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A formalized many-particle nonrelativistic classical quantized field interpretation of magic angle
spinning ~MAS! nuclear magnetic resonance~NMR! radio frequency-driven dipolar recoupling
~RFDR! is presented. A distinction is made between the MAS spin Hamiltonian and the associated
quantized field Hamiltonian. The interactions for a multispin system under MAS conditions are
described in the rotor angle frame using quantum rotor dynamics. In this quasiclassical theoretical
framework, the chemical shift, the dipolar interaction, and radio frequency terms of the Hamiltonian
are derived. The effect of a generalized RFDR train ofp pulses on a coupled spin system is
evaluated by creating a quantized field average dipolar-Hamiltonian formalism in the interaction
frame of the chemical shift and the sample spinning. This derivation shows the analogy between the
Hamiltonian in the quantized field and the normal rotating frame representation. The magnitude of
this Hamiltonian peaks around the rotational resonance conditions and has a width depending on the
number of rotor periods between thep pulses. Its interaction strength can be very significant at the
n50 condition, when the chemical shift anisotropies of the interacting spins are of the order of their
isotropic chemical shift differences. ©2000 American Institute of Physics.
@S0021-9606~00!03203-7#
-
th
n
ti
e

cle
r
o-
o
iz

la

led
ld
la
d

lie
ti

te

a
a

he

AS
an

ned
ide
nts
he

rts
he
ith
eld-
the
o-
is
th-

a
ion
is-
the
eld
lti-

he
le

e

I. INTRODUCTION

Magic angle spinning~MAS! nuclear magnetic reso
nance~NMR! correlation spectroscopy in conjunction wi
multispin isotope enrichment has been established rece
as a novel concept for refinement of electronic and spa
structure in solids.1,2 This development was triggered by th
discovery of broadbanded pulse sequences for homonu
dipolar recoupling.3–11 In principle, MAS averages dipola
interactions.12,13Using dipolar recoupling techniques, hom
nuclear and heteronuclear dipolar correlation spectrosc
can be performed and the NMR response of moderately s
multispin clusters can be assigned.14,15 In addition, since the
dipolar interaction is strongly distance dependent, dipo
correlation spectroscopy can be used forde novostructure
determination on an atomic scale of multispin labe
systems.1,2 In this article we present a formal quantized fie
interpretation of the seminal radio frequency driven dipo
recoupling~RFDR!. The technique was originally propose
for one refocusingp-pulse per single rotor period.5 RFDR is
straightforward to implement and robust, and can be app
readily in high and ultra high fields. It has already been u
lized for assignment and structure refinement of modera
sized uniformly labeled biological aggregates.16

It has been shown that the effect of MAS on a nucle
spin system in a solid can be described in terms of a qu
tized rotor field, leading to a physical interpretation of t

a!Present address: ID-DLO, P.O. Box 65, 8200 AB Lelystad, The Neth
lands.
1090021-9606/2000/112(3)/1096/11/$17.00
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Floquet description of MAS.17,18 This makes it possible to
disentangle the influence of the radiation field and the M
rotation, leading to the construction of a Floquet Hamiltoni
for the MAS NMR from first principles. Here it will be
shown that the quantized field description can be combi
with the average Hamiltonian approach in order to prov
us with a quasiclassical description of RFDR experime
with a variable number of rotor periods between t
p-pulses.19

The formal description of the RFDR experiment sta
with a brief summary of the quantum rotor dynamics in t
next section. The interaction of the quantized rotor field w
the nuclear spin is discussed in Sec. III. The chemical shi
ing of the magnetic field is calculated in this section and
term in the quantized field Hamiltonian describing the dip
lar interaction is put forward. In Sec. IV, the RF pulse
included in the quantized field framework. Using the me
odology discussed in Secs. II–IV, we analyze in Sec. V
generalized RFDR sequence. In Sec. VI the polarizat
transfer driven by the dipolar recoupling sequence is d
cussed and in Sec. VII the main conclusions are given. In
appendix the transformation properties for the quantized fi
operators constituting the spin-pair dipolar term in the mu
spin Hamiltonian are evaluated.

II. QUANTUM ROTOR DYNAMICS

MAS NMR spectroscopy is generally described with t
help of a spin Hamiltonian, in which the effect of the samp

r-
6 © 2000 American Institute of Physics
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1097J. Chem. Phys., Vol. 112, No. 3, 15 January 2000 Rotor frequency-driven dipolar recoupling
rotations on the nuclear spins is taken into account by a
of periodically time dependent coefficients. The spin Ham
tonian of a single crystallite in the rotating frame can the
fore be expanded in a Fourier series according to20

ĤS~ t !5ĤS01 (
p51

2

ĤSpexp~ ip~w01v r t !!1ĤSp
†

3exp~2 ip~w01v r t !!, ~1!

in which v r is the spinning speed andĤSp the Fourier com-
ponents of the Hamiltonian. These components differ fr
crystallite to crystallite in the sample, whilew0 is a constant
initial phase that may vary between experiments.

In the quantized field description the concept of
nuclear spin Hamiltonian is extended with quantum ro
dynamics.17 The interaction of the spins with the environ
ment due to the MAS rotation is included in the Hamiltonia
by using a set of quantum rotor dynamics operatorsL̂z8 , F̂p ,
and F̂p

† , to replace the phenomenological time-depend
phase of the rotationw01v r t in Eq. ~1!.

Recently, it was shown that rotor field quantization o
fers a self-consistent framework to describe the evolution
the spin system with conservation of energy.17 The total or-
bital angular momentuml of a forced rotation of a rotor with
eigenstatesu lm& in the quasiclassical limit defined byl→`
and l 5m, corresponds with the number of boson quasip
ticles. The associated rotor field is a vector field that can
constructed using boson annihilation and creation opera

âu l &5 l 1/2u l 21&,
~2!

â†u l &5~ l 11!1/2u l 11&,

where

L̂z85â†â ~3!

measures the orbital angular momentum. The energy of
rotor is v r l , which is very large on the energy scale of t
nuclear spin system.

It was shown that a complete description of the MAS
a nuclear magnetic moment in a solid can be obtained wi
a single set of reduced angular momentum statesun&. By
taking l 5n̄1n, with n the variation of the angular momen
tum around a large average valuen̄, the orbital angular mo-
mentum states can be renumbered according to17

un̄1n&→un&. ~4!

To provide a description of the quasiclassical limit, a pha
operatorŵ8 is introduced that represents a continuous co
dinatew8 with

exp~ i ŵ8!5
â†

An̄
. ~5!

The relation between the phase operator and the angular
mentum operatorL̂z8 , is the canonical commutation relatio
according to

@ŵ8,L̂z8#5 i , ~6!

and thez axis is the axis of rotation.
Downloaded 28 Feb 2012 to 137.224.252.10. Redistribution subject to AIP 
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MAS is a rotation with a single normal frequency mod
v r . The interaction between the spin system and the sam
rotation can be interpreted in terms ofp-quantum interac-
tions with the single mode rotor field with a frequencyv r .
For ap-quantum transition, a Fourier operator is defined

F̂p5exp~ ipŵ8!. ~7!

According to Eq.~5! theFp operators are multiquantum lad
der operators withF̂pun&5un1p& and they can be inter
preted as a repeated application of single quantum rai

and lowering operators, sinceF̂p1q5F̂pF̂q .17

The commutator@ L̂z8 ,F̂p#5pF̂p implies that

exp~ iv r t L̂z8!F̂p exp~2 iv r t L̂z8!

51̂1 iv r t@ L̂z8 ,F̂p#1
~ iv r t !

2

2!
@ L̂z8 ,@ L̂z8 ,F̂p##1¯

5exp~ ipv r t !F̂p . ~8!

In the quasiclassical limit, quantization of the rotor field
therefore equivalent with the introduction of a phase opera
ŵ8 in the rotor angle frame according to Eq.~5!. A quantized
field extension of the spin Hamiltonian in Eq.~1! is then

ĤQ~ t !5ĤS01 (
p51

2

ĤSpexp~ ip~ ŵ81v r t !!1ĤSp
†

3exp~2 ip~ ŵ81v r t !!. ~9!

It includes two independent degrees of freedom,ŵ8 and t,
which contrasts with the single time degree of freedom t
is used to generate the time-dependence in the spin Ha
tonian ĤS(t) in Eq. ~1!.17 The ŵ8 degree of freedom is es
sential, to account for the infinitesimal phase variations d
to the quantum rotor dynamics, in which the rotor is d
scribed as a two dimensional harmonic oscillator or a ri
rotor.21,22

Using the relations~7! and ~8!, it is possible to rewrite
the Eq.~9!, yielding

ĤQ~ t !5exp~ iv r t L̂z8!S ĤS01 (
p51

2

ĤSpF̂p1ĤSp
† Fp

†D
3exp~2 iv r t L̂z8!. ~10!

A time-independent HamiltonianĤQ can be obtained by a
transformation to the spatial rotating frame, defined
exp(2ivrtL̂z8):

17

ĤQ5Ĥn1Ĥi1Ĥr ~11!

consisting of a term associated with the sample rotation

Ĥr5v r L̂z8 , ~12!

a pure nuclear spin Hamiltonian term independent ofFp

Ĥn5ĤS0 , ~13!

and an interaction term depending onFp andFp
†

Ĥi5 (
p51

2

ĤSpF̂p1ĤSp
† F̂p

† , ~14!
license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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1098 J. Chem. Phys., Vol. 112, No. 3, 15 January 2000 Boender, Vega, and de Groot
which describes the effect of the rotor dynamics on the s
interactions. SinceĤQ is time independent its unitary evolu
tion operator is

Û~ t !5exp~2 i ĤQt !. ~15!

The effect of the phenomenological time dependence
the spins is included by means of the time-independent
bital angular momentum ladder operatorsF̂p ,F̂p

† . These
have a physical basis and have been identified as the Fo
operators in the Floquet description of MAS NMR.17 The
ĤQ Hamiltonian operates in the product space spanned
the spin states and the~reduced! angular momentum states
The commutation relation between the Fourier operators
the orbital angular momentum operator@ L̂z8 ,F̂p#5pF̂p al-
lows for energy exchange between the rotor and the s
system. In addition, it provides a route to coherent super
sitions of states involving the quantum rotor dynamics, sin
in general@Ĥr ,Ĥi #Þ0.

III. THE INTERACTION HAMILTONIAN

The Fourier components of the spin Hamiltonian~1!,
containing chemical shift and dipolar interactions, can
expressed in terms of contractions betweenÂk , the irreduc-
ible tensor operators of rankk in real space, andT̂k , the
irreducible tensor operators of rankk in spin space.23,24In the
spin rotating frame only the part of the interactions that co
mute with the Zeeman Hamiltonian have to be taken i
account. An interaction term of the spin-Hamiltonian in t
spin rotating frame can therefore be written as

ĤS~ t !5(
k

Ak0~ t !T̂k0 . ~16!

The time dependent spatial part can be expanded in a Fo
series according to17

Ak0~ t !5 (
p52k

k

exp~ ip~v r t1w0!!Vp0
k , ~17!

with

Vp0
k 5 (

s52k

k

(
r 52k

k

Akr- Drs
k ~ac ,bc ,gc!Dsp

k ~a r ,b r ,g r !

3Dp0
k S 0,bm ,

p

4 D . ~18!

The Akr- coefficients are the elements of the spatial ten
describing the coefficients of the interaction in the princip
axis system~PAS!. In Eq. ~18! three sets of Euler angles o
the Wigner coefficientsDi j

k (a,b,g) describe the transforma
tion from the PAS to a crystal frame (ac ,bc ,gc), from this
crystal frame to the rotor angle frame (a r ,b r ,g r), and fi-
nally from the rotor angle frame to the laboratory fram
(0,bm ,p/4).23

The tensor operators in spin space can be written as

T̂k05W00
k Î 0 ~19!
Downloaded 28 Feb 2012 to 137.224.252.10. Redistribution subject to AIP 
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in which W00
k are some coefficients andÎ 0 spin operators

commuting with Î z . The quantized field Hamiltonian be
comes then

ĤQ~ t !5Z00
k Î 01 (

p51

k

Zp0
k Î 0 exp~ ip~ ŵ81v r t !

1Zp0
k* Î 0 exp~2 ip~ ŵ81v r t ! ~20!

with

Zp0
k 5Vp0

k W00
k ~21!

and the fact that the Hamiltonian is Hermitian requires t
Z2p05Zp0* . After the transformation to the spatial rotatin
frame the interaction Hamiltonian in Eq.~14! yields

Hi5 (
p51

k

~Zp0
k F̂p1Zp0

k* F̂p
†! Î 0 . ~22!

Here we have used again the Fourier operators to include
quantum rotor dynamics, according to Eq.~7!.

For a dipolar coupled spin system of like spins und
MAS, the Hamiltonian consists of a chemical shift term a
a dipolar term. Thus the nuclear spin Hamiltonian and
interaction Hamiltonian can be written as

Ĥn5Ĥn
CS1Ĥn

D ,
~23!

Ĥi5Ĥi
CS1Ĥi

D .

With the external magnetic field along thez axis, the spin
tensor operators in the truncated isotropic chemical s
(k50) and chemical shift anisotropy~CSA! (k52) Hamil-
tonian in Eq.~16! are for a spini23

T̂00
i 52

1

A3
gH0Î z

i ,

~24!

T̂20
i 5A2

3
gH0Î z

i .

The spatial isotropic chemical shift tensor is of rank 0 with
single elementA00- 5Āi . The CSA interaction is a real sym
metric tensor interactions of rank 2 and the three elemen
that characterize this tensor in its principal axis system
for a spini

A20- 5A3

2
d i ,

~25!

A262- 5
1

2
hd i ,

with Āi5s̄ i5A1/3(sxx
i 1syy

i 1szz
i ) the isotropic andd i

51/3(szz
i 2s̄ i) the anisotropy parameter andh i5(syy

i

2sxx
i )/d i the asymmetry parameter of the interaction.25 The

values of these parameters can be inserted in Eq.~18! to
evaluate theVpq

k parameters, yielding
license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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1099J. Chem. Phys., Vol. 112, No. 3, 15 January 2000 Rotor frequency-driven dipolar recoupling
Vp0
2i 5dp0

2 ~bm!exp~ ig rp! (
s522

2

~dsp
2 ~b r !exp~ i ~a r1gc

i !s!

3~d0s
2 ~bc

i !A 3
2d

i1$exp~ i2ac
i !d2s

2 ~bc
i !

1exp~2 i2ac
i !d22s

2 ~bc
i !% 1

2h
id i !! ~26!

with V00
2i 50, since for MASd00

2 (bm)50.
Using Eqs.~19! and~22!, the chemical shift contribution

to the interaction Hamiltonian can be constructed and yie

Ĥi
CS5(

i 51

N

(
p51

2

~Zp
i F̂p1Zp

i* Fp
†! Î z

i , ~27!

with Zp
i 5(Zp0

2 ) i and

Zp
i 5A2

3
gH0Vp0

2i . ~28!

The isotropic part is not affected by the spinning and yie
a contribution to the pure nuclear spin term

Ĥn
CS5(

i 51

N

Dv̄ i Î z
i , ~29!

with Dv̄ i52gH01/3(sxx
i 1syy

i 1szz
i ).

The spin space tensor operator for the dipolar interac
between a pair of spins (i , j ) is

T̂20
i j 52A1

6
2g2\~2Î z

i Î z
j 2 1

2~ Î 1
i Î 2

j 1 Î 1
i Î 2

j !!. ~30!

The components of the spatial tensorVp0
2i j for the spin pair

interaction can be obtained from Eq.~26! with d i substituted
by

d i j 52
m0

2p

g2\

r i j
3 ,

and h i substituted byh i j 50. Thus the dipolar term in the
interaction Hamiltonian is a quantized field contribution th
is bilinear in the spin operators,

Ĥi
D5(

i , j
(
p51

2

~Zp
i j F̂p1Zp

i j * F̂p
†!~2Î z

i Î z
j 2 1

2~ Î 1
i Î 2

j 1 Î 1
i Î 2

j !!

~31!

with the summation over all spin pairsi , j .
Here, withZp

i j 5(Zp0
2 ) i j ,

Zp
i j 52

Cp
i j

r i j
3 ~32!

and

Cp
i j 5

m0

4p
g2\dp0

2 ~bm!exp~ ig rp! (
s522

2

dsp
2 ~b r !

3exp~ i ~a r1gc
i j !s!d0s

2 ~bc
i j ! ~33!

with bc
i j andgc

i j the polar angles of the dipolar vector in th
crystal frame.

Since the dipolar interaction is traceless, the contribut
to the pure nuclear term due to the dipolar interaction
Downloaded 28 Feb 2012 to 137.224.252.10. Redistribution subject to AIP 
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D50. According to Eq.~11! the time independent quan

tized field MAS HamiltonianĤQ of the coupled spin system
is the sum of Eqs.~27!, ~29!, ~31!, and~12!.

IV. RADIO FREQUENCY PULSES

An on-resonance RF field contributes to the spatial
tating frame Hamiltonian a nuclear spin Hamiltonian term
the form:

ĤRF5v1~ Î x cosf1 Î y sinf!. ~34!

The v1 is the nutation frequency andf is the RF phase in
the rotating frame.23 The ĤRF operates only on the spin pa
of the spin system and is independent of the sample spinn
If the intensity of a short RF pulse is sufficiently strong th
it is possible to neglect all the other terms in the Hamilton
containing spin operators. During a pulse the effect of
rotor should be considered to account for refocusing err
and to achieve stable effective dipolar recoupling.26 The re-
maining terms in the quantized field Hamiltonian are then

ĤQ
RF5ĤRF1Ĥr . ~35!

The ĤQ
RF is time-independent and its evolution operator

the end of a pulse of lengthtp becomes

Û~tp!5exp~2 i ~ĤRF1Ĥr !tp!. ~36!

However, in the limit of an extremely short pulsetp→0,
while u5v1tp is kept constant, also the rotor dynamics du
ing the pulse can be neglected and a pulse evolution ope
can be defined as

P̂~u!5expS 2 i(
i 51

N

u~ Î x
i cosf1 Î y

i sinf!D , ~37!

affecting only the spin-operational part of the sp
system.27,28

During an interval of lengthtm between such pulses
P̂m21 and P̂m , in a multi-pulse experiment the spin syste
is governed by the time independent quantized field Ham
tonianĤQ and the evolution of the spin system in this peri
is described by the evolution operatorÛ(tm)5exp
(2iĤQtm). The overall evolution operator for a pulse s
quence ofM equally spaced pulses during a time oftc is

UC ~tc!5 )
m51

M

P̂mÛ~tm!, ~38!

with

tc[ (
m51

M

tm . ~39!

Schematic representations of such pulse sequences
shown in Fig. 1.

A product of unitary transformations is again a unita
transformation and it should be possible to express the en
sequence in terms of an average quantized field Hamilton

Ĥ̄Q according to

UC ~tc!5exp~2 iHC Qtc!, ~40!
license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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as for spin-Hamiltonians.29 The evaluation of this averag
Hamiltonian must be accomplished by using average Ha
tonian theory in the quantized field representation. This
discussed in the following section.

V. ROTOR FREQUENCY-DRIVEN DIPOLAR
RECOUPLING

The RFDR sequence was analyzed previously using
erage Hamiltonian theory and Floquet theory.5,30,31It utilizes
a train of rotor-synchronizedp-pulses to invoke the dipola
recoupling. In the original version one pulse per rotor per
is used, with a time window between the pulsestw5t r , with
t r the length of one rotor period. Here a generalization
RFDR is discussed that was first introduced in Ref. 19
fixed number of rotor periods per pulsenw is used andtw

5nwt r is the time window between the pulses.19,26 In this
paper we restrict ourselves to evennw values and one RFDR

cycle contains two pulses@ 1
2tw2 P̂1(p)2tw2 P̂2(p)

2 1
2tw# in a cycle time oftc52tw . The sequence allows fo

narrow band RFDR and its frequency selectivity has b
discussed recently in Ref. 26. When the pulses are cycli
the sensePm51

p P̂1P̂251̂, the expression for the average
quantized field Hamiltonian can be found by transformi
ĤQ to the ‘‘toggling frame,’’ were the RF pulses ar
eliminated.27,28This implies that the evolution operator in th
spatial rotating frame and the toggling frame are the sam
the end of each RFDR cycle.

The basis RFDR pulse cycle can be divided into th
periods 0<t< 1

2tw , 1
2tw<t< 3

2tw , and 3
2tw<t<2tw . The

effect of such a cycle on an ensemble ofN dipolar coupled
like spins can be evaluated using the quantized field form
ism in the toggling interaction frame of the chemical sh
and the sample spinning. If theĤQ is divided according to
ĤQ5Ĥ01Ĥ1 , with

Ĥ05Ĥn
CS1Ĥi

CS1Ĥr ,
~41!Ĥ15Ĥi

D ,

the toggling frame Hamiltonian becomes

FIG. 1. Schematic representation of the generalized RFDR sequence
~A! tw5t r and~B! tw52t r . The sequences start with ramped cross po
ization. The magnetization is rotated to thez axis and the recoupling se
quence is applied. Prior to detection the polarization is transferred to thxy
plane.
Downloaded 28 Feb 2012 to 137.224.252.10. Redistribution subject to AIP 
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Ĥ̃05H Ĥn
CS1Ĥi

CS1Ĥr , 0,t, 1
2tw ,

2Ĥn
CS2Ĥi

CS1Ĥr , 1
2tw,t, 3

2tw ,

Ĥn
CS1Ĥi

CS1Ĥr , 3
2tw,t,2tw,

~42!
Ĥ̃15Ĥi

D

where we assumed infinitely shortp-pulses.
The evolution operator can be written in the togglin

frame asÛ̃(t)5 Û̃0(t) Û̃1(t), with Û̃1(t) governed by the
equation of motion

dÛ̃1~ t !

dt
1 i Ĥ̃int~ t !Û̃1~ t !50, ~43!

with

U0~ t !5exp~2 i Ĥ̃0t ! ~44!

and

Ĥ̃int~ t !5 Û̃0
21~ t !Ĥ̃1Û̃0~ t !, ~45!

the Hamiltonian in the interaction frame ofĤ̃0 .25

The evolution operatorÛ̃1(t) in this interaction frame at

t52tw becomes equal to the toggling frameÛ̃(2tw) when

Û̃0(2tw)51̂. This equality can easily be shown by the fo
lowing calculation and implies that the spin evolution in t
original spatial rotating frame is governed byÛ(2tw)

5 Û̃1(2tw). The HamiltonianĤ̃0 in Eq. ~42! contains three
terms. The isotropic chemical shift term, proportional toHn

CS

in Eq. ~29!, the CSA interaction terms, equal to6Ĥi
CS de-

fined in Eq.~27!, and the rotor termHr . The first term com-
mutes with the additional terms and its evolution operato
one at 2tw . Thus the evolution operator in Eq.~44! only
depends on the two remaining and noncommuting terms

Û̃0~2tw!5exp~2 i /2~Ĥi
CS1Ĥr !tw!exp~2 i ~2Ĥi

CS

1Ĥr !tw!exp~2 i /2~Ĥi
CS1Ĥr !tw!. ~46!

To show that this operator equals one we use the follow
diagonalization conditions:

Ĥi
CS1Ĥr5D̂21Ĥr D̂,

~47!
2Ĥi

CS1Ĥr5D̂Ĥr D̂
21

which are derived in Appendix A. Insertion of these equ
tions into Eq.~46! and using that exp(iĤrtw)51̂ results in a

periodic Û̃0(t) operator with

Û̃0~2tw!5D̂ exp~2 i /2Ĥrtw!D̂21D̂21

3exp~2 i Ĥrtw!D̂D̂ exp~2 i /2Ĥrtw!D̂2151̂ .

~48!

Thus the CSA interaction is refocused at the end of a RF
cycle, as is well known for twop-pulses that are separate
by an integer multiple of rotor periodstw5nwtc .

ith
-
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It is now possible to use the interaction Hamiltonian
Eq. ~45! for the evaluation of the average RFDR Ham
tonian. The quantized interaction Hamiltonian is time dep
dent and is not anymore defined in the spatial rotating fra

This is due to the fact that the transformation operatorÛ̃0(t)
contains the rotor Hamiltonian termĤr . However, because
we are only interested in the spin response at the end o

RFDR cycles andÛ̃0(t) is periodic, the time independen
average Hamiltonian can be considered as being define
the spatial rotating frame. We will restrict ourselves to t
calculation of the zero order average Hamiltonian assum

that 2twi Ĥ̃inti!1.

VI. THE ZERO ORDER AVERAGE RFDR
HAMILTONIAN

The zero order average RFDR Hamiltonian of a hom
nuclear spin pair (i , j ), evolving with the isotropic and an
isotropic chemical shift interactions of both spins defined
Eqs.~27! and ~29!, equals

Ĥ̄Q5
1

2tw
E

0

2twĤ̃int dt5
1

2tw
E

0

2tw
Û̃0

21~ t !Ĥ̃1Û̃0~ t !dt

~49!

with the two-spin dipolar interaction Hamiltonian in Eq
~31!. Simplifying the expressions by defining the operato

Ûr~ t !5exp~2 i Ĥr t !,
~50!

Ûn
CS~ t !5expS 2 i(

i 51

2

Dv̄ i Î z
i t D

and using the diagonalization operatorsD̂5D̂ i D̂ j of the two
spins, the integral of the average Hamiltonian can be writ
as

Ĥ̄Q5
1

2tw
E

21/2tw

1/2tw
dt Ûn

CS21
~ t !

3$D̂Ûr~ t !D̂21%Ĥ1$D̂Ûr
21~ t !D̂21%Ûn

CS~ t !

1Ûn
CS~ t !$D̂21Ûr~ t !D̂%Ĥ1

3$D21Ûr
21~ t !D̂%U0

21~ t !. ~51!

Here we used the fact that during the three time intervals
the RDFR cycle the Hamiltonians are time independent
the appendix the integral in Eq.~51! is calculated by expand
ing the diagonalization operator. The result yields an exp

sion for Ĥ̄Q of the form:

Ĥ̄Q52(
i , j

S di j
0 1 (

k51

`

di j
k F̂k1di j

k* F̂k
†D 1

2~ Î 1
i Î 2

j 1 Î 2
i Î 1

j !

52(
i , j

S di j
0 1 (

k51

`

di j
k F̂k1di j

k* F̂k
†D ~ Î x

i Î x
j 1 Î y

i Î y
j !, ~52!

with

di j
k 5

1

r i j
3 (

n52`

`

Mkn
i j sincS 2nw~Dv̄ i2Dv̄ j2nv r !

v r
D ~53!
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Mkn
i j 52 (

p522

2

Cp
i j ~Kn1k

i j Kn1p
i j * 1Kn2k

i j * Kn2p
i j ! ~54!

with

Km
i j 5 (

k52`

`

JkS 2
uZ2

i 2Z2
j u

v r
D Jm22kS 22

uZ1
i 2Z1

j u
v r

D
3exp~ i ~m22k!f1

i j 1 ikf2
i j !, ~55!

whereCp
i j is given by Eq.~33! and Zp

i j in Eq. ~32!. In Eq.
~52! a summation over all spin pairs in a coupled hom
nuclear spin system is added. TheHC Q can induce polariza-
tion transfer between the nuclei.5 The rate of transfer
strongly depends on the internuclear distancedi j

k }1/r i j
3 , ac-

cording to Eq.~53!. This provides the selectivity necessa
for correlation spectroscopy in isotope enriched solids.

Introducing the deviation from the rotational resonan
condition by the off-rotational resonance valuedv̄ i j

n 5(Dv̄ i

2Dv̄ j2nv r), we see that the sinc-function in Eq.~53! has a
maximum at every rotational resonance conditiondv̄ i j

n 50,
including then50 rotational resonance condition. Fordv̄ i j

n

Þ0 the sinc-function decreases and can become zero f
certain value. If we define the bandwidth of the RFDR as
difference between the two zero points around the maxim
value, the bandwidth is19

Bw5
v r

nw
. ~56!

This implies that the bandwidth can be narrowed by incre
ing the number of rotor periods per pulse. In the limit
large windows between the pulses (nw→`) this bandwidth
goes to zero. In this case only at the rotational resona
condition the zero order average Hamiltonian recovers
dipolar interaction. With addingp-pulses according to the
extended RFDR scheme, the rotational resonance cond
becomes broader and spectral selectivity can be conside
In this way, the rotor frequency drives the transfer in RFD
and not the radio frequency.

In Eq. ~53! also then50 rotational resonance is in
cluded. This implies that also for small isotropic shift diffe
ences the dipolar interaction can be recovered. In the e
treatment of the RFDR, this possibility for efficient transf
with small isotropic shift differences has been overlooke
since the shift anisotropy was generally excluded from
earlier analytical treatments. In contrast, in our quantiz
field analysis the chemical shift anisotropy is included and
embedded in theKm

i j in Eq. ~55!. This theoretical outcome is
experimentally confirmed, because efficient transfer aro
n50 has been observed in chlorophylls.14,16 It can be con-
cluded that RFDR is considerably more broadband th
originally thought.

VI. POLARIZATION TRANSFER

In Eq. ~52! the quantized field average Hamiltonian
given for the RFDR cycle. This Hamiltonian can be used
describe the evolution of the spin system afternm cycles via
the evolution operator
license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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UC ~tm!5@exp~2 i2HC Qtw!#nm5exp~2 iHC Qtm!, ~57!

with tm52nmtw . This propagator promotes polarizatio
transfer from nucleusi to nucleusj. Within the multi-spin
formalism presented here, multiple pathways are implic
covered, since the polarization transfer can be direct

i→
HC Q

j ,

or can be relayed, e.g.,

i→
HC Q

k→
HC Q

j .

The discrimination between direct and relayed transfer
attracted considerable attention in recent years.32 In a general
treatment, the evolution of the spin system and the transfe
polarization can be described in terms of the evolution of
density operator

r̂~tm!5UC ~tm!r̂~0!UC 21~tm!. ~58!

The density operator in the quantized field representa
describes the combination of rotor and spin system. T
approach is very demanding, because the total proces
creation and annihilation of particles via the Fourier ope
tors in combination with the multiple spin processes has
be taken into account. Therefore, to simplify matters
project the quantized Hamiltonian onto an average s
Hamiltonian HC S via a ‘‘dequantization’’ of the phase:F̂k

5exp(ikŵ8)→exp(ikw0). This is justified in the simple cas
we intend to consider, provided we are in the limit of a lar
number of rotor quanta. The average Hamiltonian in Eq.~52!
becomes then

HC S52(
i , j

d̄i j ~ Î x
i Î x

j 1 Î y
i Î y

j !, ~59!

with

d̄i j 5S di j
0 1 (

k51

`

di j
k exp~ ikw0!1di j

k* exp~2 ikw0!D . ~60!

If we restrict ourselves to a two spin system then we av
relayed polarization transfer. A convenient way of describ
a two-spin system is using the single-transition operators33,34

I z
235 1

2~ Î z
12 Î z

2!,

I x
235~ Î x

1Î x
21 Î y

1Î y
2!, ~62!

I y
235~ Î y

1Î x
22 Î x

1Î y
2!.

The average Hamiltonian in Eq.~59! can be expressed i
those operators, according to

HC S52(
i , j

d̄i j Î x
23. ~63!

If the spin density operator at the beginning of the RFD
period is

r̂~0!5~ Î z
12 Î z

2!52I z
23, ~64!
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the average Hamiltonian will lead to rotation in thezy plane
around thex axis of this space of single-transition operato
according to

r̂~tm!5~2Î z
23cos~ d̄12tm!12Î y

23sin~ d̄12tm! ~65!

which is consistent with earlier findings.5,31 However, ind̄i j

also the CSA and the narrow band RFDR sequence are t
into account. This implies that by measuringd̄i j as a function
of the nw in principle not only information can be deduce
about the internuclear distance, but also about the rela
orientation of the CSA tensors of the two sites.35

This is illustrated in Fig. 2 with simulations of a RFDR
experiment on two13C spins resonating with a Larmor fre
quency of 125.7 MHz and separated by;1.4 Å with a small
isotropic shift difference of 14 ppm, corresponding with 1.
kHz. The orientation of the PAS of the CSA for the seco
spin is defined with respect to the PAS of the CSA of the fi
spin and changed by varying the Euler angle 0<b<180. For
b50 the two tensors are aligned and the dipolar vecto
along the axis corresponding with the largest principle co
ponent of the spin 1. The points are evaluated at three
ferent spinning speedsn r5v r /2p assuming an initial condi-
tion for the density matrix̂ 2Î z

1& and calculating thê2Î z
2&

after a constant mixing timetm52.66 ms.
At a low speedn r56 kHz we calculate efficient transfe

for nw51 with ^2Î z
2& approaching the maximum of;0.5

over a broad range and it depends on the value ofb. The
transfer efficiency drops fornw52 and the angular depen
dence is enhanced. The narrow band character of the RF
is nicely illustrated for nw54. Here the bandwidth is
Bw/2p51.5 kHz, less than the isotropic shift differenc
(Dv̄12Dv̄2)/2p51.76 kHz and thê 2Î z

2&;0.1, much less
than for thenw51 andnw52 at the same spinning spee
This reflects the decrease of the bandwidth for increas
nw .

With a spinning speed of 12 kHz, we calculate again
considerable dependence of the transfer efficiency on
angle b, which is most pronounced aroundb530° and
b5150°. The ^2Î z

2& goes through a maximum aroun
b590°. The relative variation of the transfer withb is stron-
gest fornw54. The^2Î z

2& peaks aroundb590° and it almost
vanishes forb50° or b5180°. These calculations sugge
new and interesting possibilities for collecting angular info
mation by measuring the transfer rate for differentnw , using
the generalized RFDR treatment discussed here for
analysis. At 24 kHz, the transfer characteristics chan
again. At the high speed of 24 kHz also for thenw54 the
Bw/2p56 kHz is sufficient to cover the isotropic shift dif
ference of 1.76 kHz. In addition, the spinning speed of
kHz is sufficient to attenuate the CSA’s, sinced1/2p
5211.3 kHz andd2/2p5211.7 kHz. TheMkn

i j in Eq. ~54!
depend on the spinning speed. They vanish in the limit
v r→`. Therefore the transfer is less efficient at high spe
with ^2Î z

2& below 0.2 forv r524 kHz. This illustrates that
close to then50 rotational resonance condition the presen
of a dipolar interaction alone is insuffient for polarizatio
transfer and that there is a prominent effect of the CSA
the transfer efficiency via theMkn

i j .
license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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VII. CONCLUDING REMARKS

We have shown that the quantized field description
be used to analyze pulse sequences including MAS o
multiple spin system. It is demonstrated that the quanti

FIG. 2. Examples of magnetization transfer within a dipolar coupled s
pair. The calculations are performed for two spins separated by 14 ppm
resonating at 125.7 MHz. A set of parameters was used that correspo
the CSA’s that can be observed, e.g., aromatic or ethylenic carbons: fo
first spin an anisotropyd15290 ppm was used with an asymmetry param
eter h50.41, while d25293 ppm with h50.73. In the evaluation of the
signalsw050 and 300 orientations are taken for each point. The rela
orientation of the tensors is defined by the Euler angles for the second
(ac

2,bc
2,gc

2), following Eq. ~26!. In this calculationac
25gc

250 and bc
2

5b0 is varied. The Euler angles for the transformation of the PAS of
first spin and for the transformation of the dipolar frame to the crystal fra
according to Eq.~33! are taken zero. This corresponds with an orientation
the dipolar vector parallel to the most shielded direction of the first spinI z

1.
The powder integration is performed over (a r ,b r ,g r). The points are
evaluated aftertmix52.66 msec by assuming an initial condition for th
density matrix 2I z

1 and following the magnitude of̂2I z
2&. The maximum

value we can expect iŝ2I z
2&;0.5 in a powder.XY8 phase cycling was used

for the full RFDR~nw51, squares!, XY4 for nw52 ~diamonds!, andXX̄ for
nw54 ~circles!.
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field approach, from which the Floquet approach can be
rived, can be combined with average Hamiltonian theory.
the earlier Floquet treatment of the RFDR, an effect
Hamiltonian was formulated, with the pulses included in t
sequence.30 In the quantized field formalism the effect of th
MAS rotation and the rotation itself are disentangled and
resulting time-independent Hamiltonian can be treated in
average Hamiltonian formalism by adding the pulses af
wards. In this way average Hamiltonian theory and Floq
theory are fully compatible, since average Hamiltoni
theory can be applied to the time dependent quantized fi
Hamiltonian in the toggling frame.

The HC Q in Eq. ~52! induces polarization transfer be
tween nuclei in a multiple spin system.5 The probability of
transfer strongly depends on the internuclear distanced i j

k

}1/r 3 and this makes correlation spectroscopy in isotope
riched solids possible. The probability of polarization tran
fer has a maximum at every rotational resonance condi
s̄ i2s̄ j5nv r . Since the CSA is embedded in theKm

i j also
the n50 rotational resonance condition is included.

According to our treatment, the driving force in bo
RFDR and rotational resonance is the rotor frequency
not the radio frequency. This suggests that a physically m
appropriate expansion of the RFDR abbreviation would
‘‘rotor frequency-driven dipolar recoupling.’’ The RFDR
bandwidth can be changed by changing the window betw
the p-pulses. This additional variable can be used to obt
information about relative orientation of the CSA tensors
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APPENDIX

In this appendix the expression for the zero order av
age Hamiltonian in Eq.~52! is derived. To do so the inter
action Hamiltonian of a two-spin system must be calcula
by applying the transformation of Eq.~45!:

Ĥ̃int~ t !5 Û̃0
21~ t !Ĥ̃1Û̃0~ t !. ~A1!

The transformation operator is defined by the sum of
isotropic chemical shift Hamiltonians

Ĥ̃n
CS~ t !

5H 1/2~Dv̄ i2Dv̄ j !~ I z
i 2I z

j !, 0,t,1/2tw ,

21/2~Dv̄ i2D j !~ I z
i 2I z

j !, 1/2tw,t,3/2tw ,

1/2~Dv̄ i2Dv̄ j !~ I z
i 2I z

j !, 3/2tw,t,2tw,

~A2!

and the CSA interaction term plus the rotor Hamiltonian

n
nd
to

he

e
in

e
e
f
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Ĥ̃i
CS~ t !1Ĥr

55
(

k5 i , j
(
p51

2

~Zp
kF̂p1Zp

k* F̂p
†!I z

k1Ĥr , 0,t,1/2tw ,

2 (
k5 i , j

(
p51

2

~Zp
kF̂p1Zp

k* F̂p
†!I z

i 1Ĥr ,

1/2tw,t,3/2tw ,

(
k5 i , j

(
p51

2

~Zp
kF̂p1Zp

k* F̂p
†!I z

i 1Ĥr , 3/2tw,t,2tw,

~A3!

as

Û̃0~ t !5Ûn
CS~ t !Û i

CS~ t !, ~A4!

with

Ûn
CS~ t !5expS 2 i E

0

t

Ĥ̃n
CS~t!dt D ,

~A5!

Û i
CS~ t !5expS 2 i E

0

t

~ Ĥ̃i
CS~t!1Ĥr !dt D .
e

th
th

ng

rs

to
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The dipolar interaction Hamiltonian from Eq.~31! has the
form

Ĥ̃i5~Zp
i j F̂p1Zp

i j * F̂p
†!~2Î z

i Î z
j 21/2~ Î i

1 Î j
21 Î i

2 Î j
1!!. ~A6!

The HamiltoniansĤ̃n
CS(t) and Ĥ̃i

CS(t)1Ĥr commute and so

do Ûn
CS(t) andÛ i

CS(t). In addition, theĤ̃i
CS(t)1Ĥr is block

diagonal and can be diagonalized according to Refs. 33
36 with (k5 i , j ),

(
p51

2

~Zp
kF̂p1Zp

k* F̂p
†! Î z

k1Ĥr5D̂kĤr D̂k
21,

~A7!

(
p51

2

2~Zp
kF̂p1Zp

k* F̂p
†! Î z

k1Ĥr5D̂k
21Ĥr D̂k

with

D̂k5expH 2 (
p51

2 S Zp
k

pv r
F̂p2

Zp
k*

pv r
F̂p

†D Î z
kJ . ~A8!

Insertion of these results into Eq.~A1!, defining D̂5D̂ i D̂ j

with @D̂ i ,D̂ j #50 and using@Ûn
CS(t),Û i

CS(t)#50 we get
Ĥ̃int~ t !5H Ûn
CS~ t !D̂Ûr~ t !D̂21Ĥ1D̂Ûr

21~ t !D̂21Ûn
CS21~ t !,

Ûn
CS21~ t2tw!D̂21Ûr~ t2tw!D̂Ĥ1D̂21Ûr

21~ t2tw!D̂Ûn
CS~ t2tw!,

Ûn
CS~ t22tw!D̂Ûr~ t22tw!D̂21Ĥ1D̂Ûr

21~ t22tw!D̂21Ûn
CS~ t22tw!,

~A9!
-

respectively, for the three time intervals, where we assum
that nw is even intw5nwt r , and Ûr(1/2tw)51̂. When we
change the variables of integration and take into account
the Hamiltonians are constant during each time interval,
average Hamiltonian can be rewritten as

Ĥ̄Q5
1

2tw
E

21/2tw

1/2tw

$Ûn
CS~ t !D̂Ûr~ t !D̂21Ĥ1D̂Ûr

21~ t !

3D̂21Ûn
CS21~ t !1Ûn

CS21~ t !D̂21Ûr~ t !

3D̂Ĥ1D̂21Ûr
21~ t !D̂Ûn

CS~ t !%dt. ~A10!

To evaluate this integral we must consider the followi
computational steps:~a! calculation of Â5D̂21Ĥ1D̂ and
Â85D̂Ĥ1D̂21 by expanding the diagonalization operato
~b! application of the rotor operatorÂ(t)5Ûr(t)ÂÛr

21 and
Â8(t)5Ûr(t)Â8Ûr

21(t); ~c! transformation of Â(t) and
Â8(t) to B̂(t)5D̂Â(t)D̂21 and B̂8(t)5D̂21Â8(t)D̂;
~d! and application of the isotropic chemical shift opera
Ĉ(t)5Ûn

CS(t)B̂(t)Ûn
CS21 and Ĉ8(t)5Ûn

CS21B̂8(t)Ûn
CS(t).

To perform the first step we calculate theD-transformations
of the terms ofĤ1 :

D̂F̂pÎ z
i Î z

j D̂215F̂pÎ z
i Î z

j ,

D̂21F̂pÎ z
i Î z

j D̂5F̂pÎ z
i Î z

j , ~A11!
d

at
e

;

r

D̂F̂pÎ 1
i Î 2

j D̂215D̂i j F̂ pÎ 1
i Î 2

j ,

D̂21F̂pÎ 1
i Î j D̂5D̂i j 21F̂pÎ 1

i Î 2
j

with

D i j 5expH 2 (
p51

2 S Zp
i 2Zp

j

pv r
2

Zp
i* 2Zp

j*

pv r
D J ~A12!

and D̂i j 5D̂j i 21 and D̂i j 15D̂i j 21. This exponent can be ex
panded in a Fourier series usingZp

i 2Zp
j 5uZp

i

2Zp
j uexp(ifp

ij):

D̂i j 5 )
p51

2

(
m50

`

(
n50

`
1

n! S 2
Zp

i 2Zp
j

pv r
F̂pD n 1

m!

3S 2
Zp

i* 2Zp
j*

pv r
F̂2pD m

5 )
p51

2

(
m50

`

(
l 52m

`
1

m!

1

~m1 l !!

3S 2
Zp

i 2Zp
j

pv r
D m1 lS Zp

i* 2Zp
j*

pv r
D m

F̂lp

5 )
p51

2

(
m50

`

(
l 52`

`
1

m!

~21!m

G~m1 l 11!
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3S 2
uZp

i 2Zp
j u

pv r
D 2m1 l

exp~ i l fp
i j !F̂ lp

5 (
k52`

`

(
l 52`

`

JkS 22
uZ2

i 2Z2
j u

2v r
D Jl

3S 22
uZl

i2Zl
j u

v r
Dexp~ i l f1

i j 1 ikf2
i j !F̂ l 12k

5 (
m52`

`

Km
i j F̂m ~A13!

with

Km
i j 5 (

k52`

`

JkS 2
uZ2

i 2Z2
j u

v r
D Jm22kS 22

uZ1
i 2Z1

j u
v r

D
3exp~ i ~m22k!f1

i j 1 ikf2
i j ! ~A14!

andJk(x) thekth order Bessel function ofx. Thus in step~a!
the transformation results in

Â5 (
p51

2 H 2~Zp
i j Fp1Zp

i j * Fp
†!I z

i I z
j 21/2

3 (
m52`

`

~~Zp
i j Km

i j Fm1p1Zp
i j * Km

i j Fm2p!I i
1I j

2

1~Zp
i j K2m

i j * Fm1p1Zp
i j * K2m

i j * Fm2p!I i
2I j

1!J ,

~A15!

Â85 (
p51

2 H 2~Zp
i j Fp1Zp

i j * Fp
†!I z

i I z
j 21/2

3 (
m52`

`

~~Zp
i j K2m

i j * Fm1p1Zp
i j * K2m

i j * Fm2p!I i
1I j

2

1~Zp
i j Km

i j Fm1p1Zp
i j * Km

i j Fm2p!I i
2I j

1!J .

In the next step~b! we use the fact that

Ur~ t !FpUr
21~ t !5Fp exp~2 ipv r t !,

~A16!
Ur

21~ t !FpUr~ t !5Fp exp~ ipv r t !

and replace allFp in Eq. ~A15! by Fp exp(2ipvr) and
Fp exp(ipvr) to obtainA(t) andA8(t), respectively. In step
~c! an additionalD-transformation must be performed. Th
results for B(t) and B8(t), obtained again by using Eqs
~11!–~13!, are cumbersome and are therefore not sho
here. Their coefficients ofI z

i I z
j andI 6

i I 6
j contain multiples of

theK-parameters. In the last step the isotropic chemical s
Hamiltonian is applied to the bilinear spin operators

Un
CS61~ t !I z

i I z
j Un

CS715I z
i I z

j ,

Un
CS61~ t !I 1

i I 2
j Un

CS715I 1
i I 2

j exp~7~Dv i2Dv j !t !,
~A17!

Un
CS61~ t !I 2

i I 1
j Un

CS715I 2
i I 1

j exp~6~Dv i2Dv j !t !
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in order to obtain expressions forC(t) andC8(t) from B(t)
andB8(t). Insertion of the results of these calculations in E
~A10! yields for the zero order average Hamiltonian the f
lowing:

Ĥ̄Q52
1

4tw
(
i , j

(
p522

2

Zp
i j (

k,n52`

` S Kk
i j Kn1p

i j * F̂k2nÎ 1
i Î 2

j

3E
2

1
2tw

1
2tw exp~ i ~Dv̄ i2Dv̄ j2nv r !t !dt

1K2k
i j * Kn2p

i j F̂k1nÎ 1
j Î 2

i E
2

1
2tw

1
2tw exp~ i ~Dv̄ j2Dv̄ i

1nv r !t !dt1K2k
i j * Kn2p

i j F̂k1nÎ 1
i Î 2

j E
2

1
2tw

1
2tw exp~ i ~Dv̄ j

2Dv̄ i1nv r !t !dt1Kk
i j Kn1p

i j * F̂k2nÎ 1
j Î 2

i E
2

1
2tw

1
2tw

3exp~ i ~Dv̄ i2Dv̄ j2nv r !t !dtD ~A18!

and the actual integration gives Eqs.~52! and ~53!. This
Hamiltonian has only a (I x

i I x
j 1I y

i I y
j )51/2(I 1

i I 2
j 1I 2

i I 1
j )

term, since the integral of theI z
i I z

j coefficient, containing
only terms of exponents exp(6ipvrt) is zero whentw is a
multiple of the rotor periodt r .
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