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1
In termen van kriging variantie is een regelmatig grid vrijwel nooit het optimale
bemonsteringsschema,

Ditprogfchmft

2
Het optimaal gebruiken van beschikbare voorinformatie zal in ruimtelijke bodem- en milieu-
inventarisaties steeds belangrijker worden. Een flexibel algoritme voor optimalisatie van
bemonstering zoals Spatial Simulated Annealing is hierbij onontbeerlijk.

Ditproctcbi

3
Bij een gegeven aantal observaties kan het nemen van monsters buiten de grenzen van het
onderzoeksgebied leiden tot een belangrijke verbetering van de interpolatie, in termen van
zowel kriging variantie als gekwadrateerde kriging fout.

Ditprogfschnift

4
Door de sterke focus op het ontwikkelen van geavanceerde interpolatie- en simulatie-
technieken is theorievorming over bemonstering in de geostatistiek jarenlang ten onrechre
verwaarloosd.

Ditprogficmfs

3.
Aangezien Indicator Kriging geen verdelingsfunctie, maar een voorspelde verdelingsfunctie
oplevert, kan de kriging variantie in dit algoritme niet worden genegeerd.

Dz progfschrift
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6.
Case studies in bodemkundige proefschriften zijn uitsluitend relevant als ze dienen voor het
testen of illustreren van het ontwikkelde gedachtegoed. Zij mogen nooit een doel op zich

worden.

7
Tedere wetenschap krijgt de wetenschappers die zij verdient.
vl Pardl Feyerabend, Againstmethod”

8
Zelfkennis is het begin van alle wijsheid; zelfoverschatting het begin van alle (verlangen naar}

macht,

2
Het is vreemd dat veel ecologische koffie- en thee- merken het Max Havelaar keurmerk niet
voeren, aangezien dit suggereert dat de mens de enige producriefactor is die niet duurzaam
aangewend hoelt te worden.

10
Cursussen time-management zijn zinloos, aangezien mensen die er tjd voor vrij kunnen
maken, het niet nodig hebben, en mensen die het nodig hebben, er geen tijd voor vri) kunnen
maken.

11.
Na zonneschijn komt regen.

12
Niets 1s zo ongeloofwaardig als een statisticus met vliegangst.




Voor Opa van Gromingen

*For nitrates are not the land, nor phosphates;
and the length of fiber in the cotton is not the land.
Carbor is not a man, nor salt rior water nor calcisin.
He is all these, but be is much move, much more,
and the land is so much move than its analysis”

John Steinbeck
“The Grapes of Wrath’
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Number of sampling points, X,,...,.X,, .
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Number of lag classes for experimental variogram.
Transition probability of S;to S, , during optimisation with
Spatial Simulated Annealing,
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Sampling scheme, consisting of sampling points %,,...,.X, .
Intermediate sampling scheme in the # step of optimisation
using Spatial Simulated Annealing.

Location vector of predicted point using (indicator) kriging.
Location vector of the # observation point.
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Chapter 1

General Introduction

“Fortytwol"yelled Loonguawl, Ts that all you've got to show for seven and a half million years'works”
T checked it very thovoughly’, said the computer, ‘and that quitedefinitely is the answer. I think the problem,
to bequite homest with you, is that-you ve never actually knowum what the question is.™

Douglas Adams
‘the Hitch Hikers” Guide to the Galaxy’

1.1. Spatial sampling or soil sampling?

This thesis is written by a soil scientist who specialised in geostatistics. Therefore,
all case studies and most examples are drawn from soil science. Yet, the title of this
thests is ‘Constrained Optimisation of Spatial Sampling’ instead of ... Sos/ Sampling’.
There are two reasons for this:

§  The thesis is only concerned with soil sampling for characterisation of spatial
distribution. Issues like optimising sampling of excavated soil for waste disposal,
the optimal number of samples for bulking, calculation of the mean phosphate
saturation, etc. fall outside its scope. Therefore, the spatial character of the study
was made explicit in the title.

#) Although the case studies in this thesis are exclusively drawn from soil science, the
developed techniques should be easy to modify for application in other scientific
fields. The central concept in geostatistics is the theory of Regionalized Variables
(ReV’s), and any scientific field dealing with such ReV’s could potentially benefit
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from these techniques. These fields include, among many others, remote sensing
(e.g Csillag et al., 1996), hydrology (e.g Hendricks-Franssen and Gomez-Hemandez,
1997), meteorology (e.g. Seo ez al., 199C) and even marine biology (e.g. Petitgas,
1993).

1.2. Motives for the study

The importance of sampling strategies in soil-related surveys stems from the
fundamental fact that our knowledge on soils in their natural state is at best incomplete,
at worst erratic. The data we have on soils is usually etther indirect (such as aerial
photography} or based upon destructive techniques (such as laboratory analysis). Maps
on soll properties in their natural state therefore have to be inferred using conceptual
models such as soil-landscape relationships, quantitative models such as provided by
geostatistics, or {preferably) a combination of both. They are never fully known. This
"frustrating feature of veality " (Isaaks and Srivastava, 1989: p.107) forces the geostatistician
to collect samples as a basis for spatial characterisation.

Yet, collecting samples has been relatively neglected in the geostatistical literature,
While exceedingly complex algorithms for interpolation and {more recently) stochastic
simulation have been developed, sampling strategies have not drawn much attention.
Most textbooks on geostatistics start with data analysis, taking the data collection for
granted, or at most dedicate a few lines to it. Deutsch and Journel (1998), while discussing
13 different types of kriging and 8 types of stochastic simulation, fail to give any
recommendations on the collection of data to feed these algorithms. Although
Goovaerts (1997a) makes some remarks on the (nested) sampling strategy used to
collect his main data set, he states that "In this book, one considers the situation where data
have already been collected, possibly with no statistical treatment in mind” (Goovaerts, 1997a:
p.75). Isaaks and Srivastava (1989) focus on how to correct for inadequate sampling
strategies, rather than how to avoid them. Webster and Oliver (1990) include a much
more detailed discussion on sampling strategies. Their main focus, however, is on
sampling strategies derived from classical sampling theory (sampling designs such as
systematic sampling, random sampling, ezc.). In classical sampling theory (as opposed
to geostatistics}, several well-established sampling designs are routinely applied (e.g.
Cochran, 1977; Thompson, 1992). More recently, optimisation strategies for such
sampling designs in a spatial context have been developed (De Gruijter and Ter Braak,
1990; Domburg et 4l., 1994).

The fact that few sampling strategies (apart from the well-known regular grids)
belong to the established tools of the geostatistician, does not mean that no significant
research on the subject has been done. Landmark papers were published on the optimal
grid spacing (McBratney and Webster, 1981), the type of regular grid (Yfantis et al.,
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1987), optimal estimation of the variogram (Webster and Oliver, 1992) and on
geostatistical us. classical sampling theory (De Gruijter and Ter Braak, 1990). However,
these results have not yet evolved into sampling strategies that can be routinely applied
in practice, as have many interpolation and simulation algorithms.

One of the reasons for this is the wide variety of optimisation criteria met in
ditferent soil-related surveys. Cressie remarks on sampling strategies that "at the very
basis of optimal statistical design is .. the choice of what is to be estimated or predicted, second the
choice of the estimator or predictor...” (Cressie, 1991: p.314). A few examples from the
literature can show how far optimisation criteria, either implicitly or explicitly stated,
can diverge in soil-related spatial studies:

) Ylanuis et al (1987) used the mean kriging variance as a discrimination criterion
between different types of regular grids.

i) Warrick and Myers (1987) used the point pair distribution of the sampling scheme
for estimation of the variogram as an optimisation criterion for a Monte-Carlo
optimisation.

ut) Stein et al. {1988b) calculated the mean (squared) prediction error to assess the use
of water table height as a covariable in cokriging of moisture deficit.

ry Webster and Oliver (1992) used the fluctuation of the experimental variogram
values as a means of selecting between different sampling schemes.

4  Brus (1994) aimed at minimal sampling variance of the mean Phosphate saturation
over the whole study area.

) Watson and Barnes (1995) defined several optimisation criteria, among them
optimisation of the chance of detecting the maximum value in the area of interest.

Before any optimisation of the sampling scheme can be tried, the optimisation
criterion should be explicitly stated. In fact, the formulation of an optimisation criterion
may contribute to the undersianding of the problem at hand. For example, in studies
aiming at optimal variogram characterisation, formulation of the optimisation criterion
may well be the most difficult part of the whole survey, as will be shown in this thesis.

A second reason for the lack of practical sampling strategies in geostatistics is that
in soil survey many other, non-pedological criteria and issues may play an important
role. Cressie observes on the problem of optimal sampling that "7he statistical problem is
part of a much bigger picture...” (Cressie, 1991: p.268). A good example in this context is
the practice of soil remediation in urban areas, where the soil surveyor has to deal with
such diverse scientific fields as ecology, toxicology, chemical technology and psychology
(Okx eral., 1996). As a further complication, sampling constraints such as buildings,
roads etc. can easily inclade 90% of the area. Apart from that, the surveyor should take
into account financial constraints and is always tied to environmental legislation, which
may not necessarily require the most reasonable course of action.
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Therefore, an optimisation method for spatial sampling should also be both flexible
and robust, and should be able to handle all types of errors, deviations and non-
scientific considerations that are usually met in practice, while still leaving room for the
decision-making processes that are related to many types of spatial soil studies. This
thesis presents such an optimisation method.

1.3. Purposes of this study

The main purpose of this thesis is the development of an all-purpose, flexible and
robust optimisation algorithm for sampling in geostatistical studies. This overall purpose
leads to several aims:

1) Formulation of a range of optimisation criteria that honour a wide variety of aims
in soil-related surveys.

i) Development of an optimisation algorithm for spatial sampling that is able to
handle these different optimisation criteria.

i) Incorporation of ancillary data such as co-related imagery, historic knowledge and
expert knowledge in the sampling strategy.

#) Comparison of the performances of the developed optimisation algorithms with
established sampling strategies.

4 Application of developed optimisation techniques in practical soil sampling studies.

1.4. Definitions and scope

This thesis deals exclusively with optimisation in a geostatistical context. The
variables that are considered are Regionalized Variables (ReV's), and the case studies
presented therefore focus on issues like characterisation of the auto-correlation structure
and optimal interpolation using different types of kriging, Tuse the term sampling scheme
for sampling strategies in a geostatistical context (i.e. a list of optimal sampling locations
for characterisation of the ReV). The term sampling design is used to refer to sampling
strategies based upon classical sampling theory, and indicates a method of drawing
sampling locations (¢.g. simple random s. stratified sampling) rather than actual sampling
locations.

Asthe purpose of this study was the development of an all-purpose optimisation
algorithm, examples and case studies were drawn from as wide a variety of applications
as possible. The studies in this thesis range from plot scale to geomorphological unit
scale, from precision agriculture to soil contamination, from tropical to temperate
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climates, and from univanate to multivariate analyses. Such a wide vanety of case studies
prohibits extensive discussion and interpretation of all results. Therefore, the case
studies should be seen as an illustration of the developed methodology rather than as
a purpose in itself. Most of the case studies in this thesis are part of a larger research-
or mapping effort, conducted by experienced soil scientists, and will therefore be
included in more extensive reports elsewhere.

1.5. Qutline of the thesis

This thesis is essentially a collection of papers and should be regarded as such.
Chapters 2 to 8 have been or will be published in international peer-reviewed journals.
Apart from the standardised layout and some minor editing for reasons of consistency
(mainly notation}, 2 combined references list and a list of symbols has been composed.
Although this thesis represents a coherent line of research, some inevitable gaps and
overlaps are therefore to be expected, especially in the introductions and conclusions
of the papers/chapters. However, in my opinion these drawbacks were considerably
outweighed by the advantage of having critical feedback from other scientists during
the peer-reviewing process.

Chapters 2 and 3 start with the outline of the main tools that I developed. These
are applied, adapted and extended in chapters 4 to 8.

In chapter 2 it is shown how probability maps produced using Indicator Kriging
can be used in a multi-stage sampling approach to focus sampling on areas with higher
risk of contamination. The method is applied in an environmental case study, and is
tested using stochastic simulation. Compared with conventional sampling schemes,
this method results in more efficient remediation maps with similar health risks.

Chapter 3 introduces Spatial Simulated Annealing (SSA) as a general optimisation
algorithm for spatial sampling schemes. It is shown how the Simulated Annealing
algorithm is adapted for spatial purposes, and how ancillary information can be
incorporated in the sampling strategy. The functionality of the algonthm is demonstrated
using two optimisation criteria from the literature.

Chapters 4, 5 and 6 deal with optimisation of sampling schemes for spatial
interpolation. In Chapter 4, minimisation of the mean kriging variance is added to the
optimisation criteria of SSA. It is shown how both kriging neighbourhood and
anisotropy influence optimal sampling schemes. The optimisation criterion is illustrated
in a case study on a river terrace in Thailand.

Chapter 5 further explores the possibilities of minimising the kriging variance
using SSA. Minimusation of the maxirnum knging variance is added as an optimisation
criterion, and the influence of variogram parameters on optimised sampling schemes
is investigated. It is shown that all variogram parameters influence the optimised
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sampling scheme, and that there is a considerable difference in this respect between
minimising the mean kriging variance and minimising the maximum kriging variance.

In Chapter 6, a new optimisation criterion is introduced that can assist in optimising
sa.rnp].mg schermes for multivariate contamination studies. Using a spatial weight function,
priorities in sampling can be set using historic information, expert ]udgemem or
preliminary observations. This technique is applied in a highly complex contamination
study in the Rotterdam harbour.

Chapter 7 deals with optimising sampling using the type of co-related imagery
that is often met in precision agriculture (PA) studies. Using a simple scoring technique,
yield maps are predicted. These maps assist in optimising sampling for finding soil-
yield relations.

Chapter 8 deals with the question of optimising sampling for variogram estimation.
A hybrid sampling scheme is introduced, combining the advantages of optimal coverage
of the area and short range observations. Finally, it is shown that accuracy of the
experimental variogram is usually of little vatue without considering the effects on
kriging accuracy.

Finally, chapter 9 summarises the main conclusions of the thesis, and gives some
recommendations for further research.

1.6. Software

Spatial Simulated Annealing (SSA) is presented in this thests as an optimisation
algorithm for spatial sampling. It is described in chapter 3, and further extended in
chapters 4 to 7. During the research I programmed the SSA optimisation algorithm as
the SANOS (Simulated ANnealing for Optimising Samphng) program. This program
(written in C+ +) can be downloaded in a prehrmnary version from http://www.itc.nl/
~groenig. Itincludes all optimisation criteria that are presented in this thesis. The site
also includes some example files and a brief user manual. In the future, updates on
both software and user manual will be made available at this site.
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Chapter 2

Using Probability Maps for Phased
Sampling!

Abstract

A phased sampling procedure is proposed 10 optimise environmental risk assessment. Subse-
quent sampling stages were used as quantitative pre-information. With this pre-information prob-
ability maps were made using indicator kriging to direct subsequent sampling, In this way, better
use of the remaining sampling stages was ensured. Phased sampling was applied to alead-pollu-
tion study in the Dutch city of Schoonhoven. Environmental risks were quantified by the prob-
ability of exceeding the intervention level. Using six conditional simulations of stochastic fields,
phased sampling schemes were compared to conventional sampling schemes in terms of type-I
and type-Il errors. The phased schemes had much lower type-L errors than the conventional
schemes, and comparable type-I errors. Moreover, the phased sampling schemes left a smaller
fraction of the not-remediated area polluted than the conventional ones did. They predicted
almost 70% of the area correctly, as compared 1o 55% by conventional schemes.

! Published as: Van Groenigen, | W, Stein, A. and Zuurbier, R. (1997). Optimisation of environmental sampling
using intevactive GIS. Soil Technology 10:83-97.
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2.1. Introduction

In many environmental studies, Geographical Information Systems (GIS’s) are
routinely applied. Questions about the reliability of GIS-generated data, error
propagation (Heuvelink ez 2l., 1989), the division of tasks between user and computer
(Okxeral., 1990), and their interaction (Stein et al., 1995) have been studied in the past.
Systems are being proposed or developed which perform increasingly complex tasks.
Intelligent GIS (Burrough, 1992}, knowledge based systems (Domburg, 1994), expert
systemns (Burrough, 1986), decision support systems (Armstrong and Densham, 1990),
and fuzzy Soil Information Systems (Kollias and Voliotis, 1991) are distinguished.

Sull, the reliability of the output of a GIS, such as maps, basically depends upon
the quality of the data. When considering soil data that has to be collected in the field,
data quality is determined in part by the sampling scheme: a poorly designed sampling,
scheme yields unreliable results (Corsten and Stein, 1994). In the past, attention was
focused on sampling schemes which minimise the uncertainty of maps (McBratney et
al., 1981). Also, qualitative and quantitative pre-information has been vsed to determine
an optimal sampling scheme for soil pollution {Van Tooren, 1993) and variograms
from previous comparable surveys have been used to optimise sampling schemes
(Domburg et al., 1994, McBratney et al., 1981).

Until now, phased sampling was barely investigated for geostatistical studies,
although adaptive sampling has been applied to estimate parameters of distributions
in non-geostatistical studies (e.g. Thompson, 1992). In this study, a data set 1s set up
using different sampling stages. This is done by using already analysed samples as pre-
information for subsequent sampling. Phased sampling is applied to an area polluted
with lead in the Dutch city of Schoonhoven. The aim was to provide a map showing
the probability that a critical intervention threshold was exceeded. Moreover, the quality
of the sampling scheme was compared with that of other schemes using condittonal
simulations (Cressie, 1991; Deutsch and Journel, 1992) to identify type-Iand type-Il
eITorS.

2.2. Materials and methods

2.2.1. Study area

The study area is located in the Dutch city of Schoonhoven. In this city, a possibly
severe lead-pollution was detected. Supposedly, most of this pollution was caused by a
single factory that has been under operation, producing lead-containing chemicals, for
over 200 years. The spatial distribution of the pollution was caused by a combination
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Table 2.1.Statistical parameters of the preliminary research and the thvee sampling stages for the two Lyyers
L, (0-0.2m)and L,(0-0.5m).

Statistics Pre-siage Stage 1 Stage 2 Stage 3

Ly L; L, L; L L,
No. of samples - 28 76 100 162 143 201 177
Mean mg kg’ 274 497 451 323 333 349 309
Stand. Dev. mg kg™ 312 692 780 414 483 481 320
Coeff. of var. - 114 1.39 1.73 1.28 1.45 1.37 1.03
Mex, mg kg’ 1300 4050 3000 2200 4250 4600 1950
Min. mgkg"‘ 17 24 7 o 1 10 11/
Perc. above z; % 17,4 19.7 9.0 13.6 15.0 13.8 14.7
Median mg_kg_" i77.5 65 195 303 {85 190 195

of atmospheric deposition from periodical cleaning of the factory, man-made deposition
from contaminated sewer sludge, horse dung used during the production process and
permanent background values. In the Netherlands, environmental standards are set 1o
classify areas according to their degree of pollution. In particular, if concentrations on
a single contaminant exceed the so-called intervention level, environmental measures
have to be taken. For lead, the intervention level is equal to 600 mg kg dry matter.

To identify the extension of the pollution above the intervention level a survey
was carried out. The aim was to delineate the extent of the pollution as precisely as
possible, because remediation is expensive and health risks are at stake. Hence the
samples have to be located as efficiently as possible. In addition to an estimate of the
pollution at each location, it Is important to know the accuracy of that estimation,
since decision making on remediation of the soil should be based on probabilities of
exceeding the intervention level. Typical probabilities to consider are 0.01 and €.05.
Maps showing these probabilities are obtained with mdicator kriging (Deutsch and
Journel, 1992).

Preliminary research in Schoonhoven was done in 1988. Several transects were
sampled in the surroundings of the factory. Analysis of these data indicated a lead
pollution with a peak near the factory and decreasing concentrations with increasing
distance from the factory (Table 2.1). As the total number of samples was only 28,
little information was available on the spatial disttibution of the poltution. But since
the highest measurement equalled 1300 mg kg?, and 17% of the measurements were
above the intervention level, a thorough survey was carried out in 1992. During this
survey, several depths were sampled at each sampling location, from which only two
depth classes had sufficient data to apply a geostatistical analysis:

i) layer1(L,), rangingto 0.2 m below the soil surface, including samples taken at C-
0.2 mand at 0.1-0.2 m below the soil surface.
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Design sampling | (Gan)statistical ""S‘p:lr
acheme : analysis Intarpofation

~ == - —— == ~ =V— -
I Selednew | I Selectareaswith | | Probebility map of |
1 sampling points  p———————4 morathans% pW———0—m——f exceeding 1
§ fendomly inarea | §  uncerainty 1 | Imervention level |

| | | T — | N |

Figure 2.1. Schematic overview of a normal sotlsurvey using geostatistics (non-dotted figures)and the
extensions when using phased sampling (dotzed figures)

i) layer2(L,), rangingto C.5 m below the soil surface, including samples taken at 0-
0.5m,0.1-0.5 mand 0.3-0.5 m.

Mixed samples were taken over different depth intervals, Data were stored in a
Geographical Information System (GIS).

2.2.2, Phased sampling

The aim of environmental sampling can be to collect data such that the area with
a low, fixed probability of being polluted with a contaminant above a threshold level is
determined as precisely as possible. In this way, risk-qualified remediation can be
executed. Commonly, sampling is conducted as follows (Figure 2.1): first, a sampling
scheme is designed, using knowledge derived from earlier surveys on the soil parameter,
geostatistics, historical information and organoleptic judgement. Next, data is collected
following this scheme. In the field, deviations from the sampling scheme are likely to
occur because of sampling constraints. For example, sampling below a house may be
prohibitive. After sampling, spatial analyses are carried out, e.g. using geostatistics. At
this stage, interactive data exploration as used in Haslett ez al., (1990) may be applied.
With trial and error and a good data presentation, insight is gained in the spatial
properties of the data. If necessary, measurements can be re-analysed, removed or
added after additional sampling. Also, the best method of spatial interpolation is chosen
interactively, using expert-judgement.

In this study, a phased sampling procedure is proposed. Data collected during
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sampling is used to direct further sampling. Let the total number of observationsto be
collected (n) be fixed. Then the following sequence takes place:

i) The sampling scheme chosen at first contains n,; observations, with n, <n. For
example, n, may be chosen equal to n; =+n. The sampling scheme can be of a
conventional type, e.g random or grid, possibly stratified.

u Collected data is stored and used to produce maps and probability maps. The data
is used as ¢f a full data set was collected.

@) Next, n,points (for example n, =1n,) are selected at locations that require
additional sampling, and a second sampling stage is carried out.

#y) The steps ¢i) and iii} are repeated until sufficient precision is obtained or the
maximum number of data is reached.

In this procedure, it is assumed that the spatial distribution of the pollution does
not change significantly during the sampling period. The procedure is shown in Figure
2.1 by the dotted figures and lines. If we consider A our 1-, 2- or 3-dimensional
sampling area, the aim of the study 1s to determine the sub-area F,(a} = A thathasa
probability higher than o of having concentrations of variable Z above the critical
intervention level, z; . To predict the locations with high pollution the areas with a
probability o > 0.05 of exceeding z, are selected. These areas are excluded from further
sampling. In this way geostatistical knowledge and field-knowledge which are useful to
design sampling schemes increased during sampling, whereas by means of one stage
procedures collected data are evaluated only afterwards.

2.2.3. Geostatistics

The aim of geostatistics is to analyse regionalized variables (ReV’s). Suppose that
the contaminant Z{X) can be considered an ReV, where % denotes the location in
Aand Z denotes the concentration of the contaminant. Usually, observations are
collected, denoted with z(%, ),...,z(X,, ). The spatial dependence is commonly expressed
in a variogram, defined as half the variance of pair differences of an ReV at two
locations, % and %+ b, as a function of the distance h between these two locations
(Webster and Oliver, 1990). The variogram may be used for a range of spatial
interpolation techniques {e.g. kriging). Kriging provides the best linear unbiased predictor
of a spatial variable at unvisited locations. When applied to a large number of closely
located grid nodes, it can be used to make maps which show the predicted spatial
distribution of the variable. In this study, several variables were interpolated. Lead
content itself, but also an indicator variable, equal to 0 if the intervention threshold
(600 mg kg') is exceeded and 1 when it is not.
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An interpolated indicator variable can be used to predict the conditional probability
that the intervention value is exceeded, given the observations. Therefore, it can be
used to create probability maps, which show the probabilities of exceeding a critical
value (Journel, 1983; Deutsch and Journel, 1992).

When setting up a spatial sampling scheme in a geostatistical study, the questions
to be decided upon are the number of observations, n, and the sampling locations
Ry,--0X, - In principle, global criteria may be defined, like the distribution of the
observations in such a way that a prescribed precision of an interpolated map is obtained.
This results normally in the optimal spacing of some regular grid. In this chapter we
propose a phased procedure. To compare the interactive schemmes with conventional
ones, use was made of conditional simulations. Special attention was given to extreme
spatial variability, and skewed distributions, commonly occuring in environmental
pollution. Therefore, sequential indicator simulation (SIS) was applied (Deutsch and
Journel, 1992; Bierkens and Burrough, 1993a/1993b). The SIS algorithm uses as input
adataset on Z(X), which is transformed using an indicator-function for several values
along the distribution curve, with for each value an indicator variogram. The following
sequence of events takes place:

3 Start with an existing data set and define a grid for mapping.

i) A previously unvisited node in the grid %, is drawn randomly.

i#)) A conditional distribution function {cdf) is estimated at %, with indicator kriging,

#) Fromthe cdf a realisation z(%,) is obtained by drawing a random number n'"
between O and 1, and finding the corresponding quantile of the conditional
distribution function.

9  zU(%;) isadded to the data set, and the procedure starts at a second unvisited
node, randomly drawn from the grid, until all nodes of the grid have been drawn.

As each node is =dded in a random order to the conditioning data, extensive
simulation will reproduce the imposed variogram (for proof, see Journel, 1989, pp. 34-
35). This results in a spatial variation which is much higher, and closer (but not similar)
to the real variation, than spatial variation obtained with kriging. Below, SIS will be
used to simulate environmental pollution.

2.3, Results

2.3.1. Actual sampling and probability maps

The survey was conducted in three stages. At the first stage an equilateral triangular
grid was applied with edges of 50 m, covering an area of about 600 x 800 m, surrounding
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the factory. After this first stage, two additional stages were performed, yielding a
three-stage sampling procedure. Table 2.1 summarises the statistical parameters of the
subsequent stages.

At stage one, relatively small data-sets were obtained for L, and L,, consisting
of 76 and 100 data, respectively. Compared to the preliminary stage, the means of
these data (497 mg kg' and 451 mg kg, respectively) are much higher, probably dueto
the closer distance to the source of pollution. Also, the maximum values of 4050 and
5000 mg kg are much higher than the preliminary measurements. The experimental
variogram as well as the indicator variograms, however, fitted poorly (Figure 2.2). This
was probably caused by a combination of three factors:

1) the guantity of the data set: 76 and 100 measurements are still small numbers to
deal with varying soil parameters.

i) the guality of the sampling scheme. Asthe used triangular grid had a spacing of 50
m, almost no information was available on spatial correlation at shorter distances.

iti) the vartabnlity of the ReV. The experimental variogram equalled a pure nugget effect.

The data set of stage two largely solved the first problem by adding previously
unanalysed samples, yielding now a total of 162 and 143 samples for L, and L,,
respectively. Also, several measurements were re-analysed, and some errors were
corrected. This resulted in a much better fit of the indicator variograms.

Because measurements at small distances were still lacking, a large nugget effect
remained, which made it difficult to use the probability maps as described above.
Sampling at the third stage focused on sampling at short distances. The sampling points
were randomly drawn at short distances from existing sampling points, close to the
centre of pollution. This yielded data sets, with 201 and 177 samplesfor L,and L,,
respectively. The variograms showed a much better fit and had smaller nugget-variances
(Figure 2.2).

Figure 2.3 shows the predicted pollution, and the probability of exceeding the
intervention level for L, , both calculated using indicator kriging. A major pollution
occurs in the surroundings of the factory, south west of the centre of the map. North
east of the factory, a small area with increased pollution is delineated, which could be
caused by atmospherical deposition, the predominant wind direction being south west.
Also, severe pollution is predicted in the north and the south direction of the area,
which, however, seem to be caused by boundary effects of the kriging procedure. The
map with the probabilities of exceeding the intervention level is relatively flat. The
remainder of the map shows only small changes in probabilities, apart from an area in
the east that is almost certainly not polluted.
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Figure 2.2: Experimental and fatted indicator vaviogram models for the median of the lead content (220 mg/
kg)for the data collected at the first stage, the third stage and for the furst simulated lead pollntion.

2.3.2. Stochastic simulation

To compare phased sampling with different other sampling schemes in a quantitative
way, use was made of stochastic simulations using SIS, conditioned on L, . The aim of
this study was to determine F, (C.05), which is defined as the area that has a probability
larger than 0.05 of exceeding the intervention level. All sampling schemes were tested
by comparing the polluted area obtained by simulation on their efficiency in estimating
the (simulated) pollution. Each scheme consisted of n = 300 observations, bur differed
in terms of the number sampling stages and the way in which the locations of the
samples were selected {Table 2.2).

1) Scheme one (S') consists of three stages, yielding n, =158 , n, =90 and n, =52
observations, respectively. At the first stage a square grid is applied with grid spacing
of 60 m, to which a few random points are added to improve estimation of the
nugget effect. At two succeeding stages random sampling within the selected area
1s applied.

i) Schemetwo (S°) consists of two stages, with n, = 215 and n, =85 observations,
respectively.
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Figure 2.3. Predicted lead contents in Schoonhaven (lefi) and probability of exceeding intervention level z for
layer 1 (right).

1) Scheme three ($°) is a one-stage sampling, using a 40 x 40 m square grid.
# Scheme four (§*) also is a one-stage sampling, with 300 points distributed randormly.

These four sampling schemes were applied to six different conditional stmulations.
Figures 2.4 to 2.7 show four of these simulations, each of these containing one of the
four sampling schemes. Similar pictures were obtained for the two other simnulations,
with every combination of sampling scheme and simulation covered. The indicator
variogram for the median is given in Figure 2.2. Maps with simulated pollution show
several hot-spots and almost no unpolluted areas. The simulated data has the same
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Figure 2.4. Simulated lead contents for simulation 1 {left)and predicted probability of exceeding intervention
levelz, with S' (right)

distribution as the Schoonhoven data-set (Table 2.1).

Three-staged phased sampling following §' is shown in Figure 2.4. Phased sampling
results in more detailed information of the areas with a higher pollution. Therefore,
the probability-map (Figure 2.4) predicts most of the areas with concentrations
exceeding 600 mg kg However, it also recognises areas which are only moderately
polluted. Two-staged sampling following §? shows a slightly less pronounced view
(Figure 2.5). The predictions are less extreme, more areas with concentrations exceeding
600 mg kg were detected and less moderately polluted areas were detected. The spacing
of §' avthe first stage is wider than that of §?, hence causing S! to overlook polluted
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Table 2.2.Overview of the sampling schemes used to survey the strulated polfution. Thenumber of sampling
stages variesfrom 1103, the type of sampling is either random or a squaregrid.

Scheme Number of stages Number of samples Sampling scheme
total ___per stage type spacing
s 3 300 158 square 60 m
20 random -
32 random -
§? 2 300 215 square 50m
&5 random -
8? ! 300 300 square 40m
s i 300 300 random -

areas of a very small size, and tending to over-estimate the pollution of moderately
polluted areas. The grid sampling following S’ picks up almost all of the polluted
areas, but areas which are not polluted are often included. This results in small areas
which can be declared unpolluted (Figure 2.6). The random sampling following §*,
misses several important polluted areas because random sampling tends to leave large
arcas unsampled (Figure 2.7).

The aim of the survey was to determine those areas which were polluted with a
probability of at least 0.05. T'o quantify the performances of the four schemnes, the
sizes of areas that were falsely or rightly classified as polluted or non-polluted were
calculated and described as type-1 and type-Il errors (Table 2.3). Of the non-polluted
areas, S, classifies the smallest area as having a probability of exceeding z; higher
than 0.05 (28.3%). S§' scores second-best (32.3%), while §* (42.3%) and S§* (44.2%)
perform much worse. This means that, although the errors are high, the type-Ierror
1s smallest for §2. If attention is focused on polluted but not remediated areas (type-
O error), the largest part of the polluted soil (12.3%) is remediated in the case of §°,
which therefore has the smallest type-Il error, closely followed by §? (12.2%), §'
(12.0%) and S* (11.4%).

In the practice of soil remediation, making a decision as to remediating the area is
often based upon a 0.95 certainty level of having removed all contaminated soil. This

Table2.3. Results of the four different sampling schemes used in estimaring the simulated polltion, and the
bealth visk, expressed as percentage of the not remediated area that is polluted.

Scheme Not polivted Polluted Health risk
Not remediated Remediated Remediated Not Remediated (%)
(%) (%5) (44 (%)

s! 52.9 323 12.0 2.8 50

s 56.9 38.3 12.2 2.6 4.4

s’ 42.9 42.3 /2.3 2.5 55

st 41.0 44.2 Ji4 34 7.7




18 OUTLINE OF MAJOR TOOLS

Simulation Prob. (Pb > 600)

Pb [mg/kg]

o Sampling points

0 780

Meters

0 300

Figure 2.5. Simulated lead contents for simulation 2 {lefi) and predicted probability of exceeding intervention
levelz, with'S? (right).

implies that an error 0f 0.05 is accepted. The last column in Table 2.3 shows how high
this error, which can be described as health risk, is for the different sampling schemes.
Both §' and §? are within this certainty level. §* does not reach the demand, because
it is very inefficient in remediating polluted soil: to remediate 0.1% more polluted soil
(as comparedto §7), around 10 % of unpolluted soil had to be remediated. In summary,
§? performed better than §° and §*, whereas §' failed to predict several small polluted
areas. The 60 meter grid spacing of the first stage of §! is probably too wide for this

purpose.
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Figure 2.6: Simulated lead contents for simulation 3 flefy) and predicted probabnlity of excoeding intervention
levelz, with'S* (right).

2.4. Discussion

Phased sampling, as applied in the Schoonhoven study, was conducted in three
stages, comprising nearly 20C data-points. The pollution showeda large spatial variation,
which made it difficult to make good predictions. To assess the benefits of staged

sampling for this case, successful use could be made of conditional simulation
procedures:
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Fgure 2.7. Simutlated lead contents for simulation 4 (lefi) and predicied probalnlity of exceeding intervention
levelz withS* fright).

7) to quantify the quality of the predictions in terms of type-I and type-Il errors
made by the sampling schemes and by using these simulated fields as references
when quantifying the quality of the predictions.

i) toshow that phased sampling schemes were superior to classical schemes, by
comparing different sampling schemes on the same conditional simulations.

Simulated pollution fields showed good results for phased sampling, in particular
for §2. A much larger unpolluted area is left unremediated, while the health risk defined
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as the fraction of polluted soil in the not remediated area does not exceed the 0.05-
limit. The two non-phased schemes (S and $*) delineate a much larger area as possibly
polluted.

Use of conditional simulations has some drawbacks. In this study the simulations
are made for grid-cells with a 10 m width and hence represent a continuous variable on
adiscrete grid. However, it is still a close approximation. Also, resampling on simulated
fields allows a perfect sampling grid. A grid applied in practice is often disturbed by
houses, roads, etc. Errors in location during sampling were not simulated. A statistical
problem connected with using phased sampling, is that it may lead o a biased data set,
as the samples will be more prevalent in areas with a higher pollution. In this study, use
was made of a declustering algorithm to correct for this effect. Declustering, however,
corrects only for univariate statistical properties, such as the cumulative distribution
function, and not for bivariate ones, such as the variogram (Deutsch and Journel,
1992).

An alternative would be to use only the variograms of stage 1. Because the data set
derived from the first stage of phased sampling is unbiased, the resulting variograms
are also unbiased. But use of variograms derived from a small number of data reduces
the accuracy severely.

Further research is needed to determine the selection of additional sampling points.
In this study only simple random sampling was applied for that purpose. Not much
research 1s being done on this problem of optimal allocation, although several methods
are being proposed (Cressie, 1991). As was shown in this study, phased sampling is
attractive and useful to select areas where a quantitative spatial variable exceeds a fixed
environmental threshold.
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Chapter 3

Spatial Simulated Annealing!

Abstract

In this chapter, Spatial Simulated Annealing {SSA) is presented as a method to optimise spatial
sampling schemes. Sampling schemes are optimised at the point-level, taking into account sam-
pling constraints and preliminary observations. The method is illustrated by two optimisation
criteria. The first optimises even spreading of the points over a region, whereas the second
optimises variogram estimation using a proposed criterion from the literature. For several ex-
amples it is shown that $SA is superior to conventional methods of designing sampling schemes.
Improvements up to 30% occur for the first criterion, and an almost complete solution is found
for the second criterion. SSA is especially useful in studies with many sampling constraints. It is
flexible in implementing additional, quantitative criteria.

' Publisher as: Van Groenigen, | W, and Stein, A. (1998). Constrained optimisation of spatial sampling using
continsous simulated annealing. Journal of Environmental Qualivy 27: 1078-1086.
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3.1. Introduction

Characterisation and remediation of polluted soils is a major environmental activity,
requiring large amounts of money and man-power. For example, in the Netherlands
alone, it was estimated that in urban regions 110,000 sites would have to be surveyed
and possibly remediated, at a cost of approximately 50 billion Dutch guilders {about
25 billion US$). This included almost every former industrial site (RIVM, 1991). Spatial
sampling is a crucial activity in such studies. The size and nature of the sampling
scheme is strongly influencing the costs of the survey and the reliability of its results
(Winkels and Stein, 1997). Therefore, a careful design of the sampling scheme can lead
to considerable savings of time and money. Spatial statistics can assist in optimising
such a sampling scheme.

This chapter will be focussed on pollutants that can be described as a Regionalized
Variable (ReV). More formally, consider a variable Z(%) depending upon the 1-, 2-, or
3-dimensional vector % in region A. This variable may denote the lead pollution ona
former factory ground, the Phosphate saturation along a transect, the thickness of a
contaminated layer, etc. For optimal sampling, we have to decide upon the number of
observations n and the locations of these observations x,...,x . . In this chapter we
will address the problem of defining a sampling scheme § ={x,,...,x, } > such thata
well-defined, quantutative criterion §(S) is optimised.

In all environmental surveys, the size of A is finite, z.e. it is delimited by boundaries.
Most often, historic information is available on previous use of the region, indicating
already useful delineations. In addition, previous observations may be available, say S',
as soil remediation is typically a process that involves several stages of surveying and
decision making. Hence §=8' US?, where only 8 has to be optimised. Both the
boundaries and the previous observations have to be considered for optimising a
sampling scheme in practical conditions.

This chapter describes a method that optimises spatial sampling schemes, taking
into account physical sampling constraints and delineations, as well as previous
measurements.

3.2. Optimising sampling using geostatistics

In the past, various ways of optimising spatial sampling have been proposed. Using
classical sampling theory, Thompson and Seber (1996) derived estimators for finite
populations that are distributed in space and proposed adaptive sampling strategies to
estimate scattered populations. They found that by taking into account scattering of
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populations, estimates of population size could be improved. De Grusjter and ter Braak
(1990) used classical sampling theory to estimate the spatial means of continuous
variables.

Geostatistics offers methods for interpolation and analysis of ReV’s Z(%}
(Matheron, 1973). Furthermore, its ability to provide risk-qualified predictors of
exceeding threshold values is an indispensable tool for environmental decision-making
(Cressie, 1991; Journel, 1983).

In the past, much geostatistical research has been dedicated to optimisation of the
sampling scheme for estimation of the variogram y(h), that characterises the spatial
correlation of a ReV. The vartogram can be calculated if the mathematical expectation
of the ReV exists and does not depend on the location %:

E{Z(X)}=m, VX (3.1)

(Journel and Huijbrechts, 1978). The variogram is defined as:
1 - -
HB)= LR(7()- 2% + ) 62

It describes spatial dependence as a function of separation vector h. The n collected
observations are denoted by z(%,),....z(X, ). We distinguish between a stochastic variable
that is denoted by capitals, and observations denoted by lower case characters. The
variogram can be estimated for any distance or direction class h by

#(h) = (E) Z{z(x) 2(x; + )Y, (3.3)

where n(h) is the number of pairs of points with a separation vector approximately
equalto h.

Optimising the sampling scheme for estimation of the variogram is not an easy
task. Every individual observation may conuribute to pair differences in different distance
classes. Russo (1984) and Warrick and Myers (1987) optimised for distribution of the
points pairs over the distance and direction classes. An ideal distribution was decided
upon « priori. Russo and Jury {1988) used simulations of ReV’s to evaluate this procedure.
They found that the procedure yielded better short range estimates of the variograms
than those obtained by systematic sampling. Using a similar evaluation procedure,
Corsten and Stein (1994) showed that nested sampling designs produced inaccurate
experimental variograms, as compared to random and systematic sampling designs.
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Brus and de Gruijter (1994) showed how classical sampling theory could provide the
error variance of the local or non-ergodic variogram. Webster and Oliver (1992) found
that at least 100 sampling points are needed for estimating the variogram, and 225 to
estimate it reliably. Yfantis et /. (1987) compared the performance of square, equilateral
triangular, and hexagonal grids. They found that the equilateral triangular grid yielded
the most reliable estimation of the variogram.

Given the variogram, kriging can be used for spatial interpolation, by means of
predicting the values at the nodes of a fine-meshed grid (Deutsch and Journel, 1992).
Although kriging provides the best linear unbiased predictor of the ReV at any unvisited
location, the sampling scheme is still of crucial importance. Ill-designed sampling
schemes can result in much higher costs of sampling {as more samples are necessary
to achieve the same precision), higher costs of required action (such as remediation)
because of imprecise predictions, and even unnecessary health risks in the case of
environmental pollution (Stein ez /., 1995).

McBratney et al. (1981) presented procedures for optimising the spacing of a
sampling grid for minimisation of the kriging variance, given an a priori variogram.
McBratney and Webster (1983) did the same for the co-kriging variance. Yfantis et al.
(1987) found that if the variogram had a relatively low nugget, equilateral triangular
grids yielded more reliable kriging predictions than either hexagonal or square grids.
When the nugget is relatively high and the sampling density is relatively scarce, they
found that the hexagonal grid yielded the lowest kriging variances. Christakos and Olea
(1992) refined these findings, and presented a case-specific methodology for choosing
between the different grid designs. Sacks and Schiller (1988) presented several annealing-
based algorithms for optimising a sampling scheme out of a small grid of possible
sampling locations. They distinguished between several optimisation criteria, among
which the minimisation of the mean kriging variance, and minimisation of the maximum
kriging variance. Watson and Barnes (1995) defined several optirnisation criteria for
infill sampling of an existing network, focussing on dealing with extremes. However,
they did not present a suitable optimisation algorithm to apply these criteria, and used
the criteria only in a very limited, simulated case study.

Van Groenigen et l. (1997) (Chapter 2) proposed an interactive sampling procedure
for characterising health risks in urban regions, Using probability maps of environmental
threshold values calculated using indicator kriging, additional sampling was focused on
areas with imprecise predictions.

In this chapter, a procedure is proposed to optimise sampling schemes for different
quantitative optimisation criteria, taking into account physical sampling barriers and
earlier measurements. Using this procedure, two optimisation criteria are evaluated,
representing different definitions of optimality.

"The Minimisation of the Mean of Shortest Distances (MMSD) criterion aims at
regular spreading of all sampling points over the sampling region. Regular spreading
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Figure 3.1. An optimased sampling scheme using a triangular grid (a) and using SSA with the MMSD

can be formulated as minimising the expectation of the distance between an arbitrarily
chosen point within the region, and its nearest sampling point. For sampling scheme
S , minimising this expectation leads to the following minimisation function:

min [ J& - V(%)) (3.4)

where % is atwo-dimensional location vector, and V() denotes the location vector
of the nearest sampling point X; €S. An equilateral triangular grid (Figure 3.1a)
optimises this criterion in theory (Flatman and Yfantis, 1984). In the practice of spatial
sampling many constraints to this are met. We will give an example from soil sampling
in an urban region (Figure 3.3), where several types of area-specific information are
encountered during sampling;

i) The area of the sampling region is finite. Therefore, there are boundary-effects
which will make almost any regular grid sub-optimal (Christakos and Olea, 1992),.

#) The sampling region can be composed of several sub-regions, different in size
and shape. Some of these sub-regions may be impossible to sample. Within these
regions which can not be sampled, we made a division into a research sub-region
and a non-research sub-region. For remediation studies, non-research sub-regions
may include ponds and regions that were remediated previously, whereas research
sub-regions may include houses, below which the extent of the contamination
should be predicted.

#5) Measurements from a preliminary study are available, and should be included in
the optimised sampling scheme.
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These features ensure that in practice a regular grid often is not an optimal solution
with respect to the MMSD-criterion, or can not be realised because of sampling
constraints.

The Warrick and Myers (WM} criterion optimises the fit of the realised distribution
of point pairs for the experimental variogram to an « priori defined, ideal distribution
{Warrick and Myers, 1987). For a sample size of n, the number of point pairs equals
+n(n - 1), The variogram is estimated for each distance and (possibly) direction class
using Equation (3.3). If the number of lag classes equals ne, the WM-cniterion evaluates
the following expression:

Da-(G &) +beoy) 65)

where a en b are user-defined weights, and &, denotes the number of point pairs in
the i* lag class, with optimal values of £; specifiedin ¢; . The second term denotes
the standard deviation o; of the point pairs from the median of class i. Warrick and
Myers minimised Equation (3.5) using a Monte Carlo algorithm that could also include
earlier sampling points. However, this algorithm was susceptible to local minima, and
could not handle complex sampling barriers (Warrick and Myers, 1987).

3.3. Simulated Annealing

Simulated annealing (SA) is a combinatorial optimisation algorithm, originating
from statistical physics. It was developed indepently by Kirkpatrick ez 4l. (1983) and
Cerny (1985). Other names for the same algorithm include Monte Carlo annealing,
probabilistic hill climbing, statistical cooling and stochastic relaxation (Aarts en Korst,
1989). In many studies, it has been applied successfully as a universal optimisation
method (e.g. Goldstein and Waterman, 1987). It is also widely applied in geostatistics
for simulation of ReV’s (Deutsch and Cockerman, 1994; Deutsch and Journel, 1992;
Goovaerts, 1996). Related algorithms have been applied to optimisation of spatial
sampling {Sacks and Schiller, 1988) and to the restoration of degraded images (Geman
and Geman, 1984). One of its properties is its insensitivity to local extremes.

A central concept in SA is the fitness function ¢(S) thar has to be optimised.
Suppose that we can define a combinatorial optimisation problem in which ¢(S) has
to be minimised. Starting with S, , let S, and §;,, represent two solutions with fitness
o(S;) and ¢(S,,,) , respectively. Typically, S, | is derived from the neighbourhood of
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S, by a random perturbation of one of the variables of S;. A probabilistic acceptance
criterion decides whether S, | is accepted or not. This probability B_(S; —»§;,,) of
S.,, being accepted can be described as:

P(S; = 5.)=1, if ¢(8:,,)<¢(S;)
S, >, -exp 380l i s, )0 a05) 64

where ¢ denotes a positive control parameter. The parameter ¢ is lowered according to
a cooling schedule as the process evolves, to find the global minimum. A transition
takes place if S; | is accepted. Next, a solution §;_, is derived from S,,,, and the
probability P.(S;,, — S;,,) is calculated with a similar acceptance criterion as Equation
3.6 (Aarts and Korst, 1989).

A mathematical description of the SA-algorithm is given by the theory of finite
Markov chains (Seneta, 1981). At each value of ¢, several transitions have to be made
before the annealing can proceed, and ¢ can take its next value (Aarts and Korst, 1989).

3.4. Spatial Simulated Annealing

Sacks and Schiller (1988} proposed several SA-related algorithms for optinusing
spatial sampling schemes using geostatistical criteria. Although this research was related
to the proposed method, some crucial differences will be covered in the description of
the algorithm below.

In order to modify simulated annealing for optimisation of spatial sampling, the
fitness function, a generation mechanism and the cooling scheme have to be decided
upon (Aarts en Korst, 1989). They are discussed below.

3.4.1. Fitness functions

Let the total research region be denoted by Ay and the sub-region that can be
sampled by Ay Ay ,thus excluding roads, houses ezc. Next, the MMSD criterion is
estimated by the fitness function ¢4, (S), which is an estimator of the function
formulated in Equation (3.4):

PrmasnlS) = nii”i[- - Vo(=L)], (3.7)

e §=
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with %l ¢ A, denoting the j** evaluation point. The n, evaluation points are located
on a finely meshed grid over the whole area. In order to yield a reliable value of
$rasn(S) » the number of evaluation points should be much higher than the number
of sampling points.

By choosing the evaluation points on a finely meshed grid over the whole region
A; , while locating the sampling points strictly in Ay, the algorithm spreads the sampling
points optimally over the whole region Ay , while taking physical sampling constraints
into account. This is an important difference with the method of Sacks and Schiller,
which could not handle such sampling constraints.

The WM-criterion solely depends upon the distances between sampling points.
Therefore, the fitness function can be directly calculated using Equation 3.5:

¢w=§[a-(c;’ -5i) +boo;] (3.8)

where aand b are user-defined weights that can be used to define the relative importance
of the two parts of the function (Warrick and Myers, 1987).

3.4.2. Generation mechanism

The aim of a generation mechanism is to generate a new solution S,, , out of the
solution S, ,, by means of a random perturbation in one of the variables of S, ;
(Davis, 1990). In SSA, this is done by moving one randomly chosen sampling point %,
over a vector h, with the direction of h drawn randomly, and "ﬁ taking a random
value between Oand h___. One of the modifications of SSA as compared to ordinary
SA and the method of Sacks and Schiller, is that b initially is equal to half the length
of the sampling region, and decreases with time. This increases the efficiency of the
demanding recalculations after each modification in the sampling scheme, because it
can be expected that with optimisation of sampling schemes, successful modifications
consist of increasingly smaller values of ulﬁl as the SSA process advances. This is
because the process deals with many simlar variables (i.e. the co-ordinates of the
sampling points). Therefore, moving sampling points randomly over large distances
will not contribute much to finding the minimum towards the end of the optimisation
process. Furthermore, contrary to earlier optimisation methods, co-ordinates of the
sampling points are treated as continuous variables, rather than chosen froma discrete
grid. This is in line with earlier studies, where SA was applied to continuous problems
(e.g. Bohachevsky ez 4l., 1986; Vanderbilt and Louie, 1984). At the final value of the
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Figure 3.2. A sampling scheme with two enclosements of adifferent nature, using a triangular grid (g)and
using SSA with the MMSD criterion (b)

control parameter, h___will be almost equal to zero.

3.4.3. Cooling schedule

For the cooling schedule, which expresses ¢ as a function of the progress of the
optimisation, we used a basic set of empirical rules which have been proposed in many
studies (e.g. Kirkpatrick ez 4/, 1983; Aarts and Korst, 1989), We start with an initial
value ¢, which hasan acceptance ratio of 0.95 or higher for alternative solutions. The
decrement of ¢ is given by

Ck+1 :C!,'Ck, k: 1,2,.-., (3-9)

with 0 < o0 < 1. The maximum period of time for one Markov chain k to remain
at any value of ¢ is fixed, and the final value of ¢ is explicitly given to the SSA algorithm.
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Fromthese data, o can be calculated. The acceptance criterion is similar to the one
given in Equation 3.6, substituting ¢, p, for ¢. Use of a variable ¢ which ensures
that inferior solutions are accepted with decreasing probability as the process evolves,
is the most important difference with the proposed algorithms by Sacks and Schiller
(1988).

The spatial character of the problem of designing sampling schemes made it logical
to use a geographical information system (GIS) (Burrough, 1993). We used the GRID
module of ARC/INFO to describe the sampling barriers. Calculations on Spatial
Simulated Annealing were done with the specially developed software package SANOS
(Simulated ANnealing for Optimisation of Sampling}, which will be made available in
the future in a decision support system for soil sampling (Domburg et 4l., 1997).

3.5. Examples

'The examples which we consider here were encountered during a recent study on
lead pollution in an urban region (Van Groenigen ez al., 1997) (Chapter 2). The optimised
sampling schemes using the MMSD-criterion will be compared to a traditional equilateral
triangular grid. The sampling schemes produced using the WM-criterion will be
compared to the optimised sampling schemes as presented by Warrick and Myers (1987).
Additionally, the WM-criterion was used to design a D-optimal sampling scheme for
fitting the experimental variogram (Rasch, 1990).

3.5.1. Examples of the MMSD-Criterion

Figure 3.1a shows an equilateral triangular grid of 23 points which in theory is
optimal with respect to the MMSD-criterion. The region is a square of 400 x 400 m
and the evaluation points were chosen on a 4 m gnid, yielding 10000 points. The ¢,5,45
of this scheme is 32.668 m. Figure 3.1b shows the solution using SSA, starting with a
random sampling scheme also consisting of 23 sampling points. This optirnised scheme
closely resembles the triangular equilateral grid, but with small deviations caused by
boundary constraints. The scheme is point symmetric. The §,4,¢, for this scheme is
31.870 m, which shortens the mean distance to sampling points by 2.4%, as compared
to the triangular grid.

The second example illustrates the effects of research- and a non-research sub-
regions that can not be sampled. Figures 3.2a and 3.2b show a research region A for
soil remediation. The upper sub-region (water) does not belong to Ag nor Ag, while
the Jower sub-region (a building) is part of A; but not of Ag. Figure 3.2ashowsa
sampling scheme based on an equilateral triangular grid, from which the points which
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Figure 3.3. Anurban sampling aveawith typical sarpling constraints and preliminary observations. The
sampling scheme is optimised using SSA with the MMSD criterion.

could not be sampled have been deleted, resulting in a symmetrical sampling scheme
of 17 points, and a ¢ g 0f 39.148 m. Figure 3.2b shows the solution using SSA,
also using 17 points. This scheme scores 35.500 m, which is an improvement of 8%.
From the figures it appears that the main advantage of SSA is that it recognises the
differences between the upper and lower sub-regions. In the lower sub-region (the
building) the points are located at the boundaries to cover it optimally given the sampling
constraints. In the upper part (the pond) the points are located at some distance from
the sub-region. This is because of the differentiation between the whole research region
Ay , and the part of the research area that can be sampled A, as explained above.
Here, the use of prior information has an effect both on the sampling scheme and on
the obtained optimum.

Figure 3.3 displays an urban region, where a complex set of prior information is
available, including buildings, already remediated factory grounds, ponds and previously
sampled points. For optimisation using SSA, the previously sampled points are included
as a fixed subset of the sampling scheme S. Figure 3.3 shows the sampling scheme
calculated with SSA, for 37 additional sampling points. This solution hasa ¢, 6 of
2.7305 m. A sampling scheme based upon an equilateral grid, also consisting of 37
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Table 3.1. Ewaluation of the fitness function for the sarmpling design obrtained with the SSA algorithm, as
compared to a tviangular grid

¢ Calculation
MMSD iinte S54 (x)
Cose n ne triqngulor grid 8§54
{ 23 20000 0.8167 0.8609 1260
2 17 : 20000 0.9787 0.8875 2040
3 37 20000 3.9018 2.7305 18000

additional points has a ¢,pp of 3.9018 m. This amounts to an improvement of
approximately 30% for SSA.

Use of SSA takes into account the previously sampled points, The sampling points
are often located close to the boundaries of regions belongingto A, butnotto Aq,
such as buildings and roads, whereas they maintain a larger distance from the regions
which belong to neither Ay nor Ag (water and already remediated former factory
grounds). Figure 3.4 shows the ¢pep 25 a function of k {(Equartion 3.9), during
optimisation of Figure 3.1b. There is a tendency towards a global mimimum, with local
minima being avoided. Table 3.1 summarises the performance of the SSA algorithm
for the MMSD-criterion, including calculation times with a Pentium 120 MHz PC. It
shows reasonable calculation times, although they increase with the complexity of the
problem.

3.5.2. Examples of the WM-Criterion

To test SSA for the WM-criterion, four cases from Warrick and Myers (1987) were
recalculated. The emphasis in that paper was on the formulation of the optimisation
criterion, not on the Monte Carlo algorithm, The use of SSA for these problems is
therefore a logical extension of this work. Additionally, a sampling scheme is optimised
for modelling of the experimental variogram, using the WM-criterion. All cases assume
2400 x 400 m field.

Case 4 considers 16 sampling points as pre-information, distributed according to
a rectangular grid. A set of 14 additional points has to be placed optimally according
1o the first term in Equation 3.8 (with a = 1 and b = 0). Ten distance classes were
distinguished of 20 m width each. A uniform distribution among these classes was
defined as optimal:

» 1, -(n, -1}

G == =435, Viel.ac (3.10)
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Figure 3.4. The optimisation process, § g sop, @S function of the nsumber of Markov chainsk.

The results of the optimisation are given in Figure 3.5a and in Table 3.2. Although a
completely uniform solution is impossible because of the predefined grid, we observe
a considerable improvement compared to the Monte Carlo algonthm, as the minimum
number of point pairs in a class rises from 17 to 29 (Table 3.2).

The fifth case involves 50 sampling locations of which the distribution was
optimised according the first term in Equation 3.8 (witha = 1and b = 0). Again, a
uniform distribution was defined as optimal:

=D o83 viel..ne (3.11)
Z2-nc

with results given in Figure 3.5b and Table 3.3. This is an almost optimal solution, as

all classes consist of either 40 or 41 point pairs, and only one pair of points falls

outside the lag range.

The sixth case, consisting of 30 sampling locations, considers optimisation
according to the second term in Equation 3.8 (with a = 0 and b = 1). This term
denotes the mean deviation of the point pairs from the class median. The classes are
the same as in the fourth case. An additional constraint was added to ensure that each
class would contain at least 25 point pairs (Figure 3.5c and Table 3.2). The mean deviation
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Table 3.2. Distribution of point pairs over the lag dlasses fase 4)and mean deviation from the median of
thedistance class (case 6).

Distance case 4 case 6
class ()}

Monie Carlo  §54 Monte Carlo  S5A
0-20 17 30 25 37
20 - 49 18 30 29 28
40 - 60 7 30 30 54
640 - 80 19 29 46 35
80 - 100 32 32 51 26
100- 129 3! 29 25 52
120 - 140 31 29 28 50
140 -160 46 35 28 68
160 - 180 23 37 25 40
180 - 200 26 42 25 25
> 200 i55 12 123 g
m - - 39 2.3

avg

from the median of the distance classes reduced 1o 2.35 m, which s a considerable
improvement compared to the 3.9 m obtained originally (Warrick and Myers, 1987). Ik
is Interesting to notice that the optimised scheme is not sauisfactory in this case; although
the mean deviation is very low, several sampling points are placed at the same location.
This means that the class 0 - 20 m has a very high standard deviation {due to the many
distances of 0), in order to optimise the overall performance of the sampling scheme.
This second part of the WM-criterion is therefore in its present form not very useful
for optimising spatial sampling schemes.

In the seventh case, 3C sampling locations were optimally located according to the
same distance classes as in the fourth case, as well as to two direction classes equal 1o
0" £45° ,and 90° + 45", respectively. A uniform distribution was defined as optimal:

o 575 vied,.ne (3.12)

Figure 3.5d and Table 3.4 show that the solution is optimal because no point pairs
fall cutside the class-range, and all combinations of distance and direction classes
contain either 21 or 22 point pairs. This is a considerable improvement compared to




SPATIAL SMULATED ANNEALING 37

Table 3.3. Distribution of poini pairs over the distance classes genevated by the SSA algorithm, compared to
the Monte Carlo method.

Case 5
Class (m) Monte Carle  SSA Class (m) Monte Carlo  SSA
0-15 33 47 240- 255 35 40
15-30 36 41 255-270 36 41
30-45 17 47 270 - 285 41 40
45- 60 37 41 285 - 300 42 40
60-75 40 41 300-315 37 40
75-90 43 41 315-330 39 41
90- 105 43 41 330 - 345 44 41
105-120 45 41 345 - 360 45 4]
120-135 41 41 360-375 44 41
135 - 150 41 41 375-390 42 41
150- 7165 37 41 390 - 405 36 4
165 - 180 37 47 405 - 420 41 41
180 - 195 35 41 420- 435 41 41
195 - 210 39 41 435 - 4350 40 41
210-225 46 41
225 - 240 47 40 > 430 75 0

the earlier solutions with 2 minimum and maximum of 8 and 28, respectively.

Finally, the WM-criterion was used to optimise a sampling scheme for modelling
of the experimental variogram, This was done using the D-optimality criterion for
fiing of non-linear functions (Rasch, 1990). The use of D-optimality for designing
sampling networks has been proposed in the past (Zimmerman and Homer, 1991). To
optimise fitting of an exponential variogram model

y(h) = ¢4 + c(1-exp(- 1Y), (3.13)

where ¢, denotes the nugget, ¢, + ¢ the sill, and 3r the effective range, estimators of
the variogram at three distance lags v(h,), y(h,) and y(h,) are needed, with
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and

h, -exp(~h,/r)-h; -exp(~h,/r)

h, =
pErE exp(-h,/r)—exp(~h, /1) (3.14)
The point pairs should be equally distributed over the 3 lag classes:
- n-(n-1)
§=C=6= —6 o (3.15)

If we assume that for a particular ReV an exponential variogram model holds with
3r = 200 m, then Equation 3.14 requires that b, should be equal 84 m. This requirement
leads to a scheme with three sharply delineated clusters, almost exactly reproducing the
required point pair distribution. Table 3.5 shows the results for a sample region with n
= 50. The scheme is extremely clustered, raising considerable doubts on its practical
use.

3.6. Discussion and conclusions

In this chapter, we presented the Spatial Simulated Annealing (SSA) procedure to
optimise spatial sampling schemes. We found that SSA provides a robust algorithm,
being insensitive to local minima. It can easily be adapted to sampling constraints met
in practice. SSA translates various optimisation criteria into actual optimal sampling
schemes. Therefore its application yields better sampling schemes and more insight
into the implications of the choice of any quantitative optimisation criterion. In the
tuture, other optirnisation criteria will be added to SSA. In particular minimisation of
the kriging variance, as presented in Sacks and Schiller (1988), may prove a valuable
tool in environmental studies, where accuracy of predictions is a crucial issue. So far,
the number of sampling points was kept fixed, and no cost models of the sampling
schemes were considered. This may not always be a realistic assumption. In the future,
we aim at integration with existing cost models as in Domburg et a/, (1997) .

We showed that SSA is superior to current methods of designing spatial sampling
schemes for two different criteria. For the MMSD-criterion, which aims at even
spreading of the observations over the region, SSA is most beneficial when prior
spatial information is available. This may apply to a wide range of soil pollution studies
in urban regions, where typically many sampling constraints are met. In such cases,
SSA can enhance efficiency up to 30%. In the more theoretical examples (Figures 3.1
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Table 3.4. Distribution of point patrs over the distance and divection classes generated by the SSA Algo-
nithm, compared to the Monte Carlo Method

Case 7
class (m) Monte Carlo §SA  class (m) Monte Carlo 854
H 0-20 12 22 v, 100 - 120 22 22
v, 0-20 8 22 H 120 - 140 20 22
H 20 -40 22 2/ v, 120-140 20 21
V,20-40 20 22 H. 140 - 160 26 22
1, 40 - 60 18 22 v, 140 - 160 28 22
¥, 40 -60 24 21 H, 160~ 180 27 22
H, 60 - 80 23 22 V, 160 - 180 27 21
¥, 60- 80 27 22 H, 180- 200 17 22
H, 80-100 22 22 ¥, 180-200 20 22
v, 80-190 22 21
H, 100-120 25 22 > 200 5 4

and 3.2) the relative improvement due to SSA is probably not enough to justify use, as
site location is generally more difficult than when a regular grid is used.

For the WM-criterion, which aims at optimal estimation of the variogram, SSA
was always superior to currently available Monte-Carlo optimisation, and solves one
well-defined case almost completely. Use of SSA for designing sampling schemes can
therefore improve variogram estimation. Further, we found that the second term of
the WM-criterion is not satisfactory, as it yields degenerate sampling schemes with
several sampling points at the same locations.

It was shown how the WM-criterion could be used for designing a D-optimal
sampling scheme, yielding however a strongly clustered scheme. The question remains
whether such a scheme is desirable, as it only gives information on a very small part of
the research region and prior information on the variogram must be available. Also,
the high number of point pairs may be misleading. If used for kriging purposes, a
declustering algorithm should be applied (Deutsch and Journel, 1992). The WM criterion
should only be used in cases where some additional sampling points can be added to
an existing sampling scheme in order to improve variogram estimation, An example of
such a case is provided in Figure 3.5a.
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Chapter 4

Minimising Kriging Variance:
Methodology!

Abstract

This chapter introduces minimisation of the mean kriging variance as a new opimisation crite-
rion in Spatial Simulated Annealing (SSA). Sampling schemes are optimised at the point level.
Boundaries and previous observations can be taken into account. We applied it to texture and
Phosphate content on a river terrace in Thailand. First, sampling was conducted for estimation
of the variogram using ordinary SSA. The variograms thus obtained were used in extended SSA,
yielding a reduction of the mean kriging variance of the sand percentage from 28.2 10 23.7 (%)*.
The variograms were used subsequently in a geomorphologically similar area. Optimised sam-
pling schemes for antsotropic variables differed considerably from those for isotropic ones. The
schemes were especially efficient in reducing high values of the kriging variance near boundartes
of the area. )

! Published zs: Van Groenigen, J.W., Siderius, W. and Stein, A. (1999). Constrained optirnisation of soil sampling
Jor minimisation of the kriging variance. Geoderma 87: 239259,



42 OPTIMISING $PATIAL INTERPOLATION

4,1. Introduction

In the practice of spatial (soil) sampling, the samplmg scheme is a major factor
influencing the efficiency and costs of a survey. In optimising sampling schemes,
(geojstatistical theory plays an important role. A sampling scheme might be optimised
. for interpolation of a Regionalised Variable (ReV) using various criteria. One of the
most important geostatistical interpolators is the ordinary kriging algorithm. In this
chapter a method will be presented for designing sampling schemes with minimal kriging
variance. A regular grid is usually recommended to achieve this aim {e g Christakosand
Olea, 1992; Yfantis et al., 1987). However, such a grid does not account for all prior
information on the ReV and the research area which might be used for optimising the
sampling procedure. This prior information can be classified as follows:

i) Qualitative maps. These can be used as a basis for stratification. Stein et /. (1988b),
Heuvelink and Bierkens (1992) and Boucneau et 4/. (1998) used information provided
by soil maps to improve the kriging predictor. Brus (1994) used soil maps for
estimation of the mean phosphate characteristics by classical sampling theory.

#) Quantitative maps. These can be either maps of the ReV in question, or a co-related
ReV. Stein et 4l. (1988a) used cokriging for estimation of the moisture deficit, with
the mean highest groundwater level as covariable. More recently, Csillag ez /. (1996)
used a co-related remotesensing image as a basis for stratification of the sampling
scheme. Van Groenigen et /. (1997) (Chapter 2) used probability maps of the ReV
exceeding a threshold-value to direct subsequent sampling to uncertain areas.

) Earlier point observations. Domburg et al. (1997) proposed a method for optimising
sampling using classical sampling theory. They found that a variogram calculated
irom earlier point observations could be used as information for optimising the
sampling scheme. McBratney et al. (1981) used variograms that can be derived
from previous data to calculate optimal sampling density, given a certain required
accuracy. More recently, Odeh et a/. (1990) combined this technique with a fuzzy k-
means analysis. They used digital gradient segmentation of the fuzzy membership
values to vary sampling density within the research area. Van Groenigen and Stein
(1998) (Chapter 3) proposed an optimisation method that could handle earlier
data points in the optimisation process.

ny Sampling barriers. In almost all soil survey studies, sampling barriers are met. In soil
surveys on a regional level, these can be inaccessible parts of areas with a poor
infrastructure. On a different scale, in soil pollution studies these can be buildings
which cannot be sampled. Van Groenigen and Stein (1998) (Chapter 3) proposed
the SSA method for constraining an optimised sampling scheme to these barriers.

In this chapter, SSA is extended to deal with minimisation of the kriging variance
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of a ReV. This extension includes use of previous samples to direct additional sampling
for minimal kriging variance.

The proposed method is applied in a case study on a river terrace in Thailand. The
aim of the case study was firstly 1o investigate efficiently the spatial variability in the
region. Secondly, experimental variograms were used as  prior: variograms in an area
which was geomorphologically similar to the first area.

4.2, Materials and methods

4.2.1. Spatial Simulated Annealing

Spatial Simulated Annealing (SSA) is a continuous version of the discrete Simulated
Annealing (SA} optimisation method (e.g. Aarts and Korst, 1989). The insensitivity of
the algorithm 1o local extremes makes it very suitable for constrained optimisation of
spatial sampling schemes in the presence of complex pre-information. Below, a concise
description of SSA is given. For a more extensive introduction and discussion of the
method, see Van Groenigen and Stein (1998) (Chapter 3).

Consider the collection of possible sampling schemes consisting of n observations,
S", with a so called fitness function ¢(-):8" — R* to be minimised. Optimisation
starts with a random scheme S, eS". It then involves a sequence of random
perturbations S, of S;that havea probability P, (S; — S, ,,) of being accepted. This
transition probability is defined in the Metropolis criterion:

P.(S; > S.)=1 if §(8.,)<¢(S)
R(S: > 8,) =enp SLud) ip s, ) (1)

where ¢ denotes the positive control parameter, which decreases as optimisation
progresses. If S, is accepted, it serves as a starting point for a next scheme §;, ,and
the process continues in a similar way (Aarts and Korst, 1989). In SSA, random
perturbations of the sampling scheme §; consist of transformations of randomly drawn
observations over a vector with random length and a random direction. We use a
vector 8! of n elements. At each step an element of this vector is drawn at random,
and is assigned a random value. All other values are equal to 0. This vector has the
property that Si“l — 0 when i — . SSA can include earlier observations into the
optimisation by treating them as an integral but fixed part of the sampling scheme, i.e.
with corresponding 87 values set equal to 0, for all i. Boundaries of the region and

inaccessible subregions can be taken froma GIS file.
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So far, two optimisation criteria have been translated into a fitness function and
applied in SSA (Van Groenigen and Stein, 1998) (Chapter 3):

i MMSD-criterion: this criterion aims at even spreading of the observations over the
entire research area by minimising the distance between an arbitrarily chosen point
and its nearest observation (van Groenigen and Stein, 1998) (Chapter 3).

i) WlM-criterion: this criterion, which is taken from the literature, optimises the fit of
the realised distribution of point pairs for the experimental variogram to a pre-
defined, ideal distribution (Warrick and Myers, 1987; Russo, 1984; Russo and Jury,
1988). The desired distribution can be based upon expert judgement, allowing the
user to give special attention to certain aspects of the variogram (e.g. short distance
observations for estimation of the nugget). The minimisation function is a simple
sum of squares of the deviation between the desired distribution &~ and the realised
distribution &° :

nc

(IJWM(S) =Z(€: *Cf)z (4-2)
in1
where nc denotes the number of lag classes, and ¢ is the number of realised point
pairs in lag class i (Warrick and Myers, 1987).

4.2.2. Fitness function for minimising kriging variance

Ordinary kriging is a widely used method for spatial interpolation. For this study it
is relevant that the ordinary kriging predictor for an arbitrary point X, tsalinear
combination of the measured ReV 2(%;) in a neighbourhood of n locations, with
weights X;:

Bt = (%) “3)

These weights are calculated using the variogram assuming a constant expectation,
ie. E{Z(%)}=m. The variance of the ordinary kriging predictor, 65, (%, !S;),
depends only on the sampling scheme S, , consisting of observation points %, , the
variogram and the kriging neighbourhood (Cressie, 1991). In the past, this has been
used to calculate the optimal grid spacing, given a prescribed accuracy (McBratney et
al., 1981; McBratney and Webster, 1981). Sacks and Schiller (1988) used SA-related
algorithms to optimise sampling schemes on a small grid of possible sampling locations.
However, these optimisation procedures could not deal with previous measurements
and sampling barriers. The SSA method presented here allows for designing an optirmal
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sampling scheme with minimal kriging variance as a criterion. We defined minimisation
of the integral of the kriging-variance over the study area as the aim:

msin LoimAN_OK(io |S;)- dx,. (4.4)

In most studies the kriging predictions are calculated on the nodes of a raster.
Hence, SSA discretises the area for evaluation of Equation 4.4. The fitness function
can then be defined as the mean of kriging variances calculated at the nodes of a fine
raster:

OuvEaN ok(Si) = Z Cok(Xe,;[S J

e,l

(4.5)

with X, ; denoting the j* raster node, and n_ the number of evaluated raster nodes.
This optimisation criterion has also been used elsewhere (Sacks and Schiller, 1988;
Christakos and Olea, 1992),

4.2.3. The optimisation procedure
The subsequent steps of the optimisation algorithm can be described as follows:

1 avariogram y(h) for the ReV is estimated using previous observations or inference
from previous studies.

#) asampling scheme S, cS"is defined, consisting of a subscheme Sg cS% witha
set of n; earlier, fixed observations, and a randomly drawn subscheme S; e §" that
consists of the n, observations to be optimised.

it7) the area is discretised, and the raster is defined with n, raster nodes.

) kriging variances for all raster nodes are calculated, and the mean kriging variance
Gyean ox(Se) is calculated using Equation 4.5.

9 S, istransformed alonga vector 87, yielding sampling scheme S, and the new

mean kriging variance ¢ypan ox(S;) is calculated. Notice that all elements of

32 are 0 for n=1,...;1, and only one element of &7 for n=n; +1,.. g+,

has & value other than 0. The direction of this transformation vector is drawn

randomly, and the length is drawn randomly within the interval (0,h ] If
transformation over 3 results in one of the sampling points falling outside the
area, an alternative vector S;‘ is drawn, until an acceptable vector is obtained.

S, 1s accepted as a basis for further optimisation depending on the Metropolis

criterion {Equation 4.1).

v the process proceeds at point v, with S, replacing §; if it was accepted. The
process ends if during a prespecitied time no new sampling schemes have been

&
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Figure 4.1. Optirnised sampling schemes and the x-range of sampling locations for a kriging neighbourhood
of 1(a), 6 (band 12(c), with a linear variogram without nugget.

accepted.

During optimisation, a record of kriging neighbourhoods of all the raster points
is kept. The kriging variance at a raster point is recalculated only if the translated
sampling point was or will be in the kriging neighbourhood. This saves valuable
calculation time.

Optimisation of the total sampling scheme S, consisting of a fixed part S anda
variable part S} , with

<n —S?i 0
K =[S?v)=(3;‘vJ o

ensures incorporation of the earlier observations in the optimised sampling scheme.
The ¢ value of the Metropolis criterion (Equation 4.1) is lowered as optimisation
continues. This is done using an Equation suggested by Aarts en Korst (1989):

ck+l =Q- Ck, k = 1,2,..., (4.7)

where o is a user-chosen parameter with 0 < o < 1, typically chosen to be close to 1
(e.g 0.999), and k the number of optimisation steps that have been performed. The
period selected for each optimisation step k can be specified by the user.

The length of the random transformation vector 8 is drawn randomly between
Oand h_ Initially, h__is chosen half of the area size, and is lowered using a similar
equation as the ¢ variable (Equation 4.7) (Van Groenigen and Stein, 1998) (Chapter 3).
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Figure 4.2. Optimised sampling schemes for anisotropy ratio 1.0(a), 0.5 (bland 0. é5 (), with a linear
RO WIPOUE TIHZEEL.

4.2.4. Examples

Figure 4.1 presents examples of optimised sampling schemes, showing the effect
of the kriging neighbourhood. A simple square area was chosen, with a small sampling
schemne of 23 sampling points. Figure 4.1a shows the optimised sampling scheme for
a kriging neighbourhood of 1 and a linear variogram without a nugget (which is similar
to the nearest neighbour method). Figures 4.1b and 4. 1c show the optimised sampling
schemes for a kriging neighbourhood of 6 and 12, respectively. Although the point
configurations of Figures 4.1a, b, and c are the same, the points are located closer to
the boundaries when the kriging neighbourhood increases. A kriging neighbourhood
of 1 (Figure 4.1a) results in minimum and maximum x-co-ordinates of 39.8 and 360.1,
respectively, while a kriging neighbourhood of 12 has a range 0 29.9 t0 369.6. The
small differences between the kriging neighbourhood of 6 and 12 indicate that the
kriging neighbourhood in larger optimisations can be kept quite low, if calculation
times are expected to give problems.

Figure 4.2 shows the effect of anisotropy on optimised sampling schemes. Figure
4.2a shows the optimised sampling scheme for an isotropic linear variogram with no
nugget. Figures 4.2b and ¢ show the optimised sampling schemes for anisotropy ratics
of 0.5 and 0.25, respectively. It is clear from these figures that anisotropy has a
considerable influence on the optimised sampling schemes. Table 4.1 compares the
performance of the optimised sampling schemes of Figure 4.2 with a traditional,
triangular equilateral grid. Although the optimised sampling scheme performs slightly
better with the isotropic variogram (Figure 4.2a), it is clear that most benefit is gained
if the anisotropy is more pronounced. The optimised sampling scheme with anisotropy
ratio of 0.25 (Figure 4.2c) hasa §ppan ok of 81.83 [unitF, while the equilateral triangular
grid hasa §ypan oxof 117.45 [unit]’,
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Table 4.1. Mean kriging vartances for oprimised sampling schemes of fignre 2 compared to and equilateral
triangslar grid for different anisotropy vatios. 0 is 23 observations.

Figure Anis. ratio ¢'MEAN70K ¢MEAN7 OK
optimised scheme triangular grid
4.2a 19 39.99 40.62
4.2b 05 36.92 63.16
42¢c 0.23 &8 83 11745
4.3. Case study

4.3.1. Description of the study area

The study area is located in the alluvial plain of the Ping river in northern Thailand,
about 60 km north of the city of Chiang Mai. The climate is subhumid, with a rainy
season in the period June - October. A high river terrace and some surroundings were
chosen for intensive sampling. Figure 4.3 shows a photo interpretation of the terrace
and its immediate surroundings. The study area is clearly delineated to the west by the
levee, and to the east by the irrigation channel. The size of the area is approximately 1
kmx3km.

Table 4.2 relates the photo interpretation to drainage class. The river sediments are
coarsest and best drained on the levee in the western part of the area. They become
finer in the overflow mantle (coarse-fine loamy), via the overflow basin I {fine loamy)
and overflow basin II (fine loamy - clayey) to the decantation basin {clayey). To the
east, the decantation basin is delineated by the footslope of the neighbouring hills,
which consists of coarser material. Furthermore, in the northern part of the area, an
old stream channel is visible.

The area shows a clear anisotropy; the variability in landforms is highest in the
direction perpendicular to the river. This is in line with what could be expected from
geomorphological theory.

The main soil type in the area is classified as Ustic Epiaquert (Soil Survey Staff,
1996) or Eutric Vertisol (FAQ, 1994). Most areas on the footslope lack the diagnostic
features for Vertisol classification. These soils are classified as Vertic Epiaqualfs (Soil
Survey Staff, 1996). Table 4.3 shows some features of a typical Ustic Epiaquert mini-
profile in the area. Notable are the heavy texture and the slickensides, which are diagnostic
features for Vertisols.
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Table 4.2. Symbols of the photo interpretation of the landforms within the research avea.

Landscape Relief Parent Material Landform Drainage
Hilland (H) Foothills (H!)  Metamorphic (Hl!) Footslope (HI11) well drained
Alluvial High Terrace  Fine loamy Levee (PI11) " "TTT T welldrained
Plain (Fi) fo clayey . Overflow Mandle (Pi12) _ mod. well drained
(P) sediments _Overflow Basin (P113.1) ___imperfectly drained
#41l) _ Overflow Basin (P113.2) ___poorly drained
Decantation Basin very poorly drained
AP .l
Old stream channel poorly drained
(PI15)
4.3.2. Sampling

Due to financial constraints, the total number of samples was restricted to 60.
Each sample was analysed for texture, P-Olsen, N-Kjel., cations, pH and CEC (Hesse,
1971). Samples were taken only from the upper 0.2 m, because of partial flooding of
the area for paddy rice.

Because of the limited number of samples, a careful trade-off had 1o be made
between two, partly conilicting, demands:

1))  Coverage of the area is necessary, in order to capture the main features of the spatial
distribution.

i) Precision of the experimental variogram partly depends on the number of point pairs
per lag class. Typically, a sampling scheme that covers the area evenly has very few
1o zero point pairs at short distances, thus yielding a poor experimental variogram
for those distances.

Because of these conflicting interests, a combination of two criteria was used with
SSA. The scheme was designed in two steps:

Table4.3. Some diagnostic featssres of a typical Ustic Epiaguert profile in the study area.

Hor. Depth  Diagn. Org. M. pH Sand Silt Clay Remarks
_Symb.  {cm) Hor. (%) (H,0} (%) (%) (%)

Ap 0-15 gchric 72 6.0 0.9 402 59.0

AB 15-21 - - - - - -

By 271-33  (argillic) 0.9 7.9 6.0 380 $6.0 slickensides

Ces 33-53 - 079 7.9 38 40.3 56.0 slickensides

[ 53- - - - - - - slickensides
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Figure 4.4. Theoprimised sampling schemefor estimation of spatial variability.

i) The first 30 observations were selected according to the MMSD-criterion (Van
Groenigen and Stein, 1998) (Chapter 3). In this way, a good coverage of the area
with these observations was ensured.

#) Subsequently, the additional 30 observations were selected using the WM-criterion
of Equation 4.2. The scheme was designed for the estimation of the experimental
variogram using the total number of 60 points. Special attention was paid to short
distances.

Figure 4.4 shows the resulung sampling scheme. While the first 30 points have
been distributed evenly over the area, the last 30 observations are clustered within the
centre of the area. This is because of the high number of point pairs at short distances
that was demanded. Table 4.4 shows the ideal distribution of point pairs " together
with the realised point pair distribution ¢® . The algorithm manages to fill the gapsin
the point pair distribution that were left by the first 30 observations, and create a
reasonably equal distribution of point patrs.
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Table 4.4. Point pair distribution of the first 30 sampling points, and of the final 60 sampling points,
logeherwiththerded disnbubion ¢

Distance elass (m) C* QS

first 30 points 60 points
0-25 147.5 0 1o
25-50 1475 0 95
50- 100 147.5 0 14!
106 - 200 147.3 [ 104
20a¢ - 300 147.5 8 o8
300 - 400 147.3 40 11!
400 - 500 147.5 9 1i8
500 - 600 147.5 37 131
600 - 700 147.5 36 1i6
700 - 800 147.5 19 80
800 - 900 147.5 34 121
200 - 1000 147.5 27 139
> {000 0.0 215 455
Total 1770.0 435 1770

4.3.3, Spatial variability

Table 4.5 shows the descriptive statistics of the analysed variables. To avoid
bias by clustering, only the (non clustered) first 30 observations are used. The variability
of texture is shown in the texture-triangle of Figure 4.5. There is considerable variability
in texture, ranging from very heavy clay with 1% sand, up to loam with almost 50%
sand. Theloam occurs mainly on the footslope. The most heavy clays are found in the
decantation basin.

Figure 4.6a shows the all-directional experimental variogram and the modelled
variogram of Nitrogen content. The experimental variogram can be modelled by a
linear model with a nugget of 0.0001 (%). There is no range within the maximum
calculated lag distance of 1000 m. The variogram of Phosphate content (Figure 4.6b)
shows a very different type of spatial correlation. The large number of point-pairs at
short distances allows an accurate estimation of the nugget, which seems to be extremely
low. This variogram can be modelled by an isotropic exponential variogram with a
nugget of 18.0 (mg kg')?, asill of 567.0 (mg kg')? and an effective range of 247 m,
The spatial structure of the sand content shows a clear axis of anisotropy, with the
longest range in the NW/SE direction, which coincides with the direction of the Ping
river, the source of the sediments. This is shown in the variogram surface of the sand
percentage (Figure 4.7).
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Table 4.5. Descriptive statistics of the non clusteved first 30 sampling pownts

Yariable urnits mean st. dev. min. max,
Sand %4 98 138 07 47.5
Silt % 451 8.3 203 59.0
Clay % 49.0 14.6 17.2 77.1
P-Ofsen mg kgl 159 30.4 7 159.4
Org C % 14 0.4 05 2.3
Kjel-N % 0.1 0.0 0.1 0.2
pH (H10) - 6.3 06 4.9 72
pH (KCl) - 52 0.6 ry 6.1
CEC emol (+) kg'! 189 4.5 9.7 255
Ca cmol (+) kg™’ 140 37 6.7 204
Mg cmol (+) kg’ 3.1 0.9 1.3 4.5
Na emol (+) kg™ 6.1 0.1 0.6 0.5
K cmol (+) kg'! 0.4 0.3 0.1 15
Base-sat. % 9.4 8.5 74.0 100.0

silt loam

o
o
o
L

Q

percent sand

Figure 4.5, Variability of texture, using the non-clustered data.

4.3.4. Additional schemes for minimising the kriging variance

From Figures 4.6 and 4.7, it appears that spatial variability changes considerably
from variable to variable. When the number of observations is judged inadequate for
spatial interpolation of a variable, additional observations can be selected for minimal
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Figure 4.7. Variogram surface of sand percentage.
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Figure 4.8. Kriged map of sand percentage (ajand P-Olsen (b)

kriging variance, using SSA. These additional sampling schemes have been calculated
fortwo different soil variables.

Figures 4.82 and 4.9a show the kriged map of the sand percentage and its kriging
variance, respectively. These maps were calculated with the OKB2D-routine of GSLIB
(Deutsch and Journel, 1992). An anisotropic variogram model was used. The kriging
predictions are very coarse, as there were only 60 observations, with 30 of them strongly
clustered. The kriging variance map, however, gives good insight in the limitations of
the MMSD-criterion (or a grid) for kriging purposes.

Figure 4.9b shows the optimised sampling scheme for minimal kriging variance, if
30 additional observations are added. Several of these observations are very close to
the boundaries of the area. Moreover, the effect of anisotropy is clear from the smaller
spacing of the observations in the direction of the shortest range. Note the different
scales in Figures 4.9a and 4.9b. The maximum kriging variance of the sand percentage
decreases from 146 to 69 (%)%

Figure 4.10 shows the mean kriging variance of the sand percentage during the
optimisation process, as a function of the number of perturbations. From this figure,
1tis clear that the optimisation method is insensitive to local minima, in search of the
global minimum. Starting with 30 randomly drawn additional observations, the mean
kriging variance changes from 28.2 10 23.7 (%)2.
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Figure 4.9. Kriging variance of sand percentage with oviginal data () and with the additional sampling
scherme (b)

Figures 4.8b and 4.11a show the kriged map of the Phosphate content and
the kriging variances, respectively. There seems to be a weak correlation between the
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Figure4.10. Theoptirnisation process for the additional sampling scheme for sand percentage.
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Figure4.11. Kriging variance of P-Olsen with original data (a) and with the additional sampling scheme (b).

sand percentage and the phosphate content on the colluvial soils on the eastern part
of the sampling area. This is probably partly due to different management practices
(ferulisation) on these lighter soils, where the cash crops (vegetables) are grown.
However, the variogram of the Phosphate content is isotropic. ‘This results in a different
configuration of additional data points for Phosphate (Figure 4.11b). Because of
isotropy of the fitted variogram, the additional data points have no extra emphasis on
a particular direction.

If we compare the detailed photo interpretation of the drainage class with the
interpolated result of the sand percentage, it is clear that there is a considerable similarity
to the texture distribution. In the kriged map of the sand content, the general trends
of the texture distribution are similar (decantation basin, footslope). However, as the
number of data points was very limited and partly clustered, only a very general
geostatistical interpolation was possible.

4.3.5. Minimisation of kriging variance with an a priori variogram
If a reliable a priori estimation of the variogram of a variable can be made, the

sampling scheme can be optimised directly for minimal kriging variance. In our case, it
can be inferred from geomorphological classification. A second study terrace, which is
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Figure4.12. Anapriori optimised sarmpling scheme for anisotropic sand percentage.

located at the opposite side of the river, has roughly the same soil characteristics as the
first. Therefore, the sand percentage variograms of the first terrace were used to optimise
a sampling scheme for minimal kriging variance at the second terrace. The axes of
anisotropy are rotated clockwise by 10°, as the direction of the second terrace is slightly
different from the first terrace.

Figure 4.12 shows this sampling scheme, which consists of 60 points. Again,
" there is a directional orientation of the sampling scheme, with shorter distances in the
direction perpendicular to the river.

4.4. Discussion

There has been repeated criticism in the past, as to the usefulness of the kriging
varlance as a measure of prediction accuracy (Deutsch and Journel, 1992}, Strictly
speaking, kriging variance can only be interpreted as prediction accuracy if the intrinsic
hypothesis holds. In practice, this assumption is often questionable. Minimising the
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kriging variance then reduces to the comparison of different data configuratons, without
taking into account trends or heteroscedasticity {Journel and Hutjbrechs, 1978). In the
future, methods that are less sensitive to problems related to stationarity (such as
indicator techniques) might be introduced in the SSA procedure as well. However,
ordinary kriging is still often used in practice. Deutsch and Journel (1992) state that the
ordinary kriging will remain the anchor algorithm in geostatistics. Therefore, we feel
that the minimisation of its prediction accuracy is an important issue.

The most widely used nonlinear interpolation technique, indicator kriging (IK),
does not yield a similar measure of the accuracy of the interpolation. The aim of
indicator kriging is estimation of the conditional distribution function of aReV. IK
uses ordinary kriging of indicator-transformed variables at several cut-off values for
this (Deutsch and Journel, 1992). Although IK can yield conditional probability maps
of exceeding any threshold value at any location, the accuracy of the interpolation is
not accounted for. The use of disjunctive kriging (DK) leads to similar problems when
it is used for calculating conditional probabilities (Webster and Oliver, 1989). As this
study was specifically aimed at optimising the accuracy of the interpolation, we focussed
on ordinary kriging.

The WM-criterion leads in this case study to a strongly clustered sampling schermne.
Itis well known that for univariate statistics the data of such sampling schemes should
be declustered to avoid bias (Isaaks and Srivastava, 1989). The effects of clustering on
the experimental variogram are less obvious. Corsten and Stein (1994) found that nested
sampling schemes yielded relatively inaccurate estimators of variogram parameters as
compared to more conventional sampling schemes. Russo and Jury (1988) found that
an optimisation criterion closely related to the WM-criterion yielded more reliable
experimental variogram values, especially at short ranges. We feel that strong clustering
in one place can only be justified by a very limited number of observations, as in the
presented case study. If the budget allows for more observations, more spreading of
the points over the area should be aimed at. Strong clustering may lead to a false sense
of security because of the high number of point pairs at short distances.

In all types of kriging, the prediction accuracy can only be relative to the chosen
variogram model. This means that errors from variogram fitting, choice of variogram
mode] or choice of anisotropy parameters are not accounted for. These issues still
need expert judgement, although fuzzy techniques can probably help (Bardossy et al.,
199Ca and 1990b).

The proposed optimisation method can only be applied if a variogram can be
defined. If this is not possible, either by estimation from samples of inference from
earlier surveys, other optimisation criteria should be used. The MMSD criterion could
be very helpful in such cases.

In anticipating the nature of the anisotropy of certain soil variables (e.g. texture),
the detailed photo interpretation praved to be a valuable tool during the optimisation
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process. Geomorphological classification was used as a tool for choosing an a priori
variogram model. In our opinion, it is always preferable to model the variogram directly
from field data. However, if this is not possible, we feel that geomorphological inference
provides at least a sound scientific basis for estimation of the experimental variogram.

4.5. Conclusions

In this chapter, it has been shown how sampling schemes can be optimised by
minimising the average kriging variance using SSA. It was shown that kriging
neighbourhood has a small but distinct effect on the configuration of the optimised
sampling scheme, whereas anisotropy can influence it considerably. Existing
observations or available variogram models can be used. Minimisation of the kriging
variance is especially useful as both the MMSD-criterion and traditional grids tend to
neglect boundary effects which may be tmportant for kriging purposes. The SSA method
was applied in a case study in Thailand, where it was shown that the algorithm could
handle realistic data sets.
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Chapter 5

Minimusing Kriging Variance:
Influence of Variogram Parameters!

Abstract

Using Spatial Simulated Annealing {SSA), spatial sampling schemes can be optimised for mini-
mal kriging variance. In addition 1o optimising for minimal mean kriging variance, a new crite-
rion for minimising the maximum kriging variance is presented in this chapter. In a simple case
with 23 observations, performance of a sampling scheme obtained with SSA were compared
with atriangular grid. SSA reduced the mean kriging variance from 40.64 [unit} to 39.99 [unitF.
The maximum kriging variance was reduced from 86.83 [unit* to 53.36 [unitF. An additional
sampling scheme of 10 observations was optimised for an irregularly scattered data set of 100
observations. This reduced the mean kriging variance from 21.62 [unit} to 15.83 [unit}. The
maximum kriging variance was reduced from 70.22 [unit* to 34.60 {unit}. Asthe kriging vari-
ance depends on variogram parameters, we investigated their influence on the optimised sam-
pling schemes. A Gaussian variogram produced a different sampling scheme as compared to an
exponential variogram with the same nugget, sill and (effective) range. Exponential, spherical
and linear variograms without nugget resulted in similar sampling schemes. A very short range
resulted in random sampling schemes, with observations separated by distances larger than twice
the range. For a spherical variogram, magnitude of the relative nugget effect did not affect the
sampling schemes, except for very high values (0.75).

 Based o Van Groenigen, | . (sbmitted). The influence of variogram parameters en optimal samplingschemes for
kriging. Geoderma.
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5.1, Introduction

Optimisation of spatial sampling is one of the most challenging issues in soil
geostatistics. In the past, many research efforts have been aiming at how to process a
data set (using interpolation and stochastic simulation), rather than how to collect it.
Despite important contributions to the discussion on spatial sampling (e.g. McBratney
etal,, 1981; Burgess and Webster, 1984; Yfantis e al., 1987; Brus and De Gruijter,
1997), sampling schemes for geostatistical interpolation are still mainly based on some
sort of regular grid. Taking into account geographical information, preliminary
observations, and information on spatial correlation could potentially improve sampling
strategies considerably (Van Groenigen and Stein, 1998) (Chapter 3). For interpolation
purposes, such sampling schemes might be designed for minimising the accuracy of
the ordinary kriging predictor.

Ordinary kriging (OK) is still the most widely used interpolation algorithm in
geostatistics (Deutsch and Journel, 1992). Although more powerful algorithms like
indicator kriging (IK) are now available, the relative transparency and straightforwardness
of the OK algorithm ensures its continuing popularity. In fact, even IK uses the OK
algorithm to interpolate conditional probabilities.

The accuracy of the kriging predictor is usually expressed in the kriging variance.
This kriging variance relies solely upon the spatial correlation, the locations and number
of observations in the kriging system and the location of the predicted point. The
spatial correlation is usually estimated in the variogram, which presents the variance as
a function of the separation vector between two points. Therefore, the kriging variance
can be calculated before sampling takes place, provided that a sampling scheme and
the variogram are available. This makes it possible to optimise a sampling scheme for
minimal kriging variance, provided a variogram can be defined.

In the past, work has been done on optimising sampling schemes for minimal
kriging variance. Methods were developed for calculating the optimal sampling density
of a grid, given a prescribed maximum kriging variance (McBratney et 4f., 1981,
McBratney and Webster, 1981). Furthermore, the performances of different types of
regular grids for kriging purposes were investigated {e.g. Yfantis et al, 1987; Christakos
and Olea, 1992).

Sacks and Schiller (1988) used a stochastic optimisation algorithm for optimising
the sampling scheme for minimal prediction error. They used a very limited, discrete
solution space, and a small sample size. More recently, Van Groenigen ez al. (1999)
(Chapter 4) showed how the Spatial Simulated Annealing (SSA) algorithm could be
used for constructing sampling schemes with minimal kriging variance, using a
continuous solution space and with a more realistic number of observations. They
found that anisotropy of the variogram has a considerable influence upon the optimised
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sampling scheme, with highest sampling density in the direction of highest variability.
Moreover, they showed that the size of the knging neighbourhood has a very limited,
but distinet effect on the sampling schemes, drawing closer to the boundaries as the
kriging neigbourhood increases. They llustrated with a case study how SSA could be
used for real field data, making use of GIS-stored data.

The aim of this chapter is to investigate the influence of variogram parameters on
the optimised sampling scheme. Van Groenigen et a/. (1999) (Chapter 4) showed that
anisotropy and kriging neighbourhood influence the optimised sampling scheme. In
this chapter it will be shown that other variogram parameters also influence the optimised -
sampling scheme. Furthermore, a new optimisation criterion is introduced, i.e.
mininusing the maximum occurring kriging variance rather than the mean kriging
variance. Finally, 1t will be shown how SSA is able to complete existing, inadequate
sampling schemes for minimisation of the kriging variance. In this way, considerable
improvements in prediction accuracy can be achieved with only modest additional
sampling efforts.

5.2. Materials and methods

5.2.1. Variogram and kriging

When the intrinsic hypothesis holds, the isotropic variogram is defined as

#(h) == E[f23) - 2%+ ] 6.1

where Z(%)denotes Regionalized Variable (ReV) Z at location % . h Denotes the
separation distance between two locations. In most geostatistical studies, the variogram
is estimated by a series of observations z(%):

a(h)

Z 2(%;) - 2(%; + h)}’ (5.2)

Ea) h _

v(h)=—— (h 2
where n(h) denotes the number of point pairs for distance class h. This estimated
variogram is fitted to a suitable model y(h), often using nonlinear regression.
Subsequently, y(h) is used to fill the matrices needed for the ordinary kriging system.
The ordinary kriging predictor can be written as a weighted average of n observations:
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i(io)=zn:7\i -Z(X;) (5.3)

i=1
where A, denotes the weight of the i observattons. The kriging variance can be written
as

Cok(Xc) = Z Ay (R - %)+ Y (5.4)

where W denotes a Lagrange multiplier (Webster and Oliver, 1990). The only factor
influencing the kriging variance are the variogram y(h), the number of observations n,
the sampling locations %; and the location %,.

5.2.2. Spatial Simulated Annealing

Spatial Simulated Annealing (SSA) was developed as an optimisation algorithm for
spatial sampling schemes. As a modification of simulated annealing (SA), SSA is able
to optimise sampling schemes at the point level. Starting with a random sampling
scheme, a sequence of random alterations in the locations of observations is drawn.
As the process evolves, the maximum length of the random vectors over which the
observations are transformed decreases. Simultaneously, the probability that an inferior
alteration 1s accepted decreases. In this way, the sampling scheme is optimised according
to the chosen optimisation criterion. SSA is very suitable for completing inadequate,
existing data sets, making full use of the existing observations. Although no proof can
be given that SSA always results in a global optimal solution, Van Groenigen and Stein
(1998) (Chapter 3) showed that the found solutions are superior to traditional sampling
strategies. For an extensive presentation of the SSA algorithm, see Van Groenigen and
Stein (1998) (Chapter 3). SSA can handle a variety of quantitative optimisation criteria.
In this chapter, we will focus on minimisation of the kriging variance, as presented in
Van Groenigen et al, (1999) (Chapter 4). Additionally, we will propose an alteration of
this criterion below.

5.2.3. Criterion 1: minimisation of the mean kriging variance
Following Van Groenigen et al. (1999) (Chapter 4), the aim of this optimisation

critetion is minimisation of the integral of the ordinary kriging variance over the area
of interest. This leads to the following minimisation criterion:
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(a) b)

Figure5.1. Theaptimisation process. Intermediate solutions for an isotropic linear variogram at start (@),
33% (B), 67% (c)and 100% (d) of the process.

ms.inch)K(io S)-dx, (5.5)

where S denotes the sampling scheme, %, denotes the location vector in the area A,
and U_ZOK isthe c‘xrdina.lry .kriging variance. As this integral can generally not _be .soI‘_zed
analytically, a discretisation of the problem is necessary. This leads to a minimisation
function defined as the mean kriging variance over a finely meshed grid of evaluation
points X,:

13 -
Onzan_ok(S) = _Z o (ReiS) (5.6)

n, 1=1

300

o
150
0 T T 1

0 33 87 100

% of optimisation process

Figure 5.2. Theoptimisation process. Mean kriging variance as afunction of the elapsed time.
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Figure 5.3. A triangular grid (a)and optimised sampling schemes for minimal mean kriging variance (b)
and rinimal madrmwm kriging variarce(c)

where n_ denotes the number of raster nodes. This will be referred to as the
MEAN_OK-riterion.

5.2.4., Criterion 2: minimisation of the maximum kriging variance

As an alternative criterion, we propose a minimax version of the MEAN _OK-
criterion. Instead of minimising the mean kriging variance, the maximum value is

imised:

¢MAX_OK(S) = maX(GCZ}K (ic,i I S)J v}—(e,l?“'ie,n, ) (57)

This will be referred to as the MAX OK-criterion. The use of a minimax criterion
might be especially useful in studies were the quality of a survey relies upon the weakest
chain (z.e. the prediction with the lowest accuracy). This might be the case, for example,
in environmental studies dealing with health nisks. The MAX_OK criterion is similar

Table 5.1. Comparison of an equilateral triangular grid with two optimised sampling schemes using SSA
withthe MFAN_OK and MAX_OK critevion. nis 23 observations

Fig. COptimisation Mean kriging variance Maximum kriging variance
(PumeaN oK) (Prax_ox)

5.3q triangular grid 40.62 86.83

5.3b MEAN OK 39.99 74.61

3.3¢ MAX OK 41.41 53.36
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Figure 5.4. A preliminary sampling scherme with kriging variance (a), and the additional optimised sampling
scherme of 10 obserudtions using minimal mean kriging variance (Wand minimal mecmum kriging waviance
(c)

to the criterion that was used to calculate optimal grid spacing for a certain minimal
accuracy of the kriging predictor, as presented in McBratney et o/, (198 1.

5.3. Examples
Below, examples will be given of the way optimised sampling schemnes are influenced

by the chosen optimisation criterion and variogram model. Most examples are for a
square area with 23 observations. This low number of observations was chosen to
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Figure 5.5. 4 Gaussian and eponential variogram, with nugget 200, sill 1000, and effective rarge 400,

show the effect on the optimised schemes as clearly as possible.

5.3.1. Influence of the optimisation criterion

Figure 5.1 shows the optimisation process for a linear variogram without a nugget.
The process starts with a random sampling scheme (Figure 5.1a). As the process
continues, the sampling scheme moves more away from a random configuration, towards
even spreading over the area (Figures 5.1b and 5.1c¢). Finally, optimisation yields a
point symmetric configuration (Figure 5.1d). Figure 5.2 shows the mean kriging variance
during optimisation. At the start, the kriging variance fluctuates more or less randomly.
During the optimisation, the mean kriging variance steadily decreases while avoiding
local minima. Finally, the mean kriging variance does not decrease any more.

Figure 5.3a shows an equilateral triangular grid consisting of 23 observations.
Figures 5.3b and 5.3¢ show optimnised sampling schemes with a linear variogram without
nugget for the MEAN OK and MAX_OK criteria, respectively. Both these last two
figures show the same configuration of points, but with the MAX_OK criterion the

Table 5.2. Kriging variancefor apreliminary sampling scheme of 100 observations, and with 10 optimised
additional observations for the MEAN OKand MAX OK criterion.

fig. Optimisation No. of Mean kriging variance Maximum kriging variance
observaiions ¢ ¢
(®MEAN OK) (Pmax ox)
5.4a preliminary oo 21.62 70.33
J.4b MEAN_OK 110 15,83 58.54

J.de MAX OK ig 16,46 34.60
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Figure 5.6. Influence of variogram models on the optimised sampling scheme for a Gaussian model (a)and
anexponential model (b) with similar nugget, sill and effective) range.

points are drawn much closer to the boundaries. This can be explained by the usually
high kriging variance at the edges of a kriged surface. Table 5.1 shows the scoring of
these three schemes, according to both criteria. It can be concluded that the triangular
grid is inferior for both criteria. The optimisation effect for the MEAN_OK criterion
1s only limited (a mean kriging variance of 39.99 [unit} as compared 10 40.62 [unit]?
using the grid) in this theoretical example. The optimisation effect of applying the
MAX_ OK criterion is considerable, reducing the maximum kriging variance from 86.83
[unitf with the triangular grid to 53.36 [unitF.

It should be observed that when in this chapter, and throughout this thesis, two
sampling schemes are called similar, it is meant that they can be rotated and/or reflected
to fit each other, depending on the {random) path that the SSA algorithm followed.

Differences between the two criteria are more clearly shown in another example.
Figure 5.4a shows an area with 100 observations that are irregularly scattered, and the
kriging variance is calculated with a spherical variogram with nugget 0, sill 100 and
range 30. SSA was used to add 10 observations to enhance the quality of the data set
for kriging purposes. Figures 5.4b and 5.4c show the optimised sampling schemes for
the MEAN OK and MAX OK criterion, respectively. Table 5.2 shows the
performances of the sampling schemes thus obtained, as compared to the prehmmary
sampling scheme. Using only 10 additional observations, the mean kriging variance
could be reduced from 21.62 [unit]’ to 15.83 [unit using the MEAN_OK criterion.
Use of the MAX_ OK criterion resulted in a reduction of the maximum kriging variance
from 70.33 [unit] to 34.60 [unit’. The differences between the two criteria are nicely
illustrated in the lower right corner of Figures 5.4band 5.4c. The MEAN_OK criterion
leaves this area with a relatively high kriging variance i order to lower the mean kriging
variance. The MAX OK criterion places one observation in this corner, in order to
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Figure 5.7. Influence of range on the aptimised sampling scheme, for a spherical model with a vange of 0(a)
and 20(b).

lower this maximum kriging variance (Figure 5.4c). A surveyor aiming at lowering the
kriging variance should carefully consider whether the MEAN OK or MAX OK
criterion should be used, since they can result in quite different schemes.

5.3.2. Influence of variogram model

Figure 5.5 shows a Gaussian and an exponential variogram with the same
parameters. The Gaussian model is:

hz
')I(B) =200+800',:1—CX —W):l (5,3)

This reflects a nugget of 200, a sill of 1000 and an effective range of 400
(230.94 - /3 ). These parameters are also used in the exponential model:

v(R) = 200+ 800- [1 - ex;{— %ﬁﬂ (5.9)

The effective range (3-133.33 ) of this model is similar to that of the Gaussian model.
Figure 5.6 shows the optimised sampling schemes for these two variograms, using the
MEAN_OK criterion. While the exponential variogram resulted in a point symmetric




MINIMISING KRIGING VARIANCE: INFLUENCE OF VARIOGRAM 71

400 400
.
* . s * ® o ® 4, °
300 o ° ° 0] o o .
) ) L
i .
200 @ ° . 200 { @ °
[ [ . *
.
10, @ . * 100 1 ° hd
e ® o °® o e ® 4 o e
0 b— . 0 . .
0 100 200 300 400 c 100 260 300 402

(a) . (b)

Figure 5.8. Influence of nugger on the optimised sampling scheme, for a spherical model with a nugget of 50
(@} and a nugget of 75 (). Thesillis 100 for both cases.

solution similar o that of the linear variogram, the Gaussian model yielded a different
scheme, with observations much closer to the boundaries of the area.

5.3.3. Influence of range

Figure 5.7 shows the influence of the range on optimised sampling schemes fora
spherical variogram. Figure 5.7a shows the optimised sampling scheme for a pure
nugget effect, 7.e. the range is 0. This variogram results in a random sampling scheme;
each run of the optimisation will give a different result. As a pure nugget effect implies
that no spauial correlation is present, each sampling scheme used for interpolation is
equally inadequate. Figure 5.7b shows the optimised sampling scheme for a very short
range of 20. This implies that no spatial correlation is present at distances larger than
20. The observations are placed at distances larger than 40 (twice the range). Within
this constraint, the resulting sampling scheme is still random. For larger ranges, the
sampling scheme will be similar to that produced using a linear variogram (Figure
5.3b). A real range of 0 (a pure nugget effect) is very unusual in soil science. More
often, a modelled nugget effect stems from sampling at larger distances than the range.
Therefore, optimal sampling schemes for a pure nugget effect are mainly of theoretical
interest.

5.3.4. Influence of (relative) nugget effect

If the nugget is 0, the sill will have no effect on the sampling scheme. A sill of 200
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will simply result in kriging variances twice as high as those using a stll of 100, but the
optimised sampling scheme will not change. Therefore, influence of thesill only depends
on the nugget/sill ratio. A spherical sampling scheme with nugget 0 and a sufficiently
large range results in a point symmetric solution, similar to that derived using a linear
variogram (Figure 5.3b). With a nugget/sill ratio of 0.5 (nugget is 50, sill is 100}, this
does not change (Figure 5.8a). However, when the nugget/sill ratio increases to 0.75
(nugget 75, sill 100), a somewhat different solution is reached (Figure 5.8b).

5.4. Discussion and conclusions

Two different optimisation criteria were formulated in this chapter, both dealing
with optimising the quality of the kriging interpolator. Minimising the mean kriging
variance results in other sampling schemes than minimising the maximum kriging
variance.

Most variogram parameters influence optimal sampling schemes for minimal kriging
variance. Therefore, use of the SSA algorithm almost always results in superior sampling
schemes in terms of kriging variance. For cases with a relatively low nugget and sufficient
range, the optimised sampling schemes for linear, exponential and spherical variograms
were similar. Only the Gaussian variogram yielded a different scheme. It can be expected
that other variogram models like the hole effect model, will also result in different
sampling schemes.

The question remains to what extent the obtained solutions are truly the global
optimum. This can not be proven. For simulated annealing, it has been proven that the
global solution is always found, given infinite calculation time (Aarts and Korst, 1989).
For realistic calculation times, this has not been proven. However, all opumised sampling
schemes were reproduced in subsequent runs of the algorithm with different (random)
starting points. This indicates that the solutions might indeed be the global optimum.
More to the point of this study, it was shown that the sampling schemes performed
better than the traditional equilateral grid.

This study considered univariate problems. Other problems might be multivariate.
In those cases, several optimisation strategies might apply. Similar to the methed
presented in this paper, the cokriging variance might be minimised when a model of
co-regionalisation can be definied. However, this requires much modelling of variogram
and cross-variograms, and can only apply in cases with few variables. Van Groenigen et
al. (submitted) (Chapter 6) and Broos et al. (submitted) showed how conditional probabilities
of exceeding environmental threshold values of several contaminants can be pocled
into one variable, indicating health risk.

Use of SSA for minimisation of the kriging variance will result in sampling schemes
that explicitly take into account the nature of spatial dependence. The surveyor can
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choose between minimising the overall kriging variance and the maximum kriging
variance. Moreover, preliminary observations can be taken into account. Therefore,
SSA should be able to provide a useful tool {or surveyors in the future.
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Chapter 6

Optimising Multivariate
Interpolation!

Abstract

Effectiveness of regular sampling grids to collect multivariate contamination data in urban areas
1s often strongly reduced by buildings and boundary effects. In addition, earlier observations and
knowledge on the history of the area may provide valuable information. This chapter presents a
simulated annealing-based procedure to optimise the sampling scheme, taking sampling con-
straints and preliminary information into account. The sampling scheme is optimised using a
spatial weight function, thart allows to distinguish areas with different priorities. A case study in
the Rotterdam harbour with five contaminants at two depths showed two subsequent sampling
stages, in which two weight functions were applied. The first stage combined earlier observa-
tions and historical knowledge, with emphasison areas with high priority. The resulting scheme
showed a contamination at 17.4% of the samples, with 1.5% heavily contaminated. The second
stage used probability maps of exceeding intermediate threshold values to guide addirional sam-
plingto possible hot-spots. This yielded 26.7% contaminated samples, with 16.7% being heavily
contaminated. These included new locations that were not detected during the first stage. The
proposed method allows to incorporate important preliminary information, and can be used as
avaluable tool in environmental decision making,

! Based on: Van Groenigen, | W., Picters, G. and Stein, A.(ubmitted), Optimising spatial sampling for mudtivariate
contarnination in wrban areas. Environmetrics.
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6.1. Introduction

Characterisation of multivariate contamination for remediation of urban areas is
a highly complicated problem in soil geostatistics. A surveyor has to balance carefully
between scientific integrity, legal validity and practical attainability. Traditional tools of
a soll surveyor such as photo interpretation and knowledge on soil/landform
relationships are of limited use, as urban soils are seldom in their natural state, The
spatial distribution of the contaminants is typically poorly related to soil type. Also,
accessibility to the sampling sites is often constrained by buildings and roads.
Geostatistical methods of handling many Regionalized Variables (ReV’s) and their
interactions are still complicated, involving much modelling and many assumptions
(e.g Deutsch and Journel, 1992). Finally, observations are usually costly, and the most
should be made from limited facilities. Because of all these complications, optimising
the sampling scheme is a crucial issue.

A geostatisticial survey normally involves first estimation of a model for spatial
dependence, usually expressed by the variogram. Secondly, this model can be used for
optimal interpolation of an ReV. Past efforts of optimising spatial sampling for
interpolation can therefore be split up in two, potentially conflicting strategies:

1) Strategiesaimingat optimal estimation of variogram parameters. Webster and Oliver (1992)
found that for an isotropic (direction-independent) variogram, at least 150 sampling
points on a regular grid are needed for estimation of the variogram, and that 225
usually give reliable estimations. Yfantis ez a/. (1987) found that a triangular grid
yielded the most reliable estimation of the variogram, as compared to square and
hexagonal grids. Russo (1984) and Warrick and Myers (1987) proposed an
optimisation method for reproducing an a prior: defined ideal distribution of point
pairs for estimating the variogram. Van Groenigen and Stein (1998) (Chapter 3)
proposed a more powertful algorithm for the same criterion. Russo and Jury (1988)
{ound that this criterion yielded more reliable short range estimates of the variogram
than systematic sampling.

ii) Strategiesaiming at optimal spatial interpolation (often kriging). Given the variogram,
optimal grid spacing can be calculated given a required minimal accuracy (McBratney
etal., 1981; McBratney and Webster, 1983). More recently, methods were developed
for selecting optimal locations of sampling points for interpolation, rather than
optimal grid spacing. First, this was done using a list of possible sampling locations
as a rather small discrete solution space (Sacks and Schiller, 1988). Van Groenigen
et al. (1999) (Chapter 4) showed how this method could be extended to much
larger problems with a continucus solution space.
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Although these strategies have contributed much to improve the quality of sampling
schemes, they were all essentially univariate. As most surveys aim at characterisation of
more than one ReV, there is a clear need for multivariate sampling strategies.

Urban contamination studies typically offer much preliminary information. Often
the historic use of the area is known, indicating possibly contaminated sites. As
environmental legislation involves the use of different threshold values and requires
different survey phases, preliminary data might be available on the area. Using these
constraints and preliminary information on multivariate contaminants to optimise a
sampling scheme is one of the main challenges in environmental soil surveys.

In this chapter, we will introduce a method for optimising spatial sampling in
urban areas. We will show how we can make use of the preliminary information on the
area, in the form of both historic information and preliminary observatons. The
optimisation method is an extension of the SSA algorithm presented in Van Groenigen
and Stein (1998) (Chapter 3}.

6.2. Theory and methods
6.2.1. Spatial Simulated Annealing

Spatial Simulated Annealing (SSA) is an optimisation method for spatial sampling
schemes. SSA is especially beneficial in studies with many sampling constraints and
preliminary observations, such as urban remediation studies {Van Groenigen and Stein,
1998} (Chapter 3). The algorithm considers constrained optimisation of a sampling
scheme as a combinatorial optimisation problem. Consider a 2-dimensional region A
and let the collection of all possible sampling schemes with n observations on A be
denoted §" . Then we define a fitness function ¢(S): S* — R* that hasto be minimised
to optimise the sampling scheme. The fitness function can be any quantitative function
of a sampling scheme, and does not necessarily have to be continuous. Optimisation
starts with a randomly selected sampling scheme S, € S™ , consisting of observation
points Xg,...X5 . Atthe first optimisation step, the observation points are transformed
over a random vector 67 with only one element different from zero, yielding a new
sampling scheme S, . This alternative sampling scheme is accepted with probability
P. , using the Metropolis criterion:

P.(§; —S,,)=1, if ¢(8:.1) <9(S;)
P.(S; =8, = ex{ﬁ(si)—_ﬁ@&ﬁ} if ¢(8;,,) > ¢(S;). ®.1)
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If S, hasalower fitness (i.e. if it is supertor according to our criterion) than S, itis
accepted as a basis for further optimisation, If it has a higher fitness, it is accepted with
a probability that is positively related to parameter ¢ of Equation 6.1. The process then
continues with the creation of a sampling scheme §, out of §, (if it was accepted) or
S, . As the optimisation process evolves, ¢ and the maximum length of §2 decrease,
forcing the sampling scheme to 'freese’ in its optimal configuration, in a similar way as
the physical annealing process of solids (Aarts and Korst, 1989). For a more detailed
discussion of SSA, see Van Groenigen and Stein (1998) (Chapter 3).

As different surveys may have different aims, several optimisation criteria with
corresponding fitness functions ¢{(S} have been used in the past. The so called MMSD-
criterion minimises the expectation of the distance of an arbitrary point to its nearest
observation point whereas the MEAN_OK-criterion minimises the mean ordinary
kriging variance over the area of interest (Van Groenigen et al., 1999) (Chapter 4).
Figure 6.1 shows, for a very simple case, the difference between the two critenia. Figure
6.1a shows the optimised sampling scheme using the MMSD criterion for 23 sampling
points. F1gure 6.1b uses the MEAN_OXK-criterion, for an anisotropic variable. The
axis of minimum spatial variation is located in the 0° direction, with the axis for
maximum variation perpendicular to it. The MEAN OK-criterion accounts for the
directional effect, placing more observations in the direction of maximum variation
(Figure 6.1b)

Although the MEAN_OK-criterion is very useful if we want to optimise our
prediction accuracy, it is not necessarily the best criterion in contamination studies. In
such studies, accurately delineating hot-spots might be more important than elaborately
mapping the whole area, including low-spots (Watson and Barnes, 1995). Therefore,
we modified the MMSD-criterion in order to be able to distinguish berween different
degrees of priority within the areas.

6.2.2, The WMSD-criterion
The WMSD (Weighted Means of Shortest Distances)-criterion is a weighted version

of the MMSD-criterion. The fitness function is extended with a location dependent
weighing function w(x): A—>R*:

min= [ w(®)[&-Vy(x)|dx (6.2)

where V(%) denotes the coordinate vector of the sampling point nearest to % . This
function is estimated by:
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Figure 6.1. Optimised sampling schenes using the MMSD-criterion (a)and the MEAN _OK-criterion in
the presence of anisotropy (b)

% - V5(%))

| 6.

Pwmsn(S) = ni“z‘ W(i]e )

e j=1

where x.,....x™ are the nodes of a fine evaluation grid over A.

As an example, a square area with 23 observations is subdivided into two parts
(Figure 6.2). The upper half has weighing factor 2.0, the lower half a weighing factor
1.0.Hence w(%)=11if xe A,,and wW(X)=2 for X e A,. Thisleads to more intensive
sampling in A, (15 observations) thanin A, (8 observations).

Use of the weighing function w(X) offers a flexible way of using prior knowledge
on A and on the possible multivariate character of the survey. In the case of soil
contamination, W(X) can be used to express knowledge on the expected contamination
in some parts of the area, e.g. by increasing sampling density on sites with higher
expected contamination. In this chapter we present two ways of defining w(X). The
first is using historic knowledge on the severity and location of processes that caused
the contamination. The second way of defining w(X) is based on probability maps of
exceeding threshold values using preliminary observations.

6.2.3. Probability maps using Indicator Kriging

Indicator kriging aims at predicting the conditional cumulative distribution function
of aReV at any unvisited location (Deutsch and Journel, 1992). If we consider a ReV
Z(%) with observations z(%'),...,z(X"), this is achieved by indicator transforming the
observations for cut off value z_:
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Figure 6.2. Optirmised sampling scheme using the WMSD criterion, with subareas with different weights.

i(W,z,)=1, ifz(x)<z, VxS

0, ifz(®)>z, (6.4)

These transformed variables are interpolated with kriging. The interpolated values,
marked with a star, at unvisited location X° can then be interpreted as a conditional

probability:
i(x°,2.)" =Pr{Z(x°) <2, |S} (6.5)

By repeating this procedure for several cut off values, a conditional cumulative
distribution function can be estimated at each location by kriging of the indicator
transformed variables.

This nonlinear transformation is especially useful when a skewed distribution of
Z(x) prohibits the use of linear geostatistical methods such as ordinary kriging (Journel,.
1983). Goovaerts (1997b) showed that indicator techniques can be more effective in
delineating a contamination than ordinary kriging. Van Groenigen ezal. (1997) (Chapter
2) showed how probability maps produced by indicator kriging could guide additional
sampling towards possibly contaminated sites. They found that such a multi stage
sampling design led to more accurate site characterisation, with much smaller type-I
errors, and comparable type-Il errors, as compared to a rectangular grid and a random
sampling scheme. However, additional sampling sites were chosen by simple random
sampling. Using SSA, this approach can be optimised.
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Figure 6.3. An overview of the research area with sampling constraints and preliminary observations (§°).

6.3. Case-study: the Rotterdam Harbour

An optimal sampling scheme was developed for an urban contamination site A in
the Rotterdam harbour, where many preliminary data and sampling constraints were
met. The WMSD-criterion was selected to use this information 1o optimally locate
additional observations.

In the Netherlands, legislation on soil remediation recognises {four threshold values,
defined for each potential contaminant. Sites with concentrations below the 8- threshold
are considered non-contaminated. Sites with concentrations above the I- threshold are
severely contaminated. The ${8+1) value isused as a threshold for further research.
Both the S- and I- thresholds depend on the clay and organic matter content of the
soil, recognising the influence of these parameters on the chemical behaviour of the
soil. Additionally, concentrations above the BAGA-threshold require more expensive
action (Anonynous, 19%4; Anonymous, 1995).
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6.3.1. Description of study area

The study area is located along the river Maas, in the old harbour near the centre
of Rotterdam (Figure 6.3). As harbour activities are withdrawing from this location,
the old area increasingly allows more urban uses such as housing and office building,
The size of the area is approximately 30 ha.

The harbour area developed around 1900, due to increasing industrial activity around
Rotterdam, On the eastern pier, a stevedores firm and several silos and warehouses
settled. A passenger terminal was located on the western pier. A power plant was
located at the entrance area near the western pier, and a gas plant west of that. With
modernisation of the merchant fleet after the second world war, harbour activities
moved to areas further away from the city centre, leaving the site with a variety of hght
industrial and commercial activities (Pieters ez al., 1996).

The area is to be converted into a mixed housmg, recreational and commercial
area within the next 10 years (City of Rotterdam, 1997). Therefore, a survey of the
area on possible contamination due to former industrial activity had to be carried out.

The soil consists of a sandy layer overlaying the original Holocene clays. Thislayer
was applied for heightening and varies in depth from around 5 m on the piers,to 2 m
on the north west part of the area. No peat was found within 5 m depth.

6.3.2 Preliminary data and sampling constraints

Based upon historic research and future plans, different priority areas for sampling
were delineated. We distinguished five historical factors:

7) filling in of harbour

#5) heightening of surface level

#) type of industrial activities

#) boundaries of ownership parcels
9  historic remediations

This information was combined with maps showing the urgency of the survey for
future activities, yielding a priority map. Classification ranged from 1 (low priority due
to no expected contamination and/or no immediate building plans) to 4 (high expected
contamination and/or immediate building plans) (Pieters et al., 1996). The area A can
be subdivided according to these classifications in sub-areas A,,...,A, , respectively
(Figure 6.4).

Much data on contamination was available from preliminary surveys and earlier
remediations, yielding a total of 201 observation locations. Three heavy metals (Pb, Cu
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Figure 6.4. Priovity map of sermpling, based upon expected contamination and urgency of remediation
rangingfrom A, (fow pricrity)to A, (highprionity).

and Zn) and 2 carbohydrates {mineral oil and PAH's) were considered, as they were
expected to constitute the main contamination, Not all variables were sampled at each
of the 201 locations, resulting in a different number of observations for each
contaminant. This preliminary sampling scheme is denoted by S°. As data were collected
at different depths, for practical reasons two layers were considered for analyses: 0-1 m
(L,)and 1-5m(L,), respectively. The observations of §° are strongly clustered,
with high concentrations of points on the western pier and around the former gas-
and electricity plants. As several buildings in the area were of architectural or historical
value, sampling was constrained by both boundaries and built-on areas (Figure 6.3).

6.3.3. Step 1: additional sampling using historic information
As a first step, 80 additional sampling points were selected, to cover the areas that

were left unsampled by S°. T'o optimise such an additional sampling scheme S' , the
weight function wy(%) was defined. We assigned to the four subareas
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Figure 6.5. Additional sampling scheme based on priovity map using WMSD-criterion (S7).

A,,...,A, different weights, with the highest weight for the subarea with the highest
probability of being contaminated and the highest priority ( A, ). After comparing
different weight distributions, it was decided by expert judgement to use the weight
vector (1.0, 1.5, 2.0, 3.0). By fine tuning after several runs of the SSA algorithm this
vector was chosen, as it provided the most satisfactory distribution of points over the
different subareas. This weight vector resulted in a coverage of the area that reflected
the severity of the different priority area.

6.3.4., Step 2: additional sampling using probability maps

After getting a first overview of the extent of the contamination by ( §° U S!),a
second stage of sampling focussed on areas with a high probability of being
contaminated, as calculated from the observations. Here, a second weight function
W (X) was used, based on indicator kriging. After choosing a threshold value,
probability maps of all 5 contaminants at both depths were calculated, denoted
i(x,z, )'"L koo (B Z1g )", respectively. As we were interested in the probability of any
of the variables reaching high levels of contamination, we used the maximum of all
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Figure 6.6. Additional sampling scheme using MMSD-criterion.
probabilities:

W (X) = max(i; (%,2)) 510 (X,24) ) (6.6)

This weight function was used to select the additional sampling scheme S.

6.4. Results

Figure 6.5 shows the optimised additional sampling scheme. As a comparison,
figure 6.6 shows an altemnative without the weight function, using the MMSD-criterion.
Use of priority areas in the design of §' influenced the sampling schemes, with more
emphasis on areas with higher priority than on areas with lower priority. The WMSD-
criterion places 46 and 18 observations at the most urgent priority areas A, and A,,
respectively (Figure 6.5). Using the MMSD-criterion, these numbers are only 32 and 7
(Figure 6.6). Both figures show that sampling constraints are honoured.

Table 6.1 describes the data set for the total data after the first sampling round
(8% U S"). The distribution of all contaminants is skewed, with only a few outliers
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Table 6.1. Descriptivestatistics for S° and S' mg kg’)

Pall. Layer n Mean St.dev. Max Min
Zn i 16! 129 127 1300 10
2 127 102 208 1500 10
Ph i 162 73 129 1350 !
2 i38 7i 260 2706 {
Oil ! 148 30 19 250 2
2 113 94 419 2700 2
PAH ] 142 (i) i7 6 0
2 114 42 284 2756 i)
Cu ! 161 30 G 580 [
2 156 35 197 2300 ¢

above the I-and BAGA-thresholds. These contaminated locations are shown in Figure
6.7 by smaller and larger circles, respectively. The Ithreshold was exceeded at 35 locations
for ar least one of the contaminants. Three of these 35 where above the BAGA-
threshold. These last three were closely located to the former gas and electricity plants.

To select the 30 points of S?, the exceedance probability of the Ithreshold would
be a logical choice. However, the high proportion of nugget effect in most indicator
variograms {Table 6.2) indicated that spatial variation was extremely high. Therefore,
because local hot-spots could still have been missed by sampling schemes $° and §',
we applied the 2(S +I)-threshold, for which indicator variograms were calculated (Table
6.2).

As an example, Figures 6.8 and 6.9 show the interpolated probability maps of
mineral oil in the second layer, and Zinc in the first layer, respectively. The contamination
by mineral oil is only very minor (with only 3 observations above the 3(S +I) threshold).
The probability that Zinc exceeds this threshold in most parts of the area is much
larger.

Figure 6.10 shows the combined probability map w., (%). Probabilities of exceeding
the (S +I) threshold exceed 0 everywhere, but clear hot-spots are located around the

"T'able 6.2. Spherical indicator variograms for all contaminants for threshold value (S +1) finghg’)

Poll. Layer Nugget Sili Range
Cu I 1.0 0.0
2 1o 0.0 -
Pb i 0.54 0.46 100.0
2 L0 0.0 -
ol i 0.39 0.61 85.0
2 0.45 0.55 76.0
PAH i 1.0 0.0 -
2 1.9 0.0 -
Zinc i 0.72 0.28 86.0
2 1.0 2.0
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Figure 6.8. Probability of exceeding the (S +1) threshold for mineral oil inL,
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Figure 6.9. Probability of exceeding the (S + 1) threshold for Zincin L,

former electricity and gas-plants. Using this map, 30 additional sampling points (§?)
were determined (Figure 6.11). The observations are located close to the former plants,
and at the northern part of the eastern pier,

Table 6.3 presents descriptive statistics for $7. As not all analyses were taken in
both layers L and L,, the total number of observations is not 30 but 20 and 26,
respectively. The observations exceeding the I or BAGA-thresholds are indicated by
the smaller and larger triangles, respectively (Figure 6.12). Table 6.4 compares the
percentage of pollution of $° _S' withthatof $°. The percentage of observations

Table 6.3. Descriptive statistics for S, (mg kg’

Poll. layer n mean st.dev. max min
Zn / 20 128 68 290 3
2 20 128 99 396 20
Pb i 29 99 160 380 13
2 26 223 590 2800 /3
Oil I 20 5i 52 240 20
2 26 3i4 1425 7300 20
PAH ! 29 24 49 198 0
2 26 2 3 g 0
Cu i 20 47 77 350 5
2 26 33 39 160 5
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Figure 6.10. Maxirmum probability of exceeding the 1 (S + 1) threshold for any of the contaminantsand
bothdepths,

above the Ithreshold increases from 17.4% to 26.7%, respectively. For the BAGA-
threshold these numbers are 1.5% and 16.7%. Apart from several observations of S
being relatively close to already observed contaminations, some new sites above the
BAGA threshold were discovered. These are located at the northern part of the eastern
pier, and the southern part of the entrance area,

6.5. Discussion and conclusions

In this chapter, we showed the use of SSA in optimising a spatial sampling scheme
for a multivariate contamination in an urban area. The WMSD-criterion can use any
spatial weight function w(x) to focus sampling on areas with high priority and reduce
sampling on areas with low priority. Two examples represent different stages in the
case study. At the first stage, the weight function W (%) differentiated between areas
of priority. The optimised sampling scheme includes existing observations, and sampling
constraints are acknowledged. At the second stage probability maps of exceeding an
environmental threshold value were combined into a single weight map w s2(%). The
sampling scheme thus derived detected several hot-spots that were left unnoticed before
(Table 6.4).
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Figure 6.11. Additional sampling scheme based on madrmum probability of exceedance (8).

A critical issue in the presented methods is the setting of the weighing factors. In
the first stage the (semi quantitative) priority values have been transformed into weighing
factors using expert knowledge. During the second stage, probabilities of exceeding
the threshold values have been used as weighing factors. These choices are to a certain
extent arbitrarily, and more research should be dedicated to the best setting of these
weighing factors. On the other hand, the possibility of attaching priorities to certain
areas may prove a valuable tool in decision making processes.

In theory, it would improve the straightforwardness of the optimisation algorithm
to use a combined, two-part fitness function. For example a weighted average may be
considered:

Owsum(Si) = A 9,(S;)+2,0,(5;) (6.7)

Table 6.4. Percentage of observations above the different threshold values, for the rwo different sampling
stages.

Sampling scheme __n >T¢%)  >1(% > BAGA (%)
s'us! 20/ 318 174 1.5
§? 30 43.3 26.7 16.7
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Figure 6.12. Location of heavy and very beavy contaminated areas.

However, this would lead to problems with the weights derived from indicator kriging
(IK). IK does not really provide probabilities of exceeding threshold values, but predictions
of these probabilities. As the accuracy of these predictions is not accounted for (contrary
to ordinary kriging, where the kriging variance can be used for that purpose), it is
essential that the sampling scheme is adequate for interpolation before applying IK.
Therefore, a phased approach was necessary in this study, where the first sampling
stage was used to create a sampling scheme that covered the area satisfactorily.

Table 6.4 and Figure 6.12 indicate the efficiency of the second sampling scheme in
detecting contaminated sites. Although validation with stochastic simulations (e.g.
Goovaerts, 1997b) would be preferable, simulating multivariate stochastic fields still
poses serious problems. Modelling of spatial dependence would involve estimation of
a large number of (cross)-variograms. This problem only increases in magnitude if
several indicator variables are used. Deutsch and Journel (1992} mention different
solutions to this problem. These solutions, however, require either all variables to be
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known at most observation points, or one of the variables to be known at each simulated
point. Ignoring co-regionalisation and simulating the contaminants separately would
lead to a huge overestimation of the contaminated area. Therefore, a validation based
on stochastic simulations was not tried.

The proposed method of handling the multivariate problem does not require the
use of a model of co-regionalisation, thus avoiding elaborate cross variogram
calculations. Although this approach is somewhat pragmatic, it is very valuable in practice.
Furthermore, we should like to emphasise that this method only applies to optimisation
of the sampling scheme. Afterwards, data processing can proceed with any form of
kriging, cokriging, simulation or other geostatistical procedure.

This chapter focussed on optimisation of spatial sampling for geostatistical analysis.
Recently, a discussion arose in the soil science community on the benefits of geostatistics
as compared 1o classical statistics {e.g. Brus and De Gruijter, 1997; Brus and De Gruijter,
1993). Using classical sampling theory, sampling schemes should always have a random
component (e.g. a random origin of a sampling grid in systematic sampling), as all parts
of the area should have an inclusion probability larger than 0. Therefore, optimising
point locations as has been done in this paper is only allowed in geostatistics. Several
optimisation methods using classical sampling theory have been proposed in the past
{e.g. Stevens, 1997; Domburg ez al., 1997). Although we recognise the significant role
that classical sampling theory should play in spatial statistics, we think that geostatistics
can be more flexible in dealing with sampling constraints and earlier measurements, as
has been demonstrated in the case study.

The main requirement of a sampling strategy in the practice of urban multivariate
contamination studies is flexibility and robustness. In this paper we showed that SSA is
able to handle the deviations, sampling constraints and preliminary observations.
Furthermore, we showed that by distinguishing between priority areas, SSA can bea
helpful tool in decision making processes.
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Chapter7

Establishing Soil/Yield Relations in
Precision Agriculture Studies’

Abstract

In thischapter it is shown how yield maps may be used to optimise soil sampling for precision
agriculture in a low-tech environment. The proposed method is applied in an on-farm study in
Niger. Using a cheap, low-tech scoring technique, yield maps of millet were produced. Yield
varied from 0 to 2500 kg ha*. Subsequently, the Spatial Simulated Annealing {SSA} algorithm
was used to optimise three sampling schemes. Scheme 1 optimised coverage over the whole area.
Scheme 2 covered the whole vield range. Scheme 3 covered the low-producing areas. Using
correlation coefficients, scheme 2 found significant correlations between 5 variables and yield.
Scheme 1 found only one significant correlation. Using multivariate regression of yield on soil
variables, scheme 2 explained 70 % of the variation in yield. For scheme 1, this was only 37 %.
Differences between scheme 3 and scheme 1 proved to be significant for distance to shrubs,
micro-relief, pH-H,O and CEC. From this study, we concluded that shrubs are the main factor
influencing millet yield by means of carching eroded materials and improving soil fertility. The
possibilities of planting shrubs to improve soil fertility should be investigated. Variograms of
micro-relief and yield suggested that spatial correlation islargely confined 10 distances of 310 5
m

1 Bused om: Van Groenigen, ] W., Gandah, M. and Boums, J. {submitted). Soil sampling strategies for precision
agriculture rescarchunder Sabelian conditions. Soil Science Society of America Journal,
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7.1, Introduction

In recent years, an increased interest in soil variability on the field scale may be
observed. Precision agriculture has become an important research topic in soil science.
As one of the major quantitative techniques of dealing with spatial variability,
geostatistics plays an important part in these developments. Well-known geostatistical
interpolation techniques like ordinary kriging and indicator kriging have been applied
for optimal interpolation of point observations (e.g. Van Ulfelen et al., 1997; Stein et al.,
1997). Also, stochastic simulation techniques (e.g. Gémez-Hernandez and Srivastava,
1990; Goovaerts, 1997a) offer interesting perspectives in scenario studies,

Apart from these applications and adaptations of existing geostatistical tools,
precision agriculture poses some more specific challenges to geostatisticians. One of
these is the increasing availability of maps of auxiliary data that can be potentially of
help for purposes such as mapping of soil properties or yield prediction. Examples of
such auxiliary data are maps of soil tillage resistance (Van Bergeijk and Goense, 1997),
Remote Sensed imagery (Booltink and Verhagen, 1997), and yield maps collected using
low-tech (Stoorvogel, 1995) or high-tech (Bouma, 1997) approaches.

In this chapter, we focus on the question how (relatively cheap) auxiliary data can
be used to optimise collection of soil samples for (expensive) chemical analysis.

The developed methodology was applied in a case study in Niger. In a farmers'
field, yield predictions were made using a quick, low-tech scoring technique. These
yield maps were used to guide sampling of soil properties to potentially interesting
sites. Special attention was paid to the specific possibilities and constraints of precision
agriculture in a low-tech environment.

7.2. Materials and Methods

7.2.1. Study area

The study area is located on an on-farm millet field near the village of Tchigo
Tagui, approximately 80 km north east of the city of Niamey, western Niger, The field
is located on a laterite plateau with eolian sand deposits. The soils can be classified as
plinthustalfs (Soil Survey Staff, 1996). The rainy season is from May to September,
and mean annual rainfall is around 480 mm (Sivakumar et 4/., 1993). The soils are
generally characterised by a high spatial variability in terms of chemical and physical
fertilivy. Bouma et 2/, (1996) mention five reasons for this: z) micro-relief and crusting,
causing crucial redistribution of water infiltration (Gaze ez 4l., 1997), 7i) termites, that
may enrich the soil locally, #ii) local effects of trees and shrubs, iv) differences associated
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with landscape position, and z) soil fertility gradients around villages. As the area s
confined to one farmers' field relatively far from the village, only the first three aspects
play an important role in this study.

Brouwer et al. (1993) reported a yield stabilising effect of this micro-variability on
similar fields. In relatively wet years, yields were highest at sites with a high micro-relief,
due to catchment of fertile eroded particles. However, in dry years these spots were
non-productive due to lack of water. In these cases the lower areas ensured a subsistence
level of millet yield.

Since both feruility and water supply are extremely low, even moderate spatial
variability of these can have profound influence on crop yields. Stein ez af. (1997) found
a yield range of O to 2885 kg ha'!, measured on 5 x 5 m blocks. They were able to
explain 30 % of the yield variability by multiple regression on soil variables. Gandah ez
al. (1998) used the same support size for yield sampling, and were able 1o explain only
5-28 % of the yield variability by regression.

These results, combined with observations in the field, suggested that the support
size of yield sampling should be smaller to capture most of the soil variability. In this
study the support size was on a hill level, Ze. each planting hill {consisting of 2-6 individual
millet tillers) was evaluated using a low-tech scoring technique in order to get a crude
estimation of the yield. This data was used to optimise the sampling scheme.

7.2.2. Spatial Simulated Annealing

Spatial Simulated Annealing (SSA) is an algorithm that was designed for optimisation
of spatial sampling schemes (Van Groenigen and Stein, 1998) (Chapter 3). Its features
include the incorporation of preliminary observations, and taking into account sampling
constraints and boundaries. Furthermore, SSA allows the use of several quantitative
optimisation criteria, among them minimisation of the ordinary kriging variance and
estimation of the experimental variogram (Van Groenigen et af., 1999) (Chapter 4). In
this study, use was made of the MMSD-criterion, which aims at an even spreading of
the observations over the area of interest. This is done by minimising the expectation
of the distance between an arbitrarily chosen location, and its nearest observation
point. Thisleads to the following minimisation function:

min [ % - Vy(®)| 7.)

where 8 denotes the sampling scheme, A represents the areas of interest, and % i1sa
random location vector in A. V(%) represents the location vector of the nearest
sampling point X, € Sto . As this minimisation function can generally not be solved
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analytically, we estimated it using the following function:

n

¢'MMSD(S) = ;1_2

e j=1

X

- Vy(x1)]

(7.2)

where the location vectors x.,...x% denote the nodes of a fine raster grid over A.
The optimisation process starts with an initial sampling scheme S, consisting of
randomly drawn locations over A. Subsequently, an alternative sampling scheme S, 1s
derived from S, by a transformation of one of the sampling locations over a randem
vector. The probability of 8, being accepted as a basis for further optimisation depend.s
on the Metropolis criterion:

P(Si = Si)= if §(S;.1) < ¢(S;)
Pc (Sl - Si+1) = ex{w} if ¢(Si+1) > ¢'(S: ) (73)

This criterion ensures that occasionally also inferior solutions are accepted, thereby
avoiding prematurely ending of the optimisation process in local minima. Asthe process
continues, parameter ¢ decreases. In this way, the sampling scheme 'freeses' into a
more optimal configuration.

For an extenstve discussion on SSA and the implementation of the MMSD-criterion,
see Van Groenigen and Stein (1998) (Chapter 3).

7.2.3, Soil sampling

Three different soil sampling schemes were applied, in order to test the benefits
of the different approaches. Samples were taken at three depths (0-0.1 m,0.1-0.2 m
and 0.2-0.4 m) and were analysed for pH-H,O, texture, P-Bray, CEC and OM. In order
to make the case study realistic in terms of financial constraints usually met in precision
agriculture research, each sampling scheme consisted of 27 observations only. The
sampling schemes are listed below:

i) 'The first sampling scheme (S, ) aims at even spreading of the sampling points
over the total area (the three plots). For 9 locations per plot, SSA yielded a regular
square grid.

1) Sampling scheme S, aims at covering the whole range of yields, in order to establish
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Figure 7.1. Restlts of the three scorings of plot 3, presented using Thiessen polygons.

clearer relationships between soil characteristics and yield. This was done by
stratifying the area according to yield, and distributing a number of samples
optimally over each of the strata using SSA.

i) Sampling scheme S, focuses specifically on low-producing areas. This may be
especially useful for precision agriculture purposes when a detatled survey of low-
spots is desired for remedial action. To define low-producing areas, use was made
of the threshold value of 250 kg ha yr. This threshold was mentioned in Stein et
al. (1997) as the minimum yield required for a family of 10 persons with 8 ha of
cropping land.

In addition, a detailed micro-relief map was produced, as former studies showed a
strong influence of topography on yield (Stein et al. ,1997; Brouwer et al., 1993). Using
a level, observations were collected on a square 1m x 1m grid. Since earlier studies
suggested an influence of shrubs on yield variability, a variable 'distance to nearest
sheub’ was included.

7.3, Results

7.3.1. Yield maps

In order to get a cheap, low-tech prediction of millet yield, a semi-quantitative
scoring technique as presented in Buerkert ez al. (1995) was used. Scoring was performed
at July 4*, August 8 and September 4* 1997 on 3 plots of 1¢ m x 10 m each. Scoring
values were assigned to individual hills, ranging from C (no plants at all) to 8 (maximal
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Figure7.2. Relationship between scoving value and yield (mean and standard deviation), measured per bill.

aerial biomass). The millet was harvested around November 7%,

Figure 7.1 shows the scoring results of plot 3 at the three scoring dates. Scoring
data are represented using Thiessen polygons, as the semi-quantitative character prohibits
direct interpolation using kriging. Since the discriminative features were rather limited
at the earlier scoring dates, scoring ranges differed from 0-4 (July 4™}, 0-6 (August 8%}
to 0-8 (September 4).

After the last scoring, several hill samples were collected to establish the relationship
between scoring and yield. For each of the 9 scoring classes of September 4*, 8 hills
were harvested, the heads were threshed in a traditional manner and weighted separately.
The results are shown in Figure 7.2. From this figure, it can be concluded that the
scoring should not be used directly as a quantitative measure that is linearly related to
the yield, but should be calibrated using real yield measurements. Scoring values of 0
to 3 resulted all in a yield very close or equal to 0. Scoring classes 5 to 7 did not result
in a significant difference in yield,

Using this calibration data, the scoring data per hill were transformed into estimated
yield data. This was interpolated using ordinary kriging, resulting in the predicted yield
maps shown in Figure 7.3a-c. Table 7.1 shows the variogram parameters for the yield.
These can be characterised by a relative high nugget effect (54 % and 48 % for plots 2
and 3, respectively). Furthermore, ranges of 3.4 and 4.2 m confirm suppositions of
high variability at very short distances.

A survey of any shrubs on the plots was made, as previous studies showed that
shrubs can have a considerable influence on soil and yield variability (Brouwer et al.,
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Table7.1.Variogram models for the yield estimaes and micro-relief.

Variable Plot no. Variogram Nugger ¢/ slope range/r
model [mf

yield (kg/ha) ! linear 140860 21120 -

vield (kg/ha) 2 exponential 159300 134991 342
yield (kg/ha) 3 exponential 165200 182000 415
relief (m) { linear 0.036 0.023 -

relief (m) 2 spherical 0012 g.020 3.78
refief (m} 3 spherical 0.00! 0.073 4.27

1993). The position of the shrubs is also shown in Figure 7.3a-c.

7.3.2. Soil data

Table 7.1 shows fitted variogram models for micro-relief, measured at the 1 mx 1
m grid. Starting at the boundaries of the plots, this resulted in a data set of 121
observations for each plot. Although the variograms differ much more in character
than those of the yield predictions, ranges are still shorter than 5 m. Figure 7.3d-f

Table7.2 Descriptive statistics of measured variables for all three sampling schemes.

Scheme ! Scheme 2 Scheme 3
Variable Depth Mean  SD cyr Mean  SD cv Mean  SD cv
pH-H2O 0-0.1 5.1 0.3 006 5.7 0.2 0.05 4.8 0.3 0.05
8.1-0.2 5.0 0.3 006 5.0 6.2 0.65 48 0.2 0.04
0.2-04 4.9 0.3 007 4.9 0.2 005 4.7 0.2 0.04

Sand, % 0-0.7 899 23 0.03° 899 21 002 892 22 0.02
0102 8.5 34 004 8§77 23 003 872 23 0.03
e 02-04 326 52 006 828 50 006 820 52 0.06

Distance, m - 2.64 1.47 §.56 212 1.76 0.83 330 1.39 0.40
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Figure 7.3. Interpolated yield estimates with position of shrubs (a-<)and interpolated micro-topogrophy @)

shows the interpolated micro-relief for the three plots using ordinary kriging. The
maximum difference in micro-relief within a plot 1 0.13 m (measured at plot 1).
The three sampling schemes were established as follows:

i} Sampling scheme $, is shown in figure 7. 4ac. As itis not designed using the yield
data, it misses several important features, notably all hot-spots of plot 2. Table 7.2
summarises the soil data of §,. Texture varies from sand in the upper soil, to
loamy sand (due to clay illuviation) in the subsoil. This results in an increasing
CEC with depth. Furthermore, organic matter content and P-Bray are decreasing
with depth. Coefficients of Variation (CV's) are reasonably low { < 50 %) for all
variables, except for distance to the nearest shrub (56 %)

i) Sampling scheme S, is shown in figure 7.4d-f. As this scheme aims at covering a
wide range of yields, most of the hot-spots are sampled. All low producing areas
(e.g the lower left corner of plot 3) are covered. Most descriptive statistics of S,
are close to those of $,. However, standard deviation of relief is much higher in
S, , and mean distance to shrubs is much smaller.

i) The area with a predicted yield lower than the threshold of 250 kg ha” yr! was
delineated in the three plots, and sampling points of S, were evenly distributed.




SOIL/YIELD RELATIONS IN PRECISION AGRICULTURE 1C1

Figure7 4. The three sampling scheres for the thee plots, superimposed on the yield estimates

Figure7 4g-i shows the resulting sampling scheme. As the predicted yield in plot 3
i1s considerably lower than in plots 1 and 2, most of the observations (15) are taken
there. Descriptive statistics are presented in Table 7.2. pH-H, O is lower at all
depths, as compared to S, . Furthermore, texture of S, is slightly heavier, organic
matter content is lower and distance to shrubs is higher.

7.3.3. Correlation and regression analysis

To test the performances of S, and S, in assessing soil-yield relations, we calculated
correlation coeflicients between yield and soil variables. Yield at sampling locations
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Table7.3.Corvelation cogfficients for millet yield and sodl variables.

Depth Relief  Distance  pH-H:Q  CEC Sand _ Silt Clay oM P-Bray
m m cmot kg % ghe' mg kg

Sampling Scheme |
0-0.f 0.258 -0.464"  -0.160 -0.086 0.047  -0.660 -0.631  0.190 0.160

0.1-0.2 0.054 0.007 -0.083  0.214 0.028 -0.028 -0.221

02-04 - - 0.081 0.004 -0.190  0.069 0188 -0.112 -0.293
Sampiling Scheme 2

0-0.4 0.328 04517 0.200 0.239 0141 -0.128 0255  0.361 0.264

0.1-0.2 - 0.141 0.005 -0.189  0.3427 0.695 0.557" 0.2i7

0.2-0.4 - 0.052 0.184 -0.215  0.097 0.208  0.680 0.102

Levels of significance: “=0.10, *=0.05, ™ =001

was predicted using ordinary knging. For S, , only distance to shrubs is significant with
0.=0.05, and no other variables show a significant correlation with yield (Table 7.3).
The negative correlation of yield with distance to shrubs can be explained by the
relative higher fertility (in terms of OM and P-Bray) closer to the shrubs.

A stepwise linear regression was performed to find significant relations for S, and
S,. For yield, the Lilliefors test for normality was not rejected (with o =0.05}. The
selected model for S, was:

Yield=789.6—137.1*Dist + 253.2 *Silf0,1-0.2]-452.1*

PBray[0.2 - 0.4] (7.4)

where Silt[0.1-0.2] denotes the silt content in the second layer. This significant model
(with 0 =0.05) yielded an adjusted r* of 0.372. These results are only slightly better
than those from Stein et l. (1997), who found an unadjusted r? 0{ 0.377 in a much less
detailed survey.

For S, , one correlation coefficient was highly significant (=0.01), another one
significant at o =0.03, and three more significant with o.=0.10. The significant correlation
coefficient for distance to shrubs confirms the findings of §,. Micro-relief and OM
were positively correlated to yield. This can probably be explained by the higher relief
around shrubs, due to catchment of eroded material. In the second layer silt was
significantly correlated, and OM highly significant.

The selected regression model for §, was:

Yield = 18728 + 12702 * Relief — 257.9 *Sil{0.1-0.2]- 1359 *

PBray{0.1-0.2]+9239*OMO0.1-0.2]- 219.6 *Sand(01-02] )
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Table 7 4.Results from astudent t-test berween S, and S, Probabilities that both populations are similar.

Depth Relief  Distance  pH-H.0  CEC Sand _ Silt Clay oM P-Bray
0-0.1 0.015  0.070" 0.002” 0.0097 0168 0.6i6 0127 0119 0.545
0102 - - 6.003™ 0.612 0.947 0960 0923 (.267 0.235
0.2-64 - - 0.053" 0.749 0.529 0496 0468 0057  0.299

Levels of significance: *=0.10, *=0.05, **=0.01

This model yielded an adjusted 12 of 0.705, which is much higher than that obtained
by S,. It may be noticed that in this model distance 1o shrubs is not included, despite
its significant cotrelation coefficient {Table 7.3). This might be explained by its highly
significant correlation to micro-relief. In fact, univariate regression of yield gives a
highly significant model for distance to shrubs:

Yield = 1704.6 — 218.8 * Dist {7.6)

Although this model is highly significant, it only explains 25 % of the yield variabilivy.
Therefore, the multivariate regression was preferred.

7.3.4. Student t-test

A Student t-test was performed to show significant differences in soil variables
between S, and S,. Table 7.4 shows the probabilities that the means of the two
populations are similar. Three variables showed highly significant differences, whereas
four additional ones showed significant differences. The significance of distance to
shrubs and reltef coincide with findings of the regression analysis. The CEC[0-0.1]is
significantly higher for S, . This may be related to the relative enrichment with finer
particles due to erosion at the low-producing areas. Finally, pH-HLO is highly significant
different at all depths, reflecting the general depletion of the low producing area.

7.4. Discussion and Conclusions

Using the SSA algorithm, three different sampling schemes of limited size were
constructed. Scheme S, , which aimed at optimal spreading of the sampling points
over the area, yielded a significant (negative) correlation of distance to shrubs with
yield. Scheme S, , which aimed at coverage of all the extremes in yield, showed significant
correlations for four additional variables. Moreover, using multivariate regression
analyses the explained yield variation increased from 37% using §,, 10 70% using S, .
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We concluded therefore that the approach taken for constructing S, should be preferred
for relating yield to soil variables in case of limited observations.

Differences between S, , which aimed specifically at low-producing areas, and
S, were used to detect the main limiting variables for yield. Distance to shrubs and
micro-relief were probably the most important factors in this. Other significant variables
_ {higher CEC and lower pH-H O in S;) were probably related to the effects of soil
erosion, due to absence of shrubs.

These findings are in line with existing management techniques practised by local
farmers. Shrubs are seen as a valuable asset, useful in locally improving soil fertilivy by
catchment of airborne eroded particles, and by enrichment with organic matter from
the shrub. At the start of the growing season, shrubs are trimmed to limit competition
with the millet crops. Since rainfall at the start of the 1997 growing season was relatively
good, this is also in line with the yield stabilising effect of soil variability, as reported by
Brouwer (1996). In drier years, the yield pattern may be reversed. However, in orderto
optimise the yield stabilising effect of the shrubs, planting of shrubs should be
considered as alow-tech soil management practice. More research should be dedicared
to optimal placement of such shrubs.

The sampling schemes used in this study were deliberately kept small in order to
stay close to financial constraints generally met in precision agriculture research.
Although costs of laboratory analysis is still out of reach for the marginal farmers in
the study area, we think that the developed techniques can be of great value to researchers
dealing with the highly variable soils of the Sahelian zone. Moreover, the type of auxiliary
data used to optimise sampling is typical for precision agriculture, and developed
techniques may be applied in other types of precision agriculture. As an example,
remote sensed data related to crop yield might be treated in the same way as the predicted
yield maps in this study.

Since the number of observations was small, relatively simple statistical techniques
were used to relate yield to soil variables. In our opinion, this represents the practical
constraints of precision agriculture rather well. If a higher number of observations
can be collected, geostatistics can be applied for interpolation of soi} variables. Auxiliary
data like yield maps may then serve as co-variable in cokriging,
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Chapter 8

Sampling Strategies for Effective
Variogram Estimation’

Abstract

This chapter compares various sampling strategies for variogram estimation, Sampling strategies
are tested using stochastic simulations. In the first part, a regular grid is compared to a sampling
scheme that optimises the point pair distribution for variogram estimation. This yielded unbi-
ased experimental variograms. However, the {luctuation of the experimental variograms was
much lower with a regular grid. We concluded from this that the point pair distribution alone is
not auseful optimisation criterion for variogram estimation. In the second part, additional ob-
servations selected for optimal point pair distribution were compared with randomly drawn
additional observations. The random observations resulted in much higher standard deviations
at shorter distances. We concluded from this that for additional short distance observations the
point pair distribution is a very useful optimisation criterion. In the third part, we focused on
optimal variogram use. A sampling grid of 81 observations was completed after preliminary
estimation of the variogram with 19 additional observations for minimal kriging variance. The
scheme was compared to a regular grid of 100 observations. For an exponential underlying
variogram without nugget effect, the use of the phased sampling scheme reduced the mean
squared kriging error from 0.3% [unit} to 0.31 [unit}, and the maximum squared kriging error
from 6.05 [unit] to 4.24 [unit}. For a spherical underlying variogram with a nugget effect of
33%, mean squared kriging error did not change and maximum squared kriging error decreased
from 15.98 [unit} 1o 11.52 [unitF. We concluded that minimisation of the squared kriging error
is often more relevant than accurate estimation of the variogram, Taking samples just outside
the area improved the quality of the prediction in terms of both kriging variance and actual
squared kriging error.

* Based on:Van Groenigen, | W., Mainam, . and Stein, A. (submittedl). Sampling strategies for effective variogram
esttmation. European Journal of Soil Science.
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8.1. Introduction

Establishing the nature of spatial correlation is often the starting point for a
geostatistical study. Information on spatial correlation is needed in many geostatistical
algorithms such as kriging and Multi Gaussian simulation. Other algorithms such as
indicator kriging and cokriging require information on spatial {cross-)correlation of
more than one variable. This spatial correlation is expressed in the variogram or some
related statistic such as the co-variogram or cross-variogram.

"The isotropic (direction-independent) variogram is defined as:

1(b) =2 Efi2(0) - Z(x+ 1)} ®.1

where Z(%) denotes the value of regionalized variable (ReV) Z at location % . This
variogram can be estimated from observations z(%):

a(h)
{(x)-2(x; +h)}’ 8.2)

n 1
h)y=——
" 2n(h)
where n(h) is the number of point pairs separated by distance h (plus or minus an
interval). Normally, the experimental variogram is calculated for nc lag classes to which
subsequently a variogram model is fitted.
In geostaustics, a distinction is usually made between two variograms:

1) Thevariogram of the underlying stochastic model, of which the ‘reality’ that is observed
and sampled by the soil surveyor is considered to be just one realisation. This is
called the underlying (Webster and Oliver, 1992) or ergodic (Brus and De Gruijter,
1994) vaniogram. In this chapter we will use the term underlying variogram. The
underlying variogram is reproduced over a large number of realisations.

#) Thevariogram of the realisation that is actually observed in practice, which can deviate
from the underlying variogram. This variogram is called the local (Webster and
Oliver, 1992) or non-ergodic (Brus and De Gruijter, 1994) variogram. We will use the
term local variogram in this chapter.

In the literature, optimisation of spatial sampling for variogram estimation has
derived some attention. However, no consensus has been reached on the criterion to
be used to assess the quality of sampling schemes for variogram estimation.

In general, three approaches towards optimising sampling for variogram estimation
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can be distinguished:

Y

i)

Optimising experimental variogram estimation. If nothing is known on the spatial
distribution of aReV, all that can be manipulated is the location of the sampling
points. This has led to formulation of optimisation criteria for the optimal point
pair distribution of a sampling scheme. This was first done by Warrick and Myers
(1987), who presented a Monte Carlo algorithm for optimisation of the point pair
distribution. Russo and Jury (1988) tested a slightly modified version of this
procedure for estimation of the covariogram on several realisations of a stochastic
field. They concluded that the covariogram was more accurately estimated at shorter
distances, as compared to a regular grid. Van Groenigen et a/. (1999) (Chapter 4)
used this optimisation criterion to improve their sampling scheme for estimation
of spatial correlation at short distances. Brus and De Gruijter (1994) modified this
criterion for optimisation of the estimation accuracy of the local variogram. Taylor
and Burrough (1986) and McBratney and Webster (1986a) used stochastic
simulations to assess the quality of the experimental variogram. Webster and Oliver
{1992) and Shafer and Varljen (1990) did the same using multiple samples froma
single realisation of the stochastic field.

Optimising the fitting of the experimental variogram. When the structure of spatial
correlation is known, sampling can be optimised for estimation of the variogram
(D-optimality). Procedures for this have been developed and applied by Rasch
(1990), Pettitt and McBratney (1993), Zimmerman and Homer (1991) and Van
Groenigen and Stein (1998} (Chapter 3). Morris (1991} estimated the accuracy of
the variogram by assuming a variogram model.

Optimising theeffectiveness of the variogram. This approach does notlook at the accuracy
of the {modelled) variogram itself, but on its use in further geostatistical analysis.
Russo and Jury (1988) compared the resulting kriging variance (KV) of their
optimisation procedure for variogram estimation with that of a regular sampling
grid. However, this seems an awkward criterion since the KV is relative to the
variogram, and therefore does not represent any errors in variogram estimation
(Deutsch and Journel, 1998). Gascuel-Odoux and Boivin (1994}, by resampling
from a large data set, found that the actual squared kriging error (SKF) was lower
than the calculated KV. Laslett e /. (1987) and Bregt er al. (1991) reported much
higher SKE’s than the calculated kriging variances. Brus (1993) showed how the
sampling error of the local variogram could be mcluded in the kriging error.

As the variogam is generally not known in practice (and does not have to be

estimated if it is), the second group of optimisation criteria is mainly of theoretical
interest. Therefore, this chapter focuses on the first and third group. Using the SSA-
algorithm for optimisation of spatial sampling schemes, the merits of these optimisation



108 OPTIMISING MODEL ESTIMATION

criteria for variogram estimation will be examined. Special emphasis will be placed on
the practical value of the developed sampling schemes.

Webster and Oliver (1992) tested the effectiveness of sampling grids of different
sizes for estimation of the experimental variogram. Since they resampled a single
realisation of a stochastic field using different origins of the sampling grid, their results
are valid for the local variogram. In this study, we test sampling strategies for estimation
of the underlying variogram, and therefore we use more than one realisation of the
stochastic fields for two of the examples. The last example will focus on effective
characterisation of one realisation.

8.2. Materials and methods

8.2.1. Spatial Simulated Annealing

Spatial Simulated Annealing (SSA) was developed as a general purpose optimisation
method for sampling in geostatistical studies (Van Groenigen and Stein, 1998) (Chapter
3). Its features include optimisation of sampling schemes at the point level, incorporation
of preliminary observations and honouring of sampling constraints. Starting with a
random initial sampling scheme, the optimisation algorithm generates random
distortions in the sampling scheme. The quality of the new scheme is assessed using a
quantitative optimisation criterion. Improvements in the sampling scheme are accepted,
while deteriorations are sometimes (and with decreasing probability as the optimisation
advances) accepted to avoid local minima. The SSA algorithm allows to handle different
quantitative optimisation criteria. Those used in this study are briefly presented below.
For a detailed discussion of SSA, see Van Groenigen and Stein (1998) (Chapter 3).

8.2.2. The WM-criterion

The WM-criterion, formulated by Warrick and Myers (1987), optimises the fit of
the realised point pair distribution of the sampling scheme to an a priori defined, ideal
distribution. The criterion is formulated as the sum of squared differences between
the realised and the ideal point pair distribution:

nc

DG -6) (8.3)

i=1
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where nc is the number of lag classes of the variogram, and &; and ¢; are the realised
and ideal number of point pairs in the i* lag class, respectively. In this chapter, the ideal
distribution is defined as even distribution of the point pairs over the chosen variogram
lags, i.e. C: = C: ,Vi,je 1,..nc,

8.2.3. The MAX_ OK-criterion

The MAX_OK criterion minimises the maximum ordinary kriging variance of the
sampling scheme, using a variogram model as input. Using a fine raster of evaluation
points X, ,...X, , overthe whole research area, the criterion is formulated as:

maX(GZOK(Xe,i I S)’ vxe,l ""Sie,n: ) (84)

where 64g(X,; |S) denotes the ordinary kriging variance at the j* evaluation point
X, ; using sampling scheme S. Van Groenigen (swbmitted) (Chapter 5) showed that
sampling schemes optimised using this criterion are affected considerably by the choice
of the variogram parameters and (to a lesser extent) the kriging neighbourhood.

8.2.4. Stochastic simulation

The accuracy of the sampling schemes will be assessed below using stochastic
simulation. The advantage of using stochastic simulations instead of actual
measurements is two-fold:

i) The ‘reality’ is fully known. Therefore, we are able to quantify actual SKE’s without
constructions like jack-knifing.

i) Multiple realisations of the stochastic field can be generated. Therefore, both the
underlying variogram and the local variogram can be calculated. In reality, only the
local variogram can be known (Journel, 1985; Brus and De Gruijter, 1993).

In this study, we used the Mulu Gaussian simulation algorithm to generate the
stochastic fields (Deutsch and Journel, 1998). This algorithm was chosen for its
theoretical transparency.
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. 00 8000 T 1doo
Figure 8.1, Sirmulated field using the spherical underlying vaviogram, with a regular sampling grid of 49
obseruations

8.3. Sampling schemes

Below, several sampling strategies are tested for their value in variogram estimations
using stochastic simulations.

8.3.1. Regular grid vs. WM

In order to test the usefulness of the WM-criterion for variogram estimation, 40
different realisations of two underlying variogram models as used by Webster and
Oliver (1992) were constructed using Multi Gaussian simulation (Deutsch and Journel,
1998). The first model is defined by a spherical global variogram:
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B . 80,00 120.00
Figure8.2. Sirslated field using theexponential underlying variogram, witha WM-gptimised sarmpling
scherne of 49 observations.

3
y(h):O.333+O.667{E-[£]——1—-(£) }for0<h<a,
2450) 2150

yh)=1 forh>a, (8.5)
¥(0)=0.

This represents a variogram with nugget = 0.333, sill = 1 and effective range = 50. The
second underlying variogram model is exponential and has similar sill and (etfective)
range parameters, but no nugget effect:

y(h)= lw-exp[— 1116] (8.6)




112 OPTIMISING MODEL ESTIMATION

Table 8.1.Partmeters of the sampling schemes and the experimental variograms, with sample size (n) and
number of lag classes (nc).

Grid Variogram
n Spacing ne Lag size
23 20 4 20
36 i8 3 i
49 i7 3 i6
64 15 i 12
&1 i3 7 9
io0 12 8 ig

Figures 8.1 and 8.2 show one realisation of the spherical and exponential underlying
variograms, respectively. Both fields consist of 120 x 120 = 14400 grid cells. All
realisations had variances close to 1, average values close to 0 and no significant skewness.
Because of the absence of a nugget effect, the exponential field is much smoother
than the spherical one.

All 8C realisations were sampled using both a regular square grid and a WM-
optimised scheme for different sample sizes. Table 8.1 lists all sample sizes and the
corresponding number of lags and lag sizes for the experimental variogram. Figure 8.1
shows the grid scheme for a sample size of 49, Distances to the boundaries of the area
are half the grid spacing. Figure 8.2 shows the WM-optimised scheme for the same
sample size. Noteworthy are the nearly circular structure of the sampling scheme, and
the absence of observations from large parts of the area (such as the corners).

The performances of the sampling schemes for the estimation of the underlying
variogram were investigated. Calculations for all 80 simulated fields and all 12 sampling
schemes resulted in 96C experimental variograms. Statistics of the variation in these
variograms assessed the performances of the sampling schemes.

8.3.2. Combining regular grid and WM

In many geostatistical surveys based upon a regular sampling grid, surveyors may
be interested in spatial correlation at shorter distances than the grid spacing. This may
be because no apparent spatial correlation is detected using the grid, suggesting that
spatial correlation is confined 1o shorter distances (e.g. Oliver and Webster, 1987). In
other studies, more information of the behaviour of the variogram near the origin
might be necessary for optimal interpolation (the SKE and KV are considerably
influenced by the modelled nugget effect). Goovaerts (1997a) randomly selected
additional observations at fixed distances of grid nodes. McBratney and Webster {1986b)

followed a nested strategy. Van Groenigen and Stein (1998) (Chapter 3} showed how
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Figure 8.3. Two simusdated felds and the sampling grid for the Cameroon study. Additional samples optimised
using SSA were drawn from avealisation of a spherical undeviying variogram with a rangeof Sm (&), and
randomly drawn from a realisation of a pherical underlying vaviogram with arangeof 20m (&)

SSA with the WM-criterion could be used for upgrading existing sampling grids for
variogram estimation at short distances. The usefulness of such a sampling scheme for
variogram estimation will be investigated below.

Figure 8.3 shows the sampling plot of a geostatistical erosion study conducted in
the Northern parts of Cameroon (Mainam and Zinck, 1998). To assess the susceptibility
of different soils to water erosion, sampling plots were chosen along two different
slopes. The size of the plots is 40 m x 104 m, with the longer part in the direction of
steepest descent. T'o get an overview of the general degree of erosion over the plot, an
intial sampling grid with 8§ m spacing was decided upon. This yielded an initial sample
size of 65. Fifteen additional observations were selected for estimation of the short
range spatial variation using SSA with the WM-criterion. The performance of the
proposed sampling scheme was investigated using stochastic simulations before actual
sampling took place.

Two different underlying variogram models were selected for stochastic simulation.
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Both are spherical models with nugget = 0.25 and sill = 1.0. The first model has a
range of 5 m (shorter than the lag spacing), and the second model a range of 20 m. For
both models, 20 realisations were generated. Figures 8.3a and 8.3b show realisations
of the first and second model, respectively,

SSA with the WM-criterion aimed at distributing the additional point pairs evenly
over two lag classes of 1-3 m and 3-6 m, respectively. To reduce the risk of failure of
this additional sampling scheme due to local anomalies such as rock outcrops etc., the
extra points were divided into two different groups of 7 and 8 observations. These
two groups were placed independently from each other. This resulted in two clusters
of points in different parts of the area (Figure 8.3a). The clustering of additional
points using the WM-criterion corresponds with the findings of earlier studies (Velthof
et al., submitted; Van Groenigen et al., 1999) (Chapter 4). As a comparison, a second
sampling scheme distributed the additional observations randomly over the area. Figure
8.3b shows this scheme.

Experimental variograms were calculated for both sampling schemes and for all
40 realisations. Statistics of these variograms assessed the quality of the WM-optimised
additional sampling scheme for variogram estimation.

8.3.3.Variogram use: minimising the prediction error

The third optimisation method deals with the effectiveness of the estimated
variogram, rather than with its accuracy. Following Gascuel-Odoux and Boivin (1994)
and Stein and Corsten (1991), the SKE of the interpolation based upon the estimated
variogram was used to assess the performances of the sampling schemes.

Optimisation strategy and evaluation criteria were chosen with two sampling issues
in mind:

1) The variogram may be estimated during a first survey stage, whereas a second
stage may be conducted for purposes of interpolation. In practice, these stages are
seldom totally independent, i.e. the data from the second stage is often used to
improve the estimation of the variogram. Conversely, data from the first stage is
often used during interpolation.

1) Kriging variance, providing an indication of the SKE, depends upon the chosen
variogram model. Therefore, errors from variogram estimation and modelling are
not accounted for. In addition, validity of the kriging variance as a measure of
prediction accuracy depends on the intrinsic hypothesis of geostatistics. In case
of non-stationarity and/or heteroscedasticity, the kriging variance loses part of its
value. In those cases the SKE is a more direct measure of accuracy. Unfortunately,
SKE can only be assessed « posteriori, and can therefore not serve as a direct
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O = preliminary sampling grid

Figure 8.4. Preliminary sampling grid on the spherical simidated field.

optimisation criterion.

Asa data source, one realisation of each of the two underlying variograms presented
by Webster and Oliver (1992) and presented earlier in this chapter (Figures 8.1 and 8.2)
were randomly drawn. The total sample size was equal to 100 to allow a comparison
with a regular grid (10 x 10). A two-stage sampling strategy was applied, where the first
stage approximately estimated the variogram. Using the preliminary variogram we then
optimised allocation of additional observations for minimal kriging variance with SSA.
More formally, if the total sample size is denoted n, the sampling strategy and the
resulting interpolation are:

) The sampling scheme of the first sampling stage S' consists of n, observations,
chosen on a regular grid covering the whole area, with n, < n. Thedataof §' are
collected.

1) Using the data of §' we calculated a preliminary experimental variogram v'(h) and
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Table 8.2. Standard deviations of experimental variograms per lag for grid schemes and WM-optimised
schernes, calculated over 40vealisations of two underlying waviograms.

)

this

Lag number
n / 2 3 4 5 6 7 &

Exponential model
25 grid 0.20  0.36 041! 044 - - - -
W 018 028 0.40 .64 -
36 grid 0145 024 035 041 050 - - -
wm 0/4 029 042 039 046 - - -
49  grid 04/4 023 030 0635 038 - - -
win 0.7 028 033 038 046 -
64 grid GJ1 014 020 028 033 034 - -
wm 0.12 023 029 041 053 0.4 -
&/ grid 007 QM1 017 023 028 030 033 -
Wi Gi6 023 030 036 049 059 074 -
100 grid 008 012 048 022 027 03! 033 0633
wit 0.69 017 026 035 047 061 0670 0.62

__Spherical model

25 grid 022 032 033 035 - - - -
wh 024 030 038 031 -

36 grid 045 022 036 032 029 - - -
win 0.19 026 033 037 0643 - - -

49  grid 012 020 024 027 636 - - -
wm 043 020 030 030 033 -

64 grid 041 006 017 022 026 028 - -
wm 015 019 024 032 030 (034 - -

& grid 009 040 013 048 02! 023 023 -
wim 042 020 025 034 036 039 049 -

100 grid 008 002 043 @/5 018 049 022 023
wm 017 047 621 028 030 037 033 033

fitted it to a variogram model y'(h) using a weighted least squares regression
procedure.

An additional sampling scheme $°of sample size n, =n- n,is obtained by
optimising for minimal kriging variance. Thisis done by SSA with the MAX OK
criterion, using v'(h) to fill the variance matrices in the kriging equations. The
data for §”are collected.

A new experimental variogram y>(h) is calculated from §! U §? and a new model
v2(h) is fitted,

Using y°(h) and the data from $' ' §?, an interpolated surface is constructed
using ordinary kriging.

To ensure a reasonable estimation of y'(h), n, should be sufficiently large. In
study with the simulated field of 120 x 120 unit coordinates we took n, =81

samples on a 9 x 9 grid, with a grid spacing of 13 units. Earlier studies showed that
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Figure 8.5. Comparison of a regular grid with the WM-criterion for the spherical model. Experimental
variograms with standard deviations and the underlying variogramn for several sampling sizes cver 40
readisations.

optimisation of sampling schemes for minimal KV can involve samples close to or
even over the boundaries of the area (Van Groenigen eral., 1999) (Chapter 4). Therefore
we also considered a buffer area of 15 units outside the actual research area. Figure 8.4
shows the simulated field with buffer area for the spherical underlying variogram with



118 OPTIMISING MODEL ESTIMATION

grid + random

grid + ssa

20

20 20

Figure 8.6. Comparison of a vegular grid with the WM-criterion for the two spherical models in the
Cameroon study over 20 realisations. Expevimental variograms with standard deviations and the global
Tariogram for a short range (wb)and along range (cd)

nugget = 0.333, sill = 0.667 and range = 50 units. Although the mean and maximum
SKE’s were only calculated for the 120 x 120 unit research area, additional observations
were allowed to be placed outside of this area.

For comparison, a second sampling scheme of sample size 100 was set up using a
10 x 10 square grid with a grid spacing of 12 units. Both stochastic fields were sampled
using both sampling strategies. Subsequently, interpolated surfaces were predicted using
ordinary kriging, and the mean and maximum SKE’s were calculated.

8.4. Results

8.4.1. Regular grid vs. WM-criterion

Table 8.2 summarises the variogram calculations for all 80 realisations of the
underlying variograms. Since the bias was close to zero (i.¢. the underlying variogram
was reproduced over all the realisations), only the standard deviations of the
experimental variograms are presented for each lag class. The WM-optimised sampling
scheme scores occasionally better than the sampling grid (notably with very small sample
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Table 8.3. Parameters of theunderlying variogram and the futed variogram models for asampling grid of
100 observations and a two stage sampling scheme with 81 and 100 observations, respectively.

Variogram parameters

Model Nugget Sill/slope (Eff) range
Exponential
Underlying exp. 0.600 1.000 30
Grid exp. 0.396 0.504 57.0
Grid + 8§54 1 sph. 0.372 0.720 58.2
Grid + 584 2 sph. 0.060 0.696 306
Spherical

Underlying sph. 0.333 1.000 30
Grid fin. 0.408 0.016 -
Grid + 884 1 fin. 432 0.0i6 -
Grid + 8§54 2 lin. 0.504 0.0i3 -

sizes). However, the sampling grid is superior in terms of variogram fluctuation, in
particular with increasing sampling density.

Figure 8.5 shows some of these results graphically for the spherical underlying
variogram and several sample sizes. The continuous line represents the underlying
variogram over the 40 realisations of the spherical model, showing that bias (distance
between line and squares) is close 1o zero. The standard deviations are much larger for
the WM-optimised schemes, occasionally reaching more than twice the value of those
for the sampling grid.

8.4.2. Combining regular grid and WM

The variograms for the 40 realisations of the two undetlying variograms are shown
in Figure 8.6. Since the width of the sampling area was only 40 m, no variogram values
were calculated for distances exceeding 20 m, to avoid bias. Four lags were evaluated.
Following the WM-optimisation, the centres of the two smallest lags were 2 mand 4.5
m. The two largest lags centred on once and twice the grid spacing, 8 mand 16 m.

Figure 8.6 shows that the standard deviation of the shortest lag (1-3 m) is much
higher for the grid sampling scheme, although at larger distances the experimental
variograms are very similar. The standard deviations for this scheme are 0.84 and 0.67
for the first and second spherical model. With the WM-optimised sampling schemes
this reduces to 0.26 and 0.12, respectively. This improvement was achieved by specifically
optimising the additional observations for the used variogram lags, There is no significant
bias for both of the sampling schemes.
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O = preliminary sampling grid

e = additional observations
Figure 8.7. Optimisation of 19 additional sampling points for minimal kriging variance toagrid of 81
pointson theexponential field. The additional sampling points ave alloved outsicle the research area of 120x
120units.

8.4.3. Minimising the squared kriging error

Table 8.3 lists the underlying variogram models of the two stochastic fields, together
with the modelled experimental variograms of the two sampling grids. The modelled
variograms poorly relate to the underlying variogram. For the exponential stochastic
field, both the 10 x 10 sampling grid and the first stage of the two-stage sampling
scheme model a nugget effect of 0.396 and 0.372, respectively, while no nugget effect
is present in the underlying variogram. For the spherical stochastic field, both sampling
schemes overestimate the nugget effect. In addition, the experimental variogram for
the exponential stochastic field is modelled as spherical for the first stage of the two-
stage scheme. For the spherical stochastic field the variogram for both schemes is
modelled as linear, This divergence is partly caused by the sampling scheme, as it is still
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Figure 8.8. Squared kriging evror (funitf)for the two-stage sampling scheme on the exponential field,
nurmber of observations is 100,

inadequate for precisely estimating the variogram, However, since only one realisation
of the stochastic model is sampled also differences between the underlying and local
variogram play a role.

Using these modelled variograms, we optimised the additional sampling scheme
of 19 observations for minimal KV using SSA. Figure 8.7 shows the exponential field
with the preliminary sampling grid of 81 observations, together with the optimised
additional sampling scheme. All 19 observations are placed outside or close to the
borders of the actual sampling area. The two-stage scheme for the spherical field showed
sirnilar results.

For both simulated fields, the additional samples were collected and new
experimental variograms were calculated and modelled using all data (§' . §%). Table
8.3 shows the parameters for the modelled variograms. In comparison with the first
stage, the nugget effect for the exponential model is much closer to that of the underying
variogram. The modelled range, however, is only 30.6, while the effective range of the
underlying variogram is 50. The modelled variogram for the spherical field does not
improve considerably as compared to the first sampling stage.
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To.0 40.00 80.00 120.00

Figure 8.9. Squared kriging ervor lunit}) for the samipling grid on the exponential field, nsmber of
obseruations is 100,

Figures 8.8 and 8.9 show the SKE of the exponential field, using the modelled
variogram for the two-stage sampling scheme and the 10 x 10 sampling grid, respectively.
Using the two-stage sampling scheme, the mean SKE decreased from 0.39 [unit} to
0.31 [unitP. The maximum SKE decreased from 6.05 [unit] to 4,24 [unit}. For the
spherical field, the maximum SKE decreased from 15.98 [unit] to 11.52 [unit], while
the mean SKE was 0.31 [unitF for both schemes.

Figures 8.8 and 8.9 show that the improvement in terms of SKE does not only
occur in areas close to the boundaries of the area. Since the kriging neighbourhood
was set equal to 14 observations, also locations closer to the centre were influenced by
observations taken outside the borders of the research area.

8.5. Discussion

Although the use of stochastic simulations for testing the sampling schemes has
some important advantages (which were mentioned in section 8.2.4.), also some
drawbacks for this method can be observed. The Multi Gaussian simulation algorithm
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produces stationary fields based on the intrinsic hypothesis. Therefore errors that can
come up in practice due tot nonstationarity or heteroscedasticity are not accounted
for. However, the developed methods can also be applied in studies dealing with indicator
variograms, which are much less sensitive to non-stationarity.

For similar reasons, minimisation of the kriging variance remains an optinusation
criterion that will draw criticism in practice. The kriging variance only depends on the
variogram, the configuration of observations and size of kriging neighbourhood.
Therefore, local discontinuities ec. are not accounted for. In this study, we tried to
avoid this problem by evaluating the resulting squared prediction errors. It was shown
that optimising the additional sampling scheme for minimal kriging variance resulted
in better predictions in both terms of both mean and maximum squared kriging errors.

The two-stage procedure for minimising squared kriging error as it was presented
in this chapter can in principle be extended 1o more sampling stages. In that way, the
sampling scheme can be fine tuned to the variogram. However, the first sampling stage
should always be large enough to allow a reasonable estimation of the variogram. It
was shown in this chapter that a number of 81 observations can be enough for this
purpose,

The use of SSA with both WM and MAX_ OK criteria will probably be even more
beneficial in cases of pronounced anisotropy. "Van Groenigen et /. (1999) (Chapter 4)
showed that taking into account anisotropy can considerably reduce the kriging variance.

Use of SSA is also useful in terms of flexibility. In order to allow fair comparison
between square grids and SSA, only sample sizes that are squared integers {e.g. 49, 81,
1CC) were used in this chapter. In contrast, SSA is able to handle all sample sizes.

8.6. Conclusions

In this chapter, three different optimisation strategies for estimation of the
variogram were tested. The first strategy, which optimised the distribution of point
pairs over the lag classes of the experimental variogram using the WM-criterion, was
clearly inadequate as compared to regular grids of the same sample size. It led to much
higher fluctuations of the experimental variogram, especially at larger distances. The
second strategy combined a regular grid with extra observations taken at short distances
using the WM-criterion. This improved estimation of variogram values at short
distances, as compared to a sampling scheme of the same sample size. The third strategy
aimed at optimal variogram use. It was shown that a roughly estimated variogram in
the first sampling stage could lead to better predictions in terms of both mean and
maximum squared kriging errors. For variogram estimation, we recommend the second
strategy. For geostatistical interpolation studies we recommend the third.
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Chapter 9

Conclusions and Further Research

9.1. Introduction

The research presented in chapters 2 to 8 dealt with a wide variety of optitnisation
criteria and case studies, most of which used the same general optimisation algorithm
(Spatial Simulated Annealing), which therefore formed a coherent factor. The technical
details about the algorithm and the optimisation criteria varied somewhat from one
study to another and were presented piecemeal in the separate chapters. In this chapter,
the main conclusions that can be drawn from these chapters will be presented integrally.
Since the primary purpose of the study was the development of new optimisation
tools, rather than the specific research questions dealt with in the case studies, the
conclusions will focus on the methodology developed and on its use in future studies.

The purposes of the study as formulated in section 1.3. will be revisited, and
briefly checked against the research presented. Finally, some recommendations for
sampling and for further research are given.

9.2. Purposes of the study

Section 1.3. presented several purposes for this study. Below they are listed, with
the main conclusions related to these purposes:

i) Formulation ofarange of optimisation criteria that bonour awide vaviety of aims i sotl-velated
strveys.
In this thesis, a wide range of optimisation criteria has been formulated or drawn

from the literature. Chapter 3 introduced the Warrick Myers (WM) criterion from the
literature, aiming at optimal estimation of the variogram by reproducing an 4 priori



126 CONCLUSIONS AND REFERENCES

defined ideal point pair distribution (Equation 3.8). The MMSD (Minimisation of the
Means of the Shortest Distances) criterion was formulated in the same chapter, with
the aim of evenly spreading the observations over the area of interest (Equation 3.7).
This criterion was generalised into the WMSD (Weighted Means of Shortest Distances)
criterion, which was formulated in chapter 6, allowing the use of a weight function to
direct more attention to certain sub-areas and thus leaving more room for decision-
making (Equation 6.3).

In chapters 4 and 5, two additional optimisation criteria were introduced, aiming at
minimisation of the ordinary kriging variance. The MEAN_OK criterion aims at
minimising the mean kriging variance over the area of interest, whereas the MAX_OK
criterion minimises the maximum occurring kriging variance over the area (Equation
4.5; Equation 5.7),

Table 9.1 lists these criteria, together with the required input and some remarks on
their use in case studies.

1) Development of an optimisation algorithm for spatial sampling that s able to handle these
iffrent optimisation criter

The Spatial Simulated Annealing (SSA) algorithm was formulated and further
developed in the course of this thesis. Tt is an algorithm specifically designed for
optimising spatial sampling schemes. It is flexible in handling different optimisation
criteria, and insensitive to local minima. All the formulated optimisation criteria were
implemented in SSA, and more can be added in the future. Chapter 3 described the
main outlines of the algorithm, and gave some examples using the MMSD and WM
optinsation criteria. In chapters 4 to 6, the other optimisation criteria were formulated
and implemented in the SSA algorithm for use in specific case studies. A preliminary
version of the software for using the SSA algorithm, which I programmed in the
course of my study, is available at http://www itc.nl/~groenig. This site includes some
example files and will be continually updated in the future.

i) Incorporation of ancillary datasuchas co-velated tmagery, bistoricknowledge and expert fenonledge
in thesampling strategy.

One of the main achievements of this thesis is the development of tools to
incorporate many types of ancillary data in the sampling strategy. Chapter 2 presented
a phased sampling strategy in which each sampling stage used the preceding sampling
stage(s) to provide ancillary data. Using Indicator Kriging, the probability of exceeding
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an environmental threshold value was used to direct sampling in subsequent stages.
This procedure was combined with SSA in chapter 6.

The SSA algorithm allows the optimisation of spatial sampling schemes using
many other types of ancillary data. Preliminary observations are used as an integrated,
albeit static, part of the sampling scheme. This was presented and illustrated with
some examples in chapter 3. In chapters 4 and 5, it was shown how the preliminary
observations can be included into the optimised sampling scheme for minimal kriging
variance. Chapter 6 showed how a large number of observations on multivariate
contamnination can be included in an optimised sampling scheme. It also shows how
historical knowledge on land use can be incorporated into the sampling strategy.

One of the most attractive properties of SSA is that it can honour sampling
constraints that are very common in {environmental) soil survey. Chapter 3 showed
how SSA distinguishes between sampling constraints that are simply delineating the
area of interest (e.g. boundaries of the area) and constraints that frustrate the sampling
effort (e.g. buildings under which contamination should be assessed). In chapter 6, this
property was used in a soil contamination study within a complex shaped study area

with many buildings that prohibited sampling,

strategies.

Wherever possible, the optimisation algorithms were compared with more
conventional sampling schemes. The use of probability maps in a phased sampling
strategy to guide additional sampling to the more interesting areas (chapter 2) was
compared with both a regular grid and a random sampling scheme using stochastic
simulation (Table 2.2). Results clearly showed that a two-stage sampling approach
outperformed both conventional schemes in terms of efficiency of derived action
(remediation). The two-stage sampling scheme characterised 70% of the area correctly
as either polluted or not polluted, as opposed to 55% by the regular grid (T'able 2.3).

Most optimisation criteria for SSA were compared with conventional sampling
schemes. Optimisation by SSA using the WM eriterion for optimising variogram
estimation was compared with a Monte Carlo optimisation from the literature in chapter
3. It was shown that SSA outperformed the Monte Carlo optimisation for all test
studies in terms of the WM criterion, in one case reaching almost a complete solution.
In chapter 8, the validity of the WM criterion as an optimisation criterion for variogram
estimation was tested. Compared with a regular grid in a simulation study, WM-optimised
schemes showed higher fluctuations in experimental variograms, especially at larger
distances (Figure 8.5). WM-optimised schemes for observations in addition to a
preliminary, systematic sampling scheme showed better results, especially at shorter
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distances. It was therefore concluded that the WM criterion can be used for optimising
additional observations for short-distance variogram estimation only.

Sampling schemes designed with the MMSD criterion were compared with an
equilateral triangular grid in chapter 3. The optimised schemes showed a small but
distinct improvement of 2.4% in a simple example (Figure 3.1). This improvement
increased considerably to about 30% when more sampling constraints and preliminary
observations were added (Table 3.1). In chapter 7, different uses of the MMSD criterion
were compared with each other for optimally establishing soil/yield relationships. The
use of an approximate yield map considerably improved the establishment of significant
relations, thereby proving the potential benefits of using ancillary data in the sampling
strategy (Tables 7.3 and 7.4

The performances of the WMSD criterion (the MMSD criterion combined with a
spatial weight function) could not be compared with other schemnes, since there is no
good equivalent for this in conventional sampling strategies.

The two optimisation criteria for minimisation of the kriging variance (the
MEAN_OK and MAX_OK criteria) were compared with a triangular grid in chapters
4and5 (Flgure 5.3). In a simple example. The tnangular grid was inferior in terms of
both criteria. Performances of the MEAN_OK criterion improved with around 1.5%,
while the MAX OK criterion nnproved around 38.5% (Table 5.1). Furthermore, the
MEAN OK and MAX_OK criteria were compared with each other in chapter 5. The
optimised schemes showed considerable differences, indicating that a clear choice has
to be made for one of the criteria in surveys (Table 5.2). Table 9.1 summarises the aims
and prerequisites for the various optimisation criteria formulated in this thesis.

In summary, the developed methodology performed better than conventional
schemes in terms of all the optimisation criteria except the WM criterion. The extent
of the improvements varied widely, depending on the optimisation criterion, the size
of the sampling scheme and sampling constraints within the area. However, it should
be emphasized that optimisation with SSA is especially beneficial in areas where
boundaries are intricate and sampling constraints and preliminary observations are

abundant.

Y Application of developed optimisation techniques in practical sodl sampling studies.

Throughout the thesis, optimisation techniques I developed have been applied in
a variety of case studies. In chapter 2, the developed phased sampling approach was
applied to a lead contamination study in the city of Schoonhoven. Results of this case
study were tested using stochastic simulation, showing that the phased sampling
approach yielded better results than conventional techniques (Table 2.3).

This phased sampling approach, combined with SSA, was applied in a multivariate
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pollution study in the city of Rotterdam {chapter 6). Knowledge on sampling constraints
and historical knowledge on the area were incorporated in the sampling strategy. This
highly intricate case study clearly showed the flexibility of the used methodology.

In chapter 4, SSA with the MEAN OK criterion was applied in a study on a river
terrace in Thailand. It was shown how a preliminary sampling scheme could be used to
estimate the variogram, and subsequently used for completing the sampling scheme
for minimisation of the kriging variance.

Chapter 8 showed that these optimised sampling schemes for minimal kriging
variance also resulted in smaller squared prediction errors.

Chapter 7 showed how co-related imagery (yield maps) can assist in optimising the
assessment of relations between soil and yield. This was done in a case study on precision
agriculture for zero-input millet farming in Niger.

9.3. Recommendations for sampling

Out of the different optimisation criteria and case studies presented in this thests,
several practical and some more theoretical recommendations for sampling can be
derived. They will be formulated below.

One of the more general conclusions is that the routinely applied regular sampling
grid is almost never the optimal sampling scheme in terms of the formulated
optitnisation criteria. There are some exceptional cases where the combination of the
shape of sampling area and the number of observations results in a regular grid. An
example of this is shown in Figure 7.4a, where a square area with 9 observations
results in a 3 x 3 square sampling grid. Another example can be seen on one of the
figures shown on the back of the cover, where an equilateral triangular sampling area
with 10 observations results in an equilateral triangular sampling grid. However, such
cases are relatively rare. Case studies will often look more like Figure 6.3, with intricate
boundaries, sampling constraints and preliminary observations. In such cases, use of
SSA will considerably improve the efficiency of the survey, and the quality of its
outcome. Therefore, the use of SSA for dealing with cases of this type is recommended.

Another recommendation is to very carefully consider what the exact objective of
the study 1s. Although this may seem selfevident, the studies in this thesis showed that
even very small differences in optimisation critenia could result in very different optimised
sampling schemes. An example of this is shown in Figure 5.6, where two sampling
schemes were optimised for minimal kriging variance MEAN_OK criterion). The
variograms for both schemes had similar nuggets, sills and (effective) ranges. Yet, the
resulting sampling schemes differed considerably in outlook. In this respect, the choice
between minimising the mean kriging variance and the maximum kriging variance is
also crucial.
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If optimal interpolation using kriging is the aim, taking observations just outside
the area may considerably improve accuracy of the results. Thisis shown in Figure 8.7,
where some observations taken outside the area improved both kriging variance and
the actual squared kriging error. It should be emphasised that this is only true in situations
where the boundaries of the sampling area do not coincide with those of the ReVin
question. As an example, it may be very worthwhile to sample just outside a sample
plot if the surrounding field has had the same treatment. However, it would be very
unwise if the sample area is a mapping unit of a soil map based on sharply delineated
physiographic units.

A final recommendation is to be very careful in using the point pair disttibution as
a measure of accuracy for variogram estimation. Figure 8.5 showed that this criterion
(WM criterion) on its own is inferior compared with a regular grid. It should only be
used to 'upgrade' an existing data set that roughly covers the whole area, for additional
observations at short distances. An example of this is presented in Figure 8.6.

9.4, Recommendations for further research

In this thesis, SSA has been developed as a basis algorithm for optimisation of
spatial sampling schemes. Although many optimisation criteria have already been
formulated, the SSA algorithm leaves room for many more to be formulated in the
future. Most importantly, an optimisation criterion dealing with cokriging will be
formulated in the near future (Table 9.1). This will be especially useful in case studies
where a large amount of co-related secondary data is available to improve the prediction
accuracy of the primary variable. An obvious example of such secondary data is remotely
sensed 1magery. A drawback of cokriging is that it involves much modelling of
(co)variograms, and that a model of co-regionalisation should be assumed. Space/
time geostatistics offers many opportunities for new optimisation criteria, and a start
has been made by Stein et af. (1998}. Finally, cost models should be included in the
optimisation criteria.
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Summary

Aims

This thesis aims at the development of optimal sampling strategies for geostatistical
studies. Special emphasis is on the optimal use of ancillary data, such as co-related
imagery, preliminary observations and historic knowledge. Although the object of all
studies is the soil, the developed methodology can be used in any scientific field dealing
with geostatistics.

In summary, the objectives of this study were:

¢ Formulation of a range of optimisation ctiteria that honour a wide variety of aims
in soil-related surveys.

i) Development of an optimisation algorithm for spatial sampling thar is able to
handle these different optimisation criteria.

u) Incorporation of ancillary data such as co-related imagery, historic knowledge and
expert knowledge in the sampling strategy.

#) Comparison of the performances of the developed optimisation algorithms with
established sampling strategies.

1 Application of developed optimisation techniques in practical soil sampling studies.

Outline of major tools

Chapter 2 shows how a phased sampling procedure can optimise environmental
risk assessment. Using indicator kriging, probability maps of exceeding environmental
threshold levels are used to direct subsequent sampling. The method is applied in a
lead-pollution study in the city of Schoonhoven, The Netherlands. It is tested using
stochastic simulations, and results are compared to conventional sampling schemes in
terms of type-I and type-I errors. The phased sampling schemes have much lower
type-Ierrors than the conventional sampling schemes with comparable type-Il errors.
They predict almost 70% of the area correctly (polluted or not-polluted), as compared
to 55% by conventional schemes.

Chapter 3 introduces the spatial simulated annealing (SSA) algorithm as a general,
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flexible optimisation method for spatial sampling. Sampling schemes are optimised at
the point level, taking into account sampling constraints and preliminary observations.
Different optimisation criteria can be handled. SSA is demonstrated using two
optimisation criteria from the literature. The first (the MMSD criterion) aims at even
spreading of points over the area. The second (WM criterion) optimises the realised
point pair distribution for variogram estimation. For several examples it is shown that
SSA is superior to conventional sampling strategies. Improvements up to 30% occur
for the first criterion, while ant almost complete solution is found for the second criterion.
SSA is flexible in adding extra criteria.

Optimising sampling for spatial interpolation

Chapter 4 introduces the MEAN OK algorithm in SSA, which aims at minimisation
of the mean ordinary kriging vartance over the research area. It is applied on texture
and phosphate content on a river terrace in Thailand. First, sampling is conducted for
estimation of the variogram. The variograms thus obtained are used to optimise
additional sampling for minimal knging variance using SSA. This reduces kriging vaniance
of sand percentage from 28.2 10 23.7 {%}%. The variograms are used subsequently in a
geomorphologically similar area. Optimised sampling schemes for anisotropic variables
differ considerably from isotropic ones. Size of kriging neighbourhood has a small but
distinct effect on the schemes. The schemes are especially efficient in reducing high
kriging variances near boundaries of the area.

Chapter 5 further explores the possibilities of minimising kriging variance using
SSA. Next to the MEAN_OK criterion, the MAX_OK criterion is introduced, which
minimises maximum kriging variance. Both criteria are compared to a regular grid.
Using SSA, the mean kriging variance reduces from 40.64 [unit to 39.99 [unitF. The
maximum kriging variance reduces from 68.83 [unit} to 53.36 [unit 2. An additional
sampling scheme of 10 observations is optimised for an irregularly scattered data set
of 100 observations. This reduces the mean kriging variance from 21.62 [unit} to
15.83 [unit¥, and maximum kriging variance from 70.22 {unitF to 34.60 {unit}. The
influence of variogram parameters on the optimised sampling schemes is investigated.
A Gaussian variogram produces a very different sampling scheme than an exponential
variogram with similar nugget, sill and (effective) range. A very short range results in
random sampling schemes, with observations separated by distances larger than twice
the range. For a spherical variogram, magnitude of the relative nugget effect does not
effect the sampling schemes, except for high values.

Chapter 6 introduces the WMSD criterion into SSA, which optimises sampling
using a spatial weight function. This allows distinguishing between different areas of
priority. A multivariate contamination study in the Rotterdam harbour with five
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contaminants at two depths shows two subsequent sampling stages with two spatial
weight functions. The first stage combines earlier observations and historic knowledge,
with emphasis on areas with high priority. The resulting scheme shows a contamination
at 17.4% of the samples, with 1.5% heavily contaminated. The second stage uses
probability maps of exceeding intermediate threshold values to guide additional sampling
to possible hot spots. This yields 26.7% contaminated samples, with 16.7% heavily
contaminated. These include new locations that were not detected during the first
stage. The WMSD criterion can be used as a valuable tool in decision making processes.

Optimising sampling for model estimation

Chapter 7 {ocuses on the use of ancillary data to optimise sampling for precision
farming research. Using a cheap, low-tech scoring technique yield maps were predicted
for millet in an on-farm study in Niger. Yield varied from 0 to 2500 kg ha'. Subsequently,
SSA was used to optimise three different sampling schemes. Scheme 1 optimised
coverage of the whole area. Scheme 2 covered the whole yield range, and scheme 3
covered the low producing areas. Using correlation coefficients, scheme 2 found
significant correlations between 5 variables and yield. Scheme 1 found only one
significant correlation. Using multivariate regression of yield on soil variables, scheme
2 explained 70% of the yield variation. For scheme 1 this was only 37%. Differences
between scheme 3 and scheme 1 proved to be significant for distance to shrubs, micro-
relief, pH-H,O and CEC. From this study we concluded that shrubs are the main
factor influencing yield by catching eroded particles and improving soil fertility. In
general, we concluded that the sampling strategy of scheme 2 should be recommended
for establishing yield/soil relations. Variograms of micro-relief and yield suggested
that spatial correlation is largely confined to distances of 3to 5 m.

Chapter 8 evaluates a number of sampling strategies for variogram estimation. In
the first part, a regular grid is compared to a sampling schemne that optitnises the point
pair distribution for variogram estimation. This yields unbiased experimental variograms.
However, the fluctuation of the experimental variograms is much lower with a regular
grid. We concluded from this that the point pair distribution alone is not a useful
optimisation criterion for variogram estimation. In the second part, additional
observations selected for optimal point pair distribution are compared with randomly
drawn additional observations, The random observations result in much higher standard
deviations at shorter distances, We concluded from this that for additional short distance
observations the point pair distribution is a very useful optimusation criterion. The
third part focusses on optimal variogram use. A sampling grid of 8 lobservations is
completed, after preliminary estimation of the variogram, with 19 additional
observations for minimal kriging variance. The scheme is compared to a regular grid
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of 100 observations. For an exponential field without nugget effect, the use of the
phased sampling scheme reduces the mean squared kriging error from 0.39 [unit} to
C.31[unit], and the maximum squared kriging error from 6.05 [unitP to 4.24 [unit .
For a spherical field with a nugget effect of 33%, mean squared kriging error does not
change and maximum squared kriging error decreases from 15.98 funitF to 11.52 [unit}.
We concluded that minimisation of the squared kriging error is often more relevant
than accurate estimation of the variogram. Taking samples just outside the area improved
the quality of the prediction in terms of both kriging variance and squared kriging
error.




Samenvatting

Doelstellingen

Dit proefschrift richt zich op de ontwikkeling van optimale bemonsterings-
strategieén voor geostatistische studies. Er is speciale aandacht voor het optimale gebruik
van voorinformatie, zoals gerelateerd kaartmateriaal, eerdere observaties en historische
kennis. Alhoewel alle case studies afkomstig zijn uit de bodemkunde, kunnen de
ontwikkelde strategiegn gemakkelijk worden aangepast voor andere wetenschappelijke
velden waar geostatistiek een rol speelt.

De belangrijkste doelen van de studie kunnen als volgt worden samengevat:

¢ Formuleren van een aantal optimalisatiecriteria die recht doen aan de grote
verscheidenheid aan doelen in bodem gerelateerde studies.

#7) Ontwikkelen van een optimalisatie algoritme voor ruimtelijke bemonstering dat in
staat is om verschillende optimalisatiecriteria te onderscheiden.

i3) Integreren van voorinformatie zoals gerelateerd kaartmateriaal, eerdere observaties
and histonische kennis in de bemonsteringsstrategie.

ry) Vergelijken van de ontwikkelde bemonsteringsstrategieén met conventionele

strategleén.

y Toepassen van de ontwikkelde optimalisatie technieken in praktische bodem-
bemonsteritigs studies.

Ontwikkelde methodologie

Hoofdstuk 2 [aat zien hoe een gefaseerde bemonsteringsprocedure ruimtelijke
risicoinventarisatie kan optimaliseren. Kaarten met overschrijdingskansen van
drempelwaarden worden geconstrueerd met behulp van Indicator Kriging, Deze worden
vervolgens gebruikt om bemonstering in volgende fasen aan te sturen. De methode
wordt toegepast in een loodverontreinigingsstudie in Schoonhoven, en wordt getest
door midde] van stochastische simulatie. De resultaten van de bemonsteringssirategieén
worden uitgedrukt in termen van type-I en type-II fouten. De gefaseerde aanpak
resulteert in veel lagere type-I fouten dan die van conventionele bemonsteringsschema's,
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terwijl type-Il fouten gelijk blijven. De getaseerde aanpak voorspelt bijna 70% van het
gebied correct (verontreinigd of niet verontreinigd), en de conventionele aanpak slechts
55%.

Hoofdstuk 3 introduceert het Spatial Simulated Annealing (SSA) algoritme. SSA is
een breed toepasbaar en flexibel algoritme voor optimalisatie van ruimtelijke
bemonstering. Bemonsteringsschema's worden geoptimaliseerd op het punt niveau,
waarbij rekening wordt gehouden met praktische bemonsteringsbeperkingen en eerdere
observaties. Verschillende optimalisatiectiteria kunnen worden gehanteerd. Het gebruik
van SSA wordt geillustreerd aan de hand van twee, uit de literatuur gehaalde criteria.
Het eerste (MMSD) eriterium richt zich op het gelijkmatig spreiden van de punten
over het gebied. Het tweede (WM) criterium optimaliseert de gerealiseerde punten-
paar verdeling voor het experimentele variogram. Door middel van verschillende
voorbeelden wordt aangetoond dat SSA superieur is in vergelijking met conventionele
bemonsteringsstrategieén. De prestaties van SSA zijn tot 30% beter voor het eerste
criterium, terwijl voor het tweede criterium een bijna complete oplossing wordt
gevonden. SSA biedt veel mogelijkheden voor het implementeren van nieuwe
optimalisatie criteria.

Bemonsteringsoptimalisatie voor ruimtelijke interpolatie

In hoofdstuk 4 wordt SSA uitgebreid met het MEAN OK criterium, dat zich
richt op minimalisatie van de gemiddelde ordinary kriging variantie. Dit criterium wordt
toegepast in een bemonsteringsoptimalisatie voor textuur en fosfaat gehalte op een
rivierterras in Thailand. Als eerste wordt een bemonstering uitgevoerd voor het schatten
van de variogrammen. Deze worden gebruikt voor het optimaliseren van een additioneel
bemonsteringsschema voor minimale kniging variantie. De kriging variantie voor het
percentage zand wordt zo teruggebracht van 28.2 tot 23.7 (%)2. De variogrammen
worden ook gebruikt voor bemonsteringsoptimalisatie in een ander, geomorfologisch
gelijk gebied. Optimale bemonsteringsschema's voor anisotrope variabelen verschillen
sterk van die voor isotrope variabelen. De grootte van de kriging neighbourhood heeft
een klein maar duidelijk effect op de bemonsteringsschema's. De schemna's reduceren
vooral de kriging variantie aan de randen van het gebied.

Hoofdstuk 5 werkt de mogelijkheden van kriging variantie minimalisatie verder
uit. Naast het MEAN_OK wordt ook het MAX OK criterium geintroduceerd, dat
zich richt op minimalisatie van de maximum kriging variantie. Beide criteria worden
vergeleken met een regelmatig grid. SSA brengt de gemiddelde kriging variantie terug
van 40.64 [unit] tot 39.99 [unit]. De maximum kriging variantie daalt van 68.83 [unit}
naar 53,36 [unitF. Een additioneel bemonsteringsschema van 10 observaties wordt
geoptimaliseerd voor een onregelmatige data set van 100 observaties. Dit reduceert de
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kriging variantie van 21.62 [unit} naar 15.83 [unit} , en de maximum kriging variantie
van 70.22 [unit} tot 34.60 [unit}. Verder wordt de invloed van variogram parameters
op het optimale bemonsteringsschema onderzocht. Een Gaussisch variogram model
resulteert in een totaal ander bemonsteringsschema dan een exponenticel model met
dezelfde nugget, sill en (effectieve) range. Een zeer korte range resulteert in random
bemonsteringsschema's, met observaties op een minimum afstand van tweemaal de
range. Voor een sfetisch variogram heeft de hoogte van het relatieve nugget effect
geen effect op het optimale bemonsteringsschema, behalve voor hoge waarden.

Hoofdstuk 6 introduceert het WMSD criterium in SSA, dat bemonsteringsschema's
optimaliseert door middel van een ruimrelijke gewichtfunctie. Dit maakt het mogelijk
om onderscheid te maken tussen verschillende prioriteitsgebieden. Dit critenium wordt
toegepast op een multivariate verontreinigingsstudie in de haven van Rotterdam met
vijf verontreinigende stoffen op twee dieptes. De bernonsteringsstrategie bestaat it
twee fasen met twee verschillende ruimtelijke gewichtfuncties. In de eerste fase worden
eerdere observaties en historische informatie gecombineerd met informatie over de
prioriteit van sanering. De metingen van het resulterende schema zijn voor 17.4%
verontreinigd, waarvan 1.5% zwaar verontreinigd. In de tweede fase worden
overschrijdingskanskaarten van relatief lage drempelwaarden gebruikt om additionele
bemonstering te leiden naar mogelijke hot spots. Dit resulteert in 26.7% verontreinigde
monsters, waarvan 16.7% zwaar verontreinigd. Hier was een aantal locaties bij die niet
in de eerste fase waren aangemerkt als verontreinigd. Het WMSD criterium kan grote
waarde hebben bij het ondersteunen van beslissingen.

Bemonsteringsoptimalisatie voor modelschattingen

Hoofdstuk 7 richt zich op het optimaliseren van bemonstering in de precisie
landbouw met gebruik van co-gerelateerde data. Met behulp van een goedkope, low-
tech methode worden oogstkaarten voorspeld van gierst in Niger. Oogst varieert van 0
tot 2500 kg ha'. SSA wordt gebruikt voor het optimaliseren van 3 verschillende
bemonsteringsschema's. Schema { optimaliseert verdeling van de observaties over het
hele gebied. Schema 2 bestrijkt alle oogstwaarden, en schema 3 bestrijkt alleen de laag-
producerende gebieden. Schema 2 resulteert in vijf significante correlaties tussen cogst
en bodemvariabelen. Schema 1 vindt slechts één significante correlatie. Schema 2
verklaart 70 % van de oogst-variatie door middel van multivariate lineaire regressie.
Schema 1 verklaart slechts 37 %. Verschillen tussen schema 3 en schema 1 zijn significant
voor afstand tot strutken, micro-reliéf, pH-H O en CEC. Wij concludeerden dat struiken
de belangrijkste factor zijn in de oogstvariabiliteit. Dit komt door het opvangen van
geérodeerde deeltjes enerzijds, en het lokaal verbeteren van de bodemvruchtbaarheid
anderzijds. Wij concludeerden verder dat de bemonsteringsstrategie van schema 2 moet
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worden aanbevolen voor het onderzoeken van oogst/bodem relaties, in het byjzonder
bij een laag aantal observaties. De variogrammen van micro-reliéf en oogst suggereren
verder dat ruimtelijke correlatie grotendeels beperkt blijft tot afstanden van 3 tot 5 m.

Hoofdstuk 8 evalueert een aantal bemonsteringsstrategieén voor het schatten van
variogrammen. Het eerste gedeelte vergelijkt een regelmatig grid met een bemonsterings-
schema dat de puntenpaar verdeling optimaliseert. Dit resulteert in zuivere variogram
schattingen. De fluctuatie in geschatte variogrammen is echter veel hoger voor het
geoptimaliseerde schema. Wij concludeerden hieruit dat de puntenpaar verdeling op
zich zelf geen zinnig optimalisatie criterium is voor variogram schattingen. In het tweede
gedeelte worden extra observaties geselecteerd voor optimale puntenpaar verdeling,
en vergeleken met random getrokken extra observaties. De random getrokken
observaties resulteren in een veel hogere standaardafwijking op korte afstand. Hieruit
concludeerden wij dat de puntenpaar verdeling een nuttig optimalisatie criterium is
voor het selecteren van additionele observaties voor metingen op korte afstand. Het
derde gedeelte richt zich op het optimale gebruik van variogrammen. Een
bemonsteringsgrid van 81 observaties wordt, na voorlopige schatting van het variogram,
aangevuld met 19 extra observaties voor minimale kriging variantie. Dit schema wordt
vergeleken met een regelmatig grid van 100 observaties. Voor een exponentieel
stochastisch veld zonder nugget wordt de gemiddelde gekwadrateerde krigingfout
teruggebracht van 0.39 [unitF tot 0.31 funitF. De maximum gekwadrateerde krigingfout
daalt van 6.05 [unit} naar 4.24 [unit . Voor een sferisch stochastisch veld met een
nugget effect van 33 % blijft de gemiddelde gek wadrateerde krigingfout gelijk, en daalt
de maximum gekwadrateerde kriging fout van 15.98 [unit]’ naar 11.52 [unit}’. Wijj
concludeerden dat minimalisatie van de gekwadrateerde krigingfout vaak meer relevant
is dan het nauwkeurig schatten van het variogram. Het nemen van observaties vlak
buiten het eigenlijk onderzocksgebied verbeterde de kwaliteit van de voorspellingen
voor zowel knging variantie als gekwadrateerde krigingfout.
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