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Summary

A mixture model approach is employed for the mapping of quantitative trait loci (QTL) for the

situation where individuals, in an outbred population, are selectively genotyped. Maximum

likelihood estimation of model parameters is obtained from an Expectation-Maximization (EM)

algorithm facilitated by Monte Carlo sampling using a Gibbs sampler. All individuals with

phenotypes, whether genotyped or not, are included in the analysis where both putative QTLs and

missing marker genotypes are sampled conditional on known marker information and phenotype.

A simulation of a half-sib family structure demonstrates that this mixture model approach will

yield unbiased estimates of the allelic effects of a QTL affecting the trait on which selective

genotyping is based. Unbiased estimates were also obtained for the QTL effect on a correlated

trait provided both traits were analysed jointly in a bivariate model. The procedure is also

compared with a standard linear model approach. The application of these methods is

demonstrated for bovine chromosome six, the data arising from two Holstein–Friesian families

selectively genotyped for protein yield in a daughter design.

1. Introduction

DNA markers are now widely used for the detection

and mapping of quantitative trait loci (QTL). Selective

genotyping, the marker assay of only individuals with

the more extreme phenotypes for a quantitative trait,

can provide considerable savings in genotyping costs

while retaining most of the statistical power for

detection of QTLs affecting the trait on which the

selection is based (Lebowitz, et al., 1987; Lander &

Botstein, 1989). For single-trait studies it will almost

never be useful to genotype more than 50% of the

population (the high and low tail). However, linear

model estimates of the QTL effect, for which

individuals without genotypic information are ex-

cluded from the analysis, will be biased by the

selective genotyping (Darvasi & Soller, 1992).

A mixture model approach for the mapping of

QTLs in outbred populations was presented by Jansen

et al. (1998). This method can be applied to situations
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in which information about the genotype of an

individual is incomplete. Incomplete information

might be caused by the impossibility to trace the

inheritance of an allele at a locus in an individual,

unknown linkage phases between loci, unknown QTL

genotype and unknown genotypes for markers. The

method can, therefore, be applied to selectively

genotyped data but no information is available on the

properties of the estimates.

One can define a model to describe the relationship

between phenotype and ‘known’ genotype. Since the

genotype is in reality unknown, the possible genotype

configurations that arise from this uncertainty then

become the components of a mixture and this can

be handled by an Expectation–Maximization (EM)

algorithm that yields maximum likelihood estimates

of the model parameters (Jansen et al., 1998). A

simulation study is used to investigate the performance

of this mixture model approach when selective

genotyping is employed within a half-sib family

structure. This approach is also compared with the

multi-marker regression method (Knott et al., 1994).
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2. Model

For a population of N individuals let y denote the

N¬1 vector of trait values and let g denote the N¬1

vector of genotypes where each element of g represents

the complete genotype of marker loci and putative

QTLs for an individual. Given a complete genotype g

the conditional distribution f(y r g) is assumed to be

multivariate normal with mean µ(y r g) and variance

v(y r g). The mean µ(y r g) can be modelled in terms of

additivity anddominance ofQTL effects. For example,

consider a population comprised of a half-sib family

structure, where the data have been collected on the

progeny of a number of unrelated sires and y
ij

is the

trait value for the jth progeny from the ith sire. Then

assuming an additive model and given the ‘known’

genotype

y
ij
¯µ­s

i
­a

i"
q
ij"

­a
i#

q
ij#

­e
ij
, (1)

where s
i
is the (polygenic) fixed effect of the ith sire, a

i"

is the fixed effect of the QTL allele at the first

homologue of the ith sire and q
ij"

¯1 or 0 depending

on whether or not the jth progeny has inherited the

allele of the sire’s first homologue with a
i#

and q
ij#

defined analogously for homologue 2. The e
ij

is a

normally distributed random residual that could

reflect heterogeneity of variance across families and

the variable amount of information included in the

trait values – for example, the number of daughters

for each progeny tested sire in a granddaughter design

(Weller et al., 1990). In this model an allelic contrast

is fitted for each family. The model corresponds to a

mixed inheritance model containing a polygenic effect

and a multiallelic QTL (Hoeschele et al., 1997).

Let θ denote the vector of all parameters in the

model, that is, QTL allelic effects and allele fre-

quencies. We also denote by h the N¬1 vector of

observed marker data for each individual. Then the

simultaneous likelihood ,(θ) of all the observed trait

and marker data is a mixture likelihood with the

possible genotypes as components

,(θ)¯ f(y, h)¯3
g

P(g) f(y, h r g), (2)

where P(g) is the probability of a particular genetic

configuration which is based on the observed marker

information and is a function of recombination and

allele frequencies. We note that f(y, h r g)¯ f(y r g) if

h is consistent with g and f(y, h r g)¯ 0 otherwise. The

likelihood equations, using Bayes theorem, then yield

(Jansen, 1992; Jansen et al., 1998).
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where summation is over all possible genotypes g

consistent with h. As described in Jansen (1992) the

first term in (3) represents genetic linkage between loci

and the second term represents the phenotype–

complete genotype relation.

The likelihood equations (3) can be solved by the

EM algorithm. In the E-step the conditional prob-

ability P(g r y, h) is evaluated for all possible genotypes

g given the current parameter estimates and the

observed marker information h. The M-step involves

solving each of the likelihood equations represented

by the two terms in (3) using the weights P(g r y, h) in

a standard weighted regression.

A practical method for solving the likelihood

equations (3) is to use a number (M ) of Monte Carlo

realizations:

¦
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3
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(4)

where in the jth Monte Carlo sample, complete

genotypes g( j) are generated using the conditional

distribution P(g( j) r y, h). Because of the large number

of genotypic states in a population with many loci the

sampling process can be facilitated by use of the Gibbs

sampler (Guo & Thompson, 1992; Janss et al., 1995;

Jansen, 1996). For the half-sib design considered here

the offspring genotype can be updated in a stepwise

manner for each locus and each individual. The

procedure used in this paper for sampling g( j) is

outlined by Jansen et al. (1998).

3. Materials and methods

Data were simulated for a daughter design with 10

replicates of five sire groups with 500 daughters per

group: a total of 50 sires and 25000 daughters. For

each individual a 100 cM chromosome with six

markers spaced at 20 cM intervals was simulated. All

sires were heterozygous at all markers. A primary

phenotype was simulated with a heritability of 0±3
and unit standard deviation, thus excluding variation

explained by the QTL. A QTL locus with two alleles

at equal frequency and positioned equidistant from

markers two and three was superimposed on the

polygenic background. The relative effect of the major

QTL allele, a
"
¯ 0±2, was the same for each family and

sires were not necessarily heterozygous at the QTL

locus. A phenotype for a secondary trait was also

simulated in order to study the consequences of

selective genotyping based on the primary trait. The

phenotypic and genetic correlations between the

primary and secondary traits were both set equal to

0±7. The effect of the QTL on the secondary trait, a
#
,

was considered at two values, 0±2 and zero.

For genotyping, four different scenarios were
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considered where either all daughters were genotyped

or daughters were selectively genotyped within family :

(i) All daughters genotyped (100%).

(ii) Daughters that were extreme for the primary trait

were selectively genotyped – 20% from the

bottom of the distribution and 20% from the top

(20%}20%).

(iii) Forty per cent of daughters were selectively

genotyped but with unequal selection – 15%

from the bottom and 25% from the top

(15%}25%).

(iv) Truncation selection was carried out, with 80%

of daughters selected from the top of the

distribution only (0}80%).

For the case of selective genotyping, the marker

genotypes for the unselected animals were treated as

missing. Each simulated data set was analysed for

different levels of genotyping. Two methods were

considered for analysis of the data: the mixture model

approach using the Monte Carlo EM (MCEM)

method described above and the multi-marker re-

gression approach of Knott et al. (1994) (REG). For

the MCEM method a further comparison was made:

the secondary trait, as well as being analysed as a

single trait, was also included in a joint analysis with

the primary trait, which we will refer to as the multiple

trait analysis. In the latter analysis the sampling of

genotypes was conditioned on a bivariate normal

distribution of the two phenotypes and estimation of

the allelic effects for each trait was based on a multiple

trait linear model. In this case the multivariate normal

distribution f(y r g) was expanded to include both

traits as well as the linear model (1), the parameters of

which are estimated using generalized least squares

incorporating the environmental variance–covariance

matrix between traits.

For the MCEM method all daughter phenotypes

were included in the analysis with the missing marker

information for unselected daughters being sampled.

For the REG method only those daughters with

marker data were included in the regression analysis.

For comparison of the likelihood profiles between

methods, the F-statistic of the regression method was

multiplied by the degrees of freedom for the test

(number of sire groups) to convert into a likelihood

ratio value. The likelihood ratio values were summed

over the 10 replicates. The conversion of the F-

statistic to a likelihood ratio is not exact and therefore

a comparison of likelihood profiles between methods

is limited by this approximation so that a small shift

in profiles does not necessarily imply that one method

is more powerful than the other.

The model fitted for the MCEM method is the

mixture model for a multiallelic QTL as described by

(1) : see model II in Jansen et al. (1998). Parameters

include (known) recombination frequencies between

markers and (unknown) marker allele frequencies

within family, the mixture distribution being obtained

by summing over possible genotypes. Equation (1)

can also be used to describe the linear model for the

REG method but with the interpretation that q
ij"

is

the probability that the jth progeny of the ith sire has

received the QTL allele from the first homologue of

the ith sire and similarly for q
ij#

. These probabilities

are calculated once on the basis of marker data only,

whereas in the MCEM method the genotype (mixing)

probabilities P(g) are updated on the basis of linkage

phases, marker allele frequencies, phenotype and

marker observations. Further, in contrast to the

MCEM method, which takes all possible linkage

phases into account, the REG method determines the

most likely linkage phase for each sire and in the case

of equally likely phases chooses one at random. This,

however, did not occur in our simulation due to the

large family size. We assume residual variance to be

homogeneous across families for both methods. For

parameter estimation in the MCEM method, 500

Gibbs cycles were performed per EM iteration with

the genotypic state at every twentieth cycle used as a

Monte Carlo realization. For evaluation of the

likelihood at the final iteration, 2000 Gibbs cycles

were used at each of three steps for intermediate

models spanning the range between the model with

QTL and that without a QTL similar to that described

in Jansen et al. (1998).

The regression of estimated QTL effect on sire QTL

genotype was calculated for all scenarios. The de-

pendent variable in the regression represented a total

of 50 estimates of the QTL effect from 10 replicates

with five families per replicate. The independent

variable was coded as zero for homozygous sires and

­1 or ®1 for heterozygous sires depending on the

phase. The expected slope of this regression is the true

QTL effect, which can be compared with the simulated

values. The regression was constrained through the

origin. Darvasi & Soller (1992) have shown that with

selective genotyping, the QTL effect as estimated from

the selected population is magnified by a factor of

1­ix over the same effect estimated when the entire

population is genotyped. Here, i is the standardized

selection differential andx the standard normal deviate

for the truncation point corresponding to the selected

upper tail. Therefore, for a method such as REG,

which does not use phenotypes of unselected indi-

viduals, one would expect the regression coefficient to

be increased by a factor of 1­ix when comparing

(equal tail) selection with no selection. For the case of

(single tail) truncation selection the QTL effect is

reduced by a factor of 1®i(i®x), the same factor as

for the reduction in variance (Bulmer, 1971). This

reduction is due to the increasing selection intensity

with decreasing performance of different genotypes.

The MCEM and REG methods were applied to the
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Table 1. Number of daughters with phenotypes and genotypes for chromosome six

Marker information

Phenotypes
Lower tail Upper tail Total

Family No. No. (%)a Sel. diff.b No. (%)a Sel. diff.b No. (%)

1 914 151 (16±5%) ®1±26 156 (17±1%) 1±27 307 (33±6%)
2 1018 133 (13±1%) ®1±24 166 (16±3%) 1±36 299 (29±4%)

a Number (percentage) of daughters genotyped within tails of protein yield distribution.
b Selection differential (average phenotype of daughters genotyped compared with average phenotype of all daughters) in
standardized units.

Table 2. Genetic markers used for chromosome six

Marker

Family BM1329 BM143 TGLA37 BM4528 BM4621 BM415 BM4311

1 1 1 1 1 1 1 1

2 1 1 0 1 0 0 1

Map, cM 0 17 23 36 40 44 57

Markers for which a sire is heterozygous are indicated by 1, otherwise 0.

investigation of marker–QTL associations in data

from two Holstein–Friesian families involved in a

daughter experimental design. Details of the design

are presented in Table 1. The two New Zealand

families comprise 914 and 1018 daughters born in

1991. Of these daughters, 307 (34%) and 299 (29%)

respectively were selectively genotyped based on

extreme values for protein yield within family. The

actual phenotype used for selection and data analysis

was the protein yield deviation, that is, protein yield

adjusted for contemporary group, other fixed effects

and the permanent environmental effect (VanRaden

& Wiggans, 1991). The yield deviation, being an

average over lactations, was further adjusted to take

account of the number of lactations for each daughter

to avoid, for example, overrepresentation of the more

variable single lactation yields in the tails of the protein

distribution. We present results for protein yield only.

The seven markers, at each of which at least one of the

sires was informative, and map distances are detailed

in Table 2.

4. Results

For the simulated data, Fig. 1 shows the likelihood

profiles for the primary trait for the two methods and

four selection scenarios. The curves generally peak at

the position of the QTL but also have a slightly higher

likelihood value at the left end of the chromosome.

The profiles for the two methods are similar for no

selection and equal tail selection but tend to drift

apart when selecting an unequal proportion from the

two tails. There is a marked drop in likelihood for

truncation selection, which is in agreement with an

earlier study (Mackinnon & Georges, 1992).

Fig. 2 shows the likelihood profiles for the secondary

trait for the case of no selection and equal tail

selection based on the primary trait. With an effect

of the QTL (a
#
¯ 0±2) for the secondary trait the

likelihood profiles were similar to those of the primary

trait but at a lower absolute level. The profiles in the

case of no effect of the QTL (a
#
¯ 0) were essentially

flat but with those corresponding to selection sitting

above those for no selection. This indicates some

residual ghost QTL effect on the secondary trait due

to selection on the primary trait. However, for the

MCEM multiple trait analysis, the profiles in the case

of selection were lower than for the corresponding

univariate analysis and in particular when a
#
¯ 0 the

profile was similar to that for no selection. This

suggests that, for analysis of the secondary trait, it is

necessary to use information on the primary trait in

order to eliminate the bias generated by selection on

the primary trait.

Estimates of the true QTL effect obtained from the

regression of estimated family effect on sire QTL

genotype are presented in Table 3. Estimates of the

QTL effect for each family, 50 in total, were obtained

at the position of the QTL. For the primary trait and
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Fig. 1. QTL likelihood for the primary trait on which the following selection has been imposed: 100%, no selection;
20%}20%, top 20% and bottom 20% from the distribution; 15%}25%, 15% from bottom and 25% from top;
0}80%, 80% from top. Continuous line is the profile for the MCEM method and the dotted line for the REG method.
Arrow indicates position of QTL.
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Fig. 2. QTL likelihood of secondary trait for two selection scenarios imposed on the primary trait (100% and
20%}20%) and two values of the effect of the QTL on the secondary trait (a

#
¯ 0±2 and 0). Continuous line is the

profile for the MCEM method, the dotted line for the REG method and the dashed line for the multiple trait MCEM.
The plotting symbol for 100% is a circle and for 20%}20% a triangle. The multiple trait (MT) analysis is shown for
the 20%}20% selection only as the profile for the 100% selection is indistinguishable from its univariate counterpart.
Arrow indicates position of QTL.
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Table 3. Regression of estimated family effect on sire QTL genotype

Estimated QTL effect (³)a

Trait QTL effect Selection REG MCEM

Primary a
"
¯ 0±2 100% 0±169³0±023 0±166³0±024

20%}20% 0±373³0±055 0±175³0±025
15%}25% 0±357³0±051 0±170³0±024
0}80% 0±092³0±020 0±146³0±031

Secondary a
#
¯ 0±2 100% 0±175³0±022 0±173³0±021

20%}20% 0±327³0±043 0±204³0±026
100% (MT)b – 0±174³0±021

20%}20% (MT)b – 0±182³0±026
a
#
¯ 0 100% 0±014³0±022 0±019³0±021

20%}20% 0±166³0±043 0±101³0±024
100% (MT)b – 0±013³0±021

20%}20% (MT)b – 0±029³0±026

a Estimate (³standard error).
b Multiple trait analysis.
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Fig. 3. QTL likelihood for protein yield from chromosome six in the dairy cattle experiment. Continuous line is profile
for the MCEM method and dotted line for the REG method. Arrows indicate position of markers.

no selection, the estimate of the QTL from both the

REG and MCEM methods was 0±17, which is not

significantly different from the simulated QTL effect

of 0±2. The estimated QTL effect is consistent across

different selection scenarios for the MCEM method

except that it is lower for the 0}80% selection (0±15)

but with a higher standard error. For the REG

method and equal tail selection compared with the

same method for no selection, the estimate of the QTL

effect is magnified by a factor of 0±373}0±169¯ 2±21,

which is close to the expected value of 1­ix¯ 2±17

where the standardized selection differential (i) is 1±4,

for 20% single tail selection, and the corresponding

truncation point (x) is 0±84 (Darvasi & Soller, 1992).

The results for 15%}25% selection are similar to

those for 20%}20% selection. For the REG method

and 0}80% selection the estimate of the QTL effect is

reduced by the factor 0±092}0±169¯ 0±54, and again

this is close to the expected value of 1®i(i®x)¯ 0±58,

where, for 80% truncation selection, i¯ 0±35 and
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Table 4. QTL effect for protein yield (kg) at position of marker TGLA37

for chromosome six

Method of analysis

Family REG REG (adjusted)a MCEM (95% CI)c

1 0±58³2±07b 0±22³0±80b ®0±43 (®1±95, 0±72)
2 5±43³2±20b 2±09³0±85b 2±45 (1±04, 3±71)

a Estimates adjusted for bias due to 30% selection using scale factor of 2±6.
b Estimate³standard error.
c Estimate and 95% confidence interval based on 1000 stochastic EM cycles.

x¯®0±84. This is also consistent with results of

Mackinnon & Georges (1992).

For the secondary trait and no selection the REG

and MCEM methods yield similar estimates for the

QTL effect for both a
#
¯ 0±2 and a

#
¯ 0 (Table 3). For

the REG method, selection on the primary trait again

magnifies the estimate of the QTL effect for the

secondary trait. The difference between using selection

and no selection in the estimates of the QTL effect for

the secondary trait (using REG) is 0±152 for both a
#

¯ 0±2 and a
#
¯ 0, and expressing this difference as a

ratio of the estimated QTL effect for the primary trait

under no selection (0±169) one obtains 0±9. The

theoretical expectation of this ratio is rix¯ 0±82

(Bovenhuis & Spelman, 1998), where r¯ 0±7 is the

genetic and phenotypic correlation between traits

(i¯1±4,x¯ 0±84). This quantifies the ghost QTL

effect induced by selection on the primary trait

regardless of whether or not the QTL has an effect on

the secondary trait. For the MCEM method under

selection the estimated QTL effects for the secondary

trait are also magnified relative to no selection but to

a smaller extent compared with REG (0±204 vs 0±173

and 0±101 vs 0±019 for a
#
¯ 0±2 and a

#
¯ 0, respec-

tively). However, in the MCEM multiple trait analysis

these estimates were similar to their counterparts

under no selection, which reinforces the need for a

joint analysis including data on which the selection is

based. For the multiple trait analysis the estimates for

the primary trait were essentially the same as those for

the single trait analysis and are not shown in Table 3.

Fig. 3 presents the likelihood profiles for chromo-

some six and the protein yield data. The profiles are

roughly similar for the two methods of analysis, with

both curves peaking about the region of markers

BM143 and TGLA37. The chromosome-wise em-

pirical critical value for the likelihood ratio test

statistic, determined by the permutation method

(Churchill & Doerge, 1994), was 7±2 at the 10%

significance level for two families based on 100000

shuffles of the phenotypes within family using the

REG method. (The behaviour of the permutation test

is not affected by selective genotyping, at least for the

primary trait : R. J. Spelman & H. Bovenhuis, per-

sonal communication.) Further determination of the

likelihood profiles within family shows that this peak

is determined by family 2 only; the profile for family

1 was essentially flat and close to zero across the

chromosome. The maximum likelihood value for

family 2 was 5±7 at TGLA37 and the chromosome-

wise critical values for this family were 4±5 and 5±9 at

the 10% and 5% significance levels, respectively. The

estimates for the QTL effect for the two methods at

the position of TGLA37 are given in Table 4. To

adjust for the bias due to selective genotyping, the

estimates (and standard errors) from the REG method

were scaled down by a factor of 2±6 corresponding to

30% selection (assuming equal representation from

the lower and upper tails and truncation selection).

These adjusted estimates, when compared with the

MCEM estimates, indicate the QTL effect in family 2

at about 2 kgprotein. Standard errors are not available

from the EM algorithm; however, one can estimate

the ‘posterior ’ distribution of the QTL effect by using

stochastic EM, a single Monte Carlo realization for

each EM cycle (Jansen et al., 1998). The 95%

confidence intervals for the QTL effects estimated

from MCEM using this distribution, based on 1000

EM cycles, are given in Table 4.

5. Discussion

The major cost in the detection of QTL with the aid

of genetic markers is that due to DNA collection and

typing. Selective genotyping can provide considerable

cost savings, particularly in those populations where

recording of phenotypes is done on a routine basis,

with little loss in accuracy of detection of QTL. Linear

model regression estimates of allelic effects, such as

those obtained from a multi-marker regression

method, are biased upwards when selection is used to

genotype only those individuals that are extreme for

the quantitative trait. This is due to the positive

correlation between residual effects and the QTL

effect in the pooled tails population that magnifies the

allelic effect.



D. L. Johnson et al. 82

On the basis of our simulation work, the mixture

model method would appear to yield estimates of gene

substitution effects that are not biased by selective

genotyping. This is the case not only for the primary

trait on which selection is based but also for a

correlated trait provided the latter is analysed jointly

with the primary trait. Presumably critical to this

result is the fact that the MCEM method, when

sampling missing marker genotypes, takes into ac-

count not only known marker information but also all

phenotypic observations for the trait.

The MCEM and REG methods give almost

identical results when no selection is practised but

differ in the estimates of parameters with selection.

The fact that the likelihood profiles are similar between

methods even for equal tail selection suggests that the

REG method is still a useful and quick tool for

screening for QTLs in this situation, in order to locate

areas of interest for more detailed analysis, and that

estimates of gene substitution effects can be adjusted

for the effects of selection using the formula of

Darvasi & Soller (1992). However, the adjustment

assumes truncation selection and equal representation

from the tails of the distribution. The MCEM method

does not make any assumption on the type of selection

and can also be used when part of the population

cannot be genotyped due to lack of DNA. This was

the case in a granddaughter design where semen

samples were not available for some progeny-tested

sons, resulting in families being excluded from data

analysis (Spelman et al., 1996). Muranty & Goffinet

(1997) present a simple method based on maximum

likelihood for which approximate solutions are found

by expanding the likelihood as a Taylor series about

the maximum likelihood estimates obtained from the

model assuming no effect of the QTL. Their method

assumes that the effect of the QTL is small and that

the genotype probabilities, P(g), are known.

The simulated data were generated such that sires

were heterozygous at all markers. Thus differences

between methods in this study will be more to do with

selective genotyping than with other effects resulting

in incomplete marker information such as an unin-

formative marker locus for an entire family. A

simplified analysis, less time-consuming than the

mixture model method, may be possible for this

simulated example. One can select the most likely

linkage phase in the sires and then use an approximate

expectation method that is computationally inex-

pensive (e.g. Knott et al., 1996; Muranty & Goffinet,

1997). However, one would expect the mixture model

approach to be more powerful and efficient than

approximate expectation methods in situations where

markers are not fully informative, QTL effects are

large or where the population structure is complex.

We do not allow for differences between methods in

estimating position, further supporting the idea that

we want to quantify differences due to selective

genotyping only. For the chromosome six data, three

of the seven loci were uninformative for family 2 and

so differences between methods, as represented in the

likelihood profiles in Fig. 3, could be influenced by the

ways in which the methods handle uninformative loci

as well as the unequal representation from the tails in

family 2 (Table 1).

There are other recent methods that can be used in

the analysis of QTL mapping experiments (e.g. Knott

et al., 1996; Thaller & Hoeschele, 1996; Satagopan et

al., 1996; Uimari et al., 1996; Xu, 1996; Grignola et

al., 1997). Our objective was not to compare all other

methods. However, methods that deal appropriately

with the selection and use all phenotypes to impute

missing marker genotypes would be expected to yield

estimates of QTL effects unbiased by selection.

A QTL for protein yield was identified in family 2

in the region of markers BM143 and TGLA37 on

chromosome six. This is the same region where an

effect was found for protein percentage in the

American Holstein population (Georges et al., 1995)

and in the Dutch Holstein–Friesian population (Spel-

man et al., 1996), using granddaughter designs. The

two New Zealand sires involved in this study were

also grandsires involved in the latter design where, for

chromosome six, a significant QTL effect for protein

percentage was found for family 1 but nothing was

found for family 2 (W. Coppieters, personal com-

munication). The number of sons in the granddaughter

design was 47 and 39 for these two families, so one

reason for the discrepancy between the two sets of

results could be the relatively low power of the

granddaughter design in this case.

Complete exploitation of all information can be

obtained by the application of maximum likelihood

techniques. The EM algorithm provides scope for

dealing with the problem of missing QTL and marker

information with the mixture model approach. Data

augmentation by means of the Gibbs sampler facili-

tates sampling of possible genotypic states and with

these ‘known’ genotypes standard linear regression

routines can be applied. Although more compu-

tationally demanding, the MCEM method demon-

strates promise as an appropriate tool for the analyses

of data from QTL mapping experiments where only a

proportion of the population has been genotyped.
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