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Quantized field description of rotor frequency-driven dipolar recoupling
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A formalized many-particle nonrelativistic classical quantized field interpretation of magic angle
spinning (MAS) nuclear magnetic resonan¢BMR) radio frequency-driven dipolar recoupling
(RFDR) is presented. A distinction is made between the MAS spin Hamiltonian and the associated
guantized field Hamiltonian. The interactions for a multispin system under MAS conditions are
described in the rotor angle frame using quantum rotor dynamics. In this quasiclassical theoretical
framework, the chemical shift, the dipolar interaction, and radio frequency terms of the Hamiltonian
are derived. The effect of a generalized RFDR trainmopulses on a coupled spin system is
evaluated by creating a quantized field average dipolar-Hamiltonian formalism in the interaction
frame of the chemical shift and the sample spinning. This derivation shows the analogy between the
Hamiltonian in the quantized field and the normal rotating frame representation. The magnitude of
this Hamiltonian peaks around the rotational resonance conditions and has a width depending on the
number of rotor periods between thepulses. Its interaction strength can be very significant at the
n=0 condition, when the chemical shift anisotropies of the interacting spins are of the order of their
isotropic chemical shift differences. @000 American Institute of Physics.

[S0021-9606)0)03203-7

I. INTRODUCTION Floguet description of MAS/8 This makes it possible to
) L i disentangle the influence of the radiation field and the MAS
Magic angle spmnmg(MAS) nucleqr magnet'9 réso- - rotation, leading to the construction of a Floquet Hamiltonian
nance(NMR) correlation spectroscopy in conjunction with for the MAS NMR from first principles. Here it will be

multispin isotope enrichment has been established recen%;hown that the quantized field description can be combined

as a novel concept for refinement of electronic and spati ith the average Hamiltonian approach in order to provide
structure in solid$:? This development was triggered by the us with a quasiclassical description of RFDR experiments
discovery of broadbanded pulse sequences for homonucle%th a variable number of rotor periods between the
dipolar recoupling—** In principle, MAS averages dipolar o9

interactions'>*® Using dipolar recoupling techniques, homo- P ;

. . . 5 g .
multispin clusters can be assignédIn addition, since the 0 clear spin is discussed in Sec. IIl. The chemical shield-
dipolar interaction is strongly distance dependent, dipolaf, g of the magnetic field is calculated in this section and the
correlagon'spectroscopy can be used der nov.ost.ructure term in the quantized field Hamiltonian describing the dipo-
determination on an atomic scale of multispin labeled, i taraction is put forward. In Sec. IV, the RF pulse is
systems:? In this article we present a formal quantized field included in the quantized field framework. Using the meth-
interpretation of the seminal radio frequency driven dipolarodoIogy discussed in Secs. ll-IV, we analyze in Sec. V a
recoupling(RFDR). The technique was originally proposed goneralized RFDR sequence. In Sec. VI the polarization
for one refocusmg_r-pulse per single rotor periGtRFDR is _ transfer driven by the dipolar recoupling sequence is dis-
straightforward ta implement and robust, and can be appl"?gussed and in Sec. VII the main conclusions are given. In the

readily in high and ultra high fields. It has already been uti-, 0 iy the transformation properties for the quantized field

sized uniformly labeled biological aggregatés. spin Hamiltonian are evaluated.
It has been shown that the effect of MAS on a nuclear
spin system in a solid can be described in terms of a quan-

tized rotor field, leading to a physical interpretation of the
IIl. QUANTUM ROTOR DYNAMICS

Ipresent address: ID-DLO, P.O. Box 65, 8200 AB Lelystad, The Nether- ~ MAS NMR speptros_cop_y is g_enera"y described with the
lands. help of a spin Hamiltonian, in which the effect of the sample

0021-9606/2000/112(3)/1096/11/$17.00 1096 © 2000 American Institute of Physics
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rotations on the nuclear spins is taken into account by a set MAS is a rotation with a single normal frequency mode
of periodically time dependent coefficients. The spin Hamil-w, . The interaction between the spin system and the sample
tonian of a single crystallite in the rotating frame can there—otation can be interpreted in terms pfquantum interac-

fore be expanded in a Fourier series accordirf§ to tions with the single mode rotor field with a frequeney.
2 For ap-quantum transition, a Fourier operator is defined by
R - R . - ) L
Hs(t)—HsoJFpE::l Hspexpip(@o+ w,t)) +Hsg, Fo=expipe’). (7
X expl —ip(eo+ o)), 1) According to Eq(5) the F, operators are multiquantum lad-

X der operators withF,|n)=|n+p) and they can be inter-
in which w, is the spinning speed artds, the Fourier com-  preted as a repeated apphcatlon of smgle quantum raising
ponents of the Hamiltonian. These components differ fromyng Jowering operators, S|n@p+g_|: |: Ry
crystallite to crystallite in the sample, whilg, is a constant The commutatofL, ,F,]=pF, |mpl|es that
initial phase that may vary between experiments. R

In the quantized field description the concept of aexp(iw, tL )F exp—iw,tL,)
nuclear spin Hamiltonian is extended with quantum rotor

dynamics.” The interaction of the spins with the environ-  —71j, t[[,,, Fp]+( @rt)” (L (L Fpll+--

ment due to the MAS rotation is included in the Hamiltonian,

by using a set of quantum rotor dynamics operatgrs F, —explipw t)IE _ ®)
and FT, to replace the phenomenological time-dependent rop

phase of the rotatiop,+ w,t in Eq. (1). In the quasiclassical limit, quantization of the rotor field is

Recenﬂy’ it was shown that rotor field quanuza“on of- therefore eqUIvaIent with the introduction of a phase Operator
fers a self-consistent framework to describe the evolution of?’ in the rotor angle frame according to E&). A quantized
the spin system with conservation of enetdyhe total or- ~ field extension of the spin Hamiltonian in E) is then

bital angular momenturhof a forced rotation of a rotor with 2
eigenstate$im) in the quasiclassical limit defined dy- o ﬂQ(t)=7:{SO+ > 7:£5pexp(ip(<}’+w,t))+7:[§p
and|=m, corresponds with the number of boson quasipar- p=1

ticles. The associated rotor field is a vector field that can be
constructed using boson annihilation and creation operators .
It includes two independent degrees of freedam,and t,

Xexp —ip(e'+ wt)). (9)

P — 1172 _
ally=1"1-1), which contrasts with the single time degree of freedom that
ahy=(1+1)41+1), 2 is used to generate the time-fjependence in the spin Hamil-
tonian Hg(t) in Eq. (1).1” The ¢’ degree of freedom is es-
where sential, to account for the infinitesimal phase variations due
[.,=a'a &) to the quantum rotor dynamics, in which the rotor is de-
z'—

scribed as a two dimensional harmonic oscillator or a rigid
measures the orbital angular momentum. The energy of thetor 2122
rotor is w,l, which is very large on the energy scale of the Using the relationg7) and (8), it is possible to rewrite
nuclear spin system. the Eq.(9), yielding

It was shown that a complete description of the MAS for

a nuclear magnetic moment in a solid can be obtained within
a single set of reduced angular momentum stégs By
takingl =n+n, with n the variation of the angular momen-
tum around a large average valmgethe orbital angular mo- xexp(—iwtl,). (10
mentum states can be renumbered accordifhg to

2
Hol(t) =expliwtL,) HSO+Z HeoF p+ HEF

A time-independent Hamiltoniaﬁ{Q can be obtained by a

[n+n)—|n). (4)  transformation to the spatial rotating frame, defined by
exp(—iwtl,):Y
To prowde a description of the quasiclassical limit, a phase PCiartly):
operatore’ is introduced that represents a continuous coor- HQ H +H +H 11
dinate ¢’ with

consisting of a term associated with the sample rotation
at - -
explio)=—= = (5) Hi=ol,, (12

a pure nuclear spin Hamiltonian term independeni pf
The relation between the phase operator and the angular mo- .

mentum operatok ,, , is the canonical commutation relation Hn=Hso, (13
according to and an interaction term depending Bp and FI,
[‘)’\D,iLZ']:i’ (6) ~ t ot
Hizg Spr+HSpr, (14)

and thez axis is the axis of rotation.
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which describes the effect of the rotor dynamics on the spirin which WSO are some coefficients ariA(jJ spin operators
interactions. Sincé{g is time independent its unitary evolu- commuting withl,. The quantized field Hamiltonian be-
tion operator is comes then

U(t)=exp(—iHot). (15) k

S ey ok k7 Y
The effect of the phenomenological time dependence on HQ(t)_Z°°|°+,)§=:1 Zpolo €XHiP(@"+ ot)

the spins is included by means of the time-independent or- o .
bital angular momentum ladder operatdfg,F}. These +Zpoloexp(—ip(e’ +ot) (20)
have a physical basis and have been identified as the Fourier,
operators in the Floguet description of MAS NMRThe with
Hqo Hamiltonian operates in the product space spanned by k _\/k \k

) Z50=V5oWoo (21
the spin states and theeducedl angular momentum states. P P
The commutation relation between the Fourier operators angn the fact that the Hamiltonian is Hermitian requires that

the orbital angular momentum operafdr,. ,Fy]=pF, al- 7 =7* . After the transformation to the spatial rotating

lows for energy exchange between the rotor and the spiframe the interaction Hamiltonian in E€L4) yields
system. In addition, it provides a route to coherent superpo-

sitions of states involving the quantum rotor dynamics, since K - kA
in general[ H, ,H;]#0. Hi:pzl (ZpoFptZpoFplo. (22)

Here we have used again the Fourier operators to include the
IIl. THE INTERACTION HAMILTONIAN quantum rotor dynamics, according to E@).
For a dipolar coupled spin system of like spins under
The Fourier components of the spin Hamiltoniét), MAS, the Hamiltonian consists of a chemical shift term and
containing chemical shift and dipolar interactions, can bea dipolar term. Thus the nuclear spin Hamiltonian and the
expressed in terms of contractions betwégn the irreduc-  interaction Hamiltonian can be written as
ible tensor operators of rank in real space, and, the - - -
irreducible tensor operators of rakkn spin spacé>?4In the Ho=HG+H,
spin rotating frame only the part of the interactions that com- . .
mute with the Zeeman Hamiltonian have to be taken into Hi:HiCS+HiD .

account. An interaction term of the spin-Hamiltonian in the o ) )
spin rotating frame can therefore be written as With the external magnetic field along tlzeaxis, the spin

tensor operators in the truncated isotropic chemical shift
(k=0) and chemical shift anisotrogfCSA) (k=2) Hamil-

(23

HS(t):Ek: Aro(DTio- 19 tonian in Eq.(16) are for a spini?®
The time dependent spatial part can be expanded in a Fourier 1 N
series according 16 00= — ﬁ YHol3,
k (29)
Aw()= 2 explip(wt+ o)) Vo, (17 .2 .
p=—k To= \/= yHol'
20 3 YHolz-
with

K K The spatial isotropic chemical shift tensor is of rank 0 with a

V'goz > > ArDY( a’c”Bc,')’c)DI;p(ar Berv) single elemen}Agb: A'.. The CSA interaction is a real sym-
s=—kr=-k metric tensor interaction of rank 2 and the three elements

that characterize this tensor in its principal axis system are

v ..
X Do O,Bm,z). (19 for a spini

The A} coefficients are the elements of the spatial tensor A= \ﬁ s,

describing the coefficients of the interaction in the principal 2

axis systemPAS). In Eq. (18) three sets of Euler angles of (25

the Wigner coefficientﬁ):‘j(a,ﬁ,y) describe the transforma- A _E 5

tion from the PAS to a crystal framex(,.,v.), from this 20272 1%

crystal frame to the rotor angle frame,(,,,v,), and fi- - ) i ) .

nally from the rotor angle frame to the laboratory framewith A'=o¢'=\/1/3(c},+ o}, +d},) the isotropic andd

(0,81, 74).23 =1/3(0;,—0') the anisotropy parameter ang'= (o,
The tensor operators in spin space can be written as — ay,)/ ' the asymmetry parameter of the interactfdithe
- . values of these parameters can be inserted in([Eg). to
Tko=Wodlo (19 evaluate thevk, parameters, yielding
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5 2 . 2 ) ) i ﬂr?:o. According to Eq.(ll) the time independent quan-
Vo= dpo( Bm) EXKi Vrp)sgz (dsp(Brexpi(ar+70)S)  fized field MAS Hamiltoniart, of the coupled spin system
is the sum of Eqs(27), (29), (31), and(12).
X (d3,( B V26 + {expli 2ak) d3,( BL)
exp(—i2ah)d2 (B} g 8) (26) V- RADIO FREQUENCY PULSES
Cc —2S C

with V=0, since for MASAZ,( B;) =0. An on-resonance RF field contributes to the spatial ro-

Using Eqs(19) and(22), the chemical shift contribution tating frame Hamiltonian a nuclear spin Hamiltonian term of

to the interaction Hamiltonian can be constructed and yieldéhe form:
Hrr=w1(l,cosp+1,sing). (34

N 2
HiCS:;l p§=:1 (ZyFp+Zy FPIL, (27) The w, is the nutation frequency ang is the RF phase in
_ , the rotating framé® The Hyr operates only on the spin part
with Z,=(Z3;)" and of the spin system and is independent of the sample spinning.
> If the intensity of a short RF pulse is sufficiently strong then
zip: \[§ yH ng'o (28)  itis possible to neglect all the other terms in the Hamiltonian

containing spin operators. During a pulse the effect of the
The isotropic part is not affected by the spinning and yieldgotor should be considered to account for refocusing errors

a contribution to the pure nuclear spin term and to achieve stable effective dipolar recoupfifi@he re-
\ maining terms in the quantized field Hamiltonian are then
H = ;1 AW, (29) HEF=Hpet H, . (35)

The ﬁlgp is time-independent and its evolution operator at

; —_ _ [ [ i
with Aw'= = yHo1/3(0yt oyt 037)). , , __the end of a pulse of length, becomes
The spin space tensor operator for the dipolar interaction

between a pair of spind () is U(Tp):exq—i(']:[mﬁ- ﬂr)rp). (36)

o 1 e o However, in the limit of an extremely short pulsg—0,
Th=— \[gzyzﬁ(Z AL =30+, (30 while = w; 7, is kept constant, also the rotor dynamics dur-
- ing the pulse can be neglected and a pulse evolution operator
The components of the spatial tenébﬁ‘g for the spin pair can be defined as
interaction can be obtained from E&6) with &' substituted

N
by I5(0)=exp<—i2 6(licosgp+1ising) |, (37)
2 i=1
ij__ Mo Yh ) ) ) )
ol=—=o——, affecting only the spin-operational part of the spin
27 1 7,28
. I ) systen?”
and »' substituted by»"=0. Thus the dipolar term in the  During an interval of lengthr,, between such pulses,
interaction Hamiltonian is a quantized field contribution thatp__, andP,,, in a multi-pulse experiment the spin system
is bilinear in the spin operators, is governed by the time independent quantized field Hamil-
2 tonian and the evolution of the spin system in this period
HP=> > (ZHIEp+ ZH*IA:;)(ZALE— LT 1010 ) is described by the evolution operatod(ry)=exp
I<j p=1 31 (—IHg7m). The overall evolution operator for a pulse se-
(3D) quence ofM equally spaced pulses during a timemfis
with the summation over all spin pairs<j. M
. i _ 2 \ii 2 A A
Here, withZ, =(Zy0)", U(ro)= 11 P (), (38)
~cll "
Zi=——¢ (32 with
and =2, Tm- (39
5 m=1
C‘pj ') yzﬁdﬁo(ﬁm)exp(i ¥,:P) 2 dip(ﬁr) Schematic representations of such pulse sequences are
am s=-2 shown in Fig. 1.
x expli(a, + yl)s)d2(Bl) (33) A product of unitary transformations is again a unitary

B i transformation and it should be possible to express the entire
with B¢ andy! the polar angles of the dipolar vector in the sequence in terms of an average quantized field Hamiltonian
crystal frame. g

Since the dipolar interaction is traceless, the contribution

o according to
to the pure nuclear term due to the dipolar interaction is G(rc)=exq—iﬁQrc), (40

Downloaded 28 Feb 2012 to 137.224.252.10. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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Aﬂj F HOSHHCS+H,, Oo<t<ir,,
flo={ ~HS= T, dr<t<in,,
> acquisition 7’:{&5_’_ 7"\[|CS+ 7,:[I’ f %Tw<t<2'7'w,
— A= - . (42
B K H]_:Hi
where we assumed infinitely shortpulses.
‘D——_' }' The evolution operator can be written in the toggling
ﬁ_fw—.ﬂ — frame asU(t)=U,(t)U,(t), with U,(t) governed by the
|| = | I equation of motion
+—> ~
’ dUy) = =
FIG. 1. Schematic representation of the generalized RFDR sequence with dt +I'Him(t)U1(t)=0, (43

(A) 7,= 7, and(B) 7,=27, . The sequences start with ramped cross polar-
ization. The magnetization is rotated to theaxis and the recoupling se- with
quence is applied. Prior to detection the polarization is transferred toythe

plane. Uo(t)=exp(—iHot) (44)
and

as for spin-Hamiltonian& The evaluation of this average . _ L

Hamiltonian must be accomplished by using average Hamil- 74, (t)=Ug “(t)H,U(1), (45)

tonian theory in the quantized field representation. This is —

discussed in the following section. the Hamiltonian in the interaction frame &f,.%°

The evolution operatd?l 1(t) in this interaction frame at
V. ROTOR FREQUENCY-DRIVEN DIPOLAR ] =
RECOUPLING t=2r7, becomes equal to the toggling frarhg27,) when

The RFDR sequence was analyzed previously using ay?o(27w) = 1. This equality can easily be shown by the fol-
erage Hamiltonian theory and Floquet theBa}:3L1t utilizes lowing calculation and implies that the spin evolution in the

a train of rotor-synchronized-pulses to invoke the dipolar ©riginal spatial rotating frame is governed Hy(2,)
recoupling. In the original version one pulse per rotor period:ﬁl(zTW)_ The Hamiltoniarfﬁo in Eq. (42) contains three

is used, with a time window between the pulsgs- 7, with  terms. The isotropic chemical shift term, proportionatf®

7, the length of one rotor period. Here a generalization ofj, Eq. (29), the CSA interaction terms, equal tb?A{iCS de-
RFDR is discussed that was first introduced in Ref. 19. Afined in Eq.(27), and the rotor tern{, . The first term com-
fixed number of rotor periods per pulsg is used andr,  mytes with the additional terms and its evolution operator is
=n,7, is the time window between the puls€s? In this  one at 2,,. Thus the evolution operator in E¢44) only
paper we restrict ourselves to evep values and one RFDR  gepends on the two remaining and noncommuting terms:
cycle contains two pulses|37,— Pi(7)— 7,— Py()

—17,]in a cycle time ofr,=27,,. The sequence allows for Uo(27y) = expl — i/2(HES+H, ) mp)exp( — i (— HES
narrow band RFDR and its frequency selectivity has been A s
discussed recently in Ref. 26. When the pulses are cyclic in +H) mw) eXP —12(Hi >+ H) 7). (46)

the sensdlf_,P;P,=1, the expression for the averaged To show that this operator equals one we use the following
quantized field Hamiltonian can be found by transformingdiagona"zation conditions:
Hqo to the “toggling frame,” were the RF pulses are S ST
eliminated?”2This implies that the evolution operator inthe 7t~ +H=D “HD,
spatial rotating frame and the toggling frame are the same at ~CS, S, AL, A
the end of each RFDR cycle. ~HTHH,=DH,D
The basis RFDR pulse cycle can be divided into threewhich are derived in Appendix A. Insertion of these equa-
periods O<t<3r,, s7y<t<37,, and 37, <t<27,. The tions into Eq.(46) and using that expi, 7,,) = 1 results in a
effect of such a cycle on an ensembleMtipolar coupled
like spins can be evaluated using the quantized field formal
ism in the toggling interaction frame of the chemical shift
and the sample spinning. If tHkg is divided according to

(47)

periodicﬁo(t) operator with

Uo(27,) =D exp(—i/2H,7,)D D1

Ho="Ho+Hy, with X exp(—iH, 7,)DD exp( —i/2H, 7,)D " t=1.
Ho=HSS+ TS+ H, , (48)
P =P (41)  Thus the CSA interaction is refocused at the end of a RFDR
1— 7

cycle, as is well known for twar-pulses that are separated
the toggling frame Hamiltonian becomes by an integer multiple of rotor periods,=n,, 7.
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It is now possible to use the interaction Hamiltonian inand
Eq. (45 for the evaluation of the average RFDR Hamil- 2
tonian. The quantized |ntera.ct|on.Ham|Iton|§1n is tme depen Mil = — E CB(KH+kKH+p+ KH—kKH—p) (54)
dent and is not anymore defined in the spatial rotating frame. p=-2
This is due to the fact that the transformation operg.t@(rt) with
contains the rotor Hamiltonian terfH, . However, because % (

i _ 7]
we are only interested in the spin response at the end of the Kian: 2 Jy M

12, -7
JM( —2———

Wy

r

RFDR cycles andjo(t) is periodic, the time independent
average Hamiltonian can be considered as being defined in X exp(i(m—2k) ¢ +ikegl), (59
the spatial rotating frame. We will restrict ourselves to the

calculation of the zero order average Hamiltonian assumin : . p
52) a summation over all spin pairs in a coupled homo-

hereC} is given by Eq.(33) andZ] in Eq. (32). In Eq.

that 27| Hind|<1. nuclear spin system is added. Th&, can induce polariza-
tion transfer between the nucRiThe rate of transfer

VI. THE ZERO ORDER AVERAGE RFDR strongly depends on the internuclear distadt}ecl/rﬁ, ac-

HAMILTONIAN cording to Eq.(53). This provides the selectivity necessary

for correlation spectroscopy in isotope enriched solids.
nuclear spin pairi(j), evolving with the isotropic and an- Introducing the deviation from the rotational resonance

isotropic chemical shift interactions of both spins defined incondition by the off-rotational resonance valde = (A o'
Egs.(27) and (29), equals —Aw'—nw,), we see that the sinc-function in E&3) has a

L . maximum at every rotational resonance condit'ﬁz_n{} =0,

= 2rw= 2w = including then=0 rotational resonance condition. Fé®!

== indt==— Yt t)dt . . - O]

Ha 27y fo Hind 27y fo Uo "(H1Uo(t)d #0 the sinc-function decreases and can become zero for a
(49 certain value. If we define the bandwidth of the RFDR as the

difference between the two zero points around the maximum

value, the bandwidth 18

The zero order average RFDR Hamiltonian of a homo

with the two-spin dipolar interaction Hamiltonian in Eq.
(31). Simplifying the expressions by defining the operators,
- o,

U,(t)=exp —iH,t), By=—-. (56)
2 (50) flw

L“J;:S(t):exp< —i> AE‘fizt) This implies that the bandwidth can be narrowed by increas-
i=1 ing the number of rotor periods per pulse. In the limit of

large windows between the pulses,(— ) this bandwidth
goes to zero. In this case only at the rotational resonance
condition the zero order average Hamiltonian recovers the

and using the diagonalization operat&s 15il5j of the two
spins, the integral of the average Hamiltonian can be writte

as dipolar interaction. With addingr-pulses according to the
= 1 (V2 e extended RFDR scheme, the rotational resonance condition
HQ_Z_TW fl,szdt U (O becomes broader and spectral selectivity can be considered.
o ~ A . R In this way, the rotor frequency drives the transfer in RFDR
X{DU,(t)D" 1 H,{DU, }(t)D USH1) and not the radio frequency.
S (A1 ~ A In Eq. (563) also then=0 rotational resonance is in-
+UAD{D U (D} H, cluded. This implies that also for small isotropic shift differ-
X{D—lor—l(t)f)}ual(t)_ (51)  ©nces the dipolar interaction can be recovered. In the early

treatment of the RFDR, this possibility for efficient transfer
Here we used the fact that during the three time intervals ofvith small isotropic shift differences has been overlooked,
the RDFR cycle the Hamiltonians are time independent. Irsince the shift anisotropy was generally excluded from the
the appendix the integral in E(p1) is calculated by expand- earlier analytical treatments. In contrast, in our quantized
ing the diagonalization operator. The result yields an expresfield analysis the chemical shift anisotropy is included and is
o embedded in th&}, in Eq. (55). This theoretical outcome is
experimentally confirmed, because efficient transfer around
n=0 has been observed in chlorophyff$® It can be con-
cluded that RFDR is considerably more broadband than
originally thought.

sion forHq of the form:

HQ:_E

i<j

dﬂ+k; difFyc+ i FI) AL H 1)

-2

i<j

VI. POLARIZATION TRANSFER

dj +k21 diFy+df F;) (+110), (52

with In Eq. (52) the quantized field average Hamiltonian is
- — given for the RFDR cycle. This Hamiltonian can be used to
k :i i i 2Mw(A0'—A0’—nw)) describe the evolution of the spin system aftgrcycles via

d 3 2 M sin (53 .

Wy the evolution operator
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Lj(rm)z[exp( —j ZﬁQTw)]nm: exp(— i’}f(QTm)v (57)  the average Hamiltonian will lead to rotation in thg plane
around thex axis of this space of single-transition operators,
with 7,=2ny7,. This propagator promotes polarization according to
transfer from nucleus to nucleusj. Within the multi-spin A . . .
formalism presented here, multiple pathways are implicitly  p(7,,) = (2122cos(d127m) + 21 23sin(dy,7y,) (65)
covered, since the polarization transfer can be direct _
which is consistent with earlier findings' However, ind;;

e also the CSA and the narrow band RFDR sequence are taken
=1 into account. This implies that by measuritig as a function
or can be relayed, e.g., of the n,, in principle not only information can be deduced
L. about the internuclear distance, but also about the relative
,HQ HQ. orientation of the CSA tensors of the two sif8s.
i—k—j. This is illustrated in Fig. 2 with simulations of a RFDR

. 3 . . .
The discrimination between direct and relayed transfer ha§XPeriment on twdC spins resonating with a Larmor fre-

attracted considerable attention in recent y&ars.a general duency of 125.7 MHz and separated bt .4 A with a small

treatment, the evolution of the spin system and the transfer dfCtropic shift difference of 14 ppm, corresponding with 1.76
polarization can be described in terms of the evolution of théHZ. The orientation of the PAS of the CSA for the second

spin is defined with respect to the PAS of the CSA of the first
A ) spin and changed by varying the Euler angte®<180. For

p(7m) =U(7)p(0)U " Y( 7). (58)  B=0 the two tensors are aligned and the dipolar vector is

, ) . ) . along the axis corresponding with the largest principle com-

The density operator in the quantized field representatlore)Onent of the spin 1. The points are evaluated at three dif-
describes the combination of rotor and spin system. Thigg ent spinning speeds = w, /27 assuming an initial condi-

approach is very demanding, because the total process %n for the density matri>(2|§) and calculating thdZE}

creation and annihilation of particles via the Fourier OPera4iar a constant mixing time, = 2.66 ms.

tors in combination with the multiple spin processes has to At a low speedy, = 6 kHz we calculate efficient transfer

be .taken into acc_ount. The_refore, to simplify matters W?for n,=1 with (Zfﬁ) approaching the maximum of0.5
project the quantized Hamiltonian onto an average spin

o . L over a broad range and it depends on the valug.ofhe
Hamiltonian Hg via a “dequantization” of the phaseF, 9 P B

— exp(k¢')—expikay). This is justified in the simple case transfer efficiency drops fon,,=2 and the angular depen-

. . . . - dence is enhanced. The narrow band character of the RFDR
we intend to consider, provided we are in the limit of a large;

Lo is nicely illustrated for n,=4. Here the bandwidth is
number of rotor quanta. The average Hamiltonian in &) B, /2m=1.5kHz, less than the isotropic shift difference
becomes then w '

(Aw'—Aw?)/27=1.76 kHz and the212)~0.1, much less
— mni A than for then,=1 andn,=2 at the same spinning speed.
Hs=— 2 dij(1L+1y1), (59 This reflects the decrease of the bandwidth for increasing

Ny -

with With a spinning speed of 12 kHz, we calculate again a
considerable dependence of the transfer efficiency on the
angle B, which is most pronounced around=30° and
B=150°. The (212) goes through a maximum around
dB=90°. The relative variation of the transfer wighis stron-
est forn,,= 4. The(212) peaks aroung=90° and it almost
anishes forB=0° or B=180°. These calculations suggest
new and interesting possibilities for collecting angular infor-

density operator

. (60

Eij: dﬂ + E dikj eXF(ikgoo)-i-dikj* exp(—ikeg)
k=1

If we restrict ourselves to a two spin system then we avoi
relayed polarization transfer. A convenient way of describin@
a two-spin system is using the single-transition operatdfs

128=1(11-12), mation by measuring the transfer rate for differagt using
the generalized RFDR treatment discussed here for the
|)2(3:(f)1(i)2(+i)1/f§), (62  analysis. At 24 kHz, the transfer characteristics change
. again. At the high speed of 24 kHz also for thg=4 the
123= (1512 1312). B,/2m=6 kHz is sufficient to cover the isotropic shift dif-

S . ference of 1.76 kHz. In addition, the spinning speed of 24
The average Hamiltonian in E¢59) can be expressed in kHz is sufficient to attenuate the CSA’s, sina®/2m

those operators, according to = —11.3kHz andé?/2m= — 11.7 kHz. TheM!, in Eq. (54
. . depend on the spinning speed. They vanish in the limit of
He=—2, djjIZ. (63)  w,—oe. Therefore the transfer is less efficient at high speed,

with (2?5} below 0.2 forv,=24kHz. This illustrates that
If the spin density operator at the beginning of the RFDRclose to then=0 rotational resonance condition the presence

period is of a dipolar interaction alone is insuffient for polarization
R S, »3 transfer and that there is a prominent effect of the CSA on
p(0)=(lz—17)=2I3", (64 the transfer efficiency via thi1l), .
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field approach, from which the Floquet approach can be de-
rived, can be combined with average Hamiltonian theory. In
the earlier Floquet treatment of the RFDR, an effective
Hamiltonian was formulated, with the pulses included in the
sequencé’ In the quantized field formalism the effect of the
MAS rotation and the rotation itself are disentangled and the
resulting time-independent Hamiltonian can be treated in an
average Hamiltonian formalism by adding the pulses after-
wards. In this way average Hamiltonian theory and Floquet
theory are fully compatible, since average Hamiltonian
theory can be applied to the time dependent quantized field
Hamiltonian in the toggling frame.

The ﬂQ in Eq. (52) induces polarization transfer be-
tween nuclei in a multiple spin systehiThe probability of
transfer strongly depends on the internuclear distaﬁt‘pe

«1/r3 and this makes correlation spectroscopy in isotope en-
riched solids possible. The probability of polarization trans-
fer has a maximum at every rotational resonance condition
o'—ol=nw,. Since the CSA is embedded in the) also
then=0 rotational resonance condition is included.
According to our treatment, the driving force in both
RFDR and rotational resonance is the rotor frequency and
not the radio frequency. This suggests that a physically more
appropriate expansion of the RFDR abbreviation would be
“rotor frequency-driven dipolar recoupling.” The RFDR
bandwidth can be changed by changing the window between
the 7r-pulses. This additional variable can be used to obtain
information about relative orientation of the CSA tensors.

ACKNOWLEDGMENTS

This research was supported by the foundation of Life
sciences/ALW), financed by the Netherlands Organization
for Scientific ResearctNWO) and part of this research was
supported by The lIsrael Science Foundation. G.J.B. and

BO H.J.M.dG are recipients of NWO TALENT and PIONIER
awards, respectively.
FIG. 2. Examples of magnetization transfer within a dipolar coupled spin
pair. The calculations are performed for two spins separated by 14 ppm and
resonating at 125.7 MHz. A set of parameters was used that correspond to
the CSA'’s that can be observed, e.g., aromatic or ethylenic carbons: for thAPPENDIX
first spin an anisotropy*= —90 ppm was used with an asymmetry param- ) ) )
eter =0.41, while 8>=—93 ppm with =0.73. In the evaluation of the In this appendix the expression for the zero order aver-
signalsp,=0 and 300 orientations are taken for each point. The relativeage Hamiltonian in Eq(52) is derived. To do so the inter-
orientation of the tensors is defined by the Euler angles for the second SP3ction Hamiltonian of a two-spin system must be calculated

(a?,82,%2), following Eq. (26). In this calculatione?=y2=0 and B2 . . ]
=, is varied. The Euler angles for the transformation of the PAS of theby applylng the transformation of Eq45)'

first spin and for the transformation of the dipolar frame to the crystal frame = = = =

according to Eq(33) are taken zero. This corresponds with an orientation of Hine(t) = Ual(t)HlU olt). (A1)
the dipolar vector parallel to the most shielded direction of the first Is}oin . . .

The powder integration is performed ovew, (g, ,v,). The points are The transformation operator is defined by the sum of the
evaluated afterr,,,=2.66 msec by assuming an initial condition for the isotropic chemical shift Hamiltonians

density matrix 2} and following the magnitude of212). The maximum "

value we can expect {212)~0.5 in a powderX Y8 phase cycling was used ﬂﬁs(t)

for the full RFDR(n,,= 1, squares XY4 for n,,=2 (diamond$, andXX for

180

ny=4 (circles. 12Aw' —Awh)(1,-1)), 0<t<l/27,,
={ —1U2A0' =AY (IL-1Y),  1/27,<t<3/27,,
VIIl. CONCLUDING REMARKS T
V2AAw' —A))(1L-1)), 3/2r,<t<27,,

We have shown that the quantized field description can
be used to analyze pulse sequences including MAS on a (A2)
multiple spin system. It is demonstrated that the quantize@nd the CSA interaction term plus the rotor Hamiltonian
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= ~ The dipolar interaction Hamiltonian from E¢31) has the
CS
H; (rt)+H form
k* = oA RN ok N
kE.J pZ (ZKFp+Z8 FhI%+ 7, , o<t<l/2r,, Hy=(ZUF ,+ZU" Fhy(210— 120,17 +1715)). (A6)

The Hamiltonians)?cst andHCSt +7{. commute and so
-2 E(ZF+Zk FIOlL+H, 7 (1) and HX(t) + M,

={ K= do USS(t) andUCK(t). In addition, theHCS(t) + 74, is block
1/27w<t<3/27'w: diagonal and can be diagonalized according to Refs. 33 and
36 with (k=i,j),
> E (ZSFp+ZK DI+ H,,  3/2n,<t<2r,, R
\ k=t p=1 Z§F o+ 25 +H,=DH,D; *,
(A3) 2 ( ) «HD
as 2 (AT)
- . . > —(ZKFp+ ZSFh)I%+ H,=D, *H,D
Uo(t)=0SS(t)UCK(1), (A4) = kT
with with
" Cs Zcs 2 [ zZK z¥
U (t)=exp{—ifH (T)dT), D, — — PE _ P AT)”k
n o Dy=ex 2 Do Fo— " Follst. (A8)
" t= ‘ (A5) Insertion of these results into E¢AL), definin D= D D
Ot =ex| i | (FEXn+ e, s i Jening
with [DI ,D 1=0 and usmg[U (t),U;(t)]=0 we get

_ US%HDU(HD 74,00, (1D 05T (),
Hi()=1 US% (t=7,)D U, (t—7,)DH;D 10, H(t=7,)DUSHt—7,,), (A9)
USS(t-27,)DU,(t—27,)D *H,DU Xt—27,)D 0SSt -27,),

respectively, for the three time intervals, where we assumed pg i | 6—1:Aij|‘:p|“i+|“i
thatn,, is even inr,=n,7,, andU,(1/27,)=1. When we

change the variables of integration and take into account that D~1F | iD= Al *1|A:pf‘+ii_
the Hamiltonians are constant during each time interval, the

average Hamiltonian can be rewritten as with
2 [ j [ j*
1/27W R N Z,-2y Z, -7,
H J t)DU,(t)D 11, DU Xt All=exp — ( - A12
Q™ 27-W 1/27'W () ! ' () Dgl poy pw, ( )
xD 0SS 1)+ USS (t)D U, (1) and A=A~ and A+ = Al -1, This exponent can be ex-
An A a A panded in a Fourier series usingZ,—Z!=|Z
xDH,D U7 L) DUSK(t)}dt. (A10)  7i |expge): PR
P p/:
To evaluate this integral we must consider the following S| Zi -z \"1
computational stepsta) calculation of A=D ;D and A"=H1 EO Zom( 0w Fp) o
~ A . . . . =1 m=0 n= :
A'=DH,D"! by expanding the diagonalization operators; P '
(b) application of the rotor operatak(t)=U(t)AU, * and zip*_z{f Lo\m
A’(t)zUr(t)AA’Ur’lA('E); (¢) transformation of A(t) and X\ = P, Fop
A'(t) to B(t)=DA(®)D"! and B'(t)=D A'(t)D; ,
(d) and application of the isotropic chemical shift operator H E 2 1
C()=USXB(HUST and C'(1)=US5> B/ ()USKY). Pt o 1 mm! (m+l)'
To perform the first step we calculate t@etransformanns e\ m
of the terms ofH,;: y AR ZJ)'“+I Z' -Z0 .
_ 2P F,
RN T P pw, pw,
s oy
D IR ID=F,llL, (A11) pﬂl mE:O :2_ m! T(m+1+1)
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|Zi _ Zj | 2m+| .
X ( - % explil ¢p)Fip andB’(t). Insertion of the results of these calculations in Eq.
' (A10) yields for the zero order average Hamiltonian the fol-

” * |z' | lowing:
SRR :
; — a A
> E zy > (K"KH+ka_nl'+|J_

in order to obtain expressions f@(t) andC’(t) from B(t)

1Zi-2Z| TN A1y 5] =22 M=
X|—2—— explil g7 +ikd3)F ) 2 .
r 1 . ) .
) xf_z; exp(i(Ao —Aw —nw,)t)dt
oA w
:m;w K m (AL3) U _ _
+K!kK;{,ka+n|uszj exp(i(AT - AT
with 27w
1
z,- 7, Z, - Fnopndtr KK F it f T oxp(i(AD
Ij_ E Jk( | =2 =2 | m—Zk(_zl |) No,)t)d k™ n—pFk+nl +1- %7_ exp(i(
Wr Wr
- N aa 2
X exp(i(m—2k) ¢} +ikp3) (A14) —Aw'+nw,)t)dt+ K”Kn+ka_nI'+I'_leT:
20w
andJ,(x) thekth order Bessel function of Thus in stega)
the transformation results in Xex;a(i(Aﬁ—AEj—nwr)t)dt) (A18)
2
A:E [2(23Fp+zg )| —1/2 and the actual integration gives Eq&2) and (53). This
p=1 Hamiltonian has only a I(IJ+I I') 7200 1 +1 1)
o term, since the integral of thlézlJ coefﬂment containing
:2_ ((ZBK%FWHZH K'ngmep)|i+|j— onIy.terms of exponent; expfpw,t) is zero whenr,, is a
m=— multiple of the rotor periodr, .

L ok B
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