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1. De wavelet variantie bepaald met de Haar wavelet is een goede maat 
voor de lengte schaal van landoppervlakte eigenschappen die zijn afgeleid 
van remote sensing gegevens. 

Dit proefschrift 

2. De grootte van de aggregatie fout van een landoppervlak model ge-
bruikmakend van remote sensing gegevens als invoer hangt af van de 
mate van niet-lineariteit van het landoppervlak model en de mate van 
heterogeniteit van de remote sensing gegevens. 

Dit proefschrift 

3. De maximale aggregatie fout voor individuele pixels neemt af bij toe-
nemende resolutie. 

Dit proefschrift 

4. De dominante lengte schaal voor een landoppervlakte eigenschap is niet 
per definitie gelijk aan de optimale geometrische resolutie voor remote 
sensing gegevens om die bepaalde eigenschap mee te bepalen. 

Dit proefschrift 

5. De grootste onzekerheid in het karteren van de landoppervlak energie 
balans met behulp van remote sensing gegevens wordt bepaald door de 
karakterisering van de ruwheid voor momentum en warmte. 

Dit proefschrift 

6. Het waarnemend vermogen van een remote sensing satelliet wordt niet 
alleen door de geometrische en spectrale resolutie bepaald maar ook 
voor een deel door de gebruiker van de gegevens. 

7. De atmosferische grenslaag scheidt niet alleen het aardoppervlak van 
de vrije troposfeer maar ook de hydrologen van de meteorologen. 

8. Elke vergelijking waarbij de NDVI of een andere gewasindex wordt 
gebruikt om een fysische variable af te leiden moet worden bekeken 
met de nodige skepsis. 

9. Land met een duidelijk agrarische bestemming is een onmisbaar on-
derdeel in het Nederlandse landschap. 



10. Een instituut voor wetenschappelijk onderzoek behoort een naam te 
hebben die duidelijk aangeeft wat het onderzoeksveld van bet instituut 
is. 

11. Het stoppen als fietser of voetganger voor rood licht vereist tegenwoor-
dig meer moed dan het negeren ervan. 

12. Niets smaakt zo goed als het zoet van een onverdiende overwinning. 

13. Het Nederlands elftal wordt nooit wereldkampioen voetbal. 

Stellingen behorend bij het proefschrift Aggregation of land surface charac­
teristics: impact of resolution of remote sensing data on land surface model­
ling. Henk Pelgrum, Wageningen, 14 juni 2000. 



Abstract 

Pelgrum, H., 2000, Spatial aggregation of land surface characteristics: Im­
pact of resolution of remote sensing data on land surface modelling. Doctoral 
Thesis, Wageningen University, The Netherlands. 

Land surface models describe the exchange of heat, moisture and mo­
mentum between the land surface and the atmosphere. These models can be 
solved regionally using remote sensing measurements as input. Input vari­
ables which can be derived from remote sensing measurements are surface 
albedo, surface temperature and vegetation cover. A land surface model 
using those land surface characteristics is presented i.e. the Surface En­
ergy Balance Index (SEBI) model. This model uses the observed tempera­
ture difference between the land surface and atmosphere as an indicator for 
evapotranspiration. 

Spatially distributed land surface model results can be used as a bound­
ary condition for numerical weather predicton models. The results should 
therefore be aggregated from the remote sensing pixel scale to the atmo­
spheric model scale. However aggregated values will differ when derived from 
remote sensing data with different resolutions. This difference, the error due 
to aggregation is caused by two different aspects: land surface heterogeneity 
and non-linearity of the land surface model. Two approaches are presented 
to quantify the error due to aggregation: the linearization approach, where 
the land surface model is approximated by a Taylor expansion and a geomet­
rical approach where the range of valid results for the land surface model is 
derived using a convex hull. 

To measure the heterogeneity of land surfaces, the concept of length 
scale is introduced. The wavelet transform is being used to derive the length 
scale of the land surface characteristics. The wavelet variance derived from 
the Fast Wavelet Transform using the Haar wavelet is a good indicator for 
the variability of land surface characteristics at different spatial scales. For 
three different data sets the length scale of land surface characteristics have 
been derived: Barrax, Spain, the Jornada Experimental Range, USA and 
the Central Part of the Netherlands. 

The two approaches for quantifying the error due to aggregation have 
been verified using the three data sets. The results obtained by the lin­
earization show that aggregation error can indeed be estimated. For the 
three test sites the large scale error did not exceed 10%. However the re­
sults based on the convex hull analysis show that the large scale error due 
to aggregation can be much larger than observed for the three test cases. 
Therefore low resolution remote sensing data cannot be used a priori as in­
put for land surface models. 



Voorwoord 

Het afronden van een proefschrift brengt een tweeledig gevoel met zich 
mee. Enerzijds is er de opluchting dat het proefschrift afgerond is en aan iets 
nieuws kan worden begonnen. Anderzijds is het ook een afsluiting van een 
relatief zorgeloze periode waarin ik niet veel meer hoefde te doen dan met 
mijn onderzoek bezig te zijn. Had het dan niet binnen de vier jaar afgerond 
kunnen worden? Misschien wel moet ik eerlijk toegeven, maar onderzoek 
laat zich moeilijk plannen en zorgvuldigheid moet niet worden opgeofferd 
ten behoeve van snelheid. 

Een proefschrift is grotendeels een klus voor een persoon, maar met 
hulp van anderen neemt zowel de kwaliteit toe als de hoeveelheid werk af. 
Allereerst wil ik mijn directe begeleider en tevens co-promotor bedanken, 
Massimo Menenti. Ondanks het feit dat Massimo veelvuldig op reis is, en 
zijn vaste werkplek in Strassbourg ligt, heb ik hem toch zeer regelmatig en 
uitputtend kunnen spreken over het proefschrift en aanverwante zaken. Ook 
is in deze tijd van internet fysieke aanwezigheid ook al geen voorwaarde meer 
voor vergaderingen. De grootste kwaliteit van Massimo is vooral het vermo-
gen om onderzoek zowel te kunnen plaatsen in breder verband, maar daarbij 
ook nog oog houdend voor de details. Mijn dank gaat tevens uit naar mijn 
promotor Prof. Feddes, die er in hoge mate verantwoordelijk voor is dat het 
proefschrift binnen de vijf jaar is afgerond. Ook is het zijn verdienste dat 
het proefschrift leesbaar is voor een breder publiek dan een beperkt groepje 
hydrologen die zich met remote sensing bezig houden. 

Iemand die niet vergeten mag worden is de initiator van het geheel, Wim 
Bastiaanssen. Aan Wim is het danken dat geld voor Strategisch Expertise 
Onderzoek binnen het (toenmalige) Staring Centrum werd gereserveerd voor 
een AlO-plaats op het vlak van remote sensing en klimaat. Wim heeft in het 
eerste jaar van het onderzoek ook gefungeerd als directe begeleider, maar 
moest daar van af zien nadat hij eerst vertrok voor een half jaar naar Sri 
Lanka, om vervolgens definitief bij het Staring Centrum te vertrekken. Ook 
is Wim er verantwoordelijk voor dat ik me al geruime tijd bezig houd met 
remote sensing ten behoeve van hydrologie. Eerst als afstudeervakker, later 
als dienstweigeraar en vervolgens als AIO. 

Henk van Ledden en Martin Jansen zijn verantwoordelijk voor de figuren 
in het proefschrift. Hun vakkennis heeft er voor zorg gedragen dat de fig­
uren leesbaar en overzichtelijk zijn geworden. Verder wil ik Karel Soeterik 
bedanken voor het corrigeren en bewerken van de Landsat TM beelden van 
Nederland. 



The participation in the Jornada Field Experiment also led to a stay of 
six months at the USDA-ARS Hydrology Lab in Beltsville, MD. I would like 
to thank all the people at the lab for their cooperation and company during 
those months, especially Tom Schmugge, Jerry Ritchie, Al Rango and Bill 
Kustas. During my stay at the hydrolab I had plenty of time to lay down 
the structure of the thesis. Also I could make fully use of the Jornada data 
set. 

In de zes jaar die ik in totaal bij het Staring Centrum heb gewerkt ben 
ik zonder van bureaustoel te verwisselen bij drie verschillende afdelingen 
werkzaam geweest. Ik ben begonnen bij de afdeling waterhuishouding aride 
gebieden, dat toen viel onder de hoofdafdeling waterbeheer. Zo'n drie jaar 
geleden is de afdeling waterhuishouding aride gebieden opgegaan in de afdel­
ing ontwikkelingssamenwerking die op zijn beurt vorig jaar is opgenomen in 
de nieuw gevormde afdeling Bodem en Landgebruik. Uit de naamgeving van 
de afdelingen zou je kunnen afleiden dat mijn onderzoek steeds verder van de 
(water)bron is geraakt. Daarbij is het ook binnen het Staring Centrum het 
type onderzoek van de toenmalige afdeling waterhuishouding aride gebieden 
minder herkenbaar geworden. Voordeel bij deze reorganisaties is wel dat de 
groep van collega's die je goed leert kennen steeds groter wordt. Daarente-
gen blijft het moeilijk je afkomst te verloochenen. Daarom wil ik bij deze 
de mensen bedanken die de afgelopen jaren min of meer de vaste kern van 
de afdeling waterhuishouding aride gebieden hebben gevormd, alhoewel nu 
er een andere, officieuze naam is bedacht nl de Satellite Earth Observation 
Group: Gerbert Roerink, Zhongbo (Bob) Su en Claire Jacobs. Massimo, 
Wim en Susanna Azzali zijn de collega's van het eerste uur. Het algemene 
kenmerk van deze groep mensen is dat er een gezonde afkeer bestaat tegen 
vergaderen en daarmee een hoge mate van flexibiliteit in de besluitvorming 
kennen, waar ik me altijd in heb kunnen vinden. 

Natuurlijk zijn er veel meer collega's geweest op het Staring Centrum die 
ik zou willen bedanken voor hun collegialiteit en behulpzaamheid, maar om 
niemand te vergeten, wordt een ieder die zich nu aangesproken voelt hartelijk 
bedankt. 
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Chapter 1 

Introduction 

1.1 Spatial and temporal scales of atmospheric and 
hydrological processes 

Atmospheric and hydrological processes occur at a wide range of both tem­
poral and spatial scales. Temporal scales range from seconds (10° s) to years 
(108 s), whereas spatial scales range from centimeters (10 - 2 m) to thousands 
of kilometers (106 m). The limits show that atmospheric and hydrological 
processes span about eight orders of magnitude in both space and time (Kle-
mes, 1983). Figure 1.1 shows a graphical overview of the spatial and temporal 
scale of several important hydrological and atmospheric processes. 

The gray tones in Figure 1.1 show where most of the kinetic energy is 
present for the atmospheric and hydrological processes depicted. The time 
scale indicates whether processes are slow or fast, whereas the length scale 
indicates whether processes have a large or small spatial extent. 

Processes related to (subsurface) hydrology can be characterized by small 
spatial scales (small spatial extent) together with a large temporal scale 
(slow processes). On the other hand processes related to the atmosphere 
have larger spatial scales (larger spatial extent) and smaller temporal scales 
(faster processes). In Figure 1.1 one can see that the temporal and spatial 
scale of atmospheric and hydrological processes are clearly separated. The 
description of atmospheric and hydrological processes in numerical models 
is therefore scale dependent, owing to the combination of non-linear dynam­
ics, with regard to their temporal and spatial variability (Dyck and Baumert, 
1991). Regional hydrological models will have small spatial intervals and rel­
atively large time intervals, due to the nature of the hydrological processes. 
Atmospheric models will have larger spatial intervals and smaller time in­
tervals than aforementioned hydrological models. Due to this scale discrep­
ancy it is difficult to couple these two types of models. Milly and Dunne 
(1994) stated that a unified physical theory of land-atmosphere interactions, 
including both meteorological and hydrological components, cannot escape 
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Figure 1.1: Atmospheric and hydrological processes at a range of character­
istic temporal and spatial scales after Bloschl and Sivalapan (1995). 



the difficulties arising from the many different scales that are either inherent 
in the system or imposed by our way of looking at it. 

Scale is not a trivial notion: many definitions exist depending on the 
context where it is being used. In order to get some clarity on the concept of 
scale, three types of scale, each of them related to some step in the modeling 
process, can be distinguished: process scale, observation scale and model 
scale (Bloschl and Sivalapan, 1995). First the process and observation scale 
will be discussed, later on the model scale will be introduced. 

1.1.1 Process scale 

The process scale of a hydrological or atmospheric process can either be 
related to the temporal or the spatial scale. The term scale has been used 
to describe different properties of hydrological and atmospheric processes: 

• Scale can refer to the lifetime (duration) or spatial extent (coverage) 
of an event in time respectively in space. It can be used to describe 
short-lived events like the duration of the peak-flow during floods. See 
Figure 1.2a 

• The term spatial or temporal period can be used to describe periodic 
processes. The dominant spatial or temporal period will correspond 
with the peak value in a spectral power plot. Most of the spatial or 
temporal variability is present at that particular scale. See Figure 1.2b. 

• The third definition of the process scale is the correlation length. It 
has been used for processes that exhibit some kind of spatial or tempo­
ral correlation. The correlation length refers to the distance between 
points at which the autocorrelation is smaller than a predefined thresh­
old value (usually taken as 0). Sometimes the term integral scale is 
used instead of correlation length. See Figure 1.2c. 

Processes can exhibit more than one typical process scale. In a spectral 
power plot more than one peak would show up. Also a process can have 
no distinct spatial or temporal scale implying that the spatial or temporal 
variability is spread regularly across a large range of scales. 

1.1.2 Observation scale 

The scale of observation depends on the method of observation and instru­
mentation characteristics. The definitions of the observation scale are similar 
to those being used to describe the process scale: 

• Spatial or temporal extent: The total distance or amount of time over 
which data has been sampled defines the spatial or temporal extent also 
known as coverage, expressed in area or time units. See Figure 1.3a. 



Length/time 

Figure 1.2: a) Duration or coverage of a process, b) period of a process, c) 
correlation length or integral scale of a process. 

• Temporal or spatial resolution: The temporal or spatial resolution is 
denned by the interval at which the data is sampled. See Figure 1.3b. 

• Integration volume or time. The integration volume is the volume 
for which the measurement is valid. The integration time is the time 
that it takes to conduct a single measurement. See Figure 1.3c. 
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° o ° 
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© 

Length/time 

Figure 1.3: a) Extent of an observation, b) resolution of an observation, c) 
integration volume or time of an observation. 

The spatial or temporal resolution has a great impact on how processes 
are being monitored. Processes should be observed preferably at a scale 
smaller or at least equal to the process scale. Unfortunately this is seldom 
true. For example rainfall is measured routinely on a daily basis at most 
rainfall stations, whereas rainstorms hardly ever last longer than a day, see 
Figure 1.1. 

The observation scale can have consequences for the quality of the data 
and comprehension of processes. A process with a process scale larger than 
the spatial or temporal extent of the observation appears as a trend in the 
data. Whereas a process with a process scale smaller than the spatial or 
temporal resolution of the observation will appear as noise in those data. 

In the following sections first a general introduction to atmospheric mod­
els is given with specific interest to land surface models which describe the 
coupling of atmospheric and hydrological processes. It will be shown that 



soil water content is an important variable in land surface models. The use 
of remote sensing data for providing input maps of soil water content for 
land surface models is discussed. Finally the central research question will 
be defined, and an outline of the thesis given. 

1.2 Description of land surface processes in atmo­
spheric models 

An atmospheric model is a 3-dimensional model, describing the transport 
of momentum, water and heat in the atmosphere. It determines climatic 
quantities such as temperature, snow cover, precipitation, soil water con­
tent and cloud cover. Within the model the surface of the earth is divided 
into coarse grid cells whereas the atmosphere is divided into several layers 
with variable height. In the lowest layer the interaction between atmosphere 
and surface is modeled. There are two different applications of atmospheric 
models: weather forecasting and climate research. 

• The atmospheric models used in climate research are generally known 
as Global Circulation Models (GCM). A GCM is usually integrated 
for very long periods (up to 1000 years) and has a coarse resolution 
for the surface grid (typically 2.5° x 2.5°, which corresponds with 
« 275 km x 275 km on the equator). Important for the success of 
the simulation is the adequate physical parameterization of the most 
significant processes. Land surface boundary conditions have great 
impact on the model results (Garrat, 1993). 

• For the purpose of weather forecasting, atmospheric models are inte­
grated for a period of up to 10 days, having a minimal resolution of 
about 50 x 50 km (meso scale model). This type of model is known 
as Numerical Weather Prediction Model (NWPM). In operational ap­
plications a NWPM will be run a few times per day. The success 
of a NWPM, besides an adequate parameterization of the processes, 
depends on a reliable estimate of the actual state of the atmosphere, 
oceans and the land surface (van den Hurk et al., 1997). 

As stated before, the performance of a NWPM depends on a proper 
initialization of the model state. This initialization consists of a blend be­
tween the model forecast in the past and observations of the present state 
of the atmosphere and land surface. The quality of the initial data and the 
blending process (data assimilation) are the major features determining the 
prediction skill of a NWPM. Since data assimilation is nearly continuous 
in time, the model is kept in the right track by the data. Therefore, for a 
NWPM, the continuous availability of reliable global data is crucial for the 
determination of the initial state of the model. Another concept of scale has 
to be introduced here: the model scale. 



1.2.1 Model scale 

The model scale is the intermediate scale between the observation and pro­
cess scale. A model describes processes, and therefore is bound to the process 
scale. However observations are used as input for models and this fact will 
also constrain the model scale. Therefore the model scale is partly related 
to processes and partly to the observations available. Unfortunately in most 
cases the process scale does not coincide with the observation scale. To 
bridge that gap, observations have to be (dis)aggregated. Information about 
the scale of processes has to be known a priori in order to (dis) aggregate 
properly. 

1.2.2 Land surface model 

A Land Surface Model (LSM) associated with a NWPM or GCM simulates 
the exchange of heat, moisture and momentum between atmosphere and land 
surface, i.e. the surface energy balance. The surface energy balance describes 
the partitioning of net radiation flux density (Q*) into soil heat flux density 
(Go), sensible heat flux density (H) and latent heat flux density (XE). The 
processes described in the LSM vary over smaller length scales than the 
large scale circulation patterns, and possibly smaller than the model grid 
cell size. However those small scale land surface processes have a significant 
influence on the large scale circulation patterns. The partitioning of net 
available energy (= Q*—Go) into XE and H has an impact on the formation 
of clouds and as a consequence on the amount of precipitation, the radiation 
balance and the distribution of water vapor in the atmosphere. 

The partitioning of net available energy into XE and H is to a large 
extent controlled by the availability of soil water. Soil water content is 
therefore among the most significant parameters for a reliable surface flux 
description (Shukla and Mintz, 1982; Milly and Dunne, 1994). However in 
most NWPMs the soil water content does not have a physical meaning, but is 
used as memory of the system and as a controller of the energy partitioning. 
Depending on the type of land surface model used in the NWPM, even 
a properly estimated soil water content may lead to an erroneous surface 
energy partitioning because the coupling of water and energy balances on 
meso scale may not be correctly parameterized. 

1.2.3 Soil water content 

Traditionally for the determination of the initial state of soil water content 
NWPMs use a climatological data set of soil water content. A climatological 
data set has been set up on the basis of long time series of observations 
of precipitation and surface variables (Claussen et al., 1994; Wilson and 
Henderson-Sellers, 1985). Both data sets have a global coverage. The data 
set reflects the average value of soil water content throughout the year. This 



could lead to a poor performance of the model in years which are much 
drier or wetter than average. To solve this problem more advanced models 
consider soil water content as a prognostic variable. These models use the 
computed soil water content of the last model run as initialization for the 
new model run. The danger exists that in the course of time the result tends 
to drift towards extreme dry or wet weather (Moene et al., 1995). Therefore 
the ideal situation is to update the soil water content of NWPMs on a regular 
basis by an independent data source, to prevent drifting, and to reflect better 
the present state of the soil water content. 

Due to the spatial variability of soil physical characteristics and vegeta­
tion characteristics, field measurements of the exchange of water and heat 
between land and atmosphere cannot be considered representative of larger 
heterogeneous areas. Therefore it is impossible to use field measurements 
in a direct way to initialize a NWPM. Even for validation of atmospheric 
models field measurements are not very suitable due to the difference in ob­
servation and process scale. Obviously field measurements are not suited 
for the initialization process. For the purpose of initialization it seems that 
remote sensing data are a suitable candidate. Low resolution remote sensing 
data have the advantage of a spatial extent much larger than the size of a 
single NWPM grid cell. Also the high temporal resolution of low spatial res­
olution imagery is an important factor. Data are available on a daily basis 
for a large area. On the other hand high resolution remote sensing data have 
a spatial resolution, which is comparable to the process scale of the land 
surface processes. These data will show much more detail and will give a 
better view on the variability of land surface processes. 

1.2.4 Remote sensing of soil water content 

Numerous studies have been conducted to map soil water content using re­
mote sensing data. Especially the use of passive or active microwave sensors 
has been extensively studied (Jackson, 1997; Engman, 1990). However as 
mentioned before the soil water content used in land surface models is not 
a physical variable. Its function in the model is to control the energy parti­
tioning of the net radiation into sensible and latent heat flux and is therefore 
dependent on the type of parameterization used in the model. A new ap­
proach proposed by van den Hurk et al. (1997) updates soil water content 
using optical and thermal infrared remote sensing data. The remote sensing 
data are used to determine the surface energy balance of land surfaces. A cor­
rection to initial soil water content is calculated from a comparison between 
the evaporative fraction fields produced by a numerical weather prediction 
model and the satellite algorithm. 

The evaporative fraction (A) is an alternative expression of the surface 
energy balance and is an indicator of water availability (Bastiaanssen, 1995). 
The evaporative fraction A is the ratio between latent heat flux (XE) and the 
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net available energy ( Q*-G0 = XE +H), i.e. A = XE/(XE + H). If A = 1, 
land surface evaporation is maximal, when A = 0, there is no evaporation. 
The approach using A will lead to a better estimation of the surface energy 
balance by the LSM and, as a consequence, to a better simulation of the 
atmospheric processes in the NWPM. 

Unfortunately remote sensors do not measure surface energy balance 
fluxes directly. Remote sensing data can provide estimates of land surface 
characteristics such as surface albedo, vegetation cover and surface tempera­
ture. These land surface characteristics can be used to estimate surface fluxes 
using physical (Taconet et al., 1986) or empirical algorithms (Bastiaanssen, 
1995). From the surface fluxes, wetness indicators can be calculated. Wet­
ness indicators describe the relation between latent and sensible heat flux 
in a simplified manner. The wetness indicator relevant for this study is the 
evaporative fraction A. 

The current research will not concentrate on the estimation of the soil 
water content at the meso scale as such because it does not necessarily yield 
a proper energy balance. A proper estimation of the energy partitioning is 
selected as ultimate goal and the soil water content is adapted accordingly, 
given the formulation of the LSM used in the NWPM. In this way a proper 
surface energy balance is ensured. As a consequence, information is needed 
about energy partitioning, i.e. the evaporative fraction A, at the size of a 
NWPM grid cell, or generally speaking for the meso scale. This information 
can either be obtained from airborne or satellite sensors. 

This leads to the following research question: 
How to areally aggregate wetness indicators, accounting for their length 

scales and resolution at which they can be sampled by advanced airborne or 
satellite sensors, from pixel to meso scale for updating soil water content in 
a Numerical Weather Prediction Model. 

In the following section problems which arise when aggregating wetness 
indicators will be addressed. 

1.3 Aggregation of wetness indicators 

Satellite remote sensing data generally have a higher spatial resolution (< 5 
km) than the grid cells of a NWPM (> 50 km). Remote sensing data can 
be used to infer wetness indicators. In order to use wetness indicators as 
input for a NWPM grid cell, they have to be aggregated to the scale of a 
NWPM grid cell. However this is not a straightforward procedure. A simple 
averaging procedure will not work always. This is only possible when the 
algorithm involved is scale invariant. Hu and Islam (1997) indicated that 
two aspects play an important role to determine whether the algorithm is 



scale invariant or not. 

• The scale of observation versus the scale of the processes involved. 

• The type of model used to infer wetness indicators from remote sensing 
data, whether it is linear or non-linear. 

In Table 1.1 the combination of both effects on the aggregation process 
are depicted schematically. 

Table 1.1: Effect of observation scale and model type on aggregation process. 

Type of 
model 

Linear 
model 

Non-linear 
model 

Process scale > 
Observation scale 

1) Scale invariant 
aggregation algorithm 
(linear averaging) 
3) Scale invariant 
aggregation algorithm 
(conservation principle) 

Process scale < 
Observation scale 

2) Scale invariant 
aggregation algorithm 

4) No scale invariant 
aggregation algorithm 

The four possibilities will be explained here in more detail. Each case 
will be discussed with regard to the central question in this thesis: the 
aggregation of wetness indicators, derived from remote sensing data, to the 
scale of a NWPM grid cell. 

1. Process scale > Observation scale & Linear model. Here the spatial 
resolution of the remote sensing data is smaller than the actual process 
scale. This implies that the total variability present in the landscape 
with regard to the process is captured. If the wetness indicator can be 
described as a linear combination of the remotely sensed observations, 
then linear averaging to any scale is correct. While the remote sensing 
data are expressed as a radiance flux per unit of area, it does not 
matter whether the input remote sensing data or the resulting wetness 
indicators will be aggregated. The aggregation algorithm, in this case 
linear averaging, is scale invariant. 

2. Process scale < Observation scale & Linear model. The spatial resolu­
tion of the remote sensing data is larger than the actual process scale. 
The total variability present in the landscape with regard to the pro­
cess is not captured completely. However in this case remote sensing 
data are expressed as a radiance flux per unit of area. The remote sens­
ing data can then be interpreted as a correct aggregated value. And 
while the remote sensing data model is linear, still an average value of 



the resulting wetness indicator will give the correct aggregated value. 
In another case where the input data is not expressed per unit of area 
a simple linear averaging procedure cannot be used. The aggregation 
process in this specific case is scale invariant. 

3. Process scale > Observation scale & Non-linear model. The spatial res­
olution of the remote sensing data is smaller than the actual process 
scale. The total variability with regard to the process is captured. A 
simple linear aggregation scheme will not work here, since the algo­
rithm is non-linear. A correct aggregation scheme can be derived by 
imposing a suitable conservation principle, e.g. conservation of energy. 
Such a scheme can be applied at all scales and gives a correct result. 
There will be no error due to aggregation. 

4. Process scale < Observation scale & Non-linear model. The spatial res­
olution of the remote sensing data is larger than the actual process 
scale. The total variability with regard to the process will not be com­
pletely captured. Also the wetness indicator cannot be described as 
linear function of the remotely sensed observations. These two condi­
tions imply that the aggregation process is not scale invariant. Using 
an aggregation scheme based on a conservation principle an estimate 
of the error due to aggregation can be given. 

The algorithms involved in calculating wetness indicators from remote 
sensing data are generally non-linear. Field measurements obtained at the 
EFEDA, European Field Experiment in a Desertification-threatened Area 
(Bolle et al., 1993) field experiment have been analyzed on the nature of the 
relationship between surface temperature and surface heat fluxes (Pelgrum 
and Bastiaanssen, 1997). It is shown that there is no statistical significant 
linear relationship between the surface temperature and any of the surface 
fluxes. As a consequence low spatial resolution remote sensing data may not 
be used a priori in surface energy balance algorithms. It also means that in 
table 1.1 only situation 3) and 4) are applicable in the case of our specific 
research question. 

In order to find the right aggregation procedure it becomes important to 
know whether low resolution remote sensing data will be sufficient to capture 
the overall variability present in the landscape. This should be checked with 
high resolution remote sensing data from which one possibly can infer length 
scales of land surface processes. In this thesis a technique to infer process 
scales from remote sensing data will be discussed. In the next paragraph the 
outline of this thesis will be given. 
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1.4 Outline 

In Chapter 2 the parameterization of land surface processes in land surface 
models will be discussed. Special interest will be paid to the parameteri­
zation of the evapotranspiration. Also the algorithm SEBI (Menenti and 
Choudhury, 1993) to derive the evaporative fraction A from remote sensing 
data will be presented. The SEBI algorithm uses the land surface charac­
teristics surface albedo, ro, surface temperature, To and vegetation index, 
NDVI as input data. These land surface characteristics can be derived 
from remote sensing data. The SEBI algorithm will be used to derive A at 
different spatial scales, ranging from pixel scale to the scale of the NWPM 
models. 

In Chapter 3 the theory behind the aggregation of land surface character­
istics and model results derived from remote sensing data will be discussed. 
A general framework is presented and the sources of the error due to ag­
gregation are identified. Also two approaches to quantify the error due to 
aggregation are presented. The first approach is based on the lineariza­
tion of the underlying model using Taylor series. The second approach is 
geometrical and uses the convex hull to quantify the possible error due to 
aggregation. 

In Chapter 4 a technique to quantify the length scales of land surface 
characteristic by means of wavelets will be presented. First the mathematics 
behind the wavelets is explained. A measure for the length scale of land 
surface characteristics is given by the wavelet variance. Several wavelets will 
be tested on their use for detecting length scales. 

In Chapter 5 three data sets are described. The first data set is obtained 
at the Barrax site during the EFEDA experiment in 1991 and consists of 
high resolution airborne imagery. The Barrax area is characterized by the 
presence of pivot irrigation systems in an arid area, resulting in a large 
spatial variability of the land surface. The second data set originates from 
the Jornada Long Term Ecological Range. This research area is located north 
of Las Cruces, New Mexico, USA, and characteristic of a natural landscape 
under a arid climate. High resolution airborne imagery will be used for the 
analysis. The third data set concerns the Central part of the Netherlands. 
This landscape is characteristic of a mainly agricultural landscape under 
a moderate humid climate. For the analysis use will be made of Landsat 
imagery recorded in the summer of 1995. 

Chapter 6 will describe the length scale analysis using wavelet analysis 
for the three data sets presented in Chapter 5. The wavelet variance will 
be used as a measure for the length scale. The dominant length scale for 
all three regions will be identified for the land surface characteristics: ro, To 
and NDVI. Temporal variability for those three land surface characteristics 
will be analyzed using the four Landsat images of the Netherlands. 

In Chapter 7 the framework developed in Chapter 3 to quantify the error 
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due to aggregation of heat fluxes and evaporative fraction calculated with the 
SEBI algorithm will be applied for the three data sets presented in Chapter 
5. A comparison between the linearization approach and the convex hull 
approach identified in Chapter 3 will be made 

Finally the summary and conclusions will be presented and a perspective 
for future research will be given. 
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Chapter 2 

Parameterization of land 
surface processes 

In this Chapter the theory and modeling of land surface processes will be 
discussed. Special attention will be paid to evapotranspiration. First the 
surface energy balance is introduced, followed by a definition of the Atmo­
spheric Boundary Layer (ABL). Solutions to estimate the evapotranspiration 
flux density will be presented for the different layers within the ABL. Finally 
a solution will be given that is valid for the whole ABL. Based on the latter 
the Surface Energy Balance Index (SEBI) methodology has been developed. 
This methodology uses as main input the remotely sensed land surface char­
acteristics of surface albedo ro, surface temperature To and NDVI. 

2.1 Surface energy balance 

The surface energy balance constraints the transfer of energy between the 
earth surface and the atmosphere: 

Q* = GQ + H + \E (2.1) 

Where Q* is the net radiation flux density (W m~2) received at the surface, 
being divided into the soil heat flux density Go (W m - 2 ) , the sensible heat 
flux density H (W m - 2 ) and the latent heat flux density XE (W m - 2 ) . The 
latent heat of evaporation A (J kg - 1) is the amount of energy needed for the 
evaporation E(kg m - 2 s - 1 ) . The signs of the flux densities {Go, H, XE} are 
positive when directed away from the surface. Net radiation flux density is 
positive when directed towards the surface. In this formulation the surface 
is defined as a plane rather than a layer, so heat storage is neglected. 

Net radiation flux density can also be written as a sum of radiation terms, 
i.e. the radiation balance: 

Q* = K^-K^ + L^- tf (2.2) 
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The upward radiation terms are denoted with 1" and the downward radiation 
terms with -K The four radiation terms are: 

• K^, incoming shortwave radiation flux density (W m - 2 ) . K^ has direct 
and diffuse components. The diffuse component is due to scattering 
by molecules and suspended particles and, in cloudy conditions, to 
reflection from clouds (Garrat, 1992). The transmissivity r (-), is the 
ratio between the direct shortwave radiation arriving at the surface and 
the direct shortwave radiation present at the top of the atmosphere. 

• if", outgoing shortwave radiation flux density (W m~2). The surface 
does not behave as a lambertian reflector, meaning that the reflection 
changes with view angle. The surface albedo ro (-) is the ratio of the 
outgoing shortwave radiation flux densitiy and the incoming shortwave 
radiation flux density. The surface albedo can range from 0.05 for water 
to 0.95 for fresh snow. For vegetation ro varies approximately between 
0.10 and 0.20 and depends on the type and state of vegetation. Net 
shortwave radiation flux density K* (W m - 2 ) is defined as: 

Km=K±-K* = (l- r0)K± (2.3) 

• if, outgoing longwave radiation flux density (W m - 2 ) . The Stefan 
Boltzmann law describes the longwave radiation flux density emitted 
from the earth surface: 

Lt = e0aT* (2.4) 

where To is surface temperature (K) and eo is surface emissivity (-). 
The Stefan Boltzmann constant a has a value of 5.67* 10~8 W m~2 

K - 4 . For natural surfaces eo varies between 0.9 and 1.0. 

• L^, incoming longwave radiation flux density (W m - 2 ) which is the 
result from emission of the atmosphere including clouds. Also here the 
Stefan Boltzmann law can be applied to calculate L^: 

L^e'oT* (2.5) 

where e' is apparent emissivity (-) and Ta is the air temperature (K). 
The value of e' ranges between 0.6 and 0.9 based on the concentration 
of water vapour and dust in the atmosphere and the thermal stratifi­
cation. 

2.2 Turbulent surface energy flux densities 

The sensible and latent heat flux densities, H and XE, are turbulent flux den­
sities. Turbulent processes are responsible for the vertical transport of heat 
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and vapor in the atmospheric boundary layer, as well as in other directions. 
Within the ABL land surface processes influence most of the atmospheric 
processes. Garrat (1992) gives the following practical definition for the at­
mospheric boundary layer: 

The atmospheric boundary layer is the layer of air directly above 
the Earth's surface in which the effects of the surface are felt di­
rectly on time scales less than a day, and in which significant flux 
densities of momentum, heat or matter are carried by turbulent 
motions on a scale of the order of the depth of the boundary layer 
or less. 

The atmospheric boundary layer itself also can be divided into several 
distinct layers. Figure 2.1 shows a schematic boundary layer based on de­
scriptions by Garrat (1992) and Brutsaert (1982). The ABL is divided into 
two large layers: 

• The inner surface layer where the structure of the flow is mainly de­
pendent on land surface characteristics. It is a fully turbulent layer 
where the vertical turbulent flux densities do not change with height 
when a homogeneous surface is considered. For a heterogeneous sur­
face the vertical length scale also depends on the horizontal length scale 
(McNaughton and Raupach, 1996). 

• The outer layer where the structure of the flow is less dependent on the 
nature of the surface but where the Coriolis force due to the rotation 
of the Earth is more important. Throughout the outer layer potential 
temperature 6 (K) and specific humidity q (kg kg - 1) are constant. 

The potential temperature 6 is the temperature where the temperature 
variations due to changes in pressure are removed: 

* = T ( ? ) ^ (2-6) 
where T is temperature (K), p is pressure (Pa), po is a reference pressure 
(usually taken to be 100 kPa), Rd is the gas constant for dry air (287.04 J 
k g - 1 K - 1 ) and cpd is specific heat for dry air (1004.67 J k g - 1 K _ 1 ) . 

The transition between inner and outer layer is not abrupt but char­
acterized by an overlapping region. Within the inner layer an interfacial 
(roughness) layer can be distinguished. This layer is situated directly on top 
of the land surface and is barely higher than the roughness elements present 
on the land surface. Within the interfacial layer molecular diffusion is an 
important process by which heat and mass are exchanged between surface 
and air. 
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Figure 2.1: Schematic division of the Atmospheric Boundary Layer (ABL). 

The height h (m) of the atmospheric boundary layer can vary from a few 
hundred meters in stable conditions (e.g. nighttime conditions) up to several 
kilometers in strong convective conditions (e.g. deserts in mid-summer). 
The surface layer height amounts usually to 10% of the total atmospheric 
boundary layer height. 

The transfers of vapor, momentum and heat within the ABL are turbu­
lent processes. Two major driving forces of turbulence can be distinguished. 

• Shear: Roughness elements on the land surface cause changes in wind 
speed perpendicular to the surface. If the gradient of wind speed with 
height becomes too large the flow will become unstable and will cause 
turbulence. This turbulence is referred to as either mechanical turbu­
lence or forced convection. 

• Buoyancy: When the sun is heating the surface, the temperature of 
the air just above the surface will become higher than the overlying air 
temperature. Because the air density pa (kg m - 3 ) decreases by increas­
ing temperature, the warm air at the surface tends to rise, while the 
overlying colder air, due to gravity, tends to sink. To correct the po­
tential temperature for gradients in air density with height the virtual 
potential temperature 9V (K) (for unsaturated air) is introduced: 

0V = (1 + O.61g)0 (2.7) 
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The atmosphere where buoyancy is not present is called neutral. When 
buoyancy is present the atmosphere can either be stable or be non stable. 
The atmosphere is called stable when the virtual potential temperature at 
the surface 6VQ is lower than the virtual potential temperature of the over­
lying surface layer 9V (e.g. nighttime conditions). The atmosphere is called 
unstable when 6VQ is higher than 9V (e.g. convective conditions). 

Turbulence can be described using a notation developed by Reynolds 
(1894): the turbulent variables are decomposed into a mean and a turbulent 
fluctuation. The turbulent fluctuation is the deviation from the mean. For 
instance the turbulent variable A can be described as: 

A = A + A' (2.8) 

where A is the value of a certain turbulent variable at time t, A the average 
of A over a certain time period and A' the deviation of A at time t. With 
meteorological measurements A is usually averaged over a period of 15 to 30 
minutes. An important property of the Reynolds' notation is, when A and 
B are both turbulent variables: 

{AS) = AB + A'B' (2.9) 

The last right hand side term is equal to the covariance of the two turbulent 
properties A and B. Hence the average of the product of two turbulent 
properties introduces an extra term. 

Evaporation flux density E can be described as the product of the vertical 
component of the wind speed w (m s_ 1) , with specific humidity q (kg kg - 1) 
and moist air density pa (kg m - 3 ) : wpaq (kg m~2 s_ 1) . Actually with E 
being a turbulent property, the average value E is a better indicator of the 
process 

E = wp^q = wp^q + (wpa)'q' (2.10) 

Using some of the properties of Reynolds' notation, E can be rewritten as: 

E = paw'q1 (2.11) 

Replacing q by Cp(T — To) where cp is the specific heat (J kg - 1 K_1) and 
further assuming that To is equal to 0 yields this definition for the sensible 
heat flux density H: 

H = p-ac^W (2.12) 

For turbulent conditions the equations describing the change of temper­
ature, humidity and wind speed in time are impossible to solve analytically. 
Numerical solutions are practically not feasible, that is why the Reynolds 
notation has been introduced. The problem with the description of the tur­
bulent flux densities by means of the Reynolds notation is the introduction 
of extra terms (see equation 2.9). The number of unknowns is therefore not 
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longer equal to the number of equations, which makes it impossible to solve: 
the closure problem. The closure problem is a general problem in turbulence 
studies. To solve the equations describing turbulence is only possible when 
another set of equations based on a reduced number of variables is being 
introduced. Dimensional analysis can be applied to reduce the number of 
variables. 

2.3 Flux profile relationships for the surface layer 

Dimensional analysis identifies the relevant physical properties of a process. 
These properties are organized into a reduced number of dimensionless quan­
tities. Dimension analysis establishes the possible existence of a functional 
relationship between these dimensionless quantities. The function itself still 
has to be determined by experiment (Brutsaert, 1982). The technique of 
dimensional analysis can also be used to describe the profiles of specific hu­
midity, wind speed and temperature in the lower part of the boundary layer 
i.e. the inner layer. The relationships derived for this particular problem are 
called flux profile relationships. 

Generally the wind profile is first described, being a prerequisite for the 
understanding of turbulent transfer of water vapor and heat. In the case of 
a neutral surface layer (no buoyancy) the wind profile can be described by: 

dz~k(z-d0)
 [ZA6) 

This relation is also known as the logarithmic wind profile law. The 
gradient of wind speed u (m s_1) with height z (m) is described by the 
friction velocity u* (m s_1) , which is a measure of shear stress while the 
von Karman constant k (-) is usually taken as 0.41. The zero displacement 
height do (m) decreases with decreasing specific leaf area density and becomes 
negligible at low values of specific leaf area density (Inoue, 1963). 

The wind speed at reference height z, u can be described by integrat­
ing equation 2.13 from the roughness length for momentum ZQm (m) to the 
reference height z: 

s=£ ln(^*) (2J4) 
Physically zom can be defined as the height above the surface where the 
logarithmic wind speed profile decreases to 0. 

Equations 2.13 and 2.14 are only valid for neutral conditions in the sur­
face layer, because only turbulence generated by shear stress is considered. 
Under non-neutral conditions also the turbulence generated by buoyancy 
should be included. Monin and Obukhov (1954) introduced a dimensionless 
variable where the effects of both shear stress and buoyancy on turbulence 
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are included: 

« = ^ (2-15) 

The factor £ (-) is the stability parameter, and L is the Monin-Obukhov 
length (m), a length scale for mixed convection. The Monin-Obukhov length 
L is defined as the ratio of mechanical production of turbulent kinetic energy 
(shear stress) divided by the thermal convective production (buoyancy) of 
turbulent kinetic energy: 

L = u~,-aV\ = r (2-16) 
kg[(H/0Cp)+OME] v 

where g is the acceleration due to gravity (m s - 2 ) . With £ one can see that 
turbulence depends on the following physical properties: the height above 
the surface level, {z, do}; the shear stress at the surface {u*, pa}; buoyancy 
{g, H, 9, Cp, E}. The von Karman constant k and the minus sign were 
introduced for convenience. The physical meaning of the Monin Obukhov 
length is that z = — L should be equal to the height in the boundary layer 
where the contribution of shear stress to turbulence equals the contribution 
of buoyancy to turbulence. However this is not completely true because the 
assumption of logarithmic profiles does not hold for the whole atmospheric 
boundary layer. The Monin Obukhov length is therefore somewhat larger 
than aforementioned height (Brutsaert, 1982). A typical range of \L\ is be­
tween 1 and 200 m. Note that L is negative in case of an unstable atmosphere 
and positive in the case of a stable atmosphere. 

The wind profile for the non-neutral surface layer can now be described 
as: 

s = w^h)M0 (217) 

The Monin-Obukhov function for momentum transfer, <f)m{£) (-), corrects 
the wind profile for buoyancy. 

For the heat and water vapor profiles equations similar to equation 2.17 
have been developed on the basis of the stability parameter £: 

JE a* 

s-s«o (2'18) 

s=f>> <2-"> 
where <t>h(Q and (j>e{£) are the Monin-Obukhov functions for heat and water 
vapor transfer respectively. The temperature scale 0* (K) and humidity scale 
q* (kg kg - 1) are defined as: 

0* = ^— (2.20) 
PaCpU* 
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q* = — (2.21) 

Combination of equations 2.18-2.19 and 2.20-2.21 leads to the definition 
of the sensible heat and evaporation flux densities: 

H=-pacvKh~z (2.22) 

E = -paKe^ (2.23) 

where K^ and Ke are the turbulent exchange coefficients for heat and water 
vapor respectively (m2 s_1): 

* - £ & * -£® ( 2 -2 4> 
Several large field experiments on homogeneous land surfaces (Crawford, 

1965; Dyer, 1967; Yaglom, 1977) have been conducted to determine (f>h(Q 
and </>e(£) with the expressions developed by Dyer and Hicks (1970) being 
the most frequently used. A distinction is made between unstable and stable 
conditions. 

unstable conditions (£ < 0) 0A(f) = # e ( 0 = (1 - 1 60 - 0 ' 5 (2-25) 

stable conditions (£ > 0) <f>h(£) =M0 = 1 + 5£ (2.26) 

Using equations 2.22 and 2.23 to derive H and XE is not recommended, 
because measurement of derivatives is difficult to perform in practice. A 
better approach is to discretize equations 2.22 and 2.23, by integrating from 
z\ to Z2, where zi is defined at a higher level than z\. 

n = -paCp (2.27) 

E= *M-*W (2.28) 

The resistance to heat transfer, r^ (s m_ 1) and the resistance to water va­
por transfer, re (s m

_ 1) are defined as the integral of the inverse turbulent 
exchange coefficients K^ and Ke from z\ to zf. 

fZ2 dz f*2 dz 

"-L ^ r-=L * (2-29) 
The Monin-Obukhov functions are also integrated from 0 to £ leading to 

a stability correction t/jx: 

ip3 -l>x (0 = f 
JO 
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The subscript x can be replaced by either h or e. Using equations 2.25 and 
2.26 leads to the following definitions for the integrated stability functions 

unstable conditions (£ < 0) iph (0 =ipe (£) = 2 In 

with x = (1 - 16£)°-25 

1 + x2 

(2.31) 

stable conditions (£ > 0) iph (£) =ipe (£) = -5£ (2.32) 

Inserting the definitions of the stability corrections equations 2.31 and 
2.32) in equations 2.27 and 2.28 yields the following definition of the resis­
tance to heat transfer and of the resistance to water vapor transfer: 

NS3)-*(-!*)+*("!*)] <233) 
r" = h? <2'33) 

r= _ H^)-*^)+*'(^)\ (2.34) 
ku* 

Because the stability function ij) is equal for heat and water vapor transfer, 
r/, and re are equal. Sometimes this common resistance is also referred to as 
the aerodynamic resistance ra (s m

_ 1 ) . Note that the above parameterization 
is only valid for the surface layer, which occupies only the lowest 10 percent 
of the atmospheric boundary layer (Brutsaert, 1982). 

2.4 Flux profile relationships for the atmospheric 
boundary layer 

Several attempts have been made to formulate bulk transfer coefficients for 
heat and mass for the whole atmospheric boundary layer. Basically two 
different techniques of determining bulk transfer equations for the whole 
ABL can be distinguished: 

• Asymptotic matching. With this technique the profiles of the outer 
layer and the surface layer are being matched (Csanady, 1967; Black-
adar and Tennekes, 1968). 

• Simple Joining. Joining the profile of the outer layer and the surface 
layer derives the bulk transfer coefficients (Brutsaert and Mawdsley, 
1976). 

In this thesis the latter technique will be discussed. First the profiles for 
the outer layer are introduced. 
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2.4.1 Mean profiles in the outer layer 

A formal extension of the Monin-Obukhov model is proposed, but the Monin-
Obukhov (j> functions do not depend only on £ in the outer layer. Therefore 
another set of dimensionless variables has to be introduced. Those dimen-
sionless variables are composed of physical properties whose effect on the 
description of the mean profiles is not negligible at higher elevations. 

The first physical property is the height of the boundary layer. Two 
concepts are in use to describe the boundary layer height: 

• Rotational height scale hr (m). This thickness scale is derived for a 
steady, horizontally homogeneous, and neutral boundary layer. The 
rotational height scale is defined by: 

cu* 

m 

hr = Y\ (2-35) 

which takes into account the Coriolis forces by means of the parameter 
/ (s_1). This Coriolis parameter represents the influence of the Earth's 
rotation and depends on the latitude. The value of constant c (-) is still 
a point of discussion. Values for c range from 0.15 to 0.40 are given in 
the literature, with the majority of values around 0.20. Garrat (1992) 
provides an overview of values cited in literature. 

Observed height scale hi (m). The rotational height scale hr has some 
major drawbacks. Deardorff (1972) pointed out that even under slightly 
unstable atmospheric conditions the boundary layer height should be 
observed, rather than by calculating hr. So whenever possible mea­
sured profiles of mean wind, temperature and specific humidity should 
be used to infer the boundary layer height hi. 

The other physical property that has to be taken into account for the 
outer layer is that the pressure gradient may change with height. The ver­
tical gradient of the horizontal pressure gradient, also known as baroclinity, 
affects the turbulence structure. The baroclinicity is related to the horizontal 
temperature gradients by the thermal wind equations: 

(2.36) 

* ITS, <2"37> 
where ug and vg are the x and y components of the geostrophic velocity G 
which is the steady horizontal flow along the isobars. 

Six variables for the surface boundary layer have been distinguished 
{z — do, L, hr, hi, dug/dz, dvg/dz } which should be transformed to five 
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dimensionless variables. Several combinations are possible; one of those pos­
sibilities is this parameterization: 

_ {z-dp) _ hj _hj _ldug2 _ldvg2 

This combination is suitable when the observed boundary layer height hi is 
the predominant thickness parameter. With these parameters the similarity 
functions <f> for the profiles of water vapor and air temperature are described 
by: 

ku*{z-do)padq 
= <t>be [m ,fii,VQ,Pxi,Pyi) (2 -39) E dz 

ku*(z - do)paCpdd 
= fohiVu /•*», "0, Pxi, Pyi) (2-40) 

H dz 
The subscript b stands for boundary layer. Integration of the equations 2.39 
and 2.40 lead to the following laws for the mean profiles: 

9 * - s = - f e ^ - * * ( 2 - 4 2 ) 

where qh and 9h are the specific humidity and potential temperature at the 
top of the boundary layer. Formulations of the functions <&&e and $6/, will 
not be discussed here. 

2.4.2 Mean profiles for the atmospheric boundary layer 

As stated before the procedure of simple joining the profiles for the outer 
layer and surface layer will be presented. The hypothesis is that within the 
overlap region between both layers both profiles are valid. So by joining 
equations 2.27 and 2.28 which are valid for the surface layer and equations 
2.41 and 2.42 which are valid for the outer layer, qh and 9h in the overlap 
region can be eliminated. The result is a relationship between the surface 
flux densities E and H and the remaining external parameters: the values 
of specific humidity and potential temperature at both the surface and the 
boundary layer height, indicated by the subscripts s and h respectively: 

«•"«* = V^TT^n (7-) ~ D^ t2"43) 
avku*pa \Z0vJ 

0.-eh = - r ? [In (—) - C] (2.44) 
ahku*paCp \zohJ 

where ah (-) and av (-) are constants being equal to 1, ZQV (m) is the roughness 
length for vapor, zoh (m) is the roughness length for heat, C and D are 
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similarity functions. Both roughness lengths can be visualized as the level 
above do where q or 6 would assume its surface value if the logarithmic profile 
were extrapolated downward outside its actual range of validity (Brutsaert, 
1982). 

Similar to equation 2.27 and 2.28 an alternative expression for the aero­
dynamic resistance ra (s m

_ 1) can be derived, ignoring ah and again assum­
ing that the aerodynamic resistance to heat, r^ is equal to the aerodynamic 
resistance to vapor rv: 

In (-*-) - C 

The similarity function is labeled C of which several descriptions are available 
in literature. Yamada (1976) developed a definition of C: 

d = 12 - 8.335 (1 - 0.03106w)~s (2.46) 

where fa = hi/L. The subscript i in equation 2.46 is added because the dom­
inant boundary layer variable in this formulation is the observed boundary 
layer height, hi. All other dimensionless variables are ignored. 

2.5 Combination equation for evaporation 

Another way of solving the latent heat flux density at the Earth's surface is 
to combine the energy balance (equation 2.1) with the formulation derived 
by the Monin-Obukhov similarity theory (equations 2.27 and 2.28) leading 
to a combination equation for the latent heat flux density. An important 
assumption is that the stability functions for vapor and heat are equal, which 
implies that r^ and re are equal and as mentioned before are referred to as 
ra, the aerodynamic resistance, see equations 2.33 and 2.34. The following 
set of equations have to be combined: 

Q* = Go + H + \E (2.47) 

H^paCp1^- (2.48) 

7 ra 

Note that the temperature T has replaced potential temperature 0 because 
in the surface layer they are practically the same. The subscript 0 refers to 
the surface. Also the latent heat flux density is written as a function of the 
gradient of vapor pressure e (Pa) instead of specific humidity q. In the above 
formulation 7 is the psychrometric constant (Pa K_1) being defined as: 

^omx <2-50> 
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In a standard atmosphere (T=293 K, p = 101325 Pa) 7 has a value of 67 Pa 
K"1. 

The three equations 2.47, 2.48 and 2.49 have four unknowns (H, E, eo 
and To). An additional equation is needed to solve above set of equations. 
Penman (1948) found such a relationship by assuming that the surface was 
covered with water. Therefore the surface vapor pressure eo is equal to 
the saturated vapor pressure e* (Pa), which is a function of the surface 
temperature: 

e0 = e* (T0) (2.51) 

Still a problem remains because equation 2.51 is non linear. Penman 
(1948) used a Taylor-series to linearize equation 2.51 by removing all non­
linear terms from the Taylor-series: 

e*(T0) « e*(T) + s(T0 - T) (2.52) 

where s is the derivative of e* at temperature T, sometimes referred to as the 
slope of the vapor pressure curve (Pa K _ 1 ) . Substituting equations 2.51 into 
equation 2.49 and combining those with 2.47 and 2.48 yields the Penman 
equation: 

XE = *r*«r-Go) + P*pV-°) (2.53) 
rail + s) ' 

Equation 2.53 is only valid for open water surfaces or a surface fully covered 
by wet vegetation. Monteith (1965) has elaborated the Penman concept 
to make it also valid for vegetation that is not completely wet. In this 
parameterization the vegetation is represented by a big leaf. Within this 
leaf, stomata are present which regulate the evaporation by adjusting the 
size of their aperture. The aperture depends on air temperature, incoming 
shortwave radiation, soil moisture availability and vapor pressure deficit. An 
extra resistance has been introduced to compensate for those effects: rs the 
surface resistance (s m _ 1 ) . Two resistances in series, ra and rs now control 
the latent heat flux density and equation 2.49 changes into: 

\E = esEE«LI± (2.54) 
7 ra + rs 

This definition of the latent heat flux density leads to the Penman-Monteith 
equation: 

XE = *r*Ur-Go)+p*c,V-e) 
ra{l + s)+jrs 

Many land surface models use equation 2.55 to calculate the latent heat 
flux density. Remote sensing data can be used to get an areal estimation of 
the latent heat flux density. The next paragraph describes an algorithm that 
solves the energy balance based on a modified form of the Penman-Monteith 
equation using ro and To as input, where ro and To are derived from remote 
sensing data. 
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2.6 Surface Energy Balance Index (SEBI) 

The Penman-Monteith equation (equation 2.55) forms the basis of the surface 
energy balance index (SEBI) method (Menenti and Choudhury, 1993). SEBI 
uses a modified form of the Penman-Monteith equation together with the 
formulation of the mean profiles for the whole atmospheric boundary layer 
to map the evapotranspiration on a regional basis. 

Within SEBI the temperature difference between surface and air, To — Ta 

is chosen as the indicator of actual evaporation. The Penman-Monteith 
equation can be used to derive theoretically values of To — Ta for zero and 
maximum evaporation. The observed To — Ta can then be used to estimate 
the actual evaporation. Substituting equations 2.48 and 2.55 into 2.1 gives 
the following definition of To — Ta in relation to other variables relevant to 
land surface evaporation: 

T o - Ta = [{ra + r ' ) /^(Q* ~ G°) ~ W^* ~ e ) (2.56) 
1 + s/j + rs/ra 

In Equation 2.56 rs can be seen as an internal resistance to evaporation. The 
evaporation process at the land surface in the case of actual evaporation does 
not take place at the land surface itself, but at an evaporation front. This 
evaporation front is the interface between liquid water and moist air. The 
moist air is vapor saturated in this case. Two flow regions results: one 
between evaporation front and land surface and one between land surface 
and some reference level in the atmosphere (Menenti and Choudhury, 1993). 
The first flow region is constrained by rs, the second by ra. Only when the 
evaporation front lies at the land surface, i.e. when rs = 0, there will be 
maximum evaporation Emax. Note that in this thesis maximum evaporation 
is not the same as potential evaporation. Potential evaporation is defined as 
the evaporation of a reference surface fully covered by vegetation and with 
no moisture stress. The maximum evaporation is defined as the evaporation 
when A = 1, and is therefore dependent on the amount of net available 
energy present at the surface. 

Equation 2.56 can be used to calculate the limits of To — Ta correspond­
ing with maximum and zero evaporation. When the surface resistance rs 

becomes 0 there will be maximum evaporation. The associated temperature 
difference (T0 - Ta)max is: 

rrp T M [ra,max/paCp](Q* - G0) - (lft){e* - e) 
U o - J a W - l + s /7 

When the surface resistance rs becomes infinite, there will be zero evapora­
tion. The associated temperature difference (To — T0)o will then be: 

( T 0 - T a ) 0 = ^ ( Q * - G 0 ) (2.58) 
Pa,Cp 
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Two new versions of the aerodynamic resistance are introduced, rayTnax, the 
aerodynamic resistance coupled with maximum evaporation (s m - 1 ) and ra>o, 
the aerodynamic resistance coupled with zero evaporation (s m _ 1 ) . 

The ratio of actual and maximum evaporation, i.e. the evaporative frac­
tion A, can now be written as : 

A=^- = 1-HZHHaX (2 5 9) 
J-1 max " 0 -Umax 

In Equation 2.59 Hmax is defined as the sensible heat flux density at maxi­
mum evaporation (W m - 2 ) and HQ as the sensible heat flux density at zero 
evaporation (W m - 2 ) . Using Equation 2.48 the temperature differences can 
be used to derive A: 

A = _ i _ V^O ~ -*a) lra ~ V-̂ 0 ~ ^oJroax / r a , m o g / „ gQ\ 

^max [J-0 ~ -*a)o /ra,0 ~ [J-0 ~ ^a)max lra,max 

Actual evaporation is a simple function of surface temperature only if 
every other land surface property remains constant. However Ta changes 
with To and is not valid to use as a constant in equation 2.60. Therefore 
(Menenti and Choudhury, 1993) proposed using the potential temperature 
at boundary layer height, Oh instead of Ta, because 9h is constant for a 
large area and does not change with To. Figure 2.2 shows the possibility 
of using (remotely) observed To values together with theoretically derived 
values of To — Ta for maximum and zero evaporation, (To — Ta)max and 
(To — Ta)0 respectively, to scale the land surface evaporation. This is the 
general principle behind SEBI. 

In equation 2.60 To can be derived from thermal infrared remote sensing 
data. Still besides remotely sensed To a lot more additional input is needed 
to solve equation 2.60. In the remainder of this section for each of the terms 
presented in equation 2.60 will be explained how to derive them, using either 
remote sensing data or field measurements and assimilation data sets. The 
variables derived from field measurement and assimilation data sets are said 
to be constant for the area under consideration. 

An assimilation data set is generated from two sources of input data. For 
a large number of atmospheric variables, observations are mixed with output 
from numerical weather prediction models or global climate models. 

In order to discriminate between variables who have to be measured in-
situ and those who have to be derived from remote sensing data the following 
notation is used. Variables typeset in bold face have to be obtained from 
field measurements or data assimilation. The spatial variables which can be 
derived from remote sensing data are denoted with (x,y). At the end of this 
section an overview will be given of all input variables needed to run SEBI. 

• (To - Ta) 
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Figure 2.2: Illustration of the principle behind the SEBI algorithm. The 
observed temperature difference, (To — Ta)0j,s is used as an indicator for 
the evaporative fraction, A. The two theoretically derived temperature dif­
ferences, (To — Ta)o and (To — Ta)max for respectively zero and maximum 
evaporation give the natural range for A. 
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First the observed surface temperature To should be converted to po­
tential temperature 9 using equation 2.6. Then the observed temper­
ature difference reads: 

( \ U.280 

pj ~ °h (261) 

The reference pressure po is 100 kPa. 

• ra,0 a n d ra,max 

The Monin-Obukhov relationships derived for the whole boundary 
layer (see paragraph 2.4, equation 2.45) should be used to calculate 
rafi and ra,max- I n equation 2.45 the similarity function Ci is a func­
tion of the dimensionless variable m = hi/L). Values for m which are 
used to define the maximum and zero evaporation are: 

Maximum evaporation: m = 0 
Zero evaporation: /XJ = —150 

A large negative value of [n is sufficient instead of a value of — oo , 
because dCi/d/n goes asymptotically to 0. Ci is now given by equation 
2.46. The two resistances are defined as: 

ra,0 -

ra,max = 

\z0,hJ 

ku* 

\ Zo,h J 

- Cifl 

^i,max 

* 

(2.62) 

(2.63) 

The roughness length for heat, ZQ^ is parameterized in SEBI using 
the NDVI. First the roughness length for momentum, ZQ^m is derived 
using an empirical relationship with the NDVI, zo,m is then converted 
to ZQth using a factor fZo: 

M ( 1 fNDVI(x,y)\b°\ , n „ A . 
zo,h = fzozo,m = U \aQ + - { NDVImax ) j (2-64) 

where NDVImax is the maximum NDVI value possible (as 0.9), ao — 
0.005 m and bo = 2.5 m. The last two constants are still a point of 
discussion. The factor fZo accounts for the difference between zo,m and 
Zo,h and is highly variable for different land surfaces. 
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• (To - Ta)0 

The temperature difference at zero evaporation, (To — Ta)o is given by 
equation 2.58. Only the net available energy Q* - Go is still unknown. 
Net radiation flux density Q* is given by: 

Q* = (1 - r 0 (s , y)) K± + L±- eaT0(x, y)A (2.65) 

where the surface emissivity EQ is given by van de Griend and Owe 
(1993): 

e0 = 1.009 + 0.047 In (NDVI(x,y)) (2.66) 

The ratio of Go and Q*, fc0 is described as: 

/ NDVI(x,y)\ 
fa0=c0 + (c1-c0)[l- NDVImax) (2-67) 

where CQ = 0.05 the ratio of Go and Q* for vegetation (Monteith, 1973) 
and c\ = 0.30 the ratio of Go and Q* for bare soil (Fuchs and Hadas, 
1972). The net available energy, Q* - Go can then be written as: 

Q* - Go = (1 - fGo)Q* (2-68) 

• [J-0 ~ J-a)max 

The temperature difference at maximum evaporation is given by equa­
tion 2.57. In comparison with equation 2.58 an extra term is included: 
the vapor pressure deficit (e* — e). The saturated vapor pressure e* is 
given by: 

e* = e S i 0 1 0 ^ (2.69) 

where a and b are constants, respectively 7.5 and 237.3 and eS;o is the 
saturated vapor pressure at 273.15 K being 610.7 Pa. The average 
temperature T (°C) is defined as the average temperature of 6h and 
T0: 

T = 0.5 *{0h + To(x,y))- 273.15 (2.70) 

Actual vapor pressure e is given by: 

e = PhQh^- (2.71) 

where Ry is the gas constant for moist air (461.5 J k g - 1 K - 1 ) and 
Ph (Pa) and qh (kg kg - 1) are respectively the pressure and specific 
humidity at boundary layer height hi. 

30 



Finally the actual aerodynamic resistance ra can be estimated using: 

\ Z0,h J In £ - ) - C i 

The stability factor C{ is interpolated between C^o and Citmax by 
means of To — Ta: 

n - n J_ (ro ~ Ta) ~ (ro ~ Ta)o in n \ In 7t\ 
(J-O - ±a)max ~ UO ~ J-aJO 

In table 2.1 the variables which have to be estimated using either field 
measurements or data assimilation data sets are given. In Chapter 7 three 
case studies on the use of SEBI are presented. 

Table 2.1: Areally constant input variables for SEBI 

Symbol Description Unit 
hi observed boundary layer height 
Oh potential temperature at boundary layer height K 
Ph air pressure at boundary layer height Pa 
qh specific humidity at boundary layer height kg kg - 1 

ps surface pressure Pa 
u* friction velocity m s"1 

fZo ratio between zo,m and z0,h 
K^ Incoming shortwave radiation flux density W m - 2 

L^ Incoming longwave radiation flux density W m~2 
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Chapter 3 

Spatial aggregation of 
radiometric observations 

In this chapter the aggregation of radiometric observations will be discussed. 
In this thesis the central objective is: to derive input fields for land surface 
models (LSMs) using radiometric observations. The radiometric observa­
tions for this particular case will be replaced by satellite remote sensing 
data. These data will be used to derive the land surface characteristics 
surface albedo ro, surface temperature TQ and the Normalized Difference 
Vegetation Index NDVI. These land surface characteristics will be used as 
input for the SEBI model, thereby producing distributed maps of evaporative 
fraction A. 

The resolution of the satellite remote sensing is smaller than the LSM 
grid cell size. Therefore the remote sensing data have to be aggregated. The 
error due to aggregation from one scale level to another will be quantified 
using two strategies. The first strategy is only valid for continuous, weakly 
non-linear models; the second strategy is also valid for highly non-linear, 
discontinuous models as well. First two methods of aggregation for spatially 
distributed variables, (e.g. radiometric observations, remote sensing data, 
land surface characteristics) will be defined. 

3.1 Aggregation of spatially distributed variables 

The aggregation of spatially distributed variables for use in spatial models is 
not trivial. Aggregating results obtained from a spatial model from the local 
scale to a large(r) scale by means of linear averaging can introduce errors. 
Therefore the results have to be aggregated in a proper way. Already in 
Chapter 1 the two aspects which influence the aggregation of spatially dis­
tributed variables have been mentioned: the heterogeneity of the land surface 
and the non-linearity of the spatial model. In Figure 3.1 the aggregation of 
spatially distributed variables is illustrated. 
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Figure 3.1: Scheme illustrating the aggregation of spatially distributed vari­
ables. Path A (arrows 1,2 and 3) illustrates the aggregation of the results 
which are derived from a distributed model / using distributed input vari­
ables. Path B (arrows 4,5 and 6) illustrates the aggregation of input variables 
before use in an aggregated model F, thereby producing an aggregated re­
sult. The corresponding terms for the different parameters of the aggregation 
process for the case described in this thesis are given within brackets 
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Two different ways of aggregation from the local scale to a larger scale 
can be distinguished: 

• the aggregation of the results which are derived from a distributed model 
fusing distributed input variables (path A in Figure 3.1) and 

• the aggregation of input variables before use in an aggregated model F, 
thereby producing an aggregated result (path B in Figure 3.1) 

The aggregation of the results is illustrated by path A in Figure 3.1. 
A distributed model / uses spatially distributed input variables p(x,y) as 
input (Arrow 1). The spatially distributed input data p(x,y) consists of n 
variables: p{x,y) = \pi(x,y),p2{x,y),..,pn(x,y)], where n > 1. Figure 3.1 
shows an example with two variables n = 2. The results of the distributed 
model are denoted as f{p{x, y)) (Arrow 2). The distributed results f{p(x, y)) 
are then aggregated from the local scale to the large scale resulting in the 
aggregated result F (Arrow 3). 

Along path B in Figure 3.1, the spatially distributed input data p(x,y) 
are averaged from the local scale to the large scale by taking the arithmetic 
average, resulting in an averaged input p (Arrow 4). The averaged input p 
may consist of n averaged input variables: p = \pi,P2,--iPn]- The averaged 
input p is then used as input in the aggregated model F (Arrow 5). The 
aggregated model F produces the aggregated result F(p) (Arrow 6). 

F and F(p) will be the same if the distributed model is linear and/or 
the input data is completely homogeneous. When neither conditions are met 
a difference between F and F(p) will occur. This is the error due to spa­
tial aggregation by averaging spatially distributed variables. In this chapter 
the difference between both aggregated results will be quantified using two 
different strategies. 

The aggregation scheme to be applied for the aggregation of radiometric 
observations to derive input fields for land surface models is described now. 
The general terms in the scheme have to be replaced by more specific terms. 
Radiometric observations are the spatially distributed variables in Figure 
3.1. The local scale is equal to the resolution of the radiometric observation, 
whereas the large scale is equal to the size of the NWPM grid cell which is 
coupled with the LSM. The resolution of the radiometric observations ranges 
from several meters to kilometers, whereas the NWPM grid cell has a size 
of at least 25 x 25 km2. 

To obtain input for LSMs from radiometric observations the distributed 
model / is divided into two parts. In the first part the radiometric ob­
servations are converted by means of conversion algorithms to land surface 
characteristics such as surface albedo, surface temperature, vegetation index, 
surface roughness and surface emissivity. In the second part the land sur­
face characteristics are used as input for a LSM. The LSM will produce the 
surface energy balance for all pixels present in the image. As a result Figure 
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3.1 will become more complicated. Step 1 (denoted by arrow 1) is now split 
up into two. First for the conversion of the radiometric observations to land 
surface characteristics, afterwards for the surface energy balance algorithm. 

Both the conversion and the surface energy balance algorithm may be 
non-linear. In this thesis the local and large scale model, / and F, are 
assumed identical (identical equations). Therefore only the resolution of the 
observation will cause differences in F(p) at different spatial scales. 

The variability in the radiometric observations represents the variability 
present in the landscape. An important remark is that path A in Figure 3.1 
will only produce correct results when the total heterogeneity of the land 
surface has been captured by the radiometric observations. This means that 
the resolution of the observation should be (much) smaller than the length 
scale of the land surface processes. In Chapter 4 a technique for determining 
the length scale of a land surface process using remote sensing data will be 
discussed. 

The aggregation of the distributed high resolution radiometric obser­
vations F(p(x,y)) to F(Arrow 3 in Figure 3.1) should be consistent with 
fundamental physical principles, such as conservation of energy. If the vari­
able that is calculated by the surface energy balance algorithm is a flux 
density, then arithmetic averaging of all flux densities produces the correct 
aggregated flux density, because all energy released at the land surface is 
correctly added up. 

Since most land surface models are non-linear and the land surface is 
never completely homogeneous differences between F and F(p) are likely to 
occur. The quantification of the difference between F and F(p) is significant 
for the proper use of land surface models. If the difference is small and within 
reasonable limits then the model can easily be applied at all scales. When 
the difference is large the model should be applied only when the scale of 
the process is smaller or equal to the scale of the observation. In that way 
the total variability of the landscape can be captured and the individual 
observations can be considered homogeneous. Two aspects in determining 
the difference between F and F(p) have to be quantified: 

• 

• 

the influence of the non-linearity of the model on the difference between 
F and F{p) 

the influence of the land surface heterogeneity on the difference between 
F and F(p) 

In this chapter two different approaches for quantifying the above men­
tioned aspects will be discussed. The first approach is based on a lineariza­
tion of the land surface model by means of a Taylor expansion (Hu and Islam, 
1997). This approach is only valid for continuous functions with a limited 
degree of non-linearity. The second approach is based on computational ge-
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ometry, more precisely the concept of convexity (Raffy, 1994) and is valid 
for non-continuous functions as well. 

3.2 Aggregation analysis by linearization 

In the remainder of this chapter the notation presented in Figure 3.1 will be 
used. 

3.2.1 Mode l w i th one variable (n = 1) 

At first the simplest case will be considered where the model F depends on 
only one distributed variable p(x,y)(n = 1). Note that in this case p(x,y) 
is a scalar. The model is a continuous function / . The dependent model 
variable f(p{x,y)) can be approximated with a Taylor expansion, neglecting 
third and higher order terms. Then for any value of p(x,y): 

f(p(x, y)) = F(p) + (p(x, y) - p) 
df_ 
dp + ^(jp(x,y) P) 

2 ^ 1 
dp2 

p* 
(3-1) 

where p* is a function of p(x, y) and p* ^ p due to neglecting higher order 
terms. Note that / represents a model with distributed input and F a model 
with aggregated input. In the remainder of this thesis / and F will have 
the same formulation. The input variable p(x, y) is defined over an area A. 
Integration over A yields the correct mean of the distributed result: 

F=jjf(p(x,y))dA = jjF(p)dA 

+ 1^1 
A dpi 

/ (p(s, y) - p)dA 
;JA (3.2) 

+ uIA({PiX'y)-p? 
dp2 dA 

p* j 

The first term on the right hand side is the value of the dependent model 
variable calculated with the average of p(x,y) i.e. p: F(p). The second term 
is by definition zero and the third term is then the difference between F and 
F(p). In the third term both effects of the non-linearity of the model and the 
heterogeneity of the land surface are incorporated. To separate both effects 
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the mean value theorem1 is applied to this term: 

h i (<"<-> -^ w[)dA=IU\JL Mx'y) ~pfdA (33) 

The difference introduced by the scaling process can then be defined as: 

where * - g 

F-F(p) = \kV (3.4) 

and V = - / [p{x,y) -pfdA 
Px

 AJA 

The value px is realized somewhere in A. The difference between F and F(p) 
is accounted for by the factors k and V. 

The factor k is the difference introduced by the non-linearity of the func­
tion / . Note that when / is a linear function the second derivative will be 
zero, therefore F and F(p) will be identical. The non-linearity term may be 
found directly from the model, if the function is continuous and therefore 
differentiable. The non-linearity term cannot be determined exactly because 
px is unknown a priori. 

The factor V accounts for the heterogeneity of the variable p(x, y) within 
the landscape. In the case of only one variable p(x,y)(n = 1), V is equal 
to the variance of this variable. If p(x,y) is completely homogeneous within 
the area A, the variance of p(x, y) will be equal to zero. As a consequence F 
and F(p) will be identical. Chapter 4 will show a method to calculate the 
variance for different scales. 

3.2.2 Mode l w i th two or more variables (n > 2) 

Land surface models may have more than one independent variable and 
radiometric observations in several spectral bands and directions may be 
used. Therefore the above formulation has to be extended to the case of 
more than one variable p(x,y). Equation 3.1 will therefore change into the 
more general case for n variables pi(x,y),p2{x,y), ..,pn(x,y): 

f(p(x,y)) = F(p) + [p{x,y)-p) | £ 1 , , , _N 2 d2f 
(3.5) 

p* 

In equation 3.5 the variable p(x,y) has been replaced by the vector p = 
\pi(x,y),p2(x,y),..,pn(x,y)]. Following the same procedure as indicated for 
the case with one variable p(x,y)(n = 1) the difference between F and F(p) 
can be defined as: 

F - F{p) = \kV (3.6) 
1The Mean Value Theorem: If / is continuous on the closed interval [a,b] and 

differentiable on the open interval (a,b), then there exists a number c in (a, b) such that 
f(c) = (f(b)-f(a))/(b-a) 
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where k = 
dp2 and V = j j ip(x, y) ~ P?dA 

Because the term V is dependent on more than one variable not only the 
variance of all variables within p(x,y) will be needed but also the covariances 
for the variables in present in p(x,y) has to be calculated. When the input 
data consist of 2 variables (n=2) the difference can be calculated as: 

/ 

F-Ffapt) = 
1 

cff \JA(p^y)-Pi)2dA-^ 

j / (Pi(x,y)-p1){p2{x,y) -p2)dA— 

+ 

+ 
d2f 

(3.7) 

J 
The last term at the right hand side of equation 3.7 contains the covariance 
term of pi and p2. The three terms together account for the combined effect 
of the degree of non-linearity of the model and the heterogeneity of the land 
surface on the scaling approach. The variance and non-linearity term cannot 
be written explicitly anymore. 

The disadvantage of the Taylor expansion approach is that it only works 
for a continuous function / and for limited changes in the function values. 
When using complicated models with a large number of variables it could 
be a burdensome task to find the derivatives of /. Therefore a different ap­
proached developed by Raffy (1994) is presented which considers the problem 
of aggregation from the perspective of computational geometry. 

3.3 Aggregation analysis using convexity approach 

The approach described here is based on computational geometry. Some 
properties of computational geometry will be defined in advance (Preparata 
and Shamos, 1985): 

• Convex: A domain D is convex, for any two points p and q in D, if the 
line between p and q is entirely contained in D. This is illustrated in 
Figure 3.2 where a convex and non-convex domain are shown. In the 
non-convex domain the line which connects p and q lies partly outside 
the domain D. 

• Convex Hull: The convex hull of a set of points S in E is the boundary 
of the smallest convex domain in E containing S. This is illustrated in 
Figure 3.3 where for a number of points the convex hull is drawn. The 
convex hull can also be conceived as an elastic band that spans around 
the points, minimizing its length. 
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Figure 3.2: Illustration of a convex and non-convex domain. 

Figure 3.3: The convex hull of a set of points. 
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The approach described in this paragraph aims at estimating the domain 
where solutions of a spatially distributed model / may exist. The input 
p(x, y) of / consists of n spatially distributed variables 
\pi(x,y),p2(x,y), • • -Pn(x,y)]- In Figure 3.4 an observation with a low and 
high resolution of the same region A is shown. 

Pv-Pn *~ F(Pi--Pn> 

[J *• Global measurements Output of the model 

pifa),...,pn(a) — » - F(p1(a),...,pn(a)) 
"=*• Local measurements 

Figure 3.4: A low and high resolution observation of the region A. 

At low resolution the whole area A is observed at once, resulting in 
n values for the input variable p : pl,P2,--,p^- At high resolution only 
a segment, a, of the domain A is observed. If the area A is covered by 
x x y segments equal to the size of a then there will be x x y x n values 
for the independent variable p(x,y). The value of the output calculated 
by the aggregated model F using the low resolution measurement p of A 
is denoted F(p). The aggregated output of model / based on the high 
resolution observations p(x,y) of A is denoted F. In Figure 3.1 the different 
ways of obtaining F and F(p) were illustrated. 

The approach described here will focus on the possible error by using low 
resolution data instead of high resolution data: i.e. the difference between 
F and F(p). This difference will be described without using any a priori 
assumption on the variable p(x,y). The global measurement p of an area A 
can be the product of any distribution of p(x,y) when the following condition 
is satisfied, (conservation of energy): 

P=jf P(a)da (3-8) 

This is illustrated in Figure 3.5 where for a global (low resolution) mea­
surement of the area A two possible distributions of local (high resolution) 
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measurements are given. 
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Figure 3.5: Illustration of possible distributions of local measurements of the 
variable p: p(x,y) (e.g. high resolution remote sensing data) given a global 
measurement of p: p (e.g. low resolution remote sensing data) 

Figure 3.5 shows that the mean of both distributed variables p(x, y) is 
equal to the value of the global measurement p. However the distribution 
functions of either set of local measurements p(x,y) are completely differ­
ent. Applying these two distributions to the (non-linear) distributed model 
/ gives different results for the aggregated output F. Therefore all possible 
distribution functions should be taken into account when trying to define the 
boundaries of the spatial model /. The set containing all possible combina­
tions of distributions of p(x,y) is denoted P. If there are no limits on p(x,y) 
then P will be a set of infinite extent. However the local measurements 
p{x,y) are defined within the domain D which is a bounded domain of R n . 
This means that the maximum and minimum values within the distributions 
of p(x,y) are finite. The number of distributions of p{x,y) is therefore fi­
nite. In the case of radiometric observations the measurements p{x,y) are 
radiances. The minimum value of radiances will always be larger than zero. 
The domain D is determined by the maximum spatial variability of the local 
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measurements p(x,y). Two cases have to be distinguished: 

• the domain D is convex and 

• the domain D is non-convex. 

Figure 3.6 illustrates both cases. 

Pi 

® 

-P i 
i[P2) 

Figure 3.6: The two different classes of domain D for the spatially distributed 
variable p(x, y) when the number of variables n = 2, a) convex domain D 
and b) a non-convex domain D and its convex hull E. 

In Figure 3.6a the domain D is shown for the case of measurements in 
two bands, p\ and p2- The natural bounds of p\ are A\ and B\, respectively 
the minimum and maximum value. The natural bounds of p2 are A2 and 
B2. In this example the two bands are not correlated, making the domain D 
a rectangle, which is a convex set, see Figure 3.2. In Figure 3.6b the domain 
D is shown for a case where an area A is composed of various landtypes with 
for each landtype specific boundaries for p\ and pi • In this example the two 
bands are correlated. If P2(x,y) = P2 then Figure 3.6b shows that p\ only 
exist in a limited range: I(p2)- Therefore there are disjoint regions making 
D a non-convex set. 

The high resolution measurements p(x,y) € P are not distinguishable by 
a sensor which can only measure the global measurement p. Using all the 
distributions of p(x,y) present in P as input for the land surface model / 
gives the complete range of solutions for F. Raffy (1994) showed that the 
set of all possible in situ values of F when p(x,y) G P constitute exactly an 
interval: 

FG [Fv(p),F*(p)} (3.9) 

where F v and FA are respectively the lower and upper boundary of the con­
vex hull of the graph of F. In other words, the function F v is the supremum2 

2The supremum is the least upper bound of a set. The upper bound is any quantity 
such that no member of a set exceeds it. 
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of all the convex functions which minor F. The function F A is the infimum3 

of all the concave functions which major F. These functions can be inter­
preted as 'bounding' models (or 'bounding' functions). The bounding models 
can be interpreted as a measure for the non-linearity of function F. 

How D is linked with the bounding models i*V and F A is shown in the 
following paragraph. This link describes the effects of the spatial variability 
of the landscape and the non-linearity of the model /. 

The derivation of the bounding models F v and FA is explained for the 
case of a model / with one variable (n=1). Also here two cases are considered, 
one where the domain D is convex and another one where D is non-convex. 
In Figure 3.7 the model / and its bounding models i*V and FA are drawn 
for the convex and non-convex case. 

Figure 3.7: The model F and its bounding models F v and FA for a) a convex 
domain and b) a non-convex domain.The dashed area denoted by A shows 
all possible solutions for F given the variability of p. F v and FA are equal 
for both domains. 

Figure 3.7 shows that The bounding models _FV and FA are respectively 
the inferior and superior boundaries of the convex hull of the graph of F. 
In the convex case (Figure 3.7a ) the bounding models can be represented 
respectively by an elastic which envelops / from the bottom and from the 
top. Both bounding models begin in the point a and end in b, the distance 
between these two points is equal to the natural range of the input variable p, 
which is denned by the convex domain D. All possible solutions are defined 
within the area denoted by A. Figure 3.7a shows the range of possible 
solutions for p(x,y) = P. In the non-convex case (Figure 3.7b) the domain 
D is split up in two separate domains [A1,B'] and [A",B"]. The convex 

3The infimum is the greatest lower bound of a set. The lower bound is any quantity 
such that no member of a set is less than it. 
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hull of domain D is E. We consider the convex hull which is defined by 
[A1, B"] and follow the same procedure as with the convex case. Note that 
the function F is discontinuous for Figure 3.7b. 

The procedure does not change significantly when the number of variables 
is larger than 1. The difference between the bounding models F v and FA 

is an estimate of the maximum difference between F and F(p), i.e. the 
maximum error due to aggregation. There might be a distribution of p{x,y) 
which gives this maximum error. 

Whenever the area A is homogeneous that means that the set P con­
taining all possible distribution functions of p(x,y) is equal to the Dirac 
^-distribution. All the n*x*y pixels of p{x,y) have the same value which is 
equal to p. Therefore the domain D can be defined by a single point, which 
leads to the result that the difference between F and F(p) is zero. In the 
case of a linear model F, the bounding models Fy and FA will be equal. This 
will also lead to the result that the difference between F and F(p) is zero. 
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Chapter 4 

Wavelet analysis 

This paragraph will discuss the wavelet transform, although no complete 
introduction to the theory of wavelets will be given. For an elaborate discus­
sion on wavelets the books of Chui (1992), Daubechies (1992), and Mallat 
(1998) are recommended. For a review on the use of wavelets in geophysics 
the reader is referred to Kumar and Foufoula-Georgiou (1997) and Foufoula-
Georgiou and Kumar (1994). 

The wavelet transform is a relatively new mathematical technique. Within 
the last decade the application of the wavelet transform increased exponen­
tially in many scientific and engineering fields. In this thesis the wavelet 
transform will be applied to estimate length scales of land surface charac­
teristics using remotely sensed data. Only the properties of the wavelet 
transform relevant to the detection of length scales will be discussed in this 
chapter. 

The general idea behind the wavelet transform is to use a localized func­
tion in time or space, the wavelet, as a tool to explore a data set. Analyzing 
a data set with a wavelet enables one to study features of the data set lo­
cally with a detail matched to their scale, i.e. broad features on a large scale 
and fine features on a small scale (Kumar and Foufoula-Georgiou, 1997). A 
wavelet has two important properties, the wavelet can be: 

• expanded or compressed to study broad as well as fine features of the 
data set 

• shifted through the data set showing the location of broad and fine 
features in the data set. 

In other words: 

"by using a wavelet transform one cannot only see the trees but 
also the forest". 
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In order to properly explain the wavelet transform, first another type of 
transform has to be introduced: the Fourier transform. The Fourier trans­
form has already been heavily used in all kind of applications. A comparison 
of both transforms will highlight the advantages of the wavelet transform for 
detecting dominant length scales of land surface properties using remotely 
sensed data. 

4.1 The Fourier transform 

The Fourier transform decomposes any continuous function into a sum of 
an infinite number of sine and cosine terms (Fourier, 1822). In the case 
of a discrete data set a finite number of sine and cosine terms will fit to 
the original data set. The Fourier transform of a (continuous) function / , 
dependent on time or space, leads to a new function / that depends on 
frequency u or wavenumber K. Frequency is the inverse of time whereas 
wavenumber is the inverse of wavelength. The Fourier transform can be 
used for detecting dominant frequencies in stationary1 signals. 

The Fourier transform / of a continuous function / is denned as: 

/

+oo 
f(x)e~iKXdx (4.1) 

-oo 

where K is wavenumber (m_1) and x distance (m). Note that wavenumber 
also can be replaced by frequency OJ ( s_1), x will then be replaced by time t 
(s). The individual elements in / are called Fourier coefficients. 

The complex exponential e~tKt can be written as a function of cosines 
and sines by using Euler's notation: 

e-»«x _ c o s(Ka.) _ i s m ( K X ) (4.2) 

It can now be clearly seen that the original function will be decomposed 
into an integral series of sines and cosines, each sine and cosine having a 
different wavenumber. The dominant wavenumbers of a function will have 
Fourier coefficients with the highest values. Wavenumbers not present in the 
function will have Fourier coefficients equal or close to zero. 

One of the features of the Fourier transform is that it is possible to recon­
struct the original function / using the coefficients of the Fourier transform 
/ . This is known as the inverse Fourier transform: 

f(x) = ^ £°" f(n)eiKXdK (4.3) 

A signal is defined stationary in this thesis when the mean and variance do not change 
with location in the signal, (second order stationarity) 
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Each Fourier coefficient stands for a wavenumber. By setting some Fourier 
coefficients in / to 0 and applying the inverse Fourier transform it is possible 
to filter certain wavenumbers out of the original data set. 

In order to use the Fourier transform for a discrete data set, equations 
describing the continuous (inverse) Fourier transform should be discretized. 
The discrete Fourier transform is calculated as: 

/[*] = E/W«p(=^) (4.4) 
n=0 ^ ' 

where n is position, k is frequency or wave number and N the number of 
data points. The inverse discrete Fourier transform is then defined as: 

/M^E/W^) (4.5) 
fc=0 ^ ' 

The discrete Fourier transform can now be applied in an operational way. 
Unfortunately the number of computations increase exponentially with in­
creasing N. In order to still use the discrete Fourier transform in an opera­
tional way the Fast Fourier Transform (FFT) has been developed. 

4.1.1 The Fast Fourier Transform (FFT) 

The Fourier transform found its way into a large number of applications 
thanks to the development of the Fast Fourier Transform (FFT). Cooley 
and Tukey (1965) developed the FFT using ideas Carl Friedrich Gauss pos­
tulated around 1805. The FFT reduces the number of calculations from 
iV2 computations to iVTogiV computations for a Fourier transformation of 
a data set with N values. Especially for large data sets the FFT needs con­
siderably less calculations to perform a Fourier transform. Along with the 
early development of computers the FFT can now be used in an operational 
way. It has been used to solve problems in many scientific and engineering 
fields, most notably signal and data processing. 

A major disadvantage of the Fourier transform is that it works with global 
functions, namely sines and cosines with different wavenumbers. Therefore 
the Fourier transform is not very suitable to detect (abrupt) changes in a non-
stationary data set. The Fourier transform translates a data set expressed 
in units of time or space to frequency or wavenumber units or vice versa. 
It is therefore not possible to describe a data set in terms of time or space 
units and frequency or wavenumber units using a Fourier transform. As 
a consequence the Fourier transform is not a suitable tool to show where 
changes in a data set take place and simultaneously to measure how large 
those changes are. A first solution developed to solve this problem was the 
windowed Fourier transform. 
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4.1.2 The windowed Fourier transform 

The windowed Fourier transform has been introduced by Gabor (1946) to 
measure localized frequency components of sounds. The main idea behind it 
is to divide a data set into parts of equal size. For each of those parts of the 
data set a Fourier transform is applied. This will provide local information 
instead of global information. The data set is not being examined as a whole 
but part by part. Therefore non-stationary signals which may have locally 
stationary parts will be better described using a windowed Fourier transform 
rather than by using a Fourier transform. 

The main disadvantage of the windowed Fourier transform is that a choice 
has to be made between either detail in frequency or detail in time and space. 
If the windowed Fourier transform is applied to small parts sudden changes 
can be located, but low frequency components are not discovered. Work­
ing with large windows low frequencies are better detected, but time/space 
localization is worse. 

4.2 The continuous wavelet transform 

The wavelet transform is better suited to localize both sudden changes in a 
data set as well as determining the broad features. The wavelet transform 
is a local function whose size can be adjusted and be shifted within a data 
set. High frequency components can be detected and localized by moving 
a small wavelet over a data set, whereas low frequency components can be 
detected by using a larger wavelet with a similar shape as the small one. 

The standard wavelet is a function ij) with a zero average. The function 
is centered in the neighborhood of 0. The standard wavelet is better known 
as the "mother" wavelet. A whole family of wavelets can be generated from 
the "mother" wavelet using the scale factor s and translation factor u: 

rpu>s(x) = - ^ (?^j (4.6) 

The scale factor s expands or contracts the "mother" wavelet, whereas the 
translation factor u shifts the wavelet in a certain direction. If s > 1 the 
wavelet will be expanded, and if s < 1 the wavelet will be contracted. The 
translation factor u will shift the wavelet center from 0 to 0 + u. Instead of 
distance x the wavelet can also be a function of time t. 

The function ip(x) has to fulfill two conditions before it can be called a 
wavelet. The wavelet has a norm equal to 1 (i.e. [J \ip(x)\ dt = 1) with: 

1. compact support, or sufficiently fast decay, to obtain localization in 
space and 

2. zero mean, as stated before, although higher order moments may also 
be zero. 
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The first property ensures that ip(t) is not a sustaining wave, the sec­
ond that it is has a wiggle. The requirement of the zero mean is called 
the admissibility condition of the wavelet. The normalizing constant 1/y/s 
is chosen such that tj){t) has the same norm for all scales s (Kumar and 
Foufoula-Georgiou, 1997). 

Two popular examples of continuous wavelet transforms are the Mexican 
Hat wavelet and the Morlet wavelet. The Mexican hat wavelet is the second 
derivative of the Gaussian function: 

i,(x) = ^ - V V - IK*272 (4-7) 

The Morlet wavelet is a complex wavelet, where the real part gives informa­
tion about the amplitude and the imaginary part gives information about 
the phase: 

1>{x) = n-V*e-i"oxe-x
2/2 Uo ^ 5 ( 4 8 ) 

Figure 4.1a gives an example of the Mexican Hat wavelet with different 
scaling and translation factors. Figure 4.1b gives for the same scaling and 
translation factors the real part of the Morlet wavelet. The Morlet wavelet 
has better localization properties, because of the faster decay of the wave, 
which makes it a more compact wavelet. 

The wavelet transform Wf(u,s) of a continuous function f(x) is defined 
as: 

wf(u,s) = J+0° Hx)-j=p (^r)dx (4-9) 

where ip* is the complex conjugate2 of ip. The wavelet transform measures 
the variation of / in the neighborhood of u, on a scale proportional to s. 
The wavelet transform provides a flexible time-scale (or space-scale) window 
that tightens when focusing on small-scale features and widens on large-scale 
features. In other words, the wavelet is zooming in and out. The wavelet 
transform is sometimes referred to as a mathematical microscope, where s 
equals the magnification factor. 

The inverse wavelet transform is given by: 

f(x) = 7T / s-2Wf(u,s)ipu,s(x)duds (4.10) 
^ V JO J-oo 

where C$ is a constant depending on the choice of the wavelet. The inverse 
wavelet transform can be used to reconstruct the original data set. Analo­
gous to the Fourier transform, certain wavelet coefficients can be set to 0 to 
filter out certain frequencies/wavenumbers at particular locations. Note the 
difference with the Fourier transform, where frequencies/wavenumbers can 

2 Complex conjugate: the imaginaxy part of a complex number is negated, such that a 
+ ib becomes a - ib 
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Figure 4.1: a) The Mexican hat wavelet for various scale parameters s and 
translation parameters u as a function of distance x. If s < 1 the wavelet is 
contracted, if s > 1 the wavelet is expanded. If u < 0 the wavelet is shifted 
to the left, if u > 0 the wavelet is shifted to the right, b) The real part of 
the Morlet wavelet with the same scale and translation parameters as used 
in a) (After Herrmann (1997)). 
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only be filtered out for the whole data set. By choosing the wavelet coeffi­
cients with the largest value and ignoring those with values close or equal 
to zero, one still could obtain a good approximation of the original data set 
using limited information. 

Like the windowed Fourier transform the continuous wavelet transform 
is a redundant representation of a data set. Obtaining relevant information 
from a redundant representation is often a difficult task. 

4.3 The discrete wavelet transform 

The discrete wavelet transform is a discretization of the continuous wavelet 
transform. With the discrete wavelet transform the information present in a 
data set will be reproduced either in a redundant or non-redundant fashion 
depending on the wavelet and discretization scheme applied. A discretiza­
tion scheme known as the fast wavelet transform (FWT) will be discussed. 
The FWT is based on an orthogonal discrete wavelet transform. The FWT 
represents the data set in a non-redundant fashion. It forms the basis of the 
multi scale analysis, which will be explained in Paragraph 4.5. 

Let ip[n] be a wavelet consisting of K elements, defined on a discrete data 
set with N values. For 1 < aj < N/K, a discrete wavelet scaled by a,j is 
defined by: 

* w = 73* (5) (4'u) 

where j is the scale parameter j being an integer > 0, a is dilation step, and 
n is position. The resulting discrete wavelet has K x aJ non-zero values on 
[0, N] and is extended into an N periodic signal. If a — 2 it is called a dyadic 
representation. 

The discrete wavelet transform is defined as: 

J V - l 

Wf [n, o»] = ] T /[m]tf [m - n] (4.12) 
m=0 

4.3.1 The orthogonal wavelet transform 

In this thesis the only discrete wavelet transform which will be considered 
is the orthogonal wavelet transform. The orthogonal wavelet transform is a 
special case of the discrete wavelet transform. They are difficult to construct, 
but give a representation without redundancy and lend themselves to fast 
algorithms (Burke-Hubbard, 1996). The orthogonal wavelet transform also 
uses a dyadic representation (i.e. a = 2). 

The orthogonal wavelet transform uses two basis functions: the discrete 
wavelet tp[n] and the scaling function (j)[n\. These two functions are orthog­
onal, i.e. their product equals zero. The wavelet i/>[n] and its correspond­
ing scaling function <j)[n] are not explicit functions. The scaling function is 
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formed using the scaling function coefficients h together with the following 
recursive function, also called the dilation equation: 

K-\ 

(j)[n} = ^ hk(f>[2n - k] (4.13) 
fc=0 

where h is the scaling function filter containing K scaling function coef­
ficients. The index k starts at 0. The dilation equation can be used to 
construct the scaling function. 

Once the scaling function is known the wavelet can be defined using the 
following two relationships: 

K-l 

i>[n] = Y, 9k4>[2n - k] (4.14) 

fc=0 

with gk = ( - l )* / i ( l - *) 

where g is the wavelet filter. The wavelet filter follows directly from the 
scaling function filter h. 

The simplest example of an orthogonal discrete wavelet is the Haar 
wavelet, being defined as (Haar, 1910): 

( 1 if 0 < x < i 
ip(x) = < - 1 if \ < x < 1 (4.15) 

0 otherwise 

Another popular form of the orthogonal discrete wavelet is the family 
of Daubechies wavelets (Daubechies, 1988). Daubechies developed wavelets 
that are both compact and orthogonal. The simplest Daubechies wavelet is 
characterized by 4 scaling function filter coefficients: 

h0 = (l + V3)/4\/2 (4.16) 

^ = (3 + \ /3)/4\/2 

h2 = ( 3 - V 3 ) / 4 A / 2 

h3 = ( l - \ / 3 ) / 4 \ / 2 

In Figure 4.2 the Haar and Daubechies-4 wavelets and scaling functions 
are shown. The Haar wavelet is very compact but not very smooth. The 
Daubechies-4 wavelet is a fairly smooth function with reasonable compact 
support. 

The orthogonal wavelet transform can be used to decompose a function 
into a wavelet series. All discrete functions f[n] can be approximated by 
a linear combination of the wavelet ipj [n] and the scaling function (pL [n] at 
scale level j = L: 

2~LN-1 L 2-'N-l 

f[n}= £ aL[k]<f>L[n] + J2 E <**[*#>] (4-17) 
A;=0 j=l fc=0 
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Figure 4.2: a) The Haar wavelet, b) The Haar scaling function, c)The 
Daubechies-4 wavelet, d) The Daubechies-4 scaling function. 
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where L = 2 log(iV) and a/, is the scaling function coefficient at scale level 
j = L. The wavelet coefficient dj[k] measures the contribution of the wavelet 
tjjj of scale 2J at location /J2J to the function / . The question remains how 
to decompose a signal into its wavelet coefficients dj. Mallat (1989) came 
up with an algorithm which decomposes a data set with N elements into N 
wavelet coefficients: the fast wavelet transform (FWT). 

4.4 The fast wavelet transform 

The fast wavelet transform is an algorithm where a data set is decomposed 
into wavelet coefficients using orthogonal discrete wavelets. The orthogonal 
discrete wavelet ip[n] can be seen as a high-pass filter consisting of the wavelet 
filter coefficients g, whereas the corresponding scaling function <j)[n\ can be 
seen as a low-pass filter with scaling function coefficients h. A high-pass 
filter emphasizes the differences within a data set in contrast to a low-pass 
filter which evens out the data set. In signal processing the combination of 
a high-pass and a low-pass filter is known as a quadrature mirror filter. In 
this paragraph the fast wavelet transform will be described formally. 

Let x[n] = x[-n] and (Mallat, 1998): 

, r , f x\p] if n = 2p . 
xW = {o if n = 2p + l <4'18> 

This is similar to taking every 2nd element in a data set. The wavelet and 
scaling function coefficients can be recovered as: 

+oo 
aj+i\p] = ^2 hin- 2p]aj[n] = dj <g> h[2p] (4.19) 

n=—oo 

+oo 

dj+i\p] = Yl 9^n - 2 P K M = aJ ® St2?] (4-2°) 
n=—oo 

The sign ® means that a (circular) convolution is performed. Assuming a 
periodic data set a circular convolution is defined as: 

N-l 

f®h[n]=y}Tf[n-p]h\p] (4.21) 
p=0 

The original function can be reconstructed using the wavelet and scaling 
functions: 

+oo +oo 
aM= Yl h\p - 2n]aj+1[n] + J ^ g\p - 2n]dj+l[n] 

n=—oo n=—oo y±.LL) 

=a,j+i (8> h[n] + dj+i <S> g[n] 
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Figure 4.3: The fast wavelet transform (Equations: 4.19 and 4.20) applied 
to a dataset of 8 observations 
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Figure 4.4: The inverse fast wavelet transform (Equation 4.22) applied to a 
wavelet transformed dataset of 8 observations 

57 



Figure 4.3 and 4.4 show in a graphical way how the forward and inverse fast 
wavelet transform work. 

The forward wavelet transform decomposes the original data set of N 
elements (N should be a power of 2) into |iV wavelet coefficients d\ and 
T^N scaling function coefficients a\ using the filters g and h respectively. 
The filters are convoluted with the original data set and every second element 
of the resulting product is taken [n = 0 ,2 ,4 , . . . , N — 2]. The next step in the 
algorithm is to decompose the scaling function coefficients of level a\ into 
\N wavelet coefficients d<i and \~N scaling function coefficients a-i using the 
filters h and g again. At each subsequent step the remaining scaling function 
coefficients will be divided into wavelet and scaling function coefficients using 
the above mentioned procedure. 

The fast wavelet transform is the basis for the multi scale analysis of 
a data set (Mallat, 1989). The inverse fast wavelet transform processes 
the result of the forward wavelet transform, where the detail coefficients 
are convoluted with the wavelet filter g, and the smooth coefficients are 
convoluted with the scaling function filter h (see Figure 4.4). 

4.4.1 Fast wavelet transform for images 

For the analysis of remote sensing data the fast wavelet transform should be 
performed in a 2-D fashion. One option is to use the fast wavelet transform in 
three different directions: vertical, horizontal and diagonal. This procedure 
is also referred to as the nonstandard decomposition (Stollnitz et al., 1995). 
First all the rows in the image are decomposed into wavelet coefficients and 
scaling function coefficients using the FWT as described in the previous 
section. Subsequently the FWT is applied to the columns of the resulting 
image. This results in an image with four different sections: a section with 
scaling function coefficients, a section with horizontal wavelet coefficients, a 
section with vertical wavelet coefficients and a section with diagonal wavelet 
coefficients. The next step is to apply the same procedure to the section 
with the scaling function coefficients until the whole image is decomposed 
into horizontal, vertical and diagonal wavelet filter coefficients. The approach 
is illustrated in Figure 4.5. 

The sample image is a surface albedo image of the Barrax area, Spain, 
derived from TMS-NS001 airborne imagery, acquired at June 29, 1991. The 
resolution of the data is 18.5 m. The circles in the image are pivot irrigation 
systems. 

4.5 Multi scale analysis 

The fast wavelet transform can be used to decompose a data set into details, 
smooths and roughs. Such an analysis is called a multi scale analysis (Mal­
lat, 1989). The details show how much variability is present at each scale 
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Scaling function 
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Wavelet transform of 
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Figure 4.5: Nonstandard decomposition of a sample image, using the fast 
wavelet transform (After Stollnitz et al. (1995)). The sample image is the 
surface albedo ro image of Barrax, Spain, derived from TMS-NS001 imagery, 
acquired at June, 29, 1991 
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level j . Details of scale level j can be found by taking an inverse fast wavelet 
transform using only the wavelet coefficients found by the fast wavelet trans­
form at that particular scale level j . The smooths at scale level j can be 
found taking an inverse fast wavelet transform using only the wavelet coef­
ficients for all scale levels equal to and larger than scale level j . The roughs 
at scale level j can be found taking an inverse fast wavelet transform using 
only the wavelet coefficients for all scale levels less than scale level j . If 
the Haar wavelet is applied, the smooths correspond with linearly averaged 
versions of the data set. This makes the Haar wavelet a good analysis tool 
for aggregation studies. 

Figure 4.6 shows an example of a multi scale analysis of a sample data 
set using the Haar wavelet. The sample is taken from a surface albedo image 
from Barrax, Spain. The albedo is derived from data taken by the TMS-
NS001 acquired at 29 June 1991. The geometrical resolution of the data is 
18.5 m. At scale level j = 0 (resolution = 18.5 m) the smooths depict the 
original data. At scale level j = 1 (resolution = 37 m) the smooths show the 
data at a resolution twice as coarse. The details at scale level j = 1 show the 
amount of detail lost in the process of smoothing. The roughs and details 
are identical for scale level j = 1. At scale level j = 2 the details show the 
difference between the smooths of scale level j = 1 and j' = 2, whereas the 
roughs show the differences between the smooths at scale level j = 0 and the 
present scale level (level j = 2). 

Details 

•» —4' » " » ' • ' « • • 

v 4 4 > - ~ 

Scale level 
- 7=0 
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- y=2 

Smooths 

'\/M^r»^^Jt- l'=3 
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Figure 4.6: A multi scale analysis by means of the Fast Wavelet Transform 
using the Haar wavelet of a sample of the surface albedo ro image, Barrax, 
June 29, 1991 of Figure 4.5 (original image) using the Haar wavelet. 
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The roughs at a given scale level equal the summation of the details 
at scale levels less than that given scale level. The roughs show how much 
information or detail is lost in the process of smoothing. At the highest scale 
levels all the smooths equal the mean value of the input data set, whereas 
the roughs at the highest scale level equal the input data set itself. 

The multi scale analysis can also be applied to images. An image can be 
decomposed into details, roughs and smooths using the fast wavelet trans­
form. Figure 4.7 gives an example of a multi scale analysis using the previ­
ously introduced surface albedo ro image of Barrax (See Figure 4.5). Only 
the results for a few scale levels are given. 

Figure 4.7 also shows that an image can be subdivided into roughs, 
smooths and details. In this example the Haar wavelet has been used. The 
smooths are therefore similar to linearly aggregated versions of the input 
image. The roughs show how much detail has been lost in the proces of 
smoothing (i.e. aggregation). Especially at scale level j = 5 the roughs are 
more similar to the input image than the smooths. Much of the information 
present in the image has been lost in the process of smoothing. However 
looking at the smooths at scale level j = 1 and j = 3 we still can detect 
the most dominant features of the image, in this case the pivot irrigation 
systems. This shows that the multi scale analysis can be an useful tool for 
detecting length scales of land surface characteristics. 

4.6 Wavelet variance 

A quantification of the length scale can be achieved by using the wavelet 
variance as indicator. The wavelet coefficients are a measure of the intensity 
of the local variations of the signal, for the scale under consideration. The 
value of a wavelet coefficient will be large when the dilation of the wavelet is 
close to the size of a irregular feature in the signal. The value of a coefficient 
will be negligible when the local signal is regular for that particular scale 
(Ranchin and Wald, 1993). The variance of the wavelet coefficients, the 
wavelet variance, is thus a natural tool for investigating the spatial scales 
of variability in remote sensing data (Percival, 1995). The wavelet variance 
a2

f • is defined as: 

p = l 

where <r? • is the sample wavelet variance of data set / at scale j and dj [p] 
is the wavelet coefficient at position p and scale level j . N is the number of 
elements in the total data set. The number of data points at scale level j is 
given by rij = N/2K 

As an example the wavelet variance for the sample data set of Figure 4.6 
is given in Figure 4.8 
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Figure 4.7: Multi scale analysis by means of the Fast Wavelet Transform 
using the Haar wavelet, of the surface albedo r0 image, Barrax, June 29, 
1991. The roughs, smooths and details are given for scale levels j = 1,3,5 ' 
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Figure 4.8: Wavelet variance of a sample in the surface albedo rn image, 
Barrax, June 29, 1991, already presented in Figure 4.6. Two wavelets have 
been used: Haar and Daubechies-4 (note the logarithmic scale of the x-axis). 

Figure 4.8 shows that the wavelet variance is low at the smallest reso­
lutions, showing that there is scarce information in the small scale details. 
The maximum wavelet variance of the Haar wavelet is at 592 m (notice 
the logarithmic scale of the x-axis). The maximum wavelet variance of the 
Daubechies wavelet variance is at 2368 m and another peak is visible at 
296 m. This graph shows that at approximately 296 and 592 m the most 
dominant features are present in the sample data set. 

Besides the wavelet variance also the wavelet covariance can be calcu­
lated. In many applications the analysis is not limited to one data set, but 
to several. In the framework of this thesis three land surface characteristics 
are being examined: ro, To and the NDVI. The wavelet covariance indi­
cates the degree of common relationship between two data sets at different 
spatial scales. The wavelet covariance a? for two data sets / and g can be 
calculated as: 

^•-^E4«w (4.24) 
p = i 

where ah • is the sample wavelet covariance of data set / and g at scale j 

and dj [p] is the wavelet coefficient at position p and scale level j for data set 
/ and d9, [p] is the wavelet coefficient at position p and scale level j for data 
set g. 

The wavelet (co)variance can also be calculated for an image. Figure 4.9 

63 



gives the wavelet variance of the image of Figure 4.7. Figure 4.9 shows that 
for both the Daubechies-4 and Haar wavelet the maximum wavelet variance 
is achieved at the scale of 296 m. Looking at the image in Figure 1.5 the 
scale of 296 m corresponds with the most dominant feature present in the 
image: the pivot irrigation systems. If the Barrax area would be sampled at 
a geometrical resolution lower than 296 m (i.e pixel size > 296 m) much of 
the variability present in the image would not be captured. 

3.0E-03 

2.5E-03 

I 2.0E-O3 

0.0E+00 

O Haar wavelet 

0 Daubechies 4 wavelet 

Resolution (m) 

Figure 4.9: Wavelet variance of the surface albedo rn image, June 29, 1991 
(see Figure 4.7). Two wavelets have been used: Haar and Daubechies-4 (note 
the logarithmic scale of the x-axis). 

In this thesis the wavelet variance will be used as a measure of the length 
scales of land surface characteristics derived from radiometric observations. 
The assumption is that the dominant length scales in the landscape will also 
have a large wavelet variance at that particular scale. 

In the following paragraph this hypothesis is tested using test images 
with predefined length scales. 

4.7 Length scale analysis by means of wavelet anal­
ysis 

In order to test the reliability of the wavelet variance as a measure of the 
length scale of objects in a remote sensing image a numerical experiment 
has been set up. In this experiment 1000 images with a size of 256 x 256 
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pixels have been simulated using a random generator. The random generator 
produced normal distributions with unit random variance. Each image could 
exist of one, two or three dominant length scales with sizes ranging of 1, 2, 
4, 8, 16, 32, 64 or 128 pixels. For each image the wavelet variance has been 
calculated. The wavelet variance gives the variance of the image for each 
scale level. The wavelet variance would be a good indicator of the length 
scale if the scale levels with the highest wavelet variance would correspond 
with the simulated (randomly chosen) length scales. 

In this test nine types of orthogonal discrete wavelets have been tested: 

• Haar Wavelet (2 coefficients) 

• Daubechies Wavelet (4 and 20 coefficients) 

• Coifflet Wavelet (6 and 30 coefficients) 

• Beylkin Wavelet (18 coefficients) 

• Symmlet Wavelet (8 and 20 coefficients) 

• Vaidyanathan Wavelet (24 coefficients) 

A higher number of coefficients indicates a less compact but more smooth 
wavelet. In Figure 4.10 the nine type of wavelets and corresponding scaling 
functions are plotted, except for the Haar wavelet which already has been 
plotted in Figure 4.2a. 

In Table 4.1 the results of the simulation experiments are given. A cor­
rect estimation is whenever the dominant length scales present in the image 
were identified correctly using the maximum wavelet variance hypothesis, 
regardless of the right order. 

From Table 4.1 it is clear that the Haar wavelet is the best wavelet to use 
to identify length scales with use of the wavelet variance hypothesis. Espe­
cially when there is only one dominant length scale present in the image the 
Haar wavelet is almost always correct. The other wavelets perform also quite 
well at identifying one dominant length scale. Only if there is more than one 
length scale present in the image the performance of the wavelets, except 
for the Haar wavelet, dramatically decrease. In this thesis the Haar wavelet 
will be used for estimating length scales of land surface characteristics using 
remote sensing imagery. 

Another strong argument to choose for the Haar wavelet has to do with 
the aggregation analysis by means of linearization explained in Paragraph 
3.2. Equation 3.7 shows that the difference between F and F(p) is partly 
explained by the variance(s) (and covariances) of the variable p(x,y)(n > 1). 
In the case of the Haar wavelet the cumulative variance and covariance are 
equal to the variance and covariances of p in Equation 3.7. The wavelet 
variance and covariance should be cumulated up to the scale level of the 
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Figure 4.10: The wavelets used in the numerical length scale test of 1000 
images of 256*256 pixels. Both the wavelet and scaling function are given. 
The Haar wavelet is given in Figure 4.2a 
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Table 4.1: Results of length scale simulation where 9 different wavelets 
were used to retrieve the length scale of 1000 randomly generated images 
of 256*256 pixels. 

Wavelet 

Haar 

Daubechies 4 

Daubechies 
20 

Coiflet 6 

Coifiet 30 

Beylkin 

Symmlet 8 

Symmlet 20 

Vaidyanathan 

Type of Simulation 

total 
1 dominant length scale 
2 dominant length scales 
3 dominant length scales 
total 
1 dominant length scale 
2 dominant length scales 
3 dominant length scales 
total 

1 dominant length scale 
2 dominant length scales 
3 dominant length scales 
total 
1 dominant length scale 
2 dominant length scales 
3 dominant length scales 
total 
1 dominant length scale 
2 dominant length scales 
3 dominant length scales 
total 
1 dominant length scale 
2 dominant length scales 
3 dominant length scales 
total 
1 dominant length scale 
2 dominant length scales 
3 dominant length scales 
total 
1 dominant length scale 
2 dominant length scales 
3 dominant length scales 
total 
1 dominant length scale 
2 dominant length scales 
3 dominant length scales 

All 
dom­
inant 
length 
scales 
identi­
fied 

(%) 
87.70 
99.71 
87.10 
75.24 
57.60 
91.28 
47.51 
31.75 
63.40 

86.92 
58.94 
42.54 
38.40 
60.17 
30.50 
23.17 
42.80 
73.84 
32.84 
19.68 
27.70 
55.81 
15.54 
10.16 
42.00 
75.29 
28.74 
20.00 
36.10 
65.12 
25.81 
15.56 
39.30 
72.09 
25.81 
18.10 

One 
dom­
inant 
length 
scale 
not 
identi­
fied 

(%) 
0.10 
-
0.00 
0.00 
3.00 
-
0.00 
0.00 
4.50 

-
0.00 
0.00 
16.80 
-
0.00 
0.00 
10.10 
-
3.23 
0.00 
17.30 
-
6.16 
0.00 
8.80 
-
0.88 
0.00 
13.90 
-
5.57 
0.00 
10.80 
-
3.23 
0.32 

None 
of the 
dom­
inant 
length 
scales 
identi­
fied 

(%) 
12.20 
0.29 
12.90 
24.76 
39.40 
8.72 
12.90 
68.25 
32.10 

13.08 
41.06 
57.46 
44.80 
39.83 
60.41 
76.83 
47.10 
26.16 
63.93 
80.32 
55.00 
44.19 
78.30 
89.84 
49.20 
24.71 
70.38 
80.00 
50.00 
34.88 
68.62 
84.44 
49.90 
27.91 
70.97 
81.59 
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aggregated results. This can be explained by the fact that the smooths at 
scale level j resulting from the multi scale analysis of a certain data set using 
the Haar wavelet produces the same result when that data set is resampled 
to scale level j by means of linear averaging. This makes the Haar wavelet 
a suitable tool for aggregation analysis. 
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Chapter 5 

Description of the study areas 

The field and remote sensing data used in this thesis have been collected 
at three test sites. The first site is chosen because of the extremes in land 
use: irrigated and rainfed agriculture: Barrax, Spain. The second site is 
representative of an arid climate regime: The Jornada experimental range 
in New Mexico, USA. The third site is representative of a temperate oceanic 
climate: the Central Part of the Netherlands. 

5.1 Barrax 

The Barrax site was one of the three experimental sites in the European Field 
Experiment in a Desertification threatened Area (EFEDA) field campaign 
(Bolle et al., 1993) held in June 1991. The EFEDA project aimed at describ­
ing the energy and water transfer processes between soil, vegetation and the 
atmosphere in semi-arid conditions. The area is located in the South-East of 
Spain, between 2° - 3°30' W and 39° - 40° N. The field experiment consisted 
of a large number of simultaneous patch scale measurements on land sur­
face flux densities and associated hydro-meteorological measurements. Also 
a large array of airborne remote sensing data has been gathered during the 
three weeks period of intensive field observations. 

5.1.1 Location and climate 

The Barrax site is located on the central plateau of Spain, the Meseta, with 
an altitude between 700 and 800 m. The Barrax site is 28 km north of 
Albacete. The regional water table is about 20-30 m below the surface. The 
geographical coordinates of the site are 39 ° 3' N 2° 6' W. The location of 
the Barrax site is shown in Figure 5.1 

According to the revised Koppen climate classification the climate can be 
classified as a subtropical winter rain climate (Rudloff, 1981). Hot summers 
and mild winters characterize this climate. The continental character ap-
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Figure 5.1: Location of Barrax site within the EFEDA gridbox. Also the 
other two sites, Tomelloso and Rada de Haro are shown. 
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pears from the sudden changes from cold months to high months. The mean 
monthly temperature is above 22 °C in the summer and the temperature 
can even reach values above 40 °C. The average winter temperature is below 
6 °C. The daily temperature oscillation is larger in the summer than in the 
winter. In the summer the temperature oscillation can reach values up to 30 
°C. 

The mean annual rainfall is little more than 400 mm, making this area 
to one of the driest in Europe. The summer is dry, with the bulk of the 
precipitation falling in the spring and autumn. There is a large year-to-year 
variability. Figure 5.2 shows the mean annual precipitation for the weather 
station closest to the Barrax site, the Munera rainfall station. 
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Figure 5.2: Mean annual precipitation for Munera weather station based on 
the period of 1951 - 1991. 

At the beginning of the field experiment some thunderstorms with heavy 
rain were present in the study area. In the following days there was no 
rainfall anymore leading to a dry-down period. 

The Barrax site is very flat with very poorly developed soils. The regional 
water table is about 20-30 m below the surface. The main cultivation is 
approximately 65% dry land (winter cereals, fallow) and 35% irrigated land 
(corn, barley, sunflower, alfalfa, onions, vegetables). There are two types of 
irrigation present in the region: surface irrigation and pivot irrigation. 

5.1.2 Field data 

In the Barrax site the main characteristic is the presence of irrigated fields 
and non-irrigated fields next to each other. For this purpose micromete-
orological measurements have been made on three different surfaces: bare 
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soil, irrigated maize and fallow land. At these points energy balance fluxes 
have been measured together with other hydro-meteorological measurements. 
Also soil moisture measurements have been performed on a daily basis at 24 
locations on 9 different fields. In Figure 5.3 measurements of the specific 
humidity, air temperature, solar radiation and wind speed on 29 June 1991 
for the irrigated maize plot are shown. 
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Figure 5.3: Daily course of a) specific humidity q, b) air temperature Ta, 
c) incoming shortwave radiation K^ and d) wind speed u measured at the 
irrigated maize site, Barrax, June 29, 1991. 

5.1.3 Remote sensing data 

During the field campaign several aircrafts equipped with remote sensing 
devices have flown over the experimental area. The data which shall be used 
in this thesis comes from the TMS-NS001 scanner aboard the NASA-ER2 
aircraft. The TMS measures in the same spectral bands as the Landsat TM 
satellite, see Table 5.4. The TMS-NS001 data have been recorded at 29 
June 1991. The remote sensing data were used to obtain the following land 
surface characteristics: surface albedo, TQ, surface temperature, To and the 
Normalized Difference Vegetation Index (NDVI). The NDVI is defined as 
the ratio (NIR-R)/(NIR+R) where NIR is the reflectance in the near infrared 
and R is the reflectance in the red part of the electromagnetic spectrum. The 
reflectances for both bands were already derived during the calculation of the 
surface albedo. The NDVI is an indicator for the amount of biomass. A 
high NDVI value corresponds with a high amount of biomass, whereas a 
low NDVI value corresponds with a low amount of biomass. The remote 
sensing data have been corrected for atmospheric influences. 

In Table 5.1 the statistics for the land surface characteristics derived from 
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Table 5.1: Statistics of the land surface characteristics ro, To and NDVI, 
derived from airborne TMS-NS001 data for the Barrax area 

Land surface Minimum Maximum Mean Median Modus Standard 
characteristic Deviation 

"rTC1) 0.071 0.439 0.226 0.224 0.196 0.054 
T0 (K) 293.650 318.650 306.174 308.65 308.65 4.424 
NDVI(-) 0.031 0.773 0.386 0.320 0.284 0.118 

the TMS-NS001 imagery are given. Note the large standard deviation for the 
To and surface albedo compared to the standard deviation of the same land 
surface characteristics for the Landsat TM image of the Netherlands (see 
table 5.5). However the area of the Barrax is site is much smaller compared 
to that of the area covered by the Landsat TM image of the Netherlands, 
which is more than 50 times larger. This shows the large spatial variability 
present in the Barrax area. A n image of ro is shown i Plate A for the Barrax 
site. 

5.2 Jornada Experimental Range 

The Jornada Experimental Range in southern New Mexico, USA, has been 
a site of long-term ecological research for investigation of processes related 
to desertification. It has been included in the National Science Foundation 
(NSF) Long-Term Ecological Reserve (LTER) program as well as in the 
United Nations (UN) Man And the Biosphere (MAB) program. Already in 
the beginning of this century the first experimental research started. Since 
then an enormous amount of data concerning the state of the vegetation 
and ecosystem dynamics have been collected. In 1995 a campaign named 
JORNEX (the JORNada Experiment) started collecting remotely sensed 
data from ground, airborne and satellite platforms to provide spatial and 
temporal data on the physical and biological state of the rangeland (Ritchie 
et al., 1996). In this thesis data collected during the June 1997 campaign 
will be used. 

5.2.1 Location and climate 

The Jornada Experimental Range, the largest Agricultural Research Service 
(ARS) field station (783 km2), is situated 37 km north of Las Cruces, New 
Mexico. Most of the Experimental Range is located on the Jornada del 
Muerto Plain of the Chihuahuan Desert at about 1200 m elevation, bordered 
by the Rio Grande Valley in the west and the San Andres Mountains in the 
east, see Figure 5.4. The crest of the San Andres Mountains is about 2440 
m and coincides with the eastern boundary of the Experimental Range. 
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Figure 5.4: Location of the Jornada Experimental Range, Las Cruces NM, 
USA. Also the flight lines for the Daedalus recordings of June 19, 1997 are 
indicated. 
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The climate is characteristic for the northern region of the Chihuahuan 
desert, the most arid of the North American grasslands. The climate is classi­
fied according to the revised Koppen climate classification as a desert climate 
(Rudloff, 1981). Annual averages for precipitation and temperature are 241 
mm and 15 °C, respectively. Approximately 55% of the annual precipita­
tion occurs as localized thunderstorms during July, August and September. 
Droughts (<75% of average annual precipitation) are common, and have oc­
curred in 18 years between 1915 and 1995. The frost-free period averages 
200 days, but the effective growing season, especially for perennial grasses, 
is limited to the summer months. High temperatures, low humidity, and 
frequent winds during the summer result in large water losses by evapora­
tion. Potential evaporation rates are approximately 10 times the average 
precipitation. 

The remote sensing data used in this thesis were collected at June 19, 
1997. For the year 1997 climatic data concerning rainfall and air temperature 
were collected at the New Mexico State University (NMSU) Jornada Range 
weather station. Data were retrieved from the World Wide Web site of the 
NMSU (http://weather.nmsu.edu). 

Figure 5.5 shows the annual trend of rainfall and air temperature for 
the Jornada Range weather station in 1997. The year 1997 was wetter than 
normal, 267 mm in 1997 vs 241 mm on average. The year 1997 was also 
warmer than usual, 17.9 °C in 1997 vs 15 °C on average. 
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Figure 5.5: Annual trend of precipitation and temperature for the NMSU 
Jornada Range Weather Station in 1997. 
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Figure 5.6 shows that in the summer the average air temperature can rise 
well above 30 °C, whereas relative humidity is very low, resulting in a high 
evaporational demand, also because the amount of incoming solar radiation 
is very large. 
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Figure 5.6: Daily course of a) relative humidity Uw, b) air temperature Ta, 
c) incoming shortwave radiation K^ and d) windspeed u measured at the 
NSMU Jornada Range Weather Station, June 19, 1997. 

The vegetation of the Jornada del Muerto plain is characteristic of a sub­
tropical ecosystem in the hot desert biome. Grass communities dominated 
by black grama {Bouteloua eriopoda) have been susceptible to disturbances 
(such as prolonged drought and overgrazing). Encroachment by shrubs dur­
ing the last century has been common. Large areas of former grassland, 
including the northern portion of the study area, are now dominated by 
honey mesquite (Prosopis glandulosa). This conversion resulted in the for­
mation of coppice dunes on the deep, coarse-textured soils, increasing spatial 
heterogeneity of critically limited nutrients (especially N) required for plant 
growth (Schlesinger et al., 1990) as well as increasing wind erosion (Gibbens 
et al., 1993). The study area encompasses an ecotone between remnant black 
grama grassland and honey mesquite coppice duneland that developed during 
the past 80 years. Without subsequent intervention further desertification 
of this grassland is anticipated during the 21s* century. 

Within the ecotone, three sites were chosen for intensive studies. The 
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sites were selected to represent a grass, mesquite, and grass-mesquite transi­
tion area. Black grama dominates the grass site which is within a long-term 
study area where grazing has been excluded. The site is relatively flat. 
Honey mesquite shrubs on coppice dunes dominate the mesquite site. The 
dunes vary in height from 1 to 4 m with honey mesquite on each of them. 
The area between the dunes is usually bare soil. The grass-shrub transition 
site (from now on indicated as transition site) is an area located between the 
grass and mesquite site with vegetation components from both. Some dunes 
are present but are usually less than 1 m high. 

Since 1995 intensive mini-campaigns were held at the Jornada Experi­
mental Range. All these campaigns lasted for about a week, and are planned 
to coincide with a Landsat TM overpass. In 1995 two campaigns have been 
executed: one in May (dry season) and another in September (wet season). 
Another three campaigns took place in 1996: February (winter), May (dry 
season) and September (wet season). In May/June and September 1997 an­
other two campaigns took place. In each of these campaigns a wide range 
of airborne, satellite and ground measurements have been obtained. SC-
DLO participated in the September 1995, September 1996 and September 
1997 campaigns. The USDA-ARS Hydrology Lab is managing the JORNEX 
campaign. 

5.2.2 Field data 

The collection of ground data took place at the three sites mentioned above: 
mesquite, grass and transition site. 

• Thermal and multispectral measurements 

A backpack-type apparatus (a "yoke") equipped with an IRT and an 
Exotech was used to make measurements over an area equivalent to 
one Landsat TM thermal band pixel (120*120m). Yoke measurements 
of temperature and radiance were made at the grass site during the 
September 1995 and September 1996 experimental period, during the 
aircraft flight and the Landsat overpass. At the other study sites 
surface temperatures were measured with hand-held Infra Red Ther­
mometers (IRTs), during each flight for each study period. During 
the September 1997 campaign a hand held spectrometer (ASD) was 
employed to get spectral signatures of a large amount of vegetation 
species present in the Jornada Experimental Range. 

• Vegetation measurements 

A transect of 150 m was established at each site. Within each line, 
height of the plants and litter were recorded. Also LAI measurements 
with a portable LI-COR instrument were made. Radiometric plant 
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canopy and soil reflactance measurements were taken at the grass and 
transition site in the September 1995 campaign. 

• Flux measurements 

Surface energy fluxes have been measured continously since May 1995 
using Bowen-ratio equipment at two sites: the grass site and the 
mesquite site. During the intensive field campaigns at these sites also 
eddy-correlation equipment has been used. At the transition site eddy 
correlation equipment was mounted at two heights in a 10 m high tower 
during the September 1995 field campaign. During the September 1996 
campaign a 25 m high tower was placed. 

• Soil moisture measurements 

During the September 1995 and 1996 campaigns soil moisture profiles 
were recorded with TDR at each site. The depth of the profiles varied 
from 0.5 m to 1 m. 

5.2.3 Airborne r emote sensing data 

At each campaign radiometers mounted at aeroplanes were used to get re­
mote sensing imagery with a high geometrical resolution. In this thesis use 
has been made of airborne Daedalus data. Some of the other airborne remote 
sensing data acquired will be introduced. Afterwards the Daedalus sensor 
will be discussed more extensively. 

• Video imagery 

Video imagery was obtained with a three-camera multispectral digital 
video imaging system (Everitt et al., 1995). For the experiment the 
cameras were equipped with the following filters: visible yellow-green 
(0.555-0.565 /an), red (0.623-0.635 /an) and near infrared (0.845-0.857 
pm). The system can store 1000 composite images of 640 x 480 pixel 
resolution. A GPS is integrated with the system. Imagery was acquired 
at altitudes of 300, 750 and 1500 m at the campaign of September 1995 
and February 1996. 

• Thermal and Multispectral measurements 

An Everest thermal infrared radiometer was used to get thermal air­
borne measurements. It has a band pass of approximately 8-13 im. An 
Exotech 4-band radiometer was used to make radiance measurements 
corresponding to the first 4 bands of the Landsat TM: blue (0.45-0.52 
im), green (0.53-0.61 im), red (0.62-0.69 im) and near infrared (0.78-
0.90 im). Flights were made on the days coinciding with a Landsat 
TM overpass. 
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Table 5.2: Configuration of the airborne Daedalus 1268 MSS sensor 

Daedalus Band 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
IFOV: 
Total Scan Angle: 
Pixels/Scan line: 
Scan rate: 

TM Band 
A 
1 
2 
B 
3 
C 
4 
D 
5 
7 
6 
6 
2.5 mrad 
86° 
716 
12.5/25/ 
50/100 scans s"1 

Wavelength interval (/xm) 
0.42 - 0.45 
0.45 - 0.52 
0.52 - 0.60 
0.60 - 0.62 
0.63 - 0.69 
0.69 - 0.75 
0.75 - 0.90 
0.91 - 1.05 
1.55 - 1.75 
2.08 - 2.35 
8.5 - 12.5 low gain 
8.5 - 12.5 high gain 

• Laser Al t imetry 

A laser altimeter used in the Jornex campaign is a pulsed gallium-
arsenide diode laser, transmitting and receiving 4000 pulses per second 
at a wavelength of 904 nm. The vertical resolution was 5 cm for each 
measurement. Laser altimetry flights were made in May 1995, Septem­
ber 1995 and February 1996. In September 1995 also an imaging laser 
altimeter was flown. 

• Airborne Daedalus da t a 

The Daedalus 1268 MultiSpectral Scanner (MSS) simulates the spec­
tral characteristics of the Thematic Mapper multispectral scanners 
oribiting on Landsat 4 and Landsat 5. The seven TM bands are repli­
cated with the MSS and four additional bands of discrete wavelengths 
are acquired. The MSS acquires TM band six (thermal infrared data) 
as two bands in low and high gain settings. The configuration of the 
scanner is given in Table 5.2. 

On June 19, 1997 three flight lines were flown over the Jornada Ex­
perimental Range. Two of those flights were flown at an altitude of 
1524 m, resulting in a geometrical resolution of 4 m. In Figure 3.4 the 
two flight lines at an altitude of 1524 m are indicated. Also a third 
flight line at an altitude of 4877 m was flown, resulting in a geomet-
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Table 5.3: Statistics of input images Jornada Experimental Range 

Land surface 
characteristic 

ro(-) 

To(K) 

NDVI (-) 

Site 

grass 
transition 
mesquite 
grass 
transition 
mesquite 
grass 
transition 
mesquite 

Minimum 

0.093 
0.098 
0.097 
306.526 
305.017 
303.672 
-0.039 
-0.137 
-0.058 

Maximum 

0.228 
0.220 
0.223 
330.303 
328.519 
332.196 
0.312 
0.291 
0.338 

Mean 

0.138 
0.156 
0.176 
322.439 
320.738 
319.167 
0.025 
0.030 
0.017 

Standard 
deviation 
0.014 
0.015 
0.021 
1.967 
2.392 
2.874 
0.018 
0.024 
0.041 

rical resolution of 12 m. In all three cases the scan speed was 25 rps. 
The remote sensing data were gathered at approximately 17:00 GMT, 
which is around 10:00 h local time. 

The remote sensing data were used to obtain the following land surface 
characteristics: ro, To and NDVI. The remote sensing data were corrected 
for atmospheric influences. In Table 5.3 the statistics for the input images of 
the Jornada Experimental Range are given. The standard deviation for all 
land surface characteristics is the smallest for the grass site and the largest 
for the mesquite site. The transition site, being a mixture of the other two 
sites has therefore a larger variability than the grass site but smaller than 
the mesquite site. The NDVI for the Jornada ranges from -0.14 to 0.34 and 
indicates that there is very little green vegetation present. Mean values for 
all sites are around 0.02. n Plate B the ro image is given for the grass site. 
In Plate C and D the ro images are shown for the mesquite and transition 
site respectively. 

5.3 The Netherlands 

5.3.1 Location and climate 

The climate in the Netherlands can be classified as a temperate oceanic cli­
mate with mild summers and cool winters using the revised Koppen climate 
classification (Rudloff, 1981). The weather is predominantly variable, with 
now and then periods of dry, sunny days alternated with rainy days. Storms 
are frequent and can be severe in coastal areas. The weather is mainly caused 
by depressions migrating generally from west to east. Sometimes a region 
of low or high pressure can be stationary over a wide area, causing stable 
weather for a period of several days or even weeks. 
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The field and remote sensing data of the Netherlands are all collected in 
the year 1995. Therefore a description of the climatic conditions of 1995 is 
given here (KNMI, 1996). In Figure 5.7 the annual trend of precipitation 
and temperature for the De Bilt weather station is shown, together with the 
average precipitation and temperature for the period 1961-1990. 
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Figure 5.7: Annual trend of precipitation and temperature for the KNMI 
weather station De Bilt in 1995. Also the normal annual trend of precipita­
tion and temperature based on the period 1961-1990 for De Bilt is shown. 

The year 1995 was very warm, dry and had more sunshine than usual. 
The months of February, July, August and October were much warmer than 
normal. The summer was the 2nd warmest summer of the century. The 
average annual temperature was 10.4 °C against 9.4 ° C normally, making 
this the 5th warmest year of the century until then. The annual precipitation 
of 739 mm was lower than usual: 792 mm. Most of the precipitation fell in the 
first three months of the year, which were wetter than usual. The months of 
April, August and October, November and December were much drier than 
in a normal year. 

5.3.2 Field data 

For the period of May to August meteorological data were obtained for four 
sites in the Netherlands. Two are maintained by the KNMI: Cabauw and 
Speulder forest. The other two are sites maintained by SC-DLO: Loo forest 
and Fledite forest. The location of the four sites is given in Figure 5.8. 

81 



Figure 5.8: Location of the meteorological measurement sites in the Nether­
lands. The box indicates the coverage of the Landsat TM scenes described 
in paragraph 5.3.2 
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• Cabauw 

The Cabauw measurement tower is situated in the western part of the 
Utrecht Province (51°58'16"N, 4°55'36" E), 2 kilometers northeast of 
the small village of Cabauw (Beljaars and Bosveld, 1997). The tower 
was designed and constructed by the KNMI for long-term meteorolog­
ical research. The tower is 213 m high and has been operational since 
December 1972. Windspeed, temperature and wind direction are mea­
sured at different heights (10, 20, 40, 80, 140 and 200 m) of the tower. 
The tower is placed in a pasture where grass is the dominant vegetation 
cover. Open flat pastures and small villages surround the site. The 
river Lek flows 1 km south of the measurement tower. A large array of 
meteorological data is obtained on a half hourly basis. Most important 
for this research is the collection of radiation and energy balance data. 

In Figure 5.9 the daily course of solar radiation, air temperature, wind-
speed and sensible and latent heat flux at the Cabauw site is given for 
11 July 1995. At this date also Landsat TM satellite data have been 
obtained, see Paragraph 5.3.3. The course of the solar radiation shows 
that in the morning no clouds were present. The amount of solar ra­
diation steadily increases until noon. The air temperature follows the 
same course and reaches its peak of more than 30° C at 14:00h. In the 
afternoon clouds are present, decreasing the amount of solar radiation 
to almost 0 at 16:00h local time. Therefore the temperature drops also 
more rapidly than expected for a cloud-free day. Wind speed is more or 
less constant with some variation during the day, and decreases during 
the night. The daily course of the latent and sensible heat flux show 
that the vegetation present at the site uses approximately 80% of the 
available energy for evaporation. Because of the presence of clouds the 
latent heat flux drops rapidly in the afternoon. 

• Speulder Forest 

The Speulder Forest site (52°15'07"N, 5°41'21"E) is part of an exten­
sive forest area, which is bordered in the east by a heather area at 
approximately 1.5 km (Bosveld et al., 1993). In all other directions 
the forest extends over at least 4 km. Within this area the topography 
is slightly undulating with height variations of 5 to 10 m. The research 
site is a forest stand of 2.5 ha of Douglas Fir (Pseudotsuga menziesii) 
planted in 1962. Tree height ranges from 16 to 20 m. Leaf area index 
is approximately 10 but varies throughout the year. The stand is very 
dense at the forest interior and no understory vegetation is present. 
The groundwater level is at 40 m below the surface, therefore capillary 
rise to the root zone can be ignored. The instruments are mounted at 
different levels of the 36 m high measurement tower: 4, 18, 24, 30 and 
36 m. Also here at this site radiation and energy balance measurements 
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Figure 5.9: Daily course of a) incoming shortwave radiation K^, b) air tem­
perature Ta, c) windspeed u and d) sensible heat flux H (dotted line) and 
latent heat flux \E (solid line) at the Cabauw site, July, 11, 1995 

are made on a half hourly basis during 1995. 

• Fledite Forest 

The 24 m high measurement tower in the Fledite forest (52°19'06"N, 
5°27'12"E) is situated in the southeast part of the Flevoland province 
(Elbers et al., 1996). Within a radius of 500 m 93% of the vegeta­
tion consists of forest, the main type being the populus (Populus). At 
the site the latent, sensible and momentum fluxes have been measured 
almost continuously during 1995. Also soil moisture content and atmo­
spheric variables like precipitation and windspeed have been measured. 
The groundwater level is about 1.5 m below soil surface. 

• Loo Forest 

The 22 m high measurement tower in the Loo forest (52°10'00"N, 
5°44'38"E) is situated in the western part of the Gelderland province 
(Elbers et al., 1996). The Loo forest is part of the forestry of Kootwijk. 
Large parts of the forest are planted on sand dunes. The topography is 
therefore also slightly undulating with height differences of 10 m max­
imum. The main type of tree in this forest is the Scots pine (Pinus 
Silvestrus) planted around 1900. Other types present are birch (Be-
tula), Douglas fir (Pseudotsuga menziesii) and oak (Quercus). Within 
the forest stand some open areas are present, with as main vegetation 
type heather. At this site the same array of variables measured at the 
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Table 5.4: Specifications of Landsat TM 

Band Wavelength interval (/jm) 
1 0.45 - 0.52 
2 0.52 - 0.60 
3 0.63 - 0.69 
4 0.76 - 0.90 
5 1.55 - 1.75 
6 10.4 - 12.5 

_7 2.08 - 2.35 
Geometrical Resolution 30 m, band 6: 120 m 
Temporal Resolution 16 days 

Fledite forest are measured here also. 

5.3.3 Remote sensing data 

Because of the unusual high amount of sunny days in the summer of 1995 
four almost cloudless Landsat TM satellite scenes could be obtained in that 
time period. Useful Landsat TM scenes were captured at May 24, June 25, 
July 11 and August 12. In Figure 5.8 the coverage of the Landsat imagery 
is shown. Almost half of the Netherlands is covered. Only the northern part 
of the Netherlands as well as some parts of the eastern provinces were not 
covered. The main specifications of the Landsat TM satellite are given in 
Table 5.4 

The Landsat data have been used to derive the following land surface 
characteristics: ro, To and NDVI. All land surface characteristics have been 
corrected for atmospheric influences using field measurements of ro and To 
and conversion factors given by Markham and Barker (1985). 

In Table 5.5 the statistics of the land surface characteristics derived from 
the four Landsat TM images of the Netherlands are shown. Table 5.5 shows 
that the surface albedo remains constant throughout the year, with the ex­
ception for the 25 June image. The standard deviation of the surface albedo 
is larger for the May and August images compared to the June and July 
images. The mean To increases from May to August. The standard devi­
ation for the To is the largest for 24 May. This is mostly due to the effect 
that the difference between the To of the open water bodies and land sur­
face decreases during these four months. The NDVI images show that the 
maximum mean NDVI occurs at 25 June, and then gradually decreases. 
This could be the effect of plant senescence, limited water supply or early 
harvesting. 

For the length scale and aggregation analysis of the Landsat TM data a 
subset has been chosen of 2560*2048 pixels encompassing the Central Part of 
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Table 5.5: Statistics of the land surface characteristics ro, To and NDVI, 
derived from Landsat TM satellite data for the Central Part of the Nether­
lands 

Land surface 
characteristic 

ro (-). 

To(K) 

NDVI (-) 

Date 

24/5/1995 
25/6/1995 
11/7/1995 
12/8/1995 
24/5/1995 
25/6/1995 
11/7/1995 
12/8/1995 
24/5/1995 
25/6/1995 
11/7/1995 
12/8/1995 

Minimum 

0.010 
0.037 
0.035 
0.020 
281.51 
283.36 
292.93 
291.49 
-0.31 
-0.50 
-0.28 
-0.35 

Maximum 

0.701 
0.670 
0.660 
0.725 
315.62 
317.44 
321.42 
319.80 
0.85 
0.88 
0.82 
0.89 

Mean 

0.193 
0.169 
0.199 
0.197 
297.79 
299.37 
302.74 
304.62 
0.584 
0.607 
0.561 
0.529 

Standard 
Deviation 
0.049 
0.037 
0.043 
0.049 
2.635 
2.540 
2.202 
2.198 
0.192 
0.213 
0.159 
0.167 

the Netherlands. This subset has been subdivided into 20 equally sized grids 
of 512*512 pixels. The grids have been numbered 1 to 20 from the upper 
left to the bottom right. Plate E shows the ro derived from the original 
Landsat TM image for the subset together with the outlay of the 20 grids. 
Three grids are highlighted. In Plates F, G and H the ro images are shown 
for respectively the grids 3, 8 and 11. These grids will be discussed in more 
detail in Chapter 6 
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Chapter 6 

Length scale analysis 

This Chapter presents the results of the length scale analysis for the three 
test sites described in Chapter 5. The length scale analysis will be based on 
the wavelet analysis described in Paragraph 4.6. The wavelet variance will 
be used to describe the variance for each length scale £* (m). The dominant 
length scale, I J ^ (m) is defined as the scale for which the maximum wavelet 
variance is calculated. The Haar wavelet is chosen to calculate the wavelet 
variance. In Paragraph 4.7 it was shown that the Haar wavelet is the best 
wavelet for determining length scales. 

6.1 Case study Barrax 

6.1.1 Wavelet analysis 

In Figure 6.1 the wavelet variance for all three land surface characteristics 
ro, To and NDVI is shown. In order to compare it for all three land surface 
characteristics the wavelet variance has been scaled as a relative fraction to 
the total wavelet variance. The wavelet variance curve has a similar shape for 
all three land surface characteristics. The curves show that t^om is located 
at 296 m. This coincides with the mean size of the pivot irrigation systems. 
Therefore the pivots are the dominant factor in determining the variance for 
all land surface characteristics. 

In Table 6.1 the i*dam for the three land surface characteristics are shown. 
The percentage of variance explained by ijom is given, together with the 
percentage of variance explained by I* > V^^- The latter simulates the 
situation where the resolution of the sensor is equal to that of the dominant 
length scale. 

From Table 6.1 it is clear that most of the variance is explained by the 
length scales larger and equal to t*dam = 296 m. The amount of variance 
explained by i*lom is for all three land surface characteristics equal: ±18%. 
If you would observe the area with a sensor with a geometrical resolution 
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Figure 6.1: Wavelet variance of land surface characteristics derived from 
airborne TMS-NS001 data, Barrax, June 29, 1991: a) surface albedo ro 
b) surface temperature To and c) Normalized Difference Vegetation Index 
NDVI 

Table 6.1: Statistics of the wavelet analysis for the land surface character­
istics ro, To and NDVI., derived from airborne TMS-NS001 data, Barrax, 
June 29, 1991 

Land 
surface 
character­
istic 

ro 
To 
NDVI 

P* 
dom 

(m) 
296 
296 
296 

Variance explained 
by 
length 

(%) 
18.48 
18.73 
18.62 

dominant 
scale 

Variance explained 

by e* > zdom 

(%) 
68.41 
67.50 
71.86 



equal to 296 m around 70% of the spatial variability would be captured. The 
remaining 30% would be lost. 

6.2 Case study Jornada Experimental Range 

6.2.1 Wavelet analysis 

In Figure 6.2a the wavelet variance of TQ for the three sites is shown. The 
three curves have a completely different shape. For the Mesquite site most of 
the variability is present at the smallest length scale of 4 and 8 m, which co­
incides with the average size of the dunes in this area. The wavelet variance 
for the grass site shows an almost flat shape, showing that there is consid­
erable variability present at all scales. However the amount of variability 
is much smaller compared to the mesquite site. The transition site finally 
shows two peaks, £^om is located at 512 m and a second peak is located at 4 
m. The peak at 4 m is due to the fact that there are mesquite shrubs present 
in the area, and the peak at 512 m can be explained because distinct regions 
of mesquite and grass are present. 

In Figure 6.2b the wavelet variance of To for the three sites is shown. In 
contrast to the wavelet variance curves for ro, the wavelet variance curves for 
To have a similar shape for all three sites. Most of the variability is explained 
by both the smallest length scales (4 - 8 m) and the largest length scales (512 
- 1024 m). There is almost no spatial variability present at the remaining 
length scales (16 - 256 m). Also here the spatial variability present at the 
mesquite site is much larger than the spatial variability present at the grass 
site. 

In Figure 6.2c the wavelet variance of the NDVI for the three sites is 
shown. All three sites show that the wavelet variance curve has a similar 
shape, most of the spatial variability is explained by the smallest length 
scales, 4 and 8 m. Almost none of the spatial variability is present at larger 
length scales. 

Comparing the three sites for all three land surface characteristics, the 
mesquite site contains much more spatial variability than the grass site . The 
reason is that the mesquite site is composed of bare soil and mesquite bush, 
two features that have larger differences in ro, temperature and NDVI. The 
grass site is covered mostly by black grama, with some areas of bare soil. The 
differences in To, ro and NDVI is not as large between black grama and bare 
soil, as between mesquite and bare soil. The transition site is a transition 
zone between the grass and mesquite site, showing that the transition site is 
composed of both black grama and mesquite bush together with bare soil. 
The overall variability of the transition zone is therefore larger than the grass 
site but smaller than the mesquite site. The decrease in wavelet variance for 
the mesquite site for all surface characteristics indicates that the dominant 
length scales for the land surface characteristics is at the smallest scale for 
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Figure 6.2: Wavelet variance of land surface characteristics derived from 
airborne Daedalus data, June 19, 1997, Jornada experimental range: a) 
surface albedo ro b) surface temperature To and c) Normalized Difference 
Vegetation Index NDVI 
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Table 6.2: Statistics of the wavelet analysis for the land surface characteris­
tics r0, To and NDVI, derived from Daedalus data, June 19, 1997, Jornada 
Experimental Range 
Land 
surface 
character­
istic 

ro 

To 

NDVI 

Site 

Grass 
Transition 
Mesquite 
Grass 
Transition 
Mesquite 
Grass 
Transition 
Mesquite 

Dominant 
length 
scale 

(m) 
8 
512 
4 
1024 
4 
4 
4 
4 
4 

Variance 
explained 

ky^L„ 

(%) 12.91 
25.00 
36.13 
31.21 
27.97 
47.52 
40.31 
45.87 
40.30 

Variance 
ex­
plained by 

^* ^ ^dom 

(%) 
88.79 
25.49 
100.00 
31.21 
100.00 
100.00 
100.00 
100.00 
100.00 

this site 4 m. It seems that the mosaic of dunes and bare soil areas is the 
most important characteristic, which governs the spatial pattern of ro, To 
and NDVI. 

In Table 6.2 the statistics of the wavelet analysis for the land surface 
characteristics for the three sites are given. For the mesquite site tdmn is 4 m, 
explaining between 36 and 47 % of the variability. Only for the NDVI of the 
grass and transition sites £dom is also 4 m explaining about 40% of the spatial 
variability. For the surface albedo of the grass site £dom is 8 m explaining 
only 13% of the spatial variability. In all cases the spatial resolution to use 
to capture all spatial variability is 4 m. A spatial resolution larger than 4 m 
would miss a substantial part of the variability present in the landscape. The 
question remains if 4 m is sufficient to capture all spatial variability in this 
complex landscape. While it appears sufficient for the mesquite site a higher 
resolution is needed for the grass site. Within the grass site a resolution 
equal to the size of the bare soil areas and plant communities, which is less 
than 1 m would be needed. 

6.3 Case study The Netherlands 

The data set for the Netherlands consists of 4 Landsat TM images obtained 
in the summer of 1995: 24 May, 25 June, 11 July and 12 August. Due to 
computational limits part of the whole TM scene has been used in the length 
scale analysis. A subset of 2560 columns and 2048 rows has been chosen 
instead. The subset shows the Central Part of the Netherlands. Plate E 
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shows the subset. 

6.3.1 Wavelet analysis 

Because the wavelet analysis only works for square images, the images with a 
size of 2560 and 2048 columns have been subdivided into 20 grids of 512 rows 
by 512 columns. Plate E shows the subdivision of the Landsat TM image 
into 20 grids. First the mean results derived from all the wavelet analysis of 
all 20 grids are discussed. After that three grids are discussed in more detail 
focusing on the differences in response of the wavelet variance for different 
types of land surfaces. The temporal effect on the wavelet variance will be 
studied using the four Landsat TM images. 

All grids 

The wavelet analysis has been applied to the three land surface character­
istics, ro, To and NDVI derived from Landsat TM images at four different 
dates. Therefore 12 images have been analyzed. For the statistics of the 
land surface characteristics for each image see Table 5.5. Grids with clouds 
in it were excluded from the wavelet analysis. 

In Figure 6.3a the wavelet variance for ro for the four different dates 
is shown. The wavelet variance plotted here is derived as the mean of the 
wavelet variance curves of all grids. The shape of the wavelet variance curve 
is for all four dates similar. At 1920 m i*d(mi is located, there is also a second 
peak, although less dominant, inbetween 120 and 240 m. The length scale 
of 1920 m is probably due to the size of the large scale features in the dutch 
landscape: cities, forests and open water bodies. The second peak at the 
length scales of 120 and 240 m is probably due to the size of the agricultural 
fields in the Netherlands. The amount of variance differs for the four dates. 
The images of 24 May 1995 and 12 August 1995 show more variance than 
the images of 11 July 1995 and 25 June 1995. This is also illustrated in Table 
5.5 where the minimum and maximum values for ro are respectively smaller 
and larger for the images of 24 May 1995 and 12 August 1995. 

In Figure 6.3b the wavelet variance for To for the four different dates is 
shown. While the resolution of the thermal infrared band of Landsat TM is 
120 m, the wavelet variance for the pixels smaller than 120 m is small. The 
wavelet variance at those length scales is not equal to zero, because of the 
leakage of the Haar wavelet to smaller length scales and because the image 
is turned slightly due to the geometrical correction. AH four dates show a 
similar shape for the wavelet variance curve. At 1920 m £*dam is located, 
equal to the result for the ro. The amount of variance varies from one date 
to another. The variance is largest for the image obtained at 24 May 1995. 
This is probably due to the effect that the largest difference between To for 
an open water bodies and To for the land surface occurs at this date. 
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In Figure 6.3c the wavelet variance for the NDVI for the four different 
dates is shown. The shape of all the NDVI wavelet variance curves for 
24 May and 25 June is similar to the one derived in the analysis of the r$ 
images. There is a peak located at 1920 m, and a second less dominant peak 
located between 120 and 240 m. The wavelet variance curves for 11 July and 
12 August are slightly different. The i*dom is still 1920 m, but the second 
peak has disappeared. This is probably caused by the fact that now for all 
"green" surfaces (pasture, agricultural fields, forest) in the Netherlands the 
NDVI has about the same value, resulting in no particular length scale for 
those type of surfaces. The wavelet variance decreases for the NDVI from 
25 June 1995 to 12 August 1995. This could be the effect of plant senescence, 
limited water supply and/or early harvesting. 

Selected grids 

Because the Netherlands is a composite of different types of landscapes the 
wavelet analysis for three grids are discussed here separately. Plate E shows 
an overlay with the twenty grids. The grids are numbered from 1 in the 
upper left corner to 20 in the lower right corner, counting first from left to 
right and then from top to bottom. The grids 3, 8 and 11 are selected. Grid 
3 shows a mixture of open water and agricultural fields with the larger fields 
located in the "Flevopolder", in the north of the grid and the smaller fields 
in the south of the grid. Grid 8 shows a very heterogeneous landscape with 
forests in the southwest, some cities in the middle of the grid and agricultural 
fields in the north and east. Grid 11 consists mostly of small sized parcels, 
mostly pasture, delineated by canals and some small cities. 

In Figure 6.4a the wavelet variance for r$ obtained at 24 May 1995 for 
the three grids is shown. The wavelet variance for the other dates are not 
shown, because they have a similar shape, like in the previous analysis for all 
grids. The wavelet variance for r$ of grid 3 shows that £^om for this grid is 
located at the length scale of 1920 m. The amount of variance is also much 
larger than for the other two grids. This is mainly caused by the fact that a 
large body of water is present in the grid. The ro of water has a much lower 
value than for any other surface type, therefore causing a larger variance. 
The wavelet variance at the size of the water body is therefore much larger. 
The wavelet variance curve for ro of grid 8 shows that the amount of variance 
is almost equal for each scale. However the largest variance can be found at 
length scales larger than 3840 m. This is because half of grid 8 is occupied 
by forest and half by agricultural fields and cities. However in this complex 
landscape there seems to be no dominant length scale. The wavelet variance 
obtained for the ro of grid 11 shows that for an agricultural landscape of 
small parcels the majority of the variance is explained by the smaller length 
scales (30 - 240 m), with tdom located at 30 m. 

In Figure 6.4b the wavelet variance for To obtained at 24 May 1995 for 
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Figure 6.3: Wavelet variance of land surface characteristics derived from 
Landsat TM images for the Central Part of the Netherlands at four different 
dates: a) surface albedo ro b) surface temperature To and c) Normalized 
Difference Vegetation Index NDVI 
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Figure 6.4: Wavelet variance of land surface characteristics derived from 
Landsat TM images at May 24, 1995 for three different grids: 3, 8 and 11. 
For the location of the grids see Plate E, a) surface albedo ro b) surface 
temperature To and c) Normalized Difference Vegetation Index NDVI 
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the three grids is shown. The wavelet variance for To of grid 3 shows that, 
similar to ro, i*^om of this grid is located at 1920 m. However the wavelet 
variance of the To for grid 8 shows that £jom is no longer located at 3840 
and 7680 m. The temperatures of the forest and agricultural fields are more 
or less similar. The size of the cities which are warmer than the surrounding 
area is here the dominant factor, leading to a t*dmn of 480 m, although at 
£* = 960, 1920 m considerable variability is present. The wavelet variance 
for To of grid 11 shows that £dom is 240 m. Regarding the fact that the 
resolution of the To image is 120 m, one still can say that for grid 11 most of 
the variance is explained by the smaller length scales: 120, 240 and 480 m. 

In Figure 6.4c the wavelet variance for the NDVI obtained at 24 May 
1995 for the three grids is shown. The wavelet variance for the NDVI of grid 
3 shows that £dom of this grid is located at 960 m. The wavelet variance of the 
NDVI for grid 11 shows that the variance decreases from the smallest length 
scale to the largest length scale. The size of the parcels is here the dominant 
factor. The wavelet variance of the NDVI for grid 8 shows an almost flat 
wavelet variance curve, meaning that the variance is evenly divided over all 
scales, representing the complexity of this heterogeneous landscape. 

In Table 6.3 £*dom for each land surface characteristic obtained from the 
wavelet analysis for grids 3, 8 and 11 and all grids is shown. The percentage 
of variance explained by £dom is given, together with the percentage of vari­
ance explained by I* > £dom- The latter simulates the situation where the 
resolution of the sensor is equal to that of the dominant length scale. 

Table 6.3: Statistics of the wavelet analysis for the land sur­
face characteristics ro, To and NDVI, derived from Landsat 
TM data for the Central Part of the Netherlands 

Land 
surface 
charac­
teristic 

ro 

Grid 

All 

3 

8 

Date 

24/5 
25/6 
11/7 
12/8 
24/5 
25/6 
11/7 
12/8 
24/5 
25/6 
11/7 

dom 

(m) 
1920 
1920 
1920 
1920 
1920 
1920 
1920 
1920 
3840 
7680 
7680 

Variance 
explained 

by Q™ 

(%) 
14.51 
15.05 
15.69 
15.04 
23.27 
22.44 
22.06 
21.09 
16.02 
14.86 
18.81 

Variance 
ex­
plained by 

F > t*dom 
(%) 
30.21 
29.06 
34.40 
32.20 
39.10 
36.69 
38.12 
44.52 
31.94 
14.86 
18.81 

continued on next page... 
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Table 6.3: Statistics of the wavelet analysis for the land sur­
face characteristics ro, To and NDVI, derived from Landsat 
TM data for the Central Part of the Netherlands 

Land 

surface 

charac­

teristic 

To 

NDVI 

Grid 

11 

All 

3 

8 

11 

All 

3 

8 

11 

Date 

12/8 

24/5 

25/6 

11/7 

12/8 

24/5 

25/6 

11/7 

12/8 

24/5 

25/6 

11/7 

12/8 

24/5 

25/6 

11/7 

12/8 

24/5 

25/6 

11/7 

12/8 

24/5 

25/6 

11/7 

12/8 

24/5 

25/6 

11/7 

12/8 

24/5 

25/6 

11/7 

12/8 

24/5 

dom 

(m) 
7680 

30 
30 
30 
30 
1920 

1920 

1920 

1920 

1920 

1920 

1920 

1920 

480 
1920 

1920 

480 
240 
1920 

1920 

1920 

1920 

1920 

1920 

1920 

960 
960 
1920 

960 
60 
60 
1920 

1920 

120 

Variance 

explained 

by Q o m 

(%) 
16.84 

20.23 

21.04 

18.24 

19.26 

17.66 

18.47 

15.41 

16.49 

23.12 

24.17 

20.53 

24.26 

17.54 

18.41 

17.35 

17.53 

21.92 

18.41 

17.35 

17.53 

14.18 

16.45 

18.34 

17.90 

16.08 

17.17 

18.18 

18.55 

15.48 

15.75 

18.75 

17.63 

19.00 

Variance 

ex­
plained by 

l* > Zdom 
(%) 
16.84 

100.00 

100.00 

100.00 

100.00 

34.96 

37.43 

36.30 

34.96 

44.26 

39.58 

55.15 

44.27 

61.44 

33.48 

34.88 

63.17 

68.78 

33.48 

55.15 

63.17 

27.05 

32.65 

37.80 

36.12 

49.45 

54.30 

44.66 

56.36 

85.45 

84.90 

29.87 

27.96 

67.11 

continued on next page. 
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Table 6.3: Statistics of the wavelet analysis for the land sur­
face characteristics ro, To and NDVI, derived from Landsat 
TM data for the Central Part of the Netherlands 

Land 
surface 
charac­
teristic 

Grid Date 

25/6 
11/7 
12/8 

dom 

(m) 
120 
240 
240 

Variance 
explained 

b y ^ o m 

(%) 
19.04 
17.74 
17.44 

Variance 
ex­
plained by 

** > t 
(%) 
63.50 
53.55 
56.77 

Table 6.3 shows that for the case study of the Netherlands the percentage 
of variance explained by £dom lies always within the range of 14 and 24%. 
A value of 1920 m for Pdom is most frequently mentioned for all grids in 
Table 6.3. Suppose that a sensor with a resolution of 1920 m would observe 
this test area then less than 35% of the variance present in the landscape 
would be captured. Still a sensor with a higher resolution would be needed 
to capture all spatial variability. Therefore £*dom cannot be used as a measure 
for the optimal sensor resolution. 

6.4 Optimal sensor resolution 

The Tables 6.3, 6.2, 6.3 show that £dom is not a good measure for the opti­
mal sensor resolution. In some cases even less than 20% of the variance is 
explained by £*<iorn- A better measure would be the length scale which would 
explain > 90% of the variance. In Table 6.4 for all test sites these length 
scales are given, £dom is also given in order to compare both length scales. 

Table 6.4 shows that for all land surface characteristics and locations the 
I* which explains at least 90% of the variance is smaller or equal to Pdom. 
This leads to the conclusion that Pdam is not suited for the choice of the 
optimal sensor resolution. 

The length scale analysis is of particular interest to the aggregation anal­
ysis by means of linearization explained in Paragraph 3.2. The cumulative 
wavelet (co)variance is equal to the (co)variance p in Equation 3.7. The 
wavelet (co)variance should be cumulated up to the scale level of the aggre­
gated results. This is only valid when the Haar wavelet is used. Looking at 
the results of the length scale analysis, the £dom is the length scale at which 
the largest aggregation difference will occur. 
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Table 6.4: Choice of the optimal sensor resolution based on the wavelet 
analysis for the three test sites. 

Scene 

Barrax 

Jornada 

The Netherlands 

Description 

ro 
To 
NDVI 

r0, grass 
ro, mesquite 
ro, transition 
T0, grass 
To, mesquite 
To, transition 
NDVI, grass 
NDVI, mesquite 
NDVI, transition 

ro, 24/5 
r0, 25/6 
ro, H / 7 
ro, 12/8 
To, 24/5 
To, 25/6 
To, 11/7 
To, 12/8 
NDVI, 24/5 
NDVI, 25/6 
NDVI, 11/7 
NDVI, 12/8 

^90% 

(m) 
74 
74 
148 

4 
4 
4 
4 
4 
4 
4 
4 
4 

120 
120 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 

f* 
dom 

(m) 
296 
296 
296 

8 
512 
4 
1024 
4 
4 
4 
4 
4 

1920 
1920 
1920 
1920 
1920 
1920 
1920 
1920 
1920 
1920 
1920 
1920 

Variance 

(%) 
68.41 
67.50 
71.86 

88.79 
25.49 
100.00 
31.21 
100.00 
100.00 
100.00 
100.00 
100.00 

30.21 
29.06 
34.40 
34.20 
34.96 
37.43 
36.30 
34.96 
27.05 
32.65 
37.80 
36.12 
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Chapter 7 

Aggregation of land surface 
characteristics 

In this chapter the results of the aggregation analysis for the three test 
sites will be discussed. This will be done following the two different paths 
described in Figure 3.1. This will give insight in how the resolution of radio­
metric observations, which are used as input data, influences the results of a 
land surface model, in this particular case SEBI. The difference obtained by 
following either path A or B, which is said to be the error due to aggregation, 
will also be estimated by the two approaches described in Chapter 3 : the 
linearization approach and the convex hull approach. 

In the remainder of the chapter the following nomenclature for the dif­
ferent resolutions of the data sets is used. A high resolution observation is 
equal to the resolution of the original data set. A low resolution observation 
applies to a data set with a pixel size larger than the original data set. A 
grid cell resolution observation applies to a data set where the entire area is 
covered by one single pixel. 

This chapter focuses on the description of the error due to aggregation 
of a data set from a high resolution towards a lower resolution up to a grid 
cell resolution. For the Barrax case study three different options have been 
investigated. 

The first option is the representation of the error due to aggregation for 
the actual situation. High resolution data have been used to derive the SEBI 
results and consequently the area average value for respectively H, \E and A 
has been derived. This result is compared to the area average value derived 
from low resolution data, up to the grid cell resolution. 

The second option is an estimation of the error due to aggregation of 
the data set based on the linearization approach. The linearization approach 
uses information about the variance and covariance of the input variables 
together with an estimation of the distribution of the input variables. Here 
the mean, median and modus values of the input variables have been chosen 
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to represent the distribution of the input variables and can be thought of 
representative for the area. The results of the wavelet analysis have been used 
to infer the variance and covariance of the input variables for the different 
resolutions. 

The third option is an estimation of the error due to aggregation for data 
set with a grid cell resolution based on the convex hull approach. The range 
of possible solutions for a data set obtained at a grid cell resolution has 
been derived. Information on the spatial variability of the input variables 
is needed. Three different options have been investigated. One where the 
spatial variability is derived from the high resolution data set, another where 
1% of the information derived from the high resolution data set is used to 
infer spatial variability and finally where low resolution data has been used 
to infer spatial variability. 

The linearization approach and convex hull approach will also be used in 
predicting the error due to aggregation for the remaining data sets: Jornada 
and the Netherlands. 

7.1 Case study Barrax 

7.1.1 Application of SEBI 

The SEBI model has been applied using the TMS-NS001 data set recorded 
on 29 June 1991 to derive the three spatially distributed land surface charac­
teristics ro, To and NDVI. The remaining input variables which are taken 
as constant for the complete Barrax site have been either obtained from 
field measurements or from radio soundings. In Table 7.1 the values for the 
areally constant input variables are given. The output of SEBI consists of 
spatially distributed values of H, \E and A. 

Table 7.1: Areally constant input variables for SEBI, Barrax, 29 June 1991. 

Input variable 
hi 

Oh 
Ph 

Qh 

Ps 
u* 

Jzo 

K± 
L± 

Value 
750 m 
300.15 K 
85986.1 Pa 
0.0093 kg k g - 1 

94045 Pa 
0.525 m s _ 1 

0.025 
860 W m- 2 

372 W m"2 

Source 
Radio Sounding 
Radio Sounding 
Radio Sounding 
Radio Sounding 
Field Measurement 
Field Measurement 
-

Field Measurement 
Field Measurement 

The principle behind SEBI described in Chapter 2 can be illustrated with 
Figure 7.1 where for a small percentage (« 0.5%) of the pixels the observed 
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temperature difference (To — Ta) and the theoretically derived temperature 
differences for zero evaporation (To — TQ)o (upper boundary) and maximum 
evaporation (T0 — Ta)max (lower boundary) are given. The values of (To — Ta) 
lie clearly between the theoretical boundaries for all pixels: (To — Ta)max and 
(To—Ta)o, indicating that the value of A will lie between 0 and 1, see Equation 
2.60. The slope of the upper boundary is predominantly determined by 
the decrease of net available energy Q* — GQ due to the increase of ro, see 
Equation 2.58. The slope of the lower boundary is less steep because the 
decrease of Q* — Go is being compensated by the increase of the vapor deficit 
(e* — e), see Equation 2.57. 
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Figure 7.1: Observed Temperature difference, (To — Ta) plotted together 
with the theoretically derived temperature differences for zero evaporation 
(To — Ta)o (upper boundary) and maximum evaporation (To — Ta)max (lower 
boundary) for « 0.5% of the pixels from the TMS-NS001 image obtained at 
the Barrax site, 29 June 1991 

The factor fZo, defined in Equation 2.64, has been used to set the ratio 
between 2o,m and zo,/i- This ratio is still the bottleneck in determining heat 
flux densities when using remote sensing data. Its value is very difficult to 
determine by means of field measurements. Therefore in this study a con­
stant value for fZo, valid for the whole area, is used as a fitting factor to 
minimize the error between SEBI results and field measurements. At three 
different surfaces in Barrax simultaneous field measurements of heat flux 
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densities have been obtained: irrigated maize, bare soil and fallow. Figure 
7.2 shows the comparison between the values for A obtained from field mea­
surements and from SEBI for the three different surface types. Figure 7.2 
shows that the results for the SEBI model applied at the TMS-NS001 data 
set are satisfactory when fZo is equal to 0.025, which implies kB~l = 3.69, 
where kB-1 = l n ( g ^ ) . The RMSE for A is then equal to 0.04. 

HHl Observed 
ZZZ SEBI 

Maize Fallow Bare soil 

Figure 7.2: Comparison of field measurements of evaporative fraction A with 
SEBI model results for three sites in the Barrax area, June 29, 1991. 

The spatially distributed input data used by the SEBI algorithm: ro, 
To and NDVI will now be aggregated towards different spatial scales to 
determine the impact of using low resolution data as input on SEBI results. 

7.1.2 Impact of spatial resolution of input data on SEBI re­
sults 

The following procedure has been set up to study the spatial aggregation 
of land surface characteristics. First SEBI has been applied using the land 
surface characteristics r0, T0 and NDVI derived from the original data set 
(geometrical resolution = 18.5 m) as input. The results are discussed in 
the previous paragraph 7.1.1, and it was shown that SEBI provided a good 
estimate of the heat flux densities. These results will be used in the remainder 
of this paragraph as a reference to determine the error due to aggregation. 
The spatially distributed H and \E have been averaged. From these mean 
heat flux densities the corresponding A is derived. These mean values are 
denoted in Figure 3.1 (path A) as F and will therefore be denoted in the 

104 



remainder of the chapter as H, XE and A. The values of H, XE and A are 
considered to be the correct aggregated values of H, XE and A for the whole 
scene. If the whole Barrax site is considered as a single NWPM grid cell, 
(ra 10 * 10 km2) the values of H, XE and A will provide the right input for 
the NWPM. 

Please note that the average of A derived directly from the SEBI results, 
(A), is not equal to A. With A the condition of the conservation of energy is 
fulfilled by averaging the heat flux densities H and XE. While for (A) this 
is not necessarily true, because of the non-linearity of the function relating 
AtoH and XE: A = XE/(XE + H). If the landscape is heterogeneous then 
A and (A) will be different. 

The spatially distributed input variables ro, TQ and NDVI are resampled 
each time by a factor 2, resulting in input data at resolutions of 37, 74, 
148, 296, 592, 1184, 2368, 4736 and 9472 m. This is equivalent to using 
multispectral radiometric observations at increasingly lower resolutions. The 
resampling has been done by means of linear averaging. The NDVI is 
resampled by first resampling the reflectances for the red band and near 
infrared band, r# and r^iR, and from those the corresponding NDVI has 
been calculated. This is equivalent to average multispectral observations 
band by band, i.e. as done when using low resolution observations. The 
NDVI is a non-linear function of both rR and r^jR, therefore to fulfill the 
condition of the conservation of energy, rR and r^iR are resampled instead 
of NDVI. 

The simple atmospheric correction scheme to derive ro described in Chap­
ter 5 is a linear function of the input radiances, therefore ro can be resampled 
by linear averaging. The non-linearity of the function to derive To from the 
radiance in the thermal infrared is negligible, therefore TQ is said to be a 
linear function of the thermal infrared radiance, and linear averaging of To 
is allowed. According to Becker and Li (1995) the error in temperature es­
timate due to aggregation is < 2K. The aggregation error which is observed 
is therefore only due to the non-linearity of the SEBI model and the hetero­
geneity of the land surface. 

For all resolutions mentioned above the SEBI model has then been ap­
plied using the resampled input data ro, To, rR, r^iR resulting in a spatially 
distributed H, XE, together with the corresponding A for each spatial res­
olution. The results obtained for a pixel with a resolution of 74 m have to 
be compared with the average results obtained with the square of 4*4 pixels 
of 18.5 m covering the same area. All these average results are denoted as 
F(p) in Figure 3.1 (Path B). Therefore these results will be denoted as H(p), 
XE{p) and A(p) in the remainder of the chapter. The input p consists of 
the averages of ro, To, rR and r^iR for the different resolutions. 

For all resolutions the error due to aggregation for H, XE and A can now 
be calculated as AH,agg = H - H(p), A\E<agg = XE - XE(p) and AA!o99 = 
A — A(p). This will lead to a distribution of errors for the entire area, where 
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H, XE and A are evaluated for the area covered by a low resolution pixel. 
The overall aggregation error, valid for the whole Barrax site, i.e. at the grid 
cell resolution, is given by A#,a99 = H - H(p), A\E,agg = XE - XE(p) and 
&A,agg = A — A(p). Here H, XE and A are evaluated for the whole area (all 
pixels). In Figure 7.3 the overall aggregation error for Barrax case is given 
for H, XE and A expressed as a relative error. The relative error due to 
aggregation for a variable x, 8x,agg (%) is defined as: 

8x,agg = 100 * *x,agg I 

x 
(7.1) 

In the same manner the overall relative error due to aggregation 8x^agg can 
be defined using AXtagg instead of Ax,agg-

7.5 

<U 

<a .> *̂  
n 
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a A 
• XE 
E3 H 

Efc :=: ', 
18.5 37 74 148 296 592 1184 2368 4736 9472 

Resolution (m) 

Figure 7.3: The overall relative error due to aggregation for the sensible 
heat flux density H, latent heat flux density XE and evaporative fraction A: 
$H,agg, ^\E,agg and ^K,agg respectively for different spatial resolutions of the 
airborne TMS-NS001 data set obtained in Barrax, June 29, 1991 

Figure 7.3 shows that Sn,agg, fi\E,agg and $A,agg increase with decreasing 
resolution. At the highest resolutions (< 100 m) ^H,agg> $\E,agg and S\yagg 

< 1.9 %, while for low resolution data (> 5000 m) 7>H,agg = 5%, 8\E,agg 
= 9% and 8\,agg = 8%. At the resolution of the NOAA-AVHRR satellite 
(1000 m) S~H,agg = 3.5%, 6\E,agg = 6% and 8A,agg = 5%. Therefore using low 
resolution data as input for SEBI would introduce an error in the results, 
due to the non-linearity of SEBI with regard to the input variables and the 
heterogeneity of the Barrax site. 

However when looking at the distribution of 8n,aggi 8\E,agg and 8\,agg 
for different low resolution data sets, even low resolution data with a pixel 
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size twice as large as the high resolution data can introduce large errors. In 
Figure 7.4 the minimum and maximum $A,agg f° r different resolutions are 
given together with 6\tagg. The minimum S\tagg increases with decreasing 
resolution. At a resolution larger than 2368 m the minimum 6\,agg becomes 
larger than zero, indicating that at this resolution none of the aggregated 
pixels is completely homogeneous anymore. The maximum SA,agg decreases 
with decreasing resolution in contrast to 5^agg. The maximum 8^agg for 
the high resolution data of 37 m is 95%, indicating that this resolution is 
larger than the length scale of the process thereby causing (large) errors in 
the results. The &k,agg obtained for the input data resampled to a 37 m 
resolution is shown in Figure 7.5 for all pixels. 
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Figure 7.4: The miniri|um and maximum relative error due to aggregation for 
the sensible heat flux aensity H, latent heat flux density XE and evaporative 
fraction A: Sn,agg, &\E,qgg a n d f>A,agg respectively together with the overall 
relative error due to aggregation for H, XE and A: 5H,agg, $\E,agg and 5h,agg 
respectively for different spatial resolutions of the airborne TMS-NS001 data 
set obtained in Barrax, June 29, 1991 

Figure 7.5 shows clearly that for the majority of the pixels 6A,agg IS zero, 
causing that 6\,agg is close to zero (see Figure 7.3). However there are also 
a number of pixels where 6A,agg is not negligible. Figure 7.5 shows that 
for pixels located at transition zones of non-irrigated and irrigated land the 
error can be larger than 10% even up to a maximum of 95% (see Figure 7.4). 
The maximum 6\,agg decreases with decreasing resolution while the sharp 
boundaries are blurred and S\,agg 1S averaged. This averaging leads however 
to a larger value for 5\tagg, because a low resolution pixel is covering a larger 
area and therefore less likely to be completely homogeneous. 
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Figure 7.5: A map of the relative error due to aggregation for the evaporative 
fraction A: S^,agg at the resolution of 37 m, Barrax, 29 June 1991 

w~> 
Figure 7.6: Cumulative distribution function of the relative error due to 
aggregation for the evaporative fraction A: S^agg for 37 m and 296 m reso­
lutions, Barrax, 29 June 1991 
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The aggregation analysis for the Barrax site shows that for low resolution 
data with a pixel size twice as large as for the high resolution data, 8k,agg 
can be very high but SA,agg is negligible for the whole scene. This is also 
illustrated by Figure 7.6 which shows the cumulative distribution function 
for 5\jagg for two low resolution observations: 37 and 296 m. The maximum 
error may be larger for the data with a resolution of 37 m, but the distribution 
function also shows that for 80% of the data 6\tagg = 0. For the data with 
a resolution of 296 m the maximum 8h,agg may be smaller, but only 10 % 
pixels have a 6^agg = 0. Whereas the maximum b~h,agg for individual pixels 
decreases with decreasing resolution, <5A)099 increases. The latter means that 
for heterogeneous areas low resolution data cannot be used in a land surface 
model without compensating for S\>agg. The same applies for Sn,agg and 

$\E,agg-

The objective of this thesis is to look at the possibility of using low 
resolution remote sensing data for providing input data, e.g. A, for NWPMs. 
In that respect it is useful to look at the values of $A,agg- A large value of 
^A,agg indicates that low resolution data is not suitable for providing input 
data for NWPMs. As has been shown in Chapter 4 the cumulative wavelet 
variance is directly coupled to SAtagg. On the other hand one should look at 
the distribution of #A,agg for the different resolutions (see Figure 7.4 - 7.6). 
These distributions provide a good indication of the reliability of the model 
results for the separate pixels. 

In the case of using SEBI as a tool for predicting the evaporation for 
separate agricultural fields the priority lies at the correct estimation of the 
evaporation for each field and not the overall evaporation of the whole region. 
The results obtained for the Barrax site show that especially for fields bor­
dered by fields with completely different hydrological conditions (wet vs dry) 
the results should be interpreted very carefully since 5\,agg can be large. For 
these type of applications spatial resolution must be consistent with spatial 
variability. Also here the wavelet analysis can play a part to predict S\tagg, 
while the pixels in a discrete wavelet transform of an image with the highest 
wavelet coefficients are subject to a large aggregation error depending on 
the non-linearity of the model. The above shows also that results obtained 
by applying SEBI to low resolution data of a heterogeneous area cannot be 
validated by using field measurements. 

In the following paragraphs the two approaches introduced in Chapter 
3: linearization approach and convex hull approach, will be used to predict 
^H,agg, ^XE,agg and A\,agg while using low resolution data. 

7.1.3 Linearization approach 

The values of A# ) ag9 , &\E,agg and &.\,agg for different resolutions of the input 
data can be approximated by linearization of SEBI as explained in Paragraph 
3.2. Since SEBI uses 4 spatially distributed input variables: ro, To, TR and 
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Table 7.2: Terms in the estimation of the error due to aggregation for the 
latent heat flux density, \E: &xE,agg using Equation 3.7 

Term in Equation 3.7 Non-Linearity Variance 
Term k Term V 

\fA(P2(x>y) 

\fAto%(x>v) 

A-fA(p*(x'y) 

AfA{pi(x,y) 

\IAipi(x,y) 

\fA(pi(x,y) 

\IAiP2(x,y) 

\IAiP2(x,y) 

AIAiP3(x,y) 

P^dA% 

P*?dA% 

P ^ A ^ 

P^dA% 

P2)dAd^k 
d2f 

Pi)(P2(x,y) 

•Pi)(P3(x,y) -p3)dA 

Pi){PA{x,y) 

P2)(P3(x,y) -Pz)dAs^ki 

p~2)(pi(x,y) -Pi)dAa^ki 

P3)iP4(x,y)-pi)dAd^-

dpidp3 

P4)dAdp%i 

dpsdpi 

d2XE 

d2XE 

«* -
d2\E 

*F 
d2XE 

orNIR 
82XE 
dr0T0 

d2XE 
droTR 

d2XE 
droTNlR 

d2XE 
9T0rR 

82XE 
dTormR 

d2XE 
9rorNIR 

r0,j 

aT0J 

°l 4 
TNIR <3 

- 2 
ar0T0,j 

~2 
TQTR,] 

T2 

rorNiRj 

T 2 

7T0rR,j 

T2 

TOTNIRJ 

T2 

TRTNIR,] 

rwiR, Equation 3.7 has to be written for n = 4 variables. Two important 
characteristics have to be quantified: the non-linearity of the SEBI model 
and the heterogeneity of the land surface. The separate terms needed in 
Equation 3.7 are listed in Table 7.2 in the case of the estimation of AxE,agg-
The terms are separated into two categories, the ones describing the non-
linearity of SEBI with regard to ro, To, TR and r^m, and the ones describing 
the heterogeneity of the land surface by means of the wavelet variance, a\ 
and covariance, ah •. 

The second order derivatives needed by the non-linearity term k have 
been evaluated numerically using symmetric difference quotients. The only 
unknown here is p, which gives the values for the input variables ro, To, 
TR and r^jR to determine the exact derivatives. The mean values of these 
variables will not give necessarily the exact result because of neglecting of 
higher order derivatives with the Taylor expansion. For this data set the 
above set of derivatives will be calculated using the mean, median and modus 
values for ro, To, TR and TJ^IR as estimates of p. In Table 5.1 the mean, 
median and modus values are given for ro , To and the NDVI. 

The variance term V is given by the results of the wavelet analysis. 
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In Chapter 4 it was shown that the cumulative wavelet variance a? • and 
cumulative wavelet covariance a1. • while using the Haar wavelet, represent 
the variance term V in Equation 3.7. The results of the length scale analysis 
discussed in Chapter 6 will be used, for o\ • see Figure 6.1. In Figure 7.7 
<r? for the four input variables ro, To, TR and r^iR is given. 

Figure 7.7 shows that for all possible combinations of the input variables 
ro, To, VR and VNIR, <H • shows the same trend present in the curves of o\ • 
presented in Chapter 6 (see Figure 6.1) except for o\aTN j - At small length 
scales there seems to be not much correlation between To and VNJR. 

The information given by <r? • and CT? • together with the numerical 
derivatives is used to estimate A\E,agg and An,agg- Figure 7.8 shows the 
results for A\^agg. Note that the results for AAia99 were derived indirectly 
from the results obtained for An,agg and A\E,agg- The derivatives were 
derived with mean, median and modus values for ro, To, TR and rjv/K-

Figure 7.8 shows that the A^agg obtained when using either the mean 
and median values for ro, To, TR and r^iR slightly underestimate the actual 
A\tagg • But the shape of the estimated curve using the mean and median 
input values is similar to the shape of the curve of the observed A^agg. Only 
the curve estimated with the modus of the input variables is clearly off in 
predicting a A\,agg close to 0. The modus of the input variables is only 
representative for the dry pixels. The shape is determined by the results 
of the wavelet analysis while the non-linearity term A;, determined by the 
non-linearity of the SEBI model, is constant for all resolutions. 

The results which have been obtained show clearly that the wavelet vari­
ance is a good tool to assess at which scales A^agg would be large. The 
dominant length scale, Z*dom is the length scale at which the largest increase 
in A^agg takes place. This is only true when the Haar wavelet is used in the 
wavelet analysis. Only the exact estimation of A^agg will remain trouble­
some due to the a priori unknown value p in Equation 3.7. In the Barrax test 
case both the mean and median values for where good estimates of p. The 
mean and median values ofp will also be used in the aggregation analysis for 
the data sets of Jornada and the Netherlands. 

The linearization approach can also be used to determine which of the 
input variables contributes most to A\E,agg- Therefore the value of each 
term listed in Table 7.2 is presented in Figure 7.9 for the resolution of 9472 
m, i.e. the largest possible pixel size where A\E,agg is the largest. 

Figure 7.9 shows that the r# term and the To -TR term are the dominant 
factors in estimating A\E,agg- The contribution of the rR term to A\E,agg 
differs when using the median value for the input variables, this would indi­
cate that the non-linearity of XE with regard to rR is the most important 
factor, together with a high spatial variability of rR. Looking at the contri­
bution of the To ,rR term to A\E,agg the lower value estimated on the basis 
of the modus input stands out. Also this indicates that the non-linearity 
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Figure 7.7: All possible combinations of the wavelet covariance <r? • for sur­
face albedo rn, surface temperature To, red reflectance r# and near infrared 
reflectance T^IR- The graphs are based on airborne TMS-NS001 data ob­
tained at Barrax, June 29, 1991. Please note the different scales at the y-axis 
representing 0fgtj-
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Figure 7.9: Contribution of the different terms defined in Table 7.2 to the 
overall error due to aggregation for latent heat flux density, XE: A\E,agg a t 
the resolution of 9472 m, Barrax, June 29, 1991 
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of XE with regard to r# and To is the dominant factor. The covariance 
terms have a substantial contribution to A\E,agg- Therefore the correlation 
between the input variables should always be taken into account when es­
timating A\E,agg- The contribution of r^iR and ro to A\E,agg is relatively 
small compared to the contribution of VR and To. 

Low resolution data, like METEOSAT and NOAA observe locations more 
than once per day and are therefore very well suited to map A on a daily 
basis for large areas. However the price to pay compared to high resolution 
data is A\jagg. The question remains how to correct the results obtained by 
low resolution data for AXE,agg, AH,agg and A\<agg? 

The linearization approach can be used to correct the results obtained by 
low resolution data for A^agg in the following way. First for a few selected 
moments throughout the year high resolution data of (a part of) the area 
under consideration should be available. A good criteria would be before 
and after dates when major changes in land use would occur, e.g. harvesting 
of grown crops. These high resolution data will be used for obtaining a? • 
and cPi • of the land surface characteristics used in SEBI: ro, To and NDVI 
(rR and r^iR,). The Haar wavelet will be used in the wavelet analysis. Then 
for selected moments in time the factor V in Equation 3.7 is known. The 
low resolution data itself can be used as an estimation of p in determining 
the derivatives of the input data with lead to H and XE, this will give a 
pixel-wise value for the factor A; in equation 3.7. As is shown the mean and 
median value of the input variables, i.e. low resolution data, can provide 
only an estimate of k, but will still limit AA,agg-

Using equation 3.7 the results of SEBI for H and XE can now be corrected 
for aggregation errors, as A\E,agg and Au,agg is known for each pixel at 
different low resolution up to the grid cell resolution. The corrected values 
for H and XE can be used to derive A. This approach does not claim to 
provide the correct A but will produce a better result then without any 
correction. 

7.1.4 Convex hull approach 

With the convex hull approach described in Paragraph 3.3 it is possible to 
determine the boundary of H, XE and A for a given resolution, based on 
the spatial variability of the input variables. The boundaries are given by 
Fv and FA, where F here is calculated using SEBI. Crucial in the success 
of the convex hull approach is the determination of the spatial variability of 
the input data. The spatial variability of the input data determines together 
with the non-linearity of the model the variability in model results, and 
therefore the range of H, XE and A for a given low resolution measurement 
of r0, T0, rR and rmR. 

To illustrate the convex hull concept the upper and lower boundaries 
of the NDVI for the mean input of rR and r^iR derived from the TMS-
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NS001 data obtained at the Barrax site, 29 June 1991 will be presented. The 
NDVI is a non linear function of r# and r^xR. Therefore an error due to 
aggregation will occur when r# and r^m are mapped over a heterogeneous 
area. In Figure 7.10 the NDVI is plotted as a function of r# and r/v/K-
The limits of the NDVI results are given by the spatial variability of VR 
and VNIR in the Barrax area. The spatial variability is given by the high 
resolution data. The total amount of possible spatial variability within a low 
resolution pixel is given by the convex hull which envelopes the pixel values 
of rji and r^iR- For the area determined by this convex hull the NDVI has 
been calculated. 

^a 
^ \ ^ Vi& ^3& ^ . ^ s^& ^s& 

Figure 7.10: NDVI as function of TR and V^IR. In the TR-T^IR plane the 
convex hull indicating the spatial variability is given together with 1 % of 
the data points. 

The NDVI curve can now also be enveloped by a convex hull. This convex 
hull limits all possible results for the NDVI given the spatial variability of TR 
and r^fiR within the Barrax area. The upper hull represents the maximum 
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NDVI value given a low resolution measurement of any TR and TJV/R, in the 
same manner the lower hull represents the minimum NDVI value given any 
low resolution measurement of TR and r^iR- If the upper and lower convex 
hull are subtracted the resulting plane gives the estimated Ajv£>y/(r#, r^v/fl) 
for all combinations of TR and TNIR- Figure 7.11 shows the results for the 
Barrax test case. The convex hull approach can also be applied for the 
SEBI algorithm, only here SEBI depends on 4 input parameters, therefore 
the convex hull has to be solved for 5 dimensions: the 4 input parameters, 
together with the result of SEBI, either H, XE or A. 

For the Barrax site three numerical simulation experiments will be eval­
uated to estimate the spatial variability of the input data: 

1. The high resolution data set (resolution = 18.5 m) will be used to infer 
the spatial variability of the land surface characteristics used as input 
data in SEBI: ro, To, rR and TNIR. The results based on this option 
will be compared with H, XE and A obtained for the Barrax data set. 
According to the convex hull theory the values for H, XE and A should 
lie between the boundaries derived by the convex hull approach. The 
results obtained by this option will be seen as the truth to which the 
other two options are compared. 

2. Only 1% of the pixels of the original data set will be used to get in­
formation on the spatial variability of the land surface characteristics. 
This is similar to the situation where for a part of the region covered 
by a low resolution data set some high resolution data is available. 
Also nowadays there are sensors which are capable of measuring ei­
ther in high-resolution or low-resolution mode (e.g. FOCUS, a sensor 
developed by DLR, Germany for the detection of biomass burning). 

3. The input data will be resampled to the resolution of 1184 m, com­
parable to the resolution of the NOAA-AVHRR sensor. The spatial 
variability of the land surface characteristics used as input in SEBI 
will be determined for this low resolution data set. The minimum and 
maximum values obtained for H, XE and A will be compared with 
those obtained by the other two options. 

The SEBI model was run for all possible combinations of ro, To, TR 
and TNIR which are contained within boundaries given by the convex hull, 
resulting in a large number of values for H, XE and A. This has been 
done for all three options mentioned above. The 5-dimensional convex hull 
encompassing the input data together with the results, either H, XE or A, 
has been derived. The minimum and maximum values for H, XE and A has 
been calculated by finding the values for Fy and FA for the mean values of 
the input variables ro, To, TR and r^iR- As an estimation of the actual value 
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Figure 7.11: The maximum error due to aggregation for the NDVI, 
ANDViirfarpfiR, based on airborne TMS-NS001 derived reflectances in the 
red and near-infrared, TR and r^m respectively, Barrax, 29 June 1991 
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of H, the value of Hest obtained by the convex hull has been taken: 

~Yf "-max tlmin /<-, n\ 
Hest = ^ (7.2) 

The same assumption has been made by determining \Eest whereas kest is 
estimated using XEest and Hest. Table 7.3 summarizes the results for the 
convex hull analysis for the Barrax data set. 

Table 7.3 shows that the assumption given by Equation 7.2 does not 
produce the right values for H, XE and A for the full data set. H is underes­
timated (216.4 < 243.9)_while XE is overestimated (215.8 > 197.9), leading 
to an overestimation of A (0.499 > 0.410). The other options produce better 
results in estimating A but this is not more than a coincidence and no con­
clusions can be drawn from that. Looking at the minimum and maximum 
values of H (155.9-276.9), XE (162.7-268.8) and A (0.322-0.542) obtainedfor 
the full data set it can be seen that the range for the possible values of A is 
0.12,Jor XE is 104.1 W m"2 and for H is 121.0 W m~2. The results for XE 
and H show that the maximum error due to aggregation can be large, up to 
a value of 44% for 6\E,agg and 36% for Sn,agg-

If only 1% of the pixels is taken to infer the spatial variability a good 
estimate of the minimum and maximum value for XE can be given. However 
the minimum value of H is overestimated, leading also to an underestimation 
of the maximum value of A. But still a small portion of the dataset, if 
sampled at a high resolution, gives a reasonable estimate of the variability for 
the possible values of XE, H and A. Only by using low resolution imagery 
erroneous values for the minimum and maximum values for H, XE and A 
can be generated. Therefore in combination with low resolution data always 
high resolution imagery should be used to infer the domains of the spatial 
variability of the input variables. 

In the following two paragraphs the above approaches to estimate A\E,agg, 
&H,agg and &A,agg will be applied to the remaining two data sets: Jornada 
Experimental Range and the Netherlands. 

7.2 Case study Jornada Experimental Range 

The input variables H, XE and A for the SEBI model have been derived using 
DAEDALUS data obtained at 19 June 1997 at the Jornada Experimental 
Range. The resolution of the data is 4 m. Field measurements and radio 
soundings have been used to derive the remaining input data, valid for the 
whole Jornada Experimental Range. In Table 7.4 these data are summarized. 

In contrast to the Barrax test case the SEBI model will not be applied for 
all pixels within the entire Jornada Experimental range. Instead the A\E,agg, 
^H,agg and &-K,agg will be calculated using the two approaches mentioned 
above: the linearization approach and the convex hull approach. 

118 



Table 7.3: Results for the convex hull analysis for the SEBI results for the 
evaporative fraction A, latent heat flux density XE and sensible heat flux 
density H based on TMS-NS001 data of the Barrax area., June 29, 1991. The 
spatial variability of the input variables, surface albedo ro, surface albedo 
To, reflectance in the red TR and reflectance in the near-infrared TNIR was 
derived by either using the full high resolution data set, 1% of the high 
resolution data set, or the resampled high resolution data set to the size of 
a NOAA pixel. 

SEBI 
results 

A(-) 
Aest (-) 
A-min {') 

ft-max \~) 

$\,agg min (%) 
6\,agg max (%) 

XE W m " 2 

XEest W m"2 

XEmin W m"2 

XEmax W m - 2 

S\E,agg min (%) 
S\E,agg max (%) 

HWm~2 

H_est W in"2 

Hmin min W m - 2 

Hmax max W m~2 

A>H,agg min (%) 
^•H,agg m a x (%) 

High resolution 
data set 

0.410 
0.499 
0.322 
0.542 
21.2 
32.2 

197.9 
215.8 
162.7 
268.8 
17.8 
44.9 

243.9 
216.4 
155.9 
276.9 
36.1 
13.5 

l % o f 
data set 

0.476 
0.322 
0.461 
21.2 
12.4 

217.4 
166.9 
267.9 
15.7 
35.3 

239.7 
208.9 
270.4 
14.4 
10.8 

Simulated 
NOAA 

0.395 
0.387 
0.415 
5.6 
1.1 

170.5 
168.1 
172.9 
15.1 
12.6 

260.8 
253.8 
267.8 
4.0 
9.8 
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Table 7.4: Areally constant input variables for the SEBI model, Jornada 
Experimental range, 19 June 1997. 

Input variable 
hi 

eh 
Ph 
Qh 

Ps 
u* 

Jzo 
Ki 
L± 

Value 
1700 m 
317.0 K 
70000 Pa 
0.0032 kg kg"1 

82646 Pa 
1.0 m s _ 1 

0.1 
850 W m"2 

497 W m- 2 

Source 
Radio Sounding 
Radio Sounding 
Radio Sounding 
Radio Sounding 
Field Measurement 
Field Measurement 
-
Field Measurement 
Field Measurement 

7.2.1 Linearization approach 

Also for the Jornada test case, as with the Barrax test case, equation 3.7 
adapted for n = 4 variables will be used to estimate A\E,agg, ^H,agg ^ d 
^A,agg- In Figure 7.12 the results for the estimation of &A,agg are shown. As 
input value for the non-linearity term the mean value of the input parameters 
ro, To, TR and r^iR has been chosen . The median and modus value of the 
input parameters showed almost similar results. 

Figure 7.12 shows that AA,agg is almost negligible. Even for a resolution 
> 1000 m A\,agg ~ —0.01. In the case of the Jornada Experimental Range 
low resolution data can be used to predict A with almost no error due to 
aggregation. The three different curves for grass, mesquite and transition are 
different however. For the mesquite site the largest differences occur at the 
smallest length scales which are equal to the size of the dunes and the bare 
soil areas. If the resolution becomes larger than the dunes and bare soil areas, 
the mesquite curve becomes almost flat, indicating that almost no variability 
is present at the largest length scales (> 100 m). The grass site shows that 
whenever the resolution increases with a factor two, AA,agg becomes twice 
as large. This indicates that the variability is evenly spread between the 
different length scales. The transition site is a combination between the two 
other curves. When the resolution < 32 m it follows the trend of the mesquite 
site due to the presence of mesquite dunes, at a resolution > 128 m it follows 
the trend of the grass site. Although the sites at the Jornada experimental 
range at length scales < 4 m exhibit a large spatial variability , the sites 
looks rather homogeneous at larger length scales. Also there is not a large 
variability in hydrological conditions within the Jornada experimental range 
in the summer. For these type of conditions, i.e. desert vegetation in the 
summer, low resolution data can be used without introducing an error due 
to aggregation. 
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Figure 7.12: Estimation of the overall error due to aggregation for the evap­
orative fraction, A: AA ) (19S using the linearization approach for the Jornada 
Experimental Range for the three different experimental sites: grass, transi­
tion and mesquite, 19 June 1997. For p in Equation 3.7 the mean value of 
the input parameters ro, To, r# and V^IR has been chosen 
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Table 7.5: Results for the convex hull analysis for the SEBI results for the 
evaporative fraction A, latent heat flux density \E and sensible heat flux 
density H based on the Daedalus data set of three sites at the Jornada 
Experimental Range, June 19, 1997. The spatial variability of the input 
variables, surface albedo ro, surface albedo To, reflectance in the red r# and 
reflectance in the near-infrared r^m was derived by either using the full high 
resolution data set or 1% of the high resolution data set 

SEBI results 

Aes« (-) 
l*-min \~) 
A-max \) 
range (-) 

XEest W m"2 

A£"min W m~2 

^Emax W HI"2 

range W m - 2 

Hest W m"2 

Hjnin W m " 2 

Hmax W m - 2 

range W m - 2 

Grass 
High 
reso­
lution 
data 
set 

0.185 
0.137 
0.233 
0.096 

99.1 
82.0 
116.1 
34.1 

368.2 
355.3 
381.1 
25.8 

1 % of 
data 
set 

0.186 
0.149 
0.222 
0.073 

99.5 
91.2 
107.8 
16.6 

369.6 
361.9 
377.2 
15.3 

Mesquite 
High 
reso­
lution 
data 
set 

0.315 
0.244 
0.386 
0.142 

174.1 
160.8 
187.4 
26.6 

289.4 
278.4 
300.4 
22.0 

1 % of 
data 
set 

0.330 
0.279 
0.380 
0.101 

169.0 
157.9 
180.0 
22.1 

292.2 
283.3 
301.1 
17.8 

Transition 
High 
reso­
lution 
data 
set 

0.214 
0.142 
0.286 
0.144 

138.8 
124.3 
153.2 
28.9 

329.4 
318.7 
340 
21.3 

1 % of 
data 
set 

0.277 
0.249 
0.304 
0.055 

138.1 
132.6 
143.7 
11.1 

328.9 
324.2 
333.5 
9.3 

7.2.2 Convex hull approach 

For the convex hull approach a similar procedure as with the Barrax data has 
been followed. Different options to capture the amount of spatial variability 
have been tested. The difference with Barrax is that here only the first two 
options have been taken: the degree of spatial variability derived on the 
basis of the full data set, and the degree of spatial variability derived on the 
basis of 1% of the data set. The third option in which the input data would 
have been resampled to the size of a NOAA pixel has been omitted, since 
the extent of the three sites is only 2048 * 2048 m2 which is equal to the 
area covered by 4 NOAA pixels. In Table 7.5 the results of the convex hull 
analysis are summarized. 

Table 7.5 shows the same lack of spatial variability obtained with the 
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linearization approach. Compared with the results obtained for the Barrax 
test case with the convex hull approach, the range to which the solution of 
H, XE and A is confined is much smaller. A remarkable feature is shown 
when comparing the grass and mesquite site. Whereas for the grass site 
using only 1% of the data set gives some differences in the estimation of the 
minimum and maximum values of H, XE and A, for the mesquite site these 
differences are much smaller. This can be explained by the regular pattern 
exhibited at the mesquite site. A random uniform distributed sampling will 
still capture almost all spatial variability present at that site. 

Based on the results of both the linearization and convex hull approach 
it is allowed to use low resolution remote sensing data to obtain estimates 
of H, XE and A. This applies to the summer conditions when the hydro-
logical contrast between plants and bare soil is very small. More research is 
needed for those situations where more hydrological contrast is expected, 
most notably at the end of the raining season. 

7.3 Case study The Netherlands 

As with the Jornada Experimental Range the same procedure is applied 
to the Netherlands case study to estimate H, XE and A based on the lin­
earization and the convex hull approach (instead of applying SEBI for all 
resolutions like the Barrax test case). The input variables ro, To, r#, r^m 
have been estimated using Landsat TM data, 24 May 1995. It has been cho­
sen to examine this date instead only of all dates. As was shown in Chapter 
6 the wavelet variance curves are equally shaped for all dates, where the 
main difference lies in the amount of variability present in the image. For 
the 24 May 1995 the amount of variability is the largest, together with the 
12 August 1995 image. Therefore an analysis of the 24 May 1995 will also 
provide insight for the other three dates. In Table 7.6 the remaining input 
variables for the SEBI model are given. 

7.3.1 Linearization approach 

The length scale analysis discussed in Chapter 6 was applied for 20 equally 
sized grids in which the Landsat TM image had been subdivided. The same 
grids will be used for the linearization approach as well as the convex hull 
approach. 

In Figure 7.13 the results for the estimation of A\,agg are given, where 
^A,agg has been derived using the results for A\E,agg and &H,agg- Grid num­
ber 5 has been excluded from the analysis because of the presence of clouds 
within the grid. Cloud contaminated low resolution pixels are a possible 
source of error in land surface models using ro and To as input variables. 
The value of ro will be overestimated, whereas To will be overestimated. 
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Table 7.6: Areally constant input variables for SEBI, the Netherlands, 24 
May 1995. 

Input variable 
hi 

oh 
Ph 
Qh 

Ps 
u* 

Jzo 
Ki 
L± 

Value 
1500 m 
295.0 K 
85000 Pa 
0.007 kg kg"1 

100800 Pa 
0.4 m s - 1 

0.1 
785 W m- 2 

338 W m- 2 

Source 
Radio Sounding 
Radio Sounding 
Radio Sounding 
Radio Sounding 
Field Measurement 
Field Measurement 
-
Field Measurement 
Field Measurement 

-0.025 

X -005 

O 

l ^ -0.075 

-O.l 

-0.125 

Mean input 
Median input 

J I I I I I L I I I I I I I I I I 
S 

J I 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Grid number 

Figure 7.13: Estimation of the overall error due to aggregation for the evap­
orative fraction, A: ^A,agg for the 20 grids shown in Plate E using the 
linearization approach, the Central Part of the Netherlands, May 24, 1995 . 
For p the mean value or the median value of the input variables ro, To, TR 
and rjv/fi has been chosen 
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The results shown in Figure 7.13 indicate that for the input variables ro, 
To, rR and r^m the estimations on the basis of the median and mean values 
do not differ much. They show the same trend for all 20 grids. The grid 
numbers 2, 3 and 4 show the largest values for AA,agg- This can be explained 
by the presence of large bodies of water in all three grids, which increases 
the spatial variability for the four input variables, leading to a larger value of 
AA,O99. The mean value of A-A,agg for all 20 grids is -0.02 (mean input) and 
-0.03 (median input) which implies an almost negligible value of A\tagg. The 
maximum value of &A,agg is -0.10 (mean input) and -0.12 (median input). 
Looking at the grids 3, 8 and 11 which were also highlighted in the length 
scale analysis described in Chapter 6, one can see large differences between 
the three grids. For grid 11 the value of A-A,agg is close to zero. Grid 3 is then 
almost covered by the same type of land use, pastures, and exhibits almost 
no spatial variability. Grid 8 shows only a slightly larger value for &A,agg 
which is surprising because of the much larger amount of spatial variability. 
Grid 3 shows the largest value for &A,agg which is caused by the presence of 
a large water body. 

The results obtained by the linearization approach for the Netherlands 
shows that only for the grids where large water bodies are present AA ) 0 9 S is 
not negligibly small. For the remainder of the grids low resolution data seems 
to be sufficient to estimate XE, H and A. As was shown in the analysis of 
the Barrax data set a small value of AA,agg is not a guarantee that AA,agg 
for all pixels will be equally small. 

7.3.2 Convex hull approach 

The convex hull approach has also been applied for all twenty grids, with 
the exception of grid number 5. The minimum and maximum values for 
XE and H have been estimated. The whole data set has been used to infer 
the spatial variability. The exact range of solutions for XE and H can only 
be derived when using the whole data set. In Figure 7.14a the results for 
the convex hull approach for the estimation of the minimum and maximum 
values of XE are shown for the 20 grids. Also the results for H are shown in 
Figure 7.14b. 

Figure 7.14a and b show that the range for the possible solutions of XE 
and H are very large. The maximum values of XE for all grids with the 
exception of grid 1 and 10 are around 400 W m - 2 . The minimum values for 
XE show a more diverse pattern. The values range from -200 until -1000 W 
m~2. The values for H show the opposite, with the minimum values being 
more or less stable around 0 W m~2 and the maximum values range from 400 
until 1400 W m~2. These unreasonably low values for XE and high values 
for H possibly are the effect of the low NDVI values present in the grid (see 
Table 5.5. The NDVI values are < 0 for water, causing a overestimation of 
H and an underestimatoin of XE. Also scan errors in the Landsat image 
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Figure 7.14: Estimation of a) the aggregated latent heat flux density, \E 
and b) the aggregated sensible heat flux density, H using the convex hull 
approach for the Netherlands, 24 May 1995 for the 20 grids shown in Plate 
E. The square indicates the average value, whereas the extent of the bars 
show the range of possible values for a) XE and b) H 
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can be a possible source of error. This pixels, although small in number, can 
alter the shape of the convex hull considerably, leading to strange values for 
XE and H. Especially when greenhouses are present in the image, the signal 
tends to get saturated, leading to much higher reflectances than normal. 

The results of the convex hull analysis show however that for a landscape 
like the Netherlands, low resolution remote sensing data cannot be used a 
priori to estimate XE, H and A. 

7.4 Conclusions 

In this section the conclusions based on the results for the aggregation anal­
ysis for all three test cases will be given. The overall relative error due to 
aggregation for H, XE and A: SH,agg, ^\E,agg and SAjagg obtained by the 
linearization approach has a maximum value of 10% for the three different 
data sets. Compared to the precision of field measurements which is roughly 
in the same order this indicates that low resolution remote sensing data may 
be used to map A for input in a NWPM model. 

However the convex hull analysis showed that low resolution remote sens­
ing data cannot be used a priori. Knowledge about the spatial variability at 
the process scale is still needed to determine the error due to aggregation. 
The wavelet variance is a good tool to determine the spatial variability at 
different length scales. 

If one is interested not in a areal average of A, but in the actual values 
for each separate pixel, the resolution of the remote sensing data should be 
smaller than the actual process scale. If the resolution is larger than the 
process scale, the analysis of the Barrax site showed, that the error due to 
aggregation for A: 6\jagg can be as large as 95 %. 

Low resolution remote sensing data may be used to infer the aggregated 
value of A, if the spatial variability is known at the scale less or equal to the 
process scale. However interpretation of results based on individual pixels of 
low resolution remote sensing data should be done carefully, while individual 
pixels may not be representative of the area they cover. 
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Summary and conclusions 

Land Surface Models (LSMs) describe the exchange of heat, moisture and 
momentum between the land surface and the atmosphere, i.e. the surface 
energy balance. These models can also be solved regionally using remote 
sensing data as input. Important input variables which can be derived from 
remote sensing data are surface albedo ro, surface temperature To and the 
vegetation index NDVI. 

LSMs combined with remote sensing data describe the surface energy 
balance for a large area. That makes this type of models suitable for inclusion 
in Numerical Weather Prediction Models (NWPMs). The LSM can be used 
to provide the lower boundary condition for a NWPM. 

The partitioning of net available energy into latent and sensible heat 
flux density, XE and H respectively, has an impact on the formation of 
clouds and therefore on the amount of precipitation, the radiation balance 
and the distribution of water vapor in the atmosphere. The partitioning can 
be described by the evaporative fraction A, being a soil wetness indicator. 
Low resolution remote sensing data, having a high temporal resolution are 
suitable for updating A on a daily basis, thus steering the NWPM. 

The coupling of a LSM with a NWPM is however not trivial. The grid 
cell size of a NWPM is much larger than the pixel size of any remote sensing 
data. The results obtained by the LSM on the basis of remote sensing data 
should therefore be aggregated towards the grid cell size of a NWPM. Two 
important aspects have then to be taken into account: 

• The resolution of the observation versus the scale of the process in­
volved 

• The type of model used to infer the soil wetness indicator from remote 
sensing data i.e. linear or non-linear 

When the resolution of the observation is larger than the scale of the 
process involved and the type of model is non-linear, then linear averaging 
of the results to the scale of a NWPM grid cell is not allowed. Therefore 
the central research question stated in this thesis is defined as: How to are-
ally aggregate soil wetness indicators, accounting for their length scales and 
resolutions at which they can be sampled by advanced satellite sensors, from 
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pixel to meso scale. 

In Chapter 2 the most important land surface processes involved in the 
description of the exchange of momentum, heat and moisture have been de­
scribed. These processes are of a turbulent nature and formulations of the 
profiles of specific humidity, windspeed and temperature in the lower part 
of the atmospheric boundary layer are given. The atmospheric boundary 
layer is the layer which is directly influenced by land surface processes. The 
flux profile relationships derived for the lower part of the boundary layer are 
rewritten to be valid for the entire atmospheric boundary layer. 

Land surface evaporation has been described by the Penman-Monteith 
equation where flux densities are analogous to electrical currents. The influ­
ence of stomata, wind speed and other factors affecting the land surface evap­
oration are described by resistances. On the basis of the Penman-Monteith 
equation and the flux profile relationship valid for the entire boundary layer 
a Land Surface Model that incorporates remote sensing data is introduced, 
i.e. Surface Energy Balance Index (SEBI). The SEBI model uses three input 
variables derived from remote sensing data: ro, To and NDVI. The latter 
being used to describe the surface roughness. The main principle of SEBI 
is the choice for the temperature difference between land surface and air, 
To — Ta, as an indicator for A. The Penman-Monteith equation is used to 
derive theoretical values of To — Ta for zero respectively maximum evapora­
tion. The observed To — Ta is used then to estimate actual evaporation. The 
air temperature, Ta is chosen at the height of the boundary layer, where Ta 

can assumed to be constant for a large area. 

In Chapter 3 a methodology is presented how to aggregate distributed land 
surface model results towards a NWPM grid scale. In this thesis the land 
surface model is SEBI, whereas the distributed input variables are ro, To and 
NDVI, derived from remote sensing data. First a theoretical framework for 
the aggregation of model results from the local to the large scale has been 
presented. The aggregation of distributed model results can be performed 
in different ways. One option is to aggregate the results derived from a dis­
tributed model / using distributed input variables. Another option is by 
using the average of the input variables as input for the distributed model / 
thereby producing an aggregated result. Both options will produce the same 
result if the distributed model is linear and/or the input data is completely 
homogeneous. The first option is the correct way of producing an aggregated 
result, if the resolution of the observation from which the input variables are 
derived is at least smaller than the length scale of the processes described 
by the distributed model / . The second option describes the effect of the 
resolution of the observation being larger than the length scale of the pro-
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cesses described by the distributed model / . The difference between the two 
options is the error due to aggregation. Two aspects have to be quantified 
when describing the error due to aggregation: the non-linearity of the model 
and the land surface heterogeneity. 

Two different approaches to predict the error due to aggregation have 
been introduced. The first approach is the linearization approach where the 
LSM can be approximated by a Taylor expansion. The effects of non-linearity 
and land surface heterogeneity on the error due to aggregation are described 
by the terms in the Taylor expansion, when neglecting third and higher order 
terms. In the case of only one input variable, the variance of that input vari­
able across the area of interest describes the land surface heterogeneity, while 
the second order derivative of the LSM with respect to the input variable 
describes the degree of non-linearity of the LSM. This approach can also be 
extended to more than one variable. As a consequence covariance between 
different input variables has to be taken into account. The linearization 
approach only works with weakly non-linear continuous models. 

The second approach is based on the convex hull. The convex hull of a 
set is the smallest convex domain which contains all points in the set. The 
convex hull can be used to define the range of valid results of a LSM given a 
certain low resolution measurement for the input variables. The boundaries 
can be calculated on the basis of the natural spatial variability of the input 
variables for the area covered by the low resolution measurement. The con­
vex hull approach works for continuous as well for discontinuous models. 

In Chapter 4 the wavelet transform is introduced to determine the length 
scales of land surface characteristics from remote sensing data. It is a rela­
tively new technique, which enables one to study features of a data set with 
a detail matched to their scale i.e. broad features on a large scale and fine 
features on a small scale. 

The main advantage of the wavelet transform when compared to the 
Fourier transform is its capability to capture the variability in non-stationary 
signals. In this thesis the discrete wavelet transform has been chosen as a 
tool for the length scale analysis. 

One appearance of a discrete wavelet transform, the fast wavelet trans­
form represents a data set in a non-redundant fashion. The fast wavelet 
transform can be used to decompose a data set into details, smooths and 
roughs. The resolution of the original data set is called high resolution. Any 
other resolution derived from the original resolution is called low resolution. 
The decomposition of a data set into details, smooths and roughs is called a 
multi-scale analysis. The smooths are representations of a data set of a low 
resolution, the details are representing the amount of variability lost while 
transferring from one resolution to a lower one. The roughs are the amount 
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of variability while transferring from the original high resolution to a lower 
resolution. For any resolution the summation of the smooths and the roughs 
provide the original image. 

The variance of the wavelet coefficients describing the details is also 
known as the wavelet variance, which gives for each resolution the amount of 
variance that can be explained by that specific resolution. Therefore, it is a 
natural tool to investigate the spatial scales of variability of remote sensing 
data. A test with images with predescribed length scales for different type 
of wavelets has been carried out. In determining the dominant length scales 
of an image, the Haar wavelet produced the best results . 

In Chapter 5 three different data sets consisting of field and remote sens­
ing measurements have been introduced. 

The first data set has been collected in the framework of the EFEDA 
campaign, which was held in Spain, June 1991. The data set consists of 
an airborne TMS-NS001 image of the Barrax region. Within the Barrax 
region the most remarkable feature is the presence of pivot irrigation sys­
tems. These irrigated surfaces show large contrasts with the surrounding 
agricultural fields which are not irrigated. 

The second data set consists of airborne DAEDALUS imagery, obtained 
at the Jornada Experimental Range, Las Cruces, New Mexico during the 
summer of 1997. The Jornada Experimental range is located in the north­
ern region of the Chihuahuan desert, the most arid of the North American 
grasslands. Three test sites were identified: a grass site where grass is the 
dominant vegetation, a mesquite site where the mesquite bush is the dom­
inant vegetation and the transition site where the grass is gradually taken 
over by the mesquite bush. 

The third data set consists of four Landsat TM satellite images obtained 
in the summer of 1995 for the Central Part of the Netherlands. The data 
are representative of a temperate oceanic climate, and for a highly developed 
urban and agricultural region. The Landsat TM images have been divided 
into 20 equally sized grids. 

For all three data sets the retrieval procedures to obtain ro, To and NDVI 
from the remote sensing data have been discussed. 

In Chapter 6 the results of the length scale analysis for the three data sets 
are discussed. 

The length scale analysis for the Barrax data set showed that the dom­
inant length scale l*dom for all three land surface characteristics is equal to 
the average size of the pivot irrigation systems. These systems are clearly 
the dominant feature in the Barrax area. This confirmed the validity of the 
approach developed to measure the length scales. The amount of variability 
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explained by the length scales larger or equal to £*dam which is about 70 %. 
The length scale analysis for the Jornada Experimental range showed 

that for this type of landscape most of the variability can be explained by 
the smallest length scales. It seems that even a resolution of 4 m is not 
sufficient to describe all variability being present. However compared to the 
data sets of Barrax and the Central Part of the Netherlands the amount of 
variability for ro, To and NDVI is low. 

The length scale analysis for the Central Part of the Netherlands has 
been applied to 20 square grids in which the Landsat TM image was sub­
divided. The average for all grids showed that tdom is equal to 1920 m for 
all three land surface characteristics ro, To and NDVI. However looking at 
the individual grids there seemed to be a large degree of variability of P^om 

for ro, To and NDVI. A remarkable feature for all grids and land surface 
characteristics in the Central Part of the Netherlands is that only between 15 
and 25 % of the variability is explained by P^n- This leads to the conclusion 
that the variability for the land surface characteristics in the Netherlands is 
not bound to one single length scale. 

The curves describing the wavelet variance of ro, To and NDVI showed 
a comparable shape for the three land surface characteristics. There were 
differences between the different data sets. Only for the grass site at the 
Jornada Experimental range the wavelet variance curve is different for all 
three land surface characteristics. 

The optimal sensor resolution which was defined as the length scale at 
which more than 90 % of the variability was explained. Only for the Jornada 
experimental range £^om was equal to the optimal sensor resolution: 4 m. 
The optimal sensor resolution was for the Netherlands either 60 or 120 m, 
depending on the land surface characteristic. For the Barrax site the optimal 
sensor resolution was equal to 296 m. 

In Chapter 7 the linearization and convex hull approach, which were dis­
cussed in Chapter 3, have been tested using data from the three test sites. 

First the surface energy balance has been calculated for the Barrax area 
using SEBI based on a comparison between field measurements and SEBI 
results. The performance of SEBI was satisfactory, with a Root Mean Square 
Error for A of 0.04. The different terms of the surface energy balance, H, 
XE and A were then aggregated using the two different options described in 
the theoretical framework of Chapter 3. One where the distributed results 
were averaged and another where the input variables were averaged. The 
difference between both results is the error due to aggregation. The overall 
relative error due to aggregation for the results of SEBI are for H 5 %, for 
XE 9 % and for A 8 %. These errors occur when on the basis of one low 
resolution measurement of the Barrax area an area average value for H, XE 

133 



and A will be calculated. However looking at individual pixels the relative 
errors are the largest for high resolution data and decrease with increasing 
pixel size. The maximum relative error due to aggregation for A was 95 % 
and occurred at a resolution of 37 m, whereas the original resolution was 
18.5 m. To estimate the error due to aggregation the linearization approach 
and the convex hull approach have been applied to the Barrax data set. 

The linearization approach uses the wavelet variance and covariance as 
a measure for the spatial variability of the land surface characteristics. The 
non-linearity term, given by the derivatives of SEBI with regard to the input 
variables has been derived numerically. The linearization approach showed 
that the wavelet variance and covariance are good measures for the error due 
to aggregation at different resolutions. The estimation of the degree of non 
linearity of the LSM is more troublesome. Using the linearization approach 
a procedure has been outlined how to correct results based on low resolution 
remote sensing data for errors due to aggregation. 

The range of results for area-averaged values of H, XE and A was calcu­
lated using the convex hull approach. Compared to the results obtained for 
the Barrax area the maximum error due to aggregation for H is 36 %, for 
XE 45 % and for A 32 %. The spatial variability of the input variables was 
derived using the full data set. A test case where the spatial variability was 
derived using only 1% of the pixels, showed a decrease in the maximum error 
as expected. Compared to the full data set however a reasonable estimation 
of the maximum errors could be given. When however the spatial variability 
was based on remote sensing data resampled to the resolution of the NOAA 
sensor, 1000 m, the results became very poor. To infer the domains of the 
spatial variability of the land surface characteristics, high resolution imagery 
should be used. 

The linearization and convex hull approach have also been applied to both 
the Jornada data set and the Netherlands data set. For the Jornada data 
set both approaches showed that the error due to aggregation of H, XE and 
A is negligible. The real spatial variability within the Jornada Experimental 
range is confined to length scales smaller than 4 m. 

The linearization approach applied to the Central Part of the Nether­
lands data set showed some mixed results for the 20 grids. The range in the 
overall error due to aggregation for A varies between 0 - 10 %. The grids 
with the largest aggregation errors contained large water bodies within their 
limits. The grids showing the smallest errors applied to rather homogeneous 
agricultural regions, with most of the landscape being pasture. The convex 
hull approach showed however that the range of results of SEBI based on low 
resolution measurements was rather large for all grids. The spatial variabil­
ity has been derived using the full data set. Extreme values were probably 
caused by scan errors and low NDVI values. 

To infer the aggregated value of evaporative fraction A low resolution re-
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mote sensing data cannot be used without having any information on the spa­
tial variability at higher resolutions. The results obtained by the linearization 
approach show that using high resolution data the overall aggregation error 
can indeed be estimated. The linearization approach showed that for even 
very heterogeneous areas the overall error due to aggregation is not larger 
than 10%. However the results based on the convex hull analysis show that 
the overall error due to aggregation can be much larger than observed for the 
three test cases. Therefore knowledge of the spatial variability at the process 
scale is needed. 

Perspectives for future resarch 

The results presented in this thesis showed for the three test sites that 
if low resolution remote sensing data are used to infer areally aggregated 
values of A with an error would occur. This result is also dependent on the 
chosen LSM, i.e. SEBI. Su et al. (1999) found an error due to aggregation 
for the Barrax area, based on the SEBAL model (Bastiaanssen95), being 
larger than found for the SEBI model in this thesis. However the SEBAL 
model is not scale invariant. The driving force behind SEBAL is the ability 
to detect completely dry and wet regions in the image. As the resolution 
of the remote sensing decreases it gets harder to detect completely dry and 
wet regions. The error due to aggregation depends on the LSM used. An 
important characteristic of the LSM should be scale invariance. A more so­
phisticated SVAT (Soil Vegetation Atmosphere Transfer) model should be 
used to infer the error due to aggregation and should be compared to the 
results obtained by SEBI. 

In this thesis only three case studies have been treated. For a more gen­
eral picture the aggregation analysis should also be taken to a global level. 
To get an idea about the aggregation on that level one should apply a global 
land use map, such as the global land cover classification system developed 
by the International Geosphere-Biosphere Programme Data and Informa­
tion Systems Land Cover Working Group (IGBP-DIS LCWG), which uses 
17 different biomes. For each biome the spatial variability of the different 
land surface characteristics, ro, TQ and NDVI has to be quantified. This can 
be done by using several high resolution data sets which are acquired for the 
different biomes. For each biome the convex hull approach would indicate 
the range of possible results of H, \E and A. Extrapolating the results for 
each biome to the global scale using the land cover map would give an idea 
for which areas low resolution remote sensing data could be used without 
producing large aggregation errors. 
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Several adjustments to the approaches to estimate the error due to ag­
gregation can be made. The linearization approach uses the wavelet variance 
as an estimation of the land surface heterogeneity at different resolutions. 
The wavelet variance has been estimated using the Fast Wavelet Transform. 
This leads to results presented at a dyadic scale. A possible improvement 
could be using a continuous wavelet transform, thereby producing a continu­
ous wavelet variance curve. This would give information on the aggregation 
error for all possible resolutions. 

Finally all the test cases have been carried out for regions with a rather 
flat topography. In regions with considerable topography the error due to 
aggregation could be much larger due to increase of variability of the land 
surface characteristics, most notably in the difference in surface reflectance, 
ro and surface temperature To between north and south oriented slopes. Low 
resolution remote sensing data will not be able to detect the individual slopes 
and are therefore a possible source of errors due to aggregation. 
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Samenvatting en conclusies 

LandOppervlak Modellen (LOM) beschrijven de uitwisseling van warmte en 
vocht tussen het landoppervlak en de atmosfeer, resulterend in de landopper-
vlak energiebalans. Normaliter worden deze modellen opgelost voor een enkel 
punt op het landoppervlak. Echter deze modellen kunnen ook voor een groter 
gebied worden toegepast door remote sensing gegevens te gebruiken als in-
voer. Belangrijke invoer variabelen die kunnen worden afgeleid van remote 
sensing gegevens zijn de oppervlakte albedo ro, de oppervlakte temperatuur 
To en de vegetatie index NDVI. 

Een LOM gecombineerd met remote sensing gegevens beschrijft de land­
oppervlak energiebalans voor een groot gebied. Zo kan de hoeveelheid warmte 
en vocht die worden uitgewisseld tussen atmosfeer en landoppervlak wor­
den bepaald voor een groot gebied. Een Numeriek Weervoorspelling Model 
(NWM) gebruikt deze informatie als invoer. In een NWM is het landopper­
vlak verdeeld in grote gridcellen (> 625 km2), die een oppervlakte hebben die 
vele malen groter is als het oppervlak wat een pixel van een remote sensing 
beeld bedekt (1000 m2 - 25 km2). 

De verdeling van de netto beschikbare energie aan het landoppervlak 
tussen latente en voelbare warmte stroomdichtheid, \E en H respectievelijk, 
heeft invloed op de vorming van wolken en daardoor op de hoeveelheid neer-
slag, de stralingsbalans en de verdeling van waterdamp in de atmosfeer. De 
verdeling tussen H en XE kan worden beschreven door de verdampingsfrac-
tie, A, een bodemvocht indicator. Lage resolutie remote sensing gegevens 
(oppervlakte pixel > 1 km2), met een hoge temporele resolutie (minstens 
1 keer per dag) zijn geschikt voor het dagelijks bijsturen van A, daarbij de 
resultaten van de NWM corrigerend. 

De koppeling van een LOM met een NWM is echter niet triviaal. Zoals 
eerder vermeld, het oppervlak bedekt door een NWM gridcel is veel groter 
dan het oppervlak bedekt door een pixel. De resultaten berekend door een 
LOM met remote sensing gegevens als invoer moeten daarom worden geag-
gregeerd tot de grootte van een NWM gridcel. Daarbij moet rekening worden 
gehouden met twee belangrijke aspecten: 

• De resolutie van de waarneming ten opzichte van de schaal van het 
proces dat wordt beschreven. 
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• Het soort model waarmee het proces wordt beschreven: lineair of niet 
lineair. 

Wanneer de resolutie van de waarneming lager is dan de schaal van het 
te beschrijven proces en het gebruikte model is niet lineair, dan is het lin­
eair middelen van de resultaten tot de schaal van de NWM grid eel niet 
geoorloofd. De centrale onderzoeksvraag in dit proefschrift is dan de vol-
gende: Hoe moet men bodemvochtindicatoren ruimtelijk aggregreren van pixel 
tot NWM gridcel grootte, rekening houdend met de lengte schaal van het 
beschreven proces en de ruimtelijke resolutie waarmee invoergegevens voor 
een landoppervlak model kunnen warden gekarteerd door middel van gea-
vanceerde satelliet sensoren? 

In Hoofdstuk 2 worden de belangrijkste processen beschreven die verant-
woordelijk zijn voor de uitwisseling van momentum, warmte en vocht tussen 
landoppervlak en atmosfeer. Deze processen zijn turbulent van aard. De 
vergelijkingen die de profielen geven van specifieke vochtigheid, wind snelheid 
en temperatuur in het onderste deel van de atmosferische grenslaag worden 
ook wel flux-profiel vergelijkingen genoemd. De atmosferische grenslaag is 
de laag die direct wordt beinvloed door processen aan het landoppervlak. 
De flux-profiel vergelijkingen die zijn afgeleid voor de onderste laag van de 
atmosferische grenslaag zijn herschreven om ze geldig te laten zijn voor de 
gehele atmosferische grenslaag. 

Verdamping aan het landoppervlak wordt beschreven door de Penman-
Monteith vergelijking die analoog aan de beschrijving van een elektrische 
stroom, de stroomdichtheid van de verdamping beschrijft. De invloed van 
huidmondjes, windsnelheid en andere factoren op de verdamping wordt be­
schreven door middel van weerstanden. Met als basis de Penman-Monteith 
vergelijking en de flux-profiel vergelijkingen die geldig zijn voor de gehele 
grenslaag is een LOM ontwikkeld dat geschikt is om remote sensing gegevens 
als invoer te gebruiken: SEBI (Surface Energy Balance Index). Het SEBI 
model gebruikt drie invoer variabelen die kunnen worden afgeleid met behulp 
van remote sensing gegevens: ro, To en NDVI. De NDVI wordt gebruikt 
om de ruwheid van het landoppervlak te beschrijven. Het principe van SEBI 
wordt gegeven door de keuze voor het temperatuur verschil tussen landopper­
vlak en lucht, To — Ttt, als een indicator voor de verdampingsfractie A. De 
Penman-Monteith vergelijking wordt gebruikt om theoretische waarden voor 
To — Tn af te leiden voor het geval dat er geen verdamping is en voor het 
geval van maximale verdamping. De bijbehorende weerstanden volgen uit 
de flux-profiel vergelijkingen. De waargenomen To — Ta wordt dan gebruikt 
om de actuele verdamping te schatten. De lucht temperatuur Ta is gekozen 
op de hoogte van de atmosferische grenslaag, waar Ta geacht wordt constant 
te zijn voor een groot gebied. Deze waarde wordt bepaald aan de hand van 
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metingen van het temperatuur profiel. 

In Hoofdstuk 3 wordt beschreven hoe ruimtelijk verdeelde resultaten van 
een LOM, in dit proefschrift SEBI, kunnen worden geaggregeerd tot de schaal 
van een NWM gridcel. SEBI gebruikt als ruimtelijk verdeelde invoer variabe-
len ro, To en NDVI, welke afgeleid zijn van remote sensing gegevens. Een 
theoretisch kader is gepresenteerd waarin wordt beschreven hoe ruimtelijk 
verdeelde model resultaten kunnen worden geaggregeerd. De aggregatie van 
ruimtelijk verdeelde model resultaten kan op twee verschillende manieren 
worden uitgevoerd. De eerste manier is om de ruimtelijk verdeelde resul­
taten van een model / te aggregeren. Het model / heeft daarbij als in­
voer ruimtelijk verdeelde variabelen. De tweede manier is om de ruimtelijk 
verdeelde invoer variabelen voor het model / te aggregeren wat een geag-
gregeerde uitvoer oplevert. 

Beide manieren zullen hetzelfde resultaat geven als het model / lineair 
is en/of de invoer variabelen volkomen homogeen zijn. De eerstgenoemde 
manier van aggregeren is de correcte manier van aggregeren, wanneer de 
resolutie van de waarnemingen waarmee de invoer variabelen zijn afgeleid 
op zijn minst gelijk is aan de lengte schaal van het proces beschreven door 
het gedistribueerde model / . De tweede manier aggregeren beschrijft het 
effect wanneer de resolutie van de waarneming niet gelijk is aan de lengte 
schaal van het process beschreven door het gedistribueerde model / . Het 
verschil tussen de resultaten van beide manieren van aggregeren is de aggre­
gatie fout. Twee aspecten moeten worden gekwantificeerd bij het beschrijven 
van de aggregatie fout: de mate van niet-lineariteit van het model / , in dit 
geval SEBI, en de mate van heterogeniteit van het landoppervlak. 

Twee verschillende manieren van aanpak worden gegeven om de aggre­
gatie fout te voorspellen. De eerste manier van aanpak is de linearizatie 
aanpak waarbij een LOM wordt benaderd door middel van een Taylor-reeks. 
De effecten van de niet-lineariteit van een LOM en de heterogeniteit van het 
landoppervlak op de aggregatie fout worden hier beschreven aan de hand 
van de verschillende termen van een Taylor reeks. Wanneer er slechts sprake 
is van een ruimtelijk verdeelde invoer variabele voor een LOM, beschrijft de 
variantie van die ruimtelijk verdeelde invoer variabele de heterogeniteit van 
het landoppervlak. De tweede orde afgeleide van het LOM met betrekking 
tot die invoer variabele beschrijft dan de niet-lineariteit van het LOM. Deze 
aanpak kan ook worden uitgebreid tot meer dan een variabele. In dat geval 
moet ook de covariantie tussen de verschillende ruimtelijk verdeelde invoer 
variabelen worden meegenomen. De linearizatie aanpak werkt alleen bij zwak 
niet-lineaire modellen die tevens continu zijn. 

De tweede aanpak is gebaseerd op een geometrisch concept: de convex 
hull. De convex hull van een groep gegevens is het kleinste convex domein dat 
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alle punten in die groep gegevens omvat. De convex hull kan worden gebruikt 
om het theoretisch bereik aan te geven van geldige resultaten van een LOM 
gegeven een enkele lage resolutie waarneming voor de ruimtelijk verdeelde 
invoer variabelen van de LOM. Het bereik van de resultaten kan worden 
bepaald door een voorstelling te maken van de ruimtelijke variabiliteit van 
de invoer gegevens voor het gebied dat bedekt wordt door die enkele lage res­
olutie waarneming. De convex hull aanpak heeft als voordeel dat het werkt 
voor zowel modellen die continu alswel modellen die discontinu zijn. 

In Hoofdstuk 4 is de wavelet transformatie beschreven die in dit proef-
schrift gebruikt wordt om lengte schalen van landoppervlak eigenschappen 
te bepalen aan de hand van remote sensing gegevens. De wavelet transfor­
matie, een relatief nieuwe techniek, is uitermate geschikt om gegevens uit te 
splitsen in kleine (details) en grote elementen. Het grote voordeel van de 
wavelet transformatie in vergelijking tot de Fourier transformatie is de mo-
gelijkheid om de variabiliteit in niet-stationaire signalen weer te geven. In 
dit proefschrift is de discrete wavelet transformatie gekozen als gereedschap 
voor de lengte schaal analyse. De Fast Wavelet Transform, een specifieke 
vorm van de discrete wavelet transformatie geeft een set gegevens weer in 
een niet overcomplete weergave van wavelet coefficienten. De Fast Wavelet 
Transform kan worden gebruikt om een set gegevens onder te verdelen in 
"details", "smooths" en "roughs". De resolutie van de originele set gegevens 
wordt hier hoge resolutie genoemd. Elke andere resolutie die van de hoge 
resolutie is afgeleid wordt aangeduid met lage resolutie. De onderverdeling 
van een set gegevens in details, smooths en roughs wordt een multi-schaal 
analyse genoemd. De "smooths" zijn een representatie van de set gegevens 
bij een lage resolutie. De "details" geven het verlies in informatie van een set 
gegevens weer, wanneer de resolutie van deze set gegevens is verlaagd. De 
"roughs" geven het verlies in informatie van een set gegevens tussen de (orig­
inele) hoge resolutie van een set gegevens en een lage resolutie versie daarvan. 
Bij alle lage resoluties geeft de som van de "smooths" en de "roughs" samen 
de hoge resolutie versie van de set gegevens. De variantie van de wavelet 
coefficienten die gebruikt worden om de "details" te vormen staat ook be-
kend als wavelet variantie. De wavelet variantie geeft voor elke resolutie de 
grootte van de variantie weer die kan worden toegeschreven aan elementen 
met een grootte gelijk aan die resolutie. Daarom is de wavelet variantie 
een geschikt stuk gereedschap om te gebruiken voor het karteren van lengte 
schalen van landoppervlak eigenschappen in remote sensing beelden. Een 
test is uitgevoerd waarin beelden met een van te voren vastgestelde dom-
inante lengte schaal zijn gebruikt om verschillende type wavelets te testen 
voor hun geschiktheid om lengte schalen te karteren. Uit de test resultaten 
kwam naar voren dat de Haar wavelet de meest geschikte wavelet was om de 
dominante lengte schaal van een beeld te karteren. 
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In Hoofdstuk 5 zijn drie verschillende sets van gegevens bestaande uit 
veldmetingen en remote sensing beelden beschreven. De eerste set gegevens 
is verzameld in het kader van de EFEDA campagne, gehouden in juni 1991 
in de omgeving van Barrax, Spanje. De gegevens bestaan uit veldmetingen 
en een vliegtuigopname gemaakt met de TMS-NS001 sensor van het gebied 
rond Barrax. In de Barrax regio is het meest in het oog springende kenmerk 
de aanwezigheid van pivot irrigatie systemen. Deze geirrigeerde gebieden 
contrasteren sterk met de omliggende landbouwgebieden die niet worden 
geirrigeerd. 

De tweede set gegevens bestaat uit vliegtuigopnamen gemaakt met de 
DAEDALUS sensor, opgenomen in de zomer van 1997 op het terrein van de 
Jornada Experimental Range, Las Cruces, New Mexico, Verenigde Staten. 
De Jornada Experimental Range is gesitueerd in de noordelijke contreien 
van de Chihuahua woestijn, de droogste aller Noord-Amerikaanse graslan-
den. Drie test gebieden zijn onderscheiden: een gras gebied waar gras de 
dominante vegetatie is, een mesquite gebied waar de mesquite struik de 
dominante vegetatie is en een overgangs gebied waar het gras geleidelijk 
aan wordt verdrongen door de mesquite struiken. 

De derde set gegevens bestaat uit vier Landsat TM satelliet beelden van 
midden-Nederland, opgenomen in de zomer van 1995. De gegevens zijn re-
presentatief voor een sterk verstedelijkt gebied in een gematigd klimaat. De 
Landsat TM beelden zijn verdeeld in 20 even grote vierkanten. Voor elke set 
van gegevens zijn de procedures om de landoppervlak eigenschappen ro, To 
en de NDVI te bepalen besproken. 

In Hoofdstuk 6 worden de resultaten voor de lengte schaal analyse be­
sproken. De lengte schaal analyse voor de Barrax gegevens laat zien dat de 
dominante lengte schaal t*dom voor alle drie landoppervlak eigenschappen, 
ro, To en NDVI gelijk is aan de gemiddelde grootte van de pivot irrigatie 
systemen. Deze systemen zijn duidelijk het meest belangrijke kenmerk in de 
Barrax regio. Dit bevestigt ook de validiteit van de aanpak om de lengte 
schalen te meten met de wavelet variantie. De hoeveelheid variantie die 
wordt verklaard door elementen met een lengte schaal groter of gelijk aan 
^dom 1S ongeveer gelijk aan 70 %. 

De lengte schaal analyse voor de Jornada Experimental Range laat zien 
dat voor dit type landschap de meeste informatie aanwezig is in de kleinste 
lengte schalen. Het lijkt erop dat een resolutie van 4 m zelfs niet voldoende is 
om alle heterogeniteit van het landoppervlak te verklaren. Echter vergeleken 
met de gegevens van Barrax en midden-Nederland is de totale hoeveelheid 
variantie voor de landoppervlak eigenschappen laag. 

De lengte schaal analyse voor midden-Nederland is uitgevoerd voor alle 
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twintig vierkanten waarin het beeld is onderverdeeld. Het gemiddelde voor 
alle vierkanten laat zien dat ^ o m gelijk is aan 1920 m voor de drie land 
oppervlak eigenschappen ro, To en NDVI. Echter als men kijkt naar de 
afzonderlijke vierkanten dan is er behoorlijk wat variatie in £^om voor ro, To 
en NDVI. Een opmerkelijk kenmerk voor alle vierkanten en landoppervlak 
eigenschappen is dat slecht tussen de 15 en de 25 % van de heterogeniteit van 
het landschap wordt verklaard door ^om- Hieruit blijkt dat de heterogeniteit 
van de landoppervlak eigenschappen in midden-Nederland niet is gebonden 
aan een enkele lengte schaal. 

Voor elke set van gegevens kent de wavelet variantie curve een zelfde 
karakteristieke verloop voor ro, To en de NDVI. De curves verschillen wel 
onderling tussen de verschillende sets aan gegevens. Slechts bij het gras 
gebied in de Jornada Experimental Range zijn de wavelet variantie curves 
voor ro, To en NDVI verschillend. 

De optimale sensor resolutie is gedefineerd als de lengte schaal waarop 
meer dan 90 % van de variabiliteit kan worden verklaard. Slechts voor de 
Jornada Experimental Range is H*A(ym gelijk aan de optimale sensor resolutie: 
4 m. De optimale sensor resolutie is voor midden-Nederland 60 of 120 m, 
afhankelijk van de landoppervlak eigenschap. Voor de Barrax gegevens set 
is de optimale sensor resolutie gelijk aan 296 m. De dominante lengte schaal 
£*lom is dus niet per definitie gelijk aan de optimale sensor resolutie. 

In Hoofdstuk 7 zijn de linearizatie en convex hull aanpak, besproken 
in Hoofdstuk 3 toegepast op de gegevens verzameld voor de drie sets van 
gegevens. Allereerst is voor het Barrax proefgebied de energiebalans be-
rekend met SEBI gebruikmakend van de TMS-NS001 data. De resultaten 
zijn vergeleken met veldmetingen van de energiebalans, waaruit bleek dat 
de verdampingsfractie A was berekend met een absolute fout van 0.04. Om 
de aggregatie fout te bepalen zijn vervolgens de resultaten van SEBI, te 
weten H, XE en A, geaggregeerd volgens de twee verschillende manieren be­
sproken in het theoretisch kader van Hoofdstuk 3. Een manier waarbij de 
ruimtelijk verdeelde resultaten (H, XE en A) zijn gemiddeld en de andere 
manier waarbij de ruimtelijk verdeelde invoergegevens (ro, To en NDVI) 
zijn gemiddeld. Het verschil tussen beide uitkomsten is de aggregatie fout. 
De totale relatieve aggregatie fout voor de resultaten van SEBI is 5 % voor 
H, 9 % voor XE en 8 % voor A. De totale relatieve aggregatie fout is de 
fout die wordt gemaakt als op basis van een lage resolutie opname voor het 
hele Barrax gebied een gebiedsgemiddelde waarde voor H, XE en A wordt 
berekend. Echter als men kijkt naar tussenliggende resultaten waarbij het 
Barrax gebied niet wordt bedekt door een enkele lage resolutie pixel, maar 
door meerdere pixels met weliswaar een lagere resolutie dan de originele res­
olutie, dan blijkt dat de maximum relatieve aggregatie fout voor individuele 
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pixels toeneemt met afnemende pixel grootte (hogere resolutie). Echter de 
totale relatieve aggregatie fout neemt toe met toenemende pixel grootte. De 
maximum relatieve aggregatie fout voor A is 95 % bij een resolutie van 37 
m, waarbij de originele resolutie van de gegevens 18.5 m is. 

Om de aggregatie fout voor het Barrax beeld te schatten zijn de lin-
earizatie en convex hull aanpak gebruikt en vergeleken met de voorgaande 
resultaten. De linearizatie aanpak gebruikt de cumulatieve wavelet variantie 
en covariantie als een maat voor de ruimtelijke variabiliteit van de landopper-
vlak eigenschappen. De niet-lineariteit term wordt gegeven door de afgeleide 
van SEBI met betrekking tot de invoer variabelen (ro, To en NDVI) en is 
bepaald met een numerieke methode. De linearizatie aanpak toont aan dat 
de cumulatieve wavelet variantie en covariantie een goede maat zijn voor 
het verloop van de aggregatie fout voor verschillende resoluties. De schat-
ting van de mate van niet-lineariteit van SEBI is moeilijker. Op basis van 
de linearizatie aanpak is een procedure beschreven die resultaten van een 
LOM gebaseerd op invoer variabelen die berekend zijn aan de hand van lage 
resolutie remote sensing gegevens kan corrigeren voor aggregatie fouten 

Het bereik van de resultaten voor gebiedsgemiddelde waarden voor H, 
XE en A zijn berekend met behulp van de convex hull aanpak. Vergeleken 
met de SEBI resultaten behaald voor het Barrax proefgebied is de maximum 
aggregatie fout 36 % voor H, 45 % voor XE en 32 % voor A. De ruimtelijke 
variabiliteit van de invoer variabelen is bepaald aan de hand van de gehele 
set van gegevens. Een proef waarbij de ruimtelijke variabiliteit is bepaald 
aan de hand van slechts 1 % van de gegevens, liet een daling van de maximum 
fout zien, vanwege de afgenomen variabiliteit. Echter het is nog steeds mo-
gelijk een redelijke schatting van de maximale aggregatie fout te geven. Als 
men echter de resolutie van de set van gegevens terugbrengt tot een resolutie 
vergelijkbaar met de NOAA sensor, 1000 m, worden de resultaten van de 
convex hull analyse onbetrouwbaar. Dit komt omdat de resolutie van 1000 
m lager is dan die van de optimale sensor resolutie, zoals bepaald in Hoofd-
stuk 6. Daarom moet om de ruimtelijke variabiliteit te schatten beelden van 
een resolutie vergelijkbaar met die van de optimale sensor resolutie worden 
gebruikt, waarbij echter niet de gehele set aan gegevens hoeft te worden ge­
bruikt. 

De linearizatie en convex hull aanpak zijn ook toegepast voor de proef-
gebieden van de Jornada Experimental Range en midden-Nederland. Voor 
het Jornada proefgebied lieten beide methodes zien dat de aggregatie fout 
verwaarloosbaar klein is. De echte ruimtelijke variabiliteit is in het Jornada 
proefgebied voorbehouden aan lengte schalen kleiner dan 4 m. 

De resultaten behaald door de linearizatie aanpak voor midden-Nederland 
laten wisselende resultaten zien voor de twintig vierkanten. De totale aggre­
gatie fout voor A varieerde van 0 to 10 %, waarbij de vierkanten die bestaan 
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deels uit land en deels uit open water de grootste aggregatie fouten kennen. 
De vierkanten met de kleinste aggregatie fouten bestaan over het algemeen 
uit relatief homogene landbouwgebieden, voornamelijk grasland. De convex 
hull aanpak laat echter zien dat voor alle vierkanten het bereik van de resul-
taten voor SEBI behoorlijk groot is. De ruimtelijke variabiliteit is bepaald 
aan de hand van de gehele set van gegevens. Extreme waarden worden 
waarschijnlijk veroorzaakt door scanfouten en lage waarden van de NDVI. 

Het is niet mogelijk om de geaggregeerde waarde van de verdampings-
fractie A, berekend aan de hand van SEBI met behulp van lage resolutie 
remote sensing gegevens, betrouwbaar te bepalen zonder informatie over de 
ruimtelijke variabiliteit van de invoer gegevens bij een hogere resolutie. De 
resultaten behaald door de linearizatie aanpak tonen aan dat gebruikmakend 
van hoge resolutie beelden de aggregatie fout kan worden bepaald. De linea­
rizatie aanpak toont tevens aan dat zelfs in het geval van Barrax, een sterk 
heterogeen gebied de aggregatie fout niet groter is dan 10 % voor A. Echter 
de resultaten behaald door de convex hull analyse tonen aan dat de totale 
aggregatie fout veel groter kan zijn dan hier aangetoond voor de drie proefge-
bieden. Om de aggregatie fout exact te bepalen is kennis van de ruimtelijke 
variabiliteit van de invoer gegevens nodig op een schaal gelijk aan de schaal 
van het proces beschreven in het land oppervlak model. 

Tot slot worden er nog een aantal suggesties voor toekomstig onderzoek 
gedaan. 
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Plate A: Barrax, June 29 1991, surface albedo ro. 
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Plate B: Grass site, Jornada Experimental Range, June 19 1997, surface 
albedo TQ. 
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Plate C: Mesquite site, surface albedo r0. 
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Plate D: Transition site, Jornada Experimental Range, June 19 1997, surface 
albedo r$. 
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Plate E: The Central Part of the Netherlands, July 11 1995, surface albedo, 
r0. The 20 grids used in the aggregation and length scale analysis are also 
shown. 
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Plate F: Grid 3, The Central Part of the Netherlands, July 11 1995, surface 
albedo, TQ. 
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Plate G: Grid 8, The Central Part of the Netherlands, July 11 1995, surface 

albedo, TQ. 

VII 



't&sm 

1 
Surface Albedo (-) 

0.10 
0.15 
0.20 
0.25 
0.30 
0.35 

Plate H: Grid 11, The Central Part of the Netherlands, July 11 1995, surface 
albedo, TQ. 
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