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Summary

Methods to formulate and maximize response to selection for a quantitative trait over multiple

generations when information on a quantitative trait locus (major gene) is available were

developed to investigate and optimize response to selection in mixed inheritance models.

Deterministic models with and without gametic phase disequilibrium between the major gene and

other genes that affect the trait (polygenes) were considered. Genetic variance due to polygenes

was assumed constant. Optimal control theory was used to formulate selection on an index of

major gene effects and estimates of polygenic breeding values and to derive index weights that

maximize cumulative response over multiple generations. Optimum selection strategies were

illustrated using an example and compared with mass selection and with selection with full

emphasis on the major gene (genotypic selection). The latter maximizes the single-generation

response for a major gene with additive effects. For the example considered, differences between

selection methods in cumulative response at the end of a planning horizon of 5, 10, or 15

generations were small but responses were greatest for optimum selection. Genotypic selection had

the greatest response in the short term but the lowest response in the longer term. For optimum

selection, emphasis on the major gene changed over generations. However, when accounting for

variance contributed by the major gene, optimum selection resulted in approximately constant

selection pressure on the major gene and polygenes over generations. Suboptimality of genotypic

selection in the longer term was caused not so much by gametic phase disequilibrium but rather by

unequal selection pressure on the major gene (and, therefore, on polygenes) over generations, as

frequency and variance at the major gene changed. Extension of methods to more complex

breeding structures, genetic models and objective functions is discussed.

1. Introduction

Current breeding programmes for quantitative traits

in livestock involve selection of parents on estimates

of their breeding values, without knowledge of the

individual’s genotype for individual genes. Typically,

breeding values are estimated on the basis of pheno-

typic information on the animal itself and its relatives,

using Best Linear Unbiased Prediction (BLUP)

procedures (Henderson, 1988). Recent developments

in molecular genetics are, however, leading to the

uncovering of individual genes that have an effect on

quantitative traits (quantitative trait loci, or QTLs)
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and of genes (genetic markers) that are closely linked

to QTLs. Use of information on identified QTLs in

breeding programmes, along with the traditional

phenotypic information, can lead to enhanced rates of

genetic improvement, especially in cases where pheno-

typic information is not available on selection can-

didates or expensive to collect, or if the trait has low

heritability (Smith & Simpson, 1986).

Optimum use of information on identified QTLs in

selection programmes requires development of selec-

tion criteria that combine information from single

genes with phenotypic information. Principles behind

statistical procedures to compute such selection

criteria have been developed based onBLUP (reviewed

in Van Arendonk et al., 1994). However, Gibson
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(1994) showed that, although such selection criteria

can maximize genetic progress in the short term (i.e. in

the current generation), they may not maximize

response to selection in the longer term. In fact,

Gibson (1994) found that traditional selection, based

on phenotypic information alone, resulted in greater

genetic improvement in the longer term than selection

on a combination of phenotypic information and

information on identified genes (genotypic selection).

Thus, selection criteria that are optimal in the short

term may not lead to maximum response in the longer

term. Similar results were found by Woolliams &

Pong-Wong (1995) with selection on a major gene and

by Ruane & Colleau (1995) with BLUP selection on

genetic markers linked to a major gene. For sex-

limited traits, Van der Beek & Van Arendonk (1994)

and Ruane & Colleau (1996) found use of information

from genetic markers linked to a major gene to result

in greater response than selection without information

from genetic markers, regardless of the length of the

planning horizon. This does not, however, mean that

the BLUP selection criterion used in these studies

maximized responses to selection.

Loss of longer-term response with genotypic selec-

tion or with BLUP selection on genetic markers linked

to a QTL is caused by a reduction in polygenic

response, which can be attributed to a reduction in

effective selection intensity that is applied to polygenes

when information from the major gene is considered

(Gibson, 1994). The reason why, in the longer term,

loss in polygenic response is not offset by increased

response for the major gene is unclear ; Woolliams &

Pong-Wong (1995) suggested the build-up of gametic

phase disequilibrium between the major gene and

polygenes (Kennedy et al., 1992) as possible cause.

However, Ruane & Colleau (1995) found little

difference in gametic phase disequilibrium for a

marked QTL and polygenes when comparing marker-

assisted selection with selection based on BLUP of

breeding values without marker information. Ruane

& Colleau (1995) suggested reduced accuracy of

estimation of polygenic breeding values with use of

marker information as the reason for the reduced

polygenic response with marker-assisted selection.

This does not, however, explain the results for selection

on a major gene with known effect. In the present

study, the relationship between frequency of the

major gene and genetic variance contributed by the

major gene is suggested and investigated as another

possible reason for loss in long-term response to

genotypic selection.

Objectives of this study were to develop a theoretical

framework for methods to formulate and optimize

selection for quantitative traits with information on

an identified QTL, to derive selection criteria that

maximize cumulative response within a given planning

horizon, and to investigate the reason and nature of

losses in longer-term response with genotypic selec-

tion. In this study, methods are developed and

illustrated for a simple breeding structure, selection

strategy and genetic model, with discrete generations

and equal selection in both sexes, to allow illustration

of concepts. A major gene with additive effects is

considered. Extensions to more complex (and realistic)

situations are discussed.

Methodology to optimize selection with infor-

mation from major genes developed herein is based on

optimal control theory (Bryson & Ho, 1975; Kamien

& Schwartz, 1981 ; Lewis, 1986). Optimal control

theory is used extensively in economics and en-

gineering to formulate and optimize decision problems

that involve multiple stages and in which transition of

the system from stage t to stage t1 can be described

by first-order difference equations. The latter implies

that transition of the system from stage t to t1

depends only on the state of the system in stage t and

on the decisions made at stage t and not on how

the system reached the state in stage t. Dekkers et al.

(1995) used optimal control theory to formulate and

solve optimization of selection for non-linear profit

functions over multiple generations and suggested use

of optimal control as a tool to solve other multiple-

generation selection problems in animal breeding.

2. Methods

(i) Assumptions and general principles

Consider a population of infinite size with discrete

generations, selection of a fraction Q of males and

females to be parents of the next generation, and

random mating of selected parents. Selection is for a

quantitative trait that is affected by a major gene with

additive effects and by additive polygenic effects. The

major gene has two alleles (B and b) with additive

effects and frequencies p
t
and 1®p

t
in generation t.

Genotypes BB, Bb and bb are denoted by m¯1, 2

and 3, and have genotypic values denoted by g
m
,

where g
"
¯ a, g

#
¯ 0 and g

$
¯®a. Genotypes at the

major gene are available on all individuals prior to the

age of selection. Polygenic breeding values follow a

Normal distribution. Heritability for polygenic breed-

ing values is equal to h#
t

in generation t. The average

breeding value of the population in generation t is

equal to G{
t
¯ a(2p

t
®1)A{

t
, where A{

t
is the average

polygenic value of animals in generation t. This

relationship holds with or without gametic phase

disequilibrium between the major gene and polygenes.

In general, selection in generation t is by truncation

selection on an index that combines the value of the

major genotype (g
m
) with an estimate of the polygenic

breeding value for animal i of major genotype m

(Aq
imt

) :

I
imt

¯ b
mt

(g
m
A{

mt
®A{

#t
)Aq

imt
, (1)
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Fig. 1. Schematic presentation of a multiple-stage decision process over T stages with control variables (u
t
), state

variables (x
t
), state equations (h(x

t
, u

t
)) and stage output ( f(x

t
, u

t
)). Maximization of a function of stage outputs over a

planning horizon involves finding optimum control variables at each stage subject to the state equations at each stage
and given the value of state variables at stage 0.

where I
imt

is the selection criterion for animal i of

major genotype m in generation t, Aq
imt

is an estimate

of the polygenic breeding value for animal i with

genotype m in generation t, as a deviation from the

average value of animals with genotype m in gen-

eration t (¯ g
m
A{

mt
®A{

#t
), b

mt
is the weight put on

the average value of genotype m in generation t and

A{
mt

is the average polygenic value of animals with

major genotype m in generation t. In a large

population, the average value of each major genotype

in generation t (g
m
A{

mt
®A{

#t
) that is required in

index (1) can be estimated with small error based on

contrasts between genotypes. Estimationwithout error

is assumed here. The term A{
mt

®A{
#t

in (1) represents

the extent of gametic phase disequilibrium between

the major gene and polygenes. Without gametic phase

disequilibrium, (1) simplifies to: I
imt

¯ b
mt

g
m
Aq

imt
.

Note that for m¯ 2, (1) simplifies to I
#t

¯Aq
imt

.

Weights b
#t

are, therefore, immaterial. Also note that

in this formulation, estimates of polygenic breeding

values Aq
imt

can be based on BLUP, incorporating

information from relatives, with a model that includes

major genotype as a fixed effect (e.g. Kennedy et al.,

1992). With mass selection, b
mt

¯ h#
t

for all t, and

Aq
imt

¯ h#
t
(P

imt
®g

m
®A{

mt
A{

#t
), where P

imt
is pheno-

type. With genotypic selection, b
mt

¯1 for all t.

Based on the above formulation, maximization of

cumulative genetic response to selection in generation

t¯T then involves solution of a multiple-stage

decision problem (Lewis, 1986) in which index weights

b
mt

must be optimized for each generation t (t¯ 0 to

T®1), in order to maximize the objective function:

G{
T

¯ a(2p
T
®1)A{

T
. (2)

This multiple-stage decision problem is illustrated

in Fig. 1 and can be formulated and solved using

optimal control theory (Lewis, 1986). This involves

definition of state variables, control variables, state

equations and an objective function. State variables

describe the state of the system at each stage

(generation) t and in our case include frequency of the

major gene, average polygenic breeding values, and

genetic variances. Control variables are the decision

variables that are under the control of the decision

maker. In our case, control variables are the index

weights b
mt

for each generation t. State equations,

which are formulated for each generation t, describe

the transition of the state variables from generation t

to generation t1. For the purposes of optimal

control, state equations must be functions of state and

control variables in the previous generation only

(first-order difference equations). The objective func-

tion must be a separable function of output of each

stage (Lewis, 1986). In our case, only output from the

final generation is considered in the objective function

but more complex objective functions (e.g. cumulative

discounted response) can be considered also.

In principle, truncation selection on index I
imt

(equation (1)) in a given generation t involves

truncation selection across three Normal distributions

with means b
mt

(g
m
A{

mt
®A{

#t
), and standard devi-

ation σ
mt

, where σ
mt

is the standard deviation of

estimates of polygenic breeding values Aq
imt

. As

indicated previously, estimates of polygenic breeding

values can be based on BLUP, incorporating in-

formation from relatives. The truncation selection

process across the three major genotypes is illustrated

in Fig. 2 for σ
mt

¯σ. In Fig. 2, x
mt

is the standard

Normal truncation point for genotype m and f
mt

is the

proportion selected from genotype m. When expressed

on the scale of estimated breeding values and as a

deviation from the mean, truncation points are equal

to σ
mt

x
mt

. With truncation selection across genotypes,

differences between truncation points for the three

genotypes are equal to differences between means of

the distributions. Means are equal to b
mt

(g
m
A{

mt
®

A{
#t
) when selecting on index (1). Rearranging gives

the following relationships between weights b
"t

and b
$t

of index (1) and truncation points x
mt

:

b
"t

¯ (σ
#t

x
#t
®σ

"t
x
"t
)}(aA{

"t
®A{

#t
), (3a)

b
$t

¯ (σ
$t

x
$t
®σ

#t
x
#t
)}(aA{

#t
®A{

$t
). (3b)

With σ
mt

¯σ, (3a) and (3b) simplify to

b
"t

¯σ(x
#t
®x

"t
)}(aA{

"t
®A{

#t
), (4a)

b
$t

¯σ(x
$t
®x

#t
)}(aA{

#t
®A{

$t
). (4b)
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Fig. 2. Schematic presentation of selection on an index of major genotype value and estimates of polygenic breeding
values (EBV) in the form of truncation selection across Normal distributions of estimates of polygenic breeding values
corresponding to the three major genotypes (BB, Bb and bb). The major gene has frequency p and additive genetic value
a. Parameter σ is the standard deviation of estimates of polygenic breeding values. A{

i
is the average polygenic value of

animals with major genotype i (i¯1, 2, 3 for major genotypes BB, Bb and bb, respectively) ; x
i
, f

i
and i

i
are, respectively,

the standardized truncation point, fraction selected and selection intensity for animals with major genotype i. Parameters
b
"

and b
$

are weights on major genotype value in the index for animals with major genotype BB and bb, respectively.

Based on the above, index weights b
mt

are uniquely

related to truncation points x
mt

and, thereby, to

proportions selected ( f
mt

). Optimization of weights

b
mt

is therefore equivalent to optimizing truncation

points x
mt

and equivalent to optimizing proportions

selected from the three distributions of EBV (Fig. 2)

for each generation t. Therefore, variables f
mt

can be

used as control variables in the optimal control

formulation instead of b
mt

, which is the approach used

in what follows. Optimum solutions for f
mt

are then

converted to optimum solutions for b
mt

based on (4).

In this paper, gametic phase disequilibrium for

polygenic effects will be assumed absent and, therefore,

σ
mt

¯σ for all m and t. Initially, deterministic models

in which the major gene and polygenes are in gametic

phase equilibrium in the progeny generation will be

investigated. This model is considered here to elucidate

the factors that affect suboptimality of genotypic

selection and characteristics of optimal selection

strategies. The assumption of gametic phase dis-

equilibrium will subsequently be relaxed.

(ii) No gametic phase disequilibrium between major

gene and polygenes

In the model without gametic phase disequilibrium

between the major gene and polygenes, gametic phase

disequilibrium generated in parents through the

process of selection was assumed to be completely

resolved during meiosis. The average polygenic values

of B and b gametes were, therefore, equal to half the

pooled average polygenic value of selected parents
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and average polygenic values were equal for all three

progeny genotypes (A{
"t

¯A{
#t

¯A{
$t

¯A{
t
).

Based on the above and the principles of response

to selection, the problem of maximizing G{
T

(equation

(2)) can then be formulated as an optimum control

problem (Dekkers et al., 1995; Lewis, 1986), with p
t

and A{
t

as state variables, and f
mt

(m¯1, 2, 3) as

control variables :

Max
fmt

²a(2p
T
®1)A{

T
´ (5)

subject to:

f
"t

p#
t
f

#t
2p

t
(1®p

t
)f

$t
(1®p

t
)#¯Q

for t¯ 0 to T®1, (5a)

p
t+"

¯
1

Q
² f

"t
p#
t
f

#t
p
t
(1®p

t
)´ for t¯ 0 to T®1,(5b)

A{
t+"

¯A{
t


σ

Q
²p#

t
f
"t

i
"t
2p

t
(1®p

t
) f

#t
i
#t

(1®p
t
)# f

$t
i
$t
´

¯A{
t


σ

Q
²p#

t
z
"t
2p

t
(1®p

t
) z

#t
(1®p

t
)# z

$t
´

for t¯ 0 to T®1, (5c)

and given A{
!
, p

!
and Q.

In this formulation, (5a) are the constraints on the

overall fraction selected (Q) within each generation.

Frequencies of major genotypes in a given generation

are those following Hardy–Weinberg equilibrium

(Falconer & Mackay, 1996), which holds with equal

selection in males and females and random mating of

selected parents. Equations (5b) and (5c) are state

equations for frequency of the major gene and average

polygenic breeding values, respectively. Equation (5c)

represent the single-generation response to selection

in polygenic breeding values. These are based on

pooled selection differentials within each major geno-

type class. In (5c), z
mt

is the height of the standard

Normal distribution at the standardized truncation

point x
mt

for genotype class m, which results in a

fraction f
mt

of animals with genotype m to be selected.

Note that z
mt

¯ i
mt

f
mt

(Falconer & Mackay, 1996),

where i
mt

is the selection intensity corresponding to

f
mt

.

Using optimum control theory (Lewis, 1986), this

multiple-stage decision problem can be solved by

incorporating the constraint equations (5a), (5b) and

(5c) into the objective function (5) using sets of

Lagrange multipliers for each constraint equation: ε
t
,

λ
t+"

and γ
t+"

, for constraint equations (5a), (5b) and

(5c), respectively, for t¯ 0 to T®1. Lagrange

multipliers are shadow values for the constraint

equations, which can be interpreted as the marginal

change in the objective function when the constraint

is relaxed by a marginal amount. Here, Lagrange

multiplier ε
t

refers to the shadow value of the

constraint on the fraction Q selected in generation t.

Coefficients λ
t+"

and γ
t+"

refer to shadow values for

the gene frequency and average polygenic breeding

value attained in generation t1.

After rearranging terms, incorporating the con-

straint equations into the objective function results in

the following non-linear maximization problem:

Max
fmt

²L´ given A{
!
, p

!
and Q (6)

with

L¯ 3
T−"

t=!

²H
t
®λ

t
p
t
®γ

t
A{

t
´®λ

T
p
T

λ
!
p
!
®γ

T
A{

T
γ

!
A{

!
a(2p

T
®1)A{

T
(7)

with

H
t
¯

λ
t+"

Q
² f

"t
p#
t
f

#t
p
t
(1®p

t
)´

γ
t+"

A{
t


σ

Q
[p#

t
z
"t
2p

t
(1®p

t
)z

#t
(1®p

t
)#z

$t
]

ε
t
²Q®f

"t
p#
t
®f

#t
2p

t
(1®p

t
)®f

$t
(1®p

t
)#´. (8)

Within the context of optimal control theory (Lewis,

1986), H
t
is referred to as the Hamiltonian function.

Part of the rarrangement of terms that leads to (7) is

such that H
t
can be written excusively as a function of

variables that correspond to generation t and of

variables that correspond to the constraints for

generation t (i.e. λ
t+"

and γ
t+"

). This formulation

facilitates subsequent solution of the non-linear

optimization problem based on its recursive proper-

ties.

Optimal solutions to (6) are derived by equating the

first partial derivative of L with regard to each control

variable, state variable and Lagrange multiplier to

zero for each generation t. Resulting equations are

given in the Appendix. Note from the Appendix that

partial derivatives of L can be reduced to partial

derivatives of H
t
, which illustrates the utility of

defining the Hamiltonian function. Manipulation of

the resulting sets of equations, which is shown in the

Appendix, results in two sets of recursive equations

that must be met to attain the optimal solutions. The

first set is a forward recursive set of equations in gene

frequency p
t
(equations (A 4 f ), which is identical to

the set of constraint equations (5b)). This set of

equations allows computation of p
t+"

from p
t
given f

it

and has gene frequency in the initial generation (p
!
) as

known starting value. The second set is a backward

recursive set of equations for the standardized Normal

truncation points (equations (A 10)). This set relates

the difference in truncation points between major
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genotypes in generation t®1 [(x
$t−"

®x
#t−"

) and

(x
#t−"

®x
"t−"

)] to truncation points in generation t (as

well as to the corresponding fractions selected and

selection intensities). This set of recursive equations

has (x
$T−"

®x
#T−"

)¯ (x
#T−"

®x
"T−"

)¯ a}σ as known

starting value for generation T (see Appendix). Given

the difference in truncation points, frequency p
t
, and

overall fraction selected Q (equation (5a)), truncation

points x
it

can be derived for each generation (see

Appendix).

Although optimum solutions can not be derived

analytically, these two sets of recursive equations,

along with a constraint on the total fraction selected,

as given by (5a), can be used to derive a numerical

procedure to obtain the solution in an iterative

manner. Such an iterative procedure, which is based

on repeatedly using the forward recursive followed by

the backward recursive equation, each time updating

all variables involved, is given in the Appendix.

(iii) With gametic phase disequilibrium between

major gene and polygenes

In the previous section, the major gene was assumed

to be in gametic phase equilibrium with polygenes in

each generation. Selection on a combination of major

genotype value and polygenic breeding value, how-

ever, results in a negative association between major

genotype and polygenic breeding values (Kennedy et

al., 1992). This negative association is due to the fact

that parents selected from major genotype BB are

selected with lower selection intensity for polygenic

effects and have a lower average polygenic breeding

value than parents selected from major genotypes Bb

or bb, as illustrated in Fig. 2. This negative association

or gametic phase disequilibrium can be modelled at

the gametic level, as described below.

Let A{
B,t

and A{
b,t

be the average polygenic value of

gametes that combine to produce animals for gen-

eration t and that contain major gene alleles B and b,

respectively. The average polygenic value of animals

in generation t with major genotype BB, Bb and bb is

2A{
B,t

, A{
B,t

A{
b,t

and 2A{
b,t

, respectively. Then, the

overall average polygenic value in generation t is

equal to

A{
t
¯ 2p

t
A{

B,t
2(1®p

t
)A{

b,t
. (9)

With selection among animals in generation t, parents

selected from major genotype class BB have average

polygenic breeding value equal to 2A{
B,t

i
"t

σ and

produce 100% B gametes with an average polygenic

value equal to A{
B,t

"

#
i
"t

σ (Fig. 2). Similarly, parents

with major genotype bb produce 100% b gametes

with average polygenic value equal to A{
b,t

"

#
i
$t

σ.

Parents with major genotype Bb produce 50% B

gametes and 50% b gametes. When the major gene

and polygenes are unlinked, the average polygenic

value of both types of gametes produced by Bb

parents is equal to "

#
(A{

B,t
A{

b,t
i

#t
σ).

The following recursive equation can then be set up

for A{
B,t

:

A{
B,t+"

¯

f
"t

p#
t
(A{

B,t
"

#
i
"t

σ)f
#t

p
t
(1®p

t
) "
#
(A{

B,t
A{

b,t
i

#t
σ)

f
"t

p#
t
f

#t
p
t
(1®p

t
)

.

(10)

Note that (10) does not account for the fact that

polygenic values of B gametes that produced gen-

eration t originated from two distinct distributions

(BB and Bb parents) in generation t®1 and, therefore,

have a bi-modal distribution. In principle, however,

these effects can be included in the model by defining

extra genotype classes and corresponding state vari-

ables.

Realizing that the denominator of (10) is equal to

p
t+"

Q (equation (5b)), it is advantageous to introduce

a new variable, W
B,t

¯ p
t
A{

B,t
, for which the recursive

equation simplifies to

W
B,t+"

¯
1

2Q
²[2f

"t
p
t
f

#t
(1®p

t
)]W

B,t

f
#t

p
t
W

b,t
p

t
σ[p

t
z
"t
(1®p

t
) z

#t
]´. (11a)

Similarly, the recursive equation for W
b,t

¯ (1®p
t
)A

b,t

is

W
b,t+"

¯
1

2Q
²[2f

$t
(1®p

t
)f

#t
p
t
]W

b,t
f

#t
p
t
W

B,t

(1®p
t
)σ[(1®p

t
) z

$t
p

t
z
#t
]´. (11b)

With p
t
, W

B,t
and W

b,t
as state variables, and f

mt

(m¯1, 2, 3) as control variables, the problem of

maximizing cumulative response in generation T can

then be formulated as an optimal control problem as

follows:

Max
fmt

²a(2p
T
®1)2W

B,T
2W

b,T
´, (12)

subject to (for t¯ 0 to T®1)

f
"t

p#
t
f

#t
2p

t
(1®p

t
)f

$t
(1®p

t
)#¯Q, (12a)

p
t+"

¯
1

Q
² f

"t
p#
t
f

#t
p
t
(1®p

t
)´, (12b)
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)]W
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t
z
"t
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t
) z
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]´, (12c)

W
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¯
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2Q
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$t
(1®p

t
)f

#t
p
t
]W

b,t
f

#t
(1®p

t
)W
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(1®p
t
)σ[(1®p

t
) z

$t
p

t
z
#t
]´, (12d )

and given W
B,!

, W
b,!

, p
!

and Q.
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Similar to the situation without gametic phase

disequilibrium, optimum solutions to the above non-

linear optimization problem can be derived using

principles of optimal control theory by incorporating

the constraint equations into the objective function

using Lagrange multipliers and setting equal to zero

the first partial derivatives of the resulting function

with respect to control variables, state variables and

Lagrange multipliers. Manipulation of the resulting

set of recursive equations results again in sets of

recursive equations that can be used to formulate an

iterative procedure to find the optimum truncation

points x
it

for each generation t. Derivations and an

iterative procedure are given in the Appendix. Similar

to the model without gametic phase disequilibrium,

the solution involves iteration over a set of forward

and a set of backward recursive equations. The

forward recursive equations are in the state variables

p
t
, W

Bt
and W

bt
(equations (A 12 i), (A 12g) and

(A 12h) in the Appendix, which are equivalent to the

constraint equations (12b), (12c) and (12d )). The

backward recursive equations are in the Lagrange

multipliers that correspond to each state variable

(equations (A 14a), (A 14b) and (A 14c) in the

Appendix). Within each iteration, truncation points

x
it

can be derived for each generation t, based on

updated values for the state variables and Lagrange

multipliers and given the constraint on the overall

fraction selected (constraint equation (12a)). Iteration

on these sets of recursive equations leads to the

optimal solutions (see Appendix).

(iv) Example

To illustrate methods and allow an initial comparison

of responses from mass selection, genotypic selection

and optimum selection, albeit for a simple example,

procedures were applied to selection of 20% per

generation (Q¯ 0±2) for a trait with an identified

major gene with additive effect a¯ 0±25 (no domi-

nance) and frequency p
!
¯ 0±05 in generation 0, a

standard deviation of polygenic estimated breeding

values of σ¯ 0±3, and average polygenic breeding

values in generation 0 equal to A{
!
¯A{

B,!
¯A{

b,!
¯ 0.

With regard to comparisons involving mass selection,

σ¯ 0±3 corresponds to the standard deviation of

polygenic estimate of breeding values (EBV) based on

one own record for a trait with σ
p
¯1 and h#¯ 0±3 (the

standard deviation of EBV for mass selection is equal

to the standard deviation of h#P, where P is phenotype,

which is equal to h#σ
p
). For genotypic and optimum

selection, estimates of polygenic EBV are not restricted

to use of own records only but polygenic EBV can

represent BLUP EBV, incorporating information

from relatives. Therefore, when comparing genotypic

with optimum selection, σ refers to the standard

deviation of polygenic EBV that results from the

process used for estimating polygenic breeding values,

which would be the same for genotypic and optimum

selection. Because the models for genotypic and

optimum selection depend only on σ, there is no need

to specify h# explicitly when comparing genotypic and

optimum selection and results apply to polygenic EBV

that are estimated based on own phenotype, selection

index or BLUP. When comparing genotypic or

optimum selection with mass selection, however,

polygenic EBV are assumed to be based on own

phenotype only.

3. Results

(i) Mass selection �ersus genotypic selection

Broken lines in Fig. 3 show cumulative total response

(major gene plus polygenes) to mass selection over 1

to 15 generations as a percentage of response to

genotypic selection. Results are given for the model

with (thick lines) and without (thin lines) consideration

of gametic phase disequilibrium between the major

gene and polygenes. Results confirm those of Gibson

(1994) that genotypic selection gives greater cumu-

lative response in initial generations but lower

cumulative response in the longer term. However,

results in Fig. 3 also indicate that the negative impact

of genotypic selection on the longer-term response is

present also for the model in which gametic phase

disequilibrium between the major gene and polygenes

was not included. Therefore, reduced longer-term

response to genotypic selection is not caused solely by

a build-up of gametic phase disequilibrium between

the major gene and polygenes.

Comparing relative responses to mass and genotypic

selection with and without gametic phase disequi-

librium (Fig. 3), gametic phase disequilibrium reduced

the advantage of genotypic selection over mass

selection in early generations. In generation 15,

however, the relative advantage of mass selection over

genotypic selection was unaffected by the presence of

gametic phase disequilibrium.

The continuous lines in Fig. 4 show the amount of

gametic phase disequilibrium generated between the

major gene and polygenes under the different types of

selection (A{
b,t

®A{
B,t

). For both mass selection and

genotypic selection, the amount of gametic phase

disequilibrium increased during the first three gener-

ations and then reached a plateau, as expected.

Gametic phase disequilibrium was more than twice as

large for genotypic selection as for mass selection.

Differences in responses between mass and geno-

typic selection are caused by emphasis put on the

major gene versus polygenes over the course of

selection. In terms of the index used for selection
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(thin lines) and with (thick lines) consideration of gametic phase disequilibrium between the major gene and polygenes.
For optimum selection, results are shown for maximization of response over 5, 10 or 15 generations for the model
without gametic phase disequilibrium and over 10 generations for the model with gametic phase disequilibrium.

(equation (1)), weights on major gene effects were 0±3
(¯ h#) for mass selection and 1±0 for genotypic

selection. Weights were unaffected by gametic phase

disequilibrium, assuming that actual differences be-

tween major genotypes [i.e. a®(A{
b,t

®A{
B,t

)] can be

measured without error in each generation. Greater

emphasis on the major gene resulted in greater changes

in frequency of the major gene for genotypic compared

with mass selection, which is illustrated in Fig. 5

(continuous lines). Presence of gametic phase disequi-

librium reduced rates of increase in gene frequency for

both genotypic selection and mass selection (Fig. 5).

Gametic phase disequilibrium reduced the magnitude

of effects associated with the major gene in the

population from a to a®(A{
b,t

®A{
B,t

) and, therefore,

reduced effective selection pressure on the major gene.

Relative rates of improvement in polygenic breeding

values are presented in Fig. 6 (broken lines). Fig. 6

illustrates that mass selection put more selection

pressure on polygenic effects and, as a result, achieved

higher rates of response in polygenic effects.

(ii) Optimum selection

For optimum selection, total cumulative response

relative to genotypic selection is illustrated in Fig. 3

(continuous lines), changes in frequency of the major

gene in Fig. 5 (broken lines) and cumulative polygenic

response relative to polygenic response with genotypic

selection in Fig. 6 (continuous lines). Results are

presented for three planning horizons (maximization

of cumulative response in generations 5, 10 and 15)

for the model without gametic phase disequilibrium

and for one planning horizon (10 generations) for the

model with gametic phase disequilibrium. The broken

line in Fig. 4 shows the extent of gametic phase

disequilibrium generated for the latter.

In all cases, optimum selection achieved greater

cumulative total response at the end of the planning

horizon than genotypic or mass selection (Fig. 3,

continuous lines). Without gametic phase disequi-

librium, optimum selection resulted in 0±4%, 2±2%

and 2±1% greater cumulative response than genotypic

selection for planning horizons of 5, 10 and 15

generations, respectively. Comparing relative cumu-

lative response at the end of the planning horizon for

optimum selection (continuous lines in Fig. 3) with

relative cumulative response over corresponding plan-

ning horizons for mass selection (broken line in Fig.

3), optimum selection resulted in 8±3%, 2±6% and

0±3% greater cumulative responses than mass selection

for planning horizons of 5, 10 and 15 generations,

respectively. Therefore, for the situation considered
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here, genotypic selection was close to optimum for

short planning horizons but mass selection was closer

to optimum for longer planning horizons.

Extra cumulative response for optimum selection

relative to genotypic or mass selection at the end of a

planning horizon of 10 generations was little affected

by the presence of gametic phase disequilibrium

between the major gene and polygenes (Fig. 3,

continuous lines). Without gametic phase disequi-

librium, cumulative response in initial generations

was substantially less for optimum selection over 10

or 15 generations than cumulative response for

genotypic selection (Fig. 3). Cumulative response

relative to genotypic selection was reduced less in

initial generations for optimum selection over 10

generations with than without gametic phase disequi-

librium (Fig. 3).

In every generation, cumulative response in poly-

genic breeding values to optimum selection was

intermediate to polygenic response for mass and

genotypic selection (Fig. 6, continuous lines). Excep-

tions were the first 2 generations for a planning

horizon of 5 generations, for which optimum selection

achieved less polygenic response than genotypic

selection. In generation 10, cumulative polygenic

response was 2±5% and 3±0% greater for optimum

selection than for genotypic selection, without and

with gametic phase disequilibrium, respectively. In

contrast, changes in frequency of the major gene were

greater for genotypic selection than for optimum

selection (Fig. 5, broken lines). For optimum selection,

changes in gene frequency were intermediate to those

for mass selection and genotypic selection, depending

on length of the planning horizon: with a short

planning horizon (5 generations), changes in gene

frequency for optimum selection were close to those

observed for genotypic selection; for longer planning

horizons (15 generations), changes in gene frequency

for optimum selection tended to be more similar to

those found for mass selection.

Differences in responses to optimum selection

relative to mass and genotypic selection are caused by

weights put on major gene effects in the selection

index (equation (1)). Weights for optimum selection

are presented in Fig. 7. Note that weights for genotypic

and mass selection were constant over generations at

1±0 and h# (¯ 0±3), respectively. Weights for optimum

selection changed over generations, decreasing during

the first half of the planning horizon and increasing

during the second half. Optimum weights in the last

generation of selection were always equal to weights

under genotypic selection. This is explained by the



Optimum selection on identified QTL 267

fact that the objective in the last generation of

selection is to maximize response in the next gen-

eration, given the cumulative gain obtained up to that

point in time. Consequences for subsequent gener-

ations are no longer considered. Genotypic selection

(index weight¯1) maximized response from one

generation to the next, at least for the additive genetic

models considered here.

Without gametic phase disequilibrium, b
"t

¯ b
$t

for

optimum selection (see Appendix) and, therefore,

only one line is shown in Fig. 7 for each planning

horizon (continuous lines). With gametic phase dis-

equilibrium, however, weights b
$t

were greater than

weights b
"t

for all generations except the last (Fig. 7,

broken lines). In the last generation, b
"t

¯ b
$t

and

equal to the weights under genotypic selection (¯1),

as expected. The fact that b
$t

" b
"t

illustrates that,

when gametic phase disequilibrium was accounted

for, the optimum index put more emphasis on selection

against the undesired bb genotype (b
$t
) than on

selection in favour of BB (b
"t
).

In general, index weights for optimum selection

were intermediate to those for mass selection and

genotypic selection (Fig. 7). With a planning horizon

of 5 generations, however, emphasis on the major

gene was greater in the first generation for optimum

selection than for genotypic selection.

Selection index weights quantify the weight that is

put on genetic values for the major gene relative to

polygenic EBV when computing the selection cri-

terion. Index weights do not, however, quantify the

effective selection pressure that is put on the major

gene relative to polygenes, which also depends on the

amount of variation that is present in the population.

For example, although genotypic selection maintains

a constant weight of one on the major gene in

selection index (1) over generations, the effective

selection pressure on the major gene will be lower

when the frequency of the major gene is close to the

extremes (0 or 1) because most animals will be of the

same genotype. Therefore, at low or high frequency of

the major gene, a weight of 1 on the major genotype

value, as in genotypic selection, will have less impact

on selection for polygenic breeding values than when

the major gene is at intermediate frequency.

To better quantify effective selection pressure on

the major gene and polygenes, measures of achieved

selection intensity were considered. Achieved selection

intensity for the major gene (or polygenes) was

computed as the ratio of response achieved for the

major gene (polygenes) over the square root of

variance contributed to the selection criterion by the

major gene (polygenes) (¯ 2(p
t+"

®p
t
)}[2p

t
(1®p

t
)]!±

&

for the major gene and ¯ (A{
t+"

®A{
t
)}σ for polygenes).

These derivations stem from the fact that expected

response to selection is equal to intensity times the

standard deviation of EBV (¯ intensity¬accuracy¬

genetic standard deviation) (Falconer & Mackay,

1996). Results are in Fig. 8.

For genotypic selection, intensity on the major gene

varied over generations (Fig. 8), although the index

weight on the major gene remained constant (¯1).

Changes in intensity were due to changes in variance

contributed by the major gene as gene frequency

changed over generations. Correspondingly, intensity

achieved for polygenes also changed over generations,

but in an opposite direction. Interestingly, intensity

on the major gene and polygenes was constant over

generations under optimum selection, at least under

the model without gametic phase disequilibrium.

Intensity varied to some degree when gametic phase

disequilibrium was considered but much less than

with genotypic selection.

4. Discussion and conclusions

The main objective of this paper was to develop a

theoretical framework for methods to optimize re-

sponse to selection over multiple generations or

multiple stages of selection when molecular genetic

information is available. Consideration of selection

over more than one generation or stage becomes

important when population parameters (e.g. heri-

tability, genetic variance, gene frequencies) change

over generations as a result of selection or other

factors. This is the case for most genetic systems. In

most of these cases, traditional methods of selection

for quantitative traits on breeding values that are

estimated based on selection index or BLUP maximize

response from one generation to the next. The changes

in parameters that result from this selection have,

however, consequences for responses to selection that

can be achieved in subsequent generations. Situations

in which selection on BLUP of breeding values does

not maximize response over more than one generation

were discussed by Woolliams (1990).

Dekkers et al. (1995) proposed use of optimal

control theory as a method to formulate and solve

multiple-generation selection problems and applied

this method to optimize selection over multiple

generations with non-linear profit functions. Several

other potential applications of optimal control theory

to multiple-generation selection problems in animal

breeding were discussed, including optimization of

selection over multiple generations with gametic phase

equilibrium, overlapping generations, and optim-

ization of selection with inbreeding. The specific

application of optimal control to multiple-generation

selection problems addressed in the present study was

maximization of the longer-term response to selection

on a quantitative trait when information on a single

gene is available. Results illustrate that selection

based on information from identified genes can be
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$
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comparison, index weights are also shown for genotypic selection (¯1) and mass selection (¯heritability of the trait).

optimized and that optimal control theory provides a

useful framework to formulate and optimize such

selection systems.

One of the main conclusions of this paper is that a

build-up of gametic phase disequilibrium between the

major gene and polygenes is not the main reason why

genotypic selection results in less than optimal

responses to selection in the medium and long term.

Instead, suboptimality of genotypic selection is mainly

caused by the fact that selection pressure and response

for polygenes changes over generations with genotypic

selection. This unequal selection pressure on polygenes

is caused by changes in frequency for the major

gene, which changes the amount of variance that is

contributed by the major gene and, therefore, changes

the selection pressure that is devoted to the major

gene versus polygenes. Optimum selection, i.e. selec-

tion that maximizes cumulative response over a

planning horizon of multiple generations, resulted in

constant selection pressure on the two components

that contribute to total response, i.e. the major gene

and polygenes (Fig. 8), at least under the model

without gametic phase disequilibrium. In other words,

optimum selection balanced reductions in polygenic

response over generations, in contrast to genotypic

selection. Equalization of reductions in polygenic

response over generations resulted in minimum cumu-

lative reductions in polygenic response, while maxi-

mizing total response to selection. Optimum selection

achieves this by taking into account the effect of

current selection decisions on future changes in

frequency for the major gene and the effect of major

gene frequency on variance and response contributed

by the major gene. In a related study, Luo et al. (1997)

also observed that gene frequencies at an unknown

QTL and at a linked genetic marker had important

and non-linear effects on responses to marker-assisted

selection. This relationship between frequency and

response at the major gene, and its consequences for

selection pressure on polygenes, seems to be an

important factor that forms the basis for the difference

between genotypic and optimum selection in the

present study.

It is interesting to note that the result that selection

pressure on components that contribute to response

to selection is constant under optimum selection has

similarities with results obtained by Dekkers et al.

(1995) for optimum selection on non-linear profit

functions, although the scenarios considered are

distinctly different : for selection on non-linear profit

functions, the selection index that maximized cumu-

lative response over a given planning horizon also
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&¯ 2(p
t+"

®p
t
)}[2p

t
(1®p

t
)]!±

&, where p
t
is

the frequency of the major gene in generation t.

resulted in constant achieved selection intensity (and

response) for each of the traits that contributed to the

selection goal.

For the model with gametic phase equilibrium,

achieved selection intensities on the major gene and

polygenes were not entirely constant over generations

under optimum selection (Fig. 8). This suggests that

additional factors play a role. The relatively small

deviations from constant selection intensities illus-

trate, however, that the aforementioned relationship

between frequency and variance at the major gene,

and its consequences for selection pressure on poly-

genic breeding values, is an important factor that

contributes to characteristics of the optimum strategy.

Models used in this paper were rather simplistic

with regard to genetics (no dominance, gametic phase

equilibrium among polygenes, and no linkage between

the major gene and polygenes), structure of the

breeding programme (discrete generations, equal

selection in both sexes, and infinite population size),

and objective function (maximization of cumulative

response over a planning horizon rather than, for

example, maximization of cumulative discounted

responses to selection; Dekkers et al., 1995). Methods

and examples presented in this paper do, however,

provide important insight into the process of longer-

term selection on quantitative traits with information

on identified genes and into methods that can be used

to optimize such selection strategies. In principle,

methods developed herein can be extended to more

complex situations.

The main limitation of the genetic model used here

in relation to accepted genetic models is the as-

sumption of constant polygenic variance, which

resulted from the assumption of gametic phase

equilibrium among polygenes. Selection reduces poly-

genic variance to an extent which depends on selection

intensity and selection accuracy (Bulmer, 1980). For

quantitative traits that are affected by a major gene

and polygenes, parents with two copies of the

unfavourable major gene allele (bb) are selected with

greater intensity for polygenic effects than parents

with two copies of the favourable major gene allele

(BB) (Fig. 2). Hence, polygenic variance will be

reduced to a greater degree for bb parents than for BB

parents. Accounting for this factor will favour

selection of BB animals compared with the present

model. The impact on optimum selection is expected

to be that the difference in weights b
"t

and b
$t

will be

less than was observed for the current model (Fig. 7).
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This would reduce the difference between optimum

and genotypic selection. In contrast, however, the

magnitude of the effect of the major gene will increase

relative to the effect of polygenes when the standard

deviation of polygenic EBV is reduced as a result of

selection. A larger major gene effect relative to

polygenic EBV will increase the difference between

index weights as well as the benefit of optimum

selection versus genotypic selection (results not

shown). As a result of these two opposing effects,

general trends and characteristics of the optimum

strategies may be similar to results discussed here for

models that include gametic phase disequilibrium

among polygenes.

Including gametic phase disequilibrium among

polygenes will further erode the main phenomenon

that was observed here for the model without gametic

phase disequilibrium between the major gene and

polygenes, i.e. that optimum selection results in

constant selection pressure and response to selection

for polygenes. With gametic phase disequilibrium

among polygenes, current selection decisions affect

not only future genetic variance contributed by the

major gene but also genetic variance due to polygenes.

A related assumption of the present model, however,

was that the base population was unselected and in

gametic phase equilibrium. If marker-assisted selec-

tion is implemented in an ongoing selection pro-

gramme that is based on EBV estimated from

phenotype, a degree of gametic phase disequilibrium

will already be established, both among polygenes and

between the major gene and polygenes. As a result,

further changes in polygenic variance and in gametic

phase disequilibrium between the major gene and

polygenes will be reduced. Results would, therefore,

be expected to be more similar to what was observed

here for the model that did not include gametic phase

disequilibrium between the major gene and polygenes,

nor gametic phase disequilibrium among polygenes.

Further development of models to accommodate

these factors is, however, needed. The theoretical

framework developed here can serve as the basis of

such further developments.

In general, benefits of optimum selection over

genotypic selection were small for the example studied

here (Fig. 3). It is clear that benefits of optimum

selection depend on frequency and size of the major

gene and on length of the planning horizon that is

considered in the objective. In this study, only a few

examples were considered and the objective involved

maximization of cumulative response at the end of a

planning horizon. With a starting frequency for the

major gene of 5%, the advantage of optimum over

genotypic selection was small (0±4%) for a planning

horizon of 5 generations and increased to 2±2% for

planning horizons of 10 and 15 generations (Fig. 2).

Genotypic selection is equivalent to selection on

BLUP of total breeding values (Kennedy et al., 1992)

and maximizes response in the next generation for

major genes with additive effects. Genotypic selection

can, therefore, be considered a short-term selection

criterion. It must also be noted that 5 generations is

considered long for most livestock species. Recent

studies (Dekkers, in preparation) have, however,

shown that genotypic selection does not maximize

short-term response if the major gene exhibits domi-

nance.

Benefits of optimum selection over genotypic

selection also depend on starting frequency of the

major gene. For example, with a starting frequency of

25% (results not shown), optimum selection for a

planning horizon of 5 generations resulted in 1±9%

greater response than genotypic selection (no gametic

phase disequilibrium). This compared with only 0±4%

greater response when the starting frequency was 5%

(Fig. 3).

In the problem addressed here, the identified gene

had a direct effect on the quantitative trait of interest.

With some modification, the same method can,

however, also be applied to selection against an

undesirable single gene that has no effect on the

quantitative trait. Examples are the halothane gene in

swine (Eikelenboom & Minkema, 1974; Fuji et al.,

1991) and the BLAD gene in dairy cattle (Shuster et

al., 1992). In these cases, the objective could be to

eliminate the gene without sacrificing large responses

to selection for a quantitative trait of interest (e.g.

growth in the case of swine or milk production in the

case of dairy cattle). For a gene with additive effects,

the goal of selection over T generations can then be

formulated from an economic perspective in a manner

similar to (2) as : G{
T

¯ a(2p
T
®1)�A{

T
, where a and

� quantify the relative economic importance of the

undesirable gene and the quantitative trait, respect-

ively. Selection is then on an index of a form similar

to that used in the current paper (equation (1)) and

optimum selection procedures can be derived based

on the methods developed here. If the single gene has

pleiotropic effects on the quantitative trait of interest,

as appears to be the case for the halothane gene in

swine, this can be accounted for by modifying relative

economic values a and �. Methods can also be

extended to situations with non-additive gene effects

and to situations in which the objective is to eliminate

the undesirable gene within a certain number of

generations while minimizing loss of response for the

quantitative trait. Extension to selection on markers

linked to QTL is less straightforward because re-

combination between the genetic marker and major

gene must be taken into account.

For the example investigated in this paper, benefits

of selection procedures that used genotypic infor-

mation (i.e. genotypic or optimum selection) were

limited to selection procedures that used phenotypic
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information only (i.e. mass selection in the present

example), in particular in the longer term (Fig. 3).

Although benefits were greater in the short term, gains

were less than 4% when gametic phase disequilibrium

was considered (Fig. 7). Similar results were found by

Ruane & Colleau (1995) for marker-assisted selection.

Several studies have, however, shown, that greater

gains can be expected from use of information from

single genes or genetic markers if traits have low

hertitability (e.g. Smith & Simpson, 1986; Ruane &

Colleau, 1996) or are sex-limited (e.g. Van der Beek &

Van Arendonk, 1994; Ruane & Colleau, 1996) and at

stages of selection for which limited information is

available on, in particular, the Mendelian sampling

component that is received by the animal from its

parents, i.e. prior to availability of own phenotype or

progeny records (e.g. Kashi et al., 1990; Meuwissen &

Van Arendonk, 1992). It is expected that in these cases

the advantage of optimum over genotypic selection

will also be greater than observed for the example in

the current study. In addition, most studies on marker-

assisted selection have evaluated selection on genes

with additive effects. With dominance at the major

gene, benefits of optimum over genotypic selection are

expected to be substantially greater, even in the short

term (Dekkers, in preparation).

Appendix. Maximization of cumulative response to

selection over a planning horizon of T generations

(i) No gametic phase disequilibrium between the

major gene and polygenes

After incorporation of constraints using Lagrange

multipliers, maximization of cumulative response to

selection over T generations (equations (5)) amounts

to maximization of the following function (from

equations (6), (7) and (8)) :

Max
fmt

²L´ given A{
!
, p

!
and Q (A 1)

with

L¯ 3
T−"

t=!

²H
t
®λ

t
p
t
®γ

t
A{

t
´®λ

T
p
T
λ

!
p
!

®γ
T

A{
T
γ

!
A{

!
a(2p

T
®1)A{

T
, (A 2)

where H
t
is the Hamiltonian (Lewis, 1986), which is

defined for t¯ 0 to T®1 and is equal to:

H
t
¯

λ
t+"

Q
² f

"t
p#
t
f

#t
p
t
(1®p

t
)´γ

t+"

¬ A{
t


σ

Q
[p#

t
z
"t
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t
(1®p

t
) z
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(1®p

t
)# z
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]

ε
t
²Q®f

"t
p#
t
®f

#t
2p

t
(1®p

t
)®f

$t
(1®p

t
)#´. (A 3)

Equating first partial derivatives of L to zero results in

the following set of equations for t¯ 0 to T®1 :

δL

δf
"t

¯
δH

t

δf
"t

¯ p#

"

λ
t+"

Q


σγ
t+"

Q

δz
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δf
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®ε
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¯ 0, (A 4a)
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¯
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λ
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Q
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σγ
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Q
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®2ε
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(A 4b)
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¯
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¯
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¯ 0, (A 4e)
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¯
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¯
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¯ 0, (A 4 f )
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δγ
t+"

¯
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δε
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¯
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t

δε
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¯Q®f
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p#
t
®f

#t
2p

t
(1®p

t
)®f

$t
(1®p

t
)#¯ 0;

(A 4h)

and for t¯T :

δL

δp
T

¯®λ
T
2a¯ 0, (A 4 i)

δL

δA{
t

¯®γ
T
1¯ 0. (A 4 j)

Equation (A 4e) results in γ
t+"

¯γ
t
for t¯ 0 to T®1,

which along with γ
T

¯1 (from (A 4 j)), results in

γ
t
¯1 for all t. Variable γ, represents the shadow

value for A{
t
.

Using δz
mt

}δf
mt

¯x
mt

, which is based on properties

of the standard Normal distribution, (A 4a), (A 4b)

and (A 4c), along with (A 4h), can be used to solve for

optimum control variables in generation t ( f
mt

), given

the Lagrange multipliers for t1 (λ
t+"

), as described

below. From (A 4a) :

ε
t
¯

1

Q
(λ

t+"
σx

"t
). (A 5a)
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From (A 4b) :

ε
t
¯

1

Q
("
#
λ
t+"

σx
#t
). (A 5b)

From (A 4c) :

ε
t
¯

1

Q
σx

$t
. (A 5c)

Combining (A 5a) and (A 5b) results in :

x
"t

¯x
#t
®

1

2σ
λ
t+"

. (A 6a)

Combining (A 5b) and (A 5c) results in :

x
$t

¯x
#t


1

2σ
λ
t+"

. (A 6b)

Equations (A 6a) and (A 6b), which set standardized

truncation points given x
#t
, along with (A 4b), which

returns constraints (5a) and sets the overall selected

fraction, can be used to derive the optimum truncation

points and fractions selected in generation t, given p
t

and λ
t+"

. Iterative procedures of Ducrocq & Quaas

(1988) can be used for this purpose.

Note that combining (A 6a) and (A 6b) results in :

x
#t
®x

"t
¯x

$t
®x

#t
¯

1

2σ
λ
t+"

, (A 7)

which implies that, in every generation t, optimum

standardized truncation points are equidistant for the

three genotype classes. This is a result of the modelling

of linkage phase equilibrium.

Solving (A 6a) and (A 6b) for generation t depend

on knowing λ
t+"

and p
t
. Using (A 4d ), the following

backward recursive equation can be derived for λ
t
:

λ
t
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λ
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t
) f

$t
´,
(A 8)

with a starting point, λ
T

¯ 2a, which is obtained from

(A 4 i). Substituting (A 5a), (A 5b) and (A 5c) in

respectively the first, second and third terms of (A 8)

that contain ε
t
, simplifies (A 8) into:

λ
t
¯

2σ

Q
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t
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$t
®z

$t
)´. (A 9)

Lagrange multipliers λ
t

can be removed from the

solution procedure by substituting (A 6b) into (A 9),

which results in the following backward recursive

equation for (x
$t
®x

#t
) :

(x
$,t−"

®x
#,t−"

)¯
1

Q
²p

t
f
"t
(i
"t
®x

"t
)

(1®2p
t
) f

#t
(i
#t
®x

#t
)(p

t
®1) f

$t
(i
$t
®x

$t
)´, (A 10)

which has as starting point (from λ
T

¯®2a) :

(x
$T

®x
#T

)¯ a}σ. A recursive equation for p
t

is

obtained from (A 4 f ), which results in (5b).

Based on the above, optimal solutions must satisfy

(A 4b), (A 4 f ), (A 6a), (A 6b) and (A 9), where the

latter three sets of equations can be replaced by

(A 10). Using these equations, the following iterative

procedure can be used for finding the optimum:

1. Set (x
$t
®x

#t
)¯ (x

#t
®x

"t
)¯ a}σ for all t.

2. For t¯ 0 and given p
!
, (x

$,!
®x

#,!
) and

(x
#,!

®x
",!

), derive f
m,!

that satisfy the constraint

given by (A 4b) (overall fraction selected, Q), using

the truncation selection procedure of Ducrocq &

Quaas (1988). Compute the associated values for

z
m,!

and i
m,!

.

3. Compute p
t+"

based on (A 4 f ).

4. Repeat steps 2 and 3 for t¯1 to T®1.

5. Using (A 10), compute new values for (x
$t
®x

#t
)

for t¯ 0 to T®2 ((x
$,T−"

®x
#,T−"

) remains equal to

a}σ), given solutions for p
t
and f

mt
obtained from step

4. A multiplicative relaxation factor may be required

here, reducing changes in (x
$t
®x

#t
) from one iteration

to another, to allow convergence.

6. Repeat steps 2 to 5 until (x
$t
®x

#t
) converges to

a stable solution.

7. Given A{
!
and the optimal solutions, compute A{

t

for each generation t based on (A 4g) (or (5c)) ;

compute G
T

based on (2) ; compute b
mt

based on (4a)

and (4b).

Note that the starting values for this iterative

procedure, which are set in step 1 [(x
$t
®x

#t
)¯

(x
#t
®x

"t
)¯ a}σ], provide results for genotypic selec-

tion. Results for mass selection can be obtained from

step 1 by setting (x
$t
®x

#t
) equal to a}σ

p
, where σ

p
is

the phenotypic standard deviation.

(ii) With gametic phase disequilibrium between major

gene and polygenes

Similar to the situation without gametic phase

disequilibrium, equations (12) can be reformulated to

maximizing a function L, similar to (A 1), with the

following Hamiltonian function, which is defined for

t¯ 0 for T®1 :
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Taking partial derivatives of L with respect to control

variables, state variables and Lagrange multipliers,

and equating them to zero, results in the following set

of necessary conditions for an optimum (using

W
B,t

¯ p
t
A{

B,t
and W

b,t
¯ (1®p

t
)A{

b,t
in some instances

to simplify equations) for t¯ 0 to T®1 :
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and for t¯T :
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Similar to before, equations (A 12a), (A 12b) and

(A 12c), along with (A 12 j), which results in constraint

(12a), can be used to solve for optimum control

variables in generation t given state variables for t and

Lagrange multipliers for t1. Combining (A 12a)

and (A 12b) gives :
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Combining (A 12b) and (A 12c) gives :
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Using (A 13a) and (A 13b), which express truncation

points x
"t

and x
$t

in terms of x
#t
, given state variables

p
t
, W

B,t
and W

b,t
, and Lagrange multipliers for t1,

and using (A 12 j) (or (12 a)), which constrains the

overall fraction selected to Q, the iterative procedure

of Ducrocq & Quaas (1988) can again be used to find

optimum truncation points x
mt

and proportions

selected from each genotype class, f
mt

.

Lagrange multipliers k
t
, λ

t
and γ

t
, for t¯ 0 to T®1

are obtained from the following three sets of backward

recursive equations:
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with as starting value from (A 12m)) : γ
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with as starting value (from (A 12k)) : k
T

¯®2.

For λ
t
, from (A 12 f ) :
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with as starting value (from (A 12 l ) : λ
T

¯ 2.

State variables are obtained from the following

forward recursive equations: p
t
from (A 12 i) (which

results in (12b)), with as starting value p
!
; W

B,t
from

(A 12g) (which results in (12c)), with as starting value

W
B,!

; and W
b,t

from (A 12h) (which results in (12d )),

with as starting value W
b,!

. Therefore, optimum

solutions need to satisfy equations (A 13a, b),

(A 14a–c) and (A 12g–j).

Based on the above, the following iterative pro-

cedure to find the optimum can be derived:

1. Set k
t
¯λ

t
¯ 2 and γ

t
¯ 2a for all t.

2. For t¯ 0 and given p
!
, k

!
, λ

!
, γ

!
, A{

B,!
and A{

b,!
,

derive f
m,!

that satisfy the constraint given by (A 12 j)

(overall fraction selected), using the truncation selec-

tion procedure of Durocq & Quaas (1988), with

relationships between truncation points given by

(A 13a) and (A 13b). Compute the associated values

for z
m,!

and i
m,!

.

3. Compute p
t+"

, W
B,t+"

and W
b,t+"

based on (A 12 i),

(A 12g) and (A 12h).

4. Repeat steps 2 and 3 for t¯1 to T®1.

5. Using equations (A 14a–c), recursively compute

new values for k
t
, λ

t
and γ

t
, given the solutions for p

t

and f
mt

obtained from step 4, and given λ
T

¯k
T

¯ 2

and γ
T

¯ 2a. A multiplicative relaxation factor may

be required here, reducing changes in values for k, λ

and γ from one iteration to another, to allow

convergence.

6. Repeat steps 2 through 5 until k, λ and γ

converge to a stable solution.

7. Compute optimum index weights based on (4a)

and (4b).

Note that the first iteration in this procedure corres-

ponds to genotypic selection.
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