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STELLINGEN 

Er is niet een zin die zijn eigen betekenis adequaat weergeeft. 

(A.N. Whitehead) 

i De waarneming dat populaties van eenjarige onkruiden ruimtelijk heterogene 
patronen vormen, met clusters die vele jaren op vrijwel dezelfde plaats blijven, kan 
worden verklaard op basis van populatiedynamische processen alleen, zonder aan te 
nemen dat de abiotische omgeving heterogeen is. 
(Dit proefschrift) 

ii De zogenaamde 'inverse square law', die volgens bijvoorbeeld Begon et al. (1996) 
stelt dat een plantpopulatie zich ruimtelijk uitbreidt met een gesloten voortschrijdend 
front als de dispersiecurve sneller dan kwadratisch afneemt met afstand tot de 
moederplant, is onjuist. 
(Dit proefschrift; Begon et al. 1996 Ecology: individuals, populations and communities. 3 e ed. 

Oxford: Blackwell, p 184) 

iii Pleksgewijze onkruidbestrijding kan een zeer grote reductie in benodigde 
hoeveelheid herbiciden geven, en deze reductie kan worden gekwantificeerd door 
meting van de cumulatieve frequentie verdeling van afstanden tussen willekeurig 
gekozen punten in het veld en het dichtstbijzijnde onkruid voor elk punt. 
(Dit proefschrift) 

iv Als onkruid alleen bestreden wordt wanneer de dichtheid boven een drempelwaarde 
uitkomt, hangt de bestrijdingsfrequentie op de lange termijn niet of nauwelijks af van 
de hoogte van de bestrijdingsdrempel. 
(Dit proefschrift) 

v Bij toepassing van bestrijdingsdrempels neemt de relatieve fout in de voorspelde 
onkruiddichtheid lineair toe met de duur van het voorspellingsinterval. 
(Dit proefschrift) 

vi Een nulhypothese voor het ruimtelijke patroon van eenjarige onkruiden van een 
enkele soort op een akker is een patroon met een fractale dimensie van 1.19. 
(Dit proefschrift) 



vii De Rhonegletsjer zal over honderd jaar bijna verdwenen zijn door opwarming van 
het klimaat. 
(J. Wallinga & R.S.W. van de Wal. 1998 Sensitivity of Rhonegletscher, Switzerland to climate 
change: experiments with a one-dimensional flowline model. J. Glaciol, in druk) 

viii De rol van wiskunde in de biologie is voornamelijk om gezond verstand consistent 
en precies te maken; dit garandeert niet dat de voorspellende waarde van de theorie 
beter wor4t, maar het garandeert wel dat fouten in de theorie duidelijker naar voren 
komen. 

ix Chemische reductie van het elektrodeoppervlak bij het maken van een zonnecel van 
amorf silicium kan leiden tot een daling in transparantie en geleidbaarheid van de 
elektrode en daardoor tot een vermindering van de energieopbrengst van de zonnecel. 
(J. Wallinga et al. 1998 Reduction of tin oxide by hydrogen radicals. J. Phys. Chem. B 102, 6219-

6224) 

x In Nederland zijn socio-geografische clusters van niet-gevaccineerde personen te 
klein en te gefragmenteerd om de circulatie van het mazelenvirus onder de 
Nederlandse bevolking in stand te houden. 

xi De wetenschappen zijn, na de kunsten, de meest verlichtende verdienste van de 
menselijke geest. 
(Naar K. Popper) 

xii Het wetenschappelijk streven naar eenvoudige verklaringen voor complexe 
fenomenen houdt geen vooronderstelling in dat complexe fenomenen van een nog 
onbegrepen eenvoud zijn. 

J. Wallinga 

Dynamics of Weed Populations 

spatial pattern formation and implications for control 

Wageningen, 11 december 1998 



PROPOSITIONS 

There is not a sentence which adequately states its own meaning. 

(A.N. Whitehead) 

The observation that populations of annual weeds form spatially heterogeneous 
patterns, with clusters that remain on the same location for several years, can be 
explained solely on basis of population dynamical processes, without invoking 
assumptions about heterogeneity of the abiotic environment. 
(This thesis) 

The so-called 'inverse square law', which according to e.g. Begon et al. (1996) states 
that a plant population expands by a closed advancing front if the dispersion curve 
declines faster than quadratically with the distance to the mother plant, is incorrect. 
(This thesis; Begon et al. 1996 Ecology: individuals, populations and communities. 3™ edn. Oxford: 

Blackwell, p 184) 

Patch control can result in very large reductions in the required amount of herbicides, 
and this reduction can be quantified by measuring the cumulative frequency 
distribution of distances between randomly chosen points in the field and the nearest 
weed to each point. 
(This thesis) 

If weeds are controlled only when their density exceeds a threshold value, the 
frequency of control will, on the long term, not depend on the value of this threshold. 
(This thesis) 

Threshold control leads to a relative error in predicted weed density that grows 
linearly with the duration of prediction interval. 
(This thesis) 

A null-hypothesis for the spatial pattern of annual weeds of any single species on an 
arable field is a pattern with a fractal dimension of 1.19. 
(This thesis) 



vii The Rhone Glacier will have almost disappeared within a hundred years due to 
climate warming. 

(J. Wallinga & R.S.W. van de Wal. 1998 Sensitivity of Rhonegletscher, Switzerland to climate 

change: experiments with a one-dimensional flowline model. J. Glacioi, in press) 

viii The role of mathematics in biology is primarily to make common sense consistent 

and precise; this does not guarantee that predictions will improve, but it does 

guarantee that errors in the theory stand out more clearly. 

ix Chemical reduction of the electrode surface in production of a solar cell of 

amorphous silicon may lead to a reduced transparency and conductivity of the 

electrode, causing a reduction in the energy yield of the solar cell. 

(J. Wallinga et ai. 1998 Reduction of tin oxide by hydrogen radicals. J. Phys. Chem. B 102, 6219-

6224) 

x The socio-geographical clusters of non-vaccinated persons in the Netherlands are too 

small and too fragmented to keep the measles virus circulating in the Dutch 

population. 

xi The sciences are, next to the arts, the most enlightening achievement of the human 

spirit. 

(After Karl Popper) 

xii The scientific quest for simple explanation of complex phenomena does not imply a 

presupposition that complex phenomena are of a not yet understood simplicity. 

J. Wallinga 

Dynamics of Weed Populations 

spatial pattern formation and implications for control 

Wageningen, 11 December 1998 



ABSTRACT 

Modelling studies were carried out to analyse spatio-temporal dynamics of annual weed 
populations and to identify the key factors that determine the long-term herbicide use of 
weed control programmes. Three different weed control programmes were studied. In the 
first weed control programme, herbicides are applied to the whole field only if the weed 
density exceeds a threshold value, otherwise there is no control at all. The dynamics of a 
weed population subjected to such a 'threshold control programme' is characterized by 
aperiodic (quasi-periodic or chaotic) cycles, whereas the long-term herbicide use does not 
depend on the threshold value. In the second weed control programme, the optimum 
herbicide dosage is determined and applied to the whole field. In this case the density of 
the weed population will approach a low equilibrium value. The herbicide use of such an 
'optimum dose control programme' is determined by the herbicide dose required to keep 
the weed population at a low density. In the third weed control programme, the spatial 
scale of weed control decision making is reduced such that only weed patches are sprayed. 
The herbicide use of such a 'patch control programme' is determined by the spatial pattern 
of weeds as well as the spatial resolution of the patch sprayer. The patch control 
programme is only of interest if weeds are heterogeneously distributed over space. It is 
shown that invading annual weed populations are capable of generating patches, even in 
an otherwise homogeneous habitat, if the forward tail of the projected seed dispersal curve 
declines slower than exponential. It is shown that annual weed populations are also 
capable of generating patches in an otherwise homogeneous habitat if they are held at a 
constant low density. In the latter case, the weed patch formation is a self-organized 
critical phenomenon. 



PREFACE 

Anyone who has seen the movie 'Invasion of the Body Snatchers' will realize that 
invasions by alien plants may pose a life-threatening danger to mankind. But what about 
the ordinary plants like chickweed and cleavers that grow in the farmers' fields? These 
ordinary plants also pose a considerable problem to mankind. If farmers leave the weeds 
uncontrolled, the weeds would cause considerable losses in crop yield and food 
production. If farmers control the weeds by chemical means, which is often considered to 
be the only economically feasible option for weed control in modern western agriculture, 
these chemicals may contaminate the surface water and thus impose a danger to public 
health. 

One of the aims of this thesis is to highlight the impact that control has on the spatial 
dynamics and pattern formation in weed populations, and the opportunities this gives to 
design better weed control programmes that require less use of herbicides. It is not 
intended as a cookbook for applied ecologists to build decision support systems for weed 
management, nor is it intended as a guide for theoretical ecologists for designing abstract 
models of plant population dynamics. Rather, this thesis offers some new concepts and 
approaches that might appeal to both theoretical and applied ecologists. 

This thesis would not have been possible without Jos Frantzen and Marcel van Oijen 
who encouraged me at an early stage to pursue the research on spatial pattern formation in 
weed populations, and who helped me to write down the results in such a way that 
somebody else might understand what had been achieved. No experimental results would 
have been obtained without the help of Roel Groeneveld who demonstrated that the value 
of fieldwork lies in doing it. I am glad to thank friends and colleagues for taking the time 
to read parts of this thesis as it developed, for providing stimulating discussions, and for 
pointing out the relevant literature. Particularly I would like to mention Michiel van 
Boven, Bert Bos, Frank van den Bosch, Jeroen Groot, Hans Heesterbeek, Gareth Hughes, 
Corne Kempenaar, Eddie Kremer, Shana Mertens, Dave Mortensen, Andre de Roos, Lisa 
Rew, Maurice Sabelis, Peter Schippers, Bert Schnieders, Leo Vleeshouwers, Rommie van 
der Weide and Wopke van der Werf. A special thanks goes to Bert Lotz for starting up the 
project on weed population dynamics at the DLO-Research Institute for Agrobiology and 
Soil Fertility at Wageningen. Of course, this thesis would not have been possible without 
Martin Kropff and Johan Grasman, whom I gratefully acknowledge. They encouraged my 
interests in weeds and in analysis of spatial dynamics, and they have been of great help to 
point out the most essential findings as they are reported here. 
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Chapter 1 

GENERAL INTRODUCTION 

Motivation for this study 

The presence of weeds in a crop forms a threat to the crop yield. If no action is taken, 
weeds will reduce crop yield, reproduce, and form an even larger threat to future crops. 
Weed control is therefore a crucial element in cropping systems. At present, most cropping 
systems rely heavily on herbicides because they are a reliable and relatively cheap means 
for weed control. Because environmental side-effects of herbicide use have become 
apparent over the past decades, public concern has been aroused. For example, the Dutch 
government launched a multiple-year programme on crop protection that restricts the 
amount of agrochemicals used and that promotes agricultural practices that rely less on 
agrochemicals (Anonymous 1991). New weed control programmes have been developed 
that aim to avoid unnecessary use of herbicides as well as excessive yield losses. 

It is in general very easy to develop new weed control programmes that reduce herbicide 
use over a short term. For instance, simply omitting weed control in cereal crops will give 
often acceptable yields in the current cropping season without the use of any herbicides. 
But this short-term benefit has its price on the long term: weeds are allowed to reproduce, 
and the weed population will increase in size and may cause considerable yield losses in 
subsequent years. Control programmes that give good results on a short term do not 
necessarily give good results in the long term. It is essential to evaluate newly developed 
weed control programmes for their long-term effectiveness and herbicide usage. However, 
it is almost impossible to set up field experiments for such an evaluation and, even if it 
were possible, the experimental results would come too late to be of any use. An 
alternative is to evaluate the effectiveness and herbicide usage of weed control 
programmes with models of weed population dynamics. 

Models of weed population dynamics have been used for a few decades to evaluate weed 
control programmes (see, e.g., Selman 1970; Mortimer et al. 1978). More recently, 
computer models have been used to simulate the dynamics of one particular weed species 
in response to a weed control programme. For instance, Doyle et al. (1986) simulated the 
dynamics of the grass weed Alopecurus myosuroides Hudson which was controlled 
whenever the weed density exceeded a threshold value; Pandey & Medd (1991) simulated 
the dynamics of the grass weed Avena fatua L. in response to annual applications of 
herbicide dosages optimized with respect to specific economic objectives; Day et al. 
(1996) simulated the dynamics of a theoretical grass weed in response to spatially 
selective weed control. 
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The above-mentioned list of studies shows that there are at least three different weed 
control programmes to avoid unnecessary herbicide usage and excessive yield losses: 
• weed control programmes that apply herbicides only where needed, they will be 

referred to as 'patch control programmes'; 
• weed control programmes that apply herbicides over the whole field at the economic 

optimum dose, they will be referred to as 'optimum dose control programmes'; 
• weed control programmes that apply herbicides over the whole field only when the 

weed density exceeds a threshold value, they will be referred to as 'threshold control 
programmes'. 

Alternatively, the herbicide use of weed control programmes can be reduced by relying on 
mechanical or biological weed control methods ('ecological weed control'). For such 
weed control programmes, it is also essential to evaluate the long-term effectiveness and 
to avoid unnecessary use of, for example, harrowing treatments or mycoherbicide 
applications. It is expected that at least some of the problems encountered in the evaluation 
of ecological weed control programmes will also be encountered in the evaluation of 
herbicide-based weed control programmes. Therefore, the evaluation of long-term 
effectiveness and long-term herbicide use of weed control programmes may be useful for 
the evaluation of weed control programmes that do not rely on chemical weed control. 

Objectives of this study 

The evaluation of weed control programmes usually requires a vast amount of quantitative 
data on herbicide efficacy, weed-crop interference and weed population dynamics, prices 
of crop and herbicide. In most cases, this data is not available. One possible way of 
circumventing the large data requirement is to identify the key factors involved in long-
term herbicide use by a particular control program, and to estimate how the long-term 
herbicide use depends on these key factors. 

In some cases, a better understanding of weed population dynamics is needed to evaluate 
the effects of a control programme. For example, consider the 'patch control programmes'. 
They only avoid unnecessary herbicide usage if the weed spatial pattern is aggregated. 
Many observations indicate that spatial pattern of annual weeds is indeed aggregated (e.g. 
Rew et al. 1996), a limited number of observations indicates that these patches remain at 
the same location over many years (e.g. Wilson & Brain 1991). It is not well understood 
why annual weeds form patches and how these patches persist despite years of uniform 
treatment, and, at present, it is not known what will happen if only weed patches are 
treated with herbicides (Rew & Cussans 1995). A better understanding of spatio-temporal 
dynamics of annual weed populations is required in order to evaluate the effects of patch 
control programmes. 

The first objective of this thesis is to analyse spatio-temporal dynamics of annual weed 
populations in response to the control exerted by weed control programmes. The second 
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objective is to identify the key factors that determine and control the long-term herbicide 
use for a weed control programme. 

Methodology 

Throughout this thesis, analysis of population dynamics will rely on the use of 
mathematical models that are based upon a very basic description of the life-history of 
annual weeds: seeds germinate in the beginning of the cropping season; they establish as 
plants; the plants are subjected to weed control; the surviving plants mature and produce 
seeds; the seeds are disseminated and added to the seedbank. If interest is in spatial pattern 
formation in populations, it is essential that a model also has discrete individuals, 
demographic stochasticity and local spatial interactions (Durrett & Levin \994a,b; Bolker 
& Pacala 1997; Levin & Pacala 1997). If interest is in other aspects of population 
dynamics, more parsimonious models can be used, for instance models that use a 
continuous distribution of weed density over space (Allen et al. \996a,b) or models that 
use a weed density that is averaged over a whole field (Firbank & Watkinson 1986). 

Most of the data that is used for comparison with model assumptions and model results 
are obtained from previously conducted experiments (some of which have been reported 
by Wallinga 1995a). The analysis of weed population dynamics in response to weed 
control programmes is carried out analytically or by means of computer simulations. 

Outline of this thesis 

First, the spatio-temporal dynamics of annual weed populations are studied. What causes 
weeds to occur and persist in patches? Chapter 2 provides an answer to this question in 
case the weed population is kept at a constant, low density. Chapter 3 provides an answer 
to this question in the case of an expanding weed population. 

Second, patch control programmes are evaluated. Chapter 4 suggests a method for 
estimation of the potential reduction in herbicide use by a patch spraying strategy, based 
on a description of the weed spatial pattern in a field. 

Third, optimum dose control programmes are evaluated. The exact optimum herbicide 
dose may be calculated by available optimization algorithms that require large amounts of 
data which are often not available. Chapter 5 gives an approximation of the long-term 
herbicide usage when only limited data is available. 

Fourth, the threshold control programmes are evaluated. Straightforward simulation 
methods result in a 'blurred' relation between threshold density and average herbicide use 
(see Cousens et al. 1986). Chapter 6 shows that it is possible to derive a better, 
unambiguous, relation between threshold density and long-term herbicide usage. Chapter 
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7 shows how the predicted weed density is affected by estimation errors of the initial weed 
density and the weed population growth rate. 

Fifth, the results of the preceding chapters are integrated and used to indicate the key 
factors that determine and control the long-term herbicide use of the evaluated weed 
control programmes, and to formulate a conjecture about the spatio-temporal dynamics of 
annual weed populations (chapter 8). 



Chapter 2 

THE ROLE OF SPACE IN PLANT POPULATION 
DYNAMICS: ANNUAL WEEDS AS AN EXAMPLE 

Adapted from: Wallinga, J. 1995 Oikos 74, 377-383 

Abstract 

The dynamics and spatial pattern of a weed population are analysed with a model that 

takes explicit account of the spatial position of individual weeds. In this model weeds 

are held at a low density in an environment with homogeneous abiotic conditions. 

Maintaining low weed densities requires a weed removal rate close to the critical 

removal rate that marks the transition from possible survival to certain extinction of 

the population. At these low densities, the spatial pattern of weeds and the local 

population dynamics obey scaling laws. These scaling laws and the value of the 

scaling exponents are robust to changes in the model. Based on this analysis, weeds 

are expected to occur in scale-invariant spatial patterns. In a field observation, the 

spatial distribution of the weed Galium aparine L. is found to be scale-invariant. 
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Introduction 

A plant population's establishment in an environment is determined by the population 
dynamic attributes of the plants that make up that population. Theoretical studies (e.g. 
Durrett & Levin 19946; Sato et al. 1994) accounting for spatial position and dispersal of 
individuals and assuming an environment with homogeneous abiotic conditions, have 
shown that there is a marked threshold for mortality rate, below which the population can 
persist, but above which the population faces certain extinction. At mortality rates just 
below this threshold, the population may persist at low densities, while balancing between 
possible survival and certain extinction. In this situation, where conditions for survival are 
marginal, 'critical phenomena' are expected (see Grassberger 1983). These 'critical 
phenomena' imply that the dynamics and spatial pattern are pertinent to a nearby critical 
point (here the threshold value of mortality rate), and that the dynamics and spatial pattern 
are scale-invariant, with scaling exponents independent of many details of the system. 

Weed populations are plant populations whose population growth is controlled by 
farmers, that is, their mortality rate is enhanced. The term 'weed' is used here to refer to 
annual plants that occur endemically in an arable field with homogeneous abiotic 
conditions. These plants are controlled to maintain them at a low density, without 
necessarily driving them to extinction (Pandey & Medd 1990). So, where a plant 
population with a high mortality rate (close to the threshold value) occurs at low densities, 
a weed population is subjected to a high mortality rate to maintain it at low densities. This 
evokes the question of whether critical phenomena might be expected for weed 
populations. If so, it would yield a very robust qualitative and quantitative hypothesis for 
dynamics and spatial pattern of weeds, which could prove useful for weed management 
(Mortensen et al. 1993a). 

This paper examines whether such a robust hypothesis for dynamics and spatial pattern 
for weed populations might exist. A somewhat simple model of a weed population without 
spatial structure is presented as a preliminary to a more complicated stochastic model of 
weed population dynamics that explicitly accounts for the spatial position of weeds. It will 
be shown that the latter model generates dynamics and pattern that are typical for critical 
phenomena, and the 'typical' spatial pattern and dynamics of a weed population will be 
characterized. Finally, the expected spatial pattern is compared to a field observation. 

A model of a weed population without spatial structure 

Consider a population of plants as a spatially homogeneous mass. The individuals (annual 
weeds) reproduce in discrete generations of one year. The density of seeds is taken as the 
state variable, and the following transition rules are assumed: 
• All seeds germinate and develop into plants. 
• A fraction r is killed by weed control. 
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• The surviving plants reproduce and then die. 

• The reproduction rate of the surviving plants depends on the plant density. 

The fraction r is termed weed removal rate, the value of r is chosen such that the density 

of individuals does not change over time. This mimics the practice of removing plants 

when they are abundant, and not removing plants when they are rare. Time is denoted by t, 

the density of seeds is denoted as p. The maximum density is (arbitrarily) set to 1. At this 

maximum, each plant will yield on average 1 seed. The seed production per plant 

increases up to a maximum of a seeds per plant (with a > 1). This increase in seed 

production depends linearly on the difference between the actual and the maximum 

density. 

In the absence of weed control, the growth of the population then obeys a simple logistic 

equation: 

P»+ i=P»+( f l - l ) p f ( l -P< ) (1«) 

Weed control is introduced by substituting (1 - r)pt for p,. The fraction of plants that 

needs to be removed to keep the population at constant density is determined by solving 

the equation for r, after setting p r + 1 equal to pt: 

I-
a - -y/o2 - 4(a - l)p 

2(«-Dp 
(lb) 

This relationship between weed removal rate r and weed density p is depicted graphically 

in figure 1. For weed control, we are interested in the fraction of weed plants that need to 

be removed in order to keep the population at a very low density. This rate of weed control 

is termed the critical removal rate rc and is calculated as the limit p -> 0 of the right-hand 

side of equation lb. For example, when the maximum growth rate a equals 5 seeds per 

0.2 0.4 0.6 0.8 

Density of seeds p 

Figure 1. Removal rate r as a function of density of seeds p, according to the non-spatial model as in 
equation 1, with a maximum reproduction rate a = 5 seeds per plant. 
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plant, then four out of five weeds need to be removed to counterbalance this maximum 
growth rate, i.e. rc = 4/5 (figure 1). 

This system does not undergo dynamic changes, since density is held constant over time 
and is not allowed to vary over space. 

A spatial model of weed population dynamics 

The model 

In a stochastic spatial analogue of the model described above, space is conceived as a 
collection of sites on a two-dimensional square lattice. The system is updated in discrete 
time steps corresponding to 1 year. Each site can be in one of two states: it can be either 
vacant or occupied by a single seed. The change in the state of a site at spatial position (x, 
y) at time t is determined by transition rules. The input for these rules consists of global 
and local information about the system at the preceding time. The global information is 
given as the density of occupied sites over the whole lattice (p). The local information is 
given as the states of the sites in the neighbourhood; this neighbourhood of the site (x, y) 
consists of the site itself and the four nearest neighbours {(x, y), (x+\,y), (x-l,y), (x,y+\), 
(x, y-l)}. From this information the new state of a site can be derived by applying the 
following transition rules: 

• All seeds germinate and develop into plants. 
• Plants die with probability r, where r is tuned so as to conserve the fraction of sites 

occupied by plants (p) on the whole lattice. 
• If the plant survives, it will send a seed to each site in the neighbourhood (5 in total) 

and die. 
• There can be at most one seed per site; if a particular site receives more than a single 

seed from its neighbourhood, one survivor is selected at random. 
In this model there are no dynamics at a global level, but dynamic changes are allowed at 
a local level. 

The pattern generated at low densities 

To obtain a 'typical' spatial pattern of a weed population, Monte Carlo simulations were 
carried out with the model, using 1024 seeds distributed on a 512 x 512 lattice (these 
numbers are chosen as powers of 2 for computational convenience). When the model 
rendered a more or less stationary pattern, a snap-shot was taken of the two-dimensional 
spatial pattern. This pattern is shown in figure 2a, in which the sites occupied by weeds 
are marked as black dots. Clearly, the weeds appear in clusters. To find out how these 
clusters change over time, a transect across the lattice of figure 2a was selected. The 
spatial distribution of weeds on this transect was recorded for 512 consecutive time steps. 



Spatial dynamics of annual weeds 
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Figure 2. Results of Monte Carlo simulation with the spatial model on a 512 x 512 lattice. Lattice sites 
occupied by weeds are indicated as black dots, (a) A typical spatial distribution; (b) A typical temporal 
pattern for a transect through the spatial plane for 512 consecutive years. Spatial coordinates are denoted as x 
and y, time is indicated as t. 

The resulting pattern is shown in figure 2b, where the sites occupied with weeds again 

appear as black dots and time increases from the top to the bottom. It illustrates that the 

clusters of weeds tend to remain on the same spot for a long time. 

Analysis of the population dynamics at low densities 

The question remains how these 'typical' patterns can be described quantitatively, and 

how they relate to the local population dynamics. Here, this question is addressed from the 

perspective of an individual seed. A closer look at the expansion over time from such a 

single seed to a cluster of offspring might clarify how the local population dynamics 

generate and maintain the spatial patterns. 

A population at low density was simulated by distributing 1024 seeds on a 8192 x 8192 

lattice. When the model rendered a more or less stationary pattern, a seed from this 

population was selected at random. The number and positions of its offspring in the 

population were recorded over time, up to 1024 time steps. This procedure for tracking 

and recording the offspring of randomly chosen seeds was repeated 10 000 times. The 

result was a large ensemble of offspring. In this ensemble two quantities were measured: 

the mean number of offspring at time /, and the mean square radius of a cluster of 

offspring at time / originating from a single individual at / = 0 (means were taken over 

surviving offspring only, and the distance between two adjacent sites was arbitrarily set to 

1). These quantities yield information about increase in the number of offspring, and the 

concomitant spreading over space of offspring. The results are shown in figure 3 (note the 

double logarithmic scales). 
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Figure 3. Results of Monte Carlo simulations, tracking all offspring of individual seeds, (a) The mean 
number of seeds stemming from a single parental individual N(i) after / time steps, (b) The mean square 
radius of clusters of these seeds R^(J) after I time steps. 

Figure 3a shows that the logarithm of number of offspring N(t) increases linearly with the 
logarithm of time t. That is, the mean number of offspring present at time /, N{t), increases 
with time according to a scaling law: 

W)- (2a) 

where cp is the slope of the line in figure 3a. (Here, the sign ~ means either 'proportional 
to' or 'asymptotically proportional to'.) Figure 3b shows that the mean square radius of a 
cluster of offspring present at time t, R2(t), increases with time according to a similar 
scaling law 

R2(t)' (2b) 

where % i s t n e slope of the line in figure 3b. The values of the exponents in these equations 
are estimated as q)« 0.65 and x ~ 1-10. 
A static description of the resulting pattern of offspring can be inferred by combining 
these dynamic relationships (equations 2a and 2b) and eliminating /: 

N(R) ~ R 2<P/X (2c) 
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When the offspring of one seed are spread out over the lattice in a spatially uniform blob, 
the number of offspring should be proportional to the area occupied (i.e. N ~ R ). So, a 
uniform distribution of offspring over space requires that the value of the exponent in 
equation 2c equals 2. However, the value of this exponent is found to be 2q>, % «1.17. 
This means that only few offspring disperse far from the centre of a cluster, while most 
offspring aggregate near the centre. 

Conformation to a scaling relationship such as equation 2c means that the spatial pattern 
looks the same, no matter at which spatial scale the pattern is examined. This feature is 
termed 'scale invariance' and can be detected in the spatial distribution of weeds shown in 
figure 2a. Under magnification, each cluster consists of a set of clusters, each of which is 
in turn a set of clusters, giving rise to a nested hierarchy of self-similar clusters. Thus the 
same 'type' of cluster appears at a broad range of scales. This kind of pattern can be 
characterized by a fractal dimension D (e.g. Feder 1988; Sugihara & May 1990). Fractal 
dimensions can be determined in various ways; for example as the scaling exponent in the 
relationship between the number of occupied sites in a cluster and the cluster radius. This 
means that the scaling exponent in equation 2c is a bona-fide fractal dimension (e.g. Feder 
1988). Thus, the local population dynamics can be related to the dimension of the pattern 
generated: D = 2 q>/% * 1.17. 

The relation between weed density and weed removal rate 

The next point of interest in the study of the spatial model is the relation between the 
density of seeds on the lattice p, and the required removal rate r. Various densities were 
realized by simulating a population of 1024 and 2048 seeds distributed on lattices of 64 
x 64, 128 x 128 and 256 x 256 sites. The removal rate r that was required to maintain the 
population at these densities was estimated by averaging over 250 time steps in a 
stationary situation. The results of these simulations are shown in figure 4. The removal 
rate approaches a critical value (rc) for low densities. When the behaviour of removal rate 
near the critical point rc was examined, it was found that the difference rc - r goes to zero 
according to a scaling law as density approaches zero (figure 4, inset): 

(rc-r)-P
a (3) 

with critical removal rate rc ~ 0.64 and exponent ft) w 1.66. The value of rc is lower than 
the value obtained for the model without spatial structure (which resulted in rc = 4/5) since 
weeds can now aggregate, even at low densities. 

The relation between density and removal rate is comparable to the relation between 
density and mortality rate found for other models of spatially structured populations 
(Durrett & Levin 1994ft; Sato et al. 1994). In those models, mortality rates below a critical 
value might result in equilibrium densities, and the equilibrium density approaches zero as 
the mortality rate approaches the critical value. Here, removal rates are below a critical 
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Figure 4. Removal rate r as a function of density p of seeds on the lattice. The inset shows the difference 
rc- r a s a function of density p. 

value when densities are held constant, and when the maintained density is close to zero, 
the removal rate approaches the critical value. 

Robustness of the spatial model 

If it is to serve as a simple prototype model for more complex models, the results of the 
spatial model must be robust to changes in the model's details. The abundance of scaling 
laws in the model results indicates critical phenomena and concomitant robustness (cf. 
Metz&DeRoos 1992). 

A more specific indicator of critical behaviour and concomitant robustness is the 
similarity between the spatial weed model and a model known as 'directed percolation'. 
Briefly, directed percolation in an epidemiological interpretation (see Grassberger 1986) 
deals with a population that inhabits a discrete lattice; each lattice site contains one 
individual. The population is susceptible to a disease, and the illness of an individual lasts 
one time step. Each individual has a probability p of infecting its neighbours. There is a 
critical point pc where the epidemic barely survives. When p &pc, directed percolation 
conforms to similar scaling laws as used here, with exponents corresponding to G)« 1.71 
(Brower et al. 1978), q>» 0.67, % « 1.13 (Grassberger 1989). The critical point corresponds 
to rc « 0.66 (Grassberger 1989). These values are very close to those found for the spatial 
weed model, suggesting that the behaviour of the spatial weed model at low densities is 
consistent with the critical behaviour of directed percolation. 

The critical behaviour of directed percolation near p « pc is 'universal' (sensu 
Grassberger 1983). This means that there is a wide variety of models (among which the 
'basic contact process', Durrett & Levin 19946) that differ in details but which, near the 
critical point, result in the same scaling laws with the same scaling exponents as those 
pertaining to directed percolation. 
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Drawing on the analogy between the spatial weed model and the directed percolation 
model, it can be conjectured that this 'universality' also applies to the behaviour of the 
spatial weed model at low densities (as in equations 2 and 3). This implies that the scaling 
laws and the value of the scaling exponents should still apply asymptotically when the 
following modifications are applied to the model: 
• Replacing the square lattice by any other regular 2-dimensional lattice (see 

Grassberger 1983, 1989). 
• Changing the population dynamic attributes of the weed, such as the dispersal range 

and length of the life cycle (provided finite characteristic scales are involved, i.e. 
probability distributions of dispersal distance and dormancy period should decline 
exponentially with distance or time, see Grassberger 1983, 1986). 

Although these modifications do not influence the scaling laws and the value of the 
scaling exponents, they might influence the value of the critical removal rate as well as the 
spatial and temporal range, where the scaling laws represent a good approximation. 

To demonstrate the effect of changing population dynamic attributes of the weed and the 
conjectured 'universality', the spatial model is modified by introducing a variable 
germination rate and a larger neighbourhood. To avoid confusion, the preceding spatial 
model will be referred to as spatial model I and the following modified spatial model will 
be referred to as spatial model II. In this spatial model II, the neighbourhood of the site (x, 
y) can consist of either 5 sites {(x,y), (x±\,y), (x,.y±l)} or 9 sites {(x,y), (x±\,y), (x,y±\), 
(x±\,y±\)}. The state of a site is set by the number of seeds on the site, so now more than 
one seed can exist on a single site. Spatial model II is based on the following rules: 

• Seeds germinate with probability g, all non-germinated seeds remain dormant on the 
site. 

• Of the germinated seeds on a site, only one can grow into a mature plant, and this one 
is selected randomly. 

• Plants die with a probability r, the value of which is tuned so as to conserve the density 
of seeds over the whole lattice (p). 

• If the plant survives it will send one seed to each site in the neighbourhood and die. 
• Each site can receive at most one seed per time step, and if a particular site receives 

more than a single seed from its neighbourhood, one survivor is selected at random. 
For germination r a teg=\ and a neighbourhood structure of 5 sites this modified model is 
equivalent to the spatial model I. The dynamics of the modified model are studied in the 
same way as before: the average fate of offspring of a single seed is determined, but now 
for germination rates g = 1 and g = 1/5 and for neighbourhood structures of 5 sites and 9 
sites. The results of Monte Carlo simulations with the models are shown in figure 5. 
Although for small t the behaviour is influenced by germination rate and neighbourhood 
structure, at large t the scaling relationships as in equations 2a and 2b still apply. The 
scaling exponents in these equations (the slopes of the lines in figure 5 at large /) do not 
differ for various germination rates and neighbourhood structures. 
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Figure 5. Results of Monte Carlo simulations with the spatial model II. (a) The mean number of seeds 
stemming from a single parental individual N(t) after l time steps, (b) The average square radius of clusters 
of these seeds R2(j) after / time steps. The circles denote results for germination rate g = 1 and a 
neighbourhood structure of 5 sites; the squares denote results for g = 1/5 and a neighbourhood structure of 5 
sites, the triangles denote results for g = 1/5 and a neighbourhood structure of 9 sites. 

A field observation 

The question is whether scale invariance in the spatial distribution of plants can be 
observed in real life, where numerous other factors act upon the population under study. 
Field observations have clearly shown that the spatial distribution of annual weeds tends 
to be clustered {e.g. Dessaint et al. 1991; Mortensen et al. 1993a). However, this 
clustering does not necessarily appear at many scales. In order to show scale invariance, 
the spatial distribution of weeds needs to be analysed at many scales. 

The data for such an analysis were collected in May 1994 on an arable field cropped with 
winter wheat near Wageningen (the Netherlands). In a plot of 18.0 m x 32.4 m the spatial 
positions of seedlings of the weed Galium aparine L. were mapped by dividing the plot 
into small quadrats of 0.15 m x 0.27 m and counting the numbers of seedlings in each of 
these small quadrats. 



Spatial dynamics of annual weeds 15 

fc 
o 
U 

0.01 

0.001 

0.0001 

Distance e 

Figure 6. Scaling of the correlation sum C(£) with distance (grid spacing) e for the observed spatial 
distribution of seedlings of the weed Galium aparine L. The slope of this log-log plot gives the fractal 
dimension. 

For the spatial weed model the fractal dimension was derived as the scaling exponent in 
the relationship between number of occupied sites in a cluster and the cluster radius. There 
is however a more standard (and more convenient) way to infer this fractal dimension 
directly from an observed spatial pattern. This procedure is based on scaling of the 
correlation function with distance, yielding the so-called correlation dimension 
(Grassberger & Procaccia 1983). A grid with a spacing e is superimposed on the observed 
pattern. The grid spacing e is a multiple of the edge size of the small quadrats used in the 
observation. The number of grid cells required to cover the plot is termed n(e), the relative 
number of weeds in the /* grid cell is denoted asp/. Summing the squares of these relative 
numbers over all «(e) grid cells yields the correlation sum: 

"(e) 

C(E)=Y,Pi' (4a) 

For a fractal set of points this correlation sum is expected to scale as 

C ( £ ) ~ £ D (4b) 

where D is the correlation dimension of the set. 
From the observed spatial distribution the correlation sum C(e) is calculated for various 

grid spacings £. The result is shown in figure 6 (note the double logarithmic scales). The 
scaling relationship does indeed hold for the observed pattern. Scaling extends from 
spatial scales of about 0.2 m, which is about the plant size, up to scales where the plot size 
becomes limiting. The correlation dimension of the spatial distribution pattern of weeds is 
estimated as the slope of the line in figure 6 resulting in D « 1.51, which is slightly higher 
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than the value of 1.17 predicted by the model. The result shows that a scale-invariant 
spatial distribution of weeds is close to reality. 

Discussion 

The idea elaborated in this paper is that weed populations can be thought of as plant 
populations poised near the transition between possible survival and certain extinction, 
where critical phenomena are expected. In more detail, this idea encompasses the 
following steps. The removal rate required to keep weeds at a low density is very close to 
a critical removal rate, analogous to the critical mortality rate that marks the transition 
between possible survival and certain extinction. Near this critical point, critical 
phenomena are manifest as scale invariance in dynamics and spatial pattern. The 
accompanying scaling exponents are universal, that is, the exponents do not depend on 
model details such as the structure of the spatial lattice nor on modelled population 
dynamic attributes of the weed (provided finite scales are involved), and more specifically, 
the scaling exponents are identical to those obtained for directed percolation. This amounts 
to a very robust conjecture about annual weed populations in an arable field: the local 
population dynamics and the spatial pattern are expected to be scale-invariant, with 
scaling-exponents matching those of directed percolation. 

The field observation of spatial pattern of weeds shows that scale invariance does indeed 
occur, although the observed and expected fractal dimensions do not match exactly. A 
possible explanation for this discrepancy is that the dispersal distribution of seeds does not 
decline exponentially with distance (cf. Mollison 1977) which might lead to scale-
invariant patterns with other exponents, and thus to a different fractal dimension 
(Grassberger 1986). 

Of course, the correspondence in scale invariance of the simulated and the observed 
pattern does not prove the validity of the model, nor the validity of the mechanisms 
involved in the model. The point is rather that there is no need to rely on external factors, 
such as soil properties, in order to explain the spatial pattern of a weed population in an 
arable field. The spatial pattern can be explained from the local reproduction and dispersal 
of these plants and the weed control that keeps them at a low density. 
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PATTERNS OF SPREAD OF ANNUAL PLANTS 

Adapted from: Wallinga, J., Kropff, M.J. & Rew, L.J. submitted. 

Abstract 

The pattern of spread of plant populations is an important topic in the planning of 

control programmes of weeds. We consider the relationship between the dispersal 

distribution of seeds and the pattern of spread for an annual plant population in a 

homogeneous habitat. The so-called 'inverse square rule', which is often used in 

empirical studies, states that an invading population will display an advancing front if 

the slope of the seed dispersal curve declines according to the inverse square law or 

steeper. We show that this rule is incorrect and should be replaced by an 'exponential 

tail rule': if the tail of the projected seed dispersal curve declines slower than 

exponential, new colonies are established, otherwise a closed advancing front is 

formed. 
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Introduction 

The pattern of spread of plants has been subject to scientific investigations for many 
decades (Salisbury 1961; Mack 1981; Cousens & Mortimer 1995). Mathematical models 
have been used to give post hoc explanations of the observed spread and to indicate 
implications for control of invading plants. Skellam (1951) characterized invading plant 
populations as a single expanding focus, and this characterization of the spatial spread has 
been used repeatedly (e.g. Allen et al. 1996a). Mollison (1977) and more recently Kot et 
al. (1996) and Lewis (1997) showed that, at least in theory, organisms may spread at 
accelerating rate or with occasional leaps. If plants display such a pattern of spread, it 
would be of fundamental importance to control programmes (Moody & Mack 1988; Levin 
1989). 

The rate and pattern of colonization of new sites by a plant's offspring is likely to be 
influenced by the shape of the seed dispersal curve around the parent plant. Dispersal 
curves are often empirically described by negative exponential curves or negative power 
law curves, which indicates that there are more propagules near the centre and in the tails 
than in a normal distribution. Portnoy & Willson (1993) examined tails of various seed 
dispersal curves and found that 35% could be described adequately by negative power 
law, 10% by a negative exponential, and 28% by both. 

Harper (1977) conjectured that if the slope of the dispersal curve is less than that of the 
inverse square law, a population will display a spread-out pattern of isolated colonists. 
Otherwise, a population will spread into colonizable territory as a closed advancing front. 
This criterion for spread by isolated colonists will be referred to as 'the inverse square 
rule'. One of the assumptions underlying the inverse square rule is that a new colony can 
only establish at a particular location if an infinite amount of seeds has arrived at that 
location (cf. Van der Plank 1960). This very restrictive assumption provides a doubtful 
base for the inverse square rule. Despite this fact, the inverse square rule has been used 
repeatedly in analysis of seed dispersal data and is mentioned in ecological textbooks 
(Auld 1988; Willson 1993; Lonsdale 1993; Begone?al. 1996). 

We are interested in the relationship between the seed dispersal distribution and the 
resulting pattern of spread for annual plant populations. Our objective is to show that the 
inverse square rule is too restrictive for characterizing seed dispersal distributions that lead 
to spread-out patterns of isolated colonists. We will present an alternative criterion for 
seed dispersal distributions in a homogeneous two-dimensional habitat. Finally we show 
by means of an example how this criterion can be applied in the planning of weed control 
programmes. We use a spatial stochastic model that is comparable to those used by Shaw 
(1995) and Wallinga (19956), and we use a spatial deterministic model that is comparable 
to that used by Allen et al. (\996a,b). Dispersal of seeds of the Alopecurus myosuroides 
Hudson is used as an example because this is one of the most serious grass weeds of cereal 
crops in western Europe (Holms et al. 1997). 
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Stochastic simulation model 

19 

The inverse square rule is tested with a spatial stochastic model of plant population 

dynamics. In this model, space is discretized into a two-dimensional square lattice, 

consisting of 32768 x 32768 sites. Each site represents an area of 0.2 m x 0.2 m and is 

either empty or contains a discrete number of seeds. The system is updated in discrete time 

steps corresponding to one year according to the following rules: 

• a seed germinates with probability g and emerges as a seedling; 

• only one seedling per site establishes as a mature plant, other seedlings at the site are 

outcompeted and do not reproduce; 

• a mature plant produces/seeds that will eventually emerge; 

• a seed is dispersed over a distance |£| drawn from a probability distribution D(|£|), 

there is no preference for direction. 

The pattern of plant spread was studied by following the offspring of a single seed in the 

centre of the lattice for up to twenty time steps (years). Spread was measured by recording 

the absolute distance from the centre of the lattice to the furthest individual. The number 

of colonies was measured at the spatial scale of 7? = 1 m, and two plants were associated 

with the same colony if they were within a distance R from each other or if both were 

within a distance R from other plants that belong to the same colony. The parameter values 

were set to g = 0.7 a n d / = 5. Three different probability distributions D(\£,\) were used, 

distribution 1: D(\%\) = 3 .0e" 3 0 ^ ; 

distribution 2: Z)(|£|) = 4.74(l +1.35|£|)"4-5 ; 

distribution 3: D(\%\) = 33.o(l + 41.3|^)r1-8. 

These types of curves are frequently used for empirical description of seed dispersal 

curves (cf. Fitt et al. 1987; Portnoy & Willson 1993). All three distributions were 

parameterized such that only 5% of the seeds disperse beyond the distance of 1 m. These 

distributions are compared with the inverse square slope in figure 1. 
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Figure 1. Distribution of dispersal distances used in the simulation model. The thick solid line indicates the 
inverse square slope; the solid line indicates distribution 1; broken line indicates distribution 2; dotted line 
indicates distribution 3. 
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Figure 2. Simulated patterns of spread of an annual plant population for the various distributions of dispersal 
distance, (a) Dispersal of seeds according to distribution 1. (b) Dispersal of seeds according to distribution 2. 
(c) Dispersal of seeds according to distribution 3. Spatial pattern of seeds is shown at 10 time steps after 
introduction of the first seed in the centre of the lattice, the bounding box represents 51.2 m x 51.2 m. 
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Figure 3. Simulated increase with time of distance from centre of the lattice to the furthest individual within 
an annual plant population. Circles and solid line indicate results for distribution 1; squares and broken line 
indicate results for distribution 2; triangles and dotted line indicate results for distribution 3. 
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If the inverse square rule is correct, distributions 1 and 2 should lead to spread with a 
closed front because the curve declines faster than the inverse square, and distribution 3 
should lead to formation of new colonies because the curve declines slower than the 
inverse square (figure 1). 

The simulation results are shown in figures 2 and 3. The spatial pattern resulting from 
distribution 1 displays a single colony with a front that is blurred at a small scale (figure 
2a). The distance to the furthest seed increases gradually with time, there is an almost 
constant speed of population expansion (figure 3, solid line). This simulation result is in 
agreement with the inverse square rule. The spatial pattern resulting from distribution 2 
(figure 2b) displays 10 colonies, one central colony surrounded by a few satellite colonies, 
there is no distinct closed front. The distance to the furthest seed increases with periods of 
steady progress alternated with occasional leaps forward, there is no constant speed of 
population expansion (figure 3, broken line). This simulation result does not agree with 
the inverse square rule. The spatial pattern resulting from distribution 3 (figure 2c) shows 
a spread-out pattern of 33 colonies, most of which consist of only a few seeds. The 
distance to the furthest seed increases very rapidly with seeds dispersing beyond the lattice 
edge after 20 time steps (figure 3, dotted line). This simulation result is in agreement with 
the inverse square rule. 

In summary, the simulation results show that the inverse square rule does not hold for 
distribution 2. 

Deterministic model 

A deterministic model is formulated for plant population dynamics in a homogeneous two-
dimensional habitat to assess, in an analytical manner, what types of seed dispersal curve 
can never cause spread-out patterns of isolated colonists. For each year, the fate of annual 
plants is described by the following rules: 
• a seed germinates with probability g and establishes as a mature plant; 
• a mature plant produces/seeds that will eventually establish; 
• the probability of a seed to disperse to position (^,§2) from a parent plant at position 

(0,0) is given by the dispersal distribution D(§,,^2)-
We denote the density of plants at a particular location and time by s(xi,x2,t). The 
population is introduced at one location with an initial density s(0,0,0) = SQ . We are 
interested in spread in the direction of the x,-axis. For notational convenience we 
introduce the germination distribution G(T) , which gives the probability distribution of a 
seed to remain inactive in the soil for T years (such that each year a proportion g of all 
seeds germinates). The projected plant density 

s(xut)= \s(xl,X2,t)dx2 
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integrates all plant densities at a particular value of X\. The projected dispersal curve 

00 

gives the probability for a seed to be displaced over a distance ^i along the Xj-axis. 
The corresponding model for spread of annual plants along the direction of the X(-axis is 

then derived as: 

r=r °° 
5 (x,, 0 = X JG(T)Z>(§, )fs{xx - §,, f - T) d §, (1) 

(see appendix 1). Analysis of this model shows that the annual plant population spreads by 
a closed front if the type of dispersal distribution D(^) is such that 

= Je^> DtfOdS, (2) 

where ct and c2 are finite positive constants (see appendix 1). If the forward tail of the 
projected dispersal distribution declines exponentially or faster, the condition described in 
equation 2 is fulfilled. We refer to this condition as the 'exponential tail rule'. It 
distinguishes two cases: 
• the forward tail of the projected dispersal distribution D(^t) declines exponentially or 

faster and, therefore, the plant population starting out from a point source will spread 
by a closed front of exponential shape that advances with a constant speed; 

• the forward tail of the projected dispersal distribution D(^t) declines slower than 
exponentially and. Therefore, the plant population starting out from a point source may 
result in spread-out pattern of isolated colonists. 
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Figure 4. The forward tail of projected seed dispersal distributions that correspond to distribution of 
dispersal distances used in the simulation model. Solid line indicates distribution 1; broken line indicates 
distribution 2; dotted line indicates distribution 3. 
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The exponential tail rule is applied to the three dispersal distributions listed in the previous 
section. The corresponding projected seed dispersal distributions are calculated 
numerically and shown in figure 4. Distribution 1 results in a forward tail that declines 
exponentially, distributions 2 and 3 result in forward tails that decline slower than 
exponentially. Therefore, seed dispersal according to distribution 1 leads to plant 
population spread by a closed advancing front, and seed dispersal according to distribution 
2 and 3 may result in plant population spread by a spread-out pattern of isolated colonists. 
This is in agreement with the simulation results presented in the previous section. 

Empirical example 

The pattern of spread is of fundamental importance for the planning of weed control 
programmes since we need to understand how weed populations disperse if we are to 
control current infestations and predict future ones. Currently, emphasis in weed control is 
changing towards weed control practices at finer spatial resolutions. Weed control is 
applied only to the parts of the field that are infested with weeds and to a small 'buffer 
zone' around these parts (Rew et al. 1996). If the weed population will spread with a 
closed advancing front, a map of weed infestations created at an earlier date may be used 
for a number of years, even when the control measures are insufficient to prevent the weed 
population from expanding. If the weed population is capable of generating new patches, a 
map of weed infestations created at an earlier data cannot be used for a number of years, 
and the weed control programme should include an extensive monitoring programme to 
detect and control new emerging weed patches. We consider the outbreeding annual grass 
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Figure 5. Distribution of A. myosuroides seeds that have dispersed from a 10 m wide source. Markers 
indicate observations (mean ± standard error), the black bar indicates the source. The inset shows the tail 
shape of the observed curve, the solid line indicates the seedling distribution that results when the projected 
dispersal curve declines as a negative exponential, the broken line indicates the seedling distribution that 
results when the projected dispersal curve declines as a negative power law. 
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weed Alopecurus myosuroides Hudson in a cereal field, and we assume that there is a 
sufficient number of A. myosuroides plants in nearby fields to ensure pollination of all 
solitary plants in the cereal field. We are interested in the question whether a control 
programme for this weed at a fine spatial resolution should include an extensive 
monitoring programme. 

Rew & Cussans (1995) examined the dispersal distribution of viable A. myosuroides 
seeds. A homogeneous population of A. myosuroides plants was allowed to produce seeds 
in 10 m x 10 m plots in an otherwise weed-free crop of winter wheat. The crop was 
combine harvested, and the field was tine cultivated twice and sown to a second crop of 
winter wheat, with all operations in the same direction. The number of seedlings that 
emerged the following spring were counted in 0.1 m2 quadrats at 1 m intervals along a 40 
m length in the direction of the machinery passes (figure 5). The dispersal in directions 
perpendicular to the direction of machine passes was limited and independent of dispersal 
along the direction of machine passes. 

The observed tail shape of the seedling density is shown more clearly in figure 5, inset. 
For comparison, we indicated the distribution of seedlings that results from dispersal from 
a 10 m wide source according to a projected dispersal curve with a tail that declines as a 
negative exponential curve (figure 5, inset, solid line) and as a negative power law (figure 
5, inset, broken line). This comparison shows that it is hard, if not impossible, to 
determine whether the tail of the observed projected seed dispersal curve of A. 
myosuroides declines exponentially or slower than exponentially over this range of 
observed distances. 

The immediate implication is that at these small scales we cannot predict the pattern of 
spread. Hence we cannot be sure that A. myosuroides does not escape control, so a weed 
control programme of A. myosuroides at a fine spatial scale should include a monitoring 
programme to detect and control new emerging weed patches. 

Discussion 

Harper (1977) conjectured that a plant population will display a spread-out pattern of 
isolated colonists if the slope of the seed dispersal curve is less than that of the inverse 
square law. Several studies have used this conjecture to interpret empirical seed dispersal 
curves {e.g. Willson 1993). The simulation study in the present paper shows that the 
inverse square rule is too restrictive since some curves that decline faster than the inverse 
square law can result in a spread-out pattern of plants. In this paper we derived 
theoretically that a plant population may display a spread-out pattern if the forward tail of 
the projected seed dispersal curve declines slower than exponential. We refer to this 
criterion as the 'exponential tail rule'. 

The exponential tail rule is derived from a deterministic model of spatial plant population 
dynamics. This deterministic model is, to our knowledge, the first deterministic model that 
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addresses the spread of an annual plant population that reproduces in discrete time, in a 
two-dimensional habitat. It is closely related to models that are used to calculate the 
velocity of spatial population expansion (Van den Bosch et al. 1990; Allen et al. I996a,b; 
Kot et al. 1996; Lewis 1997). The deterministic model rests on the following assumptions: 
(i) the effects of demographic stochasticity at very low densities are negligible; (ii) the 
effects of intraspecific competition at high densities are negligible; (iii) individuals do not 
benefit from the presence of other individuals; (iv) the uninvaded environment is 
homogeneous; (v) the number of individuals increases with time. Below, we will argue 
that only the latter three model assumptions are also restrictions of the exponential tail 
rule. 

The exponential tail rule is based on a condition for the existence of closed fronts that 
move with a constant velocity. The velocity and shape of the fronts are determined by the 
plants at the leading edge where plant density is low, therefore effects of competition on 
reproductive output can be neglected. The density at the leading edge increases rapidly, 
due to reproduction and dispersal, and this wipes out effects of demographic stochasticity 
(see the simulation results). The deterministic model does show that there are no closed 
fronts that move with a constant velocity when the projected dispersal curve declines 
slower than exponential. So, the exponential tail rule does not depend on the assumptions 
about continuous density and absence of competitive effects. However, the deterministic 
model does not capture the inherently stochastic effects of jump dispersal with 
concomitant cluster formation as seen in simulations when the projected dispersal curve 
declines slower than exponential (figure 2; cf. Shaw 1995). In order to incorporate some of 
these effects the model should include terms that account for spatial correlation (Bolker & 
Pacala 1997; Lewis 1997). 

An annual plant may benefit from the proximity of another plant if it is an outbreeder, 
e.g. A. myosuroides. Observations show that grass pollen dispersal curves decline rapidly 
but level off with distance such that, if there are sufficient populations around, there is a 
low background level of pollen (Fitt et al. 1987; Rew & Cussans 1995), in which case 
outbreeders may show similar population behaviour as self-pollinators. If the environment 
is heterogeneous, the reproductive output of plants will vary and the pattern of population 
spread may reflect the environments suitability for establishment rather than the intrinsic 
pattern of spread. If the number of plants remains constant, for instance as a result of weed 
control practices, annual plant populations do not form a closed front but they aggregate, 
even when the seed dispersal curve declines faster than exponential with distance 
(Wallinga 1995ft). In summary, the exponential tail rule does not hold when the annuals 
invade a heterogeneous environment, when the number of plants does not increase with 
time and may not hold when the annuals are obligate outbreeders. 

The exponential tail rule may provide a useful tool to predict the spatial population 
structure that corresponds to the observed seed dispersal curve. However, the empirical 
example showed that it is hard to obtain conclusive evidence about the actual tail shape. 
The observed tail shape may not correctly reflect the actual shape because of the stochastic 
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effects that are inherent to the tail, and there is a practical limit to the range of dispersal 
distances that can be observed. If the observation of tail shape is to predict pattern of 
population spread, the prediction should remain restricted to those scales that match the 
observations. The predictive power of the exponential tail rule is thus limited to relatively 
small scales. At continental scales, the exponential tail rule can provide, at most, a 
plausible post-hoc explanation of the observed pattern of spread (Skellam 1951; Clark et 
al. 1998). 

Accepting the restrictions that have been outlined, the exponential tail rule could be 
usefully applied to the design of weed control strategies within an arable field and indicate 
whether there is a need for an ongoing monitoring programme to detect and control new 
emerging weed patches. The exponential tail rule may thus provide a dual benefit: it is an 
instrument to adapt weed control strategies to anticipated patterns of population spread, 
and it provides a crucial understanding of the role that seed dispersal has in shaping the 
spatial structure of an expanding population of self-pollinating annual plants in a 
homogeneous habitat. 
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Appendix 1 

The deterministic model is derived from the three rules that describe the life history of 
annual plants. The first rule states that a seed germinates and emerges as a seedling with 
probability g. Thus, the probability to germinate and emerge in year T is 
G(T) = g(l - g)r~ . The density of plants at a particular position in a particular year t, s(-), 
depends on the density of seeds arrived at this position in earlier years, «(•): 

s(Xi -^,x2-%2,t) = £ G ( T ) « ( X , -%UX2 -£,2,t-T). (Al) 

The second rule states that a mature plant produces/seeds that will eventually establish 
as a mature plant. The density of seeds produced, /?(•), is the density of plants times/ 

p(xi-^,x2-^2,t-T) = f-s(xl-^,x2-^2,t-T). (A2) 

The third rule states that the seeds that are produced at the position (xt -£\,x2-!;2) and 
dispersed to position (x,,x2) have a density D(£,u£,2). The total density of seeds that arrived 
at location (X],x2) at year t - T is 

QO 00 

n(xux2,t-T)= J Jz>(£1 ,&)/K*i-§i>*2-fe>'-T)d4,dS2 . (A3) 
—00 —00 

Substitution of equations A2 into equation A3, and substitution of the result in equation 
Al with £ ,=£2=0 gives: 

•£=( OO 00 

s(x,, x2, t) = £ J JG(T)D(£,, §2 )/5(x, - §,, x2 - £2, t - T) d §, d £2 . (A4) 
T = l —00 —00 

Integration over x2 gives the deterministic model: 

5(x, ,0 = 2 JG(T)5(S,X/S"(X, - § , , / - T ) d & . (A5) 
T=l-oo 

If the population would spread with a closed front and at a constant velocity v along the 
x 1 -axis, the density would increase exponentially at the leading edge of the front: 

5(x1,/) = ae9(v '"Xl) (A6) 

where a is a constant and q indicates the steepness of the front (this is a so-called 
travelling wave solution (Van den Bosch et al. 1991; Allen et al. 1996a; Kot et al. 1996). 
Substitution of equation A6 into equation A5 gives 

x-t ^ 

Cie*(w-*,)=£ j G ^ ^ O a - O / c . e ' W ' - ^ i ^ i B d ^ , (A7) 
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which yields after some rearranging 

l = / I e - ^ G ( T ) | e ^ Z ) ( ^ ) d ^ 
T=l - o o 

Using G(T) = g(l - g)T_1 gives 

(A8) 

1 = / -
,9V_ d - g ) 

Je'MSi)^, , (A9) 

rearranging yields 

v = —In 
1 

(\-g)+fgj^DQd^ (A10) 

The velocity of the closed front v evaluates to a constant only if the integral in this 
equation exists, which is the case if there are positive finite constants Cj and c2 such that 

c,= Je^5(^)d4,. (All) 

That is, if the forward tail of the projected seed dispersal distribution declines 
exponentially or faster than exponential. 
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MEASURES THAT DESCRIBE WEED SPATIAL 
PATTERNS AT DIFFERENT LEVELS OF 
RESOLUTION, AND THEIR APPLICATIONS FOR 
PATCH SPRAYING OF WEEDS 

Adapted from: Wallinga, J., Groeneveld, R.M.W. & Lotz, L.A.P. 1998 

Weed Research 38, 351-359. 

Abstract 

If weeds occur in aggregated spatial patterns, it is possible to reduce herbicide use by 

spraying only weed patches. The reduction in herbicide use will then depend on the 

spatial resolution of the patch sprayer and the weed-free area at that level of 

resolution. Three distance measures are presented that describe the weed spatial 

pattern at different levels of resolution. They give information on aspects of pattern 

that are relevant to patch spraying. The distance measures were applied to a spatial 

pattern of Galium aparine L. seedlings recorded in an area of 18.0 m x 32.4 m. In this 

area, the herbicide use of an idealized patch sprayer that detects and sprays all weeds 

with a spatial resolution of 1.0 m would be 41% of the amount required for a whole-

field application. Spraying with a finer spatial resolution of 0.5 m would give a further 

26% reduction in herbicide use. 
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Introduction 

The spatial pattern of weeds is typically aggregated (Marshall 1988; Wilson & Brain 1991; 
Wiles et al. 1992; Johnson et al. 1995). By spraying only the weed patches, the applied 
amount of herbicide can be reduced compared to a whole-field application. The use of a 
patch spraying machine reduced herbicide use by 9% up to 60% in a fallow season, and 
50% to 80% in a post-harvest application on the Canadian prairies (Blackshaw 1996). The 
weed-free area can be used to estimate the potential reduction in herbicide use by patch 
spraying (Johnson et al. 1995). However, as in any study of spatial pattern analysis, the 
appropriate scale for analysis must be chosen (Rew et al. 1997). If an arable field is 
divided into sections of 10 m x 10 m, and the presence of weeds is assessed for each 
section, then a very small part of the area will appear weed-free. If, however, every square 
millimetre of the field is scrutinized, then a very large proportion of the area will almost 
certainly appear weed-free. If the weed-free area is used to estimate the potential reduction 
in herbicide use by patch spraying, the appropriate scale for estimation of weed free area is 
determined by the spatial resolution of the patch sprayer. When there is no a priori interest 
in one particular level of resolution, spatial pattern should be studied at different levels of 
resolution. 

Many observations of weed spatial pattern rely on the use of a quadrat, which is defined 
as a study area of fixed size and shape (Upton & Fingleton 1985). The most current spatial 
statistics are indices that describe the weed spatial pattern at one scale only, such as 
Lloyd's index of patchiness (Nordbo et al. 1995) and the negative binomial k (Wilson & 
Brain 1991; Wiles et al. 1992; Johnson et al. 1995). The semivariance statistic has been 
used to describe the variation in weed spatial pattern at levels of resolution that are larger 
than the quadrat size (Donald 1994; Cardina et al. 1995, 1996; Johnson et al. 1996). Navas 
& Goulard (1991) and Rew et al. (1996, 1997) used contiguous quadrats to record weed 
spatial pattern at one particular level of resolution, the weed spatial pattern at coarser 
levels of resolution was retrieved by combining quadrats into larger quadrats. In all cases, 
the weed spatial pattern could be analysed only at scales equal to or larger than the quadrat 
size. Distance measures do not make use of a quadrat and they describe spatial pattern 
over a wide, continuous range of scales. As summaries of spatial point pattern, the 
distance measures offer a vast improvement over the previously mentioned indices for 
quadrat data and the semivariance statistic for geostatistical data (Pielou 1969; Upton & 
Fingleton 1985; Ripley 1981; Cressie 1991). 

This paper presents three distance measures that describe weed spatial pattern. These 
three distance measures are based on: (i) the distance between a randomly selected point 
and the nearest weed; (ii) the distance between a randomly selected weed and the nearest 
weed; (iii) the distance between a randomly selected weed and another randomly selected 
weed. It will be shown that these measures give some information about the aspects of the 
pattern that are relevant to patch spraying: (i) the amount of herbicide that a patch sprayer 
will use relative to a whole-field application; (ii) the probability that a patch sprayer leaves 
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an undetected weed uncontrolled; (iii) the spatial prediction of weed positions. The 
distance measures will be illustrated for a spatial pattern of seedlings of the weed Galium 
aparine L. as observed in a field cropped with winter wheat. 

Methods 

Observation 

The spatial pattern of individual seedlings of the weed species Galium aparine L. 
(cleavers) was recorded on a field with loamy sand soil, cropped with winter wheat, and 
located in the vicinity of Wageningen, the Netherlands. The data were collected in May 
1994, just before post-emergence herbicides were applied. The spatial positions of 1851 
seedlings of G. aparine in a plot of 18.0 m x 32.4 m were recorded. The pattern of 
seedling locations in this plot is shown in figure 1. 

Definition of distance measures 

A 'point - nearest weed distance' is defined as the distance between a randomly selected 
point and its nearest weed. F(R) is the cumulative probability distribution function of point 
- nearest weed distances: 

F(R) = Pr(point - nearest weed distance < R). (1) 

F(R) is a quantitative measure of incidence of weeds. R indicates distance. F(R) is 0 for all 
values of R when there are no weeds at all and 1 for all values of R when the field is 

. . .•.••o • f -
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Figure 1. An observed pattern of G. aparine seedlings in a plot (32.4 m * 18.0 m) cropped with winter 
wheat. Direction of cultivation is from left to right and vice versa. 
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infested homogeneously with an infinite number of weeds. Similar distance measures for 
spatial point patterns are the cumulative distribution function of point - nearest neighbour 
distances as discussed by Upton & Fingleton (1985) and the cumulative distribution 
function of point - nearest event distances as discussed by Cressie (1991). 

A 'weed - nearest weed distance' is defined as the distance between a randomly selected 
weed and its nearest weed. G(R) is the cumulative probability distribution function of the 
weed - nearest weed distances: 

G(R) = Pr(weed - nearest weed distance < R). (2) 

Similar distance measures for spatial point patterns are the cumulative distribution 
function of plant - nearest neighbour distances as discussed by Upton & Fingleton (1985) 
and the cumulative probability distribution function of event - nearest event distances as 
discussed by Cressie (1991). 

A 'weed - weed distance' is defined as the distance between a randomly selected weed 
and another randomly selected weed. C(R) is the cumulative probability distribution 
function of weed - weed distances: 

C(/J) = Pr(weed - weed distance < fl) • (3) 

C(R) is the expected number of other weeds within radius R from an arbitrary weed, 
relative to the total number of weeds. This distance measure was introduced by 
Grassberger & Procaccia (1983). A closely related distance measure is the K-function, 
which is described by Ripley (1981), Upton & Fingleton (1985) and Cressie (1991). 

Estimation procedures 

Estimation of distance measures is not as straightforward as one would suppose because of 
the necessity to correct for edge effects. For instance, edge effects may arise in the 
estimation of F(R) because points near the boundary of the plot are denied the possibility 
of having a nearest weed outside the plot. As a consequence, the expected distance to the 
nearest weed will be greater for a point near the boundary of the plot than for a point well 
inside the plot. There are several approaches to correcting for edge effects. One of them is 
to restrict attention to the inner region of the plot and to treat the outer region of the study 
area as a guard area (see, for instance, Upton & Fingleton 1985). In the present analysis a 
guard area of variable width R is used, that is, attention is restricted to the point - nearest 
weed distances, weed - nearest weed distances and weed - weed distances where the 
distance between the point or weed and the plot boundary is larger than R. 
F(R) was estimated by the following approach. Points were regularly spaced at 0.09 m 

distance parallel to the direction of cultivation and 0.075 m perpendicular to the direction 
of cultivation. For each point the distance to the nearest weed was measured. This resulted 
in a set of 86 400 point - nearest weed distances. The distance R was increased from 0.00 
m to 3.96 m with step size of 0.09 m. For each value of R the set of distances was 
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evaluated. Whenever a point - nearest weed distance was based on a point within distance 
R from the border of the plot, it was disregarded. For the remaining set of distances, the 
relative frequency of weed distances smaller than or equal to R was calculated. This 
relative frequency of a point having a nearest weed within distance R was used as an 
estimate of F(R). This estimate is indicated by F(R). 

G(R) was estimated by the following approach. For each weed the distance to the nearest 
weed was measured. This resulted in a set of 1 851 weed - nearest weed distances. The 
distance R was increased from 0.00 m to 3.96 m with step size of 0.09 m. For each value 
of R the set of distances was evaluated. Whenever the weed - nearest weed distance was 
based on a weed within distance R from the border of the plot, it was disregarded. For the 
remaining set of distances, the relative frequency of weed - nearest weed distances 
smaller than or equal to R was calculated. This relative frequency of a weed having its 
nearest neighbour within distance R was used as an estimate for G(R). The estimate is 
indicated by G(R). 

C(R) was estimated by the following approach. For each weed the distance to other 
weeds was measured. This resulted in a set of 1 712 175 weed - weed distances. The 
distance R was increased from 0.00 m to 3.96 m with step size of 0.09 m. For each value 
of R the set of distances was evaluated. Whenever a weed - weed distance was based on a 
pair of weeds with both weeds within distance R from the border of the plot, it was 
disregarded. For the remaining set of distances, the relative frequency of weed - weed 
distances smaller than or equal to R was calculated. The relative frequency was used as an 
estimate of C(R). This estimate is indicated as C(R). 

Description of the shape ofF(R) and C(R) 

If the spatial weed pattern is a random pattern, the shape of the cumulative distribution 
functions for distances are known exactly: F(R) = G(R) = \-exp[-N7iR2/A) and 
C(R) = 7iR2/A, where A is the area of the plot and N is the number of weeds in the plot 
(cf. Upton & Fingleton 1985; Cressie 1991). However, from a biological point of view 
there is no reason to suppose that the weed spatial pattern is a random pattern. An 
alternative statistical description of a weed spatial pattern is: 

C(R) ~RD
 ( 4 a ) 

(Wallinga 19956). Here, the exponent D is a positive constant smaller than 2 and the ' - ' 
sign means 'asymptotically proportional to'. To test whether equation 4a gives a good 
description of the estimated distance measure C(R), logC(R) was plotted against log R. 
The range where the relation conformed to a straight line was determined by eye. The 
slope of the line, as determined by linear regression, was used as an estimate of D. 

If equation 4a holds exactly over a number of scales, the shape of F(R) should conform 
to the following equation: 
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F(R) ~ R2'D. (4b) 

The relation between equation 4a and equation 4b holds in theory (cf. Hentschel & 
Procaccia 1983; Hastings & Sugihara 1993) and is demonstrated in computer simulations 
(Wallinga 1995c). To test whether equation 4b gives a good description of the estimated 
distance measure F(R), log F(R) was plotted against log R. The range where the relation 
conformed to a straight line was determined by eye. 

Estimation of aspects of pattern that are relevant to patch spraying 

Distance measures can be used to give quantitative estimates of the amount of herbicide 
that a patch sprayer will use relative to a whole field application, and the probability that a 
patch sprayer leaves an undetected weed uncontrolled. The estimates are exact in an 
idealized situation where the patch sprayer detects all weeds and applies herbicide to each 
detected weed and to a zone around it. The width of this zone is called R, and it indicates 
the level of spatial resolution at which a patch sprayer operates. The motivation for 
spraying all detected weeds is that it will minimize herbicide use over the long term 
(Wallinga 1995c; Day et al. 1996). The motivation for applying herbicides to a zone 
around each weed is that there is a minimum area to which herbicides can be applied (e.g. 
the area covered by a single nozzle) and that there is an additional area that needs to be 
sprayed to allow for delays in sprayer response time and for mapping and navigation 
errors (cf. Rew et al. 1996). 

The amount of herbicides that is applied to the field may be estimated by placing small 
cups randomly over the field and recording the fraction of cups that catch herbicide. All 
cups will receive some herbicide if herbicides are applied to the whole field. Some cups 
may remain empty if herbicides are applied to weed patches only. When herbicides are 
applied to a zone of radius R around each weed, a randomly placed cup will catch 
herbicides when it is within distance R of the nearest weed. The fraction of cups that catch 
herbicides is thus estimated by F(R), the frequency of point - nearest weed distances 
smaller than R. Therefore, F(R) estimates the herbicide use by an idealized patch sprayer 
with spatial resolution as determined by R, relative to a whole-field application. 

An undetected weed is sprayed with herbicides when it is sufficiently close to another 
weed that is detected and sprayed. When herbicides are applied to a zone of radius R 
around each detected weed, the probability that an undetected weed is controlled is 
estimated by the probability that a randomly selected weed is within distance R from the 
nearest weed. This probability is given by G(R). Therefore, G(R) estimates the probability 
that an undetected weed is controlled when the weeds are sprayed by a patch sprayer with 
spatial resolution as determined by R. 

Spatial prediction of weed positions may obviate some of the problems with inaccurate 
weed detection (Heisel et al. 1996). The derivative dC(R)/dR gives the correlation 
function, which can be used for optimal spatial interpolation in a more-or-less similar way 
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as the semivariance statistic (Cressie 1991). A simple example of spatial prediction is the 
calculation of the expected number and density of weeds near a distance R from an 
'average' weed. The total number of weeds on the field is indicated by N. The number of 
weeds within a distance R from an 'average' weed is estimated by N C(R), and likewise 
the number of weeds within a distance R+d from an 'average' weed is estimated by 
N • C(R + d). The expected number of weeds near a distance R from an 'average' weed is 
estimated by TV • C(R + d)-N • C(R) when d is small. The expected density of weeds near 
a distance R from an 'average' weed is estimated as 
[NC(R + d)-N-C(R)][K(R + d)2-7tR2]. 
So, C(R) can be used to estimate the expected number and density of weeds surrounding 
an 'average' weed. 

Results 

Description of the observed weed spatial pattern 

F(R) increased monotonically with R at a decreasing rate (figure 2). Starting out from a 
randomly selected point, the probability of finding at least one weed within 0.5 m from a 
randomly selected point was 0.24, the probability of finding at least one weed within 1.0 
m was 0.41, the probability of finding at least one weed within 2.0 m was 0.62, the 
probability of finding at least one weed within 4.0 m was 0.85. 

G(R) increased with R at a decreasing rate (figure 3). Starting out from a randomly 
selected weed, the probability of finding at least one weed within 0.5 m was 0.81, the 
probability of finding at least one weed within 1.0 m was 0.93, the probability of finding 
at least one weed within 2.0 m was 0.98, the probability of finding a weed within 4 m was 
0.99. 
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Figure 2. The relation between F(R) and R (in metres) for the observed weed pattern. The inset shows the 
same data on double logarithmic axes. 
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as 

Figure 3. The relation between G(R) and R (in metres) for observed weed pattern. 

C(R) increased at an increasing rate up to a value of 0.26 at R = 3.8 m, thereafter the 

estimated values decreased (figure 4). Starting out from a randomly selected weed, the 

probability of finding another randomly selected weed within a distance of 0.5 m was 

0.01, the probability of finding another randomly selected weed within a distance of 1.0 m 

was 0.04, the probability of finding another randomly selected weed within a distance of 

2.0 m was 0.11, the probability of finding another randomly selected weed within a 

distance of 4.0 m was 0.25. 

Description of the observed shape ofF(R) andC(R) 

The observed relation between F{R) and R was plotted with double logarithmic axes 

(figure 2, inset). The relation appeared slightly curved over the range of scales that was 

examined. The observed relation between C(R) and R was also plotted with double 

logarithmic axes (figure 4, inset). The relation appeared straight over the range from 0.36 

m to 3.51 m, the slope of the line over this range was estimated to be 1.5. The observed 

shape was well described by equation 4a, with exponent D « 1 . 5 . 

Figure 4. The relation between C(R) and R (in metres) for the observed weed pattern. The inset shows the 
same data on double logarithmic axes, the broken line indicates the relation C(R) ~ Ris. 
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Aspects of pattern that are of interest for patch spraying 

F(R) is used to estimate the herbicide use of an idealized patch sprayer that detects and 
sprays all weeds. The herbicide use of such a patch sprayer operating at a spatial 
resolution of 4.0 m is 85% of the amount required for a whole-field application, and the 
herbicide use of an idealized patch sprayer operating at a spatial resolution of 2.0 m is 
74% of the amount required by the patch sprayer with a spatial resolution of 4.0 m. 
Changing spatial resolution from 4.0 m to 2.0 m gives a 26% reduction in herbicide use. 
The herbicide use of an idealized patch sprayer that operates at a spatial resolution of 1.0 
m is 41% of the amount required for a whole-field application, and the herbicide use of an 
idealized patch sprayer operating at a spatial resolution of 0.5 m is 54% of the amount 
required by the patch sprayer with a spatial resolution of 1.0 m. Changing spatial 
resolution from 1.0 m to 0.5 m gives a 46% reduction in herbicide use. 

G(R) is used to estimate the probability that an idealized patch sprayer controls an 
undetected weed. The probability that a patch sprayer operates at a spatial resolution of 4.0 
m controls an undetected weed is 0.99. Spraying at a spatial resolution of 1.0 m will result 
in a probability for control of undetected weeds of 0.93. 

C(R) is used to estimate the number of weeds at a certain distance from an 'average' 
weed. There are 5.6 weeds at a distance between 0.5 m and 0.55 m from an average weed, 
and 31.5 weeds at a distance between 2.0 m and 2.2 m from an average weed. These 
numbers correspond to a density of 34 weeds m-2 near 0.5 m distance from an average 
weed, and 12 weeds m~2 near 2.0 m distance from an average weed. 

Discussion 

Methodological aspects 

In this paper, it is shown that distance measures can be used to describe weed spatial 
pattern at different levels of resolution. In practice, however, the usefulness of distance 
measures in practice does not only depend on these descriptive merits but also on the time 
needed for data acquisition. Point - nearest weed distances can be measured rapidly by 
going out in the field, selecting random points and recording the distance from each point 
to the nearest weed (see e.g. Upton & Fingleton 1985). This estimation procedure of F(R) 
by sampling point - nearest weed distances is more suited for use in the field than 
counting all the weeds in a sample plot, as described in the methods section. The 
measurement of weed - nearest weed distances and weed - weed distances requires 
selection of random weeds, which presupposes knowledge on the number and positions of 
all weeds in the field. Counting all the weeds in a sample plot, as described in the material 
and methods section, may well be the most rapid procedure for estimation of G(R) and 
C(R). 
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Regardless of the procedure for estimating distance measures, some care is needed to 
avoid bias due to edge effects. In the present study, bias due to edge effects was avoided 
by restricting attention to the inner region of the observed plot. The advantage of this 
method is that it does not require any assumption about the weed spatial pattern outside 
the observed plot. The disadvantage is that it throws away a lot of information about the 
spatial pattern at the coarser levels of resolution. As a consequence the estimated shape of 
the cumulative distribution functions is less accurate for large distances R. This is most 
apparent in the observed shape of C(R) for values of R larger than 3.8 m: the estimated 
values decrease with increasing R whereas the actual values should increase monotonically 
with increasing R. Omission of edge-corrections will in general have little effect on the 
outcome of F(R) and G(R) when the number of weeds is large. This is a result of using 
distance to nearest neighbours, which focuses on local characterization of the pattern 
(Cressie 1991). 

Assumptions 

The cumulative distribution functions F(R), G(R) and C(R) allow a more tangible and 
practical interpretation than most other spatial statistics. It is shown that the distance 
measure F(R) can be interpreted as the amount of herbicide used by an idealized patch 
sprayer, relative to a whole-field application, and that the distance measure G(R) can be 
interpreted as the probability that an undetected weed is controlled by an idealized patch 
sprayer. It is not possible to test the accuracy of predictions based on distance measures in 
practice, since there are as yet no patch sprayers that are capable of spraying at different 
levels of resolution. It is possible to show that in theory the predictions are exact if the 
patch sprayer conforms to an idealized patch sprayer that detects and sprays all weeds. The 
intention of this theoretical argument is to show that the aspects of pattern described by 
distance measures are closely related to those aspects of pattern that determine the 
performance of a patch sprayer; it is not suggested that currently used patch sprayers meet 
the description of an idealized patch sprayer, nor is it suggested that predictions of 
herbicide use based on distance measures are exact. 

The derivative of C(R) versus R gives the spatial auto-correlation function, i.e. 
information about the probability that there is a weed at distance R from an average weed. 
If the shape of the cumulative distribution function C(R) is known, the shape of the spatial 
auto-correlation function is also known. The spatial auto-correlation function can be used 
for spatial prediction of weed positions, assuming that correlation does not depend on the 
spatial position (cf. Cressie 1991). 

The observed shape of cumulative distribution functions 

The relation between C(R) and R could be described accurately by equation 4a. Patterns 
for which such a relation holds are called 'scale-invariant' (Hastings & Sugihara 1993). 
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According to theory, one would suppose that the relation between F(R) and R would be 
described by equation 4b, but this is not confirmed by the observation. A possible 
explanation for the discrepancy between theory and observation is that almost all weeds 
conform to a scale-invariant pattern and that a few weeds are scattered. The measure 
C(R) contains information about the pattern around the average weed, which is the more 
dense part of the pattern where effects of scattering are hardly detectable. Therefore 
C(R) will reflect the scale-invariance and not the scattering. The measure F(R) contains 
information about the pattern near a randomly chosen point, which is on average the less 
dense part of the pattern where effects of scattering are easily detected. Therefore F(R) 
will reflect the scattering and not the scale-invariance. 

Other observations of weed incidence at different levels of resolution 

If weed incidence is defined as proportion of quadrats that contain at least one weed (cf. 
Christensen et al. 1996), the distance measure F(R) is a quantitative measure of incidence 
of weeds at different levels of resolution. Assessments of spatial pattern of weed incidence 
at different levels of resolution have been reported by Navas & Goulard (1991) and by 
Rew et al. (1996, 1997). Both used contiguous quadrats and mapped weed infestations by 
recording presence or absence of weeds. Different levels of resolution were obtained by 
joining quadrat counts in one direction. Navas & Goulard (1991) mapped patterns of 
Rubia peregrina L. using a quadrat width of 1.9 m. A halving of quadrat length, from 5.2 
m to 2.6 m, caused a reduction in incidence from 0.6 to 0.5 in one of the patterns they 
studied. Rew et al. (1996) mapped patterns of Elymus repens (L.) Gould using a quadrat 
width of 2 m. A reduction of the quadrat length, from 5 m to 3 m, caused a reduction in 
incidence from 0.38 to 0.33 for one of the fields in their study. Rew et al. (1997) also 
mapped patterns of Alopecurus myosuroides Huds. using a quadrat width of 2 m. A 
reduction of the quadrat length, from 9 m to 5 m, caused a reduction in incidence from 
0.73 to 0.66 for one of the fields in their study. 

The reported values for incidence may be interpreted as a rough estimate of F(R), where 
quadrat length is a rough estimate of R. In this interpretation, the observations shows that 
F(R) continues to increase with R even at scales larger than those used in the present 
study. However, it is impossible to make a more exact comparison between the 
observations reported here and the observations by Navas & Goulard (1991) and Rew et 
al. (1996, 1997) because of differences in methodology and differences in scale of 
observation. 

Opportunities for patch spraying 

Distance measures give information about aspects of pattern that are of interest for patch 
spraying: the distribution of weed - weed distances gives information about the spatial 
auto-correlation which can be used for spatial prediction of weed positions; the 
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distribution of weed - nearest weed distances gives information about the risk of 
undetected weeds escaping control; the distribution of point - nearest weed distances gives 
information about the herbicide use. Application of the distance measures to the observed 
pattern reveals that: the distribution of weed - weed distances can be described accurately 
by equation 4a; the risk that undetected weeds escape control by an idealized patch 
sprayer is high only at relatively high spatial resolution; changing the spatial resolution of 
an idealized patch sprayers from 4.0 m to 2.0 m will give a 26% reduction in herbicide 
use, and changing the spatial resolution of an idealized patch sprayers from 1.0 m to 0.5 m 
will give a 46% reduction in herbicide use. 

The quantitative estimates of herbicide use are exact if the patch sprayer detects and 
sprays all weeds. Of course, the present patch sprayers do not conform exactly to this 
idealized patch sprayer and therefore the presented methodology is not a finalised 
technique for accurate estimation of herbicide usage by all patch sprayers in all practical 
situations. Instead, the presented methodology is best regarded as a first step towards 
quantitative assessment of the potential for patch spraying at different levels of spatial 
resolution. The application of this methodology to a spatial pattern of G. aparine shows 
that increasing the spatial resolution of patch spraying appears to be a promising way to 
reduce herbicide use. 
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ANALYSIS OF THE RATIONAL LONG-TERM 
HERBICIDE USE: EVIDENCE FOR HERBICIDE 
EFFICACY AND CRITICAL WEED KILL RATE AS 
KEY FACTORS 

Adapted from: Wallinga, J. 1998 Agricultural Systems 56, 323-340 

Abstract 

The aim of this paper is to identify the key factors that determine the herbicide use of 

rational weed control strategies on the long term. A system is considered that includes 

a crop, a weed, and a herbicide. Of all the bioeconomic factors that are taken into 

account, only the herbicide efficacy and the critical kill rate are major determinants of 

the rational long-term herbicide use; the critical kill rate is here defined as the kill rate 

that compensates for the growth rate of the weed population at low densities. Rational 

long-term herbicide use can be estimated with information on only these key factors. 

Implications for the reduction of future herbicide use are discussed. 
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Introduction 

Over the last 50 years herbicide application has been the mainstay of weed control in 
intensive agricultural systems. However, health and environmental problems as well as the 
economic costs of routine herbicide application have become increasingly apparent. 
Various weed control strategies have been suggested that avoid unnecessary herbicide use 
and that base management decisions on available knowledge of the weed and control 
methods (Cousens 1987). The knowledge whereupon weed control strategies can be based 
involves weed population dynamics (e.g. Firbank & Watkinson 1986; Cousens & 
Mortimer 1995), herbicide efficacy (e.g. Streibig 1988), weed-crop interference (e.g. 
Cousens 1985; Kropff & Van Laar 1993), and economics of weed control (e.g. Auld & 
Tisdell 1987; Swinton & King 1994). 

The term 'rational herbicide use' refers to herbicide use that is adapted to the economic 
objective of the manager (Tait 1987). It is useful to distinguish between two different 
meanings of rational herbicide use. First, it may indicate the amount of herbicides that is to 
be applied on rational grounds in a particular year for a particular situation. This is of 
interest when alternative weed control options for the current year are evaluated by 
fanners (e.g. Swinton & King 1994). Second, it may indicate the annual herbicide use by 
rational weed control strategies, averaged over many years. This is of interest when 
alternative weed control strategies are evaluated (e.g. Pandey et al. 1991). The latter 
meaning is indicated as 'rational long-term herbicide use' throughout the rest of this paper. 

The evaluation of rational long-term herbicide use by rational weed control strategies 
requires a vast amount of quantitative data on herbicide efficacy, weed-crop interference 
and weed population dynamics, prices of crop and herbicide. In most cases, this data is not 
available. Therefore evaluation of herbicide use by rational weed control strategies has 
been limited to a few well-documented cases with one particular weed, one herbicide and 
one or two crops (Pandey & Medd 1990; Gorddard et al. 1996). If these evaluations are to 
find a wider application, the large data requirement should be circumvented. 

The objectives of this paper are i) to identify the key factors involved in rational long-
term herbicide use, ii) to provide an estimate of the rational long-term herbicide use that 
uses only these key factors, and iii) to indicate perspectives for lowering the rational long-
term herbicide use. Attention is restricted to systems with one crop, one weed and one 
herbicide. These systems are relatively simple and provide a useful starting point for more 
complex systems. The analysis of these systems is carried out in four steps. First, a model 
is presented that includes weed population dynamics, weed-crop interference, herbicide 
efficacy, and economics of weed control. Second, the dynamic behaviour of this model 
will be demonstrated with computer simulations. Third, long-term solutions of this model 
will be investigated analytically. Fourth, heuristic arguments will be given to generalize 
the obtained results to a wider range of crops, weeds and herbicides. The implications for 
reduction in herbicide use will be discussed. 
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Components of rational herbicide use 

Consider a farm field where every year the same crop is sown and that is infested by an 
annual weed with a seed bank. The manager controls the weed by an annual application of 
a post-emergent herbicide, and the weed will cause crop yield loss if it is not controlled. 
The herbicide dose is adapted to the manager's economic objective, so the manager uses a 
rational weed control strategy (sensu Tait 1987). The processes involved in rational 
herbicide use are categorized into five components: herbicide efficacy, weed population 
dynamics, weed-crop interference, economics and decision making (figure 1). 

Herbicide efficacy 

The manager controls the weed population by killing weed seedlings with a single post-
emergent herbicide application. The fraction of emerged seedlings that is killed by weed 
control in year t is termed the kill rate rt, and this kill rate is determined by the efficacy of 
the applied herbicide. The efficacy of herbicides is frequently assessed as a relation 
between herbicide dose and weed biomass after application of that dose. This relation can 
be described by a logistic response of biomass to the logarithm of herbicide dose (Streibig 
1988). By interpreting relative reduction in biomass as kill rate, and after rearrangement 
(see appendix 1) this relation between herbicide dose h, and kill rate rt is: 

Figure 1. A schematic representation of rational weed control with one crop, one weed and one herbicide. 
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where rmax is the maximum kill rate, e is the dose that results in half the maximum kill 
rate, c is a measure of efficacy of the herbicide. This relation between kill rate and 
herbicide dose is depicted in figure 2. 

Weed population dynamics 

The weed population dynamics are modelled according to Spitters (1990) and Kropff et al. 
(1996). In the model, the density of weed seeds in the soil is indicated as St. Each year a 
fraction m of the seeds is removed by natural mortality of seeds, and a fraction g 
germinates and emerges. The density of plants that survived weed control is indicated as 
Pt, each surviving plant will produce on average z viable seeds that return to the seed 
reserve. The dynamics are then described by 

St+l=(l-g-m)Sl+zPt (2a) 

The effect of weed plant density on average reproduction per plant z is introduced by 

a 
z = • 

\ + aP,/b 
(2b) 

where a is the production of viable seeds per plant at low weed densities, and b is the 
maximum seed production per unit area at high weed densities. 

A fraction rt of emerged seedlings is killed by weed control, this fraction is termed the 
kill rate. The density of plants that survived or escaped weed control is 

Pt=(\-rt)gSt (2c) 

0.2 0.4 0.6 f 0.8 1 
K 

Herbicide dose/»(10-4lm-2) 

Figure 2. The relation between herbicide dose and kill rate, which corresponds to equation 1 based on 
Streibig (1988). The critical herbicide dose is indicated as hc, the critical kill rate is indicated as rc, 
parameter values are as in appendix 2. 
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The equations 2a, 2b and 2c are combined to give the weed population dynamics: 

aQ-r,)8st 
Sl+l=(l-g-m)St + 

\ + a(\-rt)gS,lb 
(2d) 

Weed-crop interference 

Crop yield decreases with increasing density of weed plants that survived or escaped 
herbicide application. The relation between weed plant density and crop yield is frequently 
described by a hyperbolic relationship (Cousens 1985): 

Y, 
1 + iPt 

(3) 

where Yt is the crop yield, Kmax is the weed-free crop yield and i is a measure of 
competitiveness of the weed versus the crop, and Pt is the density of plants that survived 
weed control. This relation is depicted in figure 3. 

Economics 

The annual revenue of cropping R, is calculated from crop yield and herbicide use: 

Rt=pYt-qht-f (4a) 

where p is the price of the crop, Yt is the crop yield in year /, q is the price of the herbicide, 
h, is the herbicide dose applied in year t, and/is the fixed costs of cropping (including the 
fixed costs of herbicide application, as well as fertilizer costs, seeding costs, and costs of 
other crop protection measures). Usually a manager is not only concerned about the 
current year's revenue, but also about revenue in the years to come. The number of years 

1.2 
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•a 
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Figure 3. The relation between weed plant density and crop yield, which corresponds to equation 3 after 
Cousens (1985), parameter values are as in appendix 2. 



46 Chapter 5 

of interest to the manager is called the planning horizon. Since revenue in a next year is 
usually valued less then revenue in a current year, the expected revenues in future yearsare 
discounted. The sum of discounted revenues over the years that are of interest to the 
manager is termed the present value Vt: 

j=H-\ 
Vt=R,+ £ aJRl+j (4b) 

7=1 

where H is the planning horizon and a is the discount factor. 

Decision making 

In economical terms, the weed management problem is to find the herbicide dose for the 
current year that maximizes present value. A necessary condition for a maximum is that 
neither increase nor decrease in herbicide dose in the current year / results in a higher 
present value: 

d X <*JRt+j 
dVt _dRt | J=l dS,+l 

dh, dh, dS,+1 dh, 

where Vt is present value in year t, h, is the herbicide dose applied in year t, R, is annual 
revenue in year t, H is the planning horizon and a is the discount factor, and S,+i is the 
density of weed seeds in the soil in the next year. 

Calculation of long-term herbicide use 

Simulation results 

The rational long-term herbicide use is calculated with a computer model that includes the 
equations 1 - 5 and uses parameter values as listed in appendix 2, which resemble the 
cropping of winter wheat and control of the weed Galium aparine L. with the herbicide 
fluroxypyr. The results of the two simulation runs are depicted in figure 4a,b. One run 
simulated the herbicide use by a strategy with short-term objectives (present value is 
calculated according to equation 4b with H= 1, a = 0), the other simulated the herbicide 
use by a strategy with long-term objectives (present value is calculated according to 
equation 4b with H=5,a = 0.8). 

The results show that the weed density rapidly settles down into a steady state (figure 
4a). There are no suitable long-term observations of G aparine population dynamics to 
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Figure 4. Simulation of rational weed control using a computer model that incorporates equations 1 - 5 and 
parameter values according to appendix 2. (a) Simulated course of density of weed seeds in the soil, 
measured before emergence and weed control, (b) Simulated course of annual herbicide use. Closed markers 
indicate a management strategy with short-term objectives (present value is calculated using H = 1, a = 0), 
open markers indicate a management strategy with long-term objectives (present value is calculated using H 
= 5, a = 0.8). 

confirm or oppose these simulations. For comparison, long-term observations showed that 

the weed Alopecurus myosuroides Hudson persisted at low levels on a conventionally 

managed farm throughout a 10-year monitoring period (Wilson & Brain 1991). The 

simulations show that in the long term herbicide use hardly differs between the strategies 

with long-term and short-term objectives (figure 4b). 

Analytical results 

The same model is studied analytically to find out why the long-term herbicide use hardly 

differs between strategies with long-term and short-term objectives. The analytical results 

that are presented in this section show that the rational long-term herbicide use is largely 

determined by herbicide efficacy and population dynamics and hardly by weed-crop 

interference and economics or objectives. 
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Figure 5. The steady states for weed seed density and kill rate. The critical kill rate is indicated as rc. The 
relation corresponds to equation 6a with parameter values as in appendix 2. 

In a steady state, the density of weed seeds in the soil can be inferred from equation 2b by 

putting S, = St+l = S , which gives the following solutions: 

where 

s = 
• 
S--

Fc = 

= 0 

g 

1-

b 
+ m 

g + m 

ag 

b 
ag(\- r) 

for 

for 

0 < r <1 

0 < f < r 
(6a) 

(6b) 

rc is the smallest kill rate that prevents population increase (see figure 5), it is termed the 

'critical kill rate' (Wallinga 19956; Kropff et al. 1996). The value of rcis 0.95 for the 

parameter values in appendix 2. The herbicide dose that results in the critical kill rate is 

termed the critical herbicide dose hc . It can be found through equation 1: 

K=e^- '"max Ac)" 
-\/c (6c) 

The value of hc is 0.709 10~4 1 m~2 for the parameter values of appendix 2. 

The solutions with S = 0 in equation 6a reflect situations of weed control without weeds, 

which are clearly no rational situations, and a situation without weeds and weed control, 

which is only relevant when import of weeds is categorically excluded. Further analysis is 

therefore restricted to the part of the steady-state solutions that is relevant for weed 

control, i.e. the solutions of equation 6a where S * 0 . The relevant steady-state weed plant 

densities are then given by: 

p_bg(\-r) 
g + m 

for 0 < r < F„ (6d) 
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Figure 6. The steady states for weed plant density and kill rate. The relation corresponds to equation 6d with 
parameter values as in appendix 2. The critical kill rate is indicated as rc . 

This relation is depicted in figure 6, it shows which combinations of weed plant density 
and kill rate are sustainable on the long term. 

The combinations of annual revenue and herbicide dose that are sustainable on the long 
term are obtained by substitution of equation 1 in equation 6d, and the result in equation 3, 
and that result in equation 4a: 

R(h) = pY(P(r(h)))-qh-f for 0 < h < hc (6e) 

This relation is depicted in figure 7. The equation 6e clearly shows that the critical 
herbicide dose, which is 0.709 10-4 1 m-2, sets an upper bound to long-term rational 
herbicide doses: 

h< 0.70910"4lm"2. (6/) 

A rational herbicide dose should maximize the present value, that is, it should meet the 
demands laid down in equation 5. A closer inspection of equation 5 reveals that a 
herbicide dose h, that maximizes the present value should meet the following condition: 

dR, 

d/̂ ~ 
< 0 . (7a) 

This can be seen as follows. In case the rational manager has short-term objectives, the 
revenues in future years are not taken into account, i.e. a = 0, so the last term in equation 5 
equals zero and the term dR, /dh, should therefore also equal zero. In case the manager 
has long-term objectives, the revenues in future years are taken into account, i.e. a > 0 and 
H> 1, so the last term in equation 5 is positive and the term dR, /dh, should therefore be 
negative. As a consequence, dR, /dh, should be equal to or smaller than zero. 

After a little rewriting the economic constraint for rational herbicide doses, equation la, 
becomes: 

dK dR dr. 
p '-•—L—'—q<0. 

dP, dr, dh, 

(7b) 
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Figure 7. The steady states for herbicide dose and annual revenue of cropping. The relation corresponds to 
equation 6e, parameter values are as in appendix 2. The rational long-term herbicide doses are within a very 
small range from 0.706 up to 0.709 10"41 m~2, adjacent to the critical herbicide dose which is indicated as 
hc. 

The derivatives can be written out, and variables can be expressed in terms of herbicide 

dose h . Using parameter values of appendix 2, equation lb than shows that herbicide 

doses maximizing the present value should be larger than 0.706 10~4 1 m - 2 , which gives a 

lower bound for the rational long-term herbicide dose: 

0.706 10-4 lm"2 <h (7c) 

Combining the upper and lower bound (equations 6 / and 7c) gives the following 

constraint for rational long-term herbicide doses: 

0.70610"4 l m " 2 < A < 0.70910"4 1 m ' 2 . (8a) 

For all practical purposes the difference between upper and lower bound is negligible. 

Therefore it is legitimate to say that all long-term rational doses are very close to the 

critical herbicide dose, as defined in equation 6c: 

h*K=e(\-rmax/rc)-V
c. (Sb) 

This means that herbicide efficacy and critical kill rate determine in coarse lines the value 

of long-term rational herbicide dose, and that the other components only determine the 

small differences from this coarse value. 

A heuristic approach 

Herbicide efficacy and critical kill rate appear to be the key factors that determine long-

term herbicide use in the specific case of controlling G. aparine with fluroxypyr in 

continuously grown winter wheat. In this section it is argued that a similar situation arises 

whenever weeds are 'noxious' and the herbicide is 'adequate', in a sense to be made 

precise below. 
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Consider a system with one crop, one weed and one herbicide (as depicted in figure 1), 
and consider a class of weed control strategies that avoid obvious spilling of herbicide and 
that avoid excessive yield losses. This class includes rational weed control strategies. Each 
weed control strategy is characterized by its long-term herbicide use and long-term crop 
yield. These are interrelated because crop yield depends on weed plant density, weed plant 
density depends on the kill rate, and the kill rate depends on herbicide dose. 

Consider the case where weed density is low and long-term crop yield is highly sensitive 
to the long-term annual herbicide dose. Such a case arises if i) changing herbicide dose has 
an effect on the kill rate, i.e. the herbicide is 'adequate'; ii) changing the steady-state kill 
rate has a large effect on the steady-state weed density and changing weed density has a 
large effect on crop yield, i.e. the weed is 'noxious'. Furthermore, suppose that costs of 
control are small compared to economic crop yield, so that long-term annual revenue is, 
just like crop yield, highly sensitive on long-term annual herbicide dose. 

In the above mentioned case, avoidance of excessive yield losses and obvious spilling of 
herbicides will place severe restrictions on the long-term herbicide use. The demands are 
met for a long-term herbicide use that is slightly higher than the critical herbicide dose, 
because weed density is contained at a low level and no herbicides are spilled. However, 
only a slight decrease in long-term herbicide dose (say, a few percent) will suffice to 
evoke a large decrease in long-term yield (say, over ten percent, which will be 
unacceptable in most cases). And a slight increase of long-term herbicide use beyond the 
critical dose would eradicate the weed population if immigration of weeds was excluded. 
When there is immigration of weeds, an increase in herbicide use is not counterbalanced 
by a significant decrease in weed density and yield loss. Summarizing, avoidance of 
excessive yield losses and obvious spilling of herbicides places restricts the long-term 
herbicide use to values close to the critical dose. 

The main difference with the previous section is that the result is now derived in a more 
general context. Long-term herbicide use is close to the critical dose for all situations with 
one crop, one 'noxious' weed and one 'adequate' herbicide, even when managers do not 
maximize revenue, but are satisfied with a 'acceptable' crop yield. 

Discussion 

Key factors that determine the rational herbicide use 

This paper shows that the rational long-term herbicide dose approximates the critical 
herbicide dose, and that the calculation of the critical herbicide dose only requires 
knowledge about the herbicide efficacy and critical kill rate. A few common-sense 
arguments hide behind this result: i) a sensible weed control strategy should avoid 
unacceptable yield losses, therefore weed control should prevent weed populations to 
grow to high densities; ii) the fraction of weeds that needs to be killed in order to contain 
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the weed population at low densities is close to the critical kill rate; iii) the herbicide dose 
that suffices to kill this fraction of weeds is determined by the herbicide efficacy. The 
present paper makes this common sense more precise, and points out how this common 
sense can be used to estimate the long-term herbicide use by rational weed control 
strategies. 

The identification of herbicide efficacy and critical kill rate as the key factors is very 
suggestive in indicating ways to lower the rational long-term herbicide dose: the herbicide 
should be made more effective, or the critical kill rate should be lowered, e.g. by 
decreasing weed seed production. More surprising, however, is the identification of the 
less important processes and parameters: weed-crop interference, the manager's planning 
horizon, and prices of crop and herbicide. Changing these factors will have little impact on 
herbicide use in the long run. 

As an example of the implications of these findings, interference between weeds and 
crop is considered. Weed interference with crop growth (or crop tolerance, Jordan 1993) 
has little effect on the rational long-term herbicide use other than to meet the requirement 
of a 'noxious' weed, whereas crop interference with weed growth reduces the critical kill 
rate and thus affects the rational long-term herbicide use. So, if studies on interference 
between weed and crop have the objective to reduce herbicide use, they should address the 
effect of crops on weeds and not vice versa. Moreover, the effects of increased crop 
interference on long-term herbicide use can be evaluated quantitatively with only data on 
herbicide efficacy and data on the effect of crop interference on critical kill rate. 

Relations to other work 

In several studies it was implicitly supposed that rational decisions result in a small range 
of steady-state kill rates. For instance, Wilson & Wright (1991) calculated a 0.97 - 0.99 
kill rate required to maintain a steady-state density of the weed Galium aparine, and Moss 
(1990) calculated a 0.87 kill rate to maintain a steady-state density of the weed Alopecurus 
myosuroides Hudson in winter wheat with ploughing and baling of straw. The authors 
presented a small range or a single value, and gave no indication of a wide range of kill 
rates that would contain a population at reasonable densities. The values they presented 
can be regarded as estimates for the critical kill rate of the weeds. 

The small difference in kill rates that result from rational decision rules for different 
planning horizons results was already implicit in an independent case-study by Pandey and 
Medd (1990, 1991) who constructed a bioeconomic model of Avena fatua L. in 
continuously grown wheat, controlled with the herbicide diclofop-methyl. From this 
model they derived a rational short-term decision rule and a rational long-term decision 
rule. Application of those decision rules to the model showed that weed densities soon 
settled down into an approximate steady state. The steady-state weed density 
corresponding to short-term decision rule was around 40 plants m-2, the steady-state weed 
density corresponding to long-term decision rule was around 3 plants m~2. The kill rates 
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required to maintain these densities, as estimated with the model of Cousens et al. (1986), 
differed only by 8%. 

The relation between dynamic optimization problems, as in equation 5, and the resulting 
steady states, as in equations 6a - 6e, is often used in biological resource management 
(Getz 1987). The relation was for instance used by Pandey et al. (1993) to evaluate the 
long-term economic benefits of research into innovative weed control techniques, under 
the assumptions that managers maximize current profits. Their paper clearly illustrates the 
usefulness a steady-state approach as an aid in planning weed control policies. A steady-
state approach has also been used to derive near-optimal decision rules for weed control 
(Taylor & Burt 1984). 

Limitations of this study 

The novel element in the calculation of rational long-term herbicide use is the avoidance 
of optimization procedures that necessitate the use of extensive data sets. Instead, a 
requirement is derived that should be met by all rational strategies (equation 8a). As has 
been shown throughout this paper, this requirement suffices to approximate the long-term 
herbicide use (equation 8b). The approximation requires relatively few data, and reveals 
the key factors that determine the rational long-term herbicide use. However, simplifying 
assumptions have been made in a number of areas. It is assumed that the same crop is 
grown each year, while farmers do often rotate crops and rotation is very important in 
determining the level of weed control. Only one weed control option is examined, while 
farmers usually have several options. Furthermore, it is assumed that there is no effect of 
weed density on herbicide performance and that herbicides have no direct effect on crops. 
Effects of variation in responses and effects of risk aversion are not dealt with, although 
herbicide activity can be highly variable and variability may increase when herbicide 
dosage is reduced. 

The simplifications made here facilitated analysis, but they are not indicative of essential 
limitations. When crop rotations are introduced, additional information is needed to 
determine the level of control for each crop in the rotation (cf. Fisher & Lee 1981). When 
several weed control options are introduced, additional information is required to 
determine the optimal combination of available options (cf. Gorddard et al. 1996). Effects 
of year-to-year variation and effects of risk aversion can be studied by considering 
stochastic systems (cf. Pandey & Medd 1991; Pannell 1995), but even then a rational 
control strategy is tied to the kill rates and herbicide doses that prevent a serious 
population increase in the long run. All these effects add new elements and make analysis 
more complicated, but they do not alter the essence of rational weed management. 
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Concluding remarks 

The rational weed management problem is a complex problem even with one crop, one 
weed and one herbicide. Under the assumption that the weed is noxious and the herbicide 
is adequate, rational long-term herbicide use is determined by two key factors: critical kill 
rate and the herbicide efficacy. Less important are the exact objectives of the manager {i.e. 
his planning horizon and the discount rate), the response of crop yield to weed density and 
the prices of crop and herbicide. These results show that it is possible to estimate the 
rational long-term herbicide use without excessive demands of quantitative data. The 
results are also suggestive of ways to decrease long-term herbicide use: increase herbicide 
efficacy and interfere with the weed population processes as to lower the critical kill rate. 
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Appendix 1 

The relation between herbicide dose and weed biomass is often described as a logistic 
response of biomass to the logarithm of dose. The relation is written in the notation as 
used by Streibig (1988): 

D-C 
U = C + 

1 + exp(26(log ED50 - log dose))' 

When the relative reduction in biomass is identified with kill rate of weeds, and when the 
notation is changed by substituting 

b = - i c l n l O ; U/D = \-r; C/D = \-rmax; ED50 = e; dose = h, 

the above equation can be written as: 

r = rmax . (Al) 
\ + (e/h)c 
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Appendix 2 

Chapter 5 

Explanation of the various symbols used. The figures were made with the indicated values 

which are representative for cropping winter wheat in the Netherlands where the weed 

Galium aparine L . is controlled with the herbicide fluroxypyr. 

Symbol Interpretation Value Units 
N density of weed seeds in the soil 
P density of weed plants after herbicide application 
Y actual crop yield 
R annual return on cropping 
V present value 
z production of viable seeds per weed plant 
r kill rate of weed seedlings caused by herbicide 
h herbicide dose 
Kmax maximum crop yield 
rmax maximum kill rate of weeds 
rc critical kill rate of weeds 
hc critical herbicide dose 
a maximum production of viable seeds per weed plant 
b maximum production of viable seeds per unit area 
g fraction of seeds that germinate and emerge 
m fraction of seeds died due to natural mortality 
i measure of competitiveness of weed versus crop 
c measure of sensitivity of kill rate to herbicide dose 
e herbicide dose that effects half the possible response 
p price of crop 
q price of herbicide 
/ fixed costs of cropping 
H planning horizon 
a discount factor 

1.2 
0.99 

100 
8000 
0.1 
0.4 
0.03 
1.7 
0.11 10"4 

0.27 
70.5 
0.1 

m z 

kgm~2 
dflm-2 

dflm"2 

m-2 

lm" 2 

kgm - 2 

lm" 2 

-
m"2 

-
-
m"2 

-
lm" 2 

dfl kg"1 

dfll"1 

dflm"2 

years 



Chapter 6 

LEVEL OF THRESHOLD WEED DENSITY DOES 
NOT AFFECT THE LONG-TERM FREQUENCY OF 
WEED CONTROL 

Adapted from: Wallinga, J. & Van Oijen, M. 1997 Crop Protection 16, 273-278. 

Abstract 

Weed control thresholds are often presented as a means to reduce unnecessary control 

measures, thereby increasing the effectiveness of weed management. While the 

threshold is a useful tool for cost-effective application of control on a single year 

base, its role over a longer term is more complicated. It is shown that long-term 

application of thresholds results in a control frequency that is independent of 

threshold level, and in aperiodic dynamics of the weed population which may cause 

uncertainty about what control frequency and hence what costs of control are 

expected over a given period. We conclude that the economic underpinning of the 

threshold concept is deceptive and does not provide a base for rational use of weed 

control in the long term. 
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Introduction 

In management of pests, diseases and weeds there is an ongoing need for methods and 
concepts that allow less costly control with less environmental impact. Different concepts 
of pest and disease management have evolved, including control thresholds. The essence 
of the threshold concept is that control is applied only when the density of a pest, disease 
or weed exceeds a threshold density. The threshold concept provides a tool to decide 
whether or not to apply control measures, by accounting for costs and benefits of control 
in the current crop. The threshold itself is the density of pest or disease at which the 
benefit of control just exceeds the costs of control. To stress the economic underpinning of 
this concept, this threshold is often referred to as the 'economic threshold' (Auld et 
a/.1987; Cousens 1987). 

The threshold concept has proven appropriate for controlling fungal epidemics like 
mildew and rusts in cereal crops (Zadoks 1985; Drenth et al. 1989). There is little 
correlation in size of such epidemics in successive years, since only a few fungal 
propagules will overwinter in the field. This is very convenient, since it implies that 
decisions on long-term control (concerning several years) can easily be broken down into 
a series of short-term control decisions (concerning single years). In other words: when 
threshold control is appropriate for controlling epidemics within one cropping season and 
there is hardly any carry-over effect, threshold control is also appropriate for several years. 

For weed infestations, the situation is somewhat different. If only economic effects in the 
current crop are considered, the threshold concept may still serve its purpose (e.g. Auld et 
al. 1987; Gerowitt & Heitefuss 1990; Zanin et al. 1993). However, weed infestations and 
control decisions do provide carry-over effects from the current year to the following year. 
Omitting weed control in the current period not only reduces the current crop yield, it also 
leads to weed seed production, which can result in future reduction of crop yields. 
Consequently, decisions on weed control over a period of several years cannot be broken 
down easily into a number of decisions concerning a single year. Long-term weed 
management requires that future effects of current decisions are taken into account, which 
complicates evaluation of costs and benefits of control. 

A straightforward way of dealing with thresholds in long-term weed management is to 
use a mathematical model and simulate the economic effects of applying threshold control 
over several years. Then it is possible to identify the threshold that gives the maximum 
profitability (to stress the difference with the single-year 'economic threshold', this long-
term threshold is termed 'economic optimum threshold' by Cousens 1987). In case studies 
this approach is used to calculate the economic effect of applying thresholds in various 
crop-weed combinations over periods of 10 to 40 years (Cousens et al. 1986; Doyle et al. 
1986; Lapham 1987; Murdoch 1988; Bauer & Mortensen 1992; Mortensen et al. 19936). 
The results of these case studies show little difference in financial benefit for the 
thresholds in the range between the economic threshold and the economic optimum 
threshold. Over this range weed densities typically vary over an order of magnitude. For 
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some weed species, the number of years controlled could hardly be reduced compared to 
prophylaxis (always control). This, among more pragmatic arguments, led Cousens (1987) 
to the conclusion that "there is little importance in being exact in the calculation and 
application of thresholds". Clearly, this remark is about the use of thresholds, not about the 
concept in itself. 

A further aspect of these studies was that in some cases the control frequency, defined as 
number of years controlled over a given period, did not alter for a wide range of 
thresholds. When the control frequency appears insensitive to threshold level, this evokes 
the question whether thresholds do provide a rational economic underpinning of the 
required control frequency - which is the role for which thresholds were intended. This 
question does address the very concept of thresholds. Are case studies with a constant 
control frequency exceptional, or is the intuitive appeal of thresholds misplaced? 

Here, we attempt to provide an answer to this question by exploring the effects of long-
term use of threshold on control frequency. Since these effects pertain to thresholds in a 
general sense, we have not considered more case studies. Instead, our aim has been to 
identify the basic response of weed population dynamics, where the weeds were subjected 
to threshold control. 

Weed population growth resembles exponential growth 

In order to address the question how control frequency is affected by use of thresholds, the 
essentials of weed population dynamics and threshold control are formally described. The 
natural system under study is an arable field, where a single crop is sown every year and 
where an annual weed species persists. The state of the system can be characterized by the 
weed density (as number of plants and seeds per unit area, over the whole field). This state 
variable is not directly accessible but can be measured by sampling seedling densities. In 
the context of this paper, only the population dynamics over the years is of interest. 
Therefore, only one census of the weed density for a particular time in a year is required. 
Such a census can take place for instance at the beginning of the year, before any weed 
control is applied. The weed density next year is assumed to depend on the weed density 
and weed control in the current year. When the observed weed density in the next year is 
termed Nl+], and the observed weed density in the current year is termed N„ the weed 
population dynamics can be formulated as Nt+i = f (N,). The function / differs for 
situations with and without control. 

The biological question what the weed population dynamics looks like now is simplified 
to the identification of the function/ One way to find out is to look at field observations. 
Selman (1970) presented observations that are appropriate to this context. In a 10 year 
experiment with continuously grown barley, the weed Avena fatua L. was not controlled 
for the first 5 years and properly controlled for the next 5 years. In figure 1 the weed 
counts are plotted as the density observed in one year (N,) versus the density observed in 
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the next year (A^+i). In most years, the simplest description of these observations is that 
Nt+X varies approximately proportionally to Nt. That is, the population density increased or 
decreased in an exponential fashion (cf. Harper 1977; Cousens et ah 1987). Observations 
for Avena fatua L. and Alopecurus myosuroides Huds. were presented by Mortimer (1987) 
in a similar setting. The observations for A. myosuroides showed that Nt+] changed 
proportionally with N„ with and without control. The observations for A. fatua showed 
deviations from such a proportional relationship, probably due to density dependent 
reduction of growth rates. Other experimental observations that lend support to this thesis 
are seed bank depletion experiments, which can be regarded as population dynamics of a 
weed population under complete control. The seed bank depletion rate is reported to be 
proportional to the seed bank size, and therefore the weed population density will decline 
exponentially (Roberts & Dawkins 1967; Wilson & Lawson 1992). 

Summarizing, over the range of weed densities that is of interest for weed management, 
the weed population dynamics can be approximated by: 

Nt+i = 
aN, when not controlled 
bN, when controlled (1) 

where N is the weed density, the subscripts t and t+\ denote the year, and a is the per 
capita growth rate of the uncontrolled population, b is the per capita growth rate of the 
controlled population (with a>\ and Q<b<\). This model is a simple combination of 
exponential growth and exponential decline, which appears as an appropriate 
approximation of what goes on in reality. 
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Figure 1. Observed changes in weed density of Avena fatua L. over several generations in a field with 
repeated crops of barley. Open markers indicate generations growing without weed control, closed markers 
indicate generations exposed to weed control. (From data in Selman 1970.) 
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Threshold control involves a discontinuity 
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The essence of the threshold concept is that control is applied only when the weed density 
exceeds a threshold. Below this threshold weeds are not controlled. The model obtained in 
the previous section (equation 1) can now be modified to account for threshold control: 

#«+ i = 
aNt 

bNt 

whenN, <K 

whenN, >K 
(2) 

where K is the threshold. In order to exclude eradication of weeds as a special form of 
threshold control it is assumed that K > 0. Since threshold control is only applied when 
there are weeds it is assumed that N>0. The resulting relationship between JV(+1 and N, is 
plotted in figure 2. The relation is discontinuous, and this discontinuity is the direct 
consequence of the threshold concept. Although equation 2 is a very simple model, the 
resulting population dynamics are quite complicated. 

The discontinuity causes aperiodic dynamics 

The weed population dynamics can be obtained directly from figure 2 by a method called 
'graphical iteration': pick an arbitrary weed density N0, put it on the x-axis and read the 
resulting next years' weed density Nl from the y-axis. Put this value on the x-axis, read the 
corresponding N2 and so on (see figure 3a). From any starting point N0 the population 
density will home in towards the threshold. Near the threshold the densities are trapped in 
a region where they are bounced back and forth around the threshold, but remain bounded 

15 

Weed density in current yeaiN, 

(plants m"2) 

Figure 2. Idealized changes in weed density of a weed population subjected to threshold control. K indicates 
the threshold density, slope a indicates the per capita growth rate of the population when not controlled, b 
indicates the per capita growth rate when controlled, the broken line is of unit slope (Nt = Nl+l). 
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Figure 3. Dynamics of a weed population subjected to threshold control, (a) Derivation of subsequent weed 
densities by graphical iteration, (b) The course of weed density with time. The initial weed density is 
indicated by N0, the weed density in the first year by Nv in the second year by N2. 

above and below. Even for a large number of iterations, this bouncing pattern will never 
repeat itself, that is, the course of weed density with time is aperiodic (figure 3b). 

In the literature the model of equation 2 is reported as capable of generating 'chaotic' 
dynamics (May & Oster 1976). More precisely, the model only produces cycles of finite 
period in the unlikely case that the ratio of logarithm of the per capita growth rates 
(log a/log b ) is a rational number, for all other ratios of the growth rates the dynamics are 
aperiodic (Felsenstein 1979; Belair & Milton 1988). In line with the terminology 
employed in May & Oster (1976) and Felsenstein (1979) we will call this behaviour 
'chaotic', where this term does not refer to disorder or indeterminacy but to the fact that 
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itineraries are aperiodic (hence not stationary nor periodic) and remain bounded. It implies 
that prediction of weed density over the first few years is possible but accurate prediction 
of the itinerary over several years is not possible when there is some uncertainty about the 
exact initial conditions or parameter values. 

However, for long-term management purposes there is no specific interest in accurate 
prediction of the actual density of weeds in a particular year. What is needed, is a set of 
densities that can be expected over the period that one is interested in. To obtain such a set 
of densities, we make use of the observation that the aperiodic itinerary remains bounded 
and can get arbitrarily close to any point within the bounds (Felsenstein 1979). Thus, a 
kind of probability distribution for weed densities can be extracted from the dynamics (see 
e.g. Devaney 1986). This probability distribution may serve as an approximation to the set 
of densities that can be expected over any period of interest. Such a probability 
distribution is better suited for analysis of the long-term population dynamics of weeds 
subjected to threshold control than a single outcome of all possible itineraries. 

Control frequency does not depend on threshold level when growth is 
exponential 

Since our aim was to study long-term effects pertaining to the threshold concept, the 
properties of the population dynamics resulting from equation 2 are now further examined 
in order to obtain the probability distribution of population density N. The initial transient 
towards this region is disregarded since it depends on the initial conditions and is of 
limited interest for long-term effects. This examination is confined to the region around 
the threshold that is within the bounds of the itineraries. For this purpose the results of 
previous studies of these type of models (Felsenstein 1979; Belair & Milton 1988) are 
interpreted in the setting of weed control. 

The lower bound of weed density is achieved when in the previous year the weed density 
was just above the threshold K and weeds were controlled: lower bound = bK. The upper 
bound of the attracting region is achieved when in the previous year the weed density 
equalled the threshold K and weeds were not controlled: upper bound = aK. All other 
weed densities that can be achieved are within these bounds, and therefore fall in the range 
{bK, aK]. Felsenstein (1979) found that on a logarithmic scale the itinerary fills this range 
uniformly, which means in the present context that the logarithm of weed densities, log N, 
is uniformly distributed over (log bK, log aK]. 

The expected ratio of years with control to years without control can be derived from this 
distribution. The number of years with weed control within a given period (yb) is 
determined by the probability that the weed density exceeds the threshold K. Since the 
distribution of log N is uniform, this probability is proportional to the difference log aK -
log K. The number of years without weed control in the same period (ya) is determined by 
the probability that the weed density is below the threshold. This probability is then 
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proportional to the difference log K - log bK. Therefore, the average control frequency 
which is defined as the ratio of years with control to total number of years is 

yb log aK - log K log a 
yt+ya log aK - log bK log a - log b 

(3) 

Equation 3 implies that the control frequency is completely determined by the population 
dynamics of the weed and by the effectiveness of control, as implemented in the per 
capita growth rates a and b. Most importantly, the control frequency is not at all 
influenced by the value of threshold K. 

The insensitivity of control frequency to the threshold level is illustrated by simulations 
with the model of equation 2. The control frequency for a weed population subjected to 
threshold control was simulated for three different threshold levels (figure 4a). 
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Figure 4. Influence of the threshold level on the control frequency. The simulated populations have the same 
initial density and are subjected to a threshold level of 1 plant m -2 (circles), 2 plants m-2 (squares), and 4 
plants m-2 (triangles). The broken line indicates the control frequency according to equation 3. (a) 
Population where the per capita growth rate is 2.7 when controlled and 0.3 when not controlled, (b) 
Population where per capita growth rate is 5 when controlled and 0.8 when not controlled. 
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The control frequency, calculated as the number of years controlled divided by the total 
number of years elapsed since start of the simulation, does not depend on the exact 
threshold level and approximates the average long-term value as determined by equation 
3. The simulations were repeated with increased per capita growth rates of the weed 
population, resembling a situation where the weed fecundity is high and control is poor 
(figure 4b). The densities are above the thresholds more often than below and the control 
frequency is higher as compared to the situation of lower fecundity and better control. The 
control frequency does not depend on the threshold level. 

A note on robustness 

In the preceding sections, the weed population dynamics subjected to threshold control 
were described by a simple model (equation 2), which was characterized by chaotic 
population dynamics and a fixed control frequency. These characteristics only bear 
meaning when they do not result from oversimplifications present in the exact 
mathematical formulation of the model. Therefore we checked whether these 
characteristics hinge on particular aspects of the model formulation by using heuristic 
reasoning, and by using a comparison with the more complicated formulations used in 
case studies on long-term application of weed control thresholds. 

The simple model (equation 2) says that per capita growth rates of the weed population 
can attain only two values. At the threshold density there is a discontinuous transition 
between the two growth rates caused by the binary decision making ('control' or 'no 
control'). The two options we choose from ('control' or 'no control') must link to 
'decline' and 'increase' of the population, otherwise the decision making lacks sense. So, 
the discontinuous transition between decline and increase in equation 2 reflects the 
essence of the threshold concept. A direct effect of this discontinuous transition between 
decline and increase is that stable constant densities (neither decline nor increase) are very 
unlikely to result, hence cycles of any period in population density are expected. Cycles of 
infinite period (chaos) may arise in many cases, for instance when growth rates are 
constant. Constant growth rates are an obviously crude simplification: the growth rates 
must decrease with higher densities, and they do depend on environmental conditions and 
change from year to year. However, these effects are limited since we are interested in a 
rather small range of densities, approximately from the economic optimum to economic 
threshold, and added noise will not stabilize the system. So in spite of its crudeness, the 
simplification made by assuming constant growth rates has little effect on the resulting 
dynamics. Nearly constant growth rates will result in cycles of large period, if not infinite 
period (chaos). So heuristic arguments lend support to the generality of the behaviour of 
the mapping in a more extended form, that is we expect long (perhaps chaotic) cycles in 
population density and insensitive (perhaps constant) control frequency. 
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When the characteristics of the simple mapping are indeed preserved in more elaborate 
models, a comparison with independent case studies with those more elaborate models 
should reveal similar results. We should observe the control frequency (after eliminating 
direct effects of the initial transient) to be insensitive to threshold level. We should also 
expect long cycles in population density, which cast some uncertainty on the number of 
years controlled over a given period and thus impose some non-smooth 'surprising' 
changes on the further insensitive relation between control frequency and threshold level. 
Cousens et al. (1986) and Lapham (1987) provided useful sensitivity analyses of their 
models, where the relation between control frequency and threshold level was calculated 
for various initial densities. Direct effects of the initial density can be eliminated by only 
including the number of years controlled when initial density was close to the threshold. 
By doing so, the simulated number of years controlled out of 10 seasons by Lapham 
(1987) is 9 - 10 years. The simulated number of years controlled out of 10 years by 
Cousens et al. (1986) is either 7 - 9 or 5 - 8 years, depending on tillage. Thus the control 
frequency appears rather insensitive to threshold, but does vary somewhat. The threshold 
level where the frequency changes appears 'surprising'. For instance, Cousens et al. 
(1986) found for a 'serious' infestation of Avena fatua in winter wheat with ploughing that 
the number of years controlled changed from 6 years control to 5, to 6, to 5, to 4 and back 
to 5 again when the threshold level was gradually increased from 5 to 20 seedlings m-2. 
Similar sudden jumps back and forth appeared also in other figures where benefit is 
plotted against threshold level (Doyle et al. 1986; Murdoch 1988; Bauer & Mortensen 
1992; Mortensen et al. 19936). These jumps are characteristic of cycles with long, perhaps 
infinite, period in the underlying dynamics. 

Summarizing, the properties of the simple model (equation 2) - long (perhaps chaotic) 
cycles and insensitivity (perhaps independence) of control frequency to threshold level -
are expected to be robust and are preserved in the more elaborate models. Thus, equation 2 
can be regarded as a 'prototype' model for such behaviour: it is a simple model that lends 
easily to analysis of behaviour, and it already demonstrates the 'typical' dynamics of more 
elaborate models. 

Implications for the use of thresholds on the long term 

With the results of the preceding section the question whether thresholds are an 
appropriate tool to implement economic weed control is discussed. We have shown that, 
apart from the direct effects of the initial infestation level, control frequency is insensitive 
to threshold level. As equation 3 shows, the frequency does not depend on economic 
evaluation but is instead based on the balance of decline and increase of the population 
density in order to contain the density within broad bounds. The threshold concept 
provides no clue why containment of a population is economical - containment is tacitly 
declared to be economical. And if containment would be economical, the threshold 
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concept provides no clue why it is economical to use binary decisions ('control' or 'no 
control'). The foregoing shows that the binary decisions may bring undesirable properties 
such as unpredictability into the decision making. Replacing binary decisions by 
continuous decisions (varying the degree of control, by adjusting herbicide dose) would 
overcome this problem. Therefore, the apparent value of threshold control on the long-
term as a strategy to implement economic weed control is deceptive. 

These undesirable properties pertain to the long-term application of thresholds in weed 
control, they are not relevant when only the current crop is considered. Hence, the results 
presented here do not contradict the studies on use of thresholds for some fungal 
epidemics (Zadoks 1985; Drenth et al. 1989) and on single-year economic thresholds (e.g. 
Gerowitt & Heitefuss 1990; Zanin et al. 1993), but it is emphasized that their results are 
rational and economic on a single year base only. By adopting a single-year time horizon 
it is possible to profit without any problem from eliminating control measures that are not 
cost-effective in that year. But when the time horizon is extended and the threshold 
concept is still used, it leads to a very specific containment policy that is not necessarily 
economic in the long term. 

The statement that threshold level does not affect frequency of control does not imply 
that the economic net revenue of cropping is not effected by threshold level, but it means 
that from the viewpoint of minimization of weed control there is no preference at all for 
any particular threshold level. Other approaches, e.g. increasing herbicide efficacy, might 
have more perspective for decreasing herbicide use. Although we have raised questions 
about the rationality of the long-term application of thresholds, this does not imply that 
containment policy should be abandoned and prophylactic or eradication strategies are the 
way to proceed. Long-term use of thresholds must be understood as a particular form of 
containment, and there are other containment policies, e.g. adjusting the herbicide dose, 
that might be more preferable. There is no indication that thresholds are the best option for 
containment and there is even no firmly established indication that containment is the best 
policy. 

In summary, the present study shows that the weed control threshold as a tool to base 
control frequency on economic considerations loses meaning when it is applied to the long 
term. Thresholds are certainly not the tool par excellence to implement the desired rational 
use of weed control. 
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PREDICTION OF WEED DENSITY: THE INCREASE 
OF ERROR WITH PREDICTION INTERVAL, AND 
THE USE OF LONG-TERM PREDICTION FOR 
WEED MANAGEMENT 

Adapted from: Wallinga, J., Grasman, J., Groeneveld, R.M.W., Kropff, M.J. & Lotz, 

L.A.P. submitted. 

Abstract 

This paper addresses the errors that are associated with long-term prediction of weed 

densities, and the effect of these errors on the performance of weed management 

decisions based on those long-term predictions. A model of weed population 

dynamics was constructed. It was based on experimental observations of population 

dynamics of the weed species Stellaria media in a crop rotation. The observations 

showed that estimates of weed population growth rate differed between two locations. 

The model was used to analyse error propagation for predicted weed densities in an 

enlarged prediction interval. It is concluded that errors due to an uncertain population 

growth rate pose an upper limit to the horizon for long-term predictions. It is shown 

that model-based decisions can give near-optimum results even when the model's 

predictions are poor. A limited ability to predict weed densities does not impair the 

practical use of weed population dynamic models in planning for long-term weed 

control programmes. 
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Introduction 

Weed ecologists have put much effort in quantifying life-history characteristics of weeds 
and incorporating this knowledge into models of population dynamics (e.g. Doyle et al. 
1986; Cousens et al. 1987; Mortimer et al. 1989). One of the main objectives of this effort 
was to predict weed densities over a long period, and to use the predictions for the 
selection of weed control measures that have some desired effect. However, most 
measured ecological characteristics are highly variable, and it is not known to what extent 
uncertainties in a weed's life-cycle affect the reliability of the predicted densities and the 
reliability of decisions based on these predictions. Cousens & Mortimer (1995) conclude 
that it is not at all evident that reliable long-term predictions can be made and that these 
predictions can be used to plan for long-term weed control programmes. 

Only a few studies have compared model predictions of weed densities with field 
observations, and their outcome showed that predictions were not very accurate (Firbank 
1991; Cousens & Mortimer 1995). Based on these studies, it is not possible to separate 
effects of poor understanding of a weed's life-cycle from effects of external influences like 
the weather. Sensitivity analysis is an approach to gain some idea of the confidence that 
should be put into the predictions. In a sensitivity analysis the effect of a change in the 
value of a model variable on the predicted weed density is quantified (cf. Cousens & 
Mortimer 1995). Sensitive dependence of predicted density on uncertain variables may 
indicate to what extent prediction is fundamentally limited at the current level of 
knowledge. 

The objective of this paper is to derive a simple, but not unrealistic, model of weed 
population dynamics from experimental data and to analyse the error in predicted density 
for the most likely sources of uncertainty. The model is used to examine the change of 
error in predicted weed density when the prediction interval is enlarged, and to examine 
how errors in long-term prediction affect the performance of weed control decisions that 
are based on those predictions. The error in predicted weed density as studied here applies 
to the deviation between a prediction based on 'correct' values of variables and a 
prediction based on 'incorrect' estimates. 

First, an experiment is described that examines the population dynamics of the weed 
Stellaria media L. in a crop rotation of winter wheat and sugar beet. The experimental 
results are used to construct a model of population dynamics of S. media. The effect of 
small changes in uncertain model variables on predicted density is determined. 
Subsequently, the effect of small changes in uncertain model variables on the control 
decisions are analysed. Finally, it is indicated what the implications are for the practical 
use of weed population dynamic models in planning for long-term weed management. 
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Experiments 

Two similar experiments were conducted at two research stations in the Netherlands, one 
near Wageningen, henceforth indicated as experiment 1, and another near Nagele, 
henceforth indicated as experiment 2. Both experiments were carried out over the period 
1990 - 1993, during which time the experimental plots were cropped in successive years 
with winter wheat, sugar beet and winter wheat. The most dominant weed at both sites was 
S. media. Two weed management regimes were imposed in both experiments: (i) weeds 
were left uncontrolled in winter wheat, but weeds were controlled in sugar beet; (ii) weeds 
were controlled in both winter wheat and sugar beet. Each management regime was 
carried out on 10 plots at each site. Full experimental details are given in table 1. The 
number of S. media plants in each plot was assessed in the winter wheat crop in March 
1991 and March 1993. Crop yield of winter wheat was measured in each plot in 1993. 
Weed control in the sugar beet crop sufficed to eliminate weed plants. 

Table 1. Experimental setting in which population density of Stellaria media L. was observed over three 
years. Half of the plots were treated with herbicides when winter wheat was cropped, in the other half of the 
plots weed control was omitted when winter wheat was cropped. 

Experiment 1 Experiment 2 

1991 

1992 

1993 

location 
soil type 
plot size 
crop 
observation 

weed control 
fertilizer 
crop 
weed control 

crop 
observation 

weed control 
fertilizer 
observation 

Wageningen, the Netherlands 
loamy sand soil 
18mx 10m 
winter wheat 
20 March 1991, for each plot the 
number of weeds was counted in 3 
quadrats of 0.25 m2 

fluroxypyr / none 
189 kg Nor 148.5 kg N >) 
sugar beet 
ethofumesate, fenmedifam 2 \ 
metamitron with additional hoeing 
winter wheat 
25 March 1993, for each plot the 
number of weeds was counted in 8 
quadrats of 0.25 m2 

fluroxypyr / none 
171 kgN or 141 kgN •) 
6 August 1993, for each plot the 
kernel dry weight was measured 

Nagele, the Netherlands 
sandy loam soil 
21 m x 10 m 
winter wheat 
21 March 1991, for each plot the 
number of weeds was counted in 3 
quadrats of 1 m2 

mecoprop, 2,4D, fluroxypyr / none 
122 kg Nor 92 kgN •) 
sugar beet 
ethofumesate, fenmedifam 2), 
metamitron with additional hoeing 
winter wheat 
22 March 1993, for each plot the 
number of weeds was counted in 8 
quadrats of 0.25 m2 

fluroxypyr, MCPA / none 
180 kgN or 150 kgN ') 
14 August 1993, for each plot the 
kernel dry weight was measured 

1) one half of the replications received slightly more fertilizer than the other half. 

2) fenmedifam is used as common name for 3-methoxycarbonylaminofenyl 3-methylfenylcarbamate. 
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Model 

The dynamics of S. media over a 2 year crop rotation of winter wheat - sugar beet were 
described by 

[aN(t-X) if r ( / - l ) = 0 
N{t) = \ K ' V ' (la) 

\bN(t-\) if r(/ -1) = 1 

where iV is the S. mc Jj'a density in winter wheat, t denotes time (with 2-year time steps), a 
is the relative growth rate of the weed population when weeds are left uncontrolled, b is 
the relative growth rate of the weed population when weeds are controlled, and r is a 
binary control variable (r = 1 when weeds are controlled in winter wheat, r = 0 when 
weeds are left uncontrolled in winter wheat). The resulting winter wheat yields are 
described by: 

\Ymax-cN(t) if /•(/) = 0 
Y(0= „maX . . , , (\b) 

[Ymax if r(/) = l 

where Fis winter wheat yield (kg m~2 kernel dry wt), Ymax represents the crop yield when 
weeds are controlled (kg m~2 kernel dry wt), and the parameter c indicates the yield loss 
per weed plant when weeds are left uncontrolled (kg-1 kernel dry wt). 

The annual revenue of cropping winter wheat is described by the following equation: 

„, , \pY(t) if r(/) = 0 
R(t) = \ W (lc) 

\pY(t)-h if r (0 = l 
where R is annual revenue (Dfl yr 1) , p is the wheat price (Dfl kg-1 kernel dry wt), and h 
is the costs of weed control (Dfl m-2). 

Parameter estimation 

Relative growth rate of the weed population when weeds are left uncontrolled, a, was 
estimated for both experiments by linear regression of weed density observed in 1993 
against weed density observed in 1991 in plots where weeds were left uncontrolled. 
Relative growth rate of the weed population when weeds are controlled, b, was estimated 
for both experiments by linear regression of weed density observed in 1993 against weed 
density observed in 1991 in plots where weeds were controlled. The average yield loss per 
weed plant, c, was estimated for both experiments by linear regression of winter wheat 
yield against weed density observed in 1993 in plots where weeds were left uncontrolled. 
The economic parameters were estimated asp = 0.40 Dfl kg-1 kernel dry wt, and h = 0.01 
Dfl m-2. 
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Prediction of weed densities 

It is assumed that each year a weed control decision is made that gives the best expected 
economic results. For a specific S. media density this decision is derived by a computer 
program that applies the following rules: 
• consider all possible combinations of weed control decisions (either control or no 

control) in winter wheat crops in the following years; 
• calculate for each combination of decisions the effects of decisions on the annual weed 

densities, crop yields and economic returns with the model; 
• calculate for each combination of decisions on the sum of discounted revenues; 
• select the weed control decision that leads to the highest sum of discounted revenues. 
It is assumed that the planning horizon is 6 years and that the discount rate is 0.8, which 
means that the sum of discounted revenues is calculated by adding the expected revenue of 
the current winter wheat crop weighed with a factors 0.8°, the subsequent winter wheat 
crop weighed with a factor 0.82, and the following winter wheat crop weighed with a 
factor 0.84. 

Prediction of density of a weed population that is controlled according to optimum 
control decisions proceeds as follows. For an initial weed density N(0) the corresponding 
weed control decision r(0) is derived using the above mentioned rules. Both iV(0) and r(0) 
are substituted into equation la to calculate the expected weed density in the following 
winter wheat crop Ml). For this weed density, the corresponding weed control decision 
r(l) is derived. Both N{\) and r{\) are substituted into equation \a to derive the expected 
weed density in the subsequent winter wheat crop N(2). And so on. 

Results 

Experiments 

The average density of S. media plants was 26.8 m~2 in experiment 1 in 1991. For each 
management regime the densities observed in 1991 were approximately linearly related to 
the densities as observed in 1993 (figure la), densities increased on average by a factor 2.0 
when weeds were not controlled and densities decreased on average by a factor 0.8 when 
weeds were controlled (table 2). The kernel dry weight of winter wheat in 1993 declined 
approximately linearly with increasing density of S. media (figure lb). 

The average density of S. media plants was 1.1 m~2 in experiment 2 in 1991. For each 
management regime the densities as observed in 1991 were approximately linearly related 
to the densities as observed in 1993 (figure 2a). Density increased on average by a factor 
43.5 when weeds were not controlled and densities decreased on average by a factor of 0.7 
when weeds were controlled (table 2). The kernel dry weight of winter wheat in 1993 
declined approximately linearly with increasing density of S. media (figure 2b). 
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Figure 1. Results of experiment 1, at site Wageningen. (a) The density of Stellaria media per plot as 
observed in spring 1991 and in spring 1993 in winter wheat crops, (b) The relation between density of 
Stellaria media observed in spring 1993 and kernel dry weight of winter wheat in that year. The plots were 
either sprayed with a herbicide after observation of density in 1991 and 1993 (filled markers, linear 
regression on this data is indicated by the drawn line) or weed control was omitted in 1991 and 1993 (open 
markers, linear regression on this data is indicated by the broken line). Some plots received slightly more 
fertilizer (squares) than others (triangles). In 1992, all plots were cropped with sugar beet, weeds were 
controlled on all plots. 

Table 2. Results of experiment 1, conducted at site Wageningen, and experiment 2, conducted at site Nagele. 
Data are presented as mean (± standard error of the mean) and winter wheat yield is given as kernel dry 
weight. 

Experiment 1 Experiment 2 
initial density of 5. media plants (m -2) 
rate of increase without weed control 
rate of increase with weed control 
crop yield 
in absence of weeds (kg m - 2 ) 
reduction of crop yield per weed plant (kg) 

a 
b 
Y 'max 

c 

26.8 (± 2.8) 
2.0 (±0.1) 
0.8 (±0.1) 
0.95 (± 0.02) 

1.7 (±0.5) 10"3 

1.1 (±0.2) 
43.5 (± 4.6) 
0.7 (± 0.4) 
0.85 (±0.01) 

2.4 (±0.3) 10" 



Prediction of weed density 75 

0 1 2 

Density (nv2) observed 

3 

in 1991 

c T 

E 
an 

33 

> 

0.8i 

0.6 

0.4 

0.2 

n 

* 

A 
•~4~. u D 

(b) 

"* B --__ 

30 60 90 

Density (m"2) 

120 150 

Figure 2. Results of experiment 2, at site Nagele. (a) The density of Stellaria media per plot as observed in 
spring 1991 and in spring 1993 in winter wheat crops, (ft) The relation between density of Stellaria media 
observed in spring 1993 and kernel dry weight of winter wheat in that year. The plots were sprayed with a 
herbicide after observation of density in 1991 and 1993 (filled markers, linear regression on this data is 
indicated by the drawn line) or weed control was omitted in 1991 and 1993 (open markers, linear regression 
on this data is indicated by the broken line). Some plots received slightly more fertilizer (squares) than 
others (triangles). In 1992, sugar beet was grown on all plots and weeds were controlled. 

Population dynamics when weeds are controlled according to optimum decisions 

For a wide range of S. media densities the weed control decision that leads to the highest 
sum of discounted future revenues is calculated. When model parameters are estimated 
from experiment 1, the best decision is to control in the current year when the weed 
density exceeds 10.85 plants m-2, otherwise the best decision is to skip control in the 
current year. When model parameters are estimated from experiment 2, the best decision is 
to control in the current year when the weed density exceeds 6.80 plants m-2, otherwise 
the best decision is to skip control. This means that the dynamics of a S. media population, 
subjected to optimum control decision, are thus effectively described by: 

N(t) = 
aN(t-l) if N(t-\)<K 

bN(t-\) if N(t-l)>K 
(2) 
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where N is the density of S. media in winter wheat, t denotes time (with 2-year time steps), 
a is the relative growth rate of the weed population when weeds are left uncontrolled, b is 
the relative growth rate of the weed population when weeds are controlled, and K is the 
density threshold for applying weed control. When model parameters are estimated from 
experiment 1, a = 2.0, b = 0.8, and K = 10.85 plants m-2. When model parameters are 
estimated from experiment 2, a = 43.5, b = 0.7, and K = 6.80 plants m-2. 

Effect of error in estimates of initial density on predicted density 

It is derived in appendix 1 that, on the long term, the relation between a small error in the 
estimate of initial density N(0) and the resulting error in predicted density N(t) is: 

! ^ ! = i . 0 ) 
dN(0) 

This means that an error in the estimate of initial density is preserved over the long term, 
and that the magnitude of the resulting error in predicted density does not depend on the 
length of the prediction interval. 

Effect of error in estimates of population growth rate on predicted density 

In appendix 2 it is derived that, on the long term, the relation between a small error in the 
estimate of growth rate a and the resulting error on predicted density N(t) is: 

—±l*aNEt, (4) 
da 

where a is the relative frequency of years in which weeds are left uncontrolled and NE is 
the expected weed density when weeds are not controlled. This means that the absolute 
error in predicted densities increases linearly with the length of the prediction interval if 
there is an error in the estimate of growth rate. When model parameters are estimated from 
experiment 1, the value of the term oNE is estimated as 2.4 plants n r 2 per time step. When 
model parameters are derived from experiment 2, the value of this term is estimated as 0.5 
plants m~2 per time step (see appendix 2). 

Effect of an error in control decisions on crop yield 

The relation between an error in the estimated density threshold for weed control K and 
the expected annual crop yield, denoted by YA, is (see appendix 3): 

dYA=-c(\-b) 
dK l na- lnA" 
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When model parameters are estimated from experiment 1, an overestimate of 1 plant m -2 

in the density threshold would cause a decrease in average crop yield of 0.37 10-3 kg m-2. 
When model parameters are estimated from experiment 2, an overestimate of 1 plant m~2 

in the density threshold would cause a decrease in average crop yield of 0.17 10~3 kg m~2. 

Discussion 

The purpose of the present paper was to examine the change of error in predicted weed 
density when the prediction interval is enlarged, and to examine how errors in long-term 
prediction affect the performance of control decisions based on those predictions. To this 
purpose, a simple prediction model was used. The model's dynamics, as described by 
equation 2, have been studied before (Felsenstein 1979; Hughes & Gonzalez-Andujar 
1997; Wallinga & Van Oijen 1997). Up to now, there has been no analysis of the effects of 
a change in initial condition or in parameter values on the projected trajectories. 

As any prediction model, the model rests on a number of assumptions. Some 
assumptions have been made about the economic objectives of weed control and about the 
prices of the crop and weed control. They were necessary to derive a rational weed control 
strategy, but, since the assumed parameter values do not affect the existence of a density 
threshold for weed control and do not enter the derived equations, they do not have a 
direct impact on the outcome. It is assumed that the model parameters remain constant and 
do not depend on weed density. This assumption made it possible to estimate the 
parameter values by linear regression. Over the range of densities that is of practical 
interest, and over the range of densities that is attained in the experiment, this assumption 
holds quite well (see figures 1 and 2). However, over a wider range of weed densities that 
includes very large densities such an assumption is unlikely to hold. So, with the 
restriction that weed densities are limited to the range of values that is of practical interest, 
the model can be applied to analyse the error in predicted densities. 

Table 2 shows a more than 20-fold difference in observed values for the initial weed 
density N(Q) between experiment 1 and experiment 2. In principle, the weed density can 
be measured exactly for any location, but in practical situations such an exact 
measurement will be too labour intensive and as a result the estimated weed density will 
have some measurement error. Equation 3 shows that an error in estimate of initial weed 
density results in an error in predicted weed density, and that the absolute error is 
preserved and does not, on average, increase or decrease. 

Table 2 also shows a more than 20-fold difference in relative population growth rate a 
between experiment 1 and 2. In practical situations it is impossible to estimate weed 
population growth rate since this requires to leave weeds uncontrolled. Hence, the 
uncertainty associated with the growth rate a is very large. Equation 4 shows that an error 
in the estimate of relative weed population growth rate results in an error in predicted 
density, and that the absolute error increases with increasing prediction interval. The 
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relative error will increase with prediction interval and eventually the magnitude of error 
will exceed the predicted weed density, rendering predictions meaningless. 

Equation 4 makes explicit the rate at which error in prediction increases, and on which 
variables the increase in error depends: 
• the error increases linearly with length of the prediction interval; 
• the growth of error is positively related to the density that weeds achieve, on average, 

in the years when weeds are left uncontrolled (that is, if higher weed densities are 
tolerated, the prediction errors will increase more rapidly); 

• the growth of error is positively related to the frequency of years in which the weeds 
are left uncontrolled (that is, if the weed population requires 
less intensive control, the prediction errors will increase more rapidly). 

It follows that the prediction error increases more slowly for the most noxious weeds 
because these weeds can be tolerated only at very low densities, rarely allowing non-use of 
control measures. 

The error that is made in long-term prediction of weed density will cause an error in 
estimated optimum density threshold for weed control. For example, consider a prediction 
made with estimates for a and b that differ as much from the actual values as the observed 
parameter values for experiment 1 differ from those for experiment 2; the resulting error in 
predicted weed densities in the subsequent winter wheat crops will then be very large. In 
this case, the resulting estimated density threshold for weed control will differ as much 
from its actual optimum value as the estimated threshold for experiment 1 differs from that 
for experiment 2, that is, the threshold will be overestimated by 4.05 plants m-2. The long-
term consequence of this overestimation for average crop yield can be calculated by 
equation 5: overestimation of the threshold as estimated for experiment 2 by 4.05 plants 
m-2 causes a reduction in average crop yield by 0.69 10~3 kg m~2 (0.08% of the weed-free 
crop yield). This is a negligible small amount. This example shows that the model, even 
when its predictions are poor, can still be able to recommend long-term control decisions 
that would result in near-optimum crop yields; the variability in ecological variables does 
not mean that models of weed population dynamics are useless in evaluating long-term 
weed management options. 

Conclusion 

Relative errors in predicted weed density increase linearly with the length of the prediction 
interval. This sets a limit to the period over which density can be predicted. Model-based 
decisions can give near-optimum results even when the model's predictions are very 
inaccurate; a limited ability to predict weed density over a long term does not impair the 
use of models in planning for long-term weed control programmes. 
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Appendix 1 

Effect of error in initial density on predicted density 

The weed population is controlled when the density of weeds exceeds a density threshold. 
The resulting dynamics are given by: 

\aN(t-l) if N(t-l)<K 
N(t) = \ (Al.l) 

\bN(t-\) if N(t-\)>K 

where K is the density threshold for weed control, a is the relative growth rate of the 
uncontrolled population (such that a > \), b is the relative growth rate of the controlled 
population (such that 0 < b< 1). 

The relative frequency of years in which density does not exceed the threshold value is 
denoted by a, and the relative frequency of years in which density exceeds the threshold 
value is denoted by j3. Both relative frequencies can be expressed in terms of population 
growth rates (Wallinga & Van Oijen 1997): 

-Inb 
a = -

13 = 

In a - In b ( A 1 2 ) 

In a v 

In a - In b 

The error in predicted population density N(t) due to an error in the initial density N(Q) is 
obtained by taking the derivative of prediction density with respect to initial density. On 
the long term, this derivative is: 

dN(t)^ dN(t) dN(t-l) d i V ( l ) = r r , dN(n) = ^ f r = ] 

dN(0) dN(t~l)dN(t-2)'"dN(0) l l n =1 dN(n-1) 

So, for large t, 

^ = 1. (A1.4) 
dAf(O) 
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Appendix 2 

Effect of error in population growth rate on predicted density 

The error in predicted population density N(t) due to error in to the relative growth rate a 
is obtained by taking the derivative of predicted density with respect to relative population 
growth rate a. This derivative is: 

dN(t)_ 9N(t) dN(t-l) dN(t) 
da ~dN(t-l) da da 

For convenience, the following notations are introduced: 

u{,) = dN(t) 

da ' 

({)_dN(t + l)=la if N(t)<K 
P{t) dN(t) ~{b if N(t)>K' 

<t\dN(t + l)=lN(t) if N(t)<K 

da [0 if N(t)>K' 

(A2.1) 

(A2.2a) 

(A2.2b) 

(A2.2c) 

In this notation, equation A2.1 becomes 
u(t)= p(t - \)u(t -1)+ q{t -1), which can be expanded as 
u(t) = p(t - \)[p(t - 2)u{t - 2) + q(t - 2)] + q(t -1), and so on, until it finally yields 

r ' - l 
"W=n;:o^Mo)+i;:

i
1^-i)n;:>w+^-i). 

Since u(0) = — — = 0 the above equation reduces to 
da 

u(t) = q(t -1) + £;;; q(s - l )n;= s P(T) . 

Equation A2.3 can be decomposed into three terms 

(A2.3) 

u(t) = x(t) + y(t) + z(t) 

y{t) = q(t-X) 
t-\ i-rt./Kr) (A2.4) 

and for each of these terms the behaviour with increasing / is studied. 
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First, it is determined how x(f) increases with increasing t. Note that equation A1.3 

rewritten in the notation of equation A2.2b means that ]~[ p(%) approaches unity on the 

long term. Therefore, on the long term, 

Recalling that q{t) is defined by equation A2.2c as weed density if weeds are left 
uncontrolled and zero if weeds are controlled, the resulting sum can be written as the 
product of prediction interval /, the frequency that weeds are left uncontrolled a, and the 
expected weed density when weeds are left uncontrolled NE: 

*(') = H=1<7(*-1)=«^-

Second, it is determined whether y(t) increases with increasing /, and again use is made 

of the fact that ]~[ p{z) approaches unity on the long term: 

y(t) = q(t-l) r-1 

i-ro) = 0. (A2.6) 

Third, it is determined how z{t) increases with increasing t. For this purpose, z(t) is split 
up into two parts: 
z(t) = zx{t) + z2{t) 

r'-l 

*.('>=z;:; *<* - \Y\Z **> - r e **>_ 
zi «=TZ ^s - i{Kt pw - n';J, PW 
where r = t -1 - p(t), and p(/) increases with t such that when ?->•<», p(t) -> oo and 

p(r)/7->0 (these requirements are met when, for instance, p(/) is taken as — a\ogt, 

truncated to the nearest integer). zx{t) approaches zero because T~[ p(x) approaches 

unity on the long term. For increase of z2(t) with t an upper limit is derived by using the 

facts that q(s-\)<K, ]"['"' p{x)<ap(l), and ]"['"' P (? )^° (these restrictions follow 

in a straightforward manner from the definitions of q and p in equation A2.2Z> and 
equation A2.2c): 

*>=z::1, «<* - i ( i t **> - rr;', m] * z ; : *» m 

writing out the last term gives then: 

zw=z';=, & - D vits p ^ ~ nr=, PW * p{t)amK (A2.7) 
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This increase of the upper limit to z(/) with t is on the long term negligible as compared to 

the increase of x(t) with /. For instance, take p(/) =—a\ogt: 

l i m * ^ = l i m ^ = 0. 
<->co aNEt t^>cc2aNEJt 

In summary, u{t) is decomposed into three terms x(t), y(t) and z{t) of which y(t) is zero 
and z(t) is negligible compared to x{i) when t is large: 
u{t)«x{t). 
Substituting equation A22a and equation A2.5 into the above equation gives 

™V*aNEt, (A2.8) 
da 

The term aNE can be expressed in terms of a, b and K, the variables that are used to 
describe the weed population dynamics. If the weed population follows the dynamics of 
equation 2, the logarithm of weed density is distributed uniformly over the interval 
(in 6£, In AT] (see Felsenstein 1979 for a derivation of thes result in a slightly different 
context). The probability density function for weed densities that do not exceed the 

threshold value AT is then/>(AfJ7V( < K) = . The expected weed density, given that 
-\nb N 

the density does not exceed density threshold K, is NE = f N dN = . 
JbK -Inb N - In b 

The frequency of years in which density does not exceed the threshold value K is given by 

equation Al .2: a = . Combining the expressions for NE and a gives 
lna-\nb 

In a - In b 
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Appendix 3 

Effect of an error in control decisions on crop yield 

The expected weed density, given that density does not exceed the threshold, is denoted by 
NE. The expected crop yield, given that density does not exceed the threshold is denoted 
byr £ : 

yE=ymm-cNE (A3.1) 

The expected yield, given that density exceeds the threshold, is the maximum yield Kmax. 
Furthermore, a is the frequency of years in which density does not exceed the threshold. It 
follows then that the average yield over all years, denoted by YA, is given by: 

YA=Ymax-caNE (A3.2) 

Substitution of equation A2.9 into equation A3.2 gives: 

YA=Ymax-c
K(l~b) (A3.3) 

In a - In b 

Taking the derivative with respect to K gives 

(A3.4) 
dYA _-c(\-b) 

dK Ina-lnb 
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Herbicide use decreases as the spatial scale of weed control decreases. If the current state 
of technology would allow to detect and spray weeds at a scale much smaller than the 
plant size, the area that needs to be sprayed is approximately the total leaf area of the 
weeds, which is usually much smaller than the area of the whole field, and this would 
allow an enormous reduction in herbicide use. Of course, the current state of technology 
does not yet allow application of weed control at such small scales. Therefore, the 
herbicide use of patch control programmes is determined by the spatial scale of weed 
control, which is set by the current state of affordable technology. 

Spatio-temporal dynamics of weed populations 

The other objective of this thesis is to analyse spatio-temporal dynamics of weed 
populations. The dynamics of average weed density obviously depends on the weed 
control programme. If the weed population is subjected to threshold control, the average 
density will fluctuate around the threshold value with aperiodic cycles. These aperiodic 
cycles are either quasi-periodic or chaotic (chapters 6 and 7). If the weed population is 
subjected to optimum dose control, the average density will approach a low equilibrium 
density (chapter 5). Although at this equilibrium the overall weed density in a field will 
remain constant, the local dynamics are rather complicated. 

Chapter 2 gives a probabilistic explanation for emergence and persistence of weed 
patches in an otherwise homogeneous habitat when the size of the weed population is held 
at a low overall density. The explanation invokes only a few basic principles of plant 
population biology and weed control. In loose terms this explanation runs as follows. Most 
seeds are shed close to the mother plants, and therefore the seed density in the centre of a 
patch is much higher than at the edge. When the weed population is subjected to high kill 
rates, such that the population density does not increase, the probability of local population 
extinction due to stochastic fluctuations in density is very high at the edge of a patch 
where the seed density is low, whereas the probability of local population persistence in 
spite of stochastic fluctuations in density is high in the centre of the patch where the seed 
density is high. As a consequence, the patch tends to persist. This probabilistic explanation 
leads to an exact, testable prediction about weed spatial patterns: standing on a randomly 
selected weed, the expected number of other weeds, N, within a neighbourhood of radius R 
will increase with R as N~R . This result may be regarded as a plausible null-
hypothesis for weed spatial pattern. 

Analysis of an observed weed spatial pattern (chapters 2, 4) shows that there is a power-
law relation between number of weeds and radius with a non-trivial exponent, but the 
observed value of the exponent does not equal the predicted value; the hypothesis about 
the weed spatial pattern is partly confirmed. Other aspects of patch formation must have 
played a role as well. Chapter 3 provides an alternative probabilistic explanation for 
emergence of patches in an otherwise homogeneous habitat if the weed population size has 
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increased in the years prior to the observation. This alternative explanation leads to a 
testable hypothesis: if the population originates from a single seed, it could only have 
formed irregular spread-out patterns if the forward tail of the projected seed dispersal 
curve declines slower than exponentially with distance. It is very well possible that 
dispersal curves for weed seeds have this property, but it will be rather difficult to make a 
decisive observation of the tail shape of the seed dispersal curve (chapter 3). 

In conclusion, weed patch formation and weed patch persistence are expected even in an 
otherwise homogeneous environment. Testable hypotheses have been derived to determine 
whether patches were formed by processes that are inherent to life-cycle processes alone. 

Self-organized criticality in a model of weed population dynamics 

Perhaps surprisingly, the above mentioned 'plausible null-hypothesis for weed spatial 
pattern', N ~ Rl]1, does not depend on the specific model details (see chapter 2). A 
similar result (namely, N~RL]9) is also reported for a process called 'directed 
percolation', which may be regarded as the most simple stochastic spatial model of 
population dynamics (Grassberger 1989). 

Directed percolation can be explained in terms of annual plant population dynamics in a 
constant homogeneous environment. Directed percolation then describes a process where 
plants are distributed onto a two-dimensional lattice. At each time step a new plant will 
grow on every lattice site which has at least one seed. This plant is killed with a 
probability r. If the plant survives it disperses seeds to the neighbouring lattice sites and 
dies. There is a critical kill rate (r = rc) at which the population barely persists at a very 
low density. When the population is subjected to this critical kill rate rc, the system shows 
so-called 'critical phenomena' and some quantities of interest can be described by power 
laws. Adding more complex details to this simple model does not affect the existence of 
the power laws nor does it affect the values of the exponents of the power laws. 

It is conjectured that directed-percolation-like critical phenomena are expected if the 
model has the following six features, expressed in terms of plant population dynamics (cf. 
Grassberger 1997): 
• space is two dimensional; 
• seed dispersal is local; 
• the number of seeds per unit area is discrete; 
• the seed production per unit area is limited; 
• the kill rate is independent of spatial position; 
• the kill rate is near a critical value. 
Almost all explicit spatial stochastic models of plant population dynamics in a 
homogeneous habitat have the first five features. However, there is no reason to assume 
that for a plant population in a natural environment without management the plant kill rate 
approximates the critical value. 
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As pointed out by Bak et al. (1989), there exist models which show critical behaviour 
without possessing any obvious analogue of a constant critical kill rate. This phenomenon, 
called 'self-organized criticality', has been intensively studied in the last ten years. It is 
possible to construct a self-organized critical analogue of the plant population dynamics 
model described above by keeping the overall density of plants on the lattice constant at 
low values, and leaving the kill rate variable. The kill rate is then implicitly driven to its 
critical value. One of the above mentioned requirements for a model to exhibit directed-
percolation-like critical phenomena, 'the kill rate is near a critical value', can then be 
replaced by 'the overall plant density is at a very low value'. If the plants are weeds, there 
is a good reason to hold the plant density at low values, since it will maximize the 
economic returns to the farmer (chapters 5, 6 and 7). Therefore, a model of annual weed 
population dynamics will show directed-percolation-like critical behaviour for almost all 
feasible weed control programmes, if the model assumes a homogeneous habitat and local 
seed dispersal, and if the model acknowledges the fact that annual weeds are discrete 
individuals in a two dimensional space that have a limited seed production per unit area. 
Indeed, the simple stochastic spatial model of weed population dynamics as presented and 
analysed in chapter 2 displays self-organized critical behaviour that is very closely related 
to directed percolation (Broker & Grassberger, preprint). 

As a consequence it is possible to make specific quantitative statements about the 
dynamics and pattern formation in weed population models that assume a homogeneous 
habitat, even without explicit knowledge of the exact model details. 

Relations to other research 

Several studies have focused on the evaluation of threshold control programmes (see 
Cousens & Mortimer 1995 for a review). Here, some results of those case studies are 
generalized and it is shown that the discrete-choice threshold may be an inappropriate 
basis for weed-control decision making when the objective is to limit the frequency of 
herbicide use in the long term (chapters 6 and 7, see also Hughes & Gonzalez Andujar 
1995). Some studies have considered optimum herbicide dose control programmes {e.g. 
Pandey & Medd 1990, 1991). Here, it is shown that the long-term herbicide use by such 
control programmes will be determined by critical weed kill rate and herbicide use. Hardly 
any studies have been published that evaluate patch control programmes over a long term 
(but see Day et al. 1996). Some of the difficulties in the evaluation of patch control 
programmes are discussed by Cousens & Woolcock (1997). They state that "...all of the 
modelling has been concerned with spread from a new focus of invasion. If we are to 
model the effects of patch spraying on existing populations, we need to model weeds that 
have already had the opportunity to occupy all parts of a field {i.e. closer to equilibrium)." 
Chapter 2 deals with such an existing population that is 'close to equilibrium', and it may 
give new perspectives for the design and evaluation of patch control programmes. 
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The weed population dynamics model of chapter 2 has been further analysed by Broker & 
Grassberger (preprint) who formulated and tested the scaling laws of this model in much 
more detail. They verified most of the results of chapter 2, including the non-trivial claim 
that the growth of surviving labelled clusters inside a large critical population obeys 
exactly the same scaling laws as the growth of surviving isolated clusters. They also noted 
that the centre of a surviving cluster of weeds makes essentially a random walk in space. 
But since this is a very slow process, weed patches will appear to persist on the time scales 
that are of interest for weed control. 

The probabilistic explanations for weed patch formation lead to testable hypotheses 
about the spatial weed pattern and weed seed dispersal curve (chapters 2 and 3). If these 
hypotheses are rejected, other processes than population biology alone may have played a 
role in weed spatial pattern formation. For example, weeds may remain in patches because 
these are situated at sites that have more favourable conditions than other parts of the field, 
or a weed might help neighbouring weeds to survive and reproduce because it catches 
herbicides and shields neighbouring weeds (Rew & Cussans 1995; Mortensen & Dieleman 
1997). These explanations of pattern formation are equally plausible as the ones that are 
elaborated in this thesis but it will be harder to derive testable hypotheses since 
interactions between weeds and their abiotic environment are involved. 

Perspectives for future reductions of herbicide use 

If one is interested in the question 'how to further reduce herbicide use', the results 
reported here suggest that applying weed control measures at finer spatial resolution has a 
very large potential for reducing herbicide use. The advent of precision agriculture will 
provide a technological impetus for weed control at ever finer precision. The following 
types of observations are needed to design an effective patch control programme. 
• Observations of spatial patterns of weeds. To assess the optimum scale of weed 

control, weed spatial patterns need to be mapped at different scales (cf. Rew et al. 
1997). The methodology presented in chapter 4 may be helpful to obtain this 
information for spatial point patterns. 

• Observations of spatial pattern of herbicide resistant weeds. Since savings in herbicide 
use will decrease rapidly if herbicide resistant weeds spread, it is essential to recognise 
herbicide resistance as soon as possible. The spatial structure of a weed patch may give 
an indication whether the weeds are herbicide resistant or not (cf. Davidson et al. 
1996). 

• Observations of tail shapes of weed seed dispersal curves are required to estimate the 
potential of weed seeds to disperse from a patch into the untreated area (cf. chapter 3; 
Portnoy & Willson 1993). 
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Perspectives for future research on weed population biology 

From a biologist's viewpoint, self-organized critical phenomena in biological systems 
should be of interest because they make it possible to characterize the system by a 
condensed general description of spatio-temporal dynamics, and because they allow a 
simple correlation between spatial pattern and the dynamic processes that are involved in 
the pattern formation. There are several biological processes that may exhibit self-
organized criticality: evolution of species and mass extinction (Bak & Sneppen 1993), 
epidemics in isolated populations (Rhodes et al. 1997) and the growth in tropical rain 
forests (Sole & Manrubia 1995). For those processes it is practically impossible to find out 
whether self-organized criticality is as evident in real life as it is in the modelled behaviour 
of these systems. A weed population in an arable field may form an excellent study object 
for self-organized criticality in biological systems, since it is relatively easy to observe and 
is expected to show critical behaviour. The following types of observations on pattern 
formation in weed populations can be used to test whether the expected self-organized 
critical phenomena also occur in real life. 

• Observations of spatial patterns of weeds. If the population is in a critical state, the 
spatial pattern should be fractal. The correlation sum, which is presented in chapters 2 
and 4, may be a helpful statistic to summarize the observed pattern and to see if the 
patterns are fractal (see also Avnir et al. 1998). 

• Observations of spatial patterns of weeds with specified genetic markers. If the 
population is in a critical state, the spatial distribution of plants with identical genetic 
markers should be fractal, and the frequency distribution of the periods that a genetic 
marker is present in the population should decline with time according to a power law 
relationship (chapter 2; Broker & Grassberger, preprint). 

• Observations of tail shapes of weed seed dispersal distributions. The description of the 
system as a self-organized analogon of direction percolation requires that seed 
dispersal is a local process. To find out whether seed dispersal can be considered as a 
local process or not, it is necessary to know the typical tail shape of the actual 
distribution of seed dispersal distances (cf. chapter 3; Portnoy & Willson 1993). 
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SAMENVATTING 

Inleiding 

Onkruidbeheersing is een essentieel element in de teelt van gewassen. In Nederland wordt 
meestal gebruik gemaakt van herbiciden, omdat chemische onkruidbestrijding een relatief 
goedkope en betrouwbare onkruidbeheersingsmethode is. Afgelopen decennia is men in 
toenemende mate bewust geworden van nadelige effecten van herbicidengebruik op het 
milieu, en daarom zijn er onkruidbeheersingsprogramma's ontwikkeld die het onnodig 
gebruik van herbiciden tegengaan. In dit proefschrift worden drie verschillende typen 
onkruidbeheersingsprogramma' s geanalyseerd: 

• alleen herbiciden toepassen waar dat nodig is (pleksgewijze beheersing); 
• alleen herbiciden toepassen met optimale herbicide dosis (optimum dosering 

beheersing); 
• alleen herbiciden toepassen als de onkruiddichtheid hoger is dan een bepaalde 

drempelwaarde (drempel beheersing). 
Het is noodzakelijk om de effectiviteit en het herbicidengebruik van deze programma's te 
testen over een termijn van enkele jaren, maar het is bijna onmogelijk om een 
veldexperiment op te zetten voor zo'n test en bovendien zouden de experimentele 
resultaten te laat beschikbaar komen. Het is wel mogelijk om de effectiviteit en het 
herbicidengebruik van onkruidbeheersingsprogramma's over een lange termijn te 
evalueren met een model van de dynamica van onkruidpopulaties. 

Een doel van dit proefschrift is het aangeven van de essentiele factoren die het 
herbicidengebruik van onkruidbeheersingsprogramma's bepalen over de lange termijn. 
Een ander doel van dit proefschrift is het analyseren van ruimtelijke dynamica van 
onkruidpopulaties. Kennis is hiervan vereist om pleksgewijze beheersing te evalueren. In 
dit proefschrift worden alleen eenjarige onkruiden besproken, en er wordt aangenomen dat 
een van de doelen van onkruidbestrijding is om economisch rendabele teelt van gewassen 
mogelijk te maken. 

Ruimtelijke dynamica van eenjarige onkruiden 

Allereerst wordt een mogelijke verklaring gegeven voor het ontstaan en de persistentie van 
clusters onkruiden in velden die uniform behandeld worden. Deze verklaring verloopt als 
volgt: de meeste zaden vallen vlak bij de moederplant, de dichtheid van zaden is in het 
midden van de cluster hoger dan aan de rand van de cluster. Als elk jaar veel onkruiden 
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worden verwijderd, zodat de totale populatiedichtheid over het hele veld op een laag 
niveau wordt gehouden, is de kans op lokale uitsterving van de onkruiden aan de rand van 
de cluster zeer groot terwijl de kans op lokale overleving in het midden van de cluster 
relatief hoog is. Daarom blijft een cluster onkruiden lang op dezelfde plek zonder zich uit 
te breiden. Deze uitleg leidt tot een exacte hypothese over het ruimtelijke patroon van 
onkruiden: als je op een willekeurig onkruid gaat staan neemt het aantal andere onkruiden 

1 1 7 

N dat je kan tellen in de directe omgeving binnen straal R toe volgens N = cR ' , waarbij 
c een willekeurige constante is. Met andere woorden, de verdeling is fractaal; of je het 
ruimtelijk patroon van onkruiden op een kleine schaal bekijkt of op een grote schaal, het 
patroon blijft in grote trekken gelijk. 

Het voorspelde patroon is vergeleken met een waargenomen ruimtelijk patroon van 
onkruiden in een veld wintertarwe. De onkruidsoort was hier kleefkruid (Galium aparine 
L.). De waargenomen verdeling liet zich goed beschrijven volgens de vergelijking 
N = cR . Het type van de relatie is dus goed voorspeld, maar de waarde van de exponent 
niet; de hypothese houdt in deze voorlopige test gedeeltelijk stand. Het is mogelijk dat ook 
andere factoren een rol hebben gespeeld in vorming van het waargenomen patroon. Als 
het aantal kleefkruidplanten in de voorgaande jaren is toegenomen, is het patroon mede 
bepaald door de verspreiding van zaden rond een moederplant. Er is een algemene relatie 
tussen de vorm van de zaadverspreidingscurve en het ruimtelijk patroon van populatie 
uitbreiding: als de staart van de zaadverspreidingcurve langzamer afneemt dan een 
exponentiele curve, breidt de populatie zich uit door vorming van nieuwe clusters, anders 
breidt de populatie zich uit door groei van een enkele cluster. Analyse van de 
waargenomen verspreiding van zaden van de soort duist (Alopecurus myosuroides Huds.) 
laat zien dat een dergelijke vorm van de zaadverspreidingscurve mogelijk is. 

Evaluatie van onkruidbeheersingsprogramma's 

Als onkruiden voorkomen in clusters is het mogelijk herbicidengebruik te reduceren door 
pleksgewijze beheersing toe te passen. Als een extreem geval van pleksgewijze beheersing 
kunnen we herbiciden toedienen op elke vierkante millimeter van het veld waar onkruid 
voorkomt, het behandelde oppervlak is dan ongeveer gelijk aan het bladoppervlak van 
onkruiden. Het bladoppervlak van onkruiden is meestal zeer klein vergeleken met de totale 
oppervlakte van een veld, en dus is de benodigde hoeveelheid herbiciden zeer klein 
vergeleken met de benodigde hoeveelheid herbiciden voor een behandeling van het gehele 
veld. De besparing in herbicidengebruik kan dus zeer groot zijn, maar met de huidige 
stand van technologie is het nog niet mogelijk op zo'n kleine schaal te werken. 

Voor een waargenomen ruimtelijke patroon van kleefkruidplanten in een veld 
wintertarwe werd de reductie in herbicidengebruik ten opzichte van een behandeling van 
het gehele veld geschat met behulp van de frequentieverdeling van afstanden tussen 
willekeurig gekozen punten en de dichtstbijzijnde onkruidplant. Het herbicidengebuik zou 
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kunnen worden teruggedrongen tot 41% vergeleken met behandeling van het gehele veld 
indien pleksgewijze bestrijding zou gebeuren op een schaal van 1 m. Indien pleksgewijze 
bestrijding zou gebeuren op een schaal van 0.5 m zou het herbicide gebruik verder 
teruggebracht kunnen worden tot 24% vergeleken met behandeling van het gehele veld. 

Bij optimum-dosering-beheersingsprogramma's gaat de dichtheid van de onkruid-
populatie naar een evenwicht bij een lage dichtheid. De fractie van het aantal planten dat 
verwijderd moet worden om de populatie op lage dichtheid te handhaven wordt de 
kritische fractie genoemd. Het herbicidengebruik over lange termijn wordt bepaald door 
deze kritische fractie en de herbicide-effectiviteit. 

Bij toepassing van drempel-beheersingsprogramma's schommelt de onkruidpopulatie 
dichtheid random de drempelwaarde volgens een onregelmatig, aperiodiek, patroon (de 
dynamica is quasi-periodiek of chaotisch). Het herbicidengebruik over lange termijn wordt 
bepaald door de fractie van het aantal jaren waarin bestreden moet worden,/ Dit hangt af 
van de relatieve toename van aantal zaden in de zaadbank zonder bestrijding, a, en met 
bestrijding, b, volgens de formule / = logo/(loga-logi). De exacte hoogte van de 
drempelwaarde heeft dus geen invloed op het herbicidengebruik over de lange termijn als 
deze formule opgaat. Voorspelling van onkruiddichtheden in toekomstige jaren is bij dit 
type beheersingsprogramma niet zo eenvoudig. Vaak is er een schattingsfout in de 
vermeerderingsfactor van onkruiden, en indien dit het geval is, neemt de fout in de 
voorspelling toe, evenredig met het aantal jaren dat vooruit voorspeld wordt. 

Conclusies 

Eenjarige onkruiden worden verwacht persistente clusters te vormen, zelfs in een 
omgeving waar alle andere omstandigheden homogeen zijn. Het herbicidengebruik van de 
geevalueerde onkruidbeheersingsprogramma's wordt bepaald door de reproductiefactor 
van onkruidplanten, herbicide-effectiviteit en ruimtelijke schaal van onkruidbeheersing. 
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