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Summary

A Bayesian approach is presented for mapping a quantitative trait locus (QTL) using the

‘Fernando and Grossman’ multivariate Normal approximation to QTL inheritance. For this

model, a Bayesian implementation that includes QTL position is problematic because standard

Markov chain Monte Carlo (MCMC) algorithms do not mix, i.e. the QTL position gets stuck in

one marker interval. This is because of the dependence of the covariance structure for the QTL

effects on the adjacent markers and may be typical of the ‘Fernando and Grossman’ model. A

relatively new MCMC technique, simulated tempering, allows mixing and so makes possible

inferences about QTL position based on marginal posterior probabilities. The model was

implemented for estimating variance ratios and QTL position using a continuous grid of allowed

positions and was applied to simulated data of a standard granddaughter design. The results

showed a smooth mixing of QTL position after implementation of the simulated tempering

sampler. In this implementation, map distance between QTL and its flanking markers was

artificially stretched to reduce the dependence of markers and covariance. The method generalizes

easily to more complicated applications and can ultimately contribute to QTL mapping in

complex, heterogeneous, human, animal or plant populations.

1. Introduction

The availability of dense molecular markers facilitate

study of the segregation of chromosomal segments

from parents to offspring and allows the mapping of

loci responsible for variation in quantitative traits

(quantitative trait loci or QTLs) in humans, animals

and plants. A variety of methods are used for

identification of marker–QTL associations (e.g.

Weller, 1986; Knott & Haley, 1992). Most were

developed assuming particular mating designs, e.g.

backcrosses or F2s, leading to simple pedigrees. These

methods cannot fully account for, nor can easily be

extended to, the more complex data structures of
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outbred populations such as are found in domesticated

farm animals.

In this study we explore models and methods that

can more easily be extended to complex pedigrees in

QTL mapping analysis. Markov Chain Monte Carlo

(MCMC) algorithms (Metropolis et al., 1953;

Hastings, 1970; Geman & Geman, 1984) here play an

important role, because they provide a powerful

computational tool for analysis of complex data

structures, either in a maximum likelihood or a

Bayesian context. Ideas of a Bayesian analysis for

QTL detection were described by Hoeschele &

Vanraden (1993a, b), and implemented via MCMC

algorithms in contributions by Thaller & Hoeschele

(1996), Satagopan et al. (1996), Umari et al. (1996),

Uimari & Hoeschele (1997) and Sillanpa$ a$ & Arjas

(1998). Most of these Bayesian methods assume a bi-

allelic QTL model (Hoeschele et al., 1997). Though

reasonable for a cross of inbred strains it is less so for

a population such as the Holstein breed of dairy
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cattle. Outside North America, populations typically

resulted from several crosses of the North American

breed on the local strain of black and white cattle and

the gene flow among countries continues unabated. A

population with such varied origins is a long way from

inbred strains, so a polyallelic model seems more

appropriate.

In this paper, we focus on Bayesian inferences in the

multivariate Normal QTL model of Fernando &

Grossman (1989) in which QTL effects are assumed

with a covariance structure dependent on markers

adjacent to the postulated QTL position. This model

should be more appropriate for heterogeneous

populations and the MCMC algorithms allow ex-

tensions to complex designs. We show that a straight-

forward implementation of a Metropolis-Hastings

(MH) algorithm to shuffle the QTL position within

the linkage map leads to an effectively reducible

Markov chain, i.e. not all possible positions are

reached from a given starting position of the QTL. We

suggest a modified MCMC scheme, simulated tem-

pering (Marinari & Parisi, 1992; Geyer & Thompson,

1995), to solve the mixing problem for the QTL

position. This scheme is evaluated empirically for

simulated data from a granddaughter design (Weller

et al., 1990). In a granddaughter design, marker

genotypes are available on elite sires and their sons

and trait phenotypes are observed on daughters of

sons. The extension and application of the Bayesian

method presented to complex pedigree analysis to

detect QTL in outbred populations are discussed.

2. Method and application

(i) Marker information

The marker data (m) is assumed to include the

genotypes at a number of marker loci that have been

assigned to a particular linkage group. In this study

we assume that the order of and the distances between

these marker loci are known with certainty.

Let g represent the set of true genotypes for all

individuals and for all marker loci. That is, for

founder individuals the linkage phase among alleles at

linked marker loci is known and for non-founder

individuals it is clear which of the parental alleles have

been inherited (even when a parent is homozygous!).

However, the observed marker data (m) probably do

not lead to a unique set of linkage phases and allele

transmissions; consequently multiple g’s may apply.

Let g
i
be a particular consistent set, and let P(g¯ g

i

rm) be its probability, conditional on the observed

marker data. Then, the identification of every con-

sistent g
i
and the calculation of its probability become

intractable for large outbred pedigrees.

The presence of a single QTL within the marked

chromosomal segment is postulated. The map position

of the QTL is denoted d, and it is relative to the first

marker of the linkage group. Chromosomal segments

outside the linkage group are not considered to avoid

identification problems between size and position of

the QTL. That is, a small QTL close to a marker is as

likely as a large QTL further away from a marker in

the type of model used here (e.g. van Arendonk et al.,

1998).

(ii) A Bayesian hierarchical model

Let n and q denote the number of phenotypic values

for the quantitative trait and the number of individuals

in the pedigree, respectively. The phenotypic values

for the quantitative trait (y) are assumed to be

normally distributed, i.e.

y r b, u, v,σ#
e
CN(Xb­Zu­ZTv, Iσ#

e
), (1)

where y is a n¬1 vector of phenotypic values ; b is a

vector of fixed effects (in a Bayesian setting treated as

a vector of random effects witha flat prior distribution

representing no prior knowledge about the values) ; u

and v are q¬1 and 2q¬1 random vectors of polygenic

and QTL effects ; X and Z are appropriately dimen-

sioned incidence matrices relating b and u to y,

respectively ; T is a known matrix relating each

individual to its two QTL allelic effects ; e is a vector

of random residual effects ; I is an identify matrix and

σ#
e

is the residual variance.

Next, the polygenic effects are assumed to be due to

loci that segregate independently of those at the

marker loci, and the QTL allelic effects co-segregate

with alleles at the marker loci, creating a stochastic

dependence. These are assumed to be normally

distributed as

u rσ#
u
CN(0,Aσ#

u
),

v rσ#
v
, d, gCN(0,Grd,g

σ#
v
),

5

6
7

8

(2)

where σ#
u

and σ#
v

are the polygenic variance and half

the additive genetic variance explained by the QTL,

respectively. Total additive genetic variance (due to

polygenes and QTL) is σ#
a
¯σ#

u
­2σ#

v
, and total

phenotype variance is σ#
p
¯σ#

a
­σ#

e
. A is the additive

genetic relationship matrix (Henderson, 1976), Grd,g
is

the gametic relationship matrix for QTL effects

conditional on map position of the QTL (d ) and

(complete) marker information (g). Note that matrix

Grd,g
has 2q¬2q elements, where element (i, j) repre-

sents the probability of QTL allele i being identical by

descent to QTL allele j (e.g. Wang et al., 1995). These

identity by descent probabilities for QTL effects are

easily computed for situations with known d and

known g (Bink & van Arendonk, 1999). However,

parameter d remains to be estimated and, especially in

outbred populations, knowledge on linkage phases

among marker alleles and segregation of marker

alleles is likely to be incomplete. Bink & van Arendonk

(1999) have described an approach that fully accounts
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for incomplete knowledge on marker genotypes (and

allelic frequencies for marker loci), given a particular

map position of the QTL, and their MCMC sampling

approach to account for this uncertainty in marker

genotypes is used in this study. The allelic frequencies

(η) at a particular marker locus in a population are

likely unknown and here also treated as such: see

Bink & van Arendonk (1999) for details.

Similar to Bink et al. (1998), the model in (1) is

parameterized in terms of the residual variance, σ#
e
,

the heritability h#¯ (σ#
u
­2σ#

v
)}σ#

p
, and the proportion

of genetic variance due to the QTL γ¯ 2σ#
v
}σ#

a
. The

prior density of σ#
e
is a U[κ

e"
, κ

e#
], where κ

e"
and κ

e#
are

equal to 0 and a pre-defined maximum value for σ#
e
,

respectively. In general, Beta(α
h
#
,β

h
#
) and Beta(αγ,βγ)

distributions can specify prior assumptions on dis-

persion parameters h# and γ. We arbitrarily set the

values of the hyperparameters α
h
#
, β

h
#

αγ and βγ

equal to unity, resulting in U[0,1] priors. Note that

the choice of these values may affect the posterior

inference on the parameter of interest (e.g. Bink et al.,

1998). The prior density of QTL position (d ) is

assumed to be U:d
F
, d

L
9, where d

F
and d

L
represent the

map positions of the first and last marker of the

linkage group, respectively.

The joint density of the parameters given the data (y

and m) and the prior information is

f(b, u, v,σ#
e
, h#,γ, d, η, g r y,

m, κ
e"
, κ

e#
,α

h
#
,β

h
#
,αγ,βγ),

£ f(b, u, v,σ#
e
, h#,γ, d, η, y,

m r κ
e"
, κ

e#
,α

h
#
,β

h
#
,αγ,βγ),

£ f(y r b, u, v,σ#
e
)¬f(b)

¬f(u rσ#
e
, h#,γ)¬f(v rσ#

e
, h#,γ, d, g)

¬f(σ#
e
r κ

e"
, κ

e#
)¬f(h# rα

h
#
,β

h
#
)

¬f(γ rαγ,βγ)¬P(g rm, η)¬f(d ).

5

6
7

8

(3)

From this joint posterior density, the full conditional

distribution for each parameter is obtained by

retaining only those parts that contain the parameter

and treating the remainder as a constant. From here

on we will suppress the dependence on the hyper-

parameters in the notation. For a particular QTL

position the full conditional posterior densities,

proposal distributions to sample from, for all un-

knowns are similar to those in Bink et al. (1998) and

Bink & van Arendonk (1999). For the location

parameters b, u and v full conditional posterior

distributions are Normal ; the full conditional pos-

terior distribution for σ#
e
is a truncated scaled inverted

chi-squared distribution with degrees of freedom equal

to dim(e)®2; the resulting full conditional posterior

densities for h# and γ are non-standard and samples

for these parameters are obtained via a MH algorithm

(for details see Bink et al., 1998). For updating the

marker genotype information, we refer to Bink & van

Arendonk (1999). For the application developed here,

only the full conditional distribution for d remains,

which can be obtained from the joint posterior

distribution (3) by omitting those parts that do not

involve d itself. Let θ
−d

denote the set of unknowns

excluding parameter d. The position of the QTL

affects only the elements of matrix G, and the full

conditional can be given as

f(d r θ
−d

, y,m)£ f(v rσ#
e
, h#,γ, d, g)¬f(d )

£rGrd,g
σ#

v
r−"/#¬exp²®"

#
(v®0)T (Grd,g

σ#
v
)−"

(v®0)´¬U[d
F
, d

L
]

£

1

2
3

4

rGrd,g
r−"/#

¬exp(® 1

2σ#
v

(vTG−"rd,g
v)* if d ` [d

F
, d

L
]

0 otherwise.

(4)

This full conditional distribution does not have a

recognizable kernel and samples from this distribution

are obtained via a MH algorithm. In the MH

algorithm, a candidate position, d
j
, is generated by a

candidate generating density, denoted q(\), and (4) is

evaluated for current and candidate positions, d
i
and

d
j
. The probability of a move, i.e. acceptance of

candidate value d
j
, is min(α(i, j),1), where

α(i, j)¯
f(d

j
r θ

−d
, y,m)

f(d
i
r θ

−d
, y,m)

¬
q(d

i
; d

j
)

q(d
j
; d

i
)
. (5)

The latter ratio in (5) accounts for uneven proposal

probabilities. In this study we use the random walk

approach (Chib & Greenberg, 1995) to sample

candidates, i.e. a uniform proposal density centred on

the current value d
i
. The length of this uniform is

determined empirically and should result in average

acceptance rates between 0±20 and 0±50 (Chib &

Greenberg, 1995) to ensure proper mixing through the

parameter space. Note that for a discrete prior on d,

i.e. a grid search with a finite number of positions, the

Gibbs sampler might be applicable. In that case,

however, summation of probabilities on all positions

is required and this rapidly becomes too demanding

for large numbers of positions.

(iii) Practical reducibility of the MCMC chain

Preliminary trials with the MCMC chain as described

above revealed a severe mixing problem with respect

to QTL position. A candidate position for the QTL,

say d
j
, in another marker interval involves a different

set of marker loci (and genotypes) and differences

arise in elements of G and its inverse. As a result of

these differences the quadratic form (vTG−"rdj,
g v)(

(vTG−"rdi,
g v) (equation (4) since values for v were sampled

conditional on G−"rdi,
g. Consequently, a relatively very

small value for the numerator in (5) was obtained,

and, for large pedigrees, the probability of a move in

(5) was practically zero, as will be described in Section

3. The QTL position was stuck within the starting
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marker interval, no matter which starting position

was chosen, i.e. the chain was effectively reducible.

(iv) Simulated tempering

An approach to solving poor mixing in MCMC is the

simulated tempering sampler (Marinari&Parisi, 1992;

Geyer & Thompson, 1995). Simulated tempering is an

adaptation of simulated annealing (Kirkpatrick et al.,

1983). Simulated annealing is a Monte Carlo approach

to minimize ‘complex’ cost functions and its name

derives from the roughly analogous physical process

of heating and then slowly cooling a substance to

obtain a strong crystalline structure. The simulated

annealing process lowers the temperature by slow

stages until the system ‘freezes ’ and no further changes

occur. Simulated tempering treats the temperature

stochastically, i.e. the temperature fluctuates randomly

between cold and hot stages (densities). The simulated

tempering sampler draws samples from a family of

densities (models), and switches between densities

(models) randomly over time. So, rather than just one,

a set of full conditional posterior densities is sampled

from, one being the target and the others being

modifications with better mixing properties. A way to

set up a useful family of densities is to define a series

of more and less ‘heated’ versions of the target

density. In ‘heating’ the target density, this density is

flattened, making it easier for the chain to move

around in the parameter space. When the ‘hottest ’

version allows sampling of the ‘non-mixing’ par-

ameter independent of any other parameter, complete

mixing is guaranteed. Geyer & Thompson (1995) give

a full description of the simulated tempering sampler ;

here we prefer just to describe our application to

maintain readability.

Two crucial stages in constructing the simulated

tempering sampler are definition of the heating

modification, i.e. how to modify the original target

density to improve mixing of the parameter through-

out its sampling space, and the fine-tuning process of

the number of heated modifications and their relative

distances.

The heating modification was applied here to the

Haldane mapping function (Haldane, 1919) that is

used to compute the recombination rates between the

QTL and its flanking markers. Heating this mapping

function implies that the QTL becomes less linked to

the map, i.e. covariances among QTL effects of

related individuals become less dependent on in-

heritance of marker alleles at flanking loci. A new

parameter, temperature (denoted λ), is used as an

index in the simulated tempering sampler which

modifies the mapping function into

r¯ (λ)¬0±5­(1®λ)¬0±5¬(1±0®e−#d), (6)

where 0%λ%1. Now, for λ¯ 0 the true mapping

function is applied and samples are drawn from the

(cold) target density. On the other hand, for λ¯1 the

mapping function reduces to a constant, i.e. the

recombination fraction equals 0±5 and there is no

linkage between QTL and its flanking marker loci. In

the latter case, matrix G−"rd,g
is no longer affected by

marker information and each position of the map is

equally likely. This means that for λ¯1, the quadratic

(vTG−"rdj,
g v) is equal to (vTG−"rdi,

g v) and the candidate

position d
j

is always accepted, i.e. α(i, j)¯1 (see

Section 2(iii)). When candidates are always accepted,

independent sampling occurs and this guarantees that

the entire sampling space can be reached within the

MCMC chain (Geyer & Thompson, 1995).

In the simulated tempering sampler, λ has a discrete

distribution where the number of the distances

between classes (values of λ
i
s) have to be defined

empirically. Similar to Geyer & Thompson (1995), we

implement a MH algorithm to update values of λ and

only allow moves between adjacent classes. Fur-

thermore, we also used so-called pseudopriors to

obtain equal probabilities on moving up and down

between two adjacent classes λ
i
and λ

i+"
. We closely

followed the procedures suggested by Geyer &

Thompson (1995) to fine-tune the spacing of λs and

their pseudopriors to arrive at desired acceptance

rates (0±20–0±50). We fully agree with them that this

process of fine-tuning requires considerable effort.

(v) Simulated data

To evaluate the effectiveness of the simulated tem-

pering sampler, Monte Carlo simulation was used to

generate granddaughter designs comprising 20 un-

related elite sire families each having 40 sons (paternal

half-sibs). This approximately reflects a Dutch grand-

daughter experiment design as described by Spelman

et al. (1996). Polygenic and QTL effects for grandsires

were sampled from N(0,σ#
u
) and N(0,σ#

v
), respectively.

The polygenic effect for a son was simulated as u
son

¯
"

#
u
s
­φ, where u

s
is the elite sire’s polygenic effect, and

φ, Mendelian sampling, is distributed independently

as N(0,Var(φ)) with Var(φ)¯ 0±75¬σ#
u

(no inbreed-

ing). Each son inherited one QTL allele at random

from its (elite) sire. The maternally inherited QTL

effect for a son was drawn from N(0,σ#
v
). Each son

had 100 daughters with phenotypic values. A son

transmits half its polygenic effect to each of its

daughters and transmits either its first (�"
son

) or second

(�#
son

) QTL effect to a particular daughter. A pheno-

typic value was then generated as

y r u
son

, �"
son

, �#
son

,σ#
u
,σ#

v
,σ#

e
CN(("

#
u
son

­(ρ)

�"
son

­(1®ρ) �#
son

), ($
%
σ#

u
­σ#

v
­σ#

e
)),

where for each daughter ρ is randomly taken as 0 for

1 with equal probabilities. The phenotypic variance

and the heritability of the trait were 100 and 0±40,

respectively. The proportion of genetic variance due
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Table 1. Characteristics of simulation of data

Data Proportion QTL (γ) QTL positiona Heterozygosityb

I 0±25 90 cM 100%
II 0±00 — 100%
III 0±25 90 cM 60%
IV 0±25 50 cM 60%

a Position of QTL relative to the map position of first marker in linkage group.
b Heterozygosity is the percentage of heterozygous marker genotypes for grandsires.

to a single QTL (¯γ) was 0±25, except for data II

where γ¯ 0±00 (Table 1). Data II was chosen to verify

that absence of a QTL within the linkage map was

also inferred as such in the Bayesian analysis.

Marker data were generated for all elite sires and

sons. Six markers were spaced equidistantly (20 cM,

Haldane’s mapping function) with the first marker

being the origin of the linkage map. Each marker

locus contained five alleles with equal frequencies. For

elite sires, the information content of marker geno-

types, i.e. being heterozygous, was arbitrarily set

equal to 100% or 60% (Table 1). The 100%

heterozygosity is the ideal situation; 60% is a level

found in practice (e.g. chromosome 6 in dairy cattle :

Spelman et al., 1996).

(vi) MCMC simulation and post-MCMC analysis

Initial values for location parameters (b, u and v) were

zero, while starting values for σ#
e
, h#, and γ were 60±0,

0±40 and 0±25, respectively. The initial genotypes for

marker loci were imputed conditional on pedigree and

marker data but not, however, accounting for linkage

among these loci. To ensure probable linkage phases

in parents and segregation of alleles to offspring, the

initial genotypes were updated 25 times before starting

the actual MCMC chain. Initial allele frequencies (η)

for all marker loci were equi-frequent (¯ 0±2). The

simulated tempering sampler always started in the

hottest distribution (λ
n
¯1). Due to independent

sampling of d in this distribution, the starting value

for d was not relevant. In each iteration (in chrono-

logical order), g, η, b, u, v and σ#
e

were updated by

Gibbs sampling, while h#, γ, d and λ
j
were updated by

MH algorithms. To decrease the number of elements

in u and v, a reduced animal model was fitted (Bink et

al., 1998). For each of the four data sets, one final long

MCMC chain was run (after fine-tuning the number

of distributions with their spacing and pseudopriors in

the simulated tempering scheme). The length of each

MCMC run was arbitrarily set at 5000000 iterations.

Total CPU time per MCMC run was about 40 h on

a HP 9000-k260 server, while a similar amount of time

was spent on fine-tuning the simulated tempering

sampler. The samples for parameters σ#
e
, h#, γ and d

were stored when the cold distribution (λ
j
¯ 0) was

visited.

For data I and II, we constructed a simulated

tempering sampler with 35 distributions, λ
"
¯ 0!λ

#

!…!λ
$&

¯1, to move from cold to hot and reverse,

resulting in average acceptance rates of 0±30. The

simulated tempering samplers for data III and IV

required fewer distributions (¯ 26) to obtain similar

acceptance rates. This difference is probably due to

the lower heterozygosity of markers in data III and

IV, i.e. data on less informative markers are relatively

more similar to the absence of marker data (which is

the situation when sampling in the hottest distri-

bution). To check convergence of the MCMC chain,

we computed for several parameters the number of

effective samples – a measure suggested by Sorensen

et al. (1995).

Bayesian inference about a particular parameter θ

is via the posterior distribution p(θ r y). The highest

posterior density region attempts to capture a com-

paratively small region of the parameter space that

contains most of the mass of the posterior distribution.

We computed a 90% highest posterior density region

(HPD90). The null hypothesis that the QTL explains

no genetic variance was tested via a posterior odds

ratio, i.e. a ratio between the probability for a small

bin at the posterior mode and the probability for a

small bin near zero. If the probability for a small bin

near zero equalled zero, the denominator was set

equal to 0±001. Presence of a QTL was postulated

when the posterior odds ratio " 20, or its natural log,

denoted ln(odds), " 3±0, a threshold first suggested by

Janss et al. (1995). Note that the prior odds ratio was

equal to 1.

3. Results and discussion

(i) Mixing of QTL position and con�ergence of

MCMC chain

Results from the simulated tempering sampler clearly

indicated that QTL position d did not mix between

marker intervals in the cold target distribution. The

mixing of the QTL position only occurred near the

hot end of the ‘heated’ distributions. Let n denote

the number of ‘heated’ distributions, ranging from

the (cold) target distribution (with temperature, λ
"
,



M. C. A. M. Bink et al. 236

Mode = 0·13
Mean = 0·19
Stdv = 0·10

HPD90 = [0·05, 0·34]

ln (odds) = 8·5

D
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ty

0·0 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 1·0

Mode = 0·85
Mean = 0·86
Stdv = 0·05

HPD90 = [0·76, 0·79]

+ [0·81, 0·95]

D
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si
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0·0 0·2 0·4 0·6 0·8 1·0

Proportion QTL

Map (Morgan)

Fig. 1. Marginal posterior densities for the proportion of the genetic variance due to the QTL (γ) (above), and for the
position of the QTL (d ) relative to the origin of the linkage map (below) in Data I. The arrows indicate the map
positions of marker loci. Uniform priors were assumed for both parameters. The horizontal thick continuous line
indicates the 90% highest posterior density confidence region (HPD90) for both parameters.

equal to zero) up to the hottest distribution (with tem-

perature, λ
n
, equal to one). For example, in data I,

acceptance rates of QTL positions in different

positions in different marker intervals were equal to

0±84, 0±15 and 0±01 when sampling distributions with

λ
n
,λ

n−"
,λ

n−#
, respectively. In all cases studied, the

hottest distribution, where d is sampled independently

from marker data, contributes most of the mixing of

parameter d.

To examine whether the MCMC chains were run

for long enough, the number of effective samples for

important parameters were calculated. The lowest

number of effective samples among parameters in the

model was always for the QTL position. These

numbers were 201, 176, 274 and 265 for data I, II, III

and IV, respectively. Taking 100 effective samples as

a minimum, these numbers indicate that the MCMC

chains were run sufficiently long.
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Mode = 0·03
Mean = 0·08
Stdv = 0·06

HPD90 = [0·00, 0·17]

ln (odds) = 1·7
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Fig. 2. As for Fig. 1, but for Data II.

(ii) Inferences on dispersion parameters

The four data sets yielded similar, sharp, posterior

knowledge on h# and σ#
e
, i.e. peaked symmetrical

densities centred on values very close to the values

(0±40 and 60) used for simulation (results not shown).

Marginal posterior densities for the proportion genetic

variance due to the QTL (γ) for all four data sets are

presented in Figs. 1–4. These densities are not very

peaked, but do indicate presence of a QTL in the three

data sets where a QTL was simulated (I, III and IV)

and absence of a QTL in II where none was simulated.

This was illustrated by the HPD90 regions, i.e. only in

data II did the HPD90 region include the probability

on the small bin near zero.

The null hypothesis that the QTL explains no

genetic variance was tested via the ln(odds), which

was equal to 8±5, 3±6 and 4±9, for data I, III and IV,

respectively. Consequently, presence of the QTL in

these three data sets is strongly suggested. Note that

the ln(odds) from data I is clearly higher than in the

other two data sets, which may be due to higher
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Fig. 3. As for Fig. 1, but for Data III.

marker heterozygosity for grandsires in this data set.

The ln(odds) for data II (¯1±7) does not exceed the

critical value (¯ 3±0) and the presence of a QTL has

been rejected.

(iii) Inference on map position QTL

The posterior densities of QTL position d are also

presented in Figs. 1–4, for data I–IV, respectively. In

general, map positions near}at the marker loci had

much lower probability of containing the QTL.

Apparently, allowing some recombination between

marker and QTL makes the model fit better to the

data. Note that we earlier rejected the presence of a

QTL within the map for data II, and inference about

QTL position for this data set is meaningless. One

may have expected that for this data set the posterior

density for d would be very similar to its prior ;

however, apparently a posteriori certain positions are

more likely than others. Analysis of a replicate with

no QTL simulated gave similar results, i.e. rejection of

the QTL and unequal probabilities over marker
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Fig. 4. As for Fig. 1, but for Data IV.

intervals, but with different intervals being more likely

(results not shown). Let p(d
a–b

r y) denote the (pos-

terior) probability that the interval from position a to

position b contains the QTL. For data I, with highly

informative markers, the posterior density was rather

decisive on the most likely interval of the QTL, i.e.

p(d
!
±
)!

–
"
±
!!

r y)¯ 0±91, and this fully agreed with the

QTL position used in the simulation. In data III, with

less informative markers for the elite sires, two marker

intervals were almost equally likely for the QTL

position, i.e. p(d
!
±
'!

–
!
±
)!

r y)¯ 0±46 and p(d
!
±
)!

–
"
±
!!

r y)¯
0±41, where the latter interval contained the simulated

value for QTL position. This may be due to simulating

the QTL near the end of the chromosome and the

sixth marker (at 100 cM) was informative for only 10

of the 20 grandsire families ; single marker information

is less powerful than marker bracket information (e.g.

Haley & Knott, 1992). In addition, van Arendonk et

al. (1998) showed that the estimated QTL position is

biased towards ‘ informative regions’ of the marker

linkage map. Also in data IV the most likely position

of the QTL was not in the interval where the QTL was

simulated, i.e. p(d
!
±
#!

–
!
±
%!

r y)¯ 0±46 and p(d
!
±
%!

–
!
±
'!

r y)

¯ 0±42. These results point to a rather low power for

estimation of QTL position from this size of grand-

daughter designs and when markers are only partially
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informative for elite sires. Uimari et al. (1996) and van

Arendonk et al. (1998) reported similar results for

power of mapping the QTL.

4. Concluding remarks

We have presented an MCMC technique to identify

the most likely marker bracket interval for a normally

distributed QTL within a marker linkage map in a

Bayesian analysis. Using simulated data from a

granddaughter design we tested the method empiri-

cally. Because straightforward sampling of QTL

position by an MH algorithm results in a non-mixing

chain, we applied simulated tempering to improve

mixing of QTL position. Our implementation of

MCMC with simulated tempering resulted in proper

mixing and Bayesian inferences on presence of a QTL,

i.e. size and position, were facilitated.

Point estimates (posterior means and modes) and

interval estimates (highest posterior density regions),

providing an assessment of uncertainty, were obtained

from the implementation. These interval estimates are

more appealing than those found with ad-hoc

methods, such as the ‘ lod drop-off’ in maximum

likelihood.

The use of the simulated tempering sampler is not

new in genetics. Geyer & Thompson (1995) applied it

to compute the probability distribution of carrier

status of a lethal recessive disease over a pedigree in

Hutterites. Heath (1997) used the simulated tempering

sampler to improve mixing in the analysis of haploid

radiation hybrid mapping data. In these studies,

Markov chains did not result in proper mixing of

important parameters without the implementation of

the simulated tempering sampler. When the simulated

tempering scheme regenerates (independent samp-

ling), results from different MCMC runs can be

combined (Geyer & Thompson, 1995; Heath, 1997).

This means that a large analysis could be run on

several processors (or personal computers), and the

results simply combined. Alternatively, a second

MCMC run could be produced if the precision

obtained from an initial MCMC run was not enough,

and combined. There are, however, technical diffi-

culties with using simulated tempering schemes,

particularly with regard to setting up the modified

densities and their pseudopriors. Simplification of

that process will allow widespread use of methods

using simulated tempering schemes in practice.

For the analysis discussed in this study only paternal

relationships within unrelated grandsire families were

considered and model assumptions might have been

much simpler, e.g. a half-sib analysis by regression.

However, as already indicated, the MCMC algorithms

employed allow extensions to more general or complex

situations. Currently, we have adapted the meth-

odology of this study to analyse data on markers and

milk production traits on pedigrees where elite site

families are related to each other by including

ungenotyped individuals (Bink, Bovenhuis & van

Arendonk, unpublished data). Examples of un-

genotyped individuals are dams that have sons in

multiple grandsire families, or dams of sons that are

sired by grandsire. Including these ungenotyped

individuals increases the number of segregation events

in the analysis and thereby improves the power and

accuracy of QTL detection (Bink & van Arendonk,

1999). This increase in accuracy of estimates for QTL

size and position will increase the possibilities for

marker-assisted selection. The Bayesian analysis pre-

sented in primarily described for detection of QTL in

outbred animal populations, but can also be applied

to complex pedigrees in humans or outbred plant

species.
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