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1. 

In termen van kriging variantie is een regelmatig grid vrijwel nooit het optimale 

bemonsteringsschema. 

Ditproefechrifi 

2. 

Het optimaal gebruiken van beschikbare voorinformatie zal in ruimtelijke bodem- en milieu-
inventarisaties steeds belangrijker worden. Een flexibel algoritme voor optimalisatie van 

bemonstering zoals Spatial Simulated Annealing is hierbij onontbeerlijk. 

Ditproefschrift 

3. 

Bij een gegeven aantal observaties kan het nemen van monsters buiten de grenzen van het 
onderzoeksgebied leiden tot een belangrijke verbetering van de interpolatie, in termen van 

zowel kriging variantie als gekwadrateerde kriging fout. 

Ditproefschri.fi 

4. 

Door de sterke focus op het ontwikkelen van geavanceerde interpolatie- en simulatie-
technieken is theorievorming over bemonstering in de geostatistiek jarenlang ten onrechte 

verwaarloosd. 
Ditproefkbrift 

5. 

Aangezien Indicator Kriging geen verdelingsfunctie, maar een voorspelde verdelingsfunctie 
oplevert, kan de kriging variantie in dit algoritme niet worden genegeerd. 

Dit proefsclmfi 

http://Ditproefschri.fi


6. 
Case studies in bodemkundige proefschriften zijn uitsluitend relevant als ze dienen voor het 
testen of dlustreren van het ontwikkelde gedachtegoed. Zij mogen nooit een doel op zich 

worden. 

7. 

Iedere wetenschap krijgt de wetenschappers die zij verdient. 

vgLPatdFeyerabend, 'Againstmethod' 

Zelfkennis is het begin van alle wijsheid; zelfoverschatting het begin van alle (verlangen naar) 
rnacht. 

9. 
Het is vreemd dat veel ecologische koffie- en thee- merken het Max Havelaar keurmerk niet 
voeren, aangezien dit suggereert dat de mens de enige productiefactor is die niet duurzaam 

aangewend hoeft te worden. 

10. 

Cursussen time-management zijn zinloos, aangezien mensen die er tijd voor vnj kunnen 
maken, het niet nodig hebben, en mensen die het nodig hebben, er geen tijd voor vnj kunnen 

maken. 

11. 

Na zonneschijn komt regen. 

12. 

Niets is zo ongeloofwaardig als een statisticus met vhegangst. 



Voor Opa van Groningen 

"For nitrates are not the land, nor phosphates; 
and the length of fiber in the cotton is not the land. 

Carbon is not a man, nor salt nor-water-nor-calcium. 
He is all these, but he is much more, much more, 
and the land is so much more than its analysis " 

John Steinbeck 
'The Grapes of Wrath' 
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List of Symbols 
The following list contains symbols that are used in more than one chapter of this 

thesis. 

A , 

AR 
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Research area. 

Part of research area that can be sampled, A s 

Length of separation vector, x ; - x ; 

Separation vector, x ; - x ; . 

ith Soil layer. 

Number of sampling points, x l v . . , x n . 

Number of evaluation points on a fine raster grid, x ' , . 

Number of lag classes for experimental variogram. 

Transition probability of St to Si+1 during optimisation with 

Spatial Simulated Annealing. 

Regionalized variable, usually denoted by Z(-). 

Sampling scheme, consisting of sampling points x1,...,xn . 

Intermediate sampling scheme in the Ith step of optimisation 

using Spatial Simulated Annealing. 

Location vector of predicted point using (indicator) kriging. 

Location vector of the ith observation point. 

Location vector of the/* evaluation point. 

Location vector of the nearest observation point xi to x . 

Observation of the ReV Z(-) at location x . 

Regionalized Variable (ReV). 

Level of significance. 

Fitness function to be minimised, expresses the performance 

of sampling scheme S. 
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y(&) 
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(Semi-) variance as function of separation vector fi. 
Estimated (semi-) variance as function of fi. 
Weight of the Ith observation point in the kriging predictor of 
x0 . 
Standard deviation of seperation vectors fi in lag class i. 
Ordinary kriging variance 
Realised number of point pairs in lag class z. 
Ideal number of point pairs in lag class i, as defined by the 
user. 



Chapter 1 

General Introduction 

'"Forty-two!yelled Loonquawl. 'Is thatallyou'vegotto show for seven anda half million-years'work? 
'Ichecked it very thoroughly', saidthe computer, 'and that quite definitely is the answer. I think the problem, 

to be quite honest with you, isthatyou'veneveractuallyknownwhatthequestionis.'" 

Douglas Adams 
'the Hitch Hikers' Guide to the Galaxy' 

1.1. Spatial sampling or soil sampling? 

This thesis is written by a soil scientist who specialised in geostatistics. Therefore, 
all case studies and most examples are drawn from soil science. Yet, the title of this 
thesis is 'Constrained Optimisation of Spatial Sampling' instead of '...Soil Sampling'. 
There are two reasons for this: 

i) The thesis is only concerned with soil sampling for characterisation of spatial 
distribution. Issues like optimising sampling of excavated soil for waste disposal, 
the optimal number of samples for bulking, calculation of the mean phosphate 
saturation, etc. fall outside its scope. Therefore, the spatial character of the study 
was made explicit in the title. 

ii) Although the case studies in this thesis are exclusively drawn from soil science, the 
developed techniques should be easy to modify for application in other scientific 
fields. The central concept in geostatistics is the theory of Regionalized Variables 
(ReV's), and any scientific field dealing with such ReV's could potentially benefit 
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from these techniques. These fields include, among many others, remote sensing 
(e.g. Csillageral., 1996), hydrology (e.g. Hendricks-Franssen and Gomez-Hernandez, 
1997), meteorology (e.g. Seo etai, 1990) and even marine biology (e.g. Petitgas, 
1993). 

1.2. Motives for the study 

The importance of sampling strategies in soil-related surveys stems from the 
fundamental fact that our knowledge on soils in their natural state is at best incomplete, 
at worst erratic. The data we have on soils is usually either indirect (such as aerial 
photography) or based upon destructive techniques (such as laboratory analysis). Maps 
on soil properties in their natural state therefore have to be inferred using conceptual 
models such as soil-landscape relationships, quantitative models such as provided by 
geostatistics, or (preferably) a combination of both. They are never fully known. This 
"frustratingfeature of reality" (Isaaks and Srivastava, 1989: p. 107) forces the geostatistician 
to collect samples as a basis for spatial characterisation. 

Yet, collecting samples has been relatively neglected in the geostatistical literature. 
While exceedingly complex algorithms for interpolation and (more recently) stochastic 
simulation have been developed, sampling strategies have not drawn much attention. 
Most textbooks on geostatistics start with data analysis, taking the data collection for 
granted, or at most dedicate a few lines to it. Deutsch and Journel (1998), while discussing 
13 different types of kriging and 8 types of stochastic simulation, fail to give any 
recommendations on the collection of data to feed these algorithms. Although 
Goovaerts (1997a) makes some remarks on the (nested) sampling strategy used to 
collect his main data set, he states that "In this book, one considers the situation where data 
have already been collected, possibly with no statistical treatment in mind" (Goovaerts, 1997a: 
p.75). Isaaks and Srivastava (1989) focus on how to correct for inadequate sampling 
strategies, rather than how to avoid them. Webster and Oliver (1990) include a much 
more detailed discussion on sampling strategies. Their main focus, however, is on 
sampling strategies derived from classical sampling theory (sampling designs such as 
systematic sampling, random sampling, etc.). In classical sampling theory (as opposed 
to geostatistics), several well-established sampling designs are routinely applied (e.g. 
Cochran, 1977; Thompson, 1992). More recently, optimisation strategies for such 
sampling designs in a spatial context have been developed (De Gruijter and Ter Braak, 
1990; Domburg £*<*/., 1994). 

The fact that few sampling strategies (apart from the well-known regular grids) 
belong to the established tools of the geostatistician, does not mean that no significant 
research on the subject has been done. Landmark papers were published on the optimal 
grid spacing (McBratney and Webster, 1981), the type of regular grid (Yfantis et al., 
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1987), optimal estimation of the variogram (Webster and Oliver, 1992) and on 
geostatistical vs. classical sampling theory (De Gruijter and Ter Braak, 1990). However, 
these results have not yet evolved into sampling strategies that can be routinely applied 
in practice, as have many interpolation and simulation algorithms. 

One of the reasons for this is the wide variety of optimisation criteria met in 
different soil-related surveys. Cressie remarks on sampling strategies that "at the very 
basis ofoptimalstatistical design is... the choke of what is to be estimated or predicted, second the 
choice of the estimator or predictor..." (Cressie, 1991: p.314). A few examples from the 
literature can show how far optimisation criteria, either implicitly or explicitly stated, 
can diverge in soil-related spatial studies: 

i) Yfantis etal. (1987) used the mean kriging variance as a discrimination criterion 
between different types of regular grids. 

it) Warrick and Myers (1987) used the point pair distribution of the sampling scheme 
for estimation of the variogram as an optimisation criterion for a Monte-Carlo 
optimisation. 

Hi) Stein etal. (1988b) calculated the mean (squared) prediction error to assess the use 
of water table height as a covariable in cokriging of moisture deficit. 

iv) Webster and Oliver (1992) used the fluctuation of the experimental variogram 
values as a means of selecting between different sampling schemes. 

y) Brus (1994) aimed at minimal sampling variance of the mean Phosphate saturation 
over the whole study area. 

vi) Watson and Barnes (1995) defined several optimisation criteria, among them 
optimisation of the chance of detecting the maximum value in the area of interest. 

Before any optimisation of the sampling scheme can be tried, the optimisation 
criterion should be explicitly stated. In fact, the formulation of an optimisation criterion 
may contribute to the understanding of the problem at hand. For example, in studies 
aiming at optimal variogram characterisation, formulation of the optimisation criterion 
may well be the most difficult part of the whole survey, as will be shown in this thesis. 

A second reason for the lack of practical sampling strategies in geostatistics is that 
in soil survey many other, non-pedological criteria and issues may play an important 
role. Cressie observes on the problem of optimal sampling that "The statistical problem is 
part of a much bigger picture... "(Cressie, 1991: p.268). A good example in this context is 
the practice of soil remediation in urban areas, where the soil surveyor has to deal with 
such diverse scientific fields as ecology, toxicology, chemical technology and psychology 
(Okx etal., 1996). As a further complication, sampling constraints such as buildings, 
roads etc. can easily include 90% of the area. Apart from that, the surveyor should take 
into account financial constraints and is always tied to environmental legislation, which 
may not necessarily require the most reasonable course of action. 
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Therefore, an optimisation method for spatial sampling should also be both flexible 
and robust, and should be able to handle all types of errors, deviations and non-
scientific considerations that are usually met in practice, while still leaving room for the 
decision-making processes that are related to many types of spatial soil studies. This 
thesis presents such an optimisation method. 

1.3. Purposes of this study 

The main purpose of this thesis is the development of an all-purpose, flexible and 
robust optimisation algorithm for sampling in geostatistical studies. This overall purpose 
leads to several aims: 

i) Formulation of a range of optimisation criteria that honour a wide variety of aims 
in soil-related surveys. 

ii) Development of an optimisation algorithm for spatial sampling that is able to 
handle these different optimisation criteria. 

Hi) Incorporation of ancillary data such as co-related imagery, historic knowledge and 
expert knowledge in the sampling strategy. 

tv) Comparison of the performances of the developed optimisation algorithms with 
established sampling strategies. 

v) Application of developed optimisation techniques in practical soil sampling studies. 

1.4. Definitions and scope 

This thesis deals exclusively with optimisation in a geostatistical context. The 
variables that are considered are Regionalized Variables (ReV's), and the case studies 
presented therefore focus on issues like characterisation of the auto-correlation structure 
and optimal interpolation using different types of kriging. I use the term sampling scheme 
for sampling strategies in a geostatistical context (i.e. a list of optimal sampling locations 
for characterisation of the ReV). The term sampling design is used to refer to sampling 
strategies based upon classical sampling theory, and indicates a method of drawing 
sampling locations (e.g. simple random vs. stratified sampling) rather than actual sampling 
locations. 

As the purpose of this study was the development of an all-purpose optimisation 
algorithm, examples and case studies were drawn from as wide a variety of applications 
as possible. The studies in this thesis range from plot scale to geomorphological unit 
scale, from precision agriculture to soil contamination, from tropical to temperate 
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climates, and from univariate to multivariate analyses. Such a wide variety of case studies 
prohibits extensive discussion and interpretation of all results. Therefore, the case 
studies should be seen as an illustration of the developed methodology rather than as 
a purpose in itself. Most of the case studies in this thesis are part of a larger research-
or mapping effort, conducted by experienced soil scientists, and will therefore be 
included in more extensive reports elsewhere. 

1.5. Outline of the thesis 

This thesis is essentially a collection of papers and should be regarded as such. 
Chapters 2 to 8 have been or will be published in international peer-reviewed journals. 
Apart from the standardised layout and some minor editing for reasons of consistency 
(mainly notation), a combined references list and a list of symbols has been composed. 
Although this thesis represents a coherent line of research, some inevitable gaps and 
overlaps are therefore to be expected, especially in the introductions and conclusions 
of the papers/chapters. However, in my opinion these drawbacks were considerably 
outweighed by the advantage of having critical feedback from other scientists during 
the peer-reviewing process. 

Chapters 2 and 3 start with the outline of the main tools that I developed. These 
are applied, adapted and extended in chapters 4 to 8. 

In chapter 2 it is shown how probability maps produced using Indicator Kriging 
can be used in a multi-stage sampling approach to focus sampling on areas with higher 
risk of contamination. The method is applied in an environmental case study, and is 
tested using stochastic simulation. Compared with conventional sampling schemes, 
this method results in more efficient remediation maps with similar health risks. 

Chapter 3 introduces Spatial Simulated Annealing (SSA) as a general optimisation 
algorithm for spatial sampling schemes. It is shown how the Simulated Annealing 
algorithm is adapted for spatial purposes, and how ancillary information can be 
incorporated in the sampling strategy. The functionality of the algorithm is demonstrated 
using two optimisation criteria from the literature. 

Chapters 4, 5 and 6 deal with optimisation of sampling schemes for spatial 
interpolation. In Chapter 4, minimisation of the mean kriging variance is added to the 
optimisation criteria of SSA. It is shown how both kriging neighbourhood and 
anisotropy influence optimal sampling schemes. The optimisation criterion is illustrated 
in a case study on a river terrace in Thailand. 

Chapter 5 further explores the possibilities of minimising the kriging variance 
using SSA. Minimisation of the maximum kriging variance is added as an optimisation 
criterion, and the influence of variogram parameters on optimised sampling schemes 
is investigated. It is shown that all variogram parameters influence the optimised 
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sampling scheme, and that there is a considerable difference in this respect between 
minimising the mean kriging variance and minimising the maximum kriging variance. 

In Chapter 6, a new optimisation criterion is introduced that can assist in optimising 
sampling schemes for multivariate contamination studies. Using a spatial weight function, 
priorities in sampling can be set using historic information, expert judgement or 
preliminary observations. This technique is applied in a highly complex contamination 
study in the Rotterdam harbour. 

Chapter 7 deals with optimising sampling using the type of co-related imagery 
that is often met in precision agriculture (PA) studies. Using a simple scoring technique, 
yield maps are predicted. These maps assist in optimising sampling for finding soil-
yield relations. 

Chapter 8 deals with the question of optimising sampling for variogram estimation. 
A hybrid sampling scheme is introduced, combining the advantages of optimal coverage 
of the area and short range observations. Finally, it is shown that accuracy of the 
experimental variogram is usually of little value without considering the effects on 
kriging accuracy. 

Finally, chapter 9 summarises the main conclusions of the thesis, and gives some 
recommendations for further research. 

1.6. Software 

Spatial Simulated Annealing (SSA) is presented in this thesis as an optimisation 
algorithm for spatial sampling. It is described in chapter 3, and further extended in 
chapters 4 to 7. During the research I programmed the SSA optimisation algorithm as 
the S ANOS (Simulated ANnealing for Optimising Sampling) program. This program 
(written in C + +) can be downloaded in a preliminary version from http://www.itc.nl/ 
-groenig. It includes all optimisation criteria that are presented in this thesis. The site 
also includes some example files and a brief user manual. In the future, updates on 
both software and user manual will be made available at this site. 

http://www.itc.nl/


Chapter 2 

Using Probability Maps for Phased 
Sampling1 

Abstract 

A phased sampling procedure is proposed to optimise environmental risk assessment. Subse
quent sampling stages were used as quantitative pre-information. With this pre-information prob
ability maps were made using indicator kriging to direct subsequent sampling. In this way, better 
use of the remaining sampling stages was ensured. Phased sampling was applied to a lead-pollu
tion study in the Dutch city of Schoonhoven. Environmental risks were quantified by the prob
ability of exceeding the intervention level. Using six conditional simulations of stochastic fields, 
phased sampling schemes were compared to conventional sampling schemes in terms of type-I 
and type-II errors. The phased schemes had much lower type-I errors than the conventional 
schemes, and comparable type-II errors. Moreover, the phased sampling schemes left a smaller 
fraction of the not-remediated area polluted than the conventional ones did. They predicted 
almost 70% of the area correctly, as compared to 55% by conventional schemes. 

1 Published as: Van Groenigen, J.W., Stein, A. and Zuurbier, R. (1997). Optimisation of environmental sampling 
using interactive GIS. Soil Technology 10:83-97. 
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2.1. Introduction 

In many environmental studies, Geographical Information Systems (GIS's) are 
routinely applied. Questions about the reliability of GIS-generated data, error 
propagation (Heuvelink etal, 1989), the division of tasks between user and computer 
(Okxetal., 1990), and their interaction (Stein etal., 1995) have been studied in the past. 
Systems are being proposed or developed which perform increasingly complex tasks. 
Intelligent GIS (Burrough, 1992), knowledge based systems (Domburg, 1994), expert 
systems (Burrough, 1986), decision support systems (Armstrong andDensham, 1990), 
and fuzzy Soil Information Systems (Kollias and Voliotis, 1991) are distinguished. 

Still, the reliability of the output of a GIS, such as maps, basically depends upon 
the quality of the data. When considering soil data that has to be collected in the field, 
data quality is determined in part by the sampling scheme: a poorly designed sampling 
scheme yields unreliable results (Corsten and Stein, 1994). In the past, attention was 
focused on sampling schemes which minimise the uncertainty of maps (McBratney et 
al., 1981). Also, qualitative and quantitative pre-information has been used to determine 
an optimal sampling scheme for soil pollution (Van Tooren, 1993) and variograms 
from previous comparable surveys have been used to optimise sampling schemes 
(Domburg etal., 1994; McBratney etal., 1981). 

Until now, phased sampling was barely investigated for geostatistical studies, 
although adaptive sampling has been applied to estimate parameters of distributions 
in non-geostatistical studies (e.g. Thompson, 1992). In this study, a data set is set up 
using different sampling stages. This is done by using already analysed samples as pre-
information for subsequent sampling. Phased sampling is applied to an area polluted 
with lead in the Dutch city of Schoonhoven. The aim was to provide a map showing 
the probability that a critical intervention threshold was exceeded. Moreover, the quality 
of the sampling scheme was compared with that of other schemes using conditional 
simulations (Cressie, 1991; Deutsch and Journel, 1992) to identify type-I and type-LI 
errors. 

2.2. Materials and methods 

2.2.1. Study area 

The study area is located in the Dutch city of Schoonhoven. In this city, a possibly 
severe lead-pollution was detected. Supposedly, most of this pollution was caused by a 
single factory that has been under operation, producing lead-containing chemicals, for 
over 200 years. The spatial distribution of the pollution was caused by a combination 
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T2h\t21Statisticdpararnetersoftbeprdimimtryresmrchandtbethreesam 
Lj (0-0.2 m) and L2 (0-0.5 m). 

Statistics 

No. of samples 
Mean 
Stand. Dev. 
Coeff. ofvar. 
Max. 
Min. 
Perc. above z; 
Median 

-
mg kg' 
mg kg'' 
-
mg kg' 
mg kg'1 

% 
mg kg' 

Pre-stage 

28 
274 
312 
1.14 
1300 
17 
17.1 
177.5 

Stage 1 

u 
76 
497 
692 
1.39 
4050 
21 
19.7 
165 

U 
100 
451 
780 
1.73 
5000 
11 
19.0 
195 

Stag 

u 
162 
323 
414 
1.28 
2200 
10 
13.6 
305 

e2 

u 
143 
333 
483 
1.45 
4250 
11 
15.0 
185 

Stage 3 
U 

201 
349 
481 
1.37 
4600 
10 
13.8 
190 

u 
177 
309 
320 
1.03 
1950 
11 
14.7 
195 

of atmospheric deposition from periodical cleaning of the factory, man-made deposition 
from contaminated sewer sludge, horse dung used during the production process and 
permanent background values. In the Netherlands, environmental standards are set to 
classify areas according to their degree of pollution. In particular, if concentrations on 
a single contaminant exceed the so-called intervention level, environmental measures 
have to be taken. For lead, the intervention level is equal to 600 mg kg"1 dry matter. 

To identify the extension of the pollution above the intervention level a survey 
was carried out. The aim was to delineate the extent of the pollution as precisely as 
possible, because remediation is expensive and health risks are at stake. Hence the 
samples have to be located as efficiently as possible. In addition to an estimate of the 
pollution at each location, it is important to know the accuracy of that estimation, 
since decision making on remediation of the soil should be based on probabilities of 
exceeding the intervention level. Typical probabilities to consider are 0.01 and 0.05. 
Maps showing these probabilities are obtained with indicator kriging (Deutsch and 
Journel, 1992). 

Preliminary research in Schoonhoven was done in 1988. Several transects were 
sampled in the surroundings of the factory. Analysis of these data indicated a lead 
pollution with a peak near the factory and decreasing concentrations with increasing 
distance from the factory (Table 2.1). As the total number of samples was only 28, 
little information was available on the spatial distribution of the pollution. But since 
the highest measurement equalled 1300 mg kg'1, and 17% of the measurements were 
above the intervention level, a thorough survey was carried out in 1992. During this 
survey, several depths were sampled at each sampling location, from which only two 
depth classes had sufficient data to apply a geostatistical analysis: 

i) layer 1 (L x), ranging to 0.2 m below the soil surface, including samples taken at 0-
0.2 m and at 0.1-0.2 m below the soil surface. 
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Figure 2.1. Schematic overview of a normal soil-survey using geostatistics (non-dottedfigures) and the 
extensions when usingphased sampling (dottedfigures) 

ii) layer 2 (L 2 ) , ranging to 0.5 m below the soil surface, including samples taken at 0-
0.5 m, 0.1-0.5 m and 0.3-0.5 m. 

Mixed samples were taken over different depth intervals. Data were stored in a 
Geographical Information System (GIS). 

2.2.2. Phased sampling 

The aim of environmental sampling can be to collect data such that the area with 
a low, fixed probability of being polluted with a contaminant above a threshold level is 
determined as precisely as possible. In this way, risk-qualified remediation can be 
executed. Commonly, sampling is conducted as follows (Figure 2.1): first, a sampling 
scheme is designed, using knowledge derived from earlier surveys on the soil parameter, 
geostatistics, historical information and organoleptic judgement. Next, data is collected 
following this scheme. In the field, deviations from the sampling scheme are likely to 
occur because of sampling constraints. For example, sampling below a house may be 
prohibitive. After sampling, spatial analyses are carried out, e.g. using geostatistics. At 
this stage, interactive data exploration as used in Haslett etal, (1990) may be applied. 
With trial and error and a good data presentation, insight is gained in the spatial 
properties of the data. If necessary, measurements can be re-analysed, removed or 
added after additional sampling. Also, the best method of spatial interpolation is chosen 
interactively, using expert-judgement. 

In this study, a phased sampling procedure is proposed. Data collected during 
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sampling is used to direct further sampling. Let the total number of observations to be 
collected (n) be fixed. Then the following sequence takes place: 

i) The sampling scheme chosen at first contains nj observations, with nt < n. For 
example, nx may be chosen equal to n ; = yii . The sampling scheme can be of a 
conventional type, e.g. random or grid, possibly stratified. 

ii) Collected data is stored and used to produce maps and probability maps. The data 
is used as if a. full data set was collected. 

Hi) Next, n2 points (for example n2 =-jnj) are selected at locations that require 
additional sampling, and a second sampling stage is carried out. 

rv) The steps ii) and Hi) are repeated until sufficient precision is obtained or the 
maximum number of data is reached. 

In this procedure, it is assumed that the spatial distribution of the pollution does 
not change significantly during the sampling period. The procedure is shown in Figure 
2.1 by the dotted figures and lines. If we consider A our 1-, 2- or 3-dimensional 
sampling area, the aim of the study is to determine the sub-area Fj (a) c A that has a 
probability higher than a of having concentrations of variable Z above the critical 
intervention level, Zj. To predict the locations with high pollution the areas with a 
probability a > 0.05 of exceeding zz are selected. These areas are excluded from further 
sampling. In this way geostatistical knowledge and field-knowledge which are useful to 
design sampling schemes increased during sampling, whereas by means of one stage 
procedures collected data are evaluated only afterwards. 

2.2.3. Geostatistics 

The aim of geostatistics is to analyse regionalized variables (ReV's). Suppose that 
the contaminant Z(x) can be considered an ReV, where x denotes the location in 
A and Z denotes the concentration of the contaminant. Usually, observations are 
collected, denoted with z(xj ),...,z(xn). The spatial dependence is commonly expressed 
in a variogram, defined as half the variance of pair differences of an ReV at two 
locations, x and x + fi, as a function of the distance E between these two locations 
(Webster and Oliver, 1990). The variogram may be used for a range of spatial 
interpolation techniques (e.g. kriging). Kriging provides the best linear unbiased predictor 
of a spatial variable at unvisited locations. When applied to a large number of closely 
located grid nodes, it can be used to make maps which show the predicted spatial 
distribution of the variable. In this study, several variables were interpolated. Lead 
content itself, but also an indicator variable, equal to 0 if the intervention threshold 
(600 mg kg"1) is exceeded and 1 when it is not. 
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An interpolated indicator variable can be used to predict the conditional probability 
that the intervention value is exceeded, given the observations. Therefore, it can be 
used to create probability maps, which show the probabilities of exceeding a critical 
value (Journel, 1983; Deutsch and Journel, 1992). 

When setting up a spatial sampling scheme in a geostatistical study, the questions 
to be decided upon are the number of observations, n, and the sampling locations 
x,,...,xn . In principle, global criteria may be defined, like the distribution of the 
observations in such a way that a prescribed precision of an interpolated map is obtained. 
This results normally in the optimal spacing of some regular grid. In this chapter we 
propose a phased procedure. To compare the interactive schemes with conventional 
ones, use was made of conditional simulations. Special attention was given to extreme 
spatial variability, and skewed distributions, commonly occuring in environmental 
pollution. Therefore, sequential indicator simulation (SIS) was applied (Deutsch and 
Journel, 1992; Bierkens and Burrough, 1993a/1993b). The SIS algorithm uses as input 
a data set on 2 (x ) , which is transformed using an indicator-function for several values 
along the distribution curve, with for each value an indicator variogram. The following 
sequence of events takes place: 

i) Start with an existing data set and define a grid for mapping. 
ii) A previously unvisited node in the grid Xj is drawn randomly. 
Hi) A conditional distribution function (cdf) is estimated at x{ with indicator kriging. 
isv) From the cdf a realisation z> ' (x ;) is obtained by drawing a random number 7T ' 

between 0 and 1, and finding the corresponding quantile of the conditional 
distribution function. 

i) z( (x ;) is added to the data set, and the procedure starts at a second unvisited 
node, randomly drawn from the grid, until all nodes of the grid have been drawn. 

As each node is "dded in a random order to the conditioning data, extensive 
simulation will reproduce the imposed variogram (for proof, see Journel, 1989, pp. 34-
35). This results in a spatial variation which is much higher, and closer (but not similar) 
to the real variation, than spatial variation obtained with kriging. Below, SIS will be 
used to simulate environmental pollution. 

2.3. Results 

2.3.1. Actual sampling and probability maps 

The survey was conducted in three stages. At the first stage an equilateral triangular 
grid was applied with edges of 50 m, covering an area of about 600 x 800 m, surrounding 
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the factory. After this first stage, two additional stages were performed, yielding a 
three-stage sampling procedure. Table 2.1 summarises the statistical parameters of the 
subsequent stages. 

At stage one, relatively small data-sets were obtained for L1 and L 2 , consisting 
of 76 and 100 data, respectively. Compared to the preliminary stage, the means of 
these data (497 mg kg"1 and 451 mg kg1, respectively) are much higher, probably due to 
the closer distance to the source of pollution. Also, the maximum values of 4050 and 
5000 mg kg'1 are much higher than the preliminary measurements. The experimental 
variogram as well as the indicator variograms, however, fitted poorly (Figure 2.2). This 
was probably caused by a combination of three factors: 

i) the quantity of the data set: 76 and 100 measurements are still small numbers to 
deal with varying soil parameters. 

it) the quality of the sampling scheme. As the used triangular grid had a spacing of 50 
m, almost no information was available on spatial correlation at shorter distances. 

Hi) the variability of the ReV. The experimental variogram equalled a pure nugget effect. 

The data set of stage two largely solved the first problem by adding previously 
unanalysed samples, yielding now a total of 162 and 143 samples for Lx and L 2 , 
respectively. Also, several measurements were re-analysed, and some errors were 
corrected. This resulted in a much better fit of the indicator variograms. 

Because measurements at small distances were still lacking, a large nugget effect 
remained, which made it difficult to use the probability maps as described above. 
Sampling at the third stage focused on sampling at short distances. The sampling points 
were randomly drawn at short distances from existing sampling points, close to the 
centre of pollution. This yielded data sets, with 201 and 177 samples for L t and L 2 , 
respectively. The variograms showed a much better fit and had smaller nugget-variances 
(Figure 2.2). 

Figure 2.3 shows the predicted pollution, and the probability of exceeding the 
intervention level for L 2 , both calculated using indicator kriging. A major pollution 
occurs in the surroundings of the factory, south west of the centre of the map. North 
east of the factory, a small area with increased pollution is delineated, which could be 
caused by atmospherical deposition, the predominant wind direction being south west. 
Also, severe pollution is predicted in the north and the south direction of the area, 
which, however, seem to be caused by boundary effects of the kriging procedure. The 
map with the probabilities of exceeding the intervention level is relatively flat. The 
remainder of the map shows only small changes in probabilities, apart from an area in 
the east that is almost certainly not polluted. 
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Figure 2.2: Experimentalandfittedindicatorvariogrammodehforthemedianoftheleadccmten 
kg)for the data collected at the first stage, the third stage and for the first simulated lead pollution. 

2.3.2. Stochastic simulation 

To compare phased sampling with different other sampling schemes in a quantitative 
way, use was made of stochastic simulations using SIS, conditioned o n L , . The aim of 
this study was to determine Fj (0.05), which is defined as the area that has a probability 
larger than 0.05 of exceeding the intervention level. All sampling schemes were tested 
by comparing the polluted area obtained by simulation on their efficiency in estimating 
the (simulated) pollution. Each scheme consisted of n = 300 observations, but differed 
in terms of the number sampling stages and the way in which the locations of the 
samples were selected (Table 2.2). 

i) Scheme one (S1) consists of three stages, yielding nj = 158 , n2 =90 and n3 =52 
observations, respectively. At the first stage a square grid is applied with grid spacing 
of 60 m, to which a few random points are added to improve estimation of the 
nugget effect. At two succeeding stages random sampling within the selected area 
is applied. 

ii) Scheme two (S2) consists of two stages, with nl = 215 and n2 = 85 observations, 
respectively. 
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Hi) Scheme three (S3) is a one-stage sampling, using a 40 x 40 m square grid. 
rv) Scheme four (S4) also is a one-stage sampling, with 300 points distributed randomly. 

These four sampling schemes were applied to six different conditional simulations. 
Figures 2.4 to 2.7 show four of these simulations, each of these containing one of the 
four sampling schemes. Similar pictures were obtained for the two other simulations, 
with every combination of sampling scheme and simulation covered. The indicator 
variogram for the median is given in Figure 2.2. Maps with simulated pollution show 
several hot-spots and almost no unpolluted areas. The simulated data has the same 
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distribution as the Schoonhoven data-set (Table 2.1). 
Three-staged phased sampling following S1 is shown in Figure 2.4. Phased sampling 

results in more detailed information of the areas with a higher pollution. Therefore, 
the probability-map (Figure 2.4) predicts most of the areas with concentrations 
exceeding 600 mg kg1. However, it also recognises areas which are only moderately 
polluted. Two-staged sampling following S2 shows a slightly less pronounced view 
(Figure 2.5). The predictions are less extreme, more areas with concentrations exceeding 
600 mg kg-1 were detected and less moderately polluted areas were detected. The spacing 
of S1 at the first stage is wider than that of S2 , hence causing S1 to overlook polluted 
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^^tll.Chxrviewofthesamplingschemesusedtosurveyth^ The number of sampling 
stages varies from 1 to 3, the type of sampling is either random or a square grid. 

Scheme 

S' 

s2 

s3 

s4 

Number of stages 

3 

2 

1 
1 

Number 
total 
300 

300 

300 
300 

of samples 
per stage 
158 
90 
52 
215 
85 
300 
300 

Sampling scheme 
type 
square 
random 
random 
square 
random 
square 
random 

spacing 
60 m 

50 m 

40 m 

-

areas of a very small size, and tending to over-estimate the pollution of moderately 
polluted areas. The grid sampling following S3 picks up almost all of the polluted 
areas, but areas which are not polluted are often included. This results in small areas 
which can be declared unpolluted (Figure 2.6). The random sampling following S4 , 
misses several important polluted areas because random sampling tends to leave large 
areas unsampled (Figure 2.7). 

The aim of the survey was to determine those areas which were polluted with a 
probability of at least 0.05. To quantify the performances of the four schemes, the 
sizes of areas that were falsely or rightly classified as polluted or non-polluted were 
calculated and described as type-I and type-LT errors (Table 2.3). Of the non-polluted 
areas, S2 classifies the smallest area as having a probability of exceeding Zj higher 
than 0.05 (28.3%). S1 scores second-best (32.3%), while S3 (42.3%) and S4 (44.2%) 
perform much worse. This means that, although the errors are high, the type-I error 
is smallest for S2 . If attention is focused on polluted but not remediated areas (type-
II error), the largest part of the polluted soil (12.3%) is remediated in the case of S3 , 
which therefore has the smallest type-II error, closely followed by S2 (12.2%), S1 

(12.0%) and S4 (11.4%). 
In the practice of soil remediation, making a decision as to remediating the area is 

often based upon a 0.95 certainty level of having removed all contaminated soil. This 

l!^\e23. Results of the four differmtsamplingschemes used in estin^ 
health risk, expressed as percentage of the not remediated area that is polluted. 
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s' 
s2 

s3 

s4 

Not rerr 

(%) 
52.9 
56.9 
42.9 
41.0 

Not po 
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2.5 
3.4 

Health risk 
(%) 

5.0 
4.4 
5.5 
7.7 
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implies that an error of 0.05 is accepted. The last column in Table 2.3 shows how high 
this error, which can be described as health risk, is for the different sampling schemes. 
Both S1 and S2 are within this certainty level. S3 does not reach the demand, because 
it is very inefficient in remediating polluted soil: to remediate 0.1% more polluted soil 
(as compared to S2), around 10 % of unpolluted soil had to be remediated. In summary, 
S2 performed better than S3 and S4 , whereas S1 failed to predict several small polluted 
areas. The 60 meter grid spacing of the first stage of S1 is probably too wide for this 
purpose. 
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level z, with S3 (right). 

2.4. Discussion 

Phased sampling, as applied in the Schoonhoven study, was conducted in three 
stages, comprising nearly 200 data-points. The pollution showed a large spatial variation, 
which made it difficult to make good predictions. To assess the benefits of staged 
sampling for this case, successful use could be made of conditional simulation 
procedures: 
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Figure 2.7. Simulated lead contents for simulation 4 (left) and predicted probability of exceeding intervention 

levelz^withS* (right). 

i) to quantify the quality of the predictions in terms of type-I and type-II errors 
made by the sampling schemes and by using these simulated fields as references 
when quantifying the quality of the predictions. 

n) to show that phased sampling schemes were superior to classical schemes, by 
comparing different sampling schemes on the same conditional simulations. 

Simulated pollution fields showed good results for phased sampling, in particular 
for S2 . A much larger unpolluted area is left unremediated, while the health risk defined 
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as the fraction of polluted soil in the not remediated area does not exceed the 0.05-
limit. The two non-phased schemes (S3 and S4) delineate a much larger area as possibly 
polluted. 

Use of conditional simulations has some drawbacks. In this study the simulations 
are made for grid-cells with a 10 m width and hence represent a continuous variable on 
a discrete grid. However, it is still a close approximation. Also, resampling on simulated 
fields allows a perfect sampling grid. A grid applied in practice is often disturbed by 
houses, roads, etc. Errors in location during sampling were not simulated. A statistical 
problem connected with using phased sampling, is that it may lead to a biased data set, 
as the samples will be more prevalent in areas with a higher pollution. In this study, use 
was made of a declustering algorithm to correct for this effect. Declustering, however, 
corrects only for univariate statistical properties, such as the cumulative distribution 
function, and not for bivariate ones, such as the variogram (Deutsch and Journel, 
1992). 

An alternative would be to use only the variograms of stage 1. Because the data set 
derived from the first stage of phased sampling is unbiased, the resulting variograms 
are also unbiased. But use of variograms derived from a small number of data reduces 
the accuracy severely. 

Further research is needed to determine the selection of additional sampling points. 
In this study only simple random sampling was applied for that purpose. Not much 
research is being done on this problem of optimal allocation, although several methods 
are being proposed (Cressie, 1991). As was shown in this study, phased sampling is 
attractive and useful to select areas where a quantitative spatial variable exceeds a fixed 
environmental threshold. 
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Chapter 3 

Spatial Simulated Annealing1 

Abstract 

In this chapter, Spatial Simulated Annealing (SSA) is presented as a method to optimise spatial 
sampling schemes. Sampling schemes are optimised at the point-level, taking into account sam
pling constraints and preliminary observations. The method is illustrated by two optimisation 
criteria. The first optimises even spreading of the points over a region, whereas the second 
optimises variogram estimation using a proposed criterion from the literature. For several ex
amples it is shown that SSA is superior to conventional methods of designing sampling schemes. 
Improvements up to 30% occur for the first criterion, and an almost complete solution is found 
for the second criterion. SSA is especially useful in studies with many sampling constraints. It is 
flexible in implementing additional, quantitative criteria. 

1 Published as: Van GroenigenJ.W. and Stein, A. (1998). Constrained optimisation ofspatial sampling using 
continuous simulated annealing. Journal of Environmental Quality 27:1078-1086. 
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3.1. Introduction 

Characterisation and remediation of polluted soils is a major environmental activity, 
requiring large amounts of money and man-power. For example, in the Netherlands 
alone, it was estimated that in urban regions 110,000 sites would have to be surveyed 
and possibly remediated, at a cost of approximately 50 billion Dutch guilders (about 
25 billion US$). This included almost every former industrial site (RTVM, 1991). Spatial 
sampling is a crucial activity in such studies. The size and nature of the sampling 
scheme is strongly influencing the costs of the survey and the reliability of its results 
(Winkels and Stein, 1997). Therefore, a careful design of the sampling scheme can lead 
to considerable savings of time and money. Spatial statistics can assist in optimising 
such a sampling scheme. 

This chapter will be focussed on pollutants that can be described as a Regionalized 
Variable (ReV). More formally, consider a variable Z(x) depending upon the 1-, 2-, or 
3-dimensional vector x in region A . This variable may denote the lead pollution on a 
former factory ground, the Phosphate saturation along a transect, the thickness of a 
contaminated layer, etc. For optimal sampling, we have to decide upon the number of 
observations n and the locations of these observations Xj,...,xn . In this chapter we 
will address the problem of defining a sampling scheme S = {x l v . . ,xn} > such that a 
well-defined, quantitative criterion <j)(S) is optimised. 

In all environmental surveys, the size of A is finite, i.e. it is delimited by boundaries. 
Most often, historic information is available on previous use of the region, indicating 
already useful delineations. In addition, previous observations may be available, say S1, 
as soil remediation is typically a process that involves several stages of surveying and 
decision making. Hence S = S1 u S 2 , where only S2 has to be optimised. Both the 
boundaries and the previous observations have to be considered for optimising a 
sampling scheme in practical conditions. 

This chapter describes a method that optimises spatial sampling schemes, taking 
into account physical sampling constraints and delineations, as well as previous 
measurements. 

3.2. Optimising sampling using geostatistics 

In the past, various ways of optimising spatial sampling have been proposed. Using 
classical sampling theory, Thompson and Seber (1996) derived estimators for finite 
populations that are distributed in space and proposed adaptive sampling strategies to 
estimate scattered populations. They found that by taking into account scattering of 
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populations, estimates of population size could be improved. De Gruijter and ter Braak 
(1990) used classical sampling theory to estimate the spatial means of continuous 
variables. 

Geostatistics offers methods for interpolation and analysis of ReV's Z(x) 
(Matheron, 1973). Furthermore, its ability to provide risk-qualified predictors of 
exceeding threshold values is an indispensable tool for environmental decision-making 
(Cressie, 1991; Journel, 1983). 

In the past, much geostatistical research has been dedicated to optimisation of the 
sampling scheme for estimation of the variogram y(n), that characterises the spatial 
correlation of a ReV. The variogram can be calculated if the mathematical expectation 
of the ReV exists and does not depend on the location x : 

E{Z(x)} = m, Vx (3.1) 

(Journel and Huijbrechts, 1978). The variogram is defined as: 

y(n) = AE{Z(x)-Z(x + R)}2. (3.2) 

It describes spatial dependence as a function of separation vector fi. The n collected 
observations are denoted by z(xj),... ,z(xn). We distinguish between a stochastic variable 
that is denoted by capitals, and observations denoted by lower case characters. The 
variogram can be estimated for any distance or direction class fi by 

1 n(h) 

Y(fi) = ̂ y Z { z ( x i ) - z ( x i + f i ) } 2 , (3.3) 

where n(fi) is the number of pairs of points with a separation vector approximately 
equal to n . 

Optimising the sampling scheme for estimation of the variogram is not an easy 
task. Every individual observation may contribute to pair differences in different distance 
classes. Russo (1984) and Warrick and Myers (1987) optimised for distribution of the 
points pairs over the distance and direction classes. An ideal distribution was decided 
upon apriori. Russo and Jury (1988) used simulations of ReV's to evaluate this procedure. 
They found that the procedure yielded better short range estimates of the variograms 
than those obtained by systematic sampling. Using a similar evaluation procedure, 
Corsten and Stein (1994) showed that nested sampling designs produced inaccurate 
experimental variograms, as compared to random and systematic sampling designs. 
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Brus and de Gruijter (1994) showed how classical sampling theory could provide the 
error variance of the local or non-ergodic variogram. Webster and Oliver (1992) found 
that at least 100 sampling points are needed for estimating the variogram, and 225 to 
estimate it reliably. Yfantis etal. (1987) compared the performance of square, equilateral 
triangular, and hexagonal grids. They found that the equilateral triangular grid yielded 
the most reliable estimation of the variogram. 

Given the variogram, kriging can be used for spatial interpolation, by means of 
predicting the values at the nodes of a fine-meshed grid (Deutsch and Journel, 1992). 
Although kriging provides the best linear unbiased predictor of the ReV at any unvisited 
location, the sampling scheme is still of crucial importance. Hi-designed sampling 
schemes can result in much higher costs of sampling (as more samples are necessary 
to achieve the same precision), higher costs of required action (such as remediation) 
because of imprecise predictions, and even unnecessary health risks in the case of 
environmental pollution (Stein etal., 1995). 

McBratney et al. (1981) presented procedures for optimising the spacing of a 
sampling grid for minimisation of the kriging variance, given an a priori variogram. 
McBratney and Webster (1983) did the same for the co-kriging variance. Yfantis etal. 
(1987) found that if the variogram had a relatively low nugget, equilateral triangular 
grids yielded more reliable kriging predictions than either hexagonal or square grids. 
When the nugget is relatively high and the sampling density is relatively scarce, they 
found that the hexagonal grid yielded the lowest kriging variances. Christakos and Olea 
(1992) refined these findings, and presented a case-specific methodology for choosing 
between the different grid designs. Sacks and Schiller (1988) presented several annealing-
based algorithms for optimising a sampling scheme out of a small grid of possible 
sampling locations. They distinguished between several optimisation criteria, among 
which the minimisation of the mean kriging variance, and minimisation of the maximum 
kriging variance. Watson and Barnes (1995) defined several optimisation criteria for 
infill sampling of an existing network, focussing on dealing with extremes. However, 
they did not present a suitable optimisation algorithm to apply these criteria, and used 
the criteria only in a very limited, simulated case study. 

Van Groenigen etal. (1997) (Chapter 2) proposed an interactive sampling procedure 
for characterising health risks in urban regions. Using probability maps of environmental 
threshold values calculated using indicator kriging, additional sampling was focused on 
areas with imprecise predictions. 

In this chapter, a procedure is proposed to optimise sampling schemes for different 
quantitative optimisation criteria, taking into account physical sampling barriers and 
earlier measurements. Using this procedure, two optimisation criteria are evaluated, 
representing different definitions of optimality. 

The Minimisation of the Mean of Shortest Distances (MMSD) criterion aims at 
regular spreading of all sampling points over the sampling region. Regular spreading 
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Figure 3.1. A n optimised sampling scheme using a triangular grid (a) and using SSA with tbeMMSD 
criterion(b) 

can be formulated as minimising the expectation of the distance between an arbitrarily 
chosen point within the region, and its nearest sampling point. For sampling scheme 
S , minimising this expectation leads to the following minimisation function: 

min 
s JA 

jAl*-Vs(*), (3.4) 

where x is a two-dimensional location vector, and Vs (x) denotes the location vector 
of the nearest sampling point X; e S. An equilateral triangular grid (Figure 3.1a) 
optimises this criterion in theory (Flatman and Yfantis, 1984). In the practice of spatial 
sampling many constraints to this are met. We will give an example from soil sampling 
in an urban region (Figure 3.3), where several types of area-specific information are 
encountered during sampling: 

i) The area of the sampling region is finite. Therefore, there are boundary-effects 
which will make almost any regular grid sub-optimal (Christakos and Olea, 1992). 

ii) The sampling region can be composed of several sub-regions, different in size 
and shape. Some of these sub-regions may be impossible to sample. Within these 
regions which can not be sampled, we made a division into a research sub-region 
and a non-research sub-region. For remediation studies, non-research sub-regions 
may include ponds and regions that were remediated previously, whereas research 
sub-regions may include houses, below which the extent of the contamination 
should be predicted. 

Hi) Measurements from a preliminary study are available, and should be included in 
the optimised sampling scheme. 
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These features ensure that in practice a regular grid often is not an optimal solution 
with respect to the MMSD-criterion, or can not be realised because of sampling 
constraints. 

The Warrick and Myers (WM-) criterion optimises the fit of the realised distribution 
of point pairs for the experimental variogram to an a priori defined, ideal distribution 
(Warrick and Myers, 1987). For a sample size of n, the number of point pairs equals 
yii(n -1 ) . The variogram is estimated for each distance and (possibly) direction class 
using Equation (3.3). If the number of lag classes equals nc, the WM-criterion evaluates 
the following expression: 

i n 

X[a-(^-^)2+b-a s] (3.5) 

where a en b are user-defined weights, and Cli denotes the number of point pairs in 
the ith lag class, with optimal values of Cli specified in <£" . The second term denotes 
the standard deviation a ; of the point pairs from the median of class i. Warrick and 
Myers minimised Equation (3.5) using a Monte Carlo algorithm that could also include 
earlier sampling points. However, this algorithm was susceptible to local minima, and 
could not handle complex sampling barriers (Warrick and Myers, 1987). 

3.3. Simulated Annealing 

Simulated annealing (SA) is a combinatorial optimisation algorithm, originating 
from statistical physics. It was developed indepently by Kirkpatrick etal. (1983) and 
Cerny (1985). Other names for the same algorithm include Monte Carlo annealing, 
probabilistic hill climbing, statistical cooling and stochastic relaxation (Aarts en Korst, 
1989). In many studies, it has been applied successfully as a universal optimisation 
method (e.g. Goldstein and Waterman, 1987). It is also widely applied in geostatistics 
for simulation of ReV's (Deutsch and Cockerman, 1994; Deutsch and Journel, 1992; 
Goovaerts, 1996). Related algorithms have been applied to optimisation of spatial 
sampling (Sacks and Schiller, 1988) and to the restoration of degraded images (Geman 
and Geman, 1984). One of its properties is its insensitivity to local extremes. 

A central concept in SA is the fitness function (j)(S) that has to be optimised. 
Suppose that we can define a combinatorial optimisation problem in which (j)(S) has 
to be minimised. Starting with S0, let Sj and Si+1 represent two solutions with fitness 
<j>(Sj) and (|)(Si+1), respectively. Typically, Si+1 is derived from the neighbourhood of 
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S; by a random perturbation of one of the variables of S;. A probabilistic acceptance 
criterion decides whether Si+1 is accepted or not. This probability Pc (S; —> Si+1) of 
Si+1 being accepted can be described as: 

pc(Si-»si+1) = i, if «Ksi+1)<«KSi) 

Pc(Si-.Si+1) = e x p f M ) z M ± i ) ) if ^(Si+1)>^(Si) (3-6) 

where c denotes a positive control parameter. The parameter c is lowered according to 
a cooling schedule as the process evolves, to find the global minimum. A transition 
takes place if Si+1 is accepted. Next, a solution Si+2 is derived from Si+1, and the 
probability Pc(Si+1 —»Si+2) is calculated with a similar acceptance criterion as Equation 
3.6 (Aarts and Korst, 1989). 

A mathematical description of the SA-algorithm is given by the theory of finite 
Markov chains (Seneta, 1981). At each value of c, several transitions have to be made 
before the annealing can proceed, and c can take its next value (Aarts and Korst, 1989). 

3.4. Spatial Simulated Annealing 

Sacks and Schiller (1988) proposed several SA-related algorithms for optimising 
spatial sampling schemes using geostatistical criteria. Although this research was related 
to the proposed method, some crucial differences will be covered in the description of 
the algorithm below. 

In order to modify simulated annealing for optimisation of spatial sampling, the 
fitness function, 'a generation mechanism and the cooling scheme have to be decided 
upon (Aarts en Korst, 1989). They are discussed below. 

3.4.1. Fitness functions 

Let the total research region be denoted by AR and the sub-region that can be 
sampled by A s c A R , thus excluding roads, houses etc. Next, the MMSD criterion is 
estimated by the fitness function <(>MMSD(S), which is an estimator of the function 
formulated in Equation (3.4): 

1 a' 
*MMSD(S) = — X | K - Vs(Xi)|» (3.7) 

n e j=l 
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with x[ e AR denoting the j t h evaluation point. The ne evaluation points are located 
on a finely meshed grid over the whole area. In order to yield a reliable value of 
t|)MMSD(S), the number of evaluation points should be much higher than the number 
of sampling points. 

By choosing the evaluation points on a finely meshed grid over the whole region 
AR , while locating the sampling points strictly in A s , the algorithm spreads the sampling 
points optimally over the whole region AR , while taking physical sampling constraints 
into account. This is an important difference with the method of Sacks and Schiller, 
which could not handle such sampling constraints. 

The WM-criterion solely depends upon the distances between sampling points. 
Therefore, the fitness function can be directly calculated using Equation 3.5: 

i n -

(l>wM = Z t a -^ . : -^ ) 2 + b - C T i l (3-8) 
i=l 

where a and b are user-defined weights that can be used to define the relative importance 
of the two parts of the function (Warrick andMyers, 1987). 

3.4.2. Generation mechanism 

The aim of a generation mechanism is to generate a new solution Si+2 out of the 
solution Si+1, by means of a random perturbation in one of the variables of Si+1 

(Davis, 1990). In SSA, this is done by moving one randomly chosen sampling point X; 
over a vector R, with the direction of E drawn randomly, and fi taking a random 
value between 0 and nmax. One of the modifications of SSA as compared to ordinary 
S A and the method of Sacks and Schiller, is that rimax initially is equal to half the length 
of the sampling region, and decreases with time. This increases the efficiency of the 
demanding recalculations after each modification in the sampling scheme, because it 
can be expected that with optimisation of sampling schemes, successful modifications 
consist of increasingly smaller values of nj as the SSA process advances. This is 
because the process deals with many similar variables (i.e. the co-ordinates of the 
sampling points). Therefore, moving sampling points randomly over large distances 
will not contribute much to finding the minimum towards the end of the optimisation 
process. Furthermore, contrary to earlier optimisation methods, co-ordinates of the 
sampling points are treated as continuous variables, rather than chosen from a discrete 
grid. This is in line with earlier studies, where SA was applied to continuous problems 
(e.g. Bohachevsky etal., 1986; Vanderbilt and Louie, 1984). At the final value of the 
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control parameter, Rmaxwill be almost equal to zero. 

3.4.3. Cooling schedule 

For the cooling schedule, which expresses c as a function of the progress of the 
optimisation, we used a basic set of empirical rules which have been proposed in many 
studies (e.g. Kirkpatrick etal., 1983; Aarts andKorst, 1989). We start with an initial 
value c0 which has an acceptance ratio of 0.95 or higher for alternative solutions. The 
decrement of c is given by 

-k+l = a - c k> k = l,2,..., (3.9) 

with 0 < a < 1. The maximum period of time for one Markov chain k to remain 
at any value of c is fixed, and the final value of c is explicitly given to the SSA algorithm. 
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From these data, a can be calculated. The acceptance criterion is similar to the one 
given in Equation 3.6, substituting <))MMSD for <j). Use of a variable c which ensures 
that inferior solutions are accepted with decreasing probability as the process evolves, 
is the most important difference with the proposed algorithms by Sacks and Schiller 
(1988). 

The spatial character of the problem of designing sampling schemes made it logical 
to use a geographical information system (GIS) (Burrough, 1993). We used the GRID 
module of ARC/INFO to describe the sampling barriers. Calculations on Spatial 
Simulated Annealing were done with the specially developed software package SANOS 
(Simulated ANnealing for Optimisation of Sampling), which will be made available in 
the future in a decision support system for soil sampling (Domburg etal, 1997). 

3.5. Examples 

The examples which we consider here were encountered during a recent study on 
lead pollution in an urban region (Van Groenigen et al.,\997) (Chapter 2). The optimised 
sampling schemes using the MMSD-criterion will be compared to a traditional equilateral 
triangular grid. The sampling schemes produced using the WM-criterion will be 
compared to the optimised sampling schemes as presented by Warrick and Myers (1987). 
Additionally, the WM-criterion was used to design a D-optimal sampling scheme for 
fitting the experimental variogram (Rasch, 1990). 

3.5.1. Examples of the MMSD-Criterion 

Figure 3.1a shows an equilateral triangular grid of 23 points which in theory is 
optimal with respect to the MMSD-criterion. The region is a square of 400 x 400 m 
and the evaluation points were chosen on a 4 m grid, yielding 10000 points. The (j)MMSD 

of this scheme is 32.668 m. Figure 3.1b shows the solution using SSA, starting with a 
random sampling scheme also consisting of 23 sampling points. This optimised scheme 
closely resembles the triangular equilateral grid, but with small deviations caused by 
boundary constraints. The scheme is point symmetric. The <|>MMSD for this scheme is 
31.870 m, which shortens the mean distance to sampling points by 2.4%, as compared 
to the triangular grid. 

The second example illustrates the effects of research- and a non-research sub-
regions that can not be sampled. Figures 3.2a and 3.2b show a research region AR for 
soil remediation. The upper sub-region (water) does not belong to AR nor A s , while 
the lower sub-region (a building) is part of AR but not of A s . Figure 3.2a shows a 
sampling scheme based on an equilateral triangular grid, from which the points which 
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could not be sampled have been deleted, resulting in a symmetrical sampling scheme 
of 17 points, and a <|>MMSD of 39.148 m. Figure 3.2b shows the solution using SSA, 
also using 17 points. This scheme scores 35.500 m, which is an improvement of 8%. 
From the figures it appears that the main advantage of SSA is that it recognises the 
differences between the upper and lower sub-regions. In the lower sub-region (the 
building) the points are located at the boundaries to cover it optimally given the sampling 
constraints. In the upper part (the pond) the points are located at some distance from 
the sub-region. This is because of the differentiation between the whole research region 
AR , and the part of the research area that can be sampled A j , as explained above. 
Here, the use of prior information has an effect both on the sampling scheme and on 
the obtained optimum. 

Figure 3.3 displays an urban region, where a complex set of prior information is 
available, including buildings, already remediated factory grounds, ponds and previously 
sampled points. For optimisation using SSA, the previously sampled points are included 
as a fixed subset of the sampling scheme S. Figure 3.3 shows the sampling scheme 
calculated with SSA, for 37 additional sampling points. This solution has a (̂ MMSD of 
2.7305 m. A sampling scheme based upon an equilateral grid, also consisting of 37 
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Table 3.1. Evaluation ofthefitnessfunctionfor the sampling design obtained with the SSA algorithm, as 
compamltoatriangulargrid. 

Case 
1 
2 
3 

n 
23 
17 
37 

l ie 

20000 
20000 
20000 

4> 
triangular grid 
0.8167 
0.9787 
3.9018 

MMSD 

SSA 
0.8009 
0.8875 
2.7305 

Calculation 
time SSA (s) 

1260 
2040 
18000 

additional points has a <|)MMSD of 3.9018 m. This amounts to an improvement of 
approximately 30% for SSA. 

Use of SSA takes into account the previously sampled points. The sampling points 
are often located close to the boundaries of regions belonging to AR but not to A s , 
such as buildings and roads, whereas they maintain a larger distance from the regions 
which belong to neither AR nor As (water and already remediated former factory 
grounds). Figure 3.4 shows the (|>MMSD as a function of k (Equation 3.9), during 
optimisation of Figure 3. lb. There is a tendency towards a global minimum, with local 
minima being avoided. Table 3.1 summarises the performance of the SSA algorithm 
for the MMSD-criterion, including calculation times with a Pentium 120 MHz PC. It 
shows reasonable calculation times, although they increase with the complexity of the 
problem. 

3.5.2. Examples of the WM-Criterion 

To test SSA for the WM-criterion, four cases from Warrick and Myers (1987) were 
recalculated. The emphasis in that paper was on the formulation of the optimisation 
criterion, not on the Monte Carlo algorithm. The use of SSA for these problems is 
therefore a logical extension of this work. Additionally, a sampling scheme is optimised 
for modelling of the experimental variogram, using the WM-criterion. All cases assume 
a 400 x400 m field. 

Case 4 considers 16 sampling points as pre-information, distributed according to 
a rectangular grid. A set of 14 additional points has to be placed optimally according 
to the first term in Equation 3.8 (with a = 1 and b = 0). Ten distance classes were 
distinguished of 20 m width each. A uniform distribution among these classes was 
defined as optimal: 

Ci = n. •K-i) 
2-nc 

= 43.5, Viel,...,nc. (3.10) 
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Figure3.4. The optimisation process, (j)MMSD as a function of the number ofMarkov chains^.. 

The results of the optimisation are given in Figure 3.5a and in Table 3.2. Although a 
completely uniform solution is impossible because of the predefined grid, we observe 
a considerable improvement compared to the Monte Carlo algorithm, as the minimum 
number of point pairs in a class rises from 17 to 29 (Table 3.2). 

The fifth case involves 50 sampling locations of which the distribution was 
optimised according the first term in Equation 3.8 (with a = 1 and b = 0). Again, a 
uniform distribution was defined as optimal: 

c;= 2-nc 
= 40.83, Viel,...,nc, (3.11) 

with results given in Figure 3.5b and Table 3.3. This is an almost optimal solution, as 
all classes consist of either 40 or 41 point pairs, and only one pair of points falls 
outside the lag range. 

The sixth case, consisting of 30 sampling locations, considers optimisation 
according to the second term in Equation 3.8 (with a = 0 and b = 1). This term 
denotes the mean deviation of the point pairs from the class median. The classes are 
the same as in the fourth case. An additional constraint was added to ensure that each 
class would contain at least 25 point pairs (Figure 3.5c and Table 3.2). The mean deviation 
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Table 3.2. Distribution of pointpairs overthe lag classes (case 4) and mean deviationfrom the median of 
the distance class (case 6). 

Distance 
class (m) 

0-20 

20-40 

40-60 

60-80 

80 - 100 

100-120 

120-140 

140-160 

160-180 

180 - 200 

>200 

"'avg 

case 4 

Monte Carlo 

17 

18 

17 

19 

32 

51 

31 

46 

23 

26 

155 

-

SSA 

30 

30 

30 

29 

32 

29 

29 

35 

37 

42 

112 

-

case 6 

Monte Carlo 

25 

29 

30 

46 

51 

25 

28 

28 

25 

25 

123 

3.9 

SSA 

37 

28 

54 

55 

26 

52 

50 

68 

40 

25 

0 

2.3 

from the median of the distance classes reduced to 2.35 m, which is a considerable 
improvement compared to the 3.9 m obtained originally (Warrick and Myers, 1987). It 
is interesting to notice that the optimised scheme is not satisfactory in this case; although 
the mean deviation is very low, several sampling points are placed at the same location. 
This means that the class 0 - 20 m has a very high standard deviation (due to the many 
distances of 0), in order to optimise the overall performance of the sampling scheme. 
This second part of the WM-criterion is therefore in its present form not very useful 
for optimising spatial sampling schemes. 

In the seventh case, 30 sampling locations were optimally located according to the 
same distance classes as in the fourth case, as well as to two direction classes equal to 
0° ± 45° , and 90° ± 45°, respectively. A uniform distribution was defined as optimal: 

£=- •K-i) 
2-nc 

= 21.75, Viel,...,nc (3-12) 

Figure 3.5d and Table 3.4 show that the solution is optimal because no point pairs 
fall outside the class-range, and all combinations of distance and direction classes 
contain either 21 or 22 point pairs. This is a considerable improvement compared to 
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Table 3.3. Distribution of point pairs over the distance classes generated by the SSA algorithm, compared to 
the Monte Carlo method 

Case 5 

Class (m) 

0-15 

15-30 

30-45 

45-60 

60-75 

75-90 

90 - 105 

105 - 120 

120-135 

135 -150 

150 - 165 

165 - ISO 

180 -195 

195-210 

210-225 

225 - 240 

Monte Carlo 

33 

36 

37 

37 

40 

43 

43 

45 

41 

41 

37 

37 

35 

39 

46 

47 

SSA 

41 

41 

41 

41 

41 

41 

41 

41 

41 

41 

41 

41 

41 

41 

41 

40 

Class (m) 

240- 255 

255-270 

270-285 

285 - 300 

300 - 315 

315-330 

330 - 345 

345 - 360 

360 - 375 

375 - 390 

390 - 405 

405 - 420 

420 - 435 

435 - 450 

>450 

Monte Carlo 

35 

36 

41 

42 

37 

39 

44 

45 

44 

42 

36 

41 

41 

40 

25 

SSA 

40 

41 

40 

40 

40 

41 

41 

41 

41 

41 

41 

41 

41 

41 

0 

the earlier solutions with a minimum and maximum of 8 and 28, respectively. 
Finally, the WM-criterion was used to optimise a sampling scheme for modelling 

of the experimental variogram. This was done using the D-optimality criterion for 
fitting of non-linear functions (Rasch, 1990). The use of D-optimality for designing 
sampling networks has been proposed in the past (Zimmerman and Homer, 1991). To 
optimise fitting of an exponential variogram model 

Y(h) = c0 + c ( l - e x p ( - h / ) ) , (3.13) 

where c0 denotes the nugget, c0 + c the sill, and 3r the effective range, estimators of 
the variogram at three distance lags y(nj) , y(n2) and y(n3) are needed, with 

fi3=3r 
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and 

, _ h! •exp(-h 1 / r ) -h 3 -exp(-h 3 / r ) 
2 _ r + e xp ( -Vr ) - exp ( -h3 / r ) ' ( 1 1 4 ) 

The point pairs should be equally distributed over the 3 lag classes: 

C,<2<,=^ (3.15) 
6-n 

If we assume that for a particular ReV an exponential variogram model holds with 
3r = 200 m, then Equation 3.14 requires that R2 should be equal 84 m. This requirement 
leads to a scheme with three sharply delineated clusters, almost exactly reproducing the 
required point pair distribution. Table 3.5 shows the results for a sample region with n 
= 50. The scheme is extremely clustered, raising considerable doubts on its practical 
use. 

3.6. Discussion and conclusions 

In this chapter, we presented the Spatial Simulated Annealing (SSA) procedure to 
optimise spatial sampling schemes. We found that SSA provides a robust algorithm, 
being insensitive to local minima. It can easily be adapted to sampling constraints met 
in practice. SSA translates various optimisation criteria into actual optimal sampling 
schemes. Therefore its application yields better sampling schemes and more insight 
into the implications of the choice of any quantitative optimisation criterion. In the 
future, other optimisation criteria will be added to SSA. In particular minimisation of 
the kriging variance, as presented in Sacks and Schiller (1988), may prove a valuable 
tool in environmental studies, where accuracy of predictions is a crucial issue. So far, 
the number of sampling points was kept fixed, and no cost models of the sampling 
schemes were considered. This may not always be a realistic assumption. In the future, 
we aim at integration with existing cost models as in Domburg etal. (1997). 

We showed that SSA is superior to current methods of designing spatial sampling 
schemes for two different criteria. For the MMSD-criterion, which aims at even 
spreading of the observations over the region, SSA is most beneficial when prior 
spatial information is available. This may apply to a wide range of soil pollution studies 
in urban regions, where typically many sampling constraints are met. In such cases, 
SSA can enhance efficiency up to 30%. In the more theoretical examples (Figures 3.1 
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Table 3.4. Distribution of point pairs over the distance and direction classes generated by the SSA Algo
rithm, compared to theMonte Carlo Method 

Case 7 

class (m) 

H, 0 -20 

V,0-20 

H, 20 -40 

V, 20 - 40 

H, 40 - 60 

V, 40 -60 

H, 60 - 80 

V, 60 - 80 

H, 80-100 

V, 80 -100 

H, 100 -120 

Monte Carlo 

12 

8 

22 

20 

18 

24 

23 

27 

22 

22 

25 

SSA 

22 

22 

21 

22 

22 

21 

22 

22 

22 

21 

22 

class (m) 

V, 100 -120 

H, 120 -140 

V, 120 -140 

H, 140 -160 

V, 140 -160 

H, 160-180 

V, 160 -180 

H, 180 - 200 

V, 180 -200 

>200 

Monte Car 

22 

20 

20 

26 

28 

27 

27 

17 

20 

5 

o SSA 

22 

22 

21 

22 

22 

22 

21 

22 

22 

0 

and 3.2) the relative improvement due to SSA is probably not enough to justify use, as 
site location is generally more difficult than when a regular grid is used. 

For the WM-criterion, which aims at optimal estimation of the variogram, SSA 
was always superior to currently available Monte-Carlo optimisation, and solves one 
well-defined case almost completely. Use of SSA for designing sampling schemes can 
therefore improve variogram estimation. Further, we found that the second term of 
the WM-criterion is not satisfactory, as it yields degenerate sampling schemes with 
several sampling points at the same locations. 

It was shown how the WM-criterion could be used for designing a D-optimal 
sampling scheme, yielding however a strongly clustered scheme. The question remains 
whether such a scheme is desirable, as it only gives information on a very small part of 
the research region and prior information on the variogram must be available. Also, 
the high number of point pairs may be misleading. If used for kriging purposes, a 
declustering algorithm should be applied (Deutsch and Journel, 1992). The WM criterion 
should only be used in cases where some additional sampling points can be added to 
an existing sampling scheme in order to improve variogram estimation. An example of 
such a case is provided in Figure 3.5a. 
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Chapter 4 

Minimising Kriging Variance: 
Methodology1 

Abstract 

This chapter introduces minimisation of the mean kriging variance as a new opimisation crite
rion in Spatial Simulated Annealing (SSA). Sampling schemes are optimised at the point level. 
Boundaries and previous observations can be taken into account. We applied it to texture and 
Phosphate content on a river terrace in Thailand. First, sampling was conducted for estimation 
of the variogram using ordinary SSA. The variograms thus obtained were used in extended SSA, 
yielding a reduction of the mean kriging variance of the sand percentage from 28.2 to 23.7 (%)2. 
The variograms were used subsequently in a geomorphologically similar area. Optimised sam
pling schemes for anisotropic variables differed considerably from those for isotropic ones. The 
schemes were especially efficient in reducing high values of the kriging variance near boundaries 
of the area. 

1 Publishedas: Van Groenigen, J.W., Siderius, W. and Stein, A. (1999). Constrained optimisation of soil sampling 
formimmisationofthekrigingvariance.Geo<ieniiiS7:239-259. 
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4.1. Introduction 

In the practice of spatial (soil) sampling, the sampling scheme is a major factor 
influencing the efficiency and costs of a survey. In optimising sampling schemes, 
(geo)statistical theory plays an important role. A sampling scheme might be optimised 
for interpolation of a Regionalised Variable (ReV) using various criteria. One of the 
most important geostatistical interpolators is the ordinary kriging algorithm. In this 
chapter a method will be presented for designing sampling schemes with minimal kriging 
variance. A regular grid is usually recommended to achieve this aim (e.g. Christakos and 
Olea, 1992; Yfantis etal., 1987). However, such a grid does not account for all prior 
information on the ReV and the research area which might be used for optimising the 
sampling procedure. This prior information can be classified as follows: 

i) Qualitative maps. These can be used as a basis for stratification. Stein etal. (1988b), 
Heuvelink andBierkens (1992) andBoucneauer<z/. (1998) used information provided 
by soil maps to improve the kriging predictor. Brus (1994) used soil maps for 
estimation of the mean phosphate characteristics by classical sampling theory. 

ii) Quantitative map. These can be either maps of the ReV in question, or a co-related 
ReV. Stein etal. (1988a) used cokriging for estimation of the moisture deficit, with 
the mean highest groundwater level as covariable. More recently, Csillag etal. (1996) 
used a co-related remotesensing image as a basis for stratification of the sampling 
scheme. Van Groenigen etal. (1997) (Chapter 2) used probability maps of the ReV 
exceeding a threshold-value to direct subsequent sampling to uncertain areas. 

Hi) Earlier point observations. Domburg etal. (1997) proposed a method for optimising 
sampling using classical sampling theory. They found that a variogram calculated 
from earlier point observations could be used as information for optimising the 
sampling scheme. McBratney etal. (1981) used variograms that can be derived 
from previous data to calculate optimal sampling density, given a certain required 
accuracy. More recently, Odeh etal. (1990) combined this technique with a fuzzy k-
means analysis. They used digital gradient segmentation of the fuzzy membership 
values to vary sampling density within the research area. Van Groenigen and Stein 
(1998) (Chapter 3) proposed an optimisation method that could handle earlier 
data points in the optimisation process. 

iv) Sampling barriers. In almost all soil survey studies, sampling barriers are met. In soil 
surveys on a regional level, these can be inaccessible parts of areas with a poor 
infrastructure. On a different scale, in soil pollution studies these can be buildings 
which cannot be sampled. Van Groenigen and Stein (1998) (Chapter 3) proposed 
the SSA method for constraining an optimised sampling scheme to these barriers. 

In this chapter, SSA is extended to deal with minimisation of the kriging variance 
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of a ReV. This extension includes use of previous samples to direct additional sampling 
for minimal kriging variance. 

The proposed method is applied in a case study on a river terrace in Thailand. The 
aim of the case study was firstly to investigate efficiently the spatial variability in the 
region. Secondly, experimental variograms were used as apriori variograms in an area 
which was geomorphologically similar to the first area. 

4.2. Materials and methods 

4.2.1. Spatial Simulated Annealing 

Spatial Simulated Annealing (SSA) is a continuous version of the discrete Simulated 
Annealing (SA) optimisation method (e.g. Aarts andKorst, 1989). The insensitivity of 
the algorithm to local extremes makes it very suitable for constrained optimisation of 
spatial sampling schemes in the presence of complex pre-information. Below, a concise 
description of SSA is given. For a more extensive introduction and discussion of the 
method, see Van Groenigen and Stein (1998) (Chapter 3). 

Consider the collection of possible sampling schemes consisting of n observations, 
Sn, with a so called fitness function <)>(•): Sn -» 5R + to be minimised. Optimisation 
starts with a random scheme S0 e Sn . It then involves a sequence of random 
perturbations Si+1 of S0 that have a probability Pc (S; —>Si+1) of being accepted. This 
transition probability is defined in the Metropolis criterion: 

pc(si->si+1) = i> if tfs^cKsj 
P^S^expfMkfell tf o&jxKS,) (4.1) 

where c denotes the positive control parameter, which decreases as optimisation 
progresses. If Si+1 is accepted, it serves as a starting point for a next scheme Si+2 and 
the process continues in a similar way (Aarts and Korst, 1989). In SSA, random 
perturbations of the sampling scheme S; consist of transformations of randomly drawn 
observations over a vector with random length and a random direction. We use a 
vector 5" of n elements. At each step an element of this vector is drawn at random, 
and is assigned a random value. All other values are equal to 0. This vector has the 
property that 8" \-> 0 when i -> oo . SSA can include earlier observations into the 
optimisation by treating them as an integral but fixed part of the sampling scheme, i.e. 
with corresponding 8" values set equal to 0, for all i. Boundaries of the region and 
inaccessible subregions can be taken from a GIS file. 
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So far, two optimisation criteria have been translated into a fitness function and 
applied in SSA (Van Groenigen and Stein, 1998) (Chapter 3): 

i) MMSD-cnterion: this criterion aims at even spreading of the observations over the 
entire research area by minimising the distance between an arbitrarily chosen point 
and its nearest observation (van Groenigen and Stein, 1998) (Chapter 3). 

ii) WM-criterion: this criterion, which is taken from the literature, optimises the fit of 
the realised distribution of point pairs for the experimental variogram to a pre
defined, ideal distribution (Warrick and Myers, 1987; Russo, 1984; Russo and Jury, 
1988). The desired distribution can be based upon expert judgement, allowing the 
user to give special attention to certain aspects of the variogram (e.g. short distance 
observations for estimation of the nugget). The minimisation function is a simple 
sum of squares of the deviation between the desired distribution C, and the realised 
distribution î s : 

WS) = £&-£? J2 (4.2) 
i=l 

where nc denotes the number of lag classes, and ^ ? is the number of realised point 
pairs in lag class i (Warrick and Myers, 1987). 

4.2.2. Fitness function for minimising kriging variance 

Ordinary kriging is a widely used method for spatial interpolation. For this study it 
is relevant that the ordinary kriging predictor for an arbitrary point x0 is a linear 
combination of the measured ReV z(x{) in a neighbourhood of n locations, with 
weights A.;: 

n 

z(x0) = £V z (* i ) - (4.3) 
i=l 

These weights are calculated using the variogram assuming a constant expectation, 
i.e. E{Z(x)} = m . The variance of the ordinary kriging predictor, CJOK(X0 | S ;), 
depends only on the sampling scheme S ;, consisting of observation points x ; , the 
variogram and the kriging neighbourhood (Cressie, 1991). In the past, this has been 
used to calculate the optimal grid spacing, given a prescribed accuracy (McBratney et 
al, 1981; McBratney and Webster, 1981). Sacks and Schiller (1988) used SA-related 
algorithms to optimise sampling schemes on a small grid of possible sampling locations. 
However, these optimisation procedures could not deal with previous measurements 
and sampling barriers. The SSA method presented here allows for designing an optimal 
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sampling scheme with minimal kriging variance as a criterion. We defined minimisation 
of the integral of the kriging-variance over the study area as the aim: 

^ J ^ M E A N . O K f o l S i ) - ^ - (4.4) 

In most studies the kriging predictions are calculated on the nodes of a raster. 
Hence, SSA discretises the area for evaluation of Equation 4.4. The fitness function 
can then be defined as the mean of kriging variances calculated at the nodes of a fine 
raster: 

1 "e 

<))MEANOK(Si)= SGOK(S
C , j lS i) (4.5) 

n c j=l 

with xe j denoting the j t h raster node, and n the number of evaluated raster nodes. 
This optimisation criterion has also been used elsewhere (Sacks and Schiller, 1988; 
ChristakosandOlea, 1992). 

4.2.3. The optimisation procedure 

The subsequent steps of the optimisation algorithm can be described as follows: 

i) a variogram y(R) for the ReV is estimated using previous observations or inference 
from previous studies. 

ii) a sampling scheme S0 e Sn is defined, consisting of a subscheme S0 e Sn ' with a 
set of n f earlier, fixed observations, and a randomly drawn subscheme SQ e S"v that 
consists of the n v observations to be optimised. 

Hi) the area is discretised, and the raster is defined with n e raster nodes. 
h>) kriging variances for all raster nodes are calculated, and the mean kriging variance 

^MEAN OK(^O) is calculated using Equation 4.5. 
v) S0 is transformed along a vector 8" , yielding sampling scheme Sj and the new 

mean kriging variance <|>MEAN OK(^I) is calculated. Notice that all elements of 
Sf are 0 for n = l,...,nf, and only one element of 8? for n = n f + l,...,nf + n v 

has a value other than 0. The direction of this transformation vector is drawn 
randomly, and the length is drawn randomly within the interval [0,fi ]. If 
transformation over 8" results in one of the sampling points falling outside the 
area, an alternative vector 8" is drawn, until an acceptable vector is obtained. 

vl) S, is accepted as a basis for further optimisation depending on the Metropolis 
criterion (Equation 4.1). 

va) the process proceeds at point v), with Sj replacing S0 if it was accepted. The 
process ends if during a prespecified time no new sampling schemes have been 
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Figure 4.1. Optimisedsamplingsobemesandthe x-range of sampling locationsfora kriging neighbourhood 
ofl (a), 6(b) and 12 (c), withalinearvariogram without nugget. 

accepted. 

During optimisation, a record of kriging neighbourhoods of all the raster points 
is kept. The kriging variance at a raster point is recalculated only if the translated 
sampling point was or will be in the kriging neighbourhood. This saves valuable 
calculation time. 

Optimisation of the total sampling scheme S, consisting of a fixed part S; and a 
variable part SJ , with 

(4.6) 

ensures incorporation of the earlier observations in the optimised sampling scheme. 
The c value of the Metropolis criterion (Equation 4.1) is lowered as optimisation 
continues. This is done using an Equation suggested by Aarts en Korst (1989): 

«" = 
f f i ^ 
<*?) 

( °) 
& ) 

"k+l = oc -c k , k = l ,2,..., (4.7) 

where a is a user-chosen parameter with 0 < a < 1, typically chosen to be close to 1 
(e.g. 0.999), and k the number of optimisation steps that have been performed. The 
period selected for each optimisation step k can be specified by the user. 

The length of the random transformation vector 8° is drawn randomly between 
0 and fi^. Initially, R^is chosen half of the area size, and is lowered using a similar 
equation as the c variable (Equation 4.7) (Van Groenigen and Stein, 1998) (Chapter 3). 
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Figure4.2. Optimised sampling schemes for anisotropy ratio 1.0(a), 0.5(b) and 0.25(c), withalinear 
zuriogramwithoutnuggeL 

4.2.4. Examples 

Figure 4.1 presents examples of optimised sampling schemes, showing the effect 
of the kriging neighbourhood. A simple square area was chosen, with a small sampling 
scheme of 23 sampling points. Figure 4.1a shows the optimised sampling scheme for 
a kriging neighbourhood of 1 and a linear variogram without a nugget (which is similar 
to the nearest neighbour method). Figures 4. lb and 4. lc show the optimised sampling 
schemes for a kriging neighbourhood of 6 and 12, respectively. Although the point 
configurations of Figures 4. la, b, and c are the same, the points are located closer to 
the boundaries when the kriging neighbourhood increases. A kriging neighbourhood 
of 1 (Figure 4. la) results in minimum and maximum x-co-ordinates of 39.8 and 360.1, 
respectively, while a kriging neighbourhood of 12 has a range of 29.9 to 369.6. The 
small differences between the kriging neighbourhood of 6 and 12 indicate that the 
kriging neighbourhood in larger optimisations can be kept quite low, if calculation 
times are expected to give problems. 

Figure 4.2 shows the effect of anisotropy on optimised sampling schemes. Figure 
4.2a shows the optimised sampling scheme for an isotropic linear variogram with no 
nugget. Figures 4.2b and c show the optimised sampling schemes for anisotropy ratios 
of 0.5 and 0.25, respectively. It is clear from these figures that anisotropy has a 
considerable influence on the optimised sampling schemes. Table 4.1 compares the 
performance of the optimised sampling schemes of Figure 4.2 with a traditional, 
triangular equilateral grid. Although the optimised sampling scheme performs slightly 
better with the isotropic variogram (Figure 4.2a), it is clear that most benefit is gained 
if the anisotropy is more pronounced. The optimised sampling scheme with anisotropy 
ratio of0.25 (Figure 4.2c) has a <|)MEAN O K ° ^ 1 . 83 [unit J , while the equilateral triangular 
grid has a <|>MEAN 0K°f 1 1 7-45 [unit]2. 
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Table 4.1. Mean kriging variances foroptimisedsampling schemes of figure 2 compared to and equilateral 
triangular grid for different anisotropy ratios. nis23 observations. 

Figure Anis. ratio X. A 
Y MEAN OK Y MEAN OK 
optimised scheme triangular grid 

4.2a 1.0 39.99 40.62 
4.2b 0.5 56.92 63.16 
4.2c 0.25 81.83 117.45 

4.3. Case study 

4.3.1. Description of the study area 

The study area is located in the alluvial plain of the Ping river in northern Thailand, 
about 60 km north of the city of Chiang Mai. The climate is subhumid, with a rainy 
season in the period June - October. A high river terrace and some surroundings were 
chosen for intensive sampling. Figure 4.3 shows a photo interpretation of the terrace 
and its immediate surroundings. The study area is clearly delineated to the west by the 
levee, and to the east by the irrigation channel. The size of the area is approximately 1 
km x 3 km. 

Table 4.2 relates the photo interpretation to drainage class. The river sediments are 
coarsest and best drained on the levee in the western part of the area. They become 
finer in the overflow mantle (coarse-fine loamy), via the overflow basin I (fine loamy) 
and overflow basin LI (fine loamy - clayey) to the decantation basin (clayey). To the 
east, the decantation basin is delineated by the footslope of the neighbouring hills, 
which consists of coarser material. Furthermore, in the northern part of the area, an 
old stream channel is visible. 

The area shows a clear anisotropy; the variability in landforms is highest in the 
direction perpendicular to the river. This is in line with what could be expected from 
geomorphological theory. 

The main soil type in the area is classified as Ustic Epiaquert (Soil Survey Staff, 
1996) or Eutric Vertisol (FAO, 1994). Most areas on the footslope lack the diagnostic 
features for Vertisol classification. These soils are classified as Vertic Epiaqualfs (Soil 
Survey Staff, 1996). Table 4.3 shows some features of a typical Ustic Epiaquert mini-
profile in the area. Notable are the heavy texture and the slickensides, which are diagnostic 
features for Vertisols. 
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Figure 4.3. Photo interpretation oftbelandforms within thestudyarea. 
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Table 4.2. Symbols of the photo interpretation of the landforms within the research area. 

Landscape Relief Parent Material Landform Drainage 
Hilland(H) Foothills (HI) Metamorphic (HI 1) Footslope (HI 11) well drained 

Alluvial High Terrace Fine loamy Levee (PI 11) _we/(dra(Hed 
Plain (PI) to clayey Overflow Mantle (P112) mod. well drained 

(P) sediments P.\.ejfAV.k?s.in.'(pll'lJJ .. J™E?rf??thA>:a-iIl-eA 
(PII) Overflow Basin (P113.2j__ _poqrly_drained 

Decantation Basin very poorly drained 
JPJJ4J 

Old stream channel poorly drained 

(£1111 

4.3.2. Sampling 

Due to financial constraints, the total number of samples was restricted to 60. 
Each sample was analysed for texture, P-Olsen, N-Kjel., cations, pH and CEC (Hesse, 
1971). Samples were taken only from the upper 0.2 m, because of partial flooding of 
the area for paddy rice. 

Because of the limited number of samples, a careful trade-off had to be made 
between two, partly conflicting, demands: 

i) Coverage of the area is necessary, in order to capture the main features of the spatial 
distribution. 

it) Precision of the experimental variogram partly depends on the number of point pairs 
per lag class. Typically, a sampling scheme that covers the area evenly has very few 
to zero point pairs at short distances, thus yielding a poor experimental variogram 
for those distances. 

Because of these conflicting interests, a combination of two criteria was used with 
SSA. The scheme was designed in two steps: 

Table 4.3. Some diagnostic features of a typical Ustk Epiaquert profile in the study area. 

Hor. 
Symb. 
A„ 
AB 
B,g 

Cgl 

C„2 

Depth 
(cm) 
0-15 
15-21 
21-33 
33-53 
53-

Diagn. 
Hor. 
ochric 
-
(argillic) 
-
-

Org. M. 

(%> 
1.72 
-
0.91 
0.79 
-

pH 
(H20) 
6.0 
-
7.9 
7.9 
-

Sand 

(%) 
0.9 
-
6.0 
3.8 
-

Silt 

(%) 
40.2 
-
38.0 
40.3 
-

Clay 

(%) 
59.0 
-
56.0 
56.0 
-

Remarks 

slickensides 
slickensides 
slickensides 
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0.00 

Figure 4.4. Theoptimisedsamplingschemeforestimation of spatial variability. 

i) The first 30 observations were selected according to the MMSD-criterion (Van 
Groenigen and Stein, 1998) (Chapter 3). In this way, a good coverage of the area 
with these observations was ensured. 

ii) Subsequently, the additional 30 observations were selected using the WM-criterion 
of Equation 4.2. The scheme was designed for the estimation of the experimental 
variogram using the total number of 60points. Special attention was paid to short 
distances. 

Figure 4.4 shows the resulting sampling scheme. While the first 30 points have 
been distributed evenly over the area, the last 30 observations are clustered within the 
centre of the area. This is because of the high number of point pairs at short distances 
that was demanded. Table 4.4 shows the ideal distribution of point pairs t^ together 
with the realised point pair distribution i^s . The algorithm manages to fill the gaps in 
the point pair distribution that were left by the first 30 observations, and create a 
reasonably equal distribution of point pairs. 
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Table 4.4. Pointpair distribution of the first 30 samplingpoints, and of the final 60 sampling points, 
togdiho^withtheideal distribution £ \ 

Distance class (m) 

0-25 
25 - 50 
50-100 
100-200 
200 - 300 
300 - 400 
400 - 500 
500 - 600 
600 - 700 
700 - 800 
800 - 900 
900-1000 
> 1000 
Total 

c 
147.5 
147.5 
147.5 
147.5 
147.5 
147.5 
147.5 
147.5 
147.5 
147.5 
147.5 
147.5 
0.0 
1770.0 

first 30 points 
0 
0 
0 
0 
18 
40 
9 
37 
36 
19 
34 
27 
215 
435 

V 
60 points 
101 
95 
101 
104 
98 
111 
118 
131 
116 
80 
121 
139 
455 
1770 

4.3.3. Spatial variability 

Table 4.5 shows the descriptive statistics of the analysed variables. To avoid 
bias by clustering, only the (non clustered) first 30 observations are used. The variability 
of texture is shown in the texture-triangle of Figure 4.5. There is considerable variability 
in texture, ranging from very heavy clay with 1% sand, up to loam with almost 50% 
sand. The loam occurs mainly on the footslope. The most heavy clays are found in the 
decantation basin. 

Figure 4.6a shows the all-directional experimental variogram and the modelled 
variogram of Nitrogen content. The experimental variogram can be modelled by a 
linear model with a nugget of 0.0001 (%)2. There is no range within the maximum 
calculated lag distance of 1000 m. The variogram of Phosphate content (Figure 4.6b) 
shows a very different type of spatial correlation. The large number of point-pairs at 
short distances allows an accurate estimation of the nugget, which seems to be extremely 
low. This variogram can be modelled by an isotropic exponential variogram with a 
nugget of 18.0 (mg kg1)2, a sill of 567.0 (mg kg4)2 and an effective range of 247 m. 
The spatial structure of the sand content shows a clear axis of anisotropy, with the 
longest range in the NW/SE direction, which coincides with the direction of the Ping 
river, the source of the sediments. This is shown in the variogram surface of the sand 
percentage (Figure 4.7). 
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Table 4.5. Descriptive statistics of the non clustered first 30 samplingpoints 

Variable 
Sand 
Silt 
Clay 
P-Olsen 
Org.C 
Kjel-N 
pH (H20) 
pH (KCl) 
CEC 
Ca 
Mg 
Na 
K 
Base-sat. 

units 
% 
% 
% 
mg kg'' 

% 
% 
-
-
cmol (+) kg'1 

cmol (+) kg'1 

cmol (+) kg'1 

cmol (+) kg'1 

cmol (+) kg'1 

% 

mean 
9.8 
41.1 
49.0 
15.9 
1.4 
0.1 
6.3 
5.2 
18.9 
14.0 
3.1 
0.1 
0.4 
91.4 

st. dev. 
13.8 
8.3 
14.6 
30.1 
0.4 
0.0 
0.6 
0.6 
4.5 
3.7 
0.9 
0.1 
0.3 
8.5 

min. 
0.7 
20.3 
17.2 
1.7 
0.5 
0.1 
4.9 
4.1 
9.7 
6.7 
1.3 
0.0 
0.1 
74.0 

max. 
47.5 
59.0 
77.1 
159.1 
2.3 
0.2 
7.2 
6.1 
25.5 
20.4 
4.5 
0.5 
1.5 
100.0 

percent sand 

Figure 4.5. Variability of texture, using the mm-clustereddata. 

4.3.4. Additional schemes for minimising the kriging variance 

From Figures 4.6 and 4.7, it appears that spatial variability changes considerably 
from variable to variable. When the number of observations is judged inadequate for 
spatial interpolation of a variable, additional observations can be selected for minimal 
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Figure 4.6. Variogram of N-Kjel. (a)andP-Olsen(b). 
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Figure 4.7. Variogram surface of sand percentage 
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(a) 
o.W^^sr==TE^m*t!sr 

(b) 
3» 100 km 

Figure4.8. Kriged map of sand percentage (a)andP-Olsen(b). 

kriging variance, using SSA. These additional sampling schemes have been calculated 
for two different soil variables. 

Figures 4.8a and 4.9a show the kriged map of the sand percentage and its kriging 
variance, respectively. These maps were calculated with the OKB2D-routine of GSLIB 
(Deutsch and Journel, 1992). An anisotropic variogram model was used. The kriging 
predictions are very coarse, as there were only 60 observations, with 30 of them strongly 
clustered. The kriging variance map, however, gives good insight in the limitations of 
the MMSD-criterion (or a grid) for kriging purposes. 

Figure 4.9b shows the optimised sampling scheme for minimal kriging variance, if 
30 additional observations are added. Several of these observations are very close to 
the boundaries of the area. Moreover, the effect of anisotropy is clear from the smaller 
spacing of the observations in the direction of the shortest range. Note the different 
scales in Figures 4.9a and 4.9b. The maximum kriging variance of the sand percentage 
decreases from 146 to 69 (%)2. 

Figure 4.10 shows the mean kriging variance of the sand percentage during the 
optimisation process, as a function of the number of perturbations. From this figure, 
it is clear that the optimisation method is insensitive to local minima, in search of the 
global minimum. Starting with 30 randomly drawn additional observations, the mean 
kriging variance changes from 28.2 to 23.7 (%)2. 
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(a) 
o u u ^ ^ T S r ^ ^ u u ^ ^ T S r 

Figure 4.9. Kriging variance of sand percentage with original data (a) and with the additional sampling 

scheme (b). 

Figures 4.8b and 4.1 la show the kriged map of the Phosphate content and 

the kriging variances, respectively. There seems to be a weak correlation between the 

2000 4000 6000 8000 10000 

Number of perturbations 

12000 14000 16000 

Figure 4.10. Tbecptimisatimprocessfortheaddkicmdsamplingschemefor 
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Figure 4.11. Knging variance ofP-Olsen with original data (a) and with the additional sampling scheme (b). 

sand percentage and the phosphate content on the colluvial soils on the eastern part 
of the sampling area. This is probably partly due to different management practices 
(fertilisation) on these lighter soils, where the cash crops (vegetables) are grown. 
However, the variogram of the Phosphate content is isotropic. This results in a different 
configuration of additional data points for Phosphate (Figure 4.11b). Because of 
isotropy of the fitted variogram, the additional data points have no extra emphasis on 
a particular direction. 

If we compare the detailed photo interpretation of the drainage class with the 
interpolated result of the sand percentage, it is clear that there is a considerable similarity 
to the texture distribution. In the kriged map of the sand content, the general trends 
of the texture distribution are similar (decantation basin, footslope). However, as the 
number of data points was very limited and partly clustered, only a very general 
geostatistical interpolation was possible. 

4.3.5. Minimisation of kriging variance with an a priori variogram 

If a reliable a priori estimation of the variogram of a variable can be made, the 
sampling scheme can be optimised directly for minimal kriging variance. In our case, it 
can be inferred from geomorphological classification. A second study terrace, which is 
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Figure 4.12. An apriori optimisedsamplingschemeforanisotropicsand percentage 

located at the opposite side of the river, has roughly the same soil characteristics as the 
first. Therefore, the sand percentage variograms of the first terrace were used to optimise 
a sampling scheme for minimal kriging variance at the second terrace. The axes of 
anisotropy are rotated clockwise by 10°, as the direction of the second terrace is slightly 
different from the first terrace. 

Figure 4.12 shows this sampling scheme, which consists of 60 points. Again, 
there is a directional orientation of the sampling scheme, with shorter distances in the 
direction perpendicular to the river. 

4.4. Discussion 

There has been repeated criticism in the past, as to the usefulness of the kriging 
variance as a measure of prediction accuracy (Deutsch andjournel, 1992). Strictly 
speaking, kriging variance can only be interpreted as prediction accuracy if the intrinsic 
hypothesis holds. In practice, this assumption is often questionable. Minimising the 
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kriging variance then reduces to the comparison of different data configurations, without 
taking into account trends or heteroscedasticity (Journel and Huijbrechts, 1978). In the 
future, methods that are less sensitive to problems related to stationarity (such as 
indicator techniques) might be introduced in the SSA procedure as well. However, 
ordinary kriging is still often used in practice. Deutsch and Journel (1992) state that the 
ordinary kriging will remain the anchor algorithm in geostatistics. Therefore, we feel 
that the minimisation of its prediction accuracy is an important issue. 

The most widely used nonlinear interpolation technique, indicator kriging (IK), 
does not yield a similar measure of the accuracy of the interpolation. The aim of 
indicator kriging is estimation of the conditional distribution function of a ReV. IK 
uses ordinary kriging of indicator-transformed variables at several cut-off values for 
this (Deutsch and Journel, 1992). Although IK can yield conditional probability maps 
of exceeding any threshold value at any location, the accuracy of the interpolation is 
not accounted for. The use of disjunctive kriging (DK) leads to similar problems when 
it is used for calculating conditional probabilities (Webster and Oliver, 1989). As this 
study was specifically aimed at optimising the accuracy of the interpolation, we focussed 
on ordinary kriging. 

The WM-criterion leads in this case study to a strongly clustered sampling scheme. 
It is well known that for univariate statistics the data of such sampling schemes should 
be declustered to avoid bias (Isaaks and Srivastava, 1989). The effects of clustering on 
the experimental variogram are less obvious. Corsten and Stein (1994) found that nested 
sampling schemes yielded relatively inaccurate estimators of variogram parameters as 
compared to more conventional sampling schemes. Russo and Jury (1988) found that 
an optimisation criterion closely related to the WM-criterion yielded more reliable 
experimental variogram values, especially at short ranges. We feel that strong clustering 
in one place can only be justified by a very limited number of observations, as in the 
presented case study. If the budget allows for more observations, more spreading of 
the points over the area should be aimed at. Strong clustering may lead to a false sense 
of security because of the high number of point pairs at short distances. 

In all types of kriging, the prediction accuracy can only be relative to the chosen 
variogram model. This means that errors from variogram fitting, choice of variogram 
model or choice of anisotropy parameters are not accounted for. These issues still 
need expert judgement, although fuzzy techniques can probably help (Bardossy etal., 
1990a and 1990b). 

The proposed optimisation method can only be applied if a variogram can be 
defined. If this is not possible, either by estimation from samples of inference from 
earlier surveys, other optimisation criteria should be used. The MMSD criterion could 
be very helpful in such cases. 

In anticipating the nature of the anisotropy of certain soil variables (e.g. texture), 
the detailed photo interpretation proved to be a valuable tool during the optimisation 
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process. Geomorphological classification was used as a tool for choosing an apriori 
variogram model. In our opinion, it is always preferable to model the variogram directly 
from field data. However, if this is not possible, we feel that geomorphological inference 
provides at least a sound scientific basis for estimation of the experimental variogram. 

4.5. Conclusions 

In this chapter, it has been shown how sampling schemes can be optimised by 
minimising the average kriging variance using SSA. It was shown that kriging 
neighbourhood has a small but distinct effect on the configuration of the optimised 
sampling scheme, whereas anisotropy can influence it considerably. Existing 
observations or available variogram models can be used. Minimisation of the kriging 
variance is especially useful as both the MMSD-criterion and traditional grids tend to 
neglect boundary effects which may be important for kriging purposes. The SSA method 
was applied in a case study in Thailand, where it was shown that the algorithm could 
handle realistic data sets. 
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Chapter 5 

Minimising Kriging Variance: 
Influence of Variogram Parameters1 

Abstract 

Using Spatial Simulated Annealing (SSA), spatial sampling schemes can be optimised for mini
mal kriging variance. In addition to optimising for minimal mean kriging variance, a new crite
rion for minimising the maximum kriging variance is presented in this chapter. In a simple case 
with 23 observations, performance of a sampling scheme obtained with SSA were compared 
with a triangular grid. SSA reduced the mean kriging variance from 40.64 [unit]2 to 39.99 [unit]2. 
The maximum kriging variance was reduced from 86.83 [unit]2 to 53.36 [unit]2. An additional 
sampling scheme of 10 observations was optimised for an irregularly scattered data set of 100 
observations. This reduced the mean kriging variance from 21.62 [unit]2 to 15.83 [unit]2. The 
maximum kriging variance was reduced from 70.22 [unit]2 to 34.60 [unit]2. As the kriging vari
ance depends on variogram parameters, we investigated their influence on the optimised sam
pling schemes. A Gaussian variogram produced a different sampling scheme as compared to an 
exponential variogram with the same nugget, sill and (effective) range. Exponential, spherical 
and linear variograms without nugget resulted in similar sampling schemes. A very short range 
resulted in random sampling schemes, with observations separated by distances larger than twice 
the range. For a spherical variogram, magnitude of the relative nugget effect did not affect the 
sampling schemes, except for very high values (0.75). 

'Aisaa!ow.-VanGroenigen,J.W.Submitted). Theinfluenceofmriogramparametmonoptirnalsamplingschemesfor 
kriging. Geoderma. 
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5.1. Introduction 

Optimisation of spatial sampling is one of the most challenging issues in soil 
geostatistics. In the past, many research efforts have been aiming at how to process a 
data set (using interpolation and stochastic simulation), rather than how to collect it. 
Despite important contributions to the discussion on spatial sampling (e.g. McBratney 
etal, 1981; Burgess and Webster, 1984; Yfantis etal, 1987; Brus and De Gruijter, 
1997), sampling schemes for geostatistical interpolation are still mainly based on some 
sort of regular grid. Taking into account geographical information, preliminary 
observations, and information on spatial correlation could potentially improve sampling 
strategies considerably (Van Groenigen and Stein, 1998) (Chapter 3). For interpolation 
purposes, such sampling schemes might be designed for minimising the accuracy of 
the ordinary kriging predictor. 

Ordinary kriging (OK) is still the most widely used interpolation algorithm in 
geostatistics (Deutsch and Journel, 1992). Although more powerful algorithms like 
indicator kriging (IK) are now available, the relative transparency and straightforwardness 
of the OK algorithm ensures its continuing popularity. In fact, even LK uses the OK 
algorithm to interpolate conditional probabilities. 

The accuracy of the kriging predictor is usually expressed in the kriging variance. 
This kriging variance relies solely upon the spatial correlation, the locations and number 
of observations in the kriging system and the location of the predicted point. The 
spatial correlation is usually estimated in the variogram, which presents the variance as 
a function of the separation vector between two points. Therefore, the kriging variance 
can be calculated before sampling takes place, provided that a sampling scheme and 
the variogram are available. This makes it possible to optimise a sampling scheme for 
minimal kriging variance, provided a variogram can be defined. 

In the past, work has been done on optimising sampling schemes for minimal 
kriging variance. Methods were developed for calculating the optimal sampling density 
of a grid, given a prescribed maximum kriging variance (McBratney et al., 1981; 
McBratney and Webster, 1981). Furthermore, the performances of different types of 
regular grids for kriging purposes were investigated (e.g. Yfantis etal., 1987; Christakos 
and Olea, 1992). 

Sacks and Schiller (1988) used a stochastic optimisation algorithm for optimising 
the sampling scheme for minimal prediction error. They used a very limited, discrete 
solution space, and a small sample size. More recently, Van Groenigen etal. (1999) 
(Chapter 4) showed how the Spatial Simulated Annealing (SSA) algorithm could be 
used for constructing sampling schemes with minimal kriging variance, using a 
continuous solution space and with a more realistic number of observations. They 
found that anisotropy of the variogram has a considerable influence upon the optimised 
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sampling scheme, with highest sampling density in the direction of highest variability. 
Moreover, they showed that the size of the kriging neighbourhood has a very limited, 
but distinct effect on the sampling schemes, drawing closer to the boundaries as the 
kriging neigbourhood increases. They illustrated with a case study how SSA could be 
used for real field data, making use of GIS-stored data. 

The aim of this chapter is to investigate the influence of variogram parameters on 
the optimised sampling scheme. Van Groenigen etal. (1999) (Chapter 4) showed that 
anisotropy and kriging neighbourhood influence the optimised sampling scheme. In 
this chapter it will be shown that other variogram parameters also influence the optimised 
sampling scheme. Furthermore, a new optimisation criterion is introduced, i.e. 
minimising the maximum occurring kriging variance rather than the mean kriging 
variance. Finally, it will be shown how SSA is able to complete existing, inadequate 
sampling schemes for minimisation of the kriging variance. In this way, considerable 
improvements in prediction accuracy can be achieved with only modest additional 
sampling efforts. 

5.2. Materials and methods 

5.2.1. Variogram and kriging 

When the intrinsic hypothesis holds, the isotropic variogram is defined as 

Y(h) = iE[{Z(x)-Z(x + h)}2] (5.1) 

where Z(x) denotes Regionalized Variable (ReV) Z at location x . h Denotes the 
separation distance between two locations. In most geostatistical studies, the variogram 
is estimated by a series of observations z(x): 

f ( h ) = 2 r ^ ^ { z ( X i ) " Z ( X i + h ) } 2 ^ 

where n(h) denotes the number of point pairs for distance class h. This estimated 
variogram is fitted to a suitable model y(h), often using nonlinear regression. 
Subsequently, y(h) is used to fill the matrices needed for the ordinary kriging system. 
The ordinary kriging predictor can be written as a weighted average of n observations: 
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z(x0) = ^ V z ( x ; ) (5.3) 
i=l 

where A.j denotes the weight of the ith observations. The kriging variance can be written 
as 

n 

°oK(x0) = XMX i"Xo) + VI/ (5.4) 
i=l 

where *J> denotes a Lagrange multiplier (Webster and Oliver, 1990). The only factor 
influencing the kriging variance are the variogram y(h), the number of observations n, 
the sampling locations x ; and the location x0 . 

5.2.2. Spatial Simulated Annealing 

Spatial Simulated Annealing (SSA) was developed as an optimisation algorithm for 
spatial sampling schemes. As a modification of simulated annealing (SA), SSA is able 
to optimise sampling schemes at the point level. Starting with a random sampling 
scheme, a sequence of random alterations in the locations of observations is drawn. 
As the process evolves, the maximum length of the random vectors over which the 
observations are transformed decreases. Simultaneously, the probability that an inferior 
alteration is accepted decreases. In this way, the sampling scheme is optimised according 
to the chosen optimisation criterion. SSA is very suitable for completing inadequate, 
existing data sets, making full use of the existing observations. Although no proof can 
be given that SSA always results in a global optimal solution, Van Groenigen and Stein 
(1998) (Chapter 3) showed that the found solutions are superior to traditional sampling 
strategies. For an extensive presentation of the SSA algorithm, see Van Groenigen and 
Stein (1998) (Chapter 3). SSA can handle a variety of quantitative optimisation criteria. 
In this chapter, we will focus on minimisation of the kriging variance, as presented in 
Van Groenigen etal. (1999) (Chapter 4). Additionally, we will propose an alteration of 
this criterion below. 

5.2.3. Criterion 1: minimisation of the mean kriging variance 

Following Van Groenigen et al. (1999) (Chapter 4), the aim of this optimisation 
criterion is minimisation of the integral of the ordinary kriging variance over the area 
of interest. This leads to the following minimisation criterion: 
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Fi^e5.1. Tkecptimisatwnprocess.Intermediatesolutwmforanisotropklinearw 
33% (b), 67% (cjand 100% (d) of the process. 

™nfCTOK(x0|S)-dx0 
S JA 

(5.5) 

where S denotes the sampling scheme, x0 denotes the location vector in the area A, 
and o"oK is the ordinary kriging variance. As this integral can generally not be solved 
analytically, a discretisation of the problem is necessary. This leads to a minimisation 
function defined as the mean kriging variance over a finely meshed grid of evaluation 
points x e : 

1 » , 
^MEAN OK(S) = y^OK(X e , j | S ) 

n. ri e j=l 
(5.6) 

300 

150 

0 33 67 100 

% of optimisation process 

Figure 5.2 The optimisation process. Mean kriging variance as a function of the elapsed time. 
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Figure5.3. A triangulargrid(a)'andoptimisedsampling schemesfor minimal mean krigingvariancefb) 
andminimdmaximumkngingvariance(c). 

where ne denotes the number of raster nodes. This will be referred to as the 
MEAN OK-criterion. 

5.2.4. Criterion 2: minimisation of the maximum kriging variance 

As an alternative criterion, we propose a minimax version of the MEAN_OK-
criterion. Instead of minimising the mean kriging variance, the maximum value is 
minimised: 

YMAX_OK(S) = max(°OK(xc,j | S), Vxe>1,...,x ) (5.7) 

This will be referred to as the MAX_OK-criterion. The use of a minimax criterion 
might be especially useful in studies were the quality of a survey relies upon the weakest 
chain (i.e. the prediction with the lowest accuracy). This might be the case, for example, 
in environmental studies dealing with health risks. The MAX_OK criterion is similar 

Tih\e5A.(^mparisonofanequiIateraltrknguUrgridwithtwooptimisedsa 
with the MEAN OKandMAX OKcriterion, nis 23 observations 

Fig. Optimisation Mean kriging variance 

(YMEAN OK) 

Maximum kriging variance 

(YMAX OK) 

5.3a triangular grid 
5.3 b MEAN JDK 
5.3c MAX OK 

40.62 
39.99 
41.41 

86.83 
74.61 
53.36 
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to the criterion that was used to calculate optimal grid spacing for a certain minimal 
accuracy of the kriging predictor, as presented in McBratney etal. (1981). 

5.3. Examples 

Below, examples will be given of the way optimised sampling schemes are influenced 
by the chosen optimisation criterion and variogram model. Most examples are for a 
square area with 23 observations. This low number of observations was chosen to 
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1200 

600 

Figure 5.5. A Gaussian and exponential variogram, with nugget 200, sill 1000, and effective range 400. 

show the effect on the optimised schemes as clearly as possible. 

5.3.1. Influence of the optimisation criterion 

Figure 5.1 shows the optimisation process for a linear variogram without a nugget. 
The process starts with a random sampling scheme (Figure 5.1a). As the process 
continues, the sampling scheme moves more away from a random configuration, towards 
even spreading over the area (Figures 5. lb and 5. lc). Finally, optimisation yields a 
point symmetric configuration (Figure 5. Id). Figure 5.2 shows the mean kriging variance 
during optimisation. At the start, the kriging variance fluctuates more or less randomly. 
During the optimisation, the mean kriging variance steadily decreases while avoiding 
local minima. Finally, the mean kriging variance does not decrease any more. 

Figure 5.3a shows an equilateral triangular grid consisting of 23 observations. 
Figures 5.3b and 5.3c show optimised sampling schemes with a linear variogram without 
nugget for the MEAN_OK and MAX_OK criteria, respectively. Both these last two 
figures show the same configuration of points, but with the MAX_OK criterion the 

Table 5>.2.Krigingvarianceforapreliminary'samplingsdyerneoflOOobservations,andwitblOoptimised 
additional observations fortheMEAN JDKand MAXJDKcriterion. 

Fig. Optimisation No. of 
observations 

Mean kriging variance 

(TMEAN OK) 

Maximum kriging variance 

CPMAX OK) 

5.4a preliminary 100 
5.4b MEAN JDK 110 
5.4c MAX OK 110 

21.62 
15.83 
16.46 

70.33 
58.54 
34.60 
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Figure 5.6. Influenceof"variogram modehontbeoptimisedsamplingsdoernefora Gaussian model(a)and 
an exponentialmodel(b)witksimilarnugget, sill and (effective) range. 

points are drawn much closer to the boundaries. This can be explained by the usually 
high kriging variance at the edges of a kriged surface. Table 5.1 shows the scoring of 
these three schemes, according to both criteria. It can be concluded that the triangular 
grid is inferior for both criteria. The optimisation effect for the MEAN_OK criterion 
is only limited (a mean kriging variance of 39.99 [unit]2 as compared to 40.62 [unit]2 

using the grid) in this theoretical example. The optimisation effect of applying the 
MAX_OK criterion is considerable, reducing the maximum kriging variance from 86.83 
[unit]2 with the triangular grid to 53.36 [unit]2. 

It should be observed that when in this chapter, and throughout this thesis, two 
sampling schemes are called similar, it is meant that they can be rotated and/or reflected 
to fit each other, depending on the (random) path that the SSA algorithm followed. 

Differences between the two criteria are more clearly shown in another example. 
Figure 5.4a shows an area with 100 observations that are irregularly scattered, and the 
kriging variance is calculated with a spherical variogram with nugget 0, sill 100 and 
range 30. SSA was used to add 10 observations to enhance the quality of the data set 
for kriging purposes. Figures 5.4b and 5.4c show the optimised sampling schemes for 
the MEAN_OK and MAX_OK criterion, respectively. Table 5.2 shows the 
performances of the sampling schemes thus obtained, as compared to the preliminary 
sampling scheme. Using only 10 additional observations, the mean kriging variance 
could be reduced from 21.62 [unit]2 to 15.83 [unit]2 using the MEAN_OK criterion. 
Use of the MAX_OK criterion resulted in a reduction of the maximum kriging variance 
from 70.33 [unit]2 to 34.60 [unit]2. The differences between the two criteria are nicely 
illustrated in the lower right corner of Figures 5.4b and 5.4c. The MEAN_OK criterion 
leaves this area with a relatively high kriging variance in order to lower the mean kriging 
variance. The MAX_OK criterion places one observation in this corner, in order to 
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Figure 5.7. Influence of range on the optimised sampling scheme,for a spherical model with a range ofO (a) 
and 20(b). 

lower this maximum kriging variance (Figure 5.4c). A surveyor aiming at lowering the 
kriging variance should carefully consider whether the MEAN_OK or MAX_OK 
criterion should be used, since they can result in quite different schemes. 

5.3.2. Influence of variogram model 

Figure 5.5 shows a Gaussian and an exponential variogram with the same 
parameters. The Gaussian model is: 

y(fi) = 200 + 800' 1-exp 
(230.94)2 (5.8) 

This reflects a nugget of 200, a sill of 1000 and an effective range of 400 
(230.94 • V3 )-These parameters are also used in the exponential model: 

y(fi) = 200 + 800- 1-exd -
133.33 

(5.9) 

The effective range (3-133.33 ) of this model is similar to that of the Gaussian model. 
Figure 5.6 shows the optimised sampling schemes for these two variograms, using the 
MEAN_OK criterion. While the exponential variogram resulted in a point symmetric 
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solution similar to that of the linear variogram, the Gaussian model yielded a different 
scheme, with observations much closer to the boundaries of the area. 

5.3.3. Influence of range 

Figure 5.7 shows the influence of the range on optimised sampling schemes for a 
spherical variogram. Figure 5.7a shows the optimised sampling scheme for a pure 
nugget effect, i.e. the range is 0. This variogram results in a random sampling scheme; 
each run of the optimisation will give a different result. As a pure nugget effect implies 
that no spatial correlation is present, each sampling scheme used for interpolation is 
equally inadequate. Figure 5.7b shows the optimised sampling scheme for a very short 
range of 20. This implies that no spatial correlation is present at distances larger than 
20. The observations are placed at distances larger than 40 (twice the range). Within 
this constraint, the resulting sampling scheme is still random. For larger ranges, the 
sampling scheme will be similar to that produced using a linear variogram (Figure 
5.3b). A real range of 0 (a pure nugget effect) is very unusual in soil science. More 
often, a modelled nugget effect stems from sampling at larger distances than the range. 
Therefore, optimal sampling schemes for a pure nugget effect are mainly of theoretical 
interest. 

5.3.4. Influence of (relative) nugget effect 

If the nugget is 0, the sill will have no effect on the sampling scheme. A sill of 200 
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will simply result in kriging variances twice as high as those using a sill of 100, but the 
optimised sampling scheme will not change. Therefore, influence of the sill only depends 
on the nugget/sill ratio. A spherical sampling scheme with nugget 0 and a sufficiently 
large range results in a point symmetric solution, similar to that derived using a linear 
variogram (Figure 5.3b). With a nugget/sill ratio of 0.5 (nugget is 50, sill is 100), this 
does not change (Figure 5.8a). However, when the nugget/sill ratio increases to 0.75 
(nugget 75, sill 100), a somewhat different solution is reached (Figure 5.8b). 

5.4. Discussion and conclusions 

Two different optimisation criteria were formulated in this chapter, both dealing 
with optimising the quality of the kriging interpolator. Minimising the mean kriging 
variance results in other sampling schemes than minimising the maximum kriging 
variance. 

Most variogram parameters influence optimal sampling schemes for minimal kriging 
variance. Therefore, use of the SSA algorithm almost always results in superior sampling 
schemes in terms of kriging variance. For cases with a relatively low nugget and sufficient 
range, the optimised sampling schemes for linear, exponential and spherical variograms 
were similar. Only the Gaussian variogram yielded a different scheme. It can be expected 
that other variogram models like the hole effect model, will also result in different 
sampling schemes. 

The question remains to what extent the obtained solutions are truly the global 
optimum. This can not be proven. For simulated annealing, it has been proven that the 
global solution is always found, given infinite calculation time (Aarts and Korst, 1989). 
For realistic calculation times, this has not been proven. However, all optimised sampling 
schemes were reproduced in subsequent runs of the algorithm with different (random) 
starting points. This indicates that the solutions might indeed be the global optimum. 
More to the point of this study, it was shown that the sampling schemes performed 
better than the traditional equilateral grid. 

This study considered univariate problems. Other problems might be multivariate. 
In those cases, several optimisation strategies might apply. Similar to the method 
presented in this paper, the cokriging variance might be minimised when a model of 
co-regionalisation can be definied. However, this requires much modelling of variogram 
and cross-variograms, and can only apply in cases with few variables. Van Groenigen et 
at. (submitted) (Chapter 6) andBroos etal. (submitted) showed how conditional probabilities 
of exceeding environmental threshold values of several contaminants can be pooled 
into one variable, indicating health risk. 

Use of SSA for minimisation of the kriging variance will result in sampling schemes 
that explicitly take into account the nature of spatial dependence. The surveyor can 
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choose between minimising the overall kriging variance and the maximum kriging 
variance. Moreover, preliminary observations can be taken into account. Therefore, 
SSA should be able to provide a useful tool for surveyors in the future. 
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Chapter 6 

Optimising Multivariate 
Interpolation1 

Abstract 

Effectiveness of regular sampling grids to collect multivariate contamination data in urban areas 
is often strongly reduced by buildings and boundary effects. In addition, earlier observations and 
knowledge on the history of the area may provide valuable information. This chapter presents a 
simulated annealing-based procedure to optimise the sampling scheme, taking sampling con
straints and preliminary information into account. The sampling scheme is optimised using a 
spatial weight function, that allows to distinguish areas with different priorities. A case study in 
the Rotterdam harbour with five contaminants at two depths showed two subsequent sampling 
stages, in which two weight functions were applied. The first stage combined earlier observa
tions and historical knowledge, with emphasis on areas with high priority. The resulting scheme 
showed a contamination at 17.4% of the samples, with 1.5% heavily contaminated. The second 
stage used probability maps of exceeding intermediate threshold values to guide additional sam
pling to possible hot-spots. This yielded 26.7% contaminated samples, with 16.7% being heavily 
contaminated. These included new locations that were not detected during the first stage. The 
proposed method allows to incorporate important preliminary information, and can be used as 
a valuable tool in environmental decision making. 

1Basedon:YanGrcxiu^enJ.^.,Yieters,G.MidSieha,A.(sulmiitted).Optimhingspatialsa 
contamination in urban areas. Environmetrics. 
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6.1. Introduction 

Characterisation of multivariate contamination for remediation of urban areas is 
a highly complicated problem in soil geostatistics. A surveyor has to balance carefully 
between scientific integrity, legal validity and practical attainability. Traditional tools of 
a soil surveyor such as photo interpretation and knowledge on soil/landform 
relationships are of limited use, as urban soils are seldom in their natural state. The 
spatial distribution of the contaminants is typically poorly related to soil type. Also, 
accessibility to the sampling sites is often constrained by buildings and roads. 
Geostatistical methods of handling many Regionalized Variables (ReV's) and their 
interactions are still complicated, involving much modelling and many assumptions 
(e.g. Deutsch and Journel, 1992). Finally, observations are usually costly, and the most 
should be made from limited facilities. Because of all these complications, optimising 
the sampling scheme is a crucial issue. 

A geostatisticial survey normally involves first estimation of a model for spatial 
dependence, usually expressed by the variogram. Secondly, this model can be used for 
optimal interpolation of an ReV. Past efforts of optimising spatial sampling for 
interpolation can therefore be split up in two, potentially conflicting strategies: 

i) Strategies aimingatoptimdestimation ofvariogramparameters. Webster and Oliver (1992) 
found that for an isotropic (direction-independent) variogram, at least 150 sampling 
points on a regular grid are needed for estimation of the variogram, and that 225 
usually give reliable estimations. Yfantis etal. (1987) found that a triangular grid 
yielded the most reliable estimation of the variogram, as compared to square and 
hexagonal grids. Russo (1984) and Warrick and Myers (1987) proposed an 
optimisation method for reproducing an a priori defined ideal distribution of point 
pairs for estimating the variogram. Van Groenigen and Stein (1998) (Chapter 3) 
proposed a more powerful algorithm for the same criterion. Russo and Jury (1988) 
found that this criterion yielded more reliable short range estimates of the variogram 
than systematic sampling. 

ii) Strategies aimingat optimal spatial interpolation (often kriging). Given the variogram, 
optimal grid spacing can be calculated given a required minimal accuracy (McBratney 
etal, 1981; McBratney and Webster, 1983). More recently, methods were developed 
for selecting optimal locations of sampling points for interpolation, rather than 
optimal grid spacing. First, this was done using a list of possible sampling locations 
as a rather small discrete solution space (Sacks and Schiller, 1988). Van Groenigen 
et al. (1999) (Chapter 4) showed how this method could be extended to much 
larger problems with a continuous solution space. 
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Although these strategies have contributed much to improve the quality of sampling 
schemes, they were all essentially univariate. As most surveys aim at characterisation of 
more than one ReV, there is a clear need for multivariate sampling strategies. 

Urban contamination studies typically offer much preliminary information. Often 
the historic use of the area is known, indicating possibly contaminated sites. As 
environmental legislation involves the use of different threshold values and requires 
different survey phases, preliminary data might be available on the area. Using these 
constraints and preliminary information on multivariate contaminants to optimise a 
sampling scheme is one of the main challenges in environmental soil surveys. 

In this chapter, we will introduce a method for optimising spatial sampling in 
urban areas. We will show how we can make use of the preliminary information on the 
area, in the form of both historic information and preliminary observations. The 
optimisation method is an extension of the SS A algorithm presented in Van Groenigen 
and Stein (1998) (Chapter 3). 

6.2. Theory and methods 

6.2.1. Spatial Simulated Annealing 

Spatial Simulated Annealing (SSA) is an optimisation method for spatial sampling 
schemes. SSA is especially beneficial in studies with many sampling constraints and 
preliminary observations, such as urban remediation studies (Van Groenigen and Stein, 
1998) (Chapter 3). The algorithm considers constrained optimisation of a sampling 
scheme as a combinatorial optimisation problem. Consider a 2-dimensional region A 
and let the collection of all possible sampling schemes with n observations on A be 
denoted Sn . Then we define a fitness function <j)(S): Sn —» 9?+ that has to be minimised 
to optimise the sampling scheme. The fitness function can be any quantitative function 
of a sampling scheme, and does not necessarily have to be continuous. Optimisation 
starts with a randomly selected sampling scheme S0 e Sn , consisting of observation 
points x J,...,x° . At the first optimisation step, the observation points are transformed 
over a random vector 8" with only one element different from zero, yielding a new 
sampling scheme S!. This alternative sampling scheme is accepted with probability 
Pc, using the Metropolis criterion: 

pc(Si->si+1) = i, if<Ksi+1)<<Ks;) 

P c(S i^S i J = exP[M)_^i±i)j ) ^ J x K S j . (6-D 
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If Sj has a lower fitness (i.e. if it is superior according to our criterion) than S0, it is 
accepted as a basis for further optimisation. If it has a higher fitness, it is accepted with 
a probability that is positively related to parameter c of Equation 6.1. The process then 
continues with the creation of a sampling scheme S2 out of Sx (if it was accepted) or 
S0. As the optimisation process evolves, c and the maximum length of Sf decrease, 
forcing the sampling scheme to 'freese' in its optimal configuration, in a similar way as 
the physical annealing process of solids (Aarts and Korst, 1989). For a more detailed 
discussion of SSA, see Van Groenigen and Stein (1998) (Chapter 3). 

As different surveys may have different aims, several optimisation criteria with 
corresponding fitness functions (|)(S) have been used in the past. The so called MMSD-
criterion minimises the expectation of the distance of an arbitrary point to its nearest 
observation point whereas the MEAN_OK-criterion minimises the mean ordinary 
kriging variance over the area of interest (Van Groenigen et al., 1999) (Chapter 4). 
Figure 6.1 shows, for a very simple case, the difference between the two criteria. Figure 
6. la shows the optimised sampling scheme using the MMSD criterion for 23 sampling 
points. Figure 6. lb uses the MEAN_OK-criterion, for an anisotropic variable. The 
axis of minimum spatial variation is located in the 0° direction, with the axis for 
maximum variation perpendicular to it. The MEAN_OK-criterion accounts for the 
directional effect, placing more observations in the direction of maximum variation 
(Figure 6.1b) 

Although the MEAN_OK-criterion is very useful if we want to optimise our 
prediction accuracy, it is not necessarily the best criterion in contamination studies. In 
such studies, accurately delineating hot-spots might be more important than elaborately 
mapping the whole area, including low-spots (Watson and Barnes, 1995). Therefore, 
we modified the MMSD-criterion in order to be able to distinguish between different 
degrees of priority within the areas. 

6.2.2. The WMSD-criterion 

The WMSD (Weighted Means of Shortest Distances)-criterion is a weighted version 
of the MMSD-criterion. The fitness function is extended with a location dependent 
weighing function w(x): A—» 9T : 

rrun=JAw(x)||x-Vs(x)|dx (6.2) 

where Vs(x) denotes the coordinate vector of the sampling point nearest to x.This 
function is estimated by: 
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Figure 6.1. Optimised samplingschemes using the MMSD-criterion (a) and the MEAN JDK-criterion in 
the presence ofanisolropy (b) 

KMSD(S) = — i>(xi)||xi-Vs(xl)| 
e ,=1 

(6.3) 

where x *,... ,x°e are the nodes of a fine evaluation grid over A. 
As an example, a square area with 23 observations is subdivided into two parts 

(Figure 6.2). The upper half has weighing factor 2.0, the lower half a weighing factor 
1.0. Hence w(x) = 1 if x e Aj, and w(x) -2 for x e A2. This leads to more intensive 
sampling in A2 (15 observations) than in A1 (8 observations). 

Use of the weighing function w(x) offers a flexible way of using prior knowledge 
on A and on the possible multivariate character of the survey. In the case of soil 
contamination, w(x) can be used to express knowledge on the expected contamination 
in some parts of the area, e.g. by increasing sampling density on sites with higher 
expected contamination. In this chapter we present two ways of defining w(x). The 
first is using historic knowledge on the severity and location of processes that caused 
the contamination. The second way of defining w(x) is based on probability maps of 
exceeding threshold values using preliminary observations. 

6.2.3. Probability maps using Indicator Kriging 

Indicator kriging aims at predicting the conditional cumulative distribution function 
of a ReV at any unvisited location (Deutsch and Journel, 1992). If we consider a ReV 
Z(x) with observations z(x*),... ,z(xn), this is achieved by indicator transforming the 
observations for cut off value z„: 
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Figure 6.2. Optimised sampling scheme using the WMSD-criterion, with subareaswith different weights.. 

i(x',zc) = l, i fz(x')<zc 

0, ifz(x')>zc 

V x ' e S 
(6.4) 

These transformed variables are interpolated with kriging. The interpolated values, 
marked with a star, at unvisited location x° can then be interpreted as a conditional 
probability: 

i(x°,zcr=Pr{Z(x°)<zc|s} (6.5) 

By repeating this procedure for several cut off values, a conditional cumulative 
distribution function can be estimated at each location by kriging of the indicator 
transformed variables. 

This nonlinear transformation is especially useful when a skewed distribution of 
Z(x) prohibits the use of linear geostatistical methods such as ordinary kriging (Journel, 
1983). Goovaerts (1997b) showed that indicator techniques can be more effective in 
delineating a contamination than ordinary kriging. Van Groenigen etal. (1997) (Chapter 
2) showed how probability maps produced by indicator kriging could guide additional 
sampling towards possibly contaminated sites. They found that such a multi stage 
sampling design led to more accurate site characterisation, with much smaller type-I 
errors, and comparable type-LT errors, as compared to a rectangular grid and a random 
sampling scheme. However, additional sampling sites were chosen by simple random 
sampling. Using SSA, this approach can be optimised. 
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Figure 6.3. A n overview of the research area with sampling constraints andpreliminary observations (S°). 

6.3. Case-study: the Rotterdam Harbour 

An optimal sampling scheme was developed for an urban contamination site A in 
the Rotterdam harbour, where many preliminary data and sampling constraints were 
met. The WMSD-criterion was selected to use this information to optimally locate 
additional observations. 

In the Netherlands, legislation on soil remediation recognises four threshold values, 
defined for each potential contaminant. Sites with concentrations below the S- threshold 
are considered non-contaminated. Sites with concentrations above the I- threshold are 
severely contaminated. The j ( S +1) value is used as a threshold for further research. 
Both the S- and I- thresholds depend on the clay and organic matter content of the 
soil, recognising the influence of these parameters on the chemical behaviour of the 
soil. Additionally, concentrations above the BAGA-threshold require more expensive 
action (Anonymous, 1994; Anonymous, 1995). 
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6.3.1. Description of study area 

The study area is located along the river Maas, in the old harbour near the centre 
of Rotterdam (Figure 6.3). As harbour activities are withdrawing from this location, 
the old area increasingly allows more urban uses such as housing and office building. 
The size of the area is approximately 30 ha. 

The harbour area developed around 1900, due to increasing industrial activity around 
Rotterdam. On the eastern pier, a stevedores firm and several silos and warehouses 
settled. A passenger terminal was located on the western pier. A power plant was 
located at the entrance area near the western pier, and a gas plant west of that. With 
modernisation of the merchant fleet after the second world war, harbour activities 
moved to areas further away from the city centre, leaving the site with a variety of light 
industrial and commercial activities (Pieters et al., 1996). 

The area is to be converted into a mixed housing, recreational and commercial 
area within the next 10 years (City of Rotterdam, 1997). Therefore, a survey of the 
area on possible contamination due to former industrial activity had to be carried out. 

The soil consists of a sandy layer overlaying the original Holocene clays. This layer 
was applied for heightening and varies in depth from around 5 m on the piers, to 2 m 
on the north west part of the area. No peat was found within 5 m depth. 

6.3.2 Preliminary data and sampling constraints 

Based upon historic research and future plans, different priority areas for sampling 
were delineated. We distinguished five historical factors: 

i) filling in of harbour 
ii) heightening of surface level 
Hi) type of industrial activities 
w) boundaries of ownership parcels 
i) historic remediations 

This information was combined with maps showing the urgency of the survey for 
future activities, yielding a priority map. Classification ranged from 1 (low priority due 
to no expected contamination and/or no immediate building plans) to 4 (high expected 
contamination and/or immediate building plans) (Pieters etai, 1996). The area A can 
be subdivided according to these classifications in sub-areas A l v . . ,A4 , respectively 
(Figure 6.4). 

Much data on contamination was available from preliminary surveys and earlier 
remediations, yielding a total of 201 observation locations. Three heavy metals (Pb, Cu 
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Figure 6.4. Priority map of sampling, based upon expected contamination and urgency ofremediation 
rangingfrom Aj (lowpriority) to A4 (highpriority). 

and Zn) and 2 carbohydrates (mineral oil and PAH's) were considered, as they were 
expected to constitute the main contamination. Not all variables were sampled at each 
of the 201 locations, resulting in a different number of observations for each 
contaminant. This preliminary sampling scheme is denoted by S°. As data were collected 
at different depths, for practical reasons two layers were considered for analyses: 0-1 m 
( L j and 1-5 m (L2), respectively. The observations of S° are strongly clustered, 
with high concentrations of points on the western pier and around the former gas-
and electricity plants. As several buildings in the area were of architectural or historical 
value, sampling was constrained by both boundaries and built-on areas (Figure 6.3). 

6.3.3. Step 1: additional sampling using historic information 

As a first step, 80 additional sampling points were selected, to cover the areas that 
were left unsampled by S°. To optimise such an additional sampling scheme S1 , the 
weight function ws,(x)was defined. We assigned to the four subareas 
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A1,... A4 different weights, with the highest weight for the subarea with the highest 
probability of being contaminated and the highest priority (A 4 ) . After comparing 
different weight distributions, it was decided by expert judgement to use the weight 
vector (1.0,1.5,2.0, 3.0). By fine tuning after several runs of the SSA algorithm this 
vector was chosen, as it provided the most satisfactory distribution of points over the 
different subareas. This weight vector resulted in a coverage of the area that reflected 
the severity of the different priority area. 

6.3.4. Step 2: additional sampling using probability maps 

After getting a first overview of the extent of the contamination b y ( S ° u S 1 ) , a 
second stage of sampling focussed on areas with a high probability of being 
contaminated, as calculated from the observations. Here, a second weight function 
wg2 (x) was used, based on indicator kriging. After choosing a threshold value, 
probability maps of all 5 contaminants at both depths were calculated, denoted 
i1(x,z1)*,...>i10(x,z10)

J > respectively. As we were interested in the probability of any 
of the variables reaching high levels of contamination, we used the maximum of all 
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Figure 6.6. Additional sampling scheme usingMMSD-criterion. 

probabilities: 

wg2 (x) = maxCi1(x,z1)*,...410(x)z10)*) (6.6) 

This weight function was used to select the additional sampling scheme S2 . 

6.4. Results 

Figure 6.5 shows the optimised additional sampling scheme. As a comparison, 
figure 6.6 shows an alternative without the weight function, using the MMSD-criterion. 
Use of priority areas in the design of S1 influenced the sampling schemes, with more 
emphasis on areas with higher priority than on areas with lower priority. The WMSD-
criterion places 46 and 18 observations at the most urgent priority areas A3 and A 4 , 
respectively (Figure 6.5). Using the MMSD-criterion, these numbers are only 32 and 7 
(Figure 6.6). Both figures show that sampling constraints are honoured. 

Table 6.1 describes the data set for the total data after the first sampling round 
(S° u S1). The distribution of all contaminants is skewed, with only a few outliers 
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Table 6.1. Descriptive statisticsforS0andS1 (mgkg'J. 

Poll. 
Zn 

Pb 

Oil 

PAH 

Cu 

Layer 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

n 
161 
127 
162 
138 
148 
113 
142 
111 
161 
156 

Mean 
129 
102 
73 
71 
50 
94 
6 
42 
30 
35 

St.dev. 
127 
208 
129 
260 

no 
419 
17 
284 
61 
197 

Max 
1300 
1500 
1350 
2700 
950 
2700 
161 
2756 
580 
2300 

Min 
10 
10 
1 
1 
2 
2 
0 
0 
0 
0 

above the I- and BAGA-thresholds. These contaminated locations are shown in Figure 
6.7 by smaller and larger circles, respectively. The I-threshold was exceeded at 35 locations 
for at least one of the contaminants. Three of these 35 where above the BAGA-
threshold. These last three were closely located to the former gas and electricity plants. 

To select the 30 points of S2, the exceedance probability of the I-threshold would 
be a logical choice. However, the high proportion of nugget effect in most indicator 
variograms (Table 6.2) indicated that spatial variation was extremely high. Therefore, 
because local hot-spots could still have been missed by sampling schemes S° and S1, 
we applied the j (S +1) -threshold, for which indicator variograms were calculated (Table 
6-2). 

As an example, Figures 6.8 and 6.9 show the interpolated probability maps of 
mineral oil in the second layer, and Zinc in the first layer, respectively. The contamination 
by mineral oil is only very minor (with only 3 observations above the \ (S +1) threshold). 
The probability that Zinc exceeds this threshold in most parts of the area is much 
larger. 

Figure 6.10 shows the combined probability map w 2 (x). Probabilities of exceeding 
the j (S +1) threshold exceed 0 everywhere, but clear hot-spots are located around the 

TiHe62.Spheriadi?dicatorwrhgramsfbraUcontamirum y(S + I) (tngkg1). 

Poll. 
Cu 

Pb 

Oil 

PAH 

Zinc 

Layer 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

Nugget 
1.0 
1.0 
0.54 
1.0 
0.39 
0.45 
1.0 
1.0 
0.72 
1.0 

Sill 
0.0 
0.0 
0.46 
0.0 
0.61 
0.55 
0.0 
0.0 
0.28 
0.0 

Range 
-
-
100.0 
-
85.0 
76.0 
-
-
86.0 
-
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Figure 6.7. Location of contaminated areas. 
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Figure 6.9. Probability of exceeding the y(S + I) thresholdforZincin L( 

former electricity and gas-plants. Using this map, 30 additional sampling points (S2) 
were determined (Figure 6.11). The observations are located close to the former plants, 
and at the northern part of the eastern pier. 

Table 6.3 presents descriptive statistics for S2 . As not all analyses were taken in 
both layers Lj and L 2 , the total number of observations is not 30 but 20 and 26, 
respectively. The observations exceeding the I- or BAGA-thresholds are indicated by 
the smaller and larger triangles, respectively (Figure 6.12). Table 6.4 compares the 
percentage of pollution of S° u Sl with that of S2 . The percentage of observations 

Table 6.3. DescriptivestatisticsforS2 (mgkg1). 

Poll 
Zn 

Pb 

Oil 

PAH 

Cu 

layer 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

n 
20 
26 
20 
26 
20 
26 
20 
26 
20 
26 

mean 
128 
128 
99 
223 
51 
314 
24 
2 
47 
33 

st.dev. 
68 
99 
100 
590 
52 
1425 
49 
3 
77 
39 

max 
290 
396 
380 
2800 
240 
7300 
198 
10 
350 
160 

min 
5 
20 
13 
13 
20 
20 
0 
0 
5 
5 
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Figure6.10. Maximum probability ofexceedingtbe j-(S + I) threshold for any of the contaminants and 
both depths. 

above the I-threshold increases from 17.4% to 26.7%, respectively. For the BAGA-
threshold these numbers are 1.5% and 16.7%. Apart from several observations of S2 

being relatively close to already observed contaminations, some new sites above the 
BAGA-threshold were discovered. These are located at the northern part of the eastern 
pier, and the southern part of the entrance area. 

6.5. Discussion and conclusions 

In this chapter, we showed the use of SSA in optimising a spatial sampling scheme 
for a multivariate contamination in an urban area. The WMSD-criterion can use any 
spatial weight function w(x) to focus sampling on areas with high priority and reduce 
sampling on areas with low priority. Two examples represent different stages in the 
case study. At the first stage, the weight function wgl (x) differentiated between areas 
of priority. The optimised sampling scheme includes existing observations, and sampling 
constraints are acknowledged. At the second stage probability maps of exceeding an 
environmental threshold value were combined into a single weight map w 2 (x). The 
sampling scheme thus derived detected several hot-spots that were left unnoticed before 
(Table 6.4). 
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A critical issue in the presented methods is the setting of the weighing factors. In 
the first stage the (semi quantitative) priority values have been transformed into weighing 
factors using expert knowledge. During the second stage, probabilities of exceeding 
the threshold values have been used as weighing factors. These choices are to a certain 
extent arbitrarily, and more research should be dedicated to the best setting of these 
weighing factors. On the other hand, the possibility of attaching priorities to certain 
areas may prove a valuable tool in decision making processes. 

In theory, it would improve the straightforwardness of the optimisation algorithm 
to use a combined, two-part fitness function. For example a weighted average may be 
considered: 

<l>WSUM(Si ) = ^l<l>l(Si ) + ^2<t>2(
Si ) (67) 

Table 6.4. Percentageof observations above thedifferent threshold values,for the two different sampling 
stages. 

Sampling scheme n >T(%) > I (%) > BAGA (%) 
SVJS1 201 31.8 17.4 1.5 

S2 30 43.3 26.7 16.7 
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Figure 6.12 Location ofheavy and very heavy contaminated areas. 

However, this would lead to problems with the weights derived from indicator kriging 
(LK). IK does not really provide probabilities of exceeding threshold values, but predictions 
of these probabilities. As the accuracy of these predictions is not accounted for (contrary 
to ordinary kriging, where the kriging variance can be used for that purpose), it is 
essential that the sampling scheme is adequate for interpolation before applying IK. 
Therefore, a phased approach was necessary in this study, where the first sampling 
stage was used to create a sampling scheme that covered the area satisfactorily. 

Table 6.4 and Figure 6.12 indicate the efficiency of the second sampling scheme in 
detecting contaminated sites. Although validation with stochastic simulations {e.g. 
Goovaerts, 1997b) would be preferable, simulating multivariate stochastic fields still 
poses serious problems. Modelling of spatial dependence would involve estimation of 
a large number of (cross)-variograms. This problem only increases in magnitude if 
several indicator variables are used. Deutsch and Journel (1992) mention different 
solutions to this problem. These solutions, however, require either all variables to be 
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known at most observation points, or one of the variables to be known at each simulated 
point. Ignoring co-regionalisation and simulating the contaminants separately would 
lead to a huge overestimation of the contaminated area. Therefore, a validation based 
on stochastic simulations was not tried. 

The proposed method of handling the multivariate problem does not require the 
use of a model of co-regionalisation, thus avoiding elaborate cross variogram 
calculations. Although this approach is somewhat pragmatic, it is very valuable in practice. 
Furthermore, we should like to emphasise that this method only applies to optimisation 
of the sampling scheme. Afterwards, data processing can proceed with any form of 
kriging, cokriging, simulation or other geostatistical procedure. 

This chapter focussed on optimisation of spatial sampling for geostatistical analysis. 
Recently, a discussion arose in the soil science community on the benefits of geostatistics 
as compared to classical statistics (e.g. Brus and De Gruijter, 1997; Brus and De Gruijter, 
1993). Using classical sampling theory, sampling schemes should always have a random 
component (e.g. a random origin of a sampling grid in systematic sampling), as all parts 
of the area should have an inclusion probability larger than 0. Therefore, optimising 
point locations as has been done in this paper is only allowed in geostatistics. Several 
optimisation methods using classical sampling theory have been proposed in the past 
(e.g. Stevens, 1997; Domburg etal, 1997). Although we recognise the significant role 
that classical sampling theory should play in spatial statistics, we think that geostatistics 
can be more flexible in dealing with sampling constraints and earlier measurements, as 
has been demonstrated in the case study. 

The main requirement of a sampling strategy in the practice of urban multivariate 
contamination studies is flexibility and robustness. In this paper we showed that SS A is 
able to handle the deviations, sampling constraints and preliminary observations. 
Furthermore, we showed that by distinguishing between priority areas, SSA can be a 
helpful tool in decision making processes. 
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Chapter 7 

Establishing Soil/Yield Relations in 
Precision Agriculture Studies1 

Abstract 

In this chapter it is shown how yield maps may be used to optimise soil sampling for precision 
agriculture in a low-tech environment. The proposed method is applied in an on-farm study in 
Niger. Using a cheap, low-tech scoring technique, yield maps of millet were produced. Yield 
varied from 0 to 2500 kg ha"1. Subsequently, the Spatial Simulated Annealing (SSA) algorithm 
was used to optimise three sampling schemes. Scheme 1 optimised coverage over the whole area. 
Scheme 2 covered the whole yield range. Scheme 3 covered the low-producing areas. Using 
correlation coefficients, scheme 2 found significant correlations between 5 variables and yield. 
Scheme 1 found only one significant correlation. Using multivariate regression of yield on soil 
variables, scheme 2 explained 70 % of the variation in yield. For scheme 1, this was only 37 %. 
Differences between scheme 3 and scheme 1 proved to be significant for distance to shrubs, 
micro-relief, pH -H 2 0 and CEC. From this study, we concluded that shrubs are the main factor 
influencing millet yield by means of catching eroded materials and improving soil fertility. The 
possibilities of planting shrubs to improve soil fertility should be investigated. Variograms of 
micro-relief and yield suggested that spatial correlation is largely confined to distances of 3 to 5 
m. 

1 Basedow Van Groenigen, J.W., Gandah, M. and Bouma J . {submitted). Soilsamplingstrategiesforpredsum 
agriculture research underSahelian conditions. Soil Science Society of America Journal. 
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7.1. Introduction 

In recent years, an increased interest in soil variability on the field scale may be 
observed. Precision agriculture has become an important research topic in soil science. 
As one of the major quantitative techniques of dealing with spatial variability, 
geostatistics plays an important part in these developments. Well-known geostatistical 
interpolation techniques like ordinary kriging and indicator kriging have been applied 
for optimal interpolation of point observations (e.g. Van Uffelen etal, 1997; Stein etal, 
1997). Also, stochastic simulation techniques (e.g. Gomez-Hernandez and Srivastava, 
1990; Goovaerts, 1997a) offer interesting perspectives in scenario studies. 

Apart from these applications and adaptations of existing geostatistical tools, 
precision agriculture poses some more specific challenges to geostatisticians. One of 
these is the increasing availability of maps of auxiliary data that can be potentially of 
help for purposes such as mapping of soil properties or yield prediction. Examples of 
such auxiliary data are maps of soil tillage resistance (Van Bergeijk and Goense, 1997), 
Remote Sensed imagery (Booltink and Verhagen, 1997), and yield maps collected using 
low-tech (Stoorvogel, 1995) or high-tech (Bouma, 1997) approaches. 

In this chapter, we focus on the question how (relatively cheap) auxiliary data can 
be used to optimise collection of soil samples for (expensive) chemical analysis. 

The developed methodology was applied in a case study in Niger. In a farmers' 
field, yield predictions were made using a quick, low-tech scoring technique. These 
yield maps were used to guide sampling of soil properties to potentially interesting 
sites. Special attention was paid to the specific possibilities and constraints of precision 
agriculture in a low-tech environment. 

7.2. Materials and Methods 

7.2.1. Study area 

The study area is located on an on-farm millet field near the village of Tchigo 
Tagui, approximately 80 km north east of the city of Niamey, western Niger. The field 
is located on a laterite plateau with eolian sand deposits. The soils can be classified as 
plinthustalfs (Soil Survey Staff, 1996). The rainy season is from May to September, 
and mean annual rainfall is around 480 mm (Sivakumar et al., 1993). The soils are 
generally characterised by a high spatial variability in terms of chemical and physical 
fertility. Bouma etal. (1996) mention five reasons for this: i) micro-relief and crusting, 
causing crucial redistribution of water infiltration (Gaze etal., 1997), it) termites, that 
may enrich the soil locally, Hi) local effects of trees and shrubs, iv) differences associated 
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with landscape position, and v) soil fertility gradients around villages. As the area is 
confined to one farmers' field relatively far from the village, only the first three aspects 
play an important role in this study. 

Brouwer etal. (1993) reported a yield stabilising effect of this micro-variability on 
similar fields. In relatively wet years, yields were highest at sites with a high micro-relief, 
due to catchment of fertile eroded particles. However, in dry years these spots were 
non-productive due to lack of water. In these cases the lower areas ensured a subsistence 
level of millet yield. 

Since both fertility and water supply are extremely low, even moderate spatial 
variability of these can have profound influence on crop yields. Stein etal. (1997) found 
a yield range of 0 to 2885 kg ha1, measured on 5 x 5 m blocks. They were able to 
explain 30 % of the yield variability by multiple regression on soil variables. Gandah et 
al. (1998) used the same support size for yield sampling, and were able to explain only 
5-28 % of the yield variability by regression. 

These results, combined with observations in the field, suggested that the support 
size of yield sampling should be smaller to capture most of the soil variability. In this 
study the support size was on a hill level, i. e. each planting hill (consisting of 2-6 individual 
millet tillers) was evaluated using a low-tech scoring technique in order to get a crude 
estimation of the yield. This data was used to optimise the sampling scheme. 

7.2.2. Spatial Simulated Annealing 

Spatial Simulated Annealing (SSA) is an algorithm that was designed for optimisation 
of spatial sampling schemes (Van Groenigen and Stein, 1998) (Chapter 3). Its features 
include the incorporation of preliminary observations, and taking into account sampling 
constraints and boundaries. Furthermore, SSA allows the use of several quantitative 
optimisation criteria, among them minimisation of the ordinary kriging variance and 
estimation of the experimental variogram (Van Groenigen etal, 1999) (Chapter 4). In 
this study, use was made of the MMSD-criterion, which aims at an even spreading of 
the observations over the area of interest. This is done by minimising the expectation 
of the distance between an arbitrarily chosen location, and its nearest observation 
point. This leads to the following minimisation function: 

mm 
s JA j>-Vs(*) | (7-1) 

where S denotes the sampling scheme, A represents the areas of interest, and x is a 
random location vector in A. Vs (x) represents the location vector of the nearest 
sampling point xs e S to x . As this minimisation function can generally not be solved 
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analytically, we estimated it using the following function: 

*MMSD(S) = —E|x'e-Vs(xi)| 
n e j = l 

(7.2) 

where the location vectors x* ,...,x"e denote the nodes of a fine raster grid over A. 
The optimisation process starts with an initial sampling scheme S0, consisting of 
randomly drawn locations over A. Subsequently, an alternative sampling scheme Sj is 
derived from S0 by a transformation of one of the sampling locations over a random 
vector. The probability of S: being accepted as a basis for further optimisation depends 
on the Metropolis criterion: 

p c(s ;^s i + 1) = i, ifcKSjJscKSi) 

PC(S; - Si+1) = e xp [^ i l _ f e ) j , if «SM) > m . (7.3) 

This criterion ensures that occasionally also inferior solutions are accepted, thereby 
avoiding prematurely ending of the optimisation process in local minima. As the process 
continues, parameter c decreases. In this way, the sampling scheme 'freeses' into a 
more optimal configuration. 

For an extensive discussion on SSA and the implementation of the MMSD-criterion, 
see Van Groenigen and Stein (1998) (Chapter 3). 

7.2.3. Soil sampling 

Three different soil sampling schemes were applied, in order to test the benefits 
of the different approaches. Samples were taken at three depths (0-0.1 m, 0.1-0.2 m 
and 0.2-0.4 m) and were analysed for pH-H20, texture, P-Bray, CEC and OM. In order 
to make the case study realistic in terms of financial constraints usually met in precision 
agriculture research, each sampling scheme consisted of 27 observations only. The 
sampling schemes are listed below: 
i) The first sampling scheme ( S j aims at even spreading of the sampling points 

over the total area (the three plots). For 9 locations per plot, SSA yielded a regular 
square grid. 

ii) Sampling scheme S2 aims at coveringthe whole range of yields, in order to establish 
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Scoring 1 Scoring 2 Scoring 3 

0 1 2 3 4 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 

Figure 7.1. Results of the three scorings of plot 3, presented using Thiessen polygons. 

clearer relationships between soil characteristics and yield. This was done by 
stratifying the area according to yield, and distributing a number of samples 
optimally over each of the strata using SSA. 

Hi) Sampling scheme S3 focuses specifically on low-producing areas. This may be 
especially useful for precision agriculture purposes when a detailed survey of low-
spots is desired for remedial action. To define low-producing areas, use was made 
of the threshold value of 250 kg ha1 yr1. This threshold was mentioned in Stein et 
al. (1997) as the minimum yield required for a family of 10 persons with 8 ha of 
cropping land. 

In addition, a detailed micro-relief map was produced, as former studies showed a 
strong influence of topography on yield (Stein etal. ,1997; Brouwer etal, 1993). Using 
a level, observations were collected on a square lm x lm grid. Since earlier studies 
suggested an influence of shrubs on yield variability, a variable 'distance to nearest 
shrub' was included. 

7.3. Results 

7.3.1. Yield maps 

In order to get a cheap, low-tech prediction of millet yield, a semi-quantitative 
scoring technique as presented in Buerkert etal. (1995) was used. Scoring was performed 
at July 4th, August 8th and September 4th 1997 on 3 plots of 10 m x 10 m each. Scoring 
values were assigned to individual hills, ranging from 0 (no plants at all) to 8 (maximal 
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aerial biomass). The millet was harvested around November 7th. 
Figure 7.1 shows the scoring results of plot 3 at the three scoring dates. Scoring 

data are represented using Thiessen polygons, as the semi-quantitative character prohibits 
direct interpolation using kriging. Since the discriminative features were rather limited 
at the earlier scoring dates, scoring ranges differed from 0-4 (July 4th), 0-6 (August 8th) 
to 0-8 (September 4th). 

After the last scoring, several hill samples were collected to establish the relationship 
between scoring and yield. For each of the 9 scoring classes of September 4th, 8 hills 
were harvested, the heads were threshed in a traditional manner and weighted separately. 
The results are shown in Figure 7.2. From this figure, it can be concluded that the 
scoring should not be used directly as a quantitative measure that is linearly related to 
the yield, but should be calibrated using real yield measurements. Scoring values of 0 
to 3 resulted all in a yield very close or equal to 0. Scoring classes 5 to 7 did not result 
in a significant difference in yield. 

Using this calibration data, the scoring data per hill were transformed into estimated 
yield data. This was interpolated using ordinary kriging, resulting in the predicted yield 
maps shown in Figure 7.3a-c. Table 7.1 shows the variogram parameters for the yield. 
These can be characterised by a relative high nugget effect (54 % and 48 % for plots 2 
and 3, respectively). Furthermore, ranges of 3.4 and 4.2 m confirm suppositions of 
high variability at very short distances. 

A survey of any shrubs on the plots was made, as previous studies showed that 
shrubs can have a considerable influence on soil and yield variability (Brouwer etal, 

file:///alue
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Table 7.1. Variogram modelsfortbeyieldestimatesand micro-relief 

Variable 

yield (kg/ha) 
yield (kg/ha) 
yield (kg/ha) 
relief (m) 
relief (m) 
relief (m) 

Plot no. 

1 
2 
3 
I 
2 
3 

Variogram 
model 
linear 
exponential 
exponential 
linear 
spherical 
spherical 

Nugget 

140800 
159300 
165200 
0.030 
0.012 
0.001 

c / slope 

21120 
134991 
182000 
0.023 
0.020 
0.073 

range / r 
M 
-
3.42 
4.15 

-
3.78 
4.27 

1993). The position of the shrubs is also shown in Figure 7.3a-c. 

7.3.2. Soil data 

Table 7.1 shows fitted variogram models for micro-relief, measured at the 1 m x 1 
m grid. Starting at the boundaries of the plots, this resulted in a data set of 121 
observations for each plot. Although the variograms differ much more in character 
than those of the yield predictions, ranges are still shorter than 5 m. Figure 7.3d-f 

^sh\e72£)escriptivestdtistkxofmeasuredvaridtfafo^ 

Scheme 1 Scheme 2 Scheme 3 
Variable Depth Mean SD CV Mean SD CV Mean SD CV 
pH-HiO 0-0.1 5.1 0.3 0.06 5.1 0.2 0.05 4.8 0.3 0.05 

0.1-0.2 5.0 0.3 0.06 5.0 0.2 0.05 4.8 0.2 0.04 
0.2-0.4 4.9 0.3 0.07 4.9 0.2 0.05 4.7 0.2 0.04 

' cite, cmoiicg1 ' o'-d~i "" l.os o.Yo'''' "o'Yi'' "iii "" 0.33 ""o.YY" i'2'9''' ' '622 o'.ii' 
0.1-0.2 1.32 0.57 0.43 1.30 0.30 0.23 1.32 0.34 0.25 
0.2-0.4 1.74 0.14 0.42 1.74 0.45 0.26 1.81 0.44 0.24 

"s'a'n'd','% " 0-0 J"" "89.9"'"2.3 0.03 " "89.9 " "Y.'l ~6.bY'"89.Y""2"Y o'.6i' 
0.1-0.2 87.5 3.4 0.04 87.7 2.3 0.03 87.2 2.3 0.03 
0.2-0.4 82.6 5.2 0.06 82.8 5.0 0.06 82.0 5.2 0.06 

"Sil't'% 0 - 0 . 7 " " ~ 4 . 0 "0~7~ 0.19 ''~4~6 7.0 '625'"~4J '6.9 "022 ' 
0.1-0.2 4.0 0.9 0.24 4.0 0.8 0.20 4.0 0.7 0.18 
0.2-0.4 3.5 0.9 0.26 3.5 0.9 0.26 3.7 0.9 0.24 

"Cl'ay'% o"o'l"""6J I.Y 0.3'6""6J 7.6 '026" "6.8 'l'.8 027" 
0.1-0.2 8.6 3.1 0.36 8.4 1.9 0.23 8.8 2.1 024 
02-0.4 14.0 4.9 0.35 13.9 4.7 0.34 14.4 4.8 0.33 

' OM, g'kg'' 0-0.7 " " '028'''' "OM ''' "o'.31 '' "029 ""'o'.'o~8""'626" '625'''' '6.05 0.20 ' 
0.1-0.2 0.27 0.01 0.19 0.27 0.06 0.22 0.25 0.06 0.25 
0.2-0.4 0.25 0.05 0.21 0.27 0.06 0.21 0.28 0.07 0.24 

"PBiay, rn'g'kg1'0-0.7'""3.8 13 033 '''Y.5 Y.3 'o'JY''Y.6 7 . 7 o".47 ' 
0.1-0.2 3.0 1.3 0.43 2.5 12 0.48 2.5 1.3 0.51 
02-0.4 1.9 0.5 0.24 1.5 0.7 0.43 1.5 7.0 0.66 

"Relief m\'_"'_"'- '6.'048 0.004 ''"o'.48 ''"o'.053 ~''O'M'l''''6.i'o''' o'.bYi'_' ft079 '_'_ 'bJ'S' 
"Distance,'m -" '2.64 77/7~ 0.56 '''Y.12 Y.76 O'JY'' Y.Yo 7.50 OAO ' 
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kg/ha 

(d) (e) (f) 

Figure 7.3. Interpolated yield estimates with position of shrubs (a<)and interpolated micro-topogropby (d-f). 

shows the interpolated micro-relief for the three plots using ordinary kriging. The 
maximum difference in micro-relief within a plot is 0.13 m (measured at plot 1). 

The three sampling schemes were established as follows: 

i) Sampling scheme St is shown in figure 7.4a-c. As it is not designed using the yield 
data, it misses several important features, notably all hot-spots of plot 2. Table 7.2 
summarises the soil data of S[. Texture varies from sand in the upper soil, to 
loamy sand (due to clay illuviation) in the subsoil. This results in an increasing 
CEC with depth. Furthermore, organic matter content and P-Bray are decreasing 
with depth. Coefficients of Variation (C V s) are reasonably low (< 50 %) for all 
variables, except for distance to the nearest shrub (56 %) 

ii) Sampling scheme S2 is shown in figure 7.4d-f. As this scheme aims at covering a 
wide range of yields, most of the hot-spots are sampled. All low producing areas 
(e.g. the lower left corner of plot 3) are covered. Most descriptive statistics of S2 

are close to those of Sj . However, standard deviation of relief is much higher in 
S2 , and mean distance to shrubs is much smaller. 

Hi) The area with a predicted yield lower than the threshold of 250 kg ha'1 y r 1 was 
delineated in the three plots, and sampling points of S3 were evenly distributed. 



SOIL/YIELD RELATIONS IN PRECISION AGRICULTURE 101 

Plot l P k * 2 

Scheme 15.00 

Scheme 2 5.00 

= Observation 

Figure 7.4. The three sampling schemes for the threeplots, superimposed on they kid estimates 

Figure 7.4g-i shows the resulting sampling scheme. As the predicted yield in plot 3 
is considerably lower than in plots 1 and 2, most of the observations (15) are taken 
there. Descriptive statistics are presented in Table 7.2. p H - H O is lower at all 
depths, as compared to S1. Furthermore, texture of S3 is slightly heavier, organic 
matter content is lower and distance to shrubs is higher. 

7.3.3. Correlation and regression analysis 

To test the performances of S : and S2 in assessing soil-yield relations, we calculated 
correlation coefficients between yield and soil variables. Yield at sampling locations 
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Table 7.5.Correlation coefficientsformilletyieldandsoilvariabks. 

Depth 

0-0.1 
0.1-0.2 
0.2-0.4 

0-0.1 
0.1-0.2 
0.2-0.4 

Relief Distance 

0.258 -0.464' 
-

0.328' -0.451' 
-
-

Levels of significance: *=0.10, * = 

pH-H:0 

-0.160 
0.054 
0.081 

0.200 
0.141 
0.052 

=0.05, "=0.01 

CEC Sand 
cmol kg' — 

Sampling Scheme 1 
-0.086 0.047 
0.007 -0.083 
0.004 -0.190 

Sampling Scheme 2 
0.239 -0.141 
0.005 -0.189 
0.184 -0.215 

Silt 
% — 

-0.060 
0.214 
0.069 

-0.128 
0.342' 
0.097 

Clay 

-0.031 
0.028 
0.188 

0.255 
0.095 
0.208 

OM 
gkg' 

0.190 
-0.028 
-0.112 

0.36V 
0.557" 
0.080 

P-Bray 
mg kg' 

0.160 
-0.221 
-0.293 

0.264 
0.217 
0.102 

was predicted using ordinary kriging. For S,, only distance to shrubs is significant with 
a = 0.05, and no other variables show a significant correlation with yield (Table 7.3). 
The negative correlation of yield with distance to shrubs can be explained by the 
relative higher fertility (in terms of O M and P-Bray) closer to the shrubs. 

A stepwise linear regression was performed to find significant relations for Sj and 
S 2 . For yield, the Lilliefors test for normality was not rejected (with a = 0.05). The 
selected model for $t was: 

Yield = 789.6 -137.1 *Dist + 253.2 * Silt[0.1 - 0 .2 ] - 452.1 * 

PBraj[0.2-0.4] &A) 

where Silt[0.1-0.2] denotes the silt content in the second layer. This significant model 
(with a = 0.05) yielded an adjusted r2 of 0.372. These results are only slightly better 
than those from Stein et at (1997), who found an unadjusted r2 of 0.377 in a much less 
detailed survey. 

For S2 , one correlation coefficient was highly significant (a = 0.01), another one 
significant at a=0.05, and three more significant with a=0.10. The significant correlation 
coefficient for distance to shrubs confirms the findings of S,. Micro-relief and O M 
were positively correlated to yield. This can probably be explained by the higher relief 
around shrubs, due to catchment of eroded material. In the second layer silt was 
significantly correlated, and OM highly significant. 

The selected regression model for S2 was: 

Yield = 18728 + 12702 * Relief - 257.9 * SilfO.l - 0.2]-135.9 * 

PBratfO.l - 0.2]+ 9239 * OI^O.l - 0.2]- 219.6 * Sand[0.1 - 0.2] ^'^ 



0.002" 
0.003" 
0.053* 

0.009" 
0.612 
0.749 

0.168 
0.947 
0.529 

0.616 
0.960 
0.496 

0.127 
0.923 
0.468 

0.119 
0.267 
0.051* 

0.545 
0.235 
0.299 
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^i!^t7AResultsfmmastudentt-testbetwemSxardSyPm 

Depth Relief Distance pH-H,0 CEC Sand Silt Clay OM P-Bray 
0-0.1 0.015' 0.070* ' " " 
0.1-0.2 
0.2-0.4 -

Levels of significance: * -0.10, *-0.05, **=0.01 

This model yielded an adjusted r2 of 0.705, which is much higher than that obtained 
by Sj. It may be noticed that in this model distance to shrubs is not included, despite 
its significant correlation coefficient (Table 7.3). This might be explained by its highly 
significant correlation to micro-relief. In fact, univariate regression of yield gives a 
highly significant model for distance to shrubs: 

Yield = 1704.6 - 218.8 * Dist (7.6) 

Although this model is highly significant, it only explains 25 % of the yield variability. 
Therefore, the multivariate regression was preferred. 

7.3.4. Student t-test 

A Student t-test was performed to show significant differences in soil variables 
between S1 and S3. Table 7.4 shows the probabilities that the means of the two 
populations are similar. Three variables showed highly significant differences, whereas 
four additional ones showed significant differences. The significance of distance to 
shrubs and relief coincide with findings of the regression analysis. The CEC[0-0.1] is 
significantly higher for S3. This may be related to the relative enrichment with finer 
particles due to erosion at the low-producing areas. Finally, pH-HjO is highly significant 
different at all depths, reflecting the general depletion of the low producing area. 

7.4. Discussion and Conclusions 

Using the SSA algorithm, three different sampling schemes of limited size were 
constructed. Scheme S,, which aimed at optimal spreading of the sampling points 
over the area, yielded a significant (negative) correlation of distance to shrubs with 
yield. Scheme S2, which aimed at coverage of all the extremes in yield, showed significant 
correlations for four additional variables. Moreover, using multivariate regression 
analyses the explained yield variation increased from 37% using Sx, to 70% using S2. 
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We concluded therefore that the approach taken for constructing S2 should be preferred 
for relating yield to soil variables in case of limited observations. 

Differences between S3 , which aimed specifically at low-producing areas, and 
Sj were used to detect the main limiting variables for yield. Distance to shrubs and 
micro-relief were probably the most important factors in this. Other significant variables 
(higher CEC and lower p H - H 2 0 in S3) were probably related to the effects of soil 
erosion, due to absence of shrubs. 

These findings are in line with existing management techniques practised by local 
farmers. Shrubs are seen as a valuable asset, useful in locally improving soil fertility by 
catchment of airborne eroded particles, and by enrichment with organic matter from 
the shrub. At the start of the growing season, shrubs are trimmed to limit competition 
with the millet crops. Since rainfall at the start of the 1997 growing season was relatively 
good, this is also in line with the yield stabilising effect of soil variability, as reported by 
Brouwer (1996). In drier years, the yield pattern may be reversed. However, in order to 
optimise the yield stabilising effect of the shrubs, planting of shrubs should be 
considered as a low-tech soil management practice. More research should be dedicated 
to optimal placement of such shrubs. 

The sampling schemes used in this study were deliberately kept small in order to 
stay close to financial constraints generally met in precision agriculture research. 
Although costs of laboratory analysis is still out of reach for the marginal farmers in 
the study area, we think that the developed techniques can be of great value to researchers 
dealing with the highly variable soils of the Sahelian zone. Moreover, the type of auxiliary 
data used to optimise sampling is typical for precision agriculture, and developed 
techniques may be applied in other types of precision agriculture. As an example, 
remote sensed data related to crop yield might be treated in the same way as the predicted 
yield maps in this study. 

Since the number of observations was small, relatively simple statistical techniques 
were used to relate yield to soil variables. In our opinion, this represents the practical 
constraints of precision agriculture rather well. If a higher number of observations 
can be collected, geostatistics can be applied for interpolation of soil variables. Auxiliary 
data like yield maps may then serve as co-variable in cokriging. 
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Chapter 8 

Sampling Strategies for Effective 
Variogram Estimation1 

Abstract 

This chapter compares various sampling strategies for variogram estimation. Sampling strategies 
are tested using stochastic simulations. In the first part, a regular grid is compared to a sampling 
scheme that optimises the point pair distribution for variogram estimation. This yielded unbi
ased experimental variograms. However, the fluctuation of the experimental variograms was 
much lower with a regular grid. We concluded from this that the point pair distribution alone is 
not a useful optimisation criterion for variogram estimation. In the second part, additional ob
servations selected for optimal point pair distribution were compared with randomly drawn 
additional observations. The random observations resulted in much higher standard deviations 
at shorter distances. We concluded from this that for additional short distance observations the 
point pair distribution is a very useful optimisation criterion. In the third part, we focused on 
optimal variogram use. A sampling grid of 81 observations was completed after preliminary 
estimation of the variogram with 19 additional observations for minimal kriging variance. The 
scheme was compared to a regular grid of 100 observations. For an exponential underlying 
variogram without nugget effect, the use of the phased sampling scheme reduced the mean 
squared kriging error from 0.39 [unit]2 to 0.31 [unit]2, and the maximum squared kriging error 
from 6.05 [unit]2 to 4.24 [unit]2. For a spherical underlying variogram with a nugget effect of 
33%, mean squared kriging error did not change and maximum squared kriging error decreased 
from 15.98 [unit]2 to 11.52 [unit]2. We concluded that minimisation of the squared kriging error 
is often more relevant than accurate estimation of the variogram. Taking samples just outside 
the area improved the quality of the prediction in terms of both kriging variance and actual 
squared kriging error. 

1 Based on: Van Groenigen, J.W., Mainam, F. and Stein, A. (submitted). Sampling strategies for effective variogram 
estimation. European Journal of Soil Science. 
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8.1. Introduction 

Establishing the nature of spatial correlation is often the starting point for a 
geostatistical study. Information on spatial correlation is needed in many geostatistical 
algorithms such as kriging and Multi Gaussian simulation. Other algorithms such as 
indicator kriging and cokriging require information on spatial (cross-)correlation of 
more than one variable. This spatial correlation is expressed in the variogram or some 
related statistic such as the co-variogram or cross-variogram. 

The isotropic (direction-independent) variogram is defined as: 

y(h) = JE[{Z(x)-Z(x + h)}2] (8.1) 

where Z(x) denotes the value of regionalized variable (ReV) Z at location x . This 
variogram can be estimated from observations z(x): 

1 n(h) 

Y(h) = — j - ^ z ( ^ ) - z ( X i + h ) } 2 (8-2) 

where n(h) is the number of point pairs separated by distance h (plus or minus an 
interval). Normally, the experimental variogram is calculated for nc lag classes to which 
subsequently a variogram model is fitted. 

In geostatistics, a distinction is usually made between two variograms: 

i) The variogram of the underlyingstochastic model, of which the 'reality' that is observed 
and sampled by the soil surveyor is considered to be just one realisation. This is 
called the underlying (Webster and Oliver, 1992) or ergodic (Brus and De Gruijter, 
1994) variogram. In this chapter we will use the term underlying variogram. The 
underlying variogram is reproduced over a large number of realisations. 

ii) The variogram of the realisation that is actually observed in practice, which can deviate 
from the underlying variogram. This variogram is called the local (Webster and 
Oliver, 1992) or non-ergodic (Brus andDe Gruijter, 1994) variogram. We will use the 
term local variogram in this chapter. 

In the literature, optimisation of spatial sampling for variogram estimation has 
derived some attention. However, no consensus has been reached on the criterion to 
be used to assess the quality of sampling schemes for variogram estimation. 

In general, three approaches towards optimising sampling for variogram estimation 
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can be distinguished: 

i) Optimising experimental variogram estimation. If nothing is known on the spatial 
distribution of a ReV, all that can be manipulated is the location of the sampling 
points. This has led to formulation of optimisation criteria for the optimal point 
pair distribution of a sampling scheme. This was first done by Warrick and Myers 
(1987), who presented a Monte Carlo algorithm for optimisation of the point pair 
distribution. Russo and Jury (1988) tested a slightly modified version of this 
procedure for estimation of the covariogram on several realisations of a stochastic 
field. They concluded that the covariogram was more accurately estimated at shorter 
distances, as compared to a regular grid. Van Groenigen etal. (1999) (Chapter 4) 
used this optimisation criterion to improve their sampling scheme for estimation 
of spatial correlation at short distances. Brus and De Gruijter (1994) modified this 
criterion for optimisation of the estimation accuracy of the local variogram. Taylor 
and Burrough (1986) and McBratney and Webster (1986a) used stochastic 
simulations to assess the quality of the experimental variogram. Webster and Oliver 
(1992) and Shafer and Varljen (1990) did the same using multiple samples from a 
single realisation of the stochastic field. 

ii) Optimising the fitting of the experimental variogram. When the structure of spatial 
correlation is known, sampling can be optimised for estimation of the variogram 
(D-optimality). Procedures for this have been developed and applied by Rasch 
(1990), Pettitt and McBratney (1993), Zimmerman and Homer (1991) and Van 
Groenigen and Stein (1998) (Chapter 3). Morris (1991) estimated the accuracy of 
the variogram by assuming a variogram model. 

Hi) Optimising the effectiveness of the variogram. This approach does not look at the accuracy 
of the (modelled) variogram itself, but on its use in further geostatistical analysis. 
Russo and Jury (1988) compared the resulting kriging variance (KV) of their 
optimisation procedure for variogram estimation with that of a regular sampling 
grid. However, this seems an awkward criterion since the KV is relative to the 
variogram, and therefore does not represent any errors in variogram estimation 
(Deutsch and Journel, 1998). Gascuel-Odoux andBoivin (1994), by resampling 
from a large data set, found that the actual squared kriging error (SKE) was lower 
than the calculated KV. Laslett etal. (1987) and Bregt etal. (1991) reported much 
higher SKE's than the calculated kriging variances. Brus (1993) showed how the 
sampling error of the local variogram could be included in the kriging error. 

As the variogam is generally not known in practice (and does not have to be 
estimated if it is), the second group of optimisation criteria is mainly of theoretical 
interest. Therefore, this chapter focuses on the first and third group. Using the SSA-
algorithm for optimisation of spatial sampling schemes, the merits of these optimisation 
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criteria for variogram estimation will be examined. Special emphasis will be placed on 
the practical value of the developed sampling schemes. 

Webster and Oliver (1992) tested the effectiveness of sampling grids of different 
sizes for estimation of the experimental variogram. Since they resampled a single 
realisation of a stochastic field using different origins of the sampling grid, their results 
are valid for the local variogram. In this study, we test sampling strategies for estimation 
of the underlying variogram, and therefore we use more than one realisation of the 
stochastic fields for two of the examples. The last example will focus on effective 
characterisation of one realisation. 

8.2. Materials and methods 

8.2.1. Spatial Simulated Annealing 

Spatial Simulated Annealing (SSA) was developed as a general purpose optimisation 
method for sampling in geostatistical studies (Van Groenigen and Stein, 1998) (Chapter 
3). Its features include optimisation of sampling schemes at the point level, incorporation 
of preliminary observations and honouring of sampling constraints. Starting with a 
random initial sampling scheme, the optimisation algorithm generates random 
distortions in the sampling scheme. The quality of the new scheme is assessed using a 
quantitative optimisation criterion. Improvements in the sampling scheme are accepted, 
while deteriorations are sometimes (and with decreasing probability as the optimisation 
advances) accepted to avoid local minima. The SSA algorithm allows to handle different 
quantitative optimisation criteria. Those used in this study are briefly presented below. 
For a detailed discussion of SSA, see Van Groenigen and Stein (1998) (Chapter 3). 

8.2.2. The WM-criterion 

The WM-criterion, formulated by Warrick and Myers (1987), optimises the fit of 
the realised point pair distribution of the sampling scheme to an a priori defined, ideal 
distribution. The criterion is formulated as the sum of squared differences between 
the realised and the ideal point pair distribution: 

nc 

£(c;-c ; )
2 (8.3) 
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where nc is the number of lag classes of the variogram, and C>i and C^ are the realised 
and ideal number of point pairs in the ith lag class, respectively. In this chapter, the ideal 
distribution is defined as even distribution of the point pairs over the chosen variogram 
lags,z.e. <;," =Cj*>vi>Je l , - ,nc. 

8.2.3. The MAX OK-criterion 

The MAX_OK criterion minimises the maximum ordinary kriging variance of the 
sampling scheme, using a variogram model as input. Using a fine raster of evaluation 
points x t ,...,x over the whole research area, the criterion is formulated as: 

max(o^K(xe • | S), Vxe>1,...£e>ne) (8.4) 

where C7OK(xc j | S) denotes the ordinary kriging variance at the j t h evaluation point 
xe|- using sampling scheme S. Van Groenigen {submitted) (Chapter 5) showed that 
sampling schemes optimised using this criterion are affected considerably by the choice 
of the variogram parameters and (to a lesser extent) the kriging neighbourhood. 

8.2.4. Stochastic simulation 

The accuracy of the sampling schemes will be assessed below using stochastic 
simulation. The advantage of using stochastic simulations instead of actual 
measurements is two-fold: 

i) The 'reality' is fully known. Therefore, we are able to quantify actual SKE's without 
constructions like jack-knifing. 

ii) Multiple realisations of the stochastic field can be generated. Therefore, both the 
underlying variogram and the local variogram can be calculated. In reality, only the 
local variogram can be known (Journel, 1985; Bras and De Gruijter, 1993). 

In this study, we used the Multi Gaussian simulation algorithm to generate the 
stochastic fields (Deutsch and Journel, 1998). This algorithm was chosen for its 
theoretical transparency. 
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8.3. Sampling schemes 

Below, several sampling strategies are tested for their value in variogram estimations 
using stochastic simulations. 

8.3.1. Regular grid vs. WM 

In order to test the usefulness of the WM-criterion for variogram estimation, 40 
different realisations of two underlying variogram models as used by Webster and 
Oliver (1992) were constructed using Multi Gaussian simulation (Deutsch and Journel, 
1998). The first model is defined by a spherical global variogram: 
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Figure 8.2. SimulatedfieMuringtbeexponmtialunderlyingwriogram, with a WM-optimisedsampling 
scheme of 49 observations. 

y(h) = 0.333 + 0.667J 

y(h) = 1 

y(0) = 0. 

2 150 

_1 
2 150 

for0<h<a, 

forh > a, (8.5) 

This represents a variogram with nugget = 0.333, sill = 1 and effective range = 50. The 
second underlying variogram model is exponential and has similar sill and (effective) 
range parameters, but no nugget effect: 

y(h) = l - e x p j - — 
IbJ (8.6) 
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Table 8.1 Parameters of the sampling schemes and the experimental variograms, with sample size (n) and 
number of lag classes (nc). 

n 
25 
36 
49 
64 
81 
100 

Grid 
Spacing 
20 
18 
17 
15 
13 
12 

nc 
4 
5 
5 
6 
7 
8 

Variogram 
Lag size 
20 
16 
16 
12 
10 
10 

Figures 8.1 and 8.2 show one realisation of the spherical and exponential underlying 
variograms, respectively. Both fields consist of 120 x 120 = 14400 grid cells. All 
realisations had variances close to 1, average values close to 0 and no significant skewness. 
Because of the absence of a nugget effect, the exponential field is much smoother 
than the spherical one. 

All 80 realisations were sampled using both a regular square grid and a WM-
optimised scheme for different sample sizes. Table 8.1 lists all sample sizes and the 
corresponding number of lags and lag sizes for the experimental variogram. Figure 8.1 
shows the grid scheme for a sample size of 49. Distances to the boundaries of the area 
are half the grid spacing. Figure 8.2 shows the WM-optimised scheme for the same 
sample size. Noteworthy are the nearly circular structure of the sampling scheme, and 
the absence of observations from large parts of the area (such as the corners). 

The performances of the sampling schemes for the estimation of the underlying 
variogram were investigated. Calculations for all 80 simulated fields and all 12 sampling 
schemes resulted in 960 experimental variograms. Statistics of the variation in these 
variograms assessed the performances of the sampling schemes. 

8.3.2. Combining regular grid and WM 

In many geostatistical surveys based upon a regular sampling grid, surveyors may 
be interested in spatial correlation at shorter distances than the grid spacing. This may 
be because no apparent spatial correlation is detected using the grid, suggesting that 
spatial correlation is confined to shorter distances (e.g. Oliver and Webster, 1987). In 
other studies, more information of the behaviour of the variogram near the origin 
might be necessary for optimal interpolation (the SKE and KV are considerably 
influenced by the modelled nugget effect). Goovaerts (1997a) randomly selected 
additional observations at fixed distances of grid nodes. McBratney and Webster (1986b) 
followed a nested strategy. Van Groenigen and Stein (1998) (Chapter 3) showed how 
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Figure 8.3. Two simulated fields andtbesamplinggridfor the Cameroon study. Additional samples optimised 
using SSA were drawn from a realisation of a spherical underlying variogram with a range of5 m (a), and 
randomly drawn from a realisation ofapherkal underlying variogram with a range of20 m (b). 

SSA with the WM-criterion could be used for upgrading existing sampling grids for 
variogram estimation at short distances. The usefulness of such a sampling scheme for 
variogram estimation will be investigated below. 

Figure 8.3 shows the sampling plot of a geostatistical erosion study conducted in 
the Northern parts of Cameroon (Mainam and Zinck, 1998). To assess the susceptibility 
of different soils to water erosion, sampling plots were chosen along two different 
slopes. The size of the plots is 40 m x 104 m, with the longer part in the direction of 
steepest descent. To get an overview of the general degree of erosion over the plot, an 
initial sampling grid with 8 m spacing was decided upon. This yielded an initial sample 
size of 65. Fifteen additional observations were selected for estimation of the short 
range spatial variation using SSA with the WM-criterion. The performance of the 
proposed sampling scheme was investigated using stochastic simulations before actual 
sampling took place. 

Two different underlying variogram models were selected for stochastic simulation. 
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Both are spherical models with nugget = 0.25 and sill = 1.0. The first model has a 
range of 5 m (shorter than the lag spacing), and the second model a range of 20 m. For 
both models, 20 realisations were generated. Figures 8.3a and 8.3b show realisations 
of the first and second model, respectively. 

SSA with the WM-criterion aimed at distributing the additional point pairs evenly 
over two lag classes of 1-3 m and 3-6 m, respectively. To reduce the risk of failure of 
this additional sampling scheme due to local anomalies such as rock outcrops etc., the 
extra points were divided into two different groups of 7 and 8 observations. These 
two groups were placed independently from each other. This resulted in two clusters 
of points in different parts of the area (Figure 8.3a). The clustering of additional 
points using the WM-criterion corresponds with the findings of earlier studies (Velthof 
etal., submitted; Van Groenigen etal., 1999) (Chapter 4). As a comparison, a second 
sampling scheme distributed the additional observations randomly over the area. Figure 
8.3b shows this scheme. 

Experimental variograms were calculated for both sampling schemes and for all 
40 realisations. Statistics of these variograms assessed the quality of the WM-optimised 
additional sampling scheme for variogram estimation. 

8.3.3.Variogram use: minimising the prediction error 

The third optimisation method deals with the effectiveness of the estimated 
variogram, rather than with its accuracy. Following Gascuel-Odoux and Boivin (1994) 
and Stein and Corsten (1991), the SKE of the interpolation based upon the estimated 
variogram was used to assess the performances of the sampling schemes. 

Optimisation strategy and evaluation criteria were chosen with two sampling issues 
in mind: 

i) The variogram may be estimated during a first survey stage, whereas a second 
stage may be conducted for purposes of interpolation. In practice, these stages are 
seldom totally independent, i.e. the data from the second stage is often used to 
improve the estimation of the variogram. Conversely, data from the first stage is 
often used during interpolation. 

ii) Kriging variance, providing an indication of the SKE, depends upon the chosen 
variogram model. Therefore, errors from variogram estimation and modelling are 
not accounted for. In addition, validity of the kriging variance as a measure of 
prediction accuracy depends on the intrinsic hypothesis of geostatistics. In case 
of non-stationarity and/or heteroscedasticity, the kriging variance loses part of its 
value. In those cases the SKE is a more direct measure of accuracy. Unfortunately, 
SKE can only be assessed a posteriori, and can therefore not serve as a direct 
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optimisation criterion. 

As a data source, one realisation of each of the two underlying variograms presented 
by Webster and Oliver (1992) and presented earlier in this chapter (Figures 8.1 and 8.2) 
were randomly drawn. The total sample size was equal to 100 to allow a comparison 
with a regular grid (10 x 10). A two-stage sampling strategy was applied, where the first 
stage approximately estimated the variogram. Using the preliminary variogram we then 
optimised allocation of additional observations for minimal kriging variance with SSA. 
More formally, if the total sample size is denoted n, the sampling strategy and the 
resulting interpolation are: 

i) The sampling scheme of the first sampling stage S1 consists of n : observations, 
chosen on a regular grid covering the whole area, with n{ < n . The data of S1 are 
collected. 

ii) Using the data of S1 we calculated a preliminary experimental variogram yl (h) and 
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Table 8.2. StandarddeiiaionsofexperimentdvariogramsperUgforgridschemesand WM-optimised 
schemes, calculated ewer 40 realisations of two underlying variograms. 

II 

25 

36 

49 

64 

81 

100 

25 

36 

49 

64 

81 

100 

grid 
wm 
grid 
wm 
grid 
wm 
grid 
wm 
grid 
wm 
grid 
wm 

grid 
wm 
grid 
wm 
grid 
wm 
grid 
wm 
grid 
wm 
grid 
wm 

1 

0.20 
0.18 
0.15 
0.14 
0.14 
0.17 
0.11 
0.12 
0.07 
0.10 
0.08 
0.09 

0.22 
0.24 
0.15 
0.19 
0.12 
0.15 
0.11 
0.15 
0.09 
0.12 
0.08 
0.11 

2 

0.36 
0.28 
0.24 
0.29 
0.23 
0.28 
0.14 
0.23 
0.11 
0.23 
0.12 
0.17 

0.32 
0.30 
0.22 
0.26 
0.20 
0.20 
0.16 
0.19 
0.10 
0.20 
0.12 
0.17 

3 

0.41 
0.40 
0.35 
0.42 
0.30 
0.33 
0.20 
0.29 
0.17 
0.30 
0.18 
0.26 

0.33 
0.38 
0.30 
0.33 
0.24 
0.30 
0.17 
0.24 
0.13 
0.28 
0.13 
0.21 

Lag number 
4 

Exponen 
0.44 
0.64 
0.41 
0.39 
0.35 
0.38 
0.28 
0.41 
0.23 
0.36 
0.22 
0.35 

5 6 

Hal model 
-
-
0.50 
0.46 
0.38 
0.46 
0.33 
0.53 
0.28 
0.49 
0.27 
0.47 

Spherical model 
0.35 
0.31 
0.32 
0.37 
0.27 
0.30 
0.22 
0.32 
0.18 
0.34 
0.15 
0.28 

-
-
0.29 
0.43 
0.30 
0.33 
0.26 
0.30 
0.21 
0.36 
0.18 
0.30 

-
-
-
-
-
-
0.34 
0.64 
0.30 
0.59 
0.31 
0.61 

-
-
-
-
-
-
0.28 
0.34 
0.23 
0.39 
0.19 
0.31 

7 

-
-
-
-
-
-
-
-
0.33 
0.74 
0.33 
0.70 

-
-
-
-
-
-
-
-
0.23 
0.49 
0.22 
0.33 

8 

-
-
-
-
-
-
-
-
-
-
0.33 
0.62 

-
-
-
-
-
-
-
-
-
-
0.23 
0.33 

fitted it to a variogram model y^h) using a weighted least squares regression 
procedure. 

Hi) An additional sampling scheme S2 of sample size n2 = n - n t is obtained by 
optimising for minimal kriging variance. This is done by SSA with the MAX_OK 
criterion, using y1(h) to fill the variance matrices in the kriging equations. The 
data for S2 are collected. 

w) A new experimental variogram y2 (h) is calculated from S ' u S 2 and a new model 
y2(h) is fitted. 

T) Using y"(h) and the data from S ' u S 2 , an interpolated surface is constructed 
using ordinary kriging. 

To ensure a reasonable estimation of y ^ h ) , n, should be sufficiently large. In 
this study with the simulated field of 120 x 120 unit coordinates we took nx = 81 
samples on a 9 x 9 grid, with a grid spacing of 13 units. Earlier studies showed that 
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Figure 8.5. Comparison of a regular grid with the WM-criterionfor the spherical model. Experimental 
variogramswi&standarddevidtiansan^ 
realisations. 

optimisation of sampling schemes for minimal KV can involve samples close to or 
even over the boundaries of the area (Van Groenigen etai, 1999) (Chapter 4). Therefore 
we also considered a buffer area of 15 units outside the actual research area. Figure 8.4 
shows the simulated field with buffer area for the spherical underlying variogram with 
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Figure 8.6. Comparison of a regular grid with the WM-criterionforthetwo spherical models in the 
Cameroon study over 20 realisatkms. Expenmentdvariogramswitbstandarddeviatiomand 
variogramfora short range (a,b)anda long range (c,d)-

nugget = 0.333, sill = 0.667 and range = 50 units. Although the mean and maximum 
SKE's were only calculated for the 120 x 120 unit research area, additional observations 
were allowed to be placed outside of this area. 

For comparison, a second sampling scheme of sample size 100 was set up using a 
10 x 10 square grid with a grid spacing of 12 units. Both stochastic fields were sampled 
using both sampling strategies. Subsequently, interpolated surfaces were predicted using 
ordinary kriging, and the mean and maximum SKE's were calculated. 

8.4. Results 

8.4.1. Regular grid vs. WM-criterion 

Table 8.2 summarises the variogram calculations for all 80 realisations of the 
underlying variograms. Since the bias was close to zero (i.e. the underlying variogram 
was reproduced over all the realisations), only the standard deviations of the 
experimental variograms are presented for each lag class. The WM-optimised sampling 
scheme scores occasionally better than the sampling grid (notably with very small sample 
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Table 83.Pararnetersoftheunderlyingvariogramandlhefittedvariogram modelsforasamplinggridof 
100 observations and a two stagesamplingscheme with 81 and 100 observations, respectively. 

Variogram parameters 
Model Nugget Sill/slope (Eff.) range 

Exponential 
Underlying exp. 0.000 1.000 50 
Grid exp. 0.396 0.804 57.6 
Grid + SSA 1 sph. 0.372 0.720 58.2 
Grid + SSA2 sph. 0.060 0.696 30.6 

Underlying 
Grid 
Grid + SSA 1 
Grid + SSA 2 

sph. 
lin. 
lin. 
lin. 

0.333 
0.408 
0.432 
0.504 

Spherical 
1.000 
0.016 
0.016 
0.013 

50 

-
-
-

sizes). However, the sampling grid is superior in terms of variogram fluctuation, in 
particular with increasing sampling density. 

Figure 8.5 shows some of these results graphically for the spherical underlying 
variogram and several sample sizes. The continuous line represents the underlying 
variogram over the 40 realisations of the spherical model, showing that bias (distance 
between line and squares) is close to zero. The standard deviations are much larger for 
the WM-optimised schemes, occasionally reaching more than twice the value of those 
for the sampling grid. 

8.4.2. Combining regular grid and WM 

The variograms for the 40 realisations of the two underlying variograms are shown 
in Figure 8.6. Since the width of the sampling area was only 40 m, no variogram values 
were calculated for distances exceeding 20 m, to avoid bias. Four lags were evaluated. 
Following the WM-optimisation, the centres of the two smallest lags were 2 m and 4.5 
m. The two largest lags centred on once and twice the grid spacing, 8 m and 16 m. 

Figure 8.6 shows that the standard deviation of the shortest lag (1-3 m) is much 
higher for the grid sampling scheme, although at larger distances the experimental 
variograms are very similar. The standard deviations for this scheme are 0.84 and 0.67 
for the first and second spherical model. With the WM-optimised sampling schemes 
this reduces to 0.26 and 0.12, respectively. This improvement was achieved by specifically 
optimising the additional observations for the used variogram lags. There is no significant 
bias for both of the sampling schemes. 
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Figure 8.7. Optimisation of19 additional samplingpointsforminimalkrigingvariancetoagridof81 
points on the exponential field. TheaMitionalsamplingpointsareaUowedoutsidetheresearchareaofl20x 
120 units. 

8.4.3. Minimising the squared kriging error 

Table 8.3 lists the underlying variogram models of the two stochastic fields, together 
with the modelled experimental variograms of the two sampling grids. The modelled 
variograms poorly relate to the underlying variogram. For the exponential stochastic 
field, both the 10 x 10 sampling grid and the first stage of the two-stage sampling 
scheme model a nugget effect of 0.396 and 0.372, respectively, while no nugget effect 
is present in the underlying variogram. For the spherical stochastic field, both sampling 
schemes overestimate the nugget effect. In addition, the experimental variogram for 
the exponential stochastic field is modelled as spherical for the first stage of the two-
stage scheme. For the spherical stochastic field the variogram for both schemes is 
modelled as linear. This divergence is partly caused by the sampling scheme, as it is still 
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Figure 8.8. Squaredkngingerror([unitf)fortbetwo-stagesamplingschemeon the exponential field, 
number of observations is 100. 

inadequate for precisely estimating the variogram. However, since only one realisation 
of the stochastic model is sampled also differences between the underlying and local 
variogram play a role. 

Using these modelled variograms, we optimised the additional sampling scheme 
of 19 observations for minimal K.V using SSA. Figure 8.7 shows the exponential field 
with the preliminary sampling grid of 81 observations, together with the optimised 
additional sampling scheme. All 19 observations are placed outside or close to the 
borders of the actual sampling area. The two-stage scheme for the spherical field showed 
similar results. 

For both simulated fields, the additional samples were collected and new 
experimental variograms were calculated and modelled using all data (S1 u S2). Table 
8.3 shows the parameters for the modelled variograms. In comparison with the first 
stage, the nugget effect for the exponential model is much closer to that of the underlying 
variogram. The modelled range, however, is only 30.6, while the effective range of the 
underlying variogram is 50. The modelled variogram for the spherical field does not 
improve considerably as compared to the first sampling stage. 
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Figures 8.8 and 8.9 show the SKE of the exponential field, using the modelled 
variogram for the two-stage sampling scheme and the 10 x 10 sampling grid, respectively. 
Using the two-stage sampling scheme, the mean SKE decreased from 0.39 [unit]2 to 
0.31 [unit]2. The maximum SKE decreased from 6.05 [unit]2 to 4.24 [unit]2. For the 
spherical field, the maximum SKE decreased from 15.98 [unit]2 to 11.52 [unit]2, while 
the mean SKE was 0.31 [unit]2 for both schemes. 

Figures 8.8 and 8.9 show that the improvement in terms of SKE does not only 
occur in areas close to the boundaries of the area. Since the kriging neighbourhood 
was set equal to 14 observations, also locations closer to the centre were influenced by 
observations taken outside the borders of the research area. 

8.5. Discussion 

Although the use of stochastic simulations for testing the sampling schemes has 
some important advantages (which were mentioned in section 8.2.4.), also some 
drawbacks for this method can be observed. The Multi Gaussian simulation algorithm 
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produces stationary fields based on the intrinsic hypothesis. Therefore errors that can 
come up in practice due tot nonstationarity or heteroscedasticity are not accounted 
for. However, the developed methods can also be applied in studies dealing with indicator 
variograms, which are much less sensitive to non-stationarity. 

For similar reasons, minimisation of the kriging variance remains an optimisation 
criterion that will draw criticism in practice. The kriging variance only depends on the 
variogram, the configuration of observations and size of kriging neighbourhood. 
Therefore, local discontinuities etc. are not accounted for. In this study, we tried to 
avoid this problem by evaluating the resulting squared prediction errors. It was shown 
that optimising the additional sampling scheme for minimal kriging variance resulted 
in better predictions in both terms of both mean and maximum squared kriging errors. 

The two-stage procedure for minimising squared kriging error as it was presented 
in this chapter can in principle be extended to more sampling stages. In that way, the 
sampling scheme can be fine tuned to the variogram. However, the first sampling stage 
should always be large enough to allow a reasonable estimation of the variogram. It 
was shown in this chapter that a number of 81 observations can be enough for this 
purpose. 

The use of SSA with both WM and MAX_OK criteria will probably be even more 
beneficial in cases of pronounced anisotropy. Van Groenigen etal. (1999) (Chapter 4) 
showed that taking into account anisotropy can considerably reduce the kriging variance. 

Use of SSA is also useful in terms of flexibility. In order to allow fair comparison 
between square grids and SSA, only sample sizes that are squared integers (e.g. 49, 81, 
100) were used in this chapter. In contrast, SSA is able to handle all sample sizes. 

8.6. Conclusions 

In this chapter, three different optimisation strategies for estimation of the 
variogram were tested. The first strategy, which optimised the distribution of point 
pairs over the lag classes of the experimental variogram using the WM-criterion, was 
clearly inadequate as compared to regular grids of the same sample size. It led to much 
higher fluctuations of the experimental variogram, especially at larger distances. The 
second strategy combined a regular grid with extra observations taken at short distances 
using the WM-criterion. This improved estimation of variogram values at short 
distances, as compared to a sampling scheme of the same sample size. The third strategy 
aimed at optimal variogram use. It was shown that a roughly estimated variogram in 
the first sampling stage could lead to better predictions in terms of both mean and 
maximum squared kriging errors. For variogram estimation, we recommend the second 
strategy. For geostatistical interpolation studies we recommend the third. 



124 OPTIMISING MODEL ESTIMATION 

8.7. Acknowledgements 

The authors wish to thank Jaap de Gruijter for his part in discussions related to 
the content of this chapter. 



Chapter 9 

Conclusions and Further Research 

9.1. Introduction 

The research presented in chapters 2 to 8 dealt with a wide variety of optimisation 
criteria and case studies, most of which used the same general optimisation algorithm 
(Spatial Simulated Annealing), which therefore formed a coherent factor. The technical 
details about the algorithm and the optimisation criteria varied somewhat from one 
study to another and were presented piecemeal in the separate chapters. In this chapter, 
the main conclusions that can be drawn from these chapters will be presented integrally. 
Since the primary purpose of the study was the development of new optimisation 
tools, rather than the specific research questions dealt with in the case studies, the 
conclusions will focus on the methodology developed and on its use in future studies. 

The purposes of the study as formulated in section 1.3. will be revisited, and 
briefly checked against the research presented. Finally, some recommendations for 
sampling and for further research are given. 

9.2. Purposes of the study 

Section 1.3. presented several purposes for this study. Below they are listed, with 
the main conclusions related to these purposes: 

i) Formulation of a range ofoptimisation criteria thathonoura wide variety of aims in soil-related 
surveys. 

In this thesis, a wide range of optimisation criteria has been formulated or drawn 
from the literature. Chapter 3 introduced the Warrick Myers (WM) criterion from the 
literature, aiming at optimal estimation of the variogram by reproducing an a priori 
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defined ideal point pair distribution (Equation 3.8). TheMMSD (Minimisation of the 
Means of the Shortest Distances) criterion was formulated in the same chapter, with 
the aim of evenly spreading the observations over the area of interest (Equation 3.7). 
This criterion was generalised into the WMSD (Weighted Means of Shortest Distances) 
criterion, which was formulated in chapter 6, allowing the use of a weight function to 
direct more attention to certain sub-areas and thus leaving more room for decision
making (Equation 6.3). 

In chapters 4 and 5, two additional optimisation criteria were introduced, aiming at 
minimisation of the ordinary kriging variance. The MEAN_OK criterion aims at 
minimising the mean kriging variance over the area of interest, whereas the MAX_OK 
criterion minimises the maximum occurring kriging variance over the area (Equation 
4.5; Equation 5.7). 

Table 9.1 lists these criteria, together with the required input and some remarks on 
their use in case studies. 

li) Development of an optimisation algorithm for spatial sampling that is able to handle these 
different optimisation criteria. 

The Spatial Simulated Annealing (SSA) algorithm was formulated and further 
developed in the course of this thesis. It is an algorithm specifically designed for 
optimising spatial sampling schemes. It is flexible in handling different optimisation 
criteria, and insensitive to local minima. All the formulated optimisation criteria were 
implemented in SSA, and more can be added in the future. Chapter 3 described the 
main outlines of the algorithm, and gave some examples using the MMSD and WM 
optimisation criteria. In chapters 4 to 6, the other optimisation criteria were formulated 
and implemented in the SSA algorithm for use in specific case studies. A preliminary 
version of the software for using the SSA algorithm, which I programmed in the 
course of my study, is available at http://www.itc.nl/~groenig. This site includes some 
example files and will be continually updated in the future. 

in) Incorporationqfancillarydatasiichasco-relatedimage^ 
in thesamplingstrategy. 

One of the main achievements of this thesis is the development of tools to 
incorporate many types of ancillary data in the sampling strategy. Chapter 2 presented 
a phased sampling strategy in which each sampling stage used the preceding sampling 
stage(s) to provide ancillary data. Using Indicator Kriging, the probability of exceeding 

http://www.itc.nl/~groenig
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an environmental threshold value was used to direct sampling in subsequent stages. 
This procedure was combined with SSA in chapter 6. 

The SSA algorithm allows the optimisation of spatial sampling schemes using 
many other types of ancillary data. Preliminary observations are used as an integrated, 
albeit static, part of the sampling scheme. This was presented and illustrated with 
some examples in chapter 3. In chapters 4 and 5, it was shown how the preliminary 
observations can be included into the optimised sampling scheme for minimal kriging 
variance. Chapter 6 showed how a large number of observations on multivariate 
contamination can be included in an optimised sampling scheme. It also shows how 
historical knowledge on land use can be incorporated into the sampling strategy. 

One of the most attractive properties of SSA is that it can honour sampling 
constraints that are very common in (environmental) soil survey. Chapter 3 showed 
how SSA distinguishes between sampling constraints that are simply delineating the 
area of interest (e.g. boundaries of the area) and constraints that frustrate the sampling 
effort (e.g. buildings under which contamination should be assessed). In chapter 6, this 
property was used in a soil contamination study within a complex shaped study area 
with many buildings that prohibited sampling. 

rv) Cbmparismcftheperfcmiancesofthedeve^ 
strategies. 

Wherever possible, the optimisation algorithms were compared with more 
conventional sampling schemes. The use of probability maps in a phased sampling 
strategy to guide additional sampling to the more interesting areas (chapter 2) was 
compared with both a regular grid and a random sampling scheme using stochastic 
simulation (Table 2.2). Results clearly showed that a two-stage sampling approach 
outperformed both conventional schemes in terms of efficiency of derived action 
(remediation). The two-stage sampling scheme characterised 70% of the area correctly 
as either polluted or not polluted, as opposed to 55% by the regular grid (Table 2.3). 

Most optimisation criteria for SSA were compared with conventional sampling 
schemes. Optimisation by SSA using the WM criterion for optimising variogram 
estimation was compared with a Monte Carlo optimisation from the kterature in chapter 
3. It was shown that SSA outperformed the Monte Carlo optimisation for all test 
studies in terms of the WM criterion, in one case reaching almost a complete solution. 
In chapter 8, the vakdity of the WM criterion as an optimisation criterion for variogram 
estimation was tested. Compared with a regular grid in a simulation study, WM-optimised 
schemes showed higher fluctuations in experimental variograms, especially at larger 
distances (Figure 8.5). WM-optimised schemes for observations in addition to a 
preliminary, systematic sampkng scheme showed better results, especially at shorter 
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distances. It was therefore concluded that the WM criterion can be used for optimising 
additional observations for short-distance variogram estimation only. 

Sampling schemes designed with the MMSD criterion were compared with an 
equilateral triangular grid in chapter 3. The optimised schemes showed a small but 
distinct improvement of 2.4% in a simple example (Figure 3.1). This improvement 
increased considerably to about 30% when more sampling constraints and preliminary 
observations were added (Table 3.1). In chapter 7, different uses of the MMSD criterion 
were compared with each other for optimally establishing soil/yield relationships. The 
use of an approximate yield map considerably improved the establishment of significant 
relations, thereby proving the potential benefits of using ancillary data in the sampling 
strategy (Tables 7.3 and 7.4.) 

The performances of the WMSD criterion (the MMSD criterion combined with a 
spatial weight function) could not be compared with other schemes, since there is no 
good equivalent for this in conventional sampling strategies. 

The two optimisation criteria for minimisation of the kriging variance (the 
MEAN_OK and MAX_OK criteria) were compared with a triangular grid in chapters 
4 and 5 (Figure 5.3). In a simple example. The triangular grid was inferior in terms of 
both criteria. Performances of the MEAN_OK criterion improved with around 1.5%, 
while the MAX_OK criterion improved around 38.5% (Table 5.1). Furthermore, the 
MEAN_OK and MAX_OK criteria were compared with each other in chapter 5. The 
optimised schemes showed considerable differences, indicating that a clear choice has 
to be made for one of the criteria in surveys (Table 5.2). Table 9.1 summarises the aims 
and prerequisites for the various optimisation criteria formulated in this thesis. 

In summary, the developed methodology performed better than conventional 
schemes in terms of all the optimisation criteria except the WM criterion. The extent 
of the improvements varied widely, depending on the optimisation criterion, the size 
of the sampling scheme and sampling constraints within the area. However, it should 
be emphasized that optimisation with SSA is especially beneficial in areas where 
boundaries are intricate and sampling constraints and preliminary observations are 
abundant. 

i} Application of developed optimisation techniques inpracticalsoilsamplingstudies. 

Throughout the thesis, optimisation techniques I developed have been applied in 
a variety of case studies. In chapter 2, the developed phased sampling approach was 
applied to a lead contamination study in the city of Schoonhoven. Results of this case 
study were tested using stochastic simulation, showing that the phased sampling 
approach yielded better results than conventional techniques (Table 2.3). 

This phased sampling approach, combined with SSA, was applied in a multivariate 
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pollution study in the city of Rotterdam (chapter 6). Knowledge on sampling constraints 
and historical knowledge on the area were incorporated in the sampling strategy. This 
highly intricate case study clearly showed the flexibility of the used methodology. 

In chapter 4, SSA with the MEAN_OK criterion was applied in a study on a river 
terrace in Thailand. It was shown how a preliminary sampling scheme could be used to 
estimate the variogram, and subsequently used for completing the sampling scheme 
for minimisation of the kriging variance. 

Chapter 8 showed that these optimised sampling schemes for minimal kriging 
variance also resulted in smaller squared prediction errors. 

Chapter 7 showed how co-related imagery (yield maps) can assist in optimising the 
assessment of relations between soil and yield. This was done in a case study on precision 
agriculture for zero-input millet farming in Niger. 

9.3. Recommendations for sampling 

Out of the different optimisation criteria and case studies presented in this thesis, 
several practical and some more theoretical recommendations for sampling can be 
derived. They will be formulated below. 

One of the more general conclusions is that the routinely applied regular sampling 
grid is almost never the optimal sampling scheme in terms of the formulated 
optimisation criteria. There are some exceptional cases where the combination of the 
shape of sampling area and the number of observations results in a regular grid. An 
example of this is shown in Figure 7.4a, where a square area with 9 observations 
results in a 3 x 3 square sampling grid. Another example can be seen on one of the 
figures shown on the back of the cover, where an equilateral triangular sampling area 
with 10 observations results in an equilateral triangular sampling grid. However, such 
cases are relatively rare. Case studies will often look more like Figure 6.3, with intricate 
boundaries, sampling constraints and preliminary observations. In such cases, use of 
SSA will considerably improve the efficiency of the survey, and the quality of its 
outcome. Therefore, the use of SSA for dealing with cases of this type is recommended. 

Another recommendation is to very carefully consider what the exact objective of 
the study is. Although this may seem self-evident, the studies in this thesis showed that 
even very small differences in optimisation criteria could result in very different optimised 
sampling schemes. An example of this is shown in Figure 5.6, where two sampling 
schemes were optimised for minimal kriging variance (MEAN_OK criterion). The 
variograms for both schemes had similar nuggets, sills and (effective) ranges. Yet, the 
resulting sampling schemes differed considerably in outlook. In this respect, the choice 
between minimising the mean kriging variance and the maximum kriging variance is 
also crucial. 
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If optimal interpolation using kriging is the aim, taking observations just outside 
the area may considerably improve accuracy of the results. This is shown in Figure 8.7, 
where some observations taken outside the area improved both kriging variance and 
the actual squared kriging error. It should be emphasised that this is only true in situations 
where the boundaries of the sampling area do not coincide with those of the Re V in 
question. As an example, it may be very worthwhile to sample just outside a sample 
plot if the surrounding field has had the same treatment. However, it would be very 
unwise if the sample area is a mapping unit of a soil map based on sharply delineated 
physiographic units. 

A final recommendation is to be very careful in using the point pair distribution as 
a measure of accuracy for variogram estimation. Figure 8.5 showed that this criterion 
(WM criterion) on its own is inferior compared with a regular grid. It should only be 
used to 'upgrade' an existing data set that roughly covers the whole area, for additional 
observations at short distances. An example of this is presented in Figure 8.6. 

9.4. Recommendations for further research 

In this thesis, SSA has been developed as a basis algorithm for optimisation of 
spatial sampling schemes. Although many optimisation criteria have already been 
formulated, the SSA algorithm leaves room for many more to be formulated in the 
future. Most importantly, an optimisation criterion dealing with cokriging will be 
formulated in the near future (Table 9.1). This will be especially useful in case studies 
where a large amount of co-related secondary data is available to improve the prediction 
accuracy of the primary variable. An obvious example of such secondary data is remotely 
sensed imagery. A drawback of cokriging is that it involves much modelling of 
(co)variograms, and that a model of co-regionalisation should be assumed. Space/ 
time geostatistics offers many opportunities for new optimisation criteria, and a start 
has been made by Stein etal. (1998). Finally, cost models should be included in the 
optimisation criteria. 
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Summary 

Aims 

This thesis aims at the development of optimal sampling strategies for geostatistical 
studies. Special emphasis is on the optimal use of ancillary data, such as co-related 
imagery, preliminary observations and historic knowledge. Although the object of all 
studies is the soil, the developed methodology can be used in any scientific field dealing 
with geostatistics. 

In summary, the objectives of this study were: 

i) Formulation of a range of optimisation criteria that honour a wide variety of aims 
in soil-related surveys. 

ii) Development of an optimisation algorithm for spatial sampling that is able to 
handle these different optimisation criteria. 

Hi) Incorporation of ancillary data such as co-related imagery, historic knowledge and 
expert knowledge in the sampling strategy. 

w) Comparison of the performances of the developed optimisation algorithms with 
established sampling strategies. 

i) Application of developed optimisation techniques in practical soil sampling studies. 

Outline of major tools 

Chapter 2 shows how a phased sampling procedure can optimise environmental 
risk assessment. Using indicator kriging, probability maps of exceeding environmental 
threshold levels are used to direct subsequent sampling. The method is applied in a 
lead-pollution study in the city of Schoonhoven, The Netherlands. It is tested using 
stochastic simulations, and results are compared to conventional sampling schemes in 
terms of type-I and type-II errors. The phased sampling schemes have much lower 
type-I errors than the conventional sampling schemes with comparable type-II errors. 
They predict almost 70% of the area correctly (polluted or not-polluted), as compared 
to 55% by conventional schemes. 

Chapter 3 introduces the spatial simulated annealing (SSA) algorithm as a general, 
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flexible optimisation method for spatial sampling. Sampling schemes are optimised at 
the point level, taking into account sampling constraints and preliminary observations. 
Different optimisation criteria can be handled. SSA is demonstrated using two 
optimisation criteria from the literature. The first (the MMSD criterion) aims at even 
spreading of points over the area. The second (WM criterion) optimises the realised 
point pair distribution for variogram estimation. For several examples it is shown that 
SSA is superior to conventional sampling strategies. Improvements up to 30% occur 
for the first criterion, while an almost complete solution is found for the second criterion. 
SSA is flexible in adding extra criteria. 

Optimising sampling for spatial interpolation 

Chapter 4 introduces the MEAN_OK algorithm in SSA, which aims at minimisation 
of the mean ordinary kriging variance over the research area. It is applied on texture 
and phosphate content on a river terrace in Thailand. First, sampling is conducted for 
estimation of the variogram. The variograms thus obtained are used to optimise 
additional sampling for minimal kriging variance using SSA. This reduces kriging variance 
of sand percentage from 28.2 to 23.7 (%)2. The variograms are used subsequently in a 
geomorphologically similar area. Optimised sampling schemes for anisotropic variables 
differ considerably from isotropic ones. Size of kriging neighbourhood has a small but 
distinct effect on the schemes. The schemes are especially efficient in reducing high 
kriging variances near boundaries of the area. 

Chapter 5 further explores the possibilities of minimising kriging variance using 
SSA. Next to the MEAN_OK criterion, the MAX_OK criterion is introduced, which 
minimises maximum kriging variance. Both criteria are compared to a regular grid. 
Using SSA, the mean kriging variance reduces from 40.64 [unit]2 to 39.99 [unit]2. The 
maximum kriging variance reduces from 68.83 [unit]2 to 53.36 [unit]2. An additional 
sampling scheme of 10 observations is optimised for an irregularly scattered data set 
of 100 observations. This reduces the mean kriging variance from 21.62 [unit]2 to 
15.83 [unit]2, and maximum kriging variance from 70.22 [unit]2 to 34.60 [unit]2. The 
influence of variogram parameters on the optimised sampling schemes is investigated. 
A Gaussian variogram produces a very different sampling scheme than an exponential 
variogram with similar nugget, sill and (effective) range. A very short range results in 
random sampling schemes, with observations separated by distances larger than twice 
the range. For a spherical variogram, magnitude of the relative nugget effect does not 
effect the sampling schemes, except for high values. 

Chapter 6 introduces the WMSD criterion into SSA, which optimises sampling 
using a spatial weight function. This allows distinguishing between different areas of 
priority. A multivariate contamination study in the Rotterdam harbour with five 
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contaminants at two depths shows two subsequent sampling stages with two spatial 
weight functions. The first stage combines earlier observations and historic knowledge, 
with emphasis on areas with high priority. The resulting scheme shows a contamination 
at 17.4% of the samples, with 1.5% heavily contaminated. The second stage uses 
probability maps of exceeding intermediate threshold values to guide additional sampling 
to possible hot spots. This yields 26.7% contaminated samples, with 16.7% heavily 
contaminated. These include new locations that were not detected during the first 
stage. The WMSD criterion can be used as a valuable tool in decision making processes. 

Optimising sampling for model estimation 

Chapter 7 focuses on the use of ancillary data to optimise sampling for precision 
farming research. Using a cheap, low-tech scoring technique yield maps were predicted 
for millet in an on-farm study in Niger. Yield varied from 0 to 2500 kg ha'1. Subsequently, 
SSA was used to optimise three different sampling schemes. Scheme 1 optimised 
coverage of the whole area. Scheme 2 covered the whole yield range, and scheme 3 
covered the low producing areas. Using correlation coefficients, scheme 2 found 
significant correlations between 5 variables and yield. Scheme 1 found only one 
significant correlation. Using multivariate regression of yield on soil variables, scheme 
2 explained 70% of the yield variation. For scheme 1 this was only 37%. Differences 
between scheme 3 and scheme 1 proved to be significant for distance to shrubs, micro-
relief, p H - H 2 0 and CEC. From this study we concluded that shrubs are the main 
factor influencing yield by catching eroded particles and improving soil fertility. In 
general, we concluded that the sampling strategy of scheme 2 should be recommended 
for establishing yield/soil relations. Variograms of micro-relief and yield suggested 
that spatial correlation is largely confined to distances of 3 to 5 m. 

Chapter 8 evaluates a number of sampling strategies for variogram estimation. In 
the first part, a regular grid is compared to a sampling scheme that optimises the point 
pair distribution for variogram estimation. This yields unbiased experimental variograms. 
However, the fluctuation of the experimental variograms is much lower with a regular 
grid. We concluded from this that the point pair distribution alone is not a useful 
optimisation criterion for variogram estimation. In the second part, additional 
observations selected for optimal point pair distribution are compared with randomly 
drawn additional observations. The random observations result in much higher standard 
deviations at shorter distances. We concluded from this that for additional short distance 
observations the point pair distribution is a very useful optimisation criterion. The 
third part focusses on optimal variogram use. A sampling grid of 81 observations is 
completed, after preliminary estimation of the variogram, with 19 additional 
observations for minimal kriging variance. The scheme is compared to a regular grid 
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of 100 observations. For an exponential field without nugget effect, the use of the 
phased sampling scheme reduces the mean squared kriging error from 0.39 [unit]2 to 
0.31 [unit]2, and the maximum squared kriging error from 6.05 [unit]2 to 4.24 [unit]2. 
For a spherical field with a nugget effect of 33%, mean squared kriging error does not 
change and maximum squared kriging error decreases from 15.98 [unitp to 11.52 [unitp. 
We concluded that minimisation of the squared kriging error is often more relevant 
than accurate estimation of the variogram. Taking samples just outside the area improved 
the quality of the prediction in terms of both kriging variance and squared kriging 
error. 



Samenvatting 

Doelstellingen 

Dit proefschrift richt zich op de ontwikkeling van optimale bemonsterings
strategieen voor geostatistische studies. Er is speciale aandacht voor het optimale gebruik 
van voorinformatie, zoals gerelateerd kaartmateriaal, eerdere observaties en historische 
kennis. Alhoewel alle case studies afkomstig zijn uit de bodemkunde, kunnen de 
ontwikkelde strategieen gemakkelijk worden aangepast voor andere wetenschappelijke 
velden waar geostatistiek een rol speelt. 

De belangrijkste doelen van de studie kunnen als volgt worden samengevat: 

i) Formuleren van een aantal optimalisatiecriteria die recht doen aan de grote 
verscheidenheid aan doelen in bodem gerelateerde studies. 

ii) Ontwikkelen van een optimalisatie algoritme voor ruimtelijke bemonstering dat in 
staat is om verschillende optimalisatiecriteria te onderscheiden. 

m) Integreren van voorinformatie zoals gerelateerd kaartmateriaal, eerdere observaties 
and historische kennis in de bemonsteringsstrategie. 

w) Vergelijken van de ontwikkelde bemonsteringsstrategieen met conventionele 
strategieen. 

v) Toepassen van de ontwikkelde optimalisatie technieken in praktische bodem-
bemonsteririgs studies. 

Ontwikkelde methodologie 

Hoofdstuk 2 laat zien hoe een gefaseerde bemonsteringsprocedure ruimtelijke 
risicoinventarisatie kan optimaliseren. Kaarten met overschrijdingskansen van 
drempelwaarden worden geconstrueerd met behulp van Indicator Kriging. Deze worden 
vervolgens gebruikt om bemonstering in volgende fasen aan te sturen. De methode 
wordt toegepast in een loodverontreinigingsstudie in Schoonhoven, en wordt getest 
door middel van stochastische simulatie. De resultaten van de bemonsteringsstrategieen 
worden uitgedrukt in termen van type-I en type-II fouten. De gefaseerde aanpak 
resulteert in veel lagere type-I fouten dan die van conventionele bemonsteringsschema's, 
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terwijl type-II fouten gelijk blijven. De gefaseerde aanpak voorspelt bijna 70% van het 
gebied correct (verontreinigd of niet verontreinigd), en de conventionele aanpak slechts 
55%. 

Hoofdstuk 3 introduceert het Spatial Simulated Annealing (SSA) algoritme. SSA is 
een breed toepasbaar en flexibel algoritme voor optimalisatie van ruimtelijke 
bemonstering. Bemonsteringsschema's worden geoptimaliseerd op het punt niveau, 
waarbij rekening wordt gehouden met praktische bemonsteringsbeperkingen en eerdere 
observaties. Verschillende optimalisatiecriteria kunnen worden gehanteerd. Het gebruik 
van SSA wordt geillustreerd aan de hand van twee, uit de literatuur gehaalde criteria. 
Het eerste (MMSD) criterium richt zich op het gelijkmatig spreiden van de punten 
over het gebied. Het tweede (WM) criterium optimaliseert de gerealiseerde punten-
paar verdeling voor het experimentele variogram. Door middel van verschillende 
voorbeelden wordt aangetoond dat SSA superieur is in vergelijking met conventionele 
bemonsteringsstrategieen. De prestaties van SSA zijn tot 30% beter voor het eerste 
criterium, terwijl voor het tweede criterium een bijna complete oplossing wordt 
gevonden. SSA biedt veel mogelijkheden voor het implementeren van nieuwe 
optimalisatie criteria. 

Bemonsteringsoptimalisatie voor ruimtelijke interpolatie 

In hoofdstuk 4 wordt SSA uitgebreid met het MEAN_OK criterium, dat zich 
richt op minirnalisatie van de gemiddelde ordinary kriging variantie. Dit criterium wordt 
toegepast in een bemonsteringsoptimalisatie voor textuur en fosfaat gehalte op een 
rivierterras in Thailand. Als eerste wordt een bemonstering uitgevoerd voor het schatten 
van de variogrammen. Deze worden gebruikt voor het optimaliseren van een additioneel 
bemonsteringsschema voor minimale kriging variantie. De kriging variantie voor het 
percentage Zand wordt zo teruggebracht van 28.2 tot 23.7 (%)2. De variogrammen 
worden ook gebruikt voor bemonsteringsoptimalisatie in een ander, geomorfologisch 
gelijk gebied. Optimale bemonsteringsschema's voor anisotrope variabelen verschillen 
sterk van die voor isotrope variabelen. De grootte van de kriging neighbourhood heeft 
een klein maar duidehjk effect op de bemonsteringsschema's. De schema's reduceren 
vooral de kriging variantie aan de randen van het gebied. 

Hoofdstuk 5 werkt de mogelijkheden van kriging variantie minirnalisatie verder 
uit. Naast het MEAN_OK wordt ook het MAX_OK criterium gei'ntroduceerd, dat 
zich richt op minirnalisatie van de maximum kriging variantie. Beide criteria worden 
vergeleken met een regelmatig grid. SSA brengt de gemiddelde kriging variantie terug 
van 40.64 [unit]2 tot 39.99 [unit]2. De maximum kriging variantie daalt van 68.83 [unit]2 

naar 53.36 [unit]2. Een additioneel bemonsteringsschema van 10 observaties wordt 
geoptimaliseerd voor een onregelmatige data set van 100 observaties. Dit reduceert de 
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kriging variantie van 21.62 [unit]2 naar 15.83 [unit]2, en de maximum kriging variantie 
van 70.22 [unit]2 tot 34.60 [unit]2. Verder wordt de invloed van variogram parameters 
op het optimale bemonsteringsschema onderzocht. Een Gaussisch variogram model 
resulteert in een totaal ander bemonsteringsschema dan een exponentieel model met 
dezelfde nugget, sill en (effectieve) range. Een zeer korte range resulteert in random 
bemonsteringsschema's, met observaties op een minimum afstand van tweemaal de 
range. Voor een sferisch variogram heeft de hoogte van het relatieve nugget effect 
geen effect op het optimale bemonsteringsschema, behalve voor hoge waarden. 

Hoofdstuk 6 introduceert het WMSD criterium in SSA, dat bemonsteringsschema's 
optimaliseert door middel van een ruimtelijke gewichtfunctie. Dit maakt het mogelijk 
om onderscheid te maken tussen verschillende prioriteitsgebieden. Dit criterium wordt 
toegepast op een multivariate verontreinigingsstudie in de haven van Rotterdam met 
vijf verontreinigende stoffen op twee dieptes. De bemonsteringsstrategie bestaat uit 
twee fasen met twee verschillende ruimtelijke gewichtfuncties. In de eerste fase worden 
eerdere observaties en historische informatie gecombineerd met informatie over de 
prioriteit van sanering. De metingen van het resulterende schema zijn voor 17.4% 
verontreinigd, waarvan 1.5% zwaar verontreinigd. In de tweede fase worden 
overschrijdingskanskaarten van relatief lage drempelwaarden gebruikt om additionele 
bemonstering te leiden naar mogelijke hot spots. Dit resulteert in 26.7% verontreinigde 
monsters, waarvan 16.7% zwaar verontreinigd. Hier was een aantal locaties bij die niet 
in de eerste fase waren aangemerkt als verontreinigd. Het WMSD criterium kan grote 
waarde hebben bij het ondersteunen van beslissingen. 

Bemonsteringsoptimalisatie voor modelschattingen 

Hoofdstuk 7 richt zich op het optimaliseren van bemonstering in de precisie 
landbouw met gebruik van co-gerelateerde data. Met behulp van een goedkope, low-
tech methode worden oogstkaarten voorspeld van gierst in Niger. Oogst varieert van 0 
tot 2500 kg ha1. SSA wordt gebruikt voor het optimaliseren van 3 verschillende 
bemonsteringsschema's. Schema 1 optimaliseert verdeling van de observaties over het 
hele gebied. Schema 2 bestrijkt alle oogstwaarden, en schema 3 bestrijkt alleen de laag-
producerende gebieden. Schema 2 resulteert in vijf significante correlaties tussen oogst 
en bodemvariabelen. Schema 1 vindt slechts een significante correlatie. Schema 2 
verklaart 70 % van de oogst-variatie door middel van multivariate lineaire regressie. 
Schema 1 verklaart slechts 37 %. Verschillen tussen schema 3 en schema 1 zijn significant 
voor afstand tot struiken, micro-relief, pH-H20 en CEC. Wij concludeerden dat struiken 
de belangrijkste factor zijn in de oogstvariabiliteit. Dit komt door het opvangen van 
geerodeerde deeltjes enerzijds, en het lokaal verbeteren van de bodemvruchtbaarheid 
anderzijds. Wij concludeerden verder dat de bemonsteringsstrategie van schema 2 moet 
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worden aanbevolen voor het onderzoeken van oogst/bodem relaties, in het bijzonder 
bij een laag aantal observaties. De variogrammen van micro-relief en oogst suggereren 
verder dat ruimtelijke correlatie grotendeels beperkt blijft tot afstanden van 3 tot 5 m. 

Hoofdstuk 8 evalueert een aantal bemonsteringsstrategieen voor het schatten van 
variogrammen. Het eerste gedeelte vergelijkt een regelmatig grid met een bemonsterings-
schema dat de puntenpaar verdeling optimaliseert. Dit resulteert in zuivere variogram 
schattingen. De fluctuatie in geschatte variogrammen is echter veel hoger voor het 
geoptimaliseerde schema. Wij concludeerden hieruit dat de puntenpaar verdeling op 
zich zelf geen zinnig optimalisatie criterium is voor variogram schattingen. In het tweede 
gedeelte worden extra observaties geselecteerd voor optimale puntenpaar verdeling, 
en vergeleken met random getrokken extra observaties. De random getrokken 
observaties resulteren in een veel hogere standaardafwijking op korte afstand. Hieruit 
concludeerden wij dat de puntenpaar verdeling een nuttig optimalisatie criterium is 
voor het selecteren van additionele observaties voor metingen op korte afstand. Het 
derde gedeelte richt zich op het optimale gebruik van variogrammen. Een 
bemonsteringsgrid van 81 observaties wordt, na voorlopige schatting van het variogram, 
aangevuld met 19 extra observaties voor minimale kriging variantie. Dit schema wordt 
vergeleken met een regelmatig grid van 100 observaties. Voor een exponentieel 
stochastisch veld zonder nugget wordt de gemiddelde gekwadrateerde krigingfout 
teruggebracht van 0.39 [unit]2 tot 0.31 [unit]2. De maximum gekwadrateerde krigingfout 
daalt van 6.05 [unit]2 naar 4.24 [unit]2. Voor een sferisch stochastisch veld met een 
nugget effect van 33 % blijft de gemiddelde gekwadrateerde krigingfout gelijk, en daalt 
de maximum gekwadrateerde kriging fout van 15.98 [unit]2 naar 11.52 [unit]2. Wij 
concludeerden dat minimalisatie van de gekwadrateerde krigingfout vaak meer relevant 
is dan het nauwkeurig schatten van het variogram. Het nemen van observaties vlak 
buiten het eigenlijk onderzoeksgebied verbeterde de kwaliteit van de voorspellingen 
voor zowel kriging variantie als gekwadrateerde krigingfout. 



Curriculum Vitae 

Jan-Willem van Groenigen was born in Den Helder on September 23th, 1970. He 
completed secondary school (Atheneum-fi) in 1988 at 'Scholengemeenschap De Hoge 
Berg' on the island of Texel. In 1988, he started his study Soil Science at Wageningen 
Agricultural University, which he finished 'cum laude' in 1994, with specialisations in 
soil inventarisation, computer science and philosophy of science. In 1995 he received 
the C.T. de Witt thesis award for his thesis soil inventarisation. He started working on 
his Ph.D. research in October 1994 during community service at the Soil Science division 
of Wageningen Agricultural University. From January 1996 until December 1998 he 
continued his Ph.D. research at the Soil Sciences division of the International Institute 
for Aerospace Survey and Earth Sciences (ITC) in Enschede, The Netherlands. In 
1998 he received the ITC Research Award. He is currently employed as a scientific 
staff member at ITC. 


