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1. Introduction

All rings considered in this paper are commutative with unity. A ring R is called
a PF-ring if every principal ideal aR is a flat R-module, and it is called a PP-ring if
every principal ideal aR is a projective R-module. An ideal I of a ring R is called pure
if for every x e/, there exists y e/ such that xy=x.

For each proper prime ideal P of a reduced (without nonzero nilpotent elements)
ring, let

Op={xeR:3y¢P, xy=0}.

This is an ideal contained in P and is contained in any prime ideal contained in P.
Clearly, P is minimal iff Op=P. ,

Obviously any finite intersection of pure ideals of a ring R is pure, and it is well
known that the sum of any collection of pure ideals is pure, see Borceux and Van den
Bossche [3]. An ideal /s called “purely maximal” if it is maximal in the lattice of pure
ideals of the ring R, and it is called “purely prime” if it satisfies: whenever I, and I,
are any two pure ideals such that I; n [, =7, then either I; =1 or I, = I. Let pp(R) be
the set of all purely prime ideals of R. For each pure ideal 7 of R, let

O'={Jepp(R): I¢J}.

It is well known that the sets of the form O’ defines a topology on the set pp(R), called
the pure spectrum topology and it is denoted by Spp(R). -

In Section 2 of this paper we characterize pure ideals in a PF-ring.

In Section 3 we characterize the set pp(R) of a PF-ring, and then we prove that
there is a continuous bijection from the space of minimal prime ideals with spectral
topology to pp(R) with the pure spectrum topology. »

Finally, in Section 4, we prove that pp(R) with pure spectrum topology is
homeomorphic to Min(R) with the spectral topology iff R is a PP-ring.
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2. Pure ideals in a PF-ring

First, we list some alternate characterizations for PF-rings in the following
theorem.

THEOREM 2.1. Let R be a ring. Then the following are equivalent.

1. Ris a PF-ring.

2. For each ae R, the annihilator of a, ann(a), is a pure ideal, see Al-Ezeh [1].

3. For each maximal ideal M, the localization R, is an integral domain, see
Matlis [5].

4. R is reduced and every prime ideal P of R contains a unique minimal prime
ideal, namely Op, see Matlis [5].

5. For each a,beR, ann(a)+ann(b)=R whenever ab=0, see Aritico and
Marconi [2].

To give the complete characterization of pure ideals in a PF-ring, we first prove
two lemmas that we will need later.

LEMMA 2.2. Let R be a PF-ring. Then for every prime ideal of R, Op is pure.

Proof. Let ae Op, then there exists b¢ P such that ab=0. Since R is a PF-ring,
by Theorem 2.1, 1 =x +y such that xa=0and yb=0, hence a=ay. Since b¢ P, y € Op.
So Op is pure.

LEMMA 2.3. Let R be a PF-ring. Then a prime ideal P is pure iff Op=P.

Proof. 1If P=O0p, then by Theorem 2.1 and Lemma 2.2, P is pure.

Conversely, assume P is pure. First Op< P. Now, let ae P, then there exists be P
such that ab=a. Since 1—b¢ P and a(1 —b)=0, ae Op. Thus P= Op. Consequently,
P=0,.

THEOREM 2.4. Let R be a PF-ring, and I a pure ideal of R. Then I= N Oy
where M ranges over all maximal ideals containing I. rem

Proof. Let xe . Since I is pure, there exists y € I such that x(1 —y)=0. For each

maximal ideal M containing I, 1 —y¢ M, and hence xe O,,. Therefore IS () O,,.
IEM

Now, let x¢ I. Let S={be R: bx=x}. Then S is a multiplicative subset of R that
is disjoint from /. Hence by Zorn’s lemma, there exists a prime ideal P that contains /
and disjoint from S. P is contained in a maximal ideal M. We claim, x ¢ O,,. If not
then x € O,,. Since O, is pure, there exists y € O,, such that xy=x. Because P& M, we
get O, < P. Therefore ye P. Hence ye P~ S, which is absurd. So x¢ O, and hence
xe [) Oy. Consequently, I= () O,,.

IsM I=sM
THEOREM 2.5. Let R be a PF-ring, and J a proper ideal of R. Then the ideal K =

ﬂ O, is pure, where M ranges over all maximal ideals M containing J.
I=sM
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Proof. Let ae K. Then for each maximal ideal M containing J, there exists
by ¢ M such that ab,,=0. For each maximal ideal M not containing J, let ¢),eJ and
cyéM. Let C be the ideal generated by all bys and c¢ys. Then C=R. So 1=
XiCp,+ 0 FXCpp + X4 1Py, Xk s by, - Therefore, af=a, where f=x,cy,
+ - +x,0pp,€J. Thus, a(l —f)=a and (1—f)¢ M for every maximal ideal M con-
taining J. If (1—f)=g, then since R is a PF-ring, ann(a)+ann(g)=R. So, 1=x+y
with xa=0 and yg=0. Consequently, a=ay and ye O, for each maximal ideal
M containing J. Therefore K is pure.

THEOREM 2.6. A reduced ring R is a PF-ring iff every minimal prime ideal is
pure. :

Proof. Assume R is a PF-ring. If P is minimal, then P= Op. But Op is pure by
Lemma 2.2, so P is pure.

Conversely, let R be a reduced ring in which every minimal prime ideal is pure.
Let Q be a prime ideal of R, then there exists a minimal prime ideal P contained in Q.
Hence Oy < P=0p. Now, let xe Op. Since P= O, is pure there exists ye P<= Q such
that xy=x. Then 1—y ¢ Q and x(1 —y)=0. So xe Oy. Hence P=0,,. Thus every O, is
prime, and so by Theorem 2.1, R is a PF-ring.

3. The pure spectrum of a PF-ring

We start this section by recalling a theorem that was proved in Borceux and Van
den Bossche [3].

THEOREM 3.1 Let R be a ring. Then
a. every purely maximal ideal is purely prime
b. every proper pure ideal is contained in a purely maximal ideal.

In the following theorem we characterize purely maximal ideals in a PF-ring.

THEOREM 3.2. Let R be a PF-ring. Then a proper ideal Q of R is purely
maximal iff Q = Op for some minimal prime ideal P of R.

Proof. Let Q be a purely maximal ideal. Then Q is contained in a maximal ideal
M. Then it is quite easy to see that Q < O,, because Q is pure. But by Lemma 2.2, O,,
is pure, so Q=0,, because Q is purely maximal. Since R is a PF-ring, Oyy,=Pis a
minimal prime ideal. So Q=0,,=P=0,.

Conversely, assume Q = Op for some minimal prime ideal P. Let I be a proper
pure ideal such that Op < I. Iis contained in a maximal ideal M. Clearly, < O,,. Since
P=0pcIc= M, then Oy = P<I Thus O, ,=0p=P=1. So Q is purely maximal.

Our aim now is to prove that every purely prime ideal of a PF-ring is purely
maximal. We need for the proof two preliminary lemmas. For any elements @ in a PF-

ring R, let J,= () O,, where M ranges over all maximal ideals containing a. By
aeM
Theorem 2.5, J, is a pure ideal.
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LEMMA 3.3. Let R be a PF-ring. For any maximal ideal M of R, if ac M, then
J. SO0y

Proof. Let a be an element of a maximal ideal M. Let xeJ,. Since J, is pure,
there exist yeJ, such that xy=x. Since yeJ,, ye M. So 1 —y¢ M and x(1—y)=0.
Consequently, xe O,,. So, J,SO0,,.

LEMMA 3.4. Let I be a proper pure ideal of a PF-ring R. Let M be a maximal
ideal containing 1. Then if ac O, implies J,= 1, then I=0,,.

Proof. Since IS M and I is pure, I O,,. Let xe O,,. Since O,, is pure, there
exists y € Oy such that x(1 —y)=0. Then x e J,. By assumption, because y e Oy, J, = 1.
Hence xel. Consequently, I=0,,.

THEOREM 3.5. Let R be a PF-ring. Then any purely prime ideal is purely
maximal.

Proof. Assume that I is purely prime that is not purely maximal. Hence there
exists a maximal ideal M such that /= O, and I# O,,. Since I# O,,, by Lemma 3.4,
there exists ae Oy such that J,&1 Let K= () Oy, where N ranges over all

ann(a) EN
maximal ideals containing ann(a). Clearly, J,n K=0 since J,n K is a pure ideal
contained in the Jacobson radical of R. Therefore J, n K< 1. Since I is purely prime,
Kcl

Now, since ae O,,, there exists be O, such that a(1 —b)=0 because O,, is pure.
Again, since Oy, is pure and be O, there exists ce O, such that b(1—c)=0. So
1—be N for each maximal ideal containing ann(a). So, for all such N we get b¢ N.
Hence 1—ceK. Because ce M, we get K+M=R. This contradicts the fact that
K= I M. Therefore O,,=1. Consequently, I=0p= P for some minimal prime ideal
P=0,,. Thus I is purely maximal.

Now, it is clear that

pp(R)={0p: PeMin(R)}={0,,: M is a maximal ideal of R} .
So pp(R)=Min(R).

COROLLARY 3.6. Let R be a PF-ring. Then the mapping  : Min(R)—pp(R)
defined by y(P)=Op is a continuous bijection, Min(R) is given the spectral topology.

Proof. Clearly  is the identity mapping. Let / be a pure ideal and let
O"eSpp(R). Then
Yy 1(0")={PeMin(R): I¢ P}=D(I) n Min(R)

which is spectrally open in Min(R).

In the next section, we prove that for a PF-ring the mapping ¢ defined above is a
homeomorphism iff R is a PP-ring. Of course, there are PF-rings that are not PP-
rings, e.g. see Vasconcelos [6].



The Pure Spectrum of a PF-Ring 183

4. The pure spectrum of a PP-ring

It is well known that a ring R is a PP-ring iff for every ae R, ann(a) is generated
by an idempotent. In fact, this is because the principal ideal aR is a projective R-
module iff ann(a) is generated by an idempotent, see Evans [4]. Clearly, every PP-ring
is a PF-ring. Vasconcelos [7] proved that R is a PP-ring iff Ris a PF-ring and Min(R)
with the spectral topology is compact. We come to our final result.

THEOREM 4. Let R be a PF-ring. Then the mapping  : Min(R)—pp(R) defined
by Y(P)=0p=P is a homeomorphism iff R is a PP-ring.

Proof.  Assume ¥ is a homemorphism. Then Min(R) is compact because pp(R)
with the pure spectrum topology is compact, see Borceux and Van den Bossche [3].
Hence R is a PF-ring for which Min(R) with the spectral topology is compact. So Ris
a PP-ring, see Vasconcelos [7].

Conversely, assume R is a PP-ring. To show that { is a homeomorphism, it is
enough to show that Y(D°(aR)) is open for every aeR where D°(aR) =
D(aR) n Min(R). Consider y(D°(aR))={Pe PP(R): a¢ P}. Since R is a PP-ring and
ae R, ann(a)=eR with ¢ =e. To complete the proof, we have to show that

{PePP(R):a¢ Py={Pepp(R): (1 —e)¢ P}

because I=(1—e)R is pure and O'={Pepp(R): (1—e)¢ P}. Let P be a minimal
prime ideal such that a¢ P. Since ae=0, ee P. So 1 —e ¢ P. For the other way around,
assume, ae P where P e pp(R). Since P is a minimal prime ideal, there exists b ¢ P such
that ab=0. Hence beann(a)=eR, and so b=er, where re R. Thus b(1 — e)=0, i.e.
b=be. Consequently, e¢ P. Because e(1 —e)=0, 1 —ee P. Thus

{Pepp(R): a¢ P}=0",  where I=(1—¢)R.
So the image of each basic open set is open. Hence ¥ is a homeomorphism.
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