzed in which each trait was 

precorrected for milk production in first lactation. For the 1978 and 1982 data 

files, this correction was performed by a linear regression of lactation value for 

the first lactation on each longevity trait. Lactation value is the net merit index 

used to compare phenotypic performances of cows within a herd for milk, fat, 

and protein production (standardized for lactation length, season of calving, and 

age at calving) (Nederlands Rundvee Syndicaat, 1993). Farmers use lactation 

value as a management tool. For the 1989 plus 1990 data file, lactation values 

were not readily available. Instead of lactation value, 305-d milk production 

(unadjusted) in the first lactation was used to precorrect longevity traits 
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phenotypically to functional longevity traits, which are indicated by the prefix F. 

The following definitions and abbreviations of conformation traits were 

used. Objectively scored conformation traits were set of rear legs (side view, 

RL), front teat placement (TP), udder depth (UD), and suspensory ligament (SL). 

Abbreviations have two characters. Scoring was on a nine-point scale. A score 

of 1 for RL means steep legs, a 1 for TP means that the teat placement is wide, 

a 1 for UD means a deep udder, and a 1 for SL means a weak suspensory 

ligament. Conformation traits for udder (USS), feet and legs (LSS), and type 

(TSS) were scored subjectively from a 65 to 89 scale (Nederlands Rundvee 

Syndicaat, 1993). Type in The Netherlands is scored as the milk potential of a 

cow, and may therefore more resemble the American "dairy character" than the 

American " type" score. Abbreviations have three characters. Also, 305-d milk 

production during first lactation (MILK) was analyzed. Table 2 contains the 

abbreviations and definitions of all traits analyzed. Per data file, genetic 

correlations between longevity traits (both uncorrected and functional) and 

conformation traits and MILK were estimated. 

Methods 

Genetic correlations between longevity traits and conformation traits and 

milk production were estimated in bivariate runs using the VCEprogram of 

Groeneveld (1995). The following model was used to analyze the 1978 and 

1982 data files: 

Vijkim = n e f d i + birthmOj + HFk + calvmo, + sirem + eijk,m [1] 

where 

Yijkim = observation on the longevity trait, conformation trait, or MILK, 

herd| = fixed effect of herd i, 

birthmOj = fixed effect of month of birth j , 

HFk = fixed effect of the Holstein Friesian group k, 

calvmo, = fixed effect of month of last calving I, 

sirem = random effect of sire m, and 
eijkim = random residual term. 

The nine genetic groups were defined according to the percentage of Holstein 

Friesian genes: 0, 12.5, 25, ..., 100. If rounding was necessary, it occurred 

toward the breed of the sire. To account for seasonal effects, month of last 
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calving was included in the model. Reasons for seasonal effects could be a 

desired calving pattern or differences in culling of cows on milk production 

during the year as a consequence of the quota system. Because the quota year 

ends on April 1st, cows that are culled in February or March might not have 

been culled if the quota had not been nearly met (Ducrocq, 1994). 

For the 1989 plus 1990 data file, the following model was used: 

yijk, = herd x birthmo, + HFj + herd x calvmok + sire, + eijkl (2) 

where 

herd x birthmo, = fixed effect of the interaction between herd and month 

of birth, and 

herd x calvmok = fixed effect of the interaction between herd and month 

of last calving. 

The interaction terms were included in the model to enable considering the 

possibility that a certain farmer had problems not producing more than the 

quota allowed in one particular year but did not have these problems in the next 

year. For the 1978 and 1982 data files, an interaction term could not be 

included because not enough data were available. The original 1989 plus 1990 

data file (105,170 records) was edited so that each herd x birthmo class 

contained at least two records. 

Approximate standard errors of the estimates of genetic correlations were 

calculated using formulas 10.15 and 19.4 of Falconer (1989). 

The PEST program (Groeneveld, 1990) was used to estimate breeding 

values in univariate runs for the sires in the 1982 data file, using Model [1] and 

the mean heritability estimates from the bivariate analyses of longevity and 

conformation traits (Table 2). The estimated breeding values were used to 

check the genetic relationships between these traits for nonlinearity. Both the 

linear and the quadratic regression coefficients of each breeding value for a 

conformation trait on each breeding value for a longevity trait were calculated 

separately, using the GLM procedure (SAS, 1990). 

Results and discussion 
Mean heritabilities 

Table 2 contains, in addition to the abbreviations and definitions of the 

traits, the mean heritabilities and sire variances (only for the 1989 plus 1990 
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Table 2. 

Trait2 

Mean estimated heritabilities' 

1978 

h2 

and mean 

1982 

h2 

sire variances' {o2;) of the traits analyzed. 

1989 plus 1990 

h2 
o2, 

Uncorrected longevity traits 

NLC 0.11 

HL 0.13 

AGE36 0.03 

AGE48 . . .3 

Functional longevity traits 

FNLC 0.08 

FHL 0.09 

FAGE36 0.02 

FAGE48 

Objectively scored conformation traits 

RL 0.17 

TP 0.32 

UD 0.31 

SL 0.27 

Subjectively scored conformation traits 

USS 

LSS 

TSS 

Production trait 

MP 

0.32 

0.41 

0.43 

0.41 

0.09 

0.10 

0.03 

0.06 

0.07 

0.01 

0.32 

0.43 

0.34 

0.20 

0.34 

0.29 

0.29 

0.43 

0.03 

0.03 

0.03 

0.02 

0.17 

0.35 

0.26 

0.25 

0.34 

0.30 

0.39 

0.46 

0.0007 

0.0014 

0.0005 

0.0010 

0.089 

0.224 

0.120 

0.148 

0.818 

0.656 

0.785 

0.090 

1 Averaged over bivariate analyses. 
2 NLC = Number of lactations initiated; HL = herdlife, days between birth 
AGE36 = stayability until 36 mo of age; AGE48 = stayability until 48 
functional, used as a prefix; RL = rear legs set (side view); TP = front teat 
udder depth; SL = suspensory ligament; USS = udder; LSS = feet and legs 
= 305-d milk production during first lactation (*1000 kg). 
3 Not analyzed in this data file. 

and last test day; 
mo of age; F = 
placement; UD = 
; TSS = type; MP 

data file) from the bivariate analyses of conformation and longevity traits. 

Compared with results of a previous study (Vollema and Groen, 1996), the 

heritabilities were very similar. Data were selected to include only classified 

cows, but this edit hardly affected the heritability estimates for longevity traits. 
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Genetic correlations between longevity and conformation traits 

Table 3 contains estimated genetic correlations between longevity traits, 

on the one hand, and conformation traits and MILK, on the other hand, based 

on the 1978 data file. The trait RL showed negative correlations with all 

longevity traits, although these correlations are stronger with functional (-0.14 

to -0.24) than wi th uncorrected longevity traits (-0.06 to -0.13). Both TP and 

SL have slightly negative genetic correlations wi th uncorrected longevity traits, 

but slightly positive correlations with functional longevity traits, except for the 

correlation between SL and FAGE36, which equals -0.13. The genetic 

correlations of TP and SL with AGE36 are stronger than with the other longevity 

traits (-0.16 and -0.34, respectively). The trait UD shows inconsistent and not 

very strong genetic correlations with uncorrected longevity traits, but quite 

strong, positive, correlations with functional longevity traits (0.35 to 0.44). 

The subjective traits (USS, LSS, and TSS) showed little or no genetic 

correlation with uncorrected longevity traits, although correlations with LSS 

were a bit higher. Genetic correlations between the subjective traits and 

functional longevity were generally stronger, and all were positive (0.07 to 

0.24). 

Genetic correlations between MILK and uncorrected longevity traits were 

Table 3. Estimated genetic correlations between longevity traits, and conformation traits and 
milk production in the data file 1978'. 

Trait2 

RL 

TP 

UD 

SL 

USS 

LSS 

TSS 

MP 

NLC 

-0.13 

-0.05 

0.06 

-0.03 

0.10 

0.13 

-0.03 

0.45 

HL 

-0.10 

-0.04 

0.02 

-0.06 

0.00 

0.15 

0.04 

0.48 

AGE36 

-0.06 

-0.16 

-0.16 

-0.34 

0.01 

0.11 

-0.07 

0.74 

FNLC 

-0.24 

0.08 

0.44 

0.12 

0.23 

0.20 

0.07 

0.09 

FHL 

-0.21 

0.08 

0.39 

0.08 

0.24 

0.24 

0.16 

0.13 

FAGE36 

-0.14 

0.07 

0.35 

-0.13 

0.22 

0.15 

0.18 

0.20 

' Standard error of estimates ranged from 0.051 to 0.12. 
2 NLC = Number of lactations initiated; HL = herdlife; AGE36 = stayability until 36 mo of age; 
F = functional (used as a prefix); RL = rear legs set (side view); TP = front teat placement; 
UD = udder depth; SL = suspensory ligament; USS = subjective score for udder; LSS = 
subjective score for feet and legs; TSS = subjective score for type; MP = 305-d milk pro
duction in first lactation. 
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high (0.45 to 0.74). Functional longevity traits would be expected to have much 

lower correlations with MILK, because these traits were corrected for lactation 

value of which milk production is an important component. The genetic 

correlations were 0.09 to 0.20; correlations were not equal to 0 because 

lactation value comprises other traits as well and because correction was 

performed on the phenotypic level and within herds. 

Table 4 contains estimated genetic correlations between longevity traits, 

on the one hand, and conformation traits and MILK on the other hand, based on 

the 1982 data file. Genetic correlations from this data file differed from those 

from the 1978 data file. The trait UD was not strongly correlated genetically 

with functional longevity traits, except for the correlation with FAGE36, which 

was negative (-0.34) but was positive for the 1978 data file (0.35, Table 3). 

Also, the correlation between UD and AGE36 is relatively strong: -0.30, 

although this correlation might be partly caused by the negative genetic 

correlation between UD and MILK (-0.38, not shown). The subjective scores 

USS, LSS, and TSS show relatively strong (> 0.3) genetic correlations wi th 

both uncorrected and functional longevity traits, except the correlations 

between USS and LSS and between AGE36 and FAGE36 (0.10 to 0.23). 

The correlation (0.80) between MILK and AGE36 was very strong in the 

Table 4. Estimated genetic correlations between longevity traits, and conformation traits and 
milk production in the data file 1982'. 

Trait2 

RL 

TP 

UD 

SL 

USS 

LSS 

TSS 

MP 

NLC 

-0.05 

0.07 

0.03 

0.09 

0.31 

0.32 

0.47 

0.39 

HL 

-0.01 

0.07 

0.02 

0.13 

0.33 

0.32 

0.47 

0.44 

AGE36 

-0.01 

-0.14 

-0.30 

0.14 

0.10 

0.23 

0.48 

0.80 

FNLC 

-0.04 

0.10 

0.09 

0.07 

0.35 

0.31 

0.46 

0.33 

FHL 

-0.01 

0.09 

0.07 

0.12 

0.37 

0.32 

0.46 

0.39 

FAGE36 

-0.03 

-0.15 

-0.34 

0.17 

0.15 

0.18 

0.47 

0.84 

1 Standard error of estimates ranged from 0.01 5 to 0.067. 
2 NLC = Number of lactations initiated; HL = herdlife; AGE36 = stayability until 36 mo of age; 
F = functional (used as a prefix); RL = rear legs set (side view); TP = front teat placement; 
UD = udder depth; SL = suspensory ligament; USS = subjective score for udder; LSS = 
subjective score for feet and legs; TSS = subjective score for type; MP = 305-d milk 
production in first lactation. 
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1978 data file as well (0.74, Table 3), which is an indication that milk 

production is an important reason for culling during first lactation. This result 

was found in earlier, more specific references as well (Hocking et al., 1988; 

Milian-Suazo et al., 1988; Sol et al., 1984). Correlations between MILK and 

uncorrected longevity traits were as high as in the 1978 data file (Table 3), but 

correlations between MILK and functional traits stay on the same high level in 

contrast to the results from the 1978 data file. 

These results indicate that correcting longevity traits for lactation value in 

the 1982 data file does not affect their relationships with conformation traits 

and milk production. In other words, lactation value was not the primary culling 

reason for these cows, and thus functional longevity traits are no longer 

measures of involuntary culling. The cows born in 1982 were in the middle of 

the upgrading process, as can be seen in Table 1. The original population of 

Dutch Friesian cows had deep udders. Crossing these cows with Holstein 

Friesians decreased UD, so that in the 1982 data file only weak correlations 

could be found between UD and functional longevity traits (because UD was no 

longer a trait of major concern), even though these correlations were strong in 

the 1978 data file. Crossbreeding with Holstein Friesians meant in practice that 

farmers selected mainly on Holstein Friesian genes instead of production, which 

explains why little difference exists between correlations wi th uncorrected and 

functional longevity traits in the 1982 data file. It also explains why genetic 

correlations between TSS and longevity traits are strong in this data file: during 

the period with intensive crossing wi th Holstein Friesians, TSS was scored as 

Holstein Friesian type, and farmers selected on Holstein Friesian genes (A. 

Hamoen, 1996, Chief Inspector of the Royal Dutch Cattle Syndicate, personal 

communication). 

The inclusion of the fixed effect of Holstein Friesian group in the model 

might not have taken away the effect of selection on Holstein Friesian genes, 

because the inclusion of Holstein Friesian group in the model does not correct 

for the differences in competition that cows experience to stay in the herd 

depending on their percentage of Holstein Friesian genes. In general, cows with 

low percentages of Holstein Friesian genes had a higher risk of being culled, but 

this risk depended completely on the competitive herdmates. Including an effect 

for the interaction of herd and percentage of Holstein Friesian genes might have 

partly accounted for this, but the only way to correct properly for this 
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competition effect would be the use of survival analysis. This method not only 

makes use of censored records, but corrects for fixed effects (e.g., herd) in a 

time-dependent way as well (Ducrocq, 1994; Smith and Quaas, 1984). 

However, to make use of survival analysis, the data file analyzed must contain 

information on all cows that are present at a certain t ime. This does not hold for 

the data used in this study because only cows from one year of birth are in 

each data file wi thout herdmates of other ages. Furthermore, the method does 

not allow estimation of covariances between traits. 

To check whether the genetic correlations between longevity and 

conformation traits in the 1982 data file would equal those of the 1978 data file 

if only Dutch Friesian cows were analyzed, a subfile was made. Animals in this 

subfile were required to be in a herd of only cows with 2 5 % or less Holstein 

Friesian genes. In total, 3099 cows from the 1982 data file met this 

requirement. Genetic correlations between longevity and conformation traits 

were estimated using this subfile. Results were disappointing, because many of 

the bivariate runs did not converge, and the remaining estimates were diverse 

and could not be interpreted. Reasons might be the very small amount of data 

and the failure to consider cows with a higher percentage of Holstein Friesian 

genes that entered the herd later and were competitors of the original Dutch 

Friesian cows. 

Therefore, the 1989 plus 1990 data file was established and analyzed. The 

Black and White population was much more stable during this period. Genetic 

correlations between longevity and conformation traits from the 1989 plus 

1990 data file are detailed in Table 5. In general, genetic correlations are 

positive and strong (0.05 to 0.93); correlations between conformation and 

functional longevity traits were stronger than between conformation and 

uncorrected longevity traits. However, the difference was not very large, which 

may partially be due to the correction of functional longevity traits for the 

absolute level of 305-d milk production in the first lactation instead of a within-

herd measurement of production. Furthermore, it is unclear what effect a 

different model has on the genetic correlations. The correlations between 

AGE48 and RL, between FAGE48 and RL, between FAGE36 and MILK, and 

between FAGE48 and MILK are the only negative ones (-0.17, -0.14, -0.04, and 

-0.19, respectively). The correlation between FAGE36 and LSS (0.20) was 

lower than that between AGE36 and LSS (0.22), which was the only case in 
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Table 5. Estimated genetic correlations between longevity traits, and conformation traits and 
milk production in the data file 1989/1990'. 

Trait2 AGE36 AGE48 FAGE36 FAGE48 

RL 

TP 

UD 

SL 

USS 

LSS 

TSS 

MP 

0.10 

0.66 

0.32 

0.20 

0.70 

0.22 

0.37 

0.61 

-0.17 

0.78 

0.56 

0.34 

0.82 

0.39 

0.62 

0.66 

0.15 

0.70 

0.50 

0.25 

0.78 

0.20 

0.05 

0.04 

-0.14 

0.84 

0.74 

0.43 

0.93 

0.43 

0.21 

-0.19 

1 Standard error of estimates ranged from 0.0072 to 0.050. 
2 AGE36, AGE48 = Stayabilities until 36 and 48 mo of age; F = functional (used as a prefix); 
RL = rear legs set (side view); TP = front teat placement; UD = udder depth; SL = 
suspensory ligament; USS = subjective score for udder; LSS = subjective score for feet and 
legs; TSS = subjective score for type; MP = 305-d milk production in first lactation. 

which the genetic correlation between a functional longevity trait and a 

conformation trait was weaker than between an uncorrected longevity trait and 

a conformation trait. The relatively weak genetic correlations between longevity 

traits and RL and SL were found in the 1978 data file as well (Table 3). No 

strong correlations were found between longevity traits and TP in the 1978 or 

the 1982 data file (Tables 3 and 4 , respectively). Especially USS has very 

strong correlations with FAGE36 and FAGE48 in the 1989 plus 1990 data file 

(0.78 and 0.93, respectively). The trait TSS has relatively weak correlations 

with functional longevity traits, as in the 1978 data file. In the literature, this is 

found as well especially for grade herds (DeLorenzo and Everett, 1982; Dentine 

eta/., 1987). 

Table 6 contains the estimated genetic correlations among conformation 

traits and MILK for the 1989 plus 1990 data file. The trait USS had relatively 

strong genetic correlations with the objectively scored udder traits (0.50 to 

0.85), and LSS was correlated strongly with RL (-0.52). Correlations between 

TSS and the objectively scored udder traits and between USS and LSS ranged 

from 0.26 to 0.63. As expected, MILK had a relatively strong genetic 

correlation with TSS (0.64), because classifiers score the milk potential of a 

cow wi th this trait. 
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0.10 

0.45 

0.08 

0.43 

0.23 

-0.04 

0.85 

0.50 

0.64 

-0.52 

0.33 

0.20 

0.30 

0.56 

-0.04 

0.36 

0.26 

0.38 

0.63 

0.47 

0.10 

0.08 

-0.16 

0.18 

0.25 

0.19 

0.64 
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Table 6. Estimated genetic correlations among conformation traits in the data file 1989 plus 
1990'. 

Trait2 TP UD SL USS LSS TSS MP 

RL -0.16 

TP 

UD 

SL 

USS 

LSS 

TSS 

1 Standard errors of estimates ranged from 0.0076 to 0.033. 
2 RL = Rear legs set (side view), TP = front teat placement, UD = udder depth, SL = 
suspensory ligament, USS = subjective score for udder, LSS = subjective score for feet and 
legs, TSS = subjective score for type, MP = 305-d milk production in first lactation. 

In this study, conformation traits generally had stronger genetic 

correlations with functional than with uncorrected longevity traits. If, in The 

Netherlands, FAGE48 would be incorporated in the breeding goal, an index 

based on 60 daughters per sire and containing information on USS and LSS 

would give an reliability of 0.74, based on the results from the 1989 plus 1990 

data file (Tables 5 and 6). Classifiers are capable of recognizing cows with a 

long potential herdlife. Genetic correlations between conformation and longevity 

traits might indeed be influenced by the circumstances. When an index 

containing conformation traits is used to breed for functional longevity, 

estimates of genetic correlations and heritabilities should be based on the most 

recent data file possible, and should be re-estimated routinely. It is expected 

that the most recent data closest resemble the steady state that will be 

reached. Re-estimation of parameters is necessary either to adjust parameters if 

the population is still changing, or to check if the steady state has been reached 

already. 

Compared with literature estimates, the level of estimates of genetic 

correlations between conformation and longevity traits in this study is high, 

especially for the 1989 plus 1990 data file. The strongest genetic correlation in 

this study was 0.93; in the literature, the strongest genetic correlations that 

were based on data from Holstein Friesian cows were usually not higher than 

0.5 (Boldman et al., 1992; Dekkers et al., 1994; Klassen et al., 1992; Rogers et 
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a/., 1989; Short and Lawlor, 1992; Van Doormaal et ai., 1986). 

Visscher and Goddard (1995) found considerably stronger genetic 

correlations between stayability and conformation traits for Jerseys (around 0.8) 

than for Holsteins (around 0.3). Vukaèïvonic et al. (1995) found genetic 

correlations up to 0.7 between conformation and longevity traits for Brown 

Swiss cows. In the literature, conformation and longevity traits were less 

correlated for Holstein cows than for cows of other breeds. 

Rogers et al. (1989) found that genetic correlations between conformation 

and stayability traits were weaker than the genetic correlations that are usually 

found between conformation and lifetime traits, the strongest being 0.36. 

However, Short and Lawlor (1992) found no difference in correlations between 

conformation and lifetime traits or between conformation and stayability traits. 

In this study, only one stayability trait (AGE36) was considered in all three data 

files. In the 1978 data file (Table 3), AGE36 had some other genetic correlations 

than NLC or HL. For instance, the correlation with UD is negative; for NLC and 

HL, the correlation with UD was small but positive. Also, the correlation 

between AGE36 and MILK was much higher than that between the other 

longevity traits and MILK. In the correlations with TSS, however, HL is the only 

longevity trait wi th a positive sign. In the 1982 data file (Table 4), AGE36 

behaved differently from NLC and HL at some points. Correlations between 

AGE36 and TP and between AGE36 and UD are negative, for instance, but 

correlations between NLC and HL and between TP and UD are positive. Also in 

this data file, the genetic correlation between AGE36 and MILK is higher than 

between NLC or TP and MILK. Genetic correlations between stayabilities and 

conformation traits and between lifetime and conformation traits differ partly 

due to the analysis of stayability traits using continuous models. 

Dekkers et af. (1994) found 0.39 as the strongest of the genetic 

correlations between uncorrected longevity traits and conformation traits in 

registered herds; genetic correlations were lower beween conformation traits 

and FHL in grade herds. Short and Lawlor (1992) also found stronger genetic 

correlations between conformation and longevity traits for registered than for 

grade herds. Van Doormaal et al. (1986) also found stronger genetic 

correlations between conformation and longevity traits for "breeders" than for 

"milkers". Even though they are not the same, it might be assumed that 

"breeders" are comparable with registered herds, and "milkers" with grade 
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herds. In all three of these studies, for different breeding goals, different 

conformation traits were most important in determining longevity. In registered 

herds, traits such as dairy character, dairy form, final class, and general 

appearance were most important. In grade herds, traits such as udder depth, 

feet and legs, and mammary system were important, too. Because, in the 

present study, genetic correlations between the subjective score for type and 

longevity traits was mostly relatively low, Dutch data could be compared with 

data from grade herds even though all cows were registered. 

Nonlinear relationships 

Because the REML estimates of the genetic correlations between longevity 

and conformation traits in the 1982 data file were different from expected, the 

estimated breeding values of the sires (n = 762) from this data file were used 

to check for nonlinearity in the relationship between longevity and conformation 

traits. Table 7 indicates which conformation traits had significant (P < 0.05) 

linear (L) or quadratic (Q) (or both) regression coefficients when explaining 

longevity traits in a regression model containing only a mean, linear 

conformation trait effect, and quadratic conformation trait effect. Especially 

subjective conformation traits (USS, LSS, and TSS) and MILK had significant 

nonlinear relationships with longevity traits, but the quadratic component was 

never significant when the linear was not. Only UD had significant quadratic 

relationships with HL and FHL while the linear relationships were not significant. 

Generally, conformation traits that have stronger genetic correlations with 

longevity (Table 4) also have significant regression coefficients. 

Many other researchers (Burke and Funk, 1993; Foster et al., 1989; 

Honnette et al., 1980; Norman and Van Vleck, 1972) have found significant 

quadratic regression coefficients when using conformation traits to explain 

longevity, but Rogers et al. (1989) found only significant linear coefficients. 

Dekkers et al. (1994) found both significant quadratic and cubic regression 

coefficients. The present study investigated only linear and quadratic regression 

coefficients. Brotherstone and Hill (1991) found significant quadratic regression 

coefficients when survival was regressed on conformation scores 

phenotypically, but not when survival was regressed on sires' estimated 

breeding values for conformation traits. Those results conflict wi th results from 

this study, in which regression was on estimated breeding values and quadratic 
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Table 7. Significance (P<0.05) of linear (L) and quadratic (Q) regression coefficients of sire 
breeding values of conformation traits on breeding values of longevity using the data file 
1982. 

Trait' 

RL 

TP 

UD 

SL 

USS 

LSS 

TSS 

MP 

NLC 

L 

L 

L + Q 

L + Q 

L + Q 

HL 

Q 

L 

L + Q 

L + Q 

L 

AGE36 

L 

L 

L 

L + Q 

FNLC 

L 

L 

L + Q 

L + Q 

L + Q 

FHL 

L 

Q 

L 

L 

L + Q 

L + Q 

L + Q 

FAGE36 

L 

L 

L 

L + Q 

1 NLC = Number of lactations initiated; HL = herdlife; AGE36 = stayability until 36 mo of age; 
F = functional (used as prefix); RL = rear legs set (side view); TP = front teat placement; UD 
= udder depth; SL = suspensory ligament; USS = subjective score for udder; LSS = 
subjective score for feet and legs; TSS = subjective score for type; MP = 305-d milk 
production in first lactation. 

terms were significant. 

Keller and Allaire (1987) found intermediate scores for conformation traits 

were associated with highest scores for survival traits. In the example in the 

present study of the relationship between FHL and UD, both deep and shallow 

udders are related to a high FHL, which might cause a problem if FHL is 

incorporated in a breeding program. Deep udders are not desired, but, when 

breeding for FHL, UD will go to one of the two extremes. A solution would be 

the use of assortative mating. 

Conclusions 
Conformation traits reflecting udder and feet and legs have stronger 

correlations with functional longevity traits than with uncorrected longevity 

traits. Care should be used with estimated correlations between conformation 

traits and longevity when those estimates are based on data from an upgrading 

population. The large-scale crossbreeding with Holstein Friesians appears to 

have strongly influenced the desirability of a certain type of cow and decision

making policies for culling. For practical use in a breeding program, estimates of 

genetic correlation and heritabilities should be based on the most recent data 

95 



Chapter 4 

possible and should be repeated over t ime. From the most recent data file 

analyzed in this study, it seems to be sufficient to put USS and LSS in a 

selection index when breeding for functional longevity in The Netherlands. 

Nonlinear relationships between conformation and longevity traits exist, 

although hardly ever without simultaneous linear relationships. Only UD had a 

quadratic relation with HL and FHL without a significant linear relationship. 
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Breeding values for longevity 

Abstract 
A comparison was made between breeding values of sires for longevity 

obtained by different methods: phenotypic averages of daughters using only 
uncensored records, BLUP using only uncensored records, survival analysis using 
only uncensored records, and survival analysis using both censored and 
uncensored records. Two datasets were used: one with data from small, and one 
with data from large herds. Results from both datasets were similar. Different 
methods of breeding value prediction resulted in different rankings of sires. The 
phenotypic averages had weak correlations with the other methods of breeding 
value prediction (<0.46). The REML/BLUP predictor had strong correlations ( < -
0.91) with the survival analysis predictor if they used the same data, and these 
correlations decreased (<-0.60) when censored records were included as well in 
the survival analysis. REML/BLUP and survival analysis differ mainly due to the 
different data that can be used (uncensored only versus both censored and 
uncensored). 

Key words: longevity, breeding value, survival analysis 

Abbreviation key: LPL = length of productive life; PBV = PEST breeding value; 
PHEN = phenotypic average of daughters; RR = risk ratio; RRall = risk ratio 
estimated using all data available; RRun = risk ratio using only uncensored 
records. 

Introduction 
Longevity traits reflecting the performance over the entire lifespan of a 

cow, e.g., total herdlife or length of productive life, can only be measured after 

a cow's death. Effective selection based on these traits is seriously hindered by 

the time at which this information is available on a sufficient large proportion of 

the animals. Breeding values based on information of parents or grandparents or 

both will have a low reliability, because the heritability of longevity is generally 

low (e.g., Burnside eta/., 1984; Short and Lawlor, 1992; Vollema and Groen, 

1996). Information on the longevity of daughters of sires becomes available 

with increasing age of the sires: a higher reliability of breeding value prediction 

for longevity implies a longer generation interval. 

One alternative is the use of so called "stayability" traits: binomial traits 

that measure whether a cow has survived upto a certain point in time (e.g., at 

48 mo of age, or 300 d in lactation, or the beginning of the third lactation). 

Although stayability traits can be measured at any point in t ime, they contain 

less information than traits that measure the whole lifespan of a cow. A second 

alternative is the use of predictor traits, for example conformation traits which 

can be measured early in life. However, the maximum reliability of breeding 

101 



Chapter 5 

values predicted from conformation traits is limited (Boldman et al., 1992; 

Burnside et al., 1984). 

A third alternative is the use of survival analysis to obtain breeding values 

(Ducrocq et al., 1988a and 1988b; Smith and Quaas, 1984). These breeding 

values differ at two basic aspects from breeding values using "traditional" 

mixed model analysis: so called "censored" records can be analyzed 

simultaneously with completed (uncensored) records, and effects can be 

modeled in a time-dependent way. Censored records are records of cows that 

have not been culled at the moment of data collection, i.e., their actual lifespan 

is not known but the time they are alive can be regarded as a minimum of the 

lifespan they will achieve. In a mixed model analysis, a fixed effect in the model 

will be estimated once and is assumed to be constant over the whole period of 

analysis. For a herd-year-season effect, for example, it implies that cows born in 

the same period but wi th different herdlifes are affected in the same manner. 

With survival analysis, whenever a cow enters or leaves the herd, a new herd 

effect will be estimated. In this way, the reality of cows having to compete with 

their herdmates for survival is better mimiced. It also provides the opportunity 

to correct for production in a time dependent way. Dekkers (1993) indicated 

that longevity corrected for production is a better measure of involuntary 

culling. This corrected longevity is called functional longevity. Van Arendonk 

(1985) showed that culling decisions are always taken on a within-herd basis, 

which implies that correction for production should also be on a within-herd 

basis. In many studies (e.g., Rogers et al., 1991 ; Short and Lawlor, 1992; 

Vollema and Groen, 1996), correction for production has been done for first 

lactation within-herd production, while in other studies (e.g., Boldman et al., 

1992; Harris et al., 1992) the production in the last lactation was used. With 

survival analysis, it is possible to implement production as a time-dependent 

effect in the model, which is expected to result in a better model than one 

which uses either first or last lactation. 

In this study, the likelihood of a model containing only the production in 

the first lactation will be compared with a model containing production as a time 

dependent variable. Significance of effects in the model will be assessed by 

survival analysis. Breeding values predicted by a linear model and survival 

analysis will be compared in two data sets: one with data from small, and one 

with data from large herds. Using these two data sets enables the calculation of 
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correlations between longevity in different groups of farms, to investigate a 

possibly different ranking of sires on different types of farms. For comparison 

with methods that can only use uncensored data (i.e., the actual longevity has 

to be known) survival analysis was performed on uncensored data and on data 

including censored records as well. 

Material and methods 
Data 

Data was provided by NRS (Royal Dutch Cattle Herdbook) and was limited 

to herds from the province of Friesland. Herds were required to have only Black 

and White cows (Dutch Friesian/Holstein Friesian). Data was collected in 

September 1996, and only cows having their first calving after January 1st 

1985 were included. Longevity is measured as length of productive life (LPL): 

the number of days between first calving and last test day. Data was split up in 

two different data files: one with cows from herds with 25 to 199 cows and 

one wi th cows from herds wi th 200 or more cows in the data file. Data 

characteristics are in Table 1. A farm with 200 cows in the data file would have 

17 heifers calving each year. The number of daughters per sire ranged from 1 to 

5 6 1 1 ; average was 29.6 in the data from small and 32.0 in the data from large 

farms. The percentage of censored records was 33 .5% and 35 .0% for small 

and large farms, respectively. Also the average LPL and censoring time were 

almost equal for both data files. 

Table 1 . Data characteristics. 

Small farms Large farms 

116,579 

431 

3,642 

35.0 

1,017 

984 

Number of records 

Number of herds 

Number of sires 

% Censored records 

Average LPL (uncensored 
records) 

Average censoring time 
(censored records) 

139,006 

1,294 

4,689 

33.5 

990 

1,007 
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Survival analysis 

Survival analysis was performed using the Survival Kit (10). The hazard 

function was modelled as (Ducrocq et al., 1988a): 

Mt. z(t)) = A0(t) exp{z(t)'b} 

where A(t, z(t)) is the hazard function of an individual depending on time t, A0(t) 

is the baseline hazard function assumed to fol low a Weibull distribution, and z(t) 

is a vector of (possibly time dependent) fixed and random effects with 

corresponding parameter vector b. The following effects were included in the 

model: 

- year and month of birth: class effect, independent of t ime; 

- proportion of Holstein Friesian genes: class effect, independent of t ime; 

- age at first calving: continuous effect, independent of t ime; 

- herd*year*season: random class effect, time dependent; 

- parity: class effect, time dependent; 

- stage of lactation: class effect, time dependent; 

- lactation value: continuous effect, time dependent; 

- sire: random class effect, independent of t ime. 

The proportion of Holstein Friesian genes had nine classes: 0%, 12.5%, 25%, 

...., 100%. The age at first calving was expressed in days. Changes in herd 

were identified in the data: in both data files 7% of the cows were moved to a 

different herd at least once during lifetime. If a cow moved from one herd to 

another after her last known test day, the record was treated as censored from 

her last known test day on. Four seasons were distinguished, changing on the 

first of January, April, July, and November each year. The effects of herd and 

year*season were combined into an interaction term, which was absorbed 

during analysis and was assumed to fol low a gamma distribution and of which 

the parameter gamma was estimated during analysis. Parity changed at the 

beginning of each lactation; parities 6 and higher were treated as one class. 

Stage of lactation changed at calving and at 60, 180, and 300 d after calving. 

Van de Venne (1987) showed that the risk of culling was high (but slowly 

decreasing) in the beginning of the lactation, increasing from 60 d until 180 d 

after calving, then high and stable from day 180 until day 300, and after that 
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decreasing again. Lactation value is a management index comparing phenotypic 

performances of cows within a herd for production of milk, fat, and protein 

(realized or extended 305-d production adjusted for season of calving and age 

at calving). The herd average per test day is 100 (Handboek NRS, 1993), and 

the value of the last test day per lactation was used. Lactation value was 

modeled wi th changes at each calving. If a cow did not have a lactation value in 

her last lactation (e.g., because she was culled shortly after calving), the 

previous lactation value was kept. The sire effect was assumed to fol low a 

multinormal distribution and the variance parameter was estimated during 

analysis. Relationships between sires were identified through their sires and 

maternal grandsires. 

For continuous effects, the results of the survival analysis are expressed as 

estimates of the parameter vector b; for fixed effects, they are expressed as 

risk ratios (RR). The estimate of the class with the highest number of 

uncensored records is arbitrarily set to zero, which corresponds to a hazard of 

one. The RR is the ratio between the hazard of each class of an effect and the 

class with the hazard of one. 

For survival analysis, the heritability on the log scale was calculated as 

(Ducrocq and Casella, 1996): 

h2ioB
 = [4*var(sire)]/[var(sire) + var(hys)+var(e)] 

= [4*var(sire)]/[var(sire) +trigamma(K) + irr2/6)] 

where 

Y = estimated gamma parameter for the herd*year*season effect; 

/72/6 = variance of an extreme value distribution. 

The heritability on the log scale was transformed to one on the original scale 

using (V.P. Ducrocq, 1997, personal communication): 

h2„rig = h2
log/[exp{nu/p}]2 

where 

nu = digamma(K)-ln(K)-Euler's constant ( = 0.5772); 

p = Weibull parameter. 
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Table 2. Risk ratios (RR) of the classes of the fixed effect of percentage of Holstein Friesian 
genes (HF) on small and large dairy farms. 

HF 

0% 

12.5% 

25% 

37.5% 

50% 

62.5% 

75% 

87.5% 

100% 

Small farms 

RR 

1.28 

1.02 

1.22 

1.08 

1.00 

1.03 

0.97 

0.89 

0.83 

Sign.' 

. . . 

NS 

* * # 

• * * 

* * * 

* 

* * * 

* * * 

. . . 

# records 
(uncensored) 

8613 

421 

4668 

5544 

32133 

5757 

23963 

9556 

1745 

RR 

1.37 

1.03 

1.21 

1.14 

1.07 

1.06 

1.00 

0.92 

0.81 

Large farms 

Sign. 

+ * * 

NS 

* * * 

* * * 

. . . 

. . . 

. . . 

. . . 

. . . 

# records 
(uncensored) 

2713 

149 

2062 

2828 

23596 

4410 

24984 

12554 

2454 

1 Significancy: NS = not significant, * = P<0.05, * * * = P<0.001 

rates of cows wi th over 34 mo of age at first calving, while in this study the 

maximum age at first calving is 36 mo. The effect of lactation value was 

negative: -0.033 and -0.037 for small and large farms, respectively (P<0.01 for 

both data files). The higher the production relative to herdmates, the lower the 

risk of being culled. The effect of herd*year*season was absorbed so no 

solution was obtained. Estimates of the time-dependent effects are difficult to 

interpret because the risk ratio then depends on the baseline hazard M0(t)) 

which is different at different times. For example, the estimate of parity 5 

cannot be compared with that of parity 1, because they are not evaluated at the 

same t ime, and thus the baseline hazard differs. 

Genetic parameters 

The linear model resulted in estimated heritabilities of functional LPL of 

0.076 and 0.066 for the small and large farms, respectively. The heritability 

estimates on the log scale from the survival analysis using all data available 

were 0.023 and 0.022, respectively. These estimates on the log scale are 

substantially lower than those from the VCE analysis, but after transformation 

to the original scale the results are comparable with results from the VCE 

analysis: 0.060 and 0.064, respectively. It was expected that the better model 
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used in the survival analysis compared to the model in the linear analysis would 

result in higher heritability estimates. One of the reasons why this is not the 

case might be the inclusion of herd-year-season as random effect. Theoretically 

it would have been possible to include the lactation value with changes at every 

test day instead of including one lactation value per lactation. However, this 

would have resulted in extremely long computing times. Literature estimates of 

the heritability of functional LPL are around 0.06 (Ducrocq et al., 1988b; Short 

and Lawlor, 1992; Vollema and Groen, 1996). 

Comparison of methods 

Table 3 contains the Spearman rank correlations (above diagonal) and 

Pearson correlations among phenotypic means of daughters of sires, sires' PBV, 

RRun, and RRall. The rank correlations between these four breeding value 

predictions on small and on large farms were 0.97, 0.75, 0 . 8 1 , and 0.93, 

respectively. The corresponding Pearson correlations were 0.98, 0 .82, 0.82, 

and 0.92. Both correlations are in the same range, thus indicating that there are 

Table 3. Spearman rank correlations (above diagonal) and Pearson correlations (below diagonal) on 
phenotypic means of daughters per sire (PHEN), predicted breeding values from PEST for sires 
(PBV), and predicted breeding values (Risk Ratios) for sires from Survival Analysis, either using only 
uncensored records (RRun) or all records available (RRall), using data on cows from small and large 
farms (total 72 sires with at least 150 uncensored records of daughters in each data set). 

Small farms 

PHEN 

PBV 

RRun 

RRall 

Large farms 

PHEN 

PBV 

RRun 

RRall 

PHEN 

0.38 

-0.23 

-0.03 

0.98 

0.26 

-0.11 

-0.04 

Small farms 

PBV 

0.46 

-0.93 

-0.60 

0.35 

0.821 

-0.77 

-0.56 

RRun 

-0.32 

-0.91 

0.65 

-0.20 

-0.79 

0.82 

0.62 

RRall 

-0.16 

-0.71 

0.76 

-0.03 

0.09 

0.61 

0.92 

PHEN 

0.97 

0.44 

-0.30 

-0.17 

0.32 

-0.17 

-0.08 

Large farms 

PBV 

0.24 

0.75 

-0.76 

-0.66 

0.33 

-0.92 

-0.60 

RRun 

-0.16 

-0.75 

0.81 

0.73 

-0.23 

-0.94 

0.69 

RRall 

-0.14 

-0.65 

0.72 

0.93 

-0.20 

-0.71 

0.79 

1 If corrected for the number of daughters per sire (method of Blanchard et al. (1983), the correlation is 
0.92 
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little or no sires with extreme breeding values. Correction of the Pearson 

correlation between PBV on small and large farms for the number of daughters 

per sire by the method of Blanchard et al. (1983) increased its value to 0.92. 

The reliability of a selection index of a sire for a trait wi th a heritability of 0.07 

and based on information of 150 daughters is 0.85. It is therefore concluded 

that all four methods of breeding value prediction are highly comparable 

between small and large farms. 

Differences among methods of breeding value prediction are considerable. 

The weakest correlation (-0.16) was found between the phenotypic average and 

RRall on small farms. Strong correlations were found between PBV and RRun 

(ranging from -0.91 to -0.94). Correlations between these two predictions and 

RRall were substantially lower, indicating that differences between the linear 

breeding value prediction and survival analysis are more due to the data that can 

be analyzed than to the model that can be f i t ted. Correlations between the 

phenotypic average and the other methods are always weak (<0 .46) . 

The prediction standard errors of the estimates of sires from the survival 

analysis decreased when all available records were analyzed instead of only 

uncensored records. The average prediction standard errors of RRun for the 72 

sires with more than 150 uncensored records in both data files were 0.044 and 

0.045 for small and large farms, respectively, and of RRall 0.036 and 0.039. 

Conclusions 
The risk of being culled increased with year-month of birth and age at first 

calving, and decreased with percentage of Holstein Friesian genes and with a 

relatively low within-herd production level. Heritability estimates of functional 

length of productive life are different using a linear model or survival analysis: 

0.07 and 0.02, respectively. If the heritability from the survival analysis is 

transformed to the original scale, the difference disappeared (estimates around 

0.06). Different methods of breeding value prediction give different rankings of 

sires, both in the data from small and from large farms. Phenotypic averages of 

daughters of sires have low correlations with all three other methods of 

breeding value prediction. The difference between traditional (linear) mixed 

model analysis and survival analysis is mainly due to the difference in data that 

can be analyzed; i.e., survival analysis includes censored records as well. 
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Conformation in survival analysis 

Abstract 
Survival analysis was used to investigate the importance of conformation 

traits for longevity in Dutch dairy cows. Data was collected in September 1996 on 
cows which first calved from 1985 onwards. Herds were required to have at least 
25 cows in the data file. The longevity trait analyzed was functional length of 
productive life, because production within herd was included in the model. When 
analyzing the effect of a cow's phenotype on her own functional longevity the 
following conformation traits were significant: capacity, rump angle, angularity, 
teat length, udder depth, size, type, overall score for udder, and overall score for 
feet and legs. When analyzing the effect of the breeding value of the cow's sire 
on her own functional longevity the following conformation traits were significant: 
capacity, rump angle, udder depth, suspensory ligament, overall score for udder, 
and overall score for feet and legs. The correlations between breeding values of 
sires based on longevity of their daughters and national proofs for conformation of 
that sires were generally strong, except for height, rear legs set, and size. Genetic 
relationships between length of productive life and conformation traits were 
stronger than phenotypic relationships. 

Key words: longevity, conformation traits, survival analysis 

Introduction 
Implementing longevity in a breeding program will generally increase the 

generation interval compared to a scheme only considering production, because 

the information on longevity of cows only becomes available after they have 

been culled. Various authors suggest the use of conformation traits as early 

predictors of longevity, and reasonable genetic correlations between 

conformation and longevity traits have been found (Van Doormaal et al., 1986; 

Rogers et al., 1989; Boldman et al., 1992; Short and Lawlor, 1992; Dekkers et 

al., 1994; Vollema and Groen, 1997b). Especially traits describing the feet and 

legs, and udder seem to be useful. These studies involve estimation of 

covariances between longevity and conformation traits using multi-trait (RE)ML 

procedures. Applying a traditional BLUP for longevity gives predicted breeding 

values that are not fully correlated with breeding values from survival analysis, 

differences being mainly due to the inclusion of censored data with survival 

analysis (Vollema and Groen, 1997a). It is interesting to know whether or not 

covariances between conformation and longevity will change when including 

censored data. Current computer programs available for performing survival 

analysis can not be used to calculate covariances between traits, but allow 

derivation of the significancies of effects in a model and calculation of 

regression coefficients. 
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In this study, survival analysis is used to investigate the amount of 

variation in functional longevity that is explained by conformation traits. Both 

phenotypes of cows and breeding values of their sires for conformation traits 

are used as independent variables, to gain insight in both the relationship 

between phenotypes for longevity and conformaton, and the relationship 

between the phenotype for longevity and the genotype for conformation. 

Furthermore, correlations between breeding values of sires for longevity 

obtained by survival analysis and official national breeding values for 

conformation traits are obtained to gain insight in the relationship between 

genotypes for longevity and conformation. These latter correlations can be seen 

as an approximation of genetic relationships. 

Materials and methods 
Data was provided by NRS (Royal Dutch Cattle Syndicate) and contained 

Black and White cows from the province of Friesland, which first calved from 

January 1 , 1985 onwards. Cows from herds that had other breeds of cows as 

well were excluded. Herds had to participate in the conformation recording 

scheme and were required to have at least 25 cows in the data file. Data was 

collected in September 1996. The number of cows in the analysis was 66374 

from 1340 herds, daughters of 3259 sires. Survival analysis was performed 

using the Survival Kit by Ducrocq and Solkner (1996). The hazard function was 

modeled as (Ducrocq et al., 1988): 

^(t,z(t)) = A0(t) exp{z(t)'b} 

where A(t,z(t)) is the hazard function of an individual, A0(X) is the baseline hazard 

function which is only dependent on time and is assumed to fol low a Weibull 

distribution, and z(t) is a vector of (possibly time dependent) fixed and random 

effects wi th corresponding parameter vector b. The parameter rho of the weibull 

distribution was fixed at 1.375 which was found in an earlier study using data 

of which the present data set was a subset (Vollema and Groen, 1997a). 

Different models were used but in all models the following effects were 

included: 

year and month of birth: class effect, independent of t ime; 

proportion of Holstein Friesian genes: class effect, independent of t ime; 

age at first calving: continuous effect, independent of t ime; 

herd*year*season: random class effect, time dependent; 
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parity: class effect, time dependent; 

stage of lactation: class effect, time dependent; 

lactation value: continuous effect, time dependent. 

The proportion of Holstein Friesian genes had nine classes: 0%, 12.5%, 25%, 

...., 100%. Changes in herd were identified in the data. It appeared that 7% of 

the cows was moved at least once during their lifetime. If a cow was moved 

from one herd to another herd outside the dataset after her last known test day, 

the record was treated as censored from her last known test day on. Four 

seasons were distinguished, changing on the first of January, April, July, and 

November each year. The effects of herd and year*season were combined into 

an interaction term, which was absorbed during analysis. Parity changed at the 

beginning of each lactation; parities 6 and up were in the same class. Stage of 

lactation changed at calving, 60 d after calving, 180 d after calving and 300 d 

after calving. Lactation value is a management index comparing phenotypic 

performances of cows within a herd for production of milk, fat, and protein 

(standardized for lactation length, season of calving, and age at calving). The 

herd average per test day is 100 (Handboek NRS, 1993). It was modeled with 

changes at each calving. If a cow did not have a lactation value in her last 

lactation (e.g., because she was culled shortly after calving), the previous 

lactation value was kept. Longevity was measured as length of productive life: 

the number of days between first calving and last known test day. Because a 

production trait is included in the model, it would be more appropriate to call it 

functional length of productive life. 

Both phenotypes of cows and breeding values of sires for conformation traits 

were tested for their significance in explaining variation in functional length of 

productive life with four different alternatives: 

1. a model including all conformation traits simultaneously and a sire effect, 

2. a model including all conformation traits simultaneously, 

3. a model including only objectively scored conformation traits and a 

separate model wi th only subjectively scored conformation traits, and 

4. a model including only one conformation trait at the t ime. 

Breeding values of sires for longevity were obtained wi th a model without 

conformation traits. Comparing a model including the sire effect wi th a model 

excluding the sire effect gives insight in the extra genetic variation in longevity 

that is not explained by conformation traits. In the third alternative, separate 
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models for objectively and subjectively scored conformation traits were analyzed 

to analyze the effect of dependencies between the two types of conformation 

traits. When analyzing all conformation traits in one model, they were corrected 

for each other. The fourth alternative was restricted to the conformation traits 

that describe the udder because it was expected that these traits would have 

the strongest dependencies among them. Due to large computational problems 

no results were obtained when analyzing the breeding values of the sires for 

udder traits separately in the survival analysis, so the fourth alternative was 

only analyzed using phenotypes of cows. 

Conformation traits were scored during the first lactation of a cow. The 

following conformation traits were included: objectively (linearly) scored on 

scale 1 through 9: heigth (HT, in cm), capacity (CA), rump angle (RA), rump 

width (RW), angularity (AN), rear leg set (RL), claw diagonal (CD), fore udder 

attachment (FU), teat placement (TP), teat length (TL), udder depth (UD), rear 

udder heigth (UH), suspensory ligament (SL); subjectively (descriptively) scored 

on scale 65 through 89: size (SSS), type (TYSS), udder (USS), and feet and 

legs (LSS). For the objectively scored conformation traits, a high score indicated 

a large CA, steep RA, wide RW, strong AN, sickled RL, short CD, strong FU, 

narrow TP, long TL, shallow UD, high UH, and strong SL. CD was not included 

in the analysis of phenotypes because only half of the cows in the data were 

scored for this trait. For the subjectively scored conformation traits, a high score 

indicated a big SSS, desired TYSS, strong USS, functional LSS, and high TOSS. 

When analyzing the phenotypes of the conformation traits, the traits scored on 

a 1 through 9 scale were treated as class variables, and the other conformation 

traits as continuous variables. The breeding values were national evaluations 

with an average of 100, and were included as continuous effects. The sire 

effect was included as a random fixed effect. 

Significance was tested by a likelihood ratio test comparing the full model 

wi th models excluding one effect at a t ime. Estimates of the regression 

coefficients of the conformation traits were obtained. For continuous effects, 

the solutions from the survival analysis are expressed as estimates of the 

parameter vector (b); for fixed effects, they are expressed as risk ratios (RR). 

The estimate of the f ifth class of each trait is arbitrarily set to zero, so the 

hazard of this effect equals one. The RR is the ratio between the hazard of each 

class of an effect and the class with the hazard of one. Because A0(t) is only 
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dependent on t ime, it is the same for each class witin an effect if evaluated at 

the same moment. Thus, the RR is calculated as exp{z(t) 'b}. 

As sires were treated as a class effect in the survival analysis their RR is 

regarded as their breeding value. The correlations between sires' breeding 

values for longevity obtained by survival analysis without conformation traits in 

the model and their national breeding values for conformation traits were 

calculated. Only 55 sires having at least 150 daughters wi th an uncensored 

record were used to calculate the correlations between breeding values. The 

lower limit of 150 uncensored records per sire was imposed to ensure that only 

breeding values of proven bulls were included. 

Results and discussion 
Phenotypic scores in survival analysis 

Significances of the phenotype of conformation traits are shown in Table 1. 

The traits CA, RA, AN, TL, UD, SSS, TYSS, USS, LSS, and TOSS are 

significant (P<0.05) if all conformation traits are analyzed simultaneously in one 

model, regardless whether a sire effect is included or not. The sire effect does 

not explain much variation after the phenotypes for conformation traits of the 

cows are f i t ted. When analyzing objectively and subjectively scored 

conformation traits separately, all traits are highly significant (P<0.01) except 

RW (P = 0.27). HT is only significant if SSS is not in the model. De Jong (1996) 

calculated very strong phenotypic and genetic correlations between HT and SSS 

of 0.99 and 0.93, respectively. Similarly, RL is only significant if LSS is not in 

the model; and FU, TP, UH, and SL are only significant if USS is not in the 

model. In a model wi th only subjectively scored conformation traits, all these 

trait remain significant. Thus the effects of RL, FU, TP, UH, and SL are 

absorbed in the subjectively scored traits. When fitting each udder trait 

separately in the model all traits are highly significant (P<0.01) which is not 

surprising because they were already highly significant when fitting objectively 

and subjectively scored traits separately. When culling decisions are made, 

farmers take into account the phenotypes of CA, RA, TL, UD and all 

subjectively scored conformation traits. From this analysis, it is not clear 

whether culling is on conformation traits directly or on functional traits that are 

at least partly described by conformation traits. 
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Conformation in survival analysis 

Table 2 contains the estimates (transformed to RR) for the significant 

phenotypes of objectively scored conformation traits analyzed simultaneously in 

one model without a sire effect. The f ifth class of every trait is arbitrarely set to 

1, and all other classes are expressed as ratios of these. It appears that a large 

CA results in a higher risk of being culled: cows with the highest score for CA 

have a 17% higher risk of being culled than cows with the lowest score. In 

practice, there is an indication that cows with a high score for CA are more 

often affected by displaced abomasum (A. Hamoen, Chief Classifier of the Royal 

Dutch Cattle Syndicate, 1997, personal communication). For RA, the RR 

decreases rather linearly with increasing score. A steep angle is believed to give 

less problems at calving. Only the highest score, 9, for AN gives a substantial 

increase of the RR. Thus, if two cows are exactly the same (so the same parity, 

hys, CA, etc.) except their AN, the cow with score 9 has 15% more chance of 

being culled than the cow with score 5 for AN. The highest score for TL, so the 

cows with the longest teats, has the highest RR. The RR for UD is especially 

high for scores 1 through 3 and then reaches a plateau. Except for RA it 

appears that the objectively scored traits have a threshold value. For none of 

the traits an optimum was identified. 

Table 2. Estimates and number of uncensored observations (between brackets) per 
class of significant (P<.05) phenotypes of objectively scored conformation traits'. 

Class 

1 

2 

3 

4 

5 

6 

7 

8 

9 

CA 

.97 (166) 

.91 (849) 

1.01 (2904) 

.97 (4954) 

1.00 (10780) 

1.02 (8790) 

1.05 (6915) 

1.08 (4907) 

1.14 (1381) 

RA 

1.13 (710) 

1.12 (3534) 

1.06 (6878) 

1.03 (7951) 

1.00 (9478) 

1.00 (7083) 

.98 (3535) 

.95 (2006) 

.89 (471) 

AN 

1.02 (651) 

1.02 (2568) 

1.02 (5284) 

1.00 (7275) 

1.00 (12719) 

.98 (7207) 

1.03 (3347) 

1.03 (2126) 

1.15 (469) 

TL 

1.00 (1078) 

.94(3091) 

.96 (5445) 

1.00 (7897) 

1.00 (10687) 

1.01 (7467) 

1.06 (3375) 

1.05 (2029) 

1.17 (577) 

UD 

1.45 (103) 

1.26 (1228) 

1.13 (4407) 

1.05 (7609) 

1.00 (12981) 

.97 (8012) 

.98 (4560) 

.99 (2362) 

1.00 (384) 

CA = capacity, RA = rump angle, AN = angularity, TL = teat length, UD = udder depth. 
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The phenotypes of subjectively scored conformation traits were analyzed as 

continuous traits, so the solutions for these effects assume that the risk of 

being culled increases or decreases linearly with the score for each trait. The 

estimate for SSS was positive: 0.015 which means that a 5-point higher score 

results in a 1.08 times higher risk of being culled. In general, high scores for 

conformation traits relating to body measurements of a cow are associated with 

a higher chance of being culled. Apparently bigger cows are culled earlier on the 

farms used in this study. The estimates for the other subjectively scored traits 

were negative, so higher scores are associated with lower chance of being 

culled. Estimates were -0.012, -0.018, -0.010, and -0.018 for TYSS, USS, 

LSS, and TOSS, respectively; which correspond to a decrease in risk of being 

culled by a factor 0.94, 0 . 9 1 , 0.95, and 0.91 if the score for a trait is 5 points 

higher. Weigel (1996) reported a negative correlation between strength and 

length of productive life, which is an indication as well that the largest cows 

have the shortes longevity. 

Breeding values in survival analysis 

When analyzing the national proofs for conformation traits simultaneously in 

one model and including a sire effect, only RA and SL were significant (P<0.05, 

see Table 1). When excluding the sire effect from the model CA, UH, USS, and 

LSS were significant as well. So the sire effect does explain variation for these 

latter conformation traits if the breeding values of the sires of the cows are 

f i t ted, in contrary to when the phenotypes of the cows themselves are f i t ted. If 

a culling decision has to be made, the farmer takes the breeding value for CA, 

RA, UH, SL, USS, and LSS of the cows' sires into account. Of course this 

influence can be indirect: the phenotypes of the cows are partly dependent on 

the breeding values of their sires. As can be seen in Table 1, the phenotypes for 

CA, RA, USS, and LSS were significant as well. If the breeding values for 

objectively and subjectively scored conformation traits are analyzed separately, 

RA and UH are not significant anymore (P = 0.59 and 0.14, respectively). One 

would expect that traits that are significant in a model containing all 

conformation traits would be also significant if some of the (possibly correlated) 

traits are taken out of the model, but for these two traits the opposite is true. 

The breeding values for the traits RW, CD, TP, and SSS become significant 

(P<0.05) while they were not significant with all traits simultaneously in one 
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model. 

The regression coefficients of the significant conformation traits from the 

model wi th breeding values for all conformation traits simultaneously are 

0 .0082, -0.0099, 0.0044, 0 .011 , -0.033, and -0.018 for CA, RA, UH, SL, 

USS, and LSS, respectively. These estimates indicate that a smaller capacity, 

steeper angle, higher udder, stronger suspensory ligament, high score for udder, 

and high score for feet and legs are associated with a lower risk of being culled 

and thus a longer length of productive life. 

When analyzing the phenotypes of the cows more conformation traits had a 

significant effect on longevity than the breeding values of their sires. In making 

culling decisions, the farmer judges a cow more on her own appearance than on 

the breeding value of her sire. Maybe the breeding value of the cow herself 

would explain more variation, although that breeding value also partly depends 

on the breeding value of her sire. 

Correlations between breeding values 

The correlations between breeding values of the 55 sires for longevity and 

conformation traits are in Table 3. Of the objectively scored traits, the breeding 

value for TP had the strongest correlation with the breeding value for longevity: 

-0.55. A higher breeding value for TP is associated with a lower chance of 

being culled. In a previous study (Vollema and Groen, 1997b) TP also was the 

objectively scored conformation trait wi th the strongest genetic correlation wi th 

functional longevity in the most recent dataset. RL had a weak genetic 

correlation w i th functional longevity in that study, as it has in the present study 

as wel l . Vollema and Groen (1997b) concluded that the genetic correlation 

between TYSS and functional longevity was only strong during the process of 

Holsteinisation. In the present study, TYSS is strongly correlated with risk of 

culling, and thus longevity, as well. The process of Holsteinisation took place 

during the eighties and early nineties, so the cows in the data used for this 

study (1985 through 1996) are likely to be influenced by it. 

One might expect that conformation traits of which the phenotype was not 

significant for the risk of being culled (see Table 1) generally have weak 

correlations between the breeding values, and vice versa. This did not hold for 

RW, FU, TP, and UH: these traits were not significant in the phenotypic analysis 
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Conformation in survival analysis 

(Table 1) but all breeding values had correlations with the RR that were stronger 

than 0.36 (Table 3). For SSS the opposite was found: although this 

conformation trait was highly significant in the phenotypic analysis, its 

correlation between breeding values was only -0.080. The genetic relationships 

between length of productive life and conformation traits appears to be stronger 

than the phenotypic relationship. In the prediction of breeding values for 

conformation traits the correlations among conformation traits have not been 

taken into account. In the survival analysis the effects of all conformation traits 

were estimated simultaneously; in other words, they were corrected for each 

other and thus their correlations with functional longevity might be different and 

their significancies will be lower. 

Breeding for longevity 

In many countries, a breeding value for longevity (or lifetime profit) of sires 

either contains direct information on longevity of relatives or indirect information 

on conformation traits (Interbull, 1996). Combining both sources of information 

into one breeding value prediction is straightforward when (co)variances are 

known. The relative weighting of both sources has to change during the lifetime 

of a bull depending on the amount of information becoming available. Both 

Jairath et al. (1996) and Weigel (1996) used the multiple across country 

evaluation procedure to combine direct and indirect information into one index. 

However, wi th this method it is assumed that the residual covariances between 

traits are zero. Incorporating conformation traits in a survival analysis model 

does not give a combined index of direct information on longevity and indirect 

information via conformation. Instead, breeding values from such a model would 

have to be interpreted as "hazard of being culled corrected for conformation 

traits". A selection index for longevity would have to combine a RR as breeding 

value for longevity and a "traditional" breeding value for conformation traits. 

The model used for the survival analysis should then not contain conformation 

traits. Problems might arise from non-linear relationships between the 

phenotypes of longevity and conformation traits (Table 2). Only the linear part 

of the relationships between phenotypes of longevity and genotypes of 

conformation, and between genotypes of longevity and conformation has been 

investigated in this study. This linear part was quite significant for a number of 

traits (Tables 1 and 3). 
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Conclusions 

Conformation traits can play a role in the prediction of breeding values for 

longevity. Especially traits describing the size, rump angle, udder, and feet and 

legs of a cow are significant. Combining both direct and indirect information 

would require separate breeding value predictions for both sources, that are 

weighted into one selection index. 
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General Discussion 

Choices by a breeding organization 
As outlined in the Introduction (Chapter 1) of this thesis, breeding 

organizations have to make four major decisions when incorporating longevity 

into their breeding program. The distinction between these decisions is not as 

sharp as suggested there: in practice, one choice will influence the other. The 

first decision is the breeding goal: uncorrected longevity, functional longevity 

(correction for milk production only), or residual longevity (correction for all 

other traits in the breeding goal). This decision depends solely on the purpose 

for which longevity is included. If the breeding program is aimed at producing 

cows that wil l live longer, uncorrected longevity will be the choice. However, it 

has to be realized that farmers determine the actual longevity of a cow, and that 

part of the improved genetic potential for longevity is not utilized because 

farmers will increase voluntary culling (Van Arendonk, 1985). More generally, 

the economic optimal longevity of a cow is always less than the "technical", or 

biologically possible longevity, and, as outlined in Chapter 1, the longevity 

realized is generally even less. On page 4 of this thesis it has been concluded 

that the economic importance of improving longevity lies in decreasing the 

proportion of involuntary culling. Another fact that has to be emphasized is that 

selection for uncorrected longevity wil l , in practice, mean that selection is 

mainly for milk production, because the production of a cow compared wi th her 

herdmates is by far the most important factor determining longevity (Dohoo and 

Martin, 1984; Hocking etal., 1988; Vollema and Groen, 1997). Because most 

breeding organizations for dairy cows will have milk production in their breeding 

goal and a direct evaluation of milk production traits already, additional 

information will be provided only by functional longevity. Similarly, if traits other 

than milk production that influence longevity (i.e., health, fertility, and 

workability traits) are already in the breeding goal, it can be argued that residual 

longevity should be incorporated. Correction should take place on the 

phenotypic scale, because farmers' culling decisions are based on phenotypic 

observations as well. A measure for production, expressed as a deviation from 

the herd average, is relatively easy to calculate. It is hardly possible to calculate 

a phenotypic measure for farmers' culling for functional traits. Also, an index for 

residual longevity (corrected for all functional traits a farmer takes into account) 

would be hard to interpret for farmers. Functional longevity can be interpreted 

as "potential" longevity. Thus, the potential of a cow to survive regardless of 
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her production is the best alternative to use in practice. Therefore, breeding 

organizations that are already predicting breeding values for health, fertility, or 

workability traits might still choose breeding for functional instead of for residual 

longevity. 

The second decision is which trait breeding organizations prefer to define 

longevity w i th . The outcome of this decision is closely linked to the outcome of 

the first decision: when breeding for functional longevity, one will implicitly have 

a functional longevity trait in the breeding goal. The genetic gain per year 

depends on the reliability of the index and the genetic variance of the trait 

(Rendel and Robertson, 1950). The reliability of the index depends partly on the 

heritability of the trait. From Chapters 2 and 3 the lifetime milk production of a 

cow appears to have the highest heritability: around 0.17. The other traits 

describing the lifetime of a cow, such as herdlife, length of productive life, and 

total number of days in lactation, have a heritability that is around 0.09. 

Functional lifetime traits have lower heritabilities: around 0.07. Stayability traits 

are binary traits and thus their information content is less than lifetime traits and 

their heritability is lower: around 0.05. 

Apart from the heritability and variance it is also important to realize how 

long it will take before data on certain traits become available. In the literature 

not much attention has been paid to the balance between the low heritability of 

stayability traits that are known relatively early, and the higher heritability of 

lifetime traits that take a longer t ime to be known (Chapter 2). Also in this thesis 

no attention has been paid to this issue. 

Compromises between lifetime and stayability traits are possible. Harris et 

al. (1992) introduced the so-called "opportunity groups": cows are given a 

maximum lifetime (opportunity), and cows with the same opportunity are in the 

same group. If cows are culled before their maximum lifetime is achieved, their 

actual lifespan is known; if not, their maximum lifetime is assumed to be their 

actual lifespan. VanRaden and Klaaskate (1993) introduced a trait called 

"months in milk at 84 months of age": the total number of months a cow was in 

milk until 84 months of age, with a maximum of ten months of milking per 

lactation. If a cow did not have the opportunity to reach 84 months of age at 

the moment of data collection, her lifetime was predicted using average herd 

parameters for survival. Brotherstone et al. (1997) used the same approach: if a 

cow was still alive at the moment of data collection, the number of lactations 
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she would survive from that moment was predicted using the population 

expectation. Although both VanRaden and Klaaskate (1993) and Brotherstone et 

al. (1997) showed that their predicted longevity trait had reasonably strong 

correlations wi th longevity traits measured, it is doubtful whether analysing 

predictions as if they were true observations is theoretically justified. The error 

terms are distributed differently, and predictions should be weighted differently 

from observations. 

Another reason to choose for a certain trait is the data that are available. 

As stated before, information on longevity can be easily obtained from milk 

recording data, but using only these data implies that no information on cows 

that were culled before their first calving is available. In such a case it would not 

be justified to use herdlife as a measure for longevity. Using Canadian data, 

Hocking et al. (1988) found that nearly 25% of the potential heifers were culled 

or had died before first calving. Martinez et al. (1983) found that calf mortality 

was not only influenced by the sex of the calf, parity of the dam, and gestation 

length, but also by the sire of the calf. However, their estimate of the heritability 

of calf mortality was low: 0 . 0 1 . If only milk recording data are available, a trait 

describing the productive life of a cow instead of the herdlife should be used, 

and it has to be realized what exactly is measured and thus what is being bred 

for. Again, the choice of a longevity trait mutually influences the choice of the 

breeding goal. If data on cows are available from birth onwards, herdlife could 

be used, but a separate trait describing survival until the first calving next to the 

length of productive life would be more informative. Another example of how 

the available data influence the trait of choice is given in Brotherstone et al. 

(1997). In general, the trait with the most detailed unit of measurement can 

identify the most variation between animals and is thus the most informative, 

which is also reflected in the higher heritabilities of these traits (see Chapters 2 

and 3: the heritability of number of lactations is generally lower than that of 

length of productive life measured in days). But in Great Britain, only 305-d 

lactation records were stored in the past, and thus Brotherstone et al. (1997) 

had to use number of lactations to measure longevity. 

The second choice is also closely related to the question which method to 

use, i.e., the third choice. For traits other than longevity, breeding values are 

usually predicted wi th a best linear unbiased prediction, while for longevity 

survival analysis can be used. If one chooses to use a stayability trait, one 
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cannot use survival analysis because this method requires continuous longevity 

traits (Cox, 1972). Because survival analysis allows the use of censored 

records, it combines early availability of an index with the use of a lifetime trait. 

If one chooses to use length of productive life, a Weibull model can be assumed 

for the baseline hazard, which simplifies the calculations with this method 

(Ducrocq et ai, 1988). Still, this method requires substantially more computer 

capacity than a best linear unbiased prediction analysis, and for analysing large 

datasets only a sire model can be used. This might be the reason for not 

choosing survival analysis in particular situations. However, wi th current 

computer capacities in most developed countries it is possible to analyse large 

datasets with survival analysis (Ducrocq, 1994). When using a sire model, the 

breeding value for longevity of a cow will be calculated from the breeding value 

of her sire and her maternal grandsire, assuming that the bulls are unrelated. 

The loss of information due to the use of a sire model instead of an animal 

model is expected to be low. Combining these arguments with the fact that 

survival analysis allows modelling of effects in a time-dependent way, resulting 

in a more accurate model, yields the conclusion that survival analysis should be 

used whenever possible. The resulting estimates of hazards can be transformed 

to traits that are easier to interpret for farmers, such as average expected 

longevity of daughters of a certain bull. 

The fourth choice is traits to be used in the index. The highest correlation 

between the breeding goal and the selection index is achieved if the same trait 

is both in the breeding goal and in the index. Depending on the heritabilities of 

the traits, the correlations among traits, and the number of daughters available 

for the breeding value prediction, indirect prediction of breeding values (so using 

different traits in the index than in the breeding goal) might be advantageous 

over direct prediction. From the literature, the maximum reliability of indirect 

prediction using conformation traits in the index is less than 60% (Boldman et 

al., 1992; Weigel et al., 1995). Apart from the question which traits in the index 

give the highest reliability, problems might arise with the availability of direct 

information on longevity of daughters in the early life of a bull, especially when 

using lifetime traits to measure longevity. But even if using stayability traits or 

survival analysis, it will take longer before an index for longevity can be 

calculated with the same reliability as the one for milk production. This matter 

will be discussed in more detail in the following paragraphs. It has to be realized 

134 



General Discussion 

that, in general, farmers require a breeding value prediction with a certain 

minimum reliability, while breeding organizations think it more important to have 

an early prediction. 

Factors influencing longevity 
To predict unbiased breeding values for longevity, it is important to know 

the factors that influence longevity. Milk production compared wi th herdmates is 

the most important factor, but in making culling decisions, a farmer also 

considers parity and stage of lactation a cow is in (Ducrocq, 1994; Van de 

Venne, 1987; Vollema and Groen, 1998). Van Arendonk (1985) showed that 

the optimum moment of culling within a lactation depends on the relative 

production level and parity of a cow. 

An effect wi th a large influence on longevity is the herd by year-season 

interaction. In general, this effect accounts for differences in culling strategies in 

different seasons, for instance, because a certain calving pattern is desired. 

When analysing longevity data from a country of the European Union, it is 

especially important to include a herd by year-season effect in the model. 

Ducrocq (1994) noticed an increase in culling in the three months preceding the 

end of the quota year, and also in this thesis the effect of herd by year-season 

was always found highly significant. In Figure 1 of Chapter 3 of this thesis, the 

effect of implementation of the quota system on longevity of dairy cows is 

shown. Not only did the farmers cull an extra 20% of their cows, also their 

farming strategy changed. Some started a complete new business besides their 

milking cows, for instance, by growing f ish. Others bred their lower-producing 

cows wi th beef bulls. When editing the data for the analyses of Chapters 5 and 

6, it appeared that many farmers had been milking some of the resulting 

crossbred cows, presumably because prices of beef calves dropped due to the 

large supply of such calves and because they had a surplus of feed and housing 

available. Only very few of these crossbred beef cows were milked for more 

than one lactation. The culling strategy was apparently different for the 

crossbred beef cows than for the purebred milking cows. For that reason, herds 

with crossbred beef cows were excluded from the analysis. However, when 

predicting national breeding values for longevity, all herds have to be included. 

A solution could be to regard different breeds of cows within a herd as different 

subherds, assuming that cows only have to compete with cows of the same 
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breed or wi th the same breeding goal within a herd. Another solution could be 

to include a herd by breed interaction in the model. 

Another strong reason to include a herd by year-season interaction in the 

model is the effect of the crossing with Holstein-Friesian bulls. In the 

Netherlands, this occurred in the eighties and the original Dutch-Friesian genes 

in the population of Black-and-White cows were replaced by Holstein-Friesian 

genes. This "Holsteinization" process is nicely shown in Table 1 of Chapter 4. 

The effects of the implementation of the quota system and the Holsteinization 

cannot be seperated in the Netherlands. The quota system speeded up the 

Holsteinization, and together both effects caused a temporary decrease in the 

longevity of dairy cows realized (Figure 1 of Chapter 3). The growing concern 

about the decrease in longevity of dairy cows realized seems not to be justified, 

although this is hard to prove for the dairy cow population nowadays, because 

these cows have not been culled yet. No estimation of the genetic trend for 

longevity has been made using Dutch data, but Blanchard et al. (1983) found a 

positive genetic trend for both production and stayability in Jersey cows. Thus, 

a positive genetic trend for production is not necessarily associated with a 

negative trend for longevity. 

Also in other countries the process of Holsteinization took place and 

seems to have influenced longevity. For instance, in Australia, Jersey cows 

were replaced by (crossings of) Holstein cows, and heritabilities of longevity 

differ between cows which first calved before and after 1979 (Madgwick and 

Goddard, 1989). The strong correlation between longevity and total score in 

Great Britain (Brotherstone and Hill, 1991) might be caused by Holsteinization as 

well. Vollema and Groen (1997) concluded that the correlation between 

longevity and type was only substantial during the process of Holsteinization. 

Ducrocq (1994) found no influence of age at first calving on longevity. 

However, other researchers (Rogers e r a / . , 1991 ; Vollema and Groen, 1998; 

Vukasinovic et al., 1997) did find such an influence. Cows that were younger at 

first calving had less chance of being culled, and thus had a longer productive 

life. A high age at first calving can be an indication of problems with fertility, 

which might be a reason for involuntary culling. The average age at first calving 

stayed rather constant in the Netherlands (Figure 1, Chapter 3). 

Of course, other factors influence longevity as well. For instance, the 

prices of calves, feed, and carcasses highly influence a farmer's culling decision 
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and thus the longevity of his cows (Van Arendonk, 1985; VanRaden and 

Klaaskate, 1993). In theory, these prices can be included in a survival analysis 

model as time-dependent covariables and their significance can be investigated. 

In practice, when analysing longevity data, these factors are usually unknown 

and cannot be included in the model. 

Longevity and functional traits 
One of the reasons that the research described in this thesis was 

conducted was the growing demand of Dutch farmers for a breeding value for 

functional traits. In the Netherlands, disease incidences are not widely recorded 

but functional longevity might be used as an index for functional traits. Results 

from the literature on culling reasons of dairy cows show that after milk 

production, unsatisfactory reproduction was the main stated reason for culling. 

Another way to approach the relationship between longevity and functional 

traits is by analysing longevity and data measuring functional traits, e.g., 

incidence of mastitis, dystocia, number of inseminations per conception, and 

milking speed. It was intended to use survival analysis on Danish data to obtain 

the significance and effect of mastitis on culling of dairy cows. In Denmark, it is 

known which cows have been treated for mastitis. Different data files were 

created which varied in the length of the period after the mastitis incidence 

during which mastitis influenced the farmer's culling decision. By comparing the 

likelihoods of the different models, the model which best described the influence 

of mastitis on the risk of being culled would be identified. Results of this study 

are not available yet. Thus, only results from the literature could be included in 

this thesis. 

The genetic relationship between longevity and functional traits was 

studied by Beaudeau etat. (1994a and b). He concluded that udder health and 

reproductive disorders from both previous and current lactations were the main 

reasons for culling related to health problems. However, in general a disease had 

a rather short-term effect; farmers did not consider the whole disease history of 

a cow in making culling decisions. Udder disorders, teat injuries, milk fever, 

ketosis, and assistance at calving increased the risk of being culled early in 

lactation while abortion, metritis, poor reproductive performance, and mastitis 

resulted in a higher risk of being culled later in lactation. Erb et al. (1985) 

concluded that for heifers mastitis and a failure to conceive at first service were 
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the most important risk factors. For muciparous cows mastitis, dystocia, and 

poor breeding performance were the most important. The authors also looked at 

underlying reasons for culling: milk fever increased the risk of reproductive 

disorders, and thus contributed to increased culling due to poor breeding 

performance. Gröhn et al. (1997) found something similar: having ovarian cysts 

was highly significant for culling a cow, but if conception status was included in 

the model as well, ovarian cysts had no effect. 

In this thesis, workability traits are regarded as functional traits, while in 

other studies they are regarded as primary traits. Madgwick and Goddard (1989) 

and Visscher and Goddard (1995) estimated the genetic correlation between 

survival of the first lactation and milking speed and between survival of the first 

lactation and temperament. Both were found to be around 0.30. Genetic 

correlations between survival of later lactations and milking speed and between 

survival of later lactations and temperament were somewhat weaker (around 

0.20). 

Apparently there is a substantial relationship between risk of being culled, 

or survival, or longevity, and functional traits. Thus, when breeding for 

functional longevity, the genetic potential for functional traits will be improved 

as wel l . However, from the results of this thesis it cannot be predicted to what 

degree each functional trait will be improved. 

Breeding value prediction 
From Chapter 5 it can be concluded that survival analysis is the best 

method to predict breeding values for longevity, because it allows the inclusion 

of censored records and thus an unbiased prediction for younger bulls. 

Vukasinovic et a/. (1997) concluded that such a breeding value could be based 

on 30 to 4 0 % censored records, but they did not take into account the 

relationship between sires. Moreover, their results were influenced by the data 

selection. From Danner et al. (1993) it can be concluded that over 60% of 

censored records still give a reliable breeding value prediction. In both studies no 

attention has been paid to the influence of the number of daughters per bull. In 

Figure 1 the availability of data during the early life of an average breeding bull 

in the Netherlands is shown. When the bull is 15 months old, his sperm is 

distributed across the country for a couple of weeks only. His test daughters 

will be born when he is two years old. On average, each bull has 110 test 
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daughters. Assuming that all daughters have their first calving at 24 months of 

age and that their lactation length is 12 months, the available information is 

sufficient for a reliable breeding value prediction for production when the bull is 

five years old. A t that moment it is decided whether a bull is culled or will be 

further used as a proven bull. The average culling percentage in the first 

lactation in the Netherlands is around 30%, so at that t ime the longevity realized 

of only 33 test daughters is known. This is not enough for a reliable breeding 

value prediction to present to farmers, even if using survival analysis. 

Therefore, a breeding organization might prefer to use additional traits for 

early prediction of a breeding value for longevity. Conformation traits are a logic 

choice, because they can be measured early in a cow's life and have reasonably 

strong relationships with longevity traits (Chapters 2, 4 , and 6). In the 

Netherlands, around 55% of the farmers participate in the classification 

program, so around 60 daughters per bull would have information on 

conformation traits at the end of the first lactation (Figure 1). In practice, a 

breeding value predictor for longevity will rely on parental information and 

conformation traits early in a bull's life. With an increasing number of daughters 

12 24 36 48 60 72 84 96 

t t 
start lactation test daughters 

birth test daughters 

test inseminations end first lactation test 
daughters, data available: 
- production (n=l 10) 

birth bull - longevity (n=33) 
- conformation (n=60) 

end first lactation 
second crop daughters 

Figure 1 . Schematic outline of the availability of data during the early life of a 

breeding bull in the Netherlands (in months). 
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being culled, the information on longevity of the daughters will gain importance. 

Breeding values for longevity and conformation traits will have to be predicted 

separately and combined into one index. Relationships between longevity and 

conformation traits have been studied extensively in the literature, but for this 

breeding value predictor, the relationship between the risk of being culled and 

conformation traits needs to be known. In Chapter 6 this has been analysed 

using a limited number of data, but as shown in Chapter 4 the period over 

which data are available can have a substantial impact on the results found. 

Thus, it is recommended to estimate the relationships using as recent data as 

possible, and re-estimate them over t ime. A possible drawback of the use of 

conformation traits is that, although the correlations with longevity traits are 

reasonably strong, it remains unclear whether conformation traits are really 

correlated with functional traits or whether some farmers practise voluntary 

culling for conformation as well. 

The estimates of sire effects in the survival analysis are on the log scale, 

and transformed to a risk of being culled on the observed scale. For presentation 

to farmers it might be more informative to transform the risk ratio of a sire and 

the baseline hazard function into the average length of productive life of its 

daughters, or the fraction of daughters surviving a certain number of years of 

productive life, or to transform it into a standardized breeding value with an 

average of 100 and a certain standard deviation. Standard errors of estimates of 

sire effects are expressed on the log scale, and standard errors of the breeding 

goal are known on the observed scale. Thus, assigning a reliability to a breeding 

value prediction is not straightforward. An approximation based on the number 

of informative daughters is a good alternative. Also the genetic gain of longevity 

expressed as risk of being culled will need a transformation. 

Main conclusions 
Survival analysis should be used whenever possible to estimate breeding 

values for longevity. When calculating longevity from milk recording data, 

functional length of productive life should be analysed. The best way to predict 

breeding values for longevity in the Netherlands is to combine the risk ratio for 

sires obtained from a survival analysis which is purely based on the longevity of 

daughters, wi th breeding values for conformation traits. Conformation traits 

describing the udder have the strongest relationship with longevity, followed by 

140 



General Discussion 

the subjective score for feet and legs and the objective score for rump angle. If 

milk recording data are joined wi th birth registration data, this additional 

information could be used for a separate breeding value for survival until f irst 

calving. 
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Summary 

This thesis deals with several aspects of longevity of dairy cattle. When 

breeding organizations want to implement longevity in their breeding programs 

they have to make several decisions. This thesis aims to give tools to make 

those decisions. 

Chapter 2 gives an overview of the literature containing estimates of 

heritabilities of longevity traits and correlations between longevity and 

conformation traits. The results of Chapters 3 and 4 of this thesis are included 

as wel l . There are many different definitions of longevity. In this thesis, two 

distinctions are made: 1. between lifetime and stayabiiity traits, and 2. between 

uncorrected and functional longevity traits. Lifetime traits measure the period a 

cow is alive or producing, and are usually expressed in days. Stayabiiity traits 

measure whether or not a cow is alive at a certain point in t ime. Functional 

longevity traits are corrected for milk production, thus aiming to be a better 

measure for involuntary culling. In Chapters 1 and 7 of this thesis, residual 

longevity is introduced, which is longevity corrected not only for milk production 

but also for all other traits that are already in the breeding goal. So far, this trait 

has not been used in practice. From the literature it is concluded that, in 

general, heritability of longevity traits is below 0.10. The heritability of 

stayabiiity traits is lower (around 0.04) than that of lifetime traits (around 0.09), 

and the heritability of functional longevity traits is lower (around 0.07 for 

lifetime traits and around 0.03 for stayabiiity traits) than that of uncorrected 

longevity traits. Genetic correlations among different longevity traits are 

generally strong. Genetic correlations between longevity and conformation traits 

are strongest for conformation traits describing the mammary system and, to a 

lesser extent, feet and legs. The reliability of a breeding value prediction of a 

sire based solely on the conformation information of his daughters is 

approximately 55% at maximum. 

In Chapter 3, the longevity realized of cows born in different years (1978 

through 1985) has been calculated. Longevity of cows born in 1978 through 

1984 decreases, and longevity of cows born in 1985 is at the same level as the 

longevity of cows born in 1978. In 1984, the quota system was implemented in 

the Netherlands and farmers culled 20% more cows than their normal annual 

culling percentage. These cows, of course, were born before 1984. Besides this 

process, during the eighties large-scale crossing with Holstein-Friesian bulls took 

place. The original Dutch-Friesian cow population was replaced by Holstein-
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Friesians, and this process was accelerated by imlementation of the quota 

system. Both processes not only affected longevity of dairy cows realized in the 

Netherlands, but also the estimates of heritabilities. Data on cows born in 1978, 

1982, or 1985 were used to estimate heritabilities, and the estimates were 

highest for the 1978 dataset, lower for the 1982 dataset, and lowest for the 

1985 dataset. Possible explanations are that the population was under strong 

selection during the period considered, that the genetic background of the 

population changed, and that under the quota system, farmers base their culling 

decisions on a shorter planning horizon, thus increasing the environmental 

variation of longevity traits. 

In Chapter 4 , data on cows born in different years (1978, 1982, and 

1989/1990) were used to estimate genetic correlations between longevity and 

conformation traits. These parameters were also affected by the changing 

population structure during the eighties. In the 1978 data file, the correlation 

between functional herdlife and type was rather weak (0.16) while in the 1982 

data file, this correlation was very strong (0.46). For the 1989/1990 data file, 

only stayability traits could be analysed because cows had not had enough time 

to be culled. The correlation between functional stayability until 48 months of 

age and type was 0 .21 . The strongest correlation was between functional 

stayability and the subjective score for udder (0.93), followed by the subjective 

score for feet and legs (0.43). The estimate of 0.93 is probably too high but 

also from other studies it was concluded that, apart from production, the udder 

is the most important factor determining longevity of a dairy cow. From 

Chapters 3 and 4 it was concluded that especially in an upgrading population 

estimates of genetic parameters should be based on the most recent data 

possible, and that estimation of these parameters should be repeated regularly. 

In Chapter 5 the value of a relatively new method in animal breeding was 

investigated: survival analysis. Survival analysis differs in two aspects from 

traditional methods of analysis: 1. it correctly utilizes information from censored 

records, i.e., records of cows that are still alive at the moment of data 

collection; and 2. effects can be modelled in a time-dependent way, yielding a 

more realistic model. Breeding values of sires for longevity were estimated in 

three different ways: as the average realized longevity of the sire's daughters, 

wi th a best linear unbiased prediction, and with survival analysis. This was done 

using data from small and from large farms to identify a possible genotype by 
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environment interaction. The phenotypic average of the sire's daughters had 

weak rank correlations with the other two methods of breeding value prediction 

(ranging from -0.32 to 0.46). The correlation between the best linear unbiased 

prediction and the survival analysis prediction was strong (-0.91 and -0.94 on 

small and large farms, respectively) if only uncensored records were used in the 

survival analysis, and weaker (-0.71 on both small and large farms) if censored 

records were included as well. Correlations were negative due to the definition 

of the traits: in the best linear unbiased prediction the length of productive life 

was analysed, and in the survival analysis the risk of being culled. A long length 

of productive life is associated with a small risk of being culled. Thus it was 

concluded that best linear unbiased prediction and survival analysis mainly differ 

by the data that can be included in the analysis. No different rankings of sires 

on small or large farms were found with any of the three methods. From the 

survival analysis, it appeared that cows with a high percentage of Holstein-

Friesian genes had a lower chance of being culled than cows with a low 

percentage, confirming the hypothesis in Chapters 3 and 4. 

Even though censored records can be analysed as well in survival 

analysis, a certain number of uncensored data is needed for a reliable breeding 

value prediction. Young bulls will probably not have a sufficient large number of 

daughters that have already been culled. Thus, conformation traits might be 

used for an early breeding value prediction, because they have reasonably 

strong correlations with longevity and can be measured early in a cow's life. In 

practice, a breeding value prediction will contain parental information on 

longevity, direct information on longevity of a sire's daughters, and indirect 

information on conformation of a sire's daughters. In Chapter 6 survival analysis 

was used to investigate the importance of conformation traits for the risk of a 

cow to be culled. This risk was corrected for milk production. Both the 

phenotypes of the cows themselves and their sires' breeding values for 

conformation were included in a model. The cows' phenotypes explained more 

variation in the risk of being culled than their sires' breeding values. In general, 

smaller cows with a steep rump angle, shallow udder, high score for udder and 

for feet and legs had the lowest chance of being culled. Survival analysis was 

also used to predict breeding values of sires for longevity based solely on the 

longevity of their daughters. These breeding values were correlated wi th the 

sires' national proofs for conformation traits, to obtain approximations of genetic 
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correlations. The correlations were strong for nearly all conformation traits 

except height, rear legs set, and size. In the national proofs the conformation 

traits were not corrected for each other, while in the survival analysis they 

were. 

In Chapter 7 it was argued that survival analysis should be used 

whenever possible to predict breeding values for longevity, even though wi th 

current computer capacities only a sire model can be used. Choosing this 

method implies that a lifetime trait has to be analysed. If length of productive 

life is analysed, a Weibull model can be assumed, which simplifies the 

calculations. In practice, this breeding value prediction will have to be combined 

with information on conformation to obtain a reliable breeding value for 

longevity early in a bull's life. Because most breeding programs of dairy cows 

pay already much attention to milk production, functional longevity will be more 

informative for breeding decisions than uncorrected longevity. 
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In dit proefschrift worden verschillende aspecten van de levensduur van 

melkkoeien in een fokprogramma belicht. Aan de orde komen de schattingen 

van erfelijkheidsgraden voor verschillende levensduurkenmerken, de relaties 

tussen levensduur- en exterieurkenmerken, en de verschillende methoden van 

fokwaardeschatting voor levensduur. Met behulp van de resultaten die in dit 

proefschrift beschreven staan, kunnen fokkerij-organisaties gericht kiezen hoe ze 

een fokwaardeschatting voor levensduur zullen implementeren. 

Hoofdstuk 2 geeft een overzicht van de literatuur met schattingen van 

genetische parameters voor levensduurkenmerken en van de relatie tussen 

levensduur en exterieur. Ook de resultaten van Hoofdstuk 3 en 4 zijn in dit 

overzicht verwerkt. Opvallend is het grote aantal verschillende kenmerken dat in 

de loop der jaren gebruikt is om levensduur te meten. In dit hoofdstuk wordt 

onderscheid gemaakt tussen kenmerken die de werkelijke lengte van de 

levensduur meten (bijvoorbeeld het aantal dagen tussen geboorte en afvoer, of 

tussen de eerste afkalving en afvoer) en de kenmerken die de overleving tot een 

bepaald moment meten (bijvoorbeeld het wel of niet afgevoerd zijn op 36 

maanden na eerste keer afkalven, of het wel of niet beginnen aan de tweede 

laktatie). De eerste groep levensduurkenmerken wordt "duurkenmerken" 

genoemd, de tweede groep "overlevingskenmerken". Daarnaast is onderscheid 

gemaakt tussen levensduurkenmerken die gecorrigeerd zijn voor melkproductie 

en kenmerken die dat niet zijn. Gecorrigeerde kenmerken zijn een maat voor de 

onvr i jwi l l ige afvoer van melkkoeien en worden hier funct ionele 

levensduurkenmerken genoemd. 

De erfelijkheidsgraden van levensduurkenmerken zijn over het algemeen 

laag (maximaal 0,10). De duurkenmerken hebben een wat hogere 

erfelijkheidsgraad dan de overlevingskenmerken, en de ongecorrigeerde 

levensduurkenmerken een wat hogere erfelijkheidsgraad dan de functionele 

kenmerken. 

Uit Hoofdstuk 3 blijkt tevens dat de invoering van de superheffing en het 

op grote schaal inkruisen met Holstein Friesian stieren ("holsteinisatie") grote 

invloed hebben gehad op de levensduur van de Nederlandse melkkoeien. Niet 

alleen is hierdoor de gerealiseerde levensduur in de jaren tachtig tijdelijk gedaald, 

ook de erfelijkheidsgraad blijkt in deze periode verlaagd te zijn. Uit Hoofdstuk 4 

blijkt dat de holsteinisatie ook invloed heeft op de relatie tussen levensduur en 

exterieur. Was het bij gegevens van vóór of na de holsteinisatie zo dat de 
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correlaties sterker waren tussen functionele levensduurkenmerken en 

exterieurkenmerken dan tussen ongecorrigeerde levensduurkenmerken en 

exterieurknemerken, tijdens de Holsteinisatie waren beide correlaties ongeveer 

gelijk. Hieruit blijkt dat correctie voor melkproductie weinig zinvol is voor 

gegevens uit die periode; kennelijk was de vrijwillige afvoer op een ander 

kenmerk gebaseerd: type. De correlatie tussen levensduur en type is zwak in 

gegevens vóór en na de Holsteinisatie, maar bijzonder sterk in de periode tijdens 

de Holsteinisatie. Ook uit de literatuur (Hoofdstuk 2) wordt duidelijk dat de 

genetische parameters van levensduurkenmerken afhangen van het fokdoel van 

de melkveehouders. Zeker in een populatie die aan veranderingen onderhevig is, 

is het raadzaam genetische parameters te schatten op basis van zo recent 

mogelijke gegevens en deze schattingen regelmatig te herhalen, om er zeker van 

te zijn dat de parameters zo goed mogelijk aansluiten bij de huidige populatie. 

In Hoofdstuk 5 wordt een nieuwe methode om levensduurkenmerken te 

analyseren geïntroduceerd: de survival analyse. Deze methode verschilt op twee 

punten wezenlijk van de methoden die tot nu toe gebruikt werden: 1. gegevens 

van koeien die nog niet afgevoerd zijn (dus waarvan de gerealiseerde levensduur 

nog niet bekend is) kunnen in de analyse worden gebruikt, en 2. het is mogelijk 

om effekten tijdsafhankelijk in het model op te nemen. Zo wordt bijvoorbeeld 

niet de melkproductie in de eerste of laatste laktatie opgenomen, maar verandert 

de productie in elke laktatie. Drie verschillende methoden om fokwaarden voor 

levensduur voor stieren te schatten werden met elkaar vergeleken op basis van 

de onderlinge (rang)correlaties: de gemiddelde gerealiseerde levensduur 

(fenotypisch) van de dochters van een stier, de BLUP fokwaarde van een stier 

en de fokwaarde uit de survival analyse. Het bleek dat het dochtergemiddelde 

weinig tot niets te maken had met de genetische waarde van een stier voor 

levensduur. Het verschil tussen fokwaarden verkregen met BLUP en survival 

analyse kwam voornamelijk voort uit de extra gegevens (namelijk die van de 

koeien die nog niet afgevoerd zijn) die konden worden geanalyseerd. Tevens 

werd gekeken of de rangschikking van stieren op grote en kleine bedrijven 

verschillend was, bijvoorbeeld door een interaktie tussen genotype en milieu. Dit 

bleek niet zo te zijn. 

Met survival analyse is het mogelijk gegevens van koeien die nog niet zijn 

afgevoerd mee te nemen in de analyse. Daardoor krijgen de jongere stieren een 

zuiverder fokwaarde dan met de tot nu toe gebruikelijke methoden. Echter, er 
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Samenvatting 

moet een zeker percentage (uit de literatuur: 30 tot 40%) van de dochters van 

een stier afgevoerd zijn alvorens een betrouwbare fokwaardeschatting verkregen 

wordt. Een oplossing zou kunnen zijn om gebruik te maken van een 

gecombineerde index met informatie over exterieur en levensduur. Exterieur 

wordt dan gebruikt om vroeg in het leven van een stier een voorspelling van de 

fokwaarde voor levensduur te doen. Naarmate meer bekend wordt over de 

werkelijk gerealiseerde levensduur van de dochters van een stier wordt deze 

directe informatie belangrijker in de fokwaarde voor levensduur. Vandaar dat in 

Hoofdstuk 6 de relatie tussen levensduur en exterieur met behulp van survival 

analyse onderzocht is. 

Het blijkt dat de fenotypes van koeien voor bepaalde exterieurkenmerken 

significant verband vertonen met de kans op afvoer (en dus de levensduur) van 

melkkoeien: inhoud, kruisligging, bespiering, speenlengte, uierdiepte, en de 

bovenbalkkenmerken ontwikkeling, type, uier en benen. Voor sommige van deze 

kenmerken (namelijk inhoud, bespiering, speenlengte en uierdiepte) is het 

verband tussen de score voor het kenmerk en de kans op afvoer niet rechtlijnig. 

De fokwaarde van stieren voor exterieurkenmerken was minder van invloed op 

de kans op afvoer van hun dochters. Inhoud, kruisligging, achteruierhoogte, 

ophangband en de bovenbalkkenmerken uier en benen waren significant. Uit 

deze analyse is niet te achterhalen of een veehouder de fokwaarde van de vader 

van een koe meeneemt in zijn afvoerbeslissing, of dat het hier gaat om een 

indirect effect middels het fenotype van de koe. De correlaties tussen 

fokwaarden van stieren voor levensduur, geschat met behulp van survival 

analyse zonder exterieurkenmerken in het model, en officiële fokwaarden voor 

exterieur varieerden van -0,57 tot 0,45. Deze correlaties zijn een goede 

benadering van de genetische correlaties. De correlaties waren het sterkst 

(kleiner dan -0,40 of groter dan 0,40) voor inhoud, vooruieraanhechting, 

speenplaatsing, speenlengte, uierdiepte, ophangband en de bovenbalkkenmerken 

uier en benen. 

De belangrijkste conclusies van dit proefschrift zijn dat de levensduur van 

Nederlandse melkkoeien sterk is beïnvloed door het invoeren van de 

superheffing en het inkruisen met Holstein Friesian stieren. De erfelijkheidsgraad 

van levensduurkenmerken is laag. Exterieurkenmerken, met name de uier- en 

beenkenmerken, hebben een redelijk sterke correlatie met levensduur en kunnen 

dus gebruikt worden als voorspeller van levensduur. Een fokwaarde voor 
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levensduur in de praktijk moet gebaseerd zijn op directe informatie van de 

levensduur van dochters van een stier, geanalyseerd met behulp van de survival 

analyse en gecorrigeerd voor productie, en indirecte informatie van het exterieur 

van dochters van een stier. 
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