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Stellingen 

1. De aanwezigheid van een wortel op dezelfde ouderlijke knoop is niet 
noodzakelijk voor de ontwikkeling van een zijscheut bij witte 
klaverplanten, of omgekeerd. 
Ditproefschrifi. 

2. Een zijscheut en een wortel op dezelfde ouderlijke knoop hebben 
voordeel van elkaar. 
Dit proefschrifi. 

3. In het voorjaar verloopt het afsterven van oud stolon materiaal sneller 
dan de productie van nieuw stolon materiaal. 
Dit proefschrifi. 

4. Een knoop heeft nooit een tweede kans om een zijscheut te ontwikkelen. 
Dit proefschrifi. 

5. Betreding en/of depositie van excreta dragen voortdurend bij aan het 
opbreken van witte klaverplanten in grasland. 
Dit proefschrifi. 

6. De mogelijkheden om de structuur en morfologie van witte 
klaverplanten te beihvloeden door het aanpassen van beweidingsbeheer, 
om de persistentie van klaver te vergroten als stikstofkunstmest wordt 
gebruikt, zijn beperkt. 
Dit proefschrifi. 

7. "It has been found that girls become the best assistants on this (herbage) 
dissection work..." 
P.D. Sears (1951), The technique of pasture measurement. New Zealand Journal of Agricultural 
Science and Technology 33: 1-29. 
In 1989 the same "girls" taught me the art of herbage dissection! 

8. "The benign environmental image of grass/clover is not a feature of the 
clover itself, but of the two species growing together." 
D.F. Chapman, A.]. Parsons and S. Schwinning (1996), Management of clover in graced 
pastures: expectations, limitations and opportunities. Agronomy Society of New Zealand 111 
Grassland Research Practice Series 6:55-64. 



9. Er is een significant verschil tussen statistische en praktische 
significantie. 

10. "De kracht van het Nederlands kennissysteem is de binding tussen 
onderzoek en prakujk. Dit was de drijvende kracht achter de 
vernieuwing. Concentratie van het onderzoek in Wageningen, en 
daarmee terugtrekking van het onderzoek (dat wordt uitgevoerd) op de 
regionale proefstations, is funest voor deze binding." 
A.J. Vijverberg, 63-jarigepromovendus van J.D. van der Ploeg, Rxrale Sociologie, Wagenings 
Universiteits Blad 97-1', 9januari 1997. 

11. "Het blijkt zo moeilijk voor elkaar te krijgen dat mannen hun deel van de 
verantwoordelijkheid nemen voor huishouden en kinderen, dat die wens 
vaak verschoven wordt naar de eis van betere kinderopvang." 
Anja Meulenbelt, Casablanca, ofde onmogelijkbeden van de heteroseksuele liefde, 1990. 

12. Indien de maatregelen van de Nederlandse boeren om 
nutrientenverliezen te reduceren niet samen gaan met gelijke 
inspanningen van de burgers, zal de toestand van het milieu in 
Nederland niet verbeteren. 

13. Als er geld is, is er tijd. 

Stellingen behorende bij hetproefschrift "White clover dynamics in New Zealand pastures", 
J.B. Pinxterhuis. Wageningen, 8 november 2000. 
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ABSTRACT 
J.B. (Ina) Pinxterhuis (2000), White clover dynamics in New Zealand pastures. 
Ph.D. thesis Wageningen University, Wageningen, The Netherlands. 

The study presented in this thesis is based on the overall target of increased 
herbage production in cooler times of the year, through the use of fertiliser 
N, while maintaining the benefits of white clover (Trifolium repens L.) in New 
Zealand pastures. To help identify management strategies and plant breeding 
goals to attain this target, seasonal dynamics in catde-grazed pastures of 
clover population and plant structure and stolon dynamics were studied, 
including the effects of fertiliser N applications, grazing management and 
their interactions. The grazing treatments applied were continuous stocking 
with 4.9 Friesian bulls/ha and rotational grazing with either 4.9 or 7.4 
bulls/ha. Fertiliser N (urea) was applied in mid autumn and late winter, at 50 
kg N /ha per dressing. 
Average total herbage dry matter accumulation was about 16 tonnes/ha/year. 
The average efficiency of the applied fertiliser N was 17.5 kg DM/kg N in 
1991 and 12.9 kg DM/kg N in 1992. The grazing treatments applied did not 
result in great differences in herbage accumulation or composition, and clover 
was maintained under all grazing treatments. Fertiliser N tended to decrease 
clover DM accumulation by 15% and clover content by 3.6%. 
Stolon growth dynamics and structures of populations and plants showed 
great seasonal variation. Growth was related positively to average soil 
temperature at 10 cm depth, which explained the greatest part of the variation 
for most growth parameters. Rooting was not related to temperature, rainfall, 
distribution of rainfall nor radiation. 
Continuous stocking during the cooler periods of the year, shifting to 
rotational grazing when temperatures rise, may help to maintain clover in the 
sward. Moderate fertiliser N applications in the cooler times of the year 
increase herbage accumulation and do not compromise clover permanently. 
However, it remains to be confirmed that the inhibited root production in 
spring, when N is applied, makes clover plants or branches in grazed swards 
more susceptible to local or temporal stress, such as drought. Plant breeding 
should be directed to improved rooting, and maintenance or improvement of 
N fixation. 

Key words: biomass allocation; branching; cattle grazing; climate; continuous 
stocking; fertiliser nitrogen; grassland; population and plant structure; 
radiation; rainfall; rainfall distribution; rooting; rotational grazing; stolon 
growth dynamics; temperature; Trifolium repens L.; white clover. 
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INTRODUCTION 



1. INTRODUCTION 

1.1 White clover and nitrogen in New Zealand pastures 
White clover (Trifolium repens L.) is an important species in New Zealand 

grassland farming due to its high quality as an animal feed and, especially, its 

ability to fix atmospheric nitrogen (N) in symbiosis with Rhi^obium trifolii. 

Rogers and Little (1982) estimated the total amount of N fixed per annum by 

pasture legumes in New Zealand to be about one million tonnes N. A more 

recent estimate is 1.57 million tonnes N annually (Caradus eta/., 1996). White 

clover utilises the fixed N for its growth. When clover plant parts die, this N 

becomes available for other plants in the sward, especially the grasses. The 

other important pathway of N transfer in grassland farming is through the 

grazing animal. 

White clover is successfully used in New Zealand to supply N in 

grass/clover swards, and grass/clover swards can attain herbage dry matter 

yields equivalent to pure grass swards fertilised with 300-600 kg N/ha/year 

(Ball and Field, 1985). An average annual N fixation rate of 185 kg N/ha was 

found on grazed lowland pastures for nine sites throughout New Zealand 

(Hoglund eta/., 1979). However, N deficiency is widespread in New Zealand 

pastures (Field and Ball, 1978; Ball and Field, 1982), and for many 

grass/clover swards, fertiliser N application results in increased herbage dry 

matter yield (Harris and Hoglund, 1977; Ball et a/., 1978; Crush et a/., 1982; 

Feyter eta/., 1985). 

The seasonal pattern of growth of a grass/clover sward imposes limits 

on animal production for livestock systems relying on pasture as the sole, or 

dominant, feed source such as in New Zealand. Clover growth is reduced, but 

grass can still be productive in the cooler times of the year in New Zealand 

(Hoglund eta/., 1979). From late autumn to early spring, temperatures can be 

limiting for mineralisation, resulting in less N available for the grass. The first 

significant rains in autumn can also result in a net immobilisation of soil 

inorganic N, due to a sharp increase in microbial activity (Ball and Field, 

1982). So N deficiency will be more pronounced at these times and 

production responses to fertiliser N can be expected (e.g. Ball et a/., 1978; 

Field and Ball, 1978; Luscombe, 1980; Thomson and Roberts, 1982; Feyter et 



al, 1985). Using pasture cores under simulated winter/spring temperatures, 

Ledgard et al. (1989) showed that plant uptake of applied N in a cold winter (6 

°C day/1 °C night) was as rapid as in a mild winter (11 °C day/7 °C night). 

However, an N application before a cold winter was leading to a greater 

immobilisation of N by the microbial biomass as compared to a mild winter. 

Later in the season when temperatures increase and mineralisation increases, 

the immobilised N subsequently will become available for plant growth. 

In late winter and early spring, feed deficits are particularly important in 

New Zealand since this is the usual time of lambing and calving and, hence, 

feed demand from lactating animals is high. Highest fertiliser N responses can 

be expected when temperatures increase in spring (Frame and Boyd, 1987; 

Roberts and Thomson, 1989), provided soil moisture levels are non-limiting, 

but at this time of the year production is already high and most farmers have 

a surplus of fodder for their animals (Buxton, 1982). Beside this, spring 

applications may result in decreased summer production, because the clover 

population can decline to such an extent that in summer clover growth and 

hence N fixation is less than in non-fertilised swards (Ledgard and Saunders, 

1982; Ball and Field, 1985). To compensate for this, farmers may need to 

apply further fertiliser N, thus changing the pasture production system from 

one reliant on N fixation into one more reliant on fertiliser N. 

In the early 1990's in some areas of New Zealand this change of 

production system started already. Some dairy farmers have moved to a 

similar system to Dutch farmers, with fertiliser N application rates of up to 

400 kg N/ha/year. These farmers perceive the management of N fertilised 

pasture as being easier than clover-based pasture, because of greater 

predictability of pasture production and less year to year variation (Barr, 

1996). These high rates of fertiliser N application increase dry matter 

production per hectare, but can only increase profitability if animal 

production also increases. Hence higher stocking rates are required, and 

harvesting pasture surpluses for silage is necessary. Profitability depends on 

the prices of fertiliser N and animal products. With recent price levels for 

milk, the gross margin for dairy farming is estimated to be highest with only 

100 kg fertiliser N/ha/year (Clark and Harris, 1996), but, at this level of 

fertiliser input, gross margins are only NZ$ 50 per hectare higher than 

without fertiliser N. 

3 
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In general, the change in system from clover-based to fertiliser N based 

pastures is seen as undesirable because of its environmental effects. The 

international view of a "clean green" New Zealand is exploited in the 

marketing of New Zealand's agricultural products and the low costs of the 

production system keeps the New Zealand farmer competitive in world 

markets. New Zealand farmers do not receive any subsidies and sell their 

produce at prices determined solely by what international markets are 

prepared to pay for it. Maintaining the green image may well be crucial in 

future when the environment becomes a more important selection factor for 

consumers. Hence in the 1990's comparisons of environmental aspects of 

grass/clover versus grass plus fertiliser-N were performed. 

The grass/clover based system is estimated to be 20 times more efficient 

in the use of non-renewable resources such as fossil fuel, than pastures reliant 

on fertiliser N (Walker, 1996). A grass/clover based system is less likely to 

show direct N losses, but it is generally accepted that at similar production 

levels, indirect N losses to the environment may be similar to those from a 

fertiliser N based system. With fertiliser N higher levels of dry matter 

production per hectare can be obtained. This is only profitable when utilised 

by the grazing animals, but increases N losses, mainly nitrate leaching, nitrous 

oxide emission and ammonia volatilisation from urine patches. Parsons et al. 

(1991c) showed substantially higher N losses in a grass sward fertilised with 

420 kg N/ha/year compared to a grass/clover sward. Leaching losses from a 

grass sward fertilised with 210 kg N/ha/year were much lower than that of 

the grass sward fertilised with 420 kg N/ha/year, and closer to that of the 

grass/clover sward. Ledgard et al. (1996) showed direct nitrate leaching loss of 

urea fertiliser N in a 400 kg N/ha/year treatment was negligible in a Waikato 

trial grazed by dairy cows, but Carran and Clough (1996) cite Ruz Jerez (1991) 

who calculated 0.6 g N leached per grazing day in a grass/clover system, 

compared to 3.1 g N in a grass plus 400 kg N/ha/year urea fertiliser in a 

Manawatu trial grazed by sheep. Carran and Clough (1996) argue that beyond 

a threshold value of fertiliser N rate both direct and indirect losses increase 

dramatically. Variation, however, is large due to the influence of soil type and 

weather conditions. 

With its climate very suitable for clover growth, New Zealand is in a 

good position to maintain a low cost, low input pasture production system, 

4 



Introduction 

relying mainly on N fixation. Thus the incentive to maintain a good clover 

component in the pasture is strong, and the interest in increasing pasture 

production, without reducing the input of clover, is great. For improved cold 

season dry matter yield and maximising clover N input, a balance of fertiliser 

N in winter and N fixation in summer should be sought. The rate of fertiliser 

application and its timing, and the optimal grazing management (stocking 

rate, grazing method, etc.) are among the factors to be determined. 

Furthermore, the mechanisms causing the decline in clover when soil N is 

increased need to be defined, to identify plant breeding strategies leading to 

varieties which have the desired characteristics for maintaining an optimum 

clover population in the sward. In this respect, knowledge of the processes in 

the mixed sward involved in the competition between grass and clover for N 

is important. Main points of the current knowledge on this topic are 

summarised in the next section. 

1.2 Competition for N in mixed pastures 
When grass and clover are grown together in a mixture, they compete 

with each other for available N (Ledgard and Saunders, 1982; Davidson and 

Robson, 1985b). Grasses are generally considered to be more effective 

competitors for N than clover. However, clover, with its associated N 

fixation capacity, can switch between uptake of inorganic N and N fixation 

and so maintain a relatively constant N supply rate. At low levels of fertiliser 

N, clover can benefit from the inorganic N without a measurable reduction in 

N fixation (Eltilib and Ledgard, 1988). In monocultures inorganic N also 

increases dry matter yield from clover but, especially at higher temperatures, a 

considerable part of N fixation is replaced by inorganic N uptake (Davidson 

and Robson, 1986). Clover can then utilise more of the energy derived from 

photosynthesis for new growth, since N fixation is an energy-demanding 

process (Ryle eta/., 1979a, b, 1981). N fixation in the light is primarily fuelled 

by current photosynthesis (Ryle et a/., 1985, 1986), and consumes 

approximately 12% of the carbon fixed (Ryle et a/., 1979b, 1988, 1989). 

During the dark period, another proportion of the assimilates, reserves stored 

in the nodules, is used to sustain N fixation (Ryle et a/, 1985, 1988). Sheehy et 

a/. (1991) estimated that, for a lucerne crop in the field, 20% of daily 

photosynthesis is required to support maximum N fixation rates. 

5 
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In grass/clover swards at higher N application rates, N fixation rate 

decreases (Moustafa eta/., 1969; Ledgard and Saunders, 1982; Murphy eta/., 

1986; Boiler and Nosberger, 1987; Nesheim et a/., 1990) as clover utilises 

more inorganic N (Hoglund and Brock, 1982; Davidson and Robson, 1985b). 

However, N application will benefit ryegrass more than white clover with 

ryegrass showing a faster and greater N accumulation than white clover 

following N application (Davidson and Robson, 1985b; Murphy and Ball, 

1985; Murphy eta/., 1986; Boiler and Nosberger, 1988). This is probably due 

to a faster growing root system (Evans, 1977) and higher density of roots 

(number of root tips per gram of herbage) of ryegrass compared to white 

clover (Jackman and Mouat, 1972). Another reason mentioned for greater N 

uptake by grasses compared to clover is the faster water uptake by ryegrass 

relative to white clover (Mitchell and Kerr, 1966) which increases water 

tension and decreases availability of nutrients. The greater competitive ability 

of ryegrass to attain inorganic N results in a greater increase of shoot yield of 

ryegrass relative to white clover, increasing the shoot competition (Martin and 

Field, 1984) and the competition for other nutrients (Mouat and Walker, 

1959). The greater shoot competitive ability of ryegrass at higher N levels is 

more pronounced at lower temperatures (Davidson and Robson, 1986). 

There is some indication of white clover cultivar differences in competitive 

ability for N uptake (Goodman and Collison, 1986). 

At continued high levels of N application and constant favourable 

environmental conditions clover is able to take up N as effectively as ryegrass 

(as nitrate uptake per unit root dry weight; Davidson and Robson, 1985b), 

and can indeed increase its dry matter yields in a grass/clover sward 

(Davidson and Robson, 1985a). However, in the field, when N application is 

continued, soil N levels increase and generally the clover content in the sward 

decreases ('t Hart, 1954; De Vries and Kruijne, 1960; Aldrich, 1970; Hoen, 

1970; Ball et a/., 1978; Denehy and Morrison, 1979; Connolly, 1981; 

Luscombe eta/., 1981; Rhodes, 1981; Wilman and Asiegbu, 1982; Boyd and 

Frame, 1983; Morrison et a/., 1983; Hall and Scott, 1985; Frame and Boyd, 

1986; Hoglund and Brock, 1987; Mouat eta/., 1987). 

1.3 Mechanisms behind clover reduction 
The mechanisms behind the decrease of clover in swards that have been 
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fertilised with N are not fully understood. It was initially assumed that 

increased grass growth leads to greater sward height, which in turn increases 

the shading of clover plants (Stern and Donald, 1962). Shading could reduce 

the photosynthesis of clover plants to such an extent that they eventually die 

through energy deficit (Chestnutt and Lowe, 1970; Rhodes and Stern, 1978). 

This effect would be strongest in spring, when grass growth is already 

vigorous; hence the greatest suppressing effect of fertiliser N is seen when it 

is applied in spring. However, more recent research has shown that white 

clover is capable of maintaining light interception, and hence photosynthesis, 

in grass-dominant pastures by increasing petiole length, thus maintaining leaf 

area in the well-illuminated layers of the sward near the top of the canopy 

(Dennis and Woledge, 1982, 1985; Woledge, 1988). These authors concluded 

that these mechanisms made clover even more efficient in retaining its net 

photosynthesis per leaf area unit/hour than holium perenne as sward height 

increases. So apparently other mechanisms are involved in the decrease in 

clover content and production in N fertilised grass/clover swards. Parsons et 

al. (1991a) argue that because growing leaves of clover remain folded longer 

during their development than grass leaves, so that the specific leaf area of 

developing clover leaves is lower than of developing grass leaves, 

photosynthesis of clover lags behind that of grass following defoliation. As 

sward height increases, clover invests proportionally less in lamina tissue than 

in non-lamina tissue, resulting in a lower rate of acceleration of 

photosynthesis of clover compared to grass (Parsons et al, 1991b). These two 

attributes could counteract the positive effect on growth capacity of the 

greater specific leaf area of fully expanded clover leaves and the ability to 

maintain a greater net photosynthesis per leaf area unit/hour of clover 

compared to grass. 

Woledge (1988) showed that fertiliser N did not influence the clover 

content in the sward in the course of one growing season, but that, over the 

same time period, the clover content in a sward which was not fertilised 

increased. She suggested that stress factors like defoliation, low temperatures, 

drought, pests or diseases might result in the decline of white clover content 

found in the long term. Dennis and Woledge (1987) hypothesised that 

inhibition of clover branching due to shading at ground level could be a 

factor in the decline of clover following fertiliser N use. In a growth room 

7 



Chapter 1 

experiment, lower light intensity decreased branching (Beinhart, 1963). Davies 

and Evans (1990) showed that shading inhibited branch outgrowth in 

glasshouse experiments when stolons were defoliated. 

1.4 Breeding for clover persistence in the presence of 
fertiliser nitrogen 

In the past many breeding programs have been carried out to produce 

clover varieties that would show increased persistence in N fertilised pastures. 

Aldrich (1970) found differences between cultivars in reduction of yield 

following N applications: large leafed cultivars were less affected than small 

leafed cultivars. Large-leafed cultivars would be better competitors with grass 

in the presence of fertiliser N. At the Welsh Plant Breeding Station, a 

programme began in 1949 to develop larger leafed clover varieties, resulting 

in the varieties Sabeda, Olwen, Kerry and Katrina (Williams, 1987). In a 

checklist of clover varieties, Caradus (1986) mentions better yielding capacity 

with fertiliser N for the following varieties, referring to various publications: 

Aberystwyth S.100, Aran, Blanca, Crau, Katrina, Kersey, Menna, Merwi, 

Olwen, Ross, Sabeda and Siwan. However, variable results are reported for 

some varieties. Generally, varieties with high yields at lower temperatures 

show less depression in growth when N is applied (Connolly, 1970; Brock 

and Hoglund, 1974; Hoglund and Brock, 1974; Hoglund and Williams, 1984). 

These varieties commonly have some Mediterranean parentage. In evaluating 

clover varieties, however, care must be taken in choosing the experimental 

environment because of interactions between variety and defoliation 

frequency (Rhodes and Harris, 1979; Hoglund and Brock, 1983) and 

temperature (Brock and Hoglund, 1974). 

In a 3-year field experiment, Caradus et al. (1993) evaluated 15 cultivars 

for tolerance to fertiliser N in a perennial ryegrass/clover sward grazed by 

sheep. In this experiment, significant differences between varieties were 

found for all clover characteristics measured, but no interaction between 

clover variety and N treatment was found. In general the performance of the 

varieties with 225 kg N/ha/year was related to their performance without N 

application, similar to results of Laidlaw (1984). N application decreased 

growing point density, stolon weight and stolon length/m2, perhaps due to 

increased shading of the stolons (Dennis and Woledge, 1987; Caradus and 
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Chapman, 1991), thus it was suggested to evaluate the variation of branching 

capacity of white clover stolons between different varieties. 

In the earlier work the breeding target was improved harvestable yield 

(larger leaves) of clover, which would make the clover more competitive for 

light, especially under infrequent defoliation. Rhodes and Harris (1979) 

suggested that this breeding target may have resulted in a change in the 

harvest index, rather than increased total aboveground yield. The associated 

sacrifice of stolon density may have increased the sensitivity of clover to other 

stresses such as severe defoliation or drought, due to fewer sites being 

available for regeneration of branches and new plants, and less capacity for 

storage of energy and protein reserves in stolon material. 

The ratio of kg N fixed/kg clover dry matter harvested is reduced by 

fertiliser N application, but with greater grass yield total N fixation increases 

(Harris and Hoglund, 1977), presumably because increased grass growth 

reduces inorganic N available to clover. Selection for a clover - Rhi^obium 

association which is relatively insensitive to inorganic N would be another 

approach towards increased production from a grass/clover sward (Steele, 

1982). The concept is that if such associations could be established, higher 

soil inorganic N levels due to N fixation and fertiliser N application would 

then be available for grass growth only. To achieve this it has been suggested 

that clover plants be screened for nodulation ability in the presence of high 

inorganic N levels which will not limit growth, since phenotypic variation in 

nodulation or N fixation are strongly related to the time of inorganic N 

depletion (Rys and Mytton, 1985). Within one variety (Aberystwyth S.100) 

genetic differences were shown for nodulation and N fixation with applied N 

(Mytton and Rys, 1985). However, because the agricultural significance of the 

differences found was very small, greater genetic improvements are required. 

1.5 Morphology and physiological organisation of white 
clover plants 

In this section a short description of white clover morphology and the 

importance of branching are given. The description is confined to plants 

growing in the vegetative state. Seed production and seedling establishment is 

not considered here, because establishment of clover plants through seed is 

infrequent in grazed, temperate pastures (Turkington et a/., 1979; Chapman, 
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1983, 1987). In these environments clover propagation occurs mainly through 

vegetative (clonal) growth. 

An extensive review of white clover has been published by Baker and 

Williams (1987) covering many aspects of the biology and management of the 

species, e.g. morphology, reproduction, physiology, mineral nutrition, N 

fixation, pests and diseases. Figure 1.1 shows a white clover plant (after 

Thomas, 1987a, b). The clover plant usually consists of a main or parent 

stolon with nodes that are separated by internode stolon tissue. The 

internodes undergo elongation in the region immediately basal to the apex. At 

the apical meristem itself, new nodes with a leaf primordium are continuously 

developed. A young node bears a leaf, two root primordia and an axillary bud. 

Usually, only one of the root primordia (the lower most) develops into a 

nodal root when it is in contact with a moist medium. From the nodal roots 

lateral roots develop, and infection of Khi^obia is usually most abundant on 

these lateral roots. In some types of clover the nodal root can develop in a 

taproot. The axillary bud can grow out into an inflorescence or a branch 

(lateral) stolon, but not both. Outgrowth of an axillary bud typically starts at 

older nodes; at younger nodes it is inhibited by apical dominance. A branch 

stolon possesses all the same structures as the parent stolon, and when it has 

established roots it is capable of surviving the death of the parent stolon. This 

is the basis of clonal growth in the species. 

White clover shows strong phenotypic plasticity in the size of different 

plant organs, and partitioning of dry matter to these organs. This phenotypic 

plasticity enables clover to survive periods of stress and exploit better 

conditions and could well be an important characteristic to select for, since it 

is under genetic control (Forde et al., 1989). The clover population in sheep-

grazed grass/clover pastures consists of many small plants and a few large 

individuals, irrespective of mean plant shoot (stolon plus leaf) dry weight 

(Hay et al, 1990). Hay et al. (1989b) showed that, in pastures continuously 

stocked with sheep, clover plant density was less than in rotationally grazed 

pastures, while for total pasture biomass and ryegrass tiller density the 

opposite was true. It was shown that the dry weight per clover plant was less 

under continuous stocking, compared to rotational grazing, while plant 

structure remained similar (Brock et al., 1988; Hay et al, 1988, 1989a). Plants 

of similar branching structure showed minor differences in number of nodes 
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Figure 1-1 A white clover (Trifolium repens L.) plant. 

per plant between differing grazing management or season (Hay et al, 1991). 

Brock et al. (1988) and Hay et al. (1988) showed seasonal variation in clover 

plant structure in sheep-grazed pastures, due to differing balances between 

growth and death of plant parts. In spring plant break up occurred, mainly 

due to death of older buried stolon material (Hay eta/., 1983), resulting in the 

release of many new, smaller plants with simpler branching structure. In 

summer stolon growth was greater than death, resulting in increasing 

percentage of plants with a more complex branching structure. 

Within a plant, a high level of integration between main stolon and 

branch stolons exist, with reciprocal exchange of carbohydrates between 

branches and parent stolon, and between branches (Chapman et al, 1992b). 

Turkington and Klein (1991) showed that the effects of different 

neighbouring grass species on branches were evened-out when branch 

stolons were still interconnected through the parent stolon. When stolons are 

defoliated, changes in carbon translocation occur. Carbon is exported to 

defoliated branches and the apex of the parent stolon, at the expense of root 

and stolon tissue (Chapman and Robson, 1988, 1992; Chapman et al., 1992a, 

b). After prolonged defoliation, however, exported carbon is mainly used to 

maintain existing stolon and root tissue (Chapman and Robson, 1988). The 

strong integration within a white clover plant should provide it with a buffer 

against stress factors like defoliation and soil heterogeneity (Chapman et al., 

1992b). The buffer would be greater when plants are more profusely 

branched. 
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1.6 Objectives of this study 
The target for pasture management and clover breeding is increased 

animal production per hectare without increasing N losses from the system 

nor trading N input by clover for N input by fertiliser. This is achieved by 

utilising total herbage production increases while maintaining an optimal 

balance between N fixing clover and N utilising grass. An optimum clover 

content is assumed to be somewhere between 20 to 50% of total pasture yield 

(Clark and Harris, 1996). Higher clover contents increase N losses, and do 

not significantly increase animal production. A significant proportion of grass 

is needed to utilise the inorganic N becoming available when clover plant 

parts die or recycle through the grazing animal, before this N is out of reach 

of plant roots. 

To bring total herbage production to a higher level, grass growth should 

be less limited by N supply. Fertiliser N can be applied in periods with limited 

contribution of clover N or mineralisation, i.e. in the period late autumn -

early spring. In the warmer seasons the N becoming available by increased 

mineralisation should be mainly utilised by grass, while clover maintains a 

high N input in the cycle through N fixation. 

The proposition upon which this study is based is that knowledge of the 

effects of added mineral N on clover growth processes and plant and 

population structure in grazed N fertilised grass/clover pastures can be used 

to help identify grazing management or plant breeding strategies that improve 

the growth and persistence of clover populations in the presence of 

moderate-high fertiliser N application, and thus help increase overall 

production without losing the benefits of white clover. This target is 

particularly relevant to cattle-grazed pastures, since intensification of 

production and the use of fertiliser N in New Zealand are mosdy occurring 

on dairy farms. Also, in other parts of the world, for example western 

Europe, intensive grasslands are mainly used for cattle production, especially 

dairying. 

The in-depth knowledge of clover in grazed pastures that is currently 

available is mainly based on work with sheep-grazed pastures. It is important 

to extend this knowledge also to cattle-based systems, especially because it 

has been shown that sheep and catde differ in their grazing patterns and the 
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sward structures that typically develop under them (Brisefio de la Hoz and 

Wilman, 1981). Thus, differences in clover growth processes and resulting 

plant structure between sheep- and cattle-grazed pastures could also be 

expected. In the present study, no direct comparison with sheep-grazed 

pastures is made, but work by Hay and Brock (Brock et a/., 1988; Hay et a/., 

1988; see Chapter 4) gives extensive information on population and plant 

structure in sheep-grazed pastures in a similar environment from which 

comparisons can be drawn. 

In the present study the interactions between cattle-grazing management, 

N application and seasonal dynamics of clover growth processes and plant 

and population structure are studied. Similar comparisons have not been 

made up to date. For sustained contribution of clover in intensive catde 

systems, it is important to establish the size and direction of these 

interactions, since the farmer can manipulate management and fertiliser use. 

If interactions are found at times of the year that are critical for clover plant 

survival, then it may be possible to adjust management accordingly to 

improve clover persistence when fertiliser N is used. In aid of this, 

relationships between climatic variables and clover growth processes in catde-

grazed pastures are established. Some of these relationships have been 

quantified earlier (see references in Chapter 5), but again only in sheep-grazed 

pastures, or under controlled-environment conditions. 

The approach of this study is novel, in that it comprises a relatively long 

term (28 months) field study in cattle-grazed pastures, combining information 

on clover growth processes from marked stolons (Chapter 3) with 

information on plant and population structure from turves (Chapter 4). Some 

measurements at the whole sward level were taken as well, to establish the 

broad-scale environment for clover growth and the productive potential of 

the pastures (as indicated by herbage production and sward structure, Chapter 

2). This provides the background for the detailed measurements. The 

simultaneous use of differing methods provides a means to compare the 

results and establish the advantages and applications of each method. The 

results are also valuable for future modelling of clover growth in grazed 

pastures. 
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2. THE GRAZED SWARD - SETTING THE SCENE 

2.1 Introduction 
When dealing with clover plants in a sward, the sward characteristics, 

such as tiller density, amount of biomass produced and species composition 

are of great importance for determining the plant's environment. Treatments 

imposed on the sward can affect the clover plants for example by changing 

the light environment or competition for nutrients. 

This chapter sets the scene for the following chapters. It describes the 

environment of the clover plants: the experimental site, and the climatic data. 

The treatments imposed and their effects on some important variables of the 

sward are described. 

2.2 Aorangi - the experimental site 
The experiment in which this study was conducted was located at 

Aorangi field research station, AgResearch Grasslands' experimental area at 

Kairanga near Palmerston North, New Zealand, at 40°20' S and 175°28' E. 

The experiment was established in 1987 to investigate the economics of beef 

production under different grazing managements as there was little 

information available on the effects of stocking rate or grazing system on 

profitability. The pastures were about 40 years old when the grazing trial 

commenced, and were probably based on an original sowing of New Zealand 

Certified White, a precursor to the widely used cultivar 'Grasslands Huia'. 

Williams and Cornege (1979) screened white clover populations at Aorangi in 

1975 and found that approximately 50% of the plants were Huia type 

(medium leaf size, about 75% cyanogenic), while the remainder was smaller 

leafed and less cyanogenic. 

The soils of the site are classified as Kairanga fine sandy loam and 

Kairanga silt loam. Soil characteristics are summarised in Table 2-1. The site 

has been drained with subsoil tiles, but drainage is still imperfect in winter. 

The soils have high extractable phosphorus and low phosphorus retention 

(20-30% in 0-8 cm). They are low in well-decomposed organic matter. In the 

Kairanga silt loam, iron oxides often occur at 1 m depth, almost forming an 

iron pan (Rijkse and Daly, 1972). More recent soil analyses on some of the 

farmlets (Crush et a/., 1982) showed 10% organic matter, 6000 kg total N/ha 
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and similar C%, N%, C:N ratio and pH to those shown in Table 2-1. 

An annual maintenance dressing of 250 kg/ha/year of superphosphate 

was applied. 

Table 2-1 Characteristics of the top 30 cm of fine sandy loam and silt loam 
soils in Kairanga, Manawatu, New Zealand (Source: Rijkse and Daly, 1972). 

pH(H20) 

Organic matter 
C% 

N% 

P extracted by normal 
sulphuric acid (mg%) 

Soi depth 

0-15 
15-30 

0-15 
15-30 

0-15 
15-30 

0-15 
15-30 

Fine sandy 
loam 

5.7 
6.3 

3.8 
1.9 

0.39 
0.20 

30 
29 

Silt loam 

5.1 
5.4 

3.8 
2.3 

0.35 
0.25 

33 
34 

2.3 Climate 
Weather data for the duration of the study were collected from a 

meteorological station situated 650 m from the trial area. All air temperature 

readings and relative humidity are measured in a double louvered 

"Stephenson Screen" set at 1.2 m above ground level. Grass minimum 

temperature was measured at 2.5 cm above closely mown lawn grass. Soil 

temperature measurements are made under bare soil at 10 cm depth. The 5" 

(12.5 cm) rain gauge rim was positioned 12" (30 cm) above the ground. 

The results, including ten-year means (1980 - 1990) are presented in Fig. 2-1. 

On average, the rainfall is distributed evenly throughout the year. However, 

during the experimental period, below and above average rainfall was 

experienced in several months. The high rainfall in winter 1991 caused partial 

flooding of the experimental area for several days at a time on several 

occasions. 

The mean daily air temperatures did not deviate much from the long-

term average values between October 1990 and June 1991. Therefore, the 

average daily grass minimum and soil temperatures are assumed to have been 
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a) Average monthly rainfaU 
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Figure 2-1 Weather data for the Aorangi experimental farm. Long term means (1980-
1990; line) as well as monthly data from January 1990 until December 1992 (bars) are 
given. Grass minimum and soil temperatures were not recorded between October 1990 
and June and July 1991, respectively. 
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d) Average daily air maximum temperatures 
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Figure 2-1 Continued 

close to the long-term average in the period when these were not recorded. 

Below average temperatures were experienced from late spring 1991 to 

autumn 1992 and in spring 1992. 

2.4 Treatments 

2.4.1 Grazing treatments 

The three grazing treatments compared in the present experiment were 

strict rotational grazing with either 4.9 or 7.4 Friesian bulls per hectare 

(RG4.9 and RG7.4, respectively), and continuous stocking with 4.9 bulls per 

hectare (CS4.9). Treatments were imposed on self-contained farmlets each of 

1.62 ha, subdivided into 8 paddocks for the rotational grazing treatments. 
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Rotation length (i.e. the time taken for animals to return to any area of 

pasture after the previous grazing) varied from around 14 days in 

spring/summer to 60 days in winter. Stock within the CS4.9 treatment had 

access to the whole farmlet at all times. There were two replicates of each 

treatment. 

Each November or December appropriate numbers of calves (three 

months old) were placed on the treatments, grazing ahead of the older bulls. 

The older bulls stayed on the farmlets until February/March, depending on 

feed availability and live weight. The older bulls were then removed from the 

trial altogether. Fig. 2-2 shows the stocking rates on each treatment expressed 

on a metabolic liveweight basis. 

The grazing management treatments had been in place for 2 years and 7 

months when measurements for this study started in September 1990. The 

measurements continued till December 1992. 

600 

500 

M 
-!<! 

400 -

300 

200 ~ i—i—i—r 

J M M J S N J M M J S N J M M J S N J 
Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr 

1990 1991 1992 

Figure 2-2 Stocking rates of the three grazing treatments used in the present experiment 
(metabolic liveweight, kg/ha). 

2.4.2 Nitrogen treatments 

Nitrogen (N) treatments were first applied in April 1991. N fertiliser was 

applied by hand to 5 m strips running the length of each paddock. Thus 

approximately 10% of the area of each replicate received N fertiliser. This 

provided an N treatment area of adequate size for destructive sampling at 

regular intervals while minimising disturbance to the larger trial within which 
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this study was conducted. This area will be referred to as plus-N. The 

remaining area in each paddock, which did not receive N fertiliser, will be 

referred to as no-N. 

N fertiliser was applied on 22 April 1991, 31 July 1991, 24 April 1992 

and 7 August 1992 (mid - autumn and late winter). In each dressing, 50 kg 

N /ha was applied, in the form of urea, CO(NH2)2. Urea is the main N 

fertiliser used by New Zealand farmers (Rogers and Litde, 1982), being 

usually the cheapest per unit N (During, 1984). Also, urea is the type of N 

fertiliser produced in New Zealand itself at the Taranaki urea factory, which 

was constructed in the mid-eighties. With this timing of N fertiliser 

application, good responses can be expected (see section 1.2), alleviating the 

feed deficit at this time of the year. The rate of 100 kg N/ha/year was 

considered high at the time of the experiment, in terms of economic benefits 

(Buxton, 1982). This rate however, was shown to increase total herbage 

production by 8-12 kg DM/kg N applied in the Manawatu (Ball et a/., 1978) 

or in the Waikato (Ledgard and Saunders, 1982; Feyter et a/., 1985), while 

decreasing the herbage production of clover, the effect this present 

experiment aims to study. 

2.5 Methods 

2.5.1 Herbage production 

A movable exclosure cage technique where herbage is cut to a fixed 

height before the cage is placed (Brown, 1954) was used to measure net 

herbage production. In each treatment, three randomly chosen areas of 1 x 

0.5 m were cut to a stubble length of approximately 1 cm using electric 

shearing clippers, and covered by cages to prevent grazing. After regrowth 

periods, herbage under the cages was harvested by cutting to the same stubble 

length as at the start of the regrowth period. After harvest, cages were moved 

to newly cut areas at a new location. This method should have minimised 

errors associated with the use of cages when estimating herbage production 

under RG (Frame, 1981) but would probably have overestimated herbage 

accumulation under the CS4.9 treatment because of changes in sward 

structure and differences in average leaf area index under cages compared to 

under continuous stocking (Collett eta/., 1981; Parsons eta/., 1984). The error 
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is likely to be greatest in spring because ryegrass reproductive stem growth 

can accumulate under cages but is often removed by animals in the early 

stages of stem elongation under continuous stocking (Lambert et al, 1983). 

However, the errors associated with frequent cutting to simulate continuous 

stocking is likely to lead to even larger sampling errors due to incomplete 

recovery of short herbage (Grant, 1981). 

After cutting, herbage was placed in plastic bags and taken to a 

laboratory. The fresh weight was determined on the same day to avoid losses 

of moisture ('t Mannetje, 1978). A subsample of 200 g was dried for 24 hours 

in a forced-draft oven at 85 °C and weighed to determine dry weight 

percentage. An additional subsample was taken for botanical dissection to 

determine sward composition (Sears, 1951). Categories separated were Ijolium 

species, other grasses, Trifolium repens, other species and dead matter. 

2.5.2 Sward density 

The density of grass tillers, clover growing points, and plants of other 

species (number/m2), as well as clover stolon length or weight per m2 were 

assessed using the following destructive sward sampling technique. 

With a soil corer of 50 mm diameter, fifty turf plugs were removed from 

both the plus-N and no-N treatments, in each of two paddocks per farmlet. 

While walking along straight lines at set distances across the paddocks, one 

plug was taken at a set number of paces. Thus the whole treatment area was 

evenly sampled, to take the heterogeneity of the swards into account (Jewiss, 

1981). Number of tillers of Ijolium species and other grass species, white 

clover growing points and number of plants of other species were counted 

per plug. Clover stolon length and dry weight were measured in a random 

subsample of ten plugs per treatment within each sampled paddock. 

2.5.3 Statistical analysis 

For analysis, two different data sets were created. The first, from here on 

referred to as NN, included all data from the no-N treatment from September 

1990 to December 1992 and was used to determine seasonal and grazing 

treatment effects. The second set, referred to as PN, consisted of all data 

from April 1991 to December 1992 from both the no-N and plus-N 

treatments and was used to determine the main effect of N, and interactions 
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between N and date of sampling or grazing treatment. Data were tested for 

homogeneity of variances, transformed where needed and then analysed by 

analysis of variance using the General Linear Models (GLM) procedure of 

SAS/STAT (Anonymous, 1990). A split plot model was used, with the main 

plot being grazing treatment, sub-plot N treatment and sub-sub-plot sampling 

date. The correlation between the (destructive) samplings at different dates 

was considered small enough to include sampling date in the analysis in this 

way. 

Least squares means of the full model and their related standard errors 

were calculated and used to test differences between treatments when the 

effect was significant (the PDIFF option of GLM). Where transformed data 

were used in the tests, least squares means were back-transformed and 

resulting values are presented; where non-transformed data were used, least 

squares means are presented. 

2.6 Results 

2.6.1 Herbage production 

Total pasture herbage accumulation rate is presented in Fig. 2-3a. Total 

annual accumulation was 16.6 tonnes DM/ha in 1991 and 16.0 tonnes in 

1992. The seasonal fluctuations in botanical composition were highly 

significant for all five components (P<0.001). This is shown in Fig. 2-4. 

Clover content ranged between 30% of total DM in summer and 10% in 

winter. The content of Ijolium species fluctuated between 40% of total 

herbage DM in summer to 65% in winter. Other grasses (mainly Poa species, 

couch (Eljmus repens) and browntop (Agrostis capillaris)) comprised between 

15% (late summer/autumn) and 30% (late winter/early spring). Other species 

contributed little, reaching a maximum of 3% in summer. Dead matter 

content was highest in mid-summer (13% of total DM), after which it 

decreased to around 2% in late winter/early spring. 

Grazing management had no effect on herbage DM accumulation or 

composition. N application tended to increase the total herbage DM 

accumulation (P=0.07). The average efficiency of N use was 17.5 kg DM/kg 

N applied in 1991 and 12.9 kg DM/kg N applied in 1992. The greatest 
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Figure 2-3 Seasonal variation and effect of N application on DM accumulation rate of a) 
total herbage, b) white clover, and c) grasses other than Lo/ium. Mean of grazing 
treatments. Triangles on the x-axis show the timing of N applications. 
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Figure 2-4 Seasonal variation in herbage composition and effects of N application on 
percentage of white clover. Mean of grazing treatments. 
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increase occurred after the early autumn N applications in April (significance 

of interaction between N treatment and time P<0.05; Fig. 2-3a). Immediate 

responses to the late winter N application were smaller. 

N application tended to reduce clover DM accumulation by 15% 

(P=0.07; Fig. 2-3b) and decreased the clover content of the swards by 0.036% 

/kg N applied (P=0.05; Fig. 2-4b). There was a significant interaction 

between N treatment and sampling date for clover DM accumulation 

(P<0.01) due to a strong suppression by N in spring 1991 (Fig. 2-3b). N did 

not significandy increase the DM accumulation of Lolium, other species, or of 

dead matter, nor did it affect the percentage of total herbage comprised by 

these components. N increased the DM accumulation of other grasses than 

ljolium at some sampling dates (Fig. 2-3c). 

2.6.2 Sward density 

Grass tiller, clover growing point and stolon density results are presented 

in Table 2-2. Density oiljolium species (mainly Loliumperenne) averaged 7200 

tillers/m2, while other grasses collectively averaged 6600 tillers/m2. Clover 

growing point density was highest in the late summer/autumn/early winter 

period, especially in the second year with the density in February 1992 being 

significantly higher than that recorded at the other samplings. Clover stolon 

content (g or m/m2) showed similar seasonal fluctuations to growing point 

density. The stolon weight per unit length dropped significandy in spring. 

While within RG stocking rate did not show an effect, CS significantly 

increased the average tiller density of Lolium species (8800 tillers/m2 under 

CS4.9 versus 6420 under RG; P<0.05). Significant interactions between 

grazing treatment and sampling date were recorded for lj)lium tiller density 

and clover growing point density (both P<0.001), and stolon length/m2 

(P<0.01). The interaction for luolium tiller density resulted from the lack of a 

significant effect of the grazing treatments in the February and September 

1992 samplings, while at other times the tendency was that CS4.9 showed 

higher densities compared to RG. For clover growing point density and 

stolon length/m2 the interaction resulted from the higher density measured 

under CS4.9 in February 1992, whereas no significant differences were 

measured in the other samplings. 
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Chapter 2 

N application decreased the density of tillers of grass species other than 

Lolium: 7270 tillers/m2 for no-N, compared to 6320 tillers/m2 for plus-N 

(P=0.01). No other significant effects of N treatment or significant 

interactions between N treatment and sampling date were detected. 

2.7 Discussion 

Total annual herbage accumulation rate and sward composition were 

similar to those recorded earlier on the same site (Brougham eta/., 1975; Clark 

et a/., 1979; Crush et a/., 1982; Hay et a/., 1985; Cosgrove and Brougham, 

1988). The response of herbage accumulation rate to N applications was 

higher than reported for similar N application levels on Manawatu 

grass/clover swards by Ball eta/. (1978), and similar or higher than responses 

recorded in lowland pastures in Taranaki (Thomson and Roberts, 1982) or in 

the Waikato (Ledgard and Saunders, 1982; Feyter et a/., 1985). It was 

comparable to responses to similar application levels in Europe (Denehy and 

Morrison, 1979; Laidlaw, 1984; Wilman and Hollington, 1985; Reid, 1986; 

Frame and Boyd, 1987). 

The well-documented suppressing effect of N application on clover 

growth in mixed grass-clover swards (see section 1.1) was again apparent in 

this experiment. The average reduction in clover DM accumulation rate of 

15% was equal to that reported by Ball et a/. (1978), but the reduction in 

clover content (0.036% per kg N applied) was less than the 0.07 - 0.12% per 

kg N reported by Frame and Boyd (1987). However, in the latter study the 

average clover content at the no-N treatment was higher than in the present 

study. 

No significant differences in herbage accumulation rates were detected 

between grazing treatments in this study. Sward structure differed slightly, 

with the RG swards having lower population densities than those under CS, 

in accordance with earlier published results (Briseho de la Hoz and Wilman, 

1981; Bircham and Korte, 1984; Frame and Newbould, 1986). The difference 

in population density between the grazing treatments was relatively small 

compared to differences seen in sheep-grazed pastures. This suggests smaller 

relative differences in defoliation patterns between CS and RG under cattle 

compared to sheep (Briseno de la Hoz and Wilman, 1981). Indeed, results 

presented later in Chapter 3 indicate that defoliation patterns of individual 
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stolons resulted in similar defoliation rates for the grazing treatments. 

In general, increasing defoliation frequency reduces production of a 

grass/clover sward (for example Chestnutt and Lowe, 1970; Curll and 

Wilkins, 1983; Frame and Newbould, 1984; Reid, 1986; Brock eta/., 1988) due 

to reduced leaf area and hence decreased photosynthesis per tiller. However, 

within a wide range of standing biomass or LAI a balance between population 

density and production per individual growth unit will establish (Hodgson 

and Wade, 1978; Bircham and Hodgson, 1983; Grant eta/., 1983), resulting in 

similar herbage DM accumulation in the long run. The results from the 

present experiment suggest that this state was reached in the swards, implying 

that the swards studied were in equilibrium and adjusted to the grazing 

treatments. 

Tiller density of grasses other than ljolium species decreased with the 

application of N. DM accumulation increased slighdy for this component. A 

shift in species composition was likely to contribute to this effect. Poa annua 

will be suppressed by the taller species such as ljolium and Ulymus repens when 

N is applied. Additionally, production per tiller generally increases following 

N application (Bircham and Hodgson, 1984; Woledge, 1988). 

The clover content was below desirable levels of 20-50% (Clark and 

Harris, 1996) during a large part of the year during the period of the present 

study, but similar to those often found on New Zealand farms. Caradus et al. 

(1996) mention an average of 20% clover in total pasture yield for lowland 

regions. Even though a higher clover content could buffer the adverse effects 

of fertiliser N better (Frame and Paterson, 1987), in the present experiment 

clover was capable of maintaining stolon density and recovering to the same 

level of herbage accumulation as the no-N treatment in the summer of the 

second year. 

In conclusion, the response to fertiliser N of the grass/clover swards 

used in the present experiment was generally consistent with previously 

published results, under climatic conditions reasonably close to the long-term 

average for the location. Therefore, the effects of N application on clover 

plant characteristics described in the following chapters can be considered 

representative for cattle-grazed permanent pastures in similar environments 

to that of the present experiment. 
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GROWTH DYNAMICS OF STOLONS 



3. GROWTH DYNAMICS OF STOLONS 

3.1 Introduction 
Information on the effects of fertiliser nitrogen (N) on white clover 

growth dynamics in grazed swards may provide insights into the reasons for 

the often observed decline of clover when fertiliser N is applied (see Chapter 

1). Since fertiliser N is mainly used in intensive production systems such as 

dairying, this information is particularly important for catde-grazed swards. 

Research comparing clover growth dynamics under different managements in 

catde grazing systems is lacking. Therefore, a detailed study was undertaken 

of the influence of catde grazing and fertiliser N on clover growth dynamics. 

Important parameters for clover growth dynamics in temperate swards are 

development of nodes, branches and roots. Leaf production and utilisation 

are important parameters for the yield of harvestable matter and the influence 

it has on photosynthesis, energy supply and plant growth. 

In temperate pastures white clover persists mainly through vegetative 

growth. The development and establishment of branches at nodes are 

important processes for continued persistence of this species (Turkington et 

aL, 1979; Chapman, 1983, 1987; Sheath and Hodgson, 1989). Branching is 

also important for production of harvestable dry matter (DM), by increasing 

the number of growing points. Each growing point continually develops 

nodes, each bearing a leaf. Each node is a potential site for the development 

of another branch since an axillary meristem is also present. The rate of node 

development depends on genotype (Knight, 1953; Beinhart et aL, 1963) and 

environment, particularly moisture availability and temperature (Brougham, 

1962; Beinhart, 1963; Chapman et aL, 1983; Sackville Hamilton and Harper, 

1989). Light intensity has less impact on node (and hence leaf) appearance 

rates (Beinhart, 1963). 

Grazing also influences the growth dynamics of white clover. The 

clearest effects of grazing are seen in the dynamics of leaf growth. Initially 

after defoliation, new leaf growth is supported by increased partitioning of C 

from residual sources (remaining leaf tissue or energy reserves) to the apex at 

the expense of other organs such as stolon tissue and roots (Chapman and 

Robson, 1988, 1992; Chapman et aL, 1992a, b). Continued leaf removal leads 
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to progressive reductions in lamina size and petiole length. From the results 

presented in Chapter 4 it can be derived that also in the present experiment 

the leaves were smaller under continuous stocking compared to rotational 

grazing, and under the higher stocking rate under rotational grazing in the 

present experiment (as dry weight per leaf). 

Development of branches is regulated by assimilate supply and 

correlative factors within the plant which influence the allocation patterns of 

assimilates (Harvey, 1970; Newton et at, 1992). Leaf removal reduces 

branching rates (Jones and Davies, 1988; Davies and Evans, 1990) and 

considerably lowers the viability of young axillary buds (Newton et al, 1992), 

the loss of viability being greater under continuous stocking than rotational 

grazing in sheep-grazed swards. Particularly young branches are vulnerable to 

removal of parent stolon leaves, because these branches quantitatively import 

more carbohydrates from the parent stolon leaves than they fix themselves, 

while at the same time, they export more carbohydrates to the rest of the 

plant than they import from the parent stolon leaves (Chapman et aL, 1989; 

Chapman et aL, 1992b). Clearly, the carbohydrate source capacity of young 

branches is still small. 

Shading increases the allocation of assimilates to stolon and petiole 

extension, at the expense of branching (Solangaarachchi and Harper, 1987; 

Thompson and Harper, 1988; Thompson, 1995). Davies and Evans (1990) 

found shading inhibited the rate of initiation of axillary buds and 

development of branches only when leaflets and petioles were removed from 

the parental node, while shading did not affect branch development when 

leaves were retained. Thus, a rest period after leaf removal is beneficial for 

branching, by allowing more leaves per growing point. However, a prolonged 

rest period results in a high herbage mass, with older leaves senescing and 

thus an increasing number of nodes which are mature enough to branch, but 

which are both shaded and leafless (Davies and Evans, 1990). Exposure of 

these nodes to light can subsequently induce branching. 

Other factors that result in less branching are higher temperatures 

(Beinhart, 1963; Hoglund and Williams, 1984) and an increase in inorganic 

nitrogen (N) supply (Hoglund and Williams, 1984). Both factors increase the 

apical dominance of the parent stolon, and result in higher rates of leaf 

appearance. With increasing temperatures, the decrease in branching induced 
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by application of mineral N is less (Hoglund and Williams, 1984). 

In addition to knowledge of rates of leaf appearance and branching, 

information on rates of leaf development, senescence and leaf removal is 

useful for evaluation of leaf utilisation and the contribution of leaf senescence 

to the litter pool. Such information is available for sheep-grazed pastures in 

some environments (Chapman et al., 1984; Clark et al., 1984). These studies 

have shown the similarity in leaf utilisation of rotational and continuous sheep 

stocking systems, due to a balance between defoliation severity and frequency. 

The term "severity" has been used for the number of leaves defoliated per 

stolon per defoliation event (Clark et al, 1984); "frequency" is used for the 

number of leaf removal events per time unit (Hodgson, 1979). 

Chapman (1983) showed strong seasonal fluctuations and little effect of 

grazing management on branch and root development of clover populations 

in grazed hill country swards. Development of adventitious roots from 

stolons is essential for water and nutrient supply for the whole plant. Much 

less is known about the patterns of distribution of nutrients and water from 

source roots to sink shoots than is known about C distribution from source 

leaves to sinks throughout the plant. However, the information that is 

available confirms the importance of the stolon apex as a sink for these 

resources, and the existence of specific, intra-plant source-sink connections 

such as those between the root and branch growing at the same node 

(Chapman, 1983; Chapman and Hay, 1993; Kemball and Marshall, 1994). 

The present study describes seasonal variation in clover growth 

dynamics, characterised by rates of leaf appearance, removal and senescence, 

stolon elongation, branching and rooting of nodes, and branch and root 

senescence, in lowland pastures grazed by catde. The effects of application of 

fertiliser N in autumn and winter and differing grazing treatments are 

established. Thus, this study explores interactions between management 

practices and environment in a field setting as an important step in defining 

possible improvements in grass/clover pasture management in relatively 

intensive cattle systems where fertiliser N is used. 
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Z.2 Materials and methods 

3.2.1 Treatments 

The swards used and treatments applied are described in detail in 

Chapter 2. Briefly, three grazing treatments were compared: continuous 

stocking with 4.9 bulls/ha (CS4.9) and rotational grazing with either 4.9 

bulls/ha (RG4.9) or 7.4 bulls/ha (RG7.4). Each treatment was imposed on 

two replicate self contained farmlets. Two N treatments were imposed: no 

fertiliser N applications (no-N) and 100 kg N/ha/year (plus-N) applied to 5 

m strips running the length of each paddock. N treatments started in April 

1991, with N in the form of urea being applied twice per year (in autumn and 

winter) at 50 kg N /ha per dressing. 

3.2.2 Marking stolons 

In September 1990, four quadrats of 100x15 cm were randomly 

positioned within each replicate of each treatment (two in each of two 

paddocks). A metal frame was used to divide the quadrat into ten equal 

blocks. Clover stolons were marked in the inner eight blocks. These blocks 

were used to provide the location co-ordinates of the stolons. Five stolons 

per quadrat were selected and an inverted U-shaped metal marker was placed 

over the stolon and pushed into the soil immediately behind the node bearing 

the oldest leaf present on the stolon. Only main stolons (after Thomas, 

1987a) with at least eight nodes and bearing roots were marked. Contact with 

the marked stolon was avoided as much as possible to minimise disturbance. 

Herbage and soil, if this was moved to relocate the marker, was replaced 

immediately after measurements were taken. 

Measurements were collected weekly starting in mid September 1990. 

Following the initiation of the N treatments in April 1991, the number of 

marked stolons was doubled with a complete replicate set of marked stolons 

in the plus-N treatment. Subsequendy, measurements were collected every ten 

or eleven days. In late autumn of the second year, longer intervals (14 to 21 

days) between measurements were imposed since growth rates were much 

slower. Intervals of ten or eleven days were reimposed the following spring as 

growth rates increased. Measurements continued until mid December 1992. 

The scoring intervals which were used in the second year fell within the 
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recommended length of time of between one and one-and-a-half leaf 

appearance intervals (Davies, 1981). During the first year and the last spring, 

the scoring intervals were slightly shorter than the average leaf appearance 

interval during those periods. 

3.2.3 Measurements on stolons 

At each measurement the presence of a leaf (petiole plus leaflets), petiole 

(not carrying leaflets), root, axillary bud, branch or inflorescence was recorded 

for each node from the marker up to the apex. The length of the stolon from 

the marker to the tip of the apex was also recorded. Fig. 3-1 shows the major 

morphological features and events that were noted, and also gives a schematic 

representation of the recorded data and the rates and age-specific data that 

were derived from these. 

A node was considered to have developed a root when the root was long 

enough to penetrate the soil surface. An axillary bud was defined as a 

vegetative shoot in a leaf axil which had developed less than one fully 

unfolded leaf (after Thomas, 1987a). As soon as one fully unfolded leaf was 

present, the bud was considered a branch and reclassified. When rates of 

branch production and development were high (e.g. in the spring months), 

the axillary bud stage was sometimes missed between observations, and 

therefore not all branches observed were recorded also as axillary buds. The 

stage of development of young leaves was scored using the Carlson scale 

(Carlson, 1966b). The number of nodes on the marked stolon (from marker 

to tip) was determined. The nodes bearing young leaves (<1 of the Carlson 

scale) were not counted as one, but as the value of the stage of development 

according to the Carlson scale (Fig. 3-1). This permits calculation of more 

accurate rates of leaf appearance, especially in winter when growth is slow 

(Davies, 1981). 

The state of every leaf was recorded at each measurement. Leaves were 

classified as either intact (all leaflets undamaged by grazing and completely 

green), partially grazed (one or more leaflets partially or totally removed by 

grazing or by invertebrate herbivory), or senescent (one or more leaflets 

showing signs of chlorosis). The onset of senescence of petioles, axillary 

buds, branches and roots (i.e. the main root, which is visible between the 

node and the soil surface, senesced) was also recorded. When a leaf passed 
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into the senescent category it could not subsequently be reclassified as having 

been removed by grazing since it would have been difficult to determine 

whether a senescent leaf had disappeared between two scoring dates through 

leaf removal or decay. 

Leaf removal was defined as the disappearance of all leaflets between 

two successive scoring dates for either intact or partially grazed leaves. Thus, 

no differentiation between leaf removal by catde and by for example slugs, 

insects or rabbits, could be made. Under RG it would be possible to identify 

removal due to other causes than catde grazing during the resting period of 

the sward. Under CS this was not possible. It was assumed that the leaf 

removal patterns due to agents other than catde were similar under both CS 

and RG, and no further differentiation was attempted. 

When a marked stolon was lost from the sample population, the cause of 

loss was recorded in the following categories: grazing (i.e. entire section of 

marked stolon removed), senescence of whole stolon or the stolon apex, 

trampling damage, burial under cattle dung, burial due to other causes (e.g. by 

the hoof of an animal), or simply inability to relocate the marker. A 

replacement stolon was selected for the sample population, and marked in the 

same way as described above for the original sample population. 

3.2.4 Data handling 

Raw data collected from the field were entered in spreadsheets using 

Quattro Pro software, as shown in Fig. 3-1. Variables such as rates of stolon 

elongation, leaf appearance, branching, rooting and flowering, frequency and 

severity of leaf removal, and longevity of plant parts, were derived from these 

for each rotation period using Quattro Pro macros specifically created for this 

purpose. At the time of appearance of an axillary bud, branch, root or 

inflorescence (i.e. the first time it was noticed), the relative position of the 

node where this occurred was determined. Node position 1 was always 

assigned to the youngest node on the main stolon, node 2 the next, etc. (Fig. 

3-1). The age of plant parts when removal or onset of senescence occurred 

was estimated by the number of days between the date when the plant part 

was first present and the date when it had disappeared or started to die. 
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Table 3-1 Division of scoring period (25 September 1990 to 14 December 1992) in 
rotation periods (as applied to RG treatments) and seasons. Boundaries between seasons 
were determined by rotation periods. 

Season 

Spr90 
Sum9091 
Aut91* 
Win91 
Spr91 
Sum9192 
Aut92 
Win92 
Spr92 

Date 

25 Sep 90 - 04 Dec 90 
04 Dec 90 - 05 Mar 91 
05 Mar 91 - 30 May 91 
30 May 91 - 12 Sep 91 
12 Sep 91 - 02 Dec 91 
02 Dec 91 - 26 Feb 92 
26 Feb 92 - 20 May 92 
20 May 92 - 24 Aug 92 
24 Aug 92-14 Dec 92 

Number of 
rotations 

3 
5 
4 
2 
3 
3 
3 
2 
3 

Rotation lengths (days) 

35,14,21 
20,16,20,21,14 
21,21,23,21 
53,52 
21,28,32 
35,21,30 
26, 28, 30 
40,56 
60, 20, 32 

* The N treatment started in the middle of the Aut91 period, hence for the PN data set, the last 
two rotations only were used: 17 April 91 to 30 May 91. From here on seasons are the same for 
the NN and PN data sets. 

The entire measurement period was divided into 29 rotation periods (a 

rotation period started on the first day the animals went into the first paddock 

and ended when they returned to this paddock) and nine seasons as shown in 

Table 3-1. Means were calculated of each quadrat in each season for statistical 

analysis. 

3.2.5 Statistical analysis 

As described in Chapter 2, NN (no-N from September 1990 to 

December 1992) data were used to determine seasonal and grazing treatment 

effects and possible interaction between season and grazing treatment. PN 

(no-N and plus-N from April 1991 to December 1992) data were used to 

determine N effects and interactions between N and season or grazing 

treatment. Thus, where seasonal fluctuations or grazing treatment effects are 

discussed, data from NN only were used in the analysis and these are the data 

presented in the results sections. Data were transformed where necessary for 

homogeneity of variances. Presented values are least-squares means, back-

transformed where applicable. SAS/STAT statistical software was used for 

the analyses (Anonymous, 1990). 

Since the same stolons were scored at different dates (where stolons 

were not lost), the data resulting from these measurements are not 
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independent. Covariances were expected to differ between seasons, since 

consecutive seasons are likely to be more closely related than seasons that are 

further apart in time. Thus, multivariate analysis was required, using season as 

multivariate variable (Cole and Grizzle, 1966; Snedecor and Cochran, 1980; 

Steel and Torrie, 1980). The number of observations of axillary buds and 

roots senescing were too small to use repeated measures analysis on the age 

of axillary buds or roots at senescence. Hence univariate analysis was used for 

these variables using a split plot for time (Snedecor and Cochran, 1980; Steel 

and Torrie, 1980). The node positions where an axillary bud, branch, root or 

inflorescence appeared were averaged over seasons and quadrats. The 

frequency distributions of these means were analysed with chi-square tests. 

Senescence of axillary buds, branches or inflorescences on rooted nodes 

was initially distinguished from senescence on non-rooted nodes. To test if 

rooting affected the longevity of these plant parts, a chi-square test was used 

on the frequency distribution of the age of the plant part at the onset of 

senescence. The number of observations on rooted nodes was too low to 

analyse for seasonal or treatment effects. Hence the total number of 

occurrences on rooted and non-rooted nodes, and average age, were used in 

these analyses. 

3.3 Results 

3.3.1 Loss of marked stolons 

In Table 3-2 an account is given of the frequency with which stolons 

were lost and new stolons were marked. Highest rates of loss occurred in 

summer, when more stolons died (either totally, or just the stolon apex), more 

stolon apices were removed by grazing, and a higher number were lost under 

a dung patch than during the rest of the year. More stolons were lost due to 

burial and trampling damage in the wet autumn and winter of 1991 and 

winter and spring of 1992 (see Chapter 2 for weather data). The wet 

conditions in autumn and winter 1991 resulted in a higher number of stolons 

that could not be relocated. 
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Growth dynamics of stolons 

3.3.2 Leaf and petiole complement per stolon 

The number of intact, partially grazed, and senescent leaves, and the 

number of petioles (not carrying leaflets), per stolon are shown in Fig. 3-2. 

The average over grazing treatments is presented, since no interactions of 

season and grazing treatments occurred. Seasonal differences were significant 

for all three variables (P<0.001). The number of green leaves per marked 

stolon decreased gradually from summer to the next spring in both years. The 

number of senescing leaves per stolon was lowest in winter for both years and 

was higher in the second year. The number of petioles per stolon decreased 

from spring to autumn in both years. 

The average number of intact leaves per stolon was higher under CS4.9 

(2.2 leaves/stolon) than under RG4.9 and RG7.4 (2.0; P<0.05). Grazing 

treatments did not significantly affect the number of senescent leaves or the 

number of petioles per stolon. Significant effects of N were found for 

number of senescent leaves (P<0.001), with average values being 0.25 per 

stolon for no-N and 0.40 per stolon for plus-N. The interaction between N 

and season was significant (P<0.001). This was due to a similar number of 

senescing leaves in Aut91, but a consistendy higher number for plus-N from 

then on (Fig. 3-2b). 

3.3.3 Rates of stolon elongation and leaf appearance 

Stolon elongation rate showed strong seasonal variation, with lowest 

rates in winter and highest in summer and Spr90. Rate of leaf appearance 

showed a very similar pattern (Table 3-3). 

Neither variable was significantly affected by grazing treatment. Overall, 

N increased stolon elongation rate from on average 0.15 to 0.19 cm/week 

(P<0.05). Interactions between N treatment and season were significant for 

stolon elongation (P<0.01) and for rate of leaf appearance (P<0.001). Both 

effects were due to a stronger response to N in Aut91. In this season stolon 

elongation rate averaged 0.14 cm/week in no-N compared to 0.22 cm/week 

in plus-N, while rate of leaf appearance averaged 0.58 and 0.66 leaves per 

stolon/week in the respective treatments. Note that these figures are for the 

PN data set, hence the different rate of leaf appearance value for no-N 

compared to the figure for Aut91 in Table 3-3, which presents NN data. 
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a) Number of green leaves per stolon, mean of N N data 
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Figure 3-2 Average number of a) green leaves, b) senescing leaves and c) 
(without leaflets) per stolon. Different capital letters denote significant difference 
seasons (P<0.05). Levels of N effects within season are given by ** (P<0.01) 
(PO.001). 
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Table 3-3 Average leaf appearance (leaves per stolon/week) and stolon elongation rates 
(cm/week) and effect of N on stolon elongation rate (P<0.05). Different capital letters 
denote significant difference between seasons (P<0.05). Significance of N effect within 
season is given by * (P<0.05). Mean of grazing treatments. 

Season 

Spr90 
Sum9091 

Aut91 

Win91 

Spr91 

Sum9192 

Aut92 

Win92 

Spr92 

N treatment 

no-N 
no-N 

no-N 
plus-N 

no-N 
plus-N 

no-N 
plus-N 

no-N 
plus-N 

no-N 
plus-N 

no-N 
plus-N 

no-N 
plus-N 

"' See footnote Table 3-2. 

Leaf appearance 
rate 

0.89 
0.94 

0.64 

0.44 

0.69 

0.92 

0.73 

0.39 

0.64 

A 
A 

C 

D 

B 

A 

B 

E 

C 

Stolon 

(0.15) 

elongation 
rate 

0.48 A 
0.29 B 

>0.14 C 
0.22 * 

0.08 D 
0.07 

0.18 C 
0.21 

0.3 B 
0.45 

0.19 C 
0.23 

0.02 E 
0.03 

0.17 C 
0.18 

3.3.4 Leaf removal patterns 

Leaf removal patterns are presented in Fig. 3-3. Seasonal differences 

were significant (P<0.001) and a significant interaction between season and 

grazing treatment occurred for both leaf removal frequency and severity 

(P<0.01). Under CS4.9 leaf removal frequency was higher than under RG4.9 

in the summer and winter of the second year. CS4.9 also had a higher 

frequency than RG7.4 in summer of the second year. The higher stocking rate 

treatment under RG (7.4 bulls/ha as opposed to 4.9 bulls/ha) did not result 

in increased leaf removal frequency: indeed in Aut91 and Spr91 the leaf 

removal frequency was lower at the higher stocking rate. The main effect of 

grazing treatment was significant for severity of leaf removal (P<0.001), with 

on average fewer leaves being removed per leaf removal event under CS in 
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a) Leaf removal frequency, mean of NN data 
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Figure 3-3 Seasonal and grazing treatment effects on a) leaf removal frequency and b) 
severity and c) N effects on frequency and severity. Different capital letters denote 
significant difference between seasons (P<0.05). Levels of grazing treatment effects are 
given by ~ (P<0.10), * (P<0.05), ** (P<0.01) or *** (P<0.001). 

comparison to RG. In Win91 and Spr91 more leaves were removed per event 

under RG7.4 than under RG4.9. 

N application resulted in lower leaf removal frequency in Aut91 and 

Spr92 (interaction P<0.05). In Aut91 there was an average of 0.38 leaf 

removal events per stolon per rotation for no-N compared to 0.18 for plus-N 

while in Spr92 the respective frequencies were 1.24 and 1.08. Severity of leaf 

removal also showed a significant interaction between season and N 
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treatment (P<0.05), in Aut91 1.56 leaves were removed per event for no-N 

and 1.06 for plus-N. 

3.3.5 Leaf removal rate and leaf and petiole senescence rates 

When the frequency and severity of leaf removal are combined, an 

overall rate of leaf removal for individual stolons can be calculated. This 

information is presented in Table 3-4 along with data for the mean age of 

leaves at removal. The corresponding data for the rate of leaf and petiole 

senescence combined with the age of the leaf or petiole at senescence are also 

presented in Table 3-4. Seasonal fluctuations were significant for all of these 

variables (P<0.001). The rate of leaf removal was lowest in autumn and 

winter and highest in summer. Leaf and petiole senescence rates were lowest 

in winter. 

As may be expected, leaf age at removal or onset of senescence was 

generally lower when leaf removal or senescence rates were higher and vice 

versa. Leaves were on average 23 days old when defoliated and 31 days old at 

the onset of senescence. After removal of leaflets, the petiole remained green 

for another 15 days before the onset of senescence. 

Table 3-4 Average rates of leaf removal and leaf and petiole senescence (number per 
stolon/week), with corresponding age (days; for petiole the age is the number of days 
after removal of the leaflets) when removal or senescence occurred. Different capital 
letters denote significant difference between seasons (P<0.05). Mean of N N data. 

Season 

Spr90 
Sum9091 
Aut91 
Win91 
Spr91 
Sum9192 
Aut92 
Win92 
Spr92 

Leaf removal 
rate 

0.43 AB 
0.48 A 
0.23 E 
0.16 F 
0.38 BC 
0.42 ABC 
0.31 D 
0.16 F 
0.37 C 

age 

17.0 G 
17.0 FG 
18.9 D E 
36.2 A 
21.2 C 
18.3 EF 
20.1 CD 
32.8 A 
24.7 B 

Leaf senescence 
rate 

0.05 E 
0.13 C 
0.19 AB 
0.10 D 
0.17 BC 
0.19 AB 
0.13 C 
0.08 D E 
0.21 A 

age 

24.4 D E 
25.1 D E 
30.0 C 
45.0 A 
31.4 C 
24.0 E 
26.0 D 
42.0 B 
32.0 CD 

Petiole 
rate 

0.29 B 
0.36 A 
0.20 C 
0.11 D 
0.21 B 
0.27 B 
0.20 C 
0.10 D 
0.21 C 

senescence 
age 

12.3 F 
13.6 E 
13.9 D E 
18.4 AB 
15.9 BC 
14.2 DE 
15.1 CD 
18.9 A 
17.2 AB 

Grazing treatment did not affect removal and senescence rates or 

concurrent ages. Interaction with season was significant for age of leaf when 

defoliated (P<0.01). In Spr90, Aut91 and Sum9192 leaves were on average 3 
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days older when defoliated under CS4.9 than under RG7.4. In Spr91 leaves 

were on average 3 days older, and in Spr92 3 days younger under CG4.9 than 

under RG4.9. RG7.4 was intermediate. 

Fertiliser N did not significantly influence removal or senescence rates, 

or age at removal or senescence. Interaction with season occurred for age of 

leaf at the onset of senescence (P<0.05), due to a lower leaf age in Aut91 with 

N. However, this was an artefact of the experimental set-up, because new 

stolon tips were tagged for plus-N: older leaves were not in this sample. A 

significant interaction between N and season was found for petiole 

senescence rate (P<0.01). It was lower with N in Aut91 (0.03 and 0.12 

petioles per stolon/week for plus-N and no-N, respectively) and higher with 

N in Win91 (0.14 for plus-N and 0.11 petioles per stolon/week for no-N). 

The loss of marked stolons contributed considerably to loss of leaves. 

Combining the number of leaves per stolon (Fig. 3-2) and the chance of 

losing a stolon (Table 3-2), between 6 and 28% of developed leaves were lost 

this way. These leaves were not included in either the removed or senescent 

categories. Leaf senescence and loss of leaves with the senescence or loss of 

the marked stolon (excluding loss of stolon due to grazing) combined, add up 

to an average of 0.22 leaves per stolon/week. The loss of marked stolons due 

to grazing accounted for removal of 0.024 leaves per stolon/week. 

3.3.6 Node demography 

On average 17% of the nodes which appeared during the course of the 

experiment developed axillary buds, 17% developed branches, 14% 

developed roots and 2% developed inflorescences, but seasonal variation was 

significant for all variables (Table 3-5; P<0.001). A lower percentage of the 

nodes that appeared in winter developed axillary buds and branches 

compared to nodes appearing in spring. More roots developed on nodes that 

appeared in autumn and winter than on nodes that appeared in summer. Root 

development was also high from nodes that appeared in the first spring. 

Flowering occurred mainly on nodes that had appeared in spring and 

summer. 
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Table 3-5 Average percentage of nodes, formed within each season, which developed 
axillary buds, branches, roots or inflorescences. Different capital letters denote significant 
differences between seasons (P<0.05). Mean of NN data. 

Season 

Spr90 
Sum9091 
Aut91 
Win91 
Spr91 
Sum9192 
Aut92 
Win92 
Spr92 

Axillary bud 

31 A 
17 BC 
18 BC 
14 C 
22 B 
16 C 
16 BC 
7 D 

13 C 

Branch 

33 A 
15C 
1 0 D 
15 C 
29 AB 
22 B 
13 CD 
6 E 

13 CD 

Root 

19A 
8 D 

18 AB 
13 BC 
10 CD 
8 D 

19 AB 
15 ABC 
12 CD 

Inflorescence 

7.1 A 
2.7 B 
0.1 D 

0 D 
2.7 B 
3.4 B 
0.8 C 

0 D 
2.3 B 

Note: In seasons when rates of branch production were high, the axillary bud stage was 
sometimes missed. Therefore, branch % values may sometimes be > axillary bud % values. 

The average percentage of nodes developing roots was significandy 

higher under RG4.9 (17%) than under RG7.4 (13%). The percentage under 

CS4.9 (11%) was significandy lower than under the other two treatments 

(main effect of grazing treatment P<0.05). An interaction between season and 

grazing treatment was found only for flowering (P<0.05). Significandy fewer 

nodes which had appeared in Spr90 developed an inflorescence under RG7.4 

(3.6%) than under RG4.9 and CS4.9 (8.8 and 9.0%, respectively). No 

significant effects of N were detected, and there were no significant 

interactions between N and season. 

The distribution of the node position where a root, axillary bud, branch 

or inflorescence first appeared is presented in Fig. 3-4. The majority of 

axillary buds and roots appeared on nodes 4 to 6 (72 and 67%, respectively). 

Branches developed mainly on nodes 5 to 7 (71%). Thus, branches appeared 

on average on nodes of higher position than roots, i.e. nodes were older when 

branching occurred in comparison to rooting. 
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a) Axillary bud 
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Figure 3-4 Frequency distribution of node position where a) an axillary bud or b) a 
branch appeared, c) a node rooted or d) an inflorescence appeared. Node position 1 is the 
youngest node on the marked stolon. Mean of N N data. 
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Seasonal variation was significant for these four distributions of node 

positions (P<0.001; Fig. 3-4). The position of the nodes was higher when 

axillary buds and branches developed in summer and autumn. In the first 

year, the nodes were of a higher position when they formed roots in summer 

and autumn than in the second year. In the first winter a lower percentage of 

nodes 3 and younger rooted, while rooting occurred more on node 5 and 6. 

Inflorescences appeared mainly on nodes of position 3. However, in 

Sum9091 the majority of the inflorescences appeared on nodes of position 2 

or 1. The percentage of inflorescences appearing on the node of position 3 

was higher under RG7.4 than under the other grazing treatments (65% and 

42% under CS4.9 and RG4.9; P<0.01), while less appeared on older nodes 

under this grazing treatment. 

Main effects of N treatments were not significant for node position at 

which organs first appeared. Appearance of axillary buds on nodes 7 and 

higher was increased by N applications in Spr91: 15% with N and 6% without 

N (interaction N treatment and season P<0.05). 

3.3.7 Axillary buds 

The average rates with which axillary buds appeared, developed into 

branches or died, and their age at which further development or senescence 

occurred, are given in Table 3-6. The highest rates were recorded in the first 

season (Spr90), declining to minimum rates in the subsequent winter. In the 

second year, highest rates were recorded in summer, after which they declined 

again to low levels in winter (P<0.001). The rates and seasonal fluctuations 

did not differ between grazing or N treatments. 

3.3.8 Branches 

The average appearance and senescence rates of branches and 

concurrent age at senescence are given in Table 3-7. Seasonal fluctuations 

were similar to those described for axillary buds with minimum rates recorded 

in winter. When senescence rates were lower, concurrent ages were higher. 

An exception was Spr92, where branches of a comparatively high age died. 

Grazing and N treatments did not affect the branch appearance or 

senescence rates or age at senescence, and interactions with season were not 

significant. When branching rates were higher, a lower proportion appeared 
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on rooted nodes. The presence of a root at the node of origin on the parent 

stolon significandy affected the longevity of a branch by increasing the mean 

age at senescence from 32 to 50 days (P<0.05). 

Table 3-6 Average observed appearance rates of axillary buds, development rates of 
axillary buds into branches, and senescence rate of axillary buds (number per 
stolon/week) and corresponding age (days) when development or senescence occurred. 
Different capital letters denote significant difference between seasons (P<0.05). Mean of 
NN data. 

Season 

Spr90 
Sum9091 
Aut91 
Win91 
Spr91 
Sum9192 
Aut92 
Win92 

Appearance 
rate 

0.36 A 
0.20 B 
0.16 BCD 
0.08 E 
0.15 CD 
0.17 BC 
0.16 BCD 
0.06 E 

Development into branch 
rate age 

0.23 A 
0.12 B 
0.09 BC 
0.05 D 
0.10 BC 
0.11 B 
0.07 C 
0.04 D 

8.8 DE 
8.7 E 

10.1 CD 
15.9 AB 
11.0 C 
11.0 C 
12.9 B 
16.9 A 

Senescence 
rate 

0.06 A 
0.04 AB 
0.03 BC 
0.01 E 
0.01 D E 
0.02 CDE 
0.02 CD 
0.01 D E 

age 

10.7 E 
11.4 DE 
13.5 CD 
14.1 AB 
13.5 BC 
15.1 BC 
15.5 BC 
22.7 A 

Spr92 0.12 D 0.06 CD 15.2 A 0.03 C 16.9 B 

Table 3-7 Average branch appearance and senescence rates (number per stolon/week), 
and average age (days) when senescence occurred. Different capital letters denote 
significant difference between seasons (P<0.05). Mean of NN data. 

Season 

Spr90 
Sum9091 
Aut91 
Win91 
Spr91 
Sum9192 
Aut92 
Win92 
Spr92 

Appearance 
rate 

0.39 A 
0.23 B 
0.10 E 
0.06 F 
0.18 BC 
0.31 A 
0.16 CD 
0.06 F 
0.13 DE 

Senescence 
rate 

0.06 AB 
0.08 A 
0.03 D E 
0.01 EF 
0.03 D 
0.06 AB 
0.03 CD 
0.01 F 
0.05 BC 

age 

15.8 D 
27.3 C 
30.9 BC 
51.3 AB 
27.9 C 
30.2 BC 
29.3 BC 
40.7 ABC 
60.2 A 

3.3.9 Roots 

Seasonality and the effect of N application on the rates of root 

development and senescence are presented in Table 3-8. Root development 

rates were highest in spring and autumn. Highest root senescence rates were 
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found in spring. N significantly suppressed root development and root 

senescence rates in Aut91 and in spring. 

The appearance and senescence of roots on nodes with or without a 

branch was distinguished. Between 13 and 34% of the roots developing did 

so on nodes which were already bearing a branch. This proportion was higher 

when branch appearance rate was higher, but it was not related to root 

appearance rate. 

The presence of a branch on a node significandy increased the lifespan 

of roots: roots were on average 16 days old at the onset of senescence on 

non-branched nodes, whereas the average age of senescence of roots was 44 

days at branched nodes (P<0.01). Significant interactions between the 

presence of a branch and season on the appearance and senescence of roots 

were recorded. The seasonal variation in rates of appearance or senescence of 

roots was much less pronounced for branched nodes than for non-branched 

nodes. The appearance rate of roots showed a significant interaction between 

N treatment and presence of a branch (P<0.001). N reduced root 

development rate of branch-bearing nodes (0.091 branched nodes developing 

a root per stolon/week for no-N compared to 0.065 for plus-N) but there 

was no significant difference between N treatments for non-branched nodes 

(0.023 and 0.021 non-branched nodes developing a root per stolon/week for 

no-N and plus-N, respectively). 

The main effect of grazing treatment was significant for root senescence 

rate (P<0.05). Senescence rate was lower under CS4.9 compared to RG4.9 

(0.027 and 0.036 roots senescing per stolon/week, respectively), with RG7.4 

intermediate (0.031 roots senescing per stolon/week). There were no 

significant interactions between grazing treatment and season. 

3.3.10 Inflorescences 

Table 3-9 presents the average rates of inflorescence appearance, removal and 

senescence. Seasonal differences were significant (P<0.001). Spring and 

summer were the main seasons of flowering, and only a few inflorescences 

appeared in autumn. Rates of removal and senescence followed the same 

pattern. Grazing treatment and season interacted significantly (P<0.05). In 

Spr90 inflorescence appearance rate was lower under RG7.9 (0.029 

inflorescences appearing per stolon/week) than under CS4.9 and RG4.9 
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(0.072 and 0.071, respectively). No grazing treatment effects were detected in 

other seasons. N application significantly decreased the average age of an 

inflorescence when senescence occurred (from 18.0 days in no-N to 14.3 days 

in plus-N, P<0.05), but did not affect inflorescence appearance or senescence 

rates. 

Table 3-8 Average rooting rate and root senescence rate (number per stolon/ week), and 
average age (days) when senescence occurred. Different capital letters denote significant 
difference between seasons (P<0.05). Significance of N effects is given by * (P<0.05), ** 
(P<0.01) or *** (P<0.001). Mean of grazing treatments. 

Season 

Spr90 

Sum9091 

Aut91 

Win91 

Spr91 

Sum9192 

Aut92 

Win92 

Spr92 

N treatment 

no-N 

no-N 

no-N 
plus-N 

no-N 
plus-N 

no-N 
plus-N 

no-N 
plus-N 

no-N 
plus-N 

no-N 
plus-N 

no-N 
plus-N 

]) See footnote Table 3-2. 

Rooting 
rate 

0.20 A 

0.08 CD 

(0.11)1) 0.14 BC 
0.05 *** 

0.07 D 
0.08 

0.11 B 
0.08 

0.07 D 
0.07 

0.15 AB 
0.12 

0.05 D 
0.06 

0.16 A 
0.11 * 

Senescence 
rate 

0.10 A 

0.06 BC 

(0.02)i) o.oi E 

o ** 
0.03 DE 
0.02 

0.05 CD 
0.03* 

0.03 E 
0.03 

0.04 CDE 
0.03 

0.03 E 
0.02 

0.08 AB 
0.05* 

age 
10.5 D 

13.0 CD 

14.5 CD 

18.4 AB 

16.5 BCD 

21.4 ABC 

21.6 ABC 

34.0 A 

32.6 A 
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Table 3-9 Rates of inflorescence appearance, removal and senescence (number per 
stolon/week). Different capital letters denote significant difference between seasons 
(P<0.05). Mean of NN data. 

season 

Spr90 
Sum9091 
Aut91 
Win91 
Spr91 
Sum9192 
Aut92 
Win92 
Spr92 

Appearance 
rate 

0.058 A 
0.025 BC 
0.001 D E 

0 E 
0.014 C 
0.032 B 
0.005 D 

0 E 
0.020 BC 

Kerne 
rate 

0.029 A 
0.021 B 
0.001 D E 

0 E 
0.003 CD 
0.020 B 
0.004 CD 

0 E 
0.008 C 

>val 
age 

12.7 B 
16.2 A 

-
-
-

16.3 AB 
-
-

16.0 AB 

benesa 
rate 

0.004 A 
0.010 A 

0 B 
0 B 

0.004 AB 
0.006 A 

0 B 
0 B 

0.004 AB 

:nce 
age 

9.0 C 
20.6 AB 

-
-

12.5 BC 
24.4 A 

-
-
-

3.4 Discussion 

In this chapter a study of the dynamics of clover growth in lowland 

swards is presented, concentrating on seasonal changes and the effects of 

cattle grazing management and fertiliser N applicadon in autumn and winter. 

The aim was to establish reasons for the often observed negadve effects of 

ferdliser N use on clover persistence, and to determine possible interacdons 

with grazing management. Interactions between grazing management and N 

treatments would indicate possible management options to improve clover 

persistence in cattle-grazed, N fertilised swards. However, significant 

interactions did not occur in the present experiment. Several differences 

between grazing or N treatments were found and these are discussed below. 

The clover population and plant characteristics generally showed great 

variation at any point in time, perhaps reducing the occurrence of statistically 

significant effects of treatments. However, this variation also demonstrates 

the great phenotypic variability typically found in pastures, which is likely to 

benefit the persistence of clover in the spatially and temporally patchy 

environment of a grazed sward. 

3.4.1 Leaf demography 

In the present experiment rates of leaf appearance were similar to those 

presented by Chapman (1983). Grazing treatment did not influence rate of 

leaf appearance in either study. Only in the first autumn of this experiment 
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did N application have a significant effect on rate of leaf appearance. 

Apparently rate of leaf appearance of clover is a characteristic which is not 

likely to be influenced by grazing management or soil N, but more by 

environmental factors as temperature. Rate of leaf appearance is important 

for harvestable clover production and, since it implies development of new 

nodes, which are potential sites for branch development, for persistence. 

The ratio of leaves removed to leaves produced is a measure of 

utilisation of clover leaf growth. Values found during this experiment were 

between 36 and 58% (average 46%), being lower in autumn and winter than 

summer and spring. The lower utilisation in autumn and winter has been 

reported before (Chapman eta/., 1984; Chapman, 1986) and can be attributed 

to shorter petioles in winter (Brougham, 1962, 1966) and therefore the higher 

incidence of leaf surfaces being positioned below grazing height compared to 

other seasons. The average utilisation was lower in the present experiment 

than that recorded in earlier experiments (40-66% in Chapman et a/., 1984; 

61% in Chapman, 1986). This is likely to be due to a higher surplus pasture 

growth in at least part of the year in the present experiment, in comparison to 

the earlier experiments. While in the experiment of Chapman a set number of 

breeding cows was used (approximately 2.5 cows/ha; Chapman, 1986), in the 

present experiment the one year old bulls were taken from the trial in 

summer. Thus, only calves were left, so that the stocking rate was less than 

300 kg metabolic liveweight/ha during a large part of summer and autumn 

(Fig. 2-2). Also, the annual herbage DM accumulation was higher in the 

present experiment (16-17 tonnes/ha/year, in comparison to 11-12 

tonnes/ha/year for the earlier trials; Lambert eta/., 1983). Further, removal of 

leaves after the onset of senescence was not determined in the present 

experiment, so utilisation may be underestimated. The average leaf age when 

defoliated was 23 days in the present experiment (from Table 3-4). Inclusion 

of removal of senescing leaves would likely have increased this average age. 

This could explain the lower average age in the present experiment compared 

to the average age of 27 days recorded by Chapman (1986). 

Under CS, leaf removal severity was on average lower and the average 

number of leaves per stolon was higher than under RG. This was also found 

under sheep grazing (Chapman, 1986). Under RG, a higher stocking rate 

resulted in a similar or sometimes more severe leaf removal per event and a 
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similar or sometimes lower frequency of leaf removal. It is possible that the 

removal of more leaves per event results in lower frequency of leaf removal, 

because the first new leaves to appear after defoliation have shorter petioles 

than those appearing subsequently (Brougham, 1966; Culvenor et al., 1989a). 

Petioles elongate until the leaf is in the top of the canopy (Thompson, 1995). 

Just after a grazing event, the canopy is obviously shorter than at the time of 

the next grazing. Thus, the first leaves to appear in a regrowth period are 

likely to be below the grazing height of the cattle during the next grazing. In a 

continuous stocking system, with more frequent defoliation, the canopy 

height is more stable. Thus, under continuous stocking, defoliation frequency 

and severity are unlikely to trade off in the same way as under intermittent 

defoliation. The effect of increasing grazing pressure under continuous 

grazing (by increasing stocking density) could therefore be to increase both the 

frequency and severity of defoliation as shown by Curll and Wilkins (1982), 

leading to different equilibrium states of leaf size and turnover. In the present 

experiment only one stocking rate was used in the continuous stocking 

system, so no such comparison can be made for cattle. 

Even though differences in leaf removal frequency and severity 

occurred, the leaf removal rate measured as number of leaves per 

stolon/week removed did not differ between the grazing treatments. Since 

leaf appearance and senescence rates did not differ either, utilisation was also 

similar for the grazing treatments. With the similar growing point densities 

(Chapter 2), leaf appearance and senescence rates, the lack of effect of grazing 

treatment on clover DM accumulation, as measured with exclosure cages, can 

be explained (Chapter 2). This is an example of the great phenotypic plasticity 

of clover (e.g. Brougham et al., 1978; Chapman and Lemaire, 1993) leading to 

relatively similar levels of primary production under apparently quite different 

management regimes. 

When comparing the age of plant parts when senescence or removal 

occurred, it is important to remember that the interval between 

measurements differed between seasons. This will have had an effect on the 

age, since the length of the interval determines the lowest value possible. The 

influence of this would have been greater when senescence or removal rates 

were higher. Thus, the lower ages found in the first spring and summer (with 

weekly measurements) in comparison with spring and summer of the second 
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year (with intervals of 10 or 11 days) could be partly due to this. However, the 

general seasonal trend can be assumed to be genuine. The average age of the 

leaves at the onset of senescence was below the average rotation length in 

Win91 and from Sum9192 onwards. This implies that under RG the first 

leaves that appeared after a grazing died before a chance of removal during 

the following grazing had occurred. If redistribution of nutrients was efficient, 

the senescence of leaves, petioles and stolons could have benefited the overall 

nutrient economy of clover plants. For example, in lucerne around 80% of 

the N in shaded and senescing leaves is recovered by the rest of the plant 

(Lemaire and Culleton, 1989; Durand et ai, 1991; Lemaire et a/., 1991); in 

perennial ryegrass this figure is 30-50% (Hunt, 1983). The remaining nutrients 

in decaying material will have contributed to the soil litter pool and nutrient 

cycling. The life span of leaves also has implications for the herbage 

accumulation measurements. At nearly all harvests for herbage measurements 

(Chapter 2), the regrowth period was longer than the average age of clover 

leaves at the onset of senescence. Thus, gross clover growth was probably 

underestimated. The same would apply for grasses if their leaf life spans were 

similar to white clover. However, Chapman et a/. (1984) measured a longer life 

span for clover leaves than grass leaves in winter, but a shorter life span in 

spring/early summer. Thus, the level of underestimation is likely to differ 

between clover and grass. 

An interesting finding was the long life span of petioles after removal of 

leaflets. On average, 1.8 petioles were present per stolon for 15 days before 

the onset of senescence. To establish the importance of photosynthesis of the 

petioles for the whole plant, the photosynthesis/respiration ratio of petioles 

should be measured along with laminae. The contribution of petioles to the 

carbon economy of clover populations is often overlooked, but may be 

substantial; for example, Korte (1984) recorded that petioles contributed 16% 

of the total photosynthesis of clover in hard-grazed swards. 

3.4.2 Stolon elongation 

Stolon elongation rates were comparable to those recorded under 

rotational cattle grazing in hill country (Chapman, 1983). However, greater 

stolon elongation rates recorded by Chapman (1983) under rotational 

compared to continuous stocking with sheep were not observed in this study 
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with cattle. Stolon elongation rate increased with fertiliser N application. 

Increased stolon elongation increases the spreading ability of clover and 

increases the ability to escape unfavourable conditions and explore the soil 

surface. Since N had generally no effect on rate of leaf appearance greater 

stolon elongation must have been primarily due to increased internode length. 

This is in accordance with results of Hoglund and Williams (1984) under 

controlled conditions. Shading at the node increases internode length 

(Thompson, 1993, 1995). Obscuring this photoperceptive site caused a 

redirection of resources from branching into stolon elongation and petiole 

elongation (Thompson, 1995). Robin eta/. (1992) showed additional far-red 

light (thus lowering the red/far-red ratio, as with shading), promoted stolon 

and petiole elongation, and redirected photosynthates to petioles and leaves, 

at the expense of stolon (including branches) and root material. In the present 

experiment, fertiliser N application resulted in greater herbage mass (Chapter 

2); hence shading at the nodes would have been greater, in comparison to no-

N. 

3.4.3 Node demography 

In this study, the nodes 4 to 7 were the most important for development 

of axillary buds, branches and roots. Newton et al. (1992) recorded the 

maximum proportions of nodes with "incipient" branches (i.e. buds that had 

made visible growth at sampling, but had no visible stolon) on node 4 to 8. In 

their experiment 21.5% of the nodes had developed branches at sampling, a 

slightly higher percentage than the 17% of the current experiment. On 

average, branching and rooting frequency was considerably higher in the 

experiments of Beinhart (1963; 28-79%) and Chapman (1983; 10-43%) 

compared to the frequency measured here. Great seasonal fluctuations were 

observed in all experiments. 

The important limiting climatic factors are temperature, light and soil 

moisture. Soil moisture was unlikely to have limited branching and rooting in 

winter during the present experiment; it is more likely that lower temperatures 

or light levels caused decreased branching and rooting of nodes in this season. 

In summer, a lower soil moisture status and a higher temperature appeared to 

inhibit rooting of nodes to a greater extent than branching of nodes. In the 

second summer, when below average temperatures were experienced, 
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branching of nodes was less inhibited. 

Branching and rooting rates were positively correlated, similar to earlier 

findings (Chapman, 1983), but the correlation coefficient was low. The 

presence of a root on a node was not likely to induce a higher branching 

probability, nor did the presence of a branch enhance root development at 

the parental node. The presence of a root is not a prerequisite for the 

development of a branch, or vice versa. A significant finding of the present 

experiment was the benefit to both branch and root survival when they 

occurred on the same parental node: the life span of a branch was increased 

when the parental node had rooted, and the life span of a root was increased 

when the parental node had branched. Thus not only did the branch benefit 

from the presence of the root, as was shown previously (Chapman, 1983; for 

example through supply of water and nutrients (Chapman and Hay, 1993; 

Kemball and Marshall, 1994)), but also the root was supported by the branch 

(through supply of photosynthates, as is now shown conclusively by 

Chapman et a/., 1992b, c). Obviously, the success rate of establishment of new 

plant units when the parental stolon dies depends on the combination of 

branching and rooting. With high rates for both variables, the chance that 

both occur at the same node increases. This would increase the chance for 

successful establishment of young branches, which, following severance of 

the parental stolon, are the new generation clover plants. 

One aspect determining the number of sites where branches can develop 

is flowering. Once a node bears an inflorescence, this site is lost for branch 

development. In the present experiment only a small percentage of nodes 

developed inflorescences. These were often removed through grazing or 

senesced within 9 to 24 days of their appearance. Thomas (1987c) refers to an 

experiment where it took white clover plants with initiated inflorescences a 

minimum of 17 days to blossom after being transferred to a controlled 

environment. Within 12 days after pollination about 50% of the seed is viable 

(Thomas, 1987c). Hence, the results indicate that reproduction of clover 

through seed setting played a very minor role in the present experiment, 

similar to earlier findings in hill country (Chapman, 1983, 1987). 

An important result of this experiment was the consistent and significant 

effects of grazing and N treatments on root development and longevity. With 

the same stocking rate, the percentage of nodes developing roots was lower 
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under continuous stocking than under rotational grazing. Under rotational 

grazing the percentage of nodes developing roots was lower with a higher 

stocking rate. During regrowth periods, clover may have invested relatively 

more of its assimilates in the main and existing branch apices to maintain leaf 

area in the top of the canopy (Dennis and Woledge, 1982; Fisher and Wilman, 

1995), thus reducing assimilate supply for initiation or maintenance of nodal 

roots. This reduction will be greater when stolons are defoliated more often 

or more severe. The same would apply to the clover plants in the swards 

receiving fertiliser N. Fertiliser N application suppressed rates of root 

development on nodes in spring, particularly on branch bearing nodes. In 

spring herbage accumulation rates were high (Chapter 2). Also in this 

situation clover may have invested more in leaf and petiole tissue on existing 

apices. 

Since the relative senescence rate of roots was similar for no-N and plus-

N, the number of rooted nodes per main stolon must have been lower in the 

N fertilised swards. This was confirmed by the population census data 

(Chapter 4). Decreased rooting will make clover more vulnerable to stresses 

such as drought, and lower its ability to compete for nutrients. In addition to 

the direct negative effect on N fixation of fertiliser N application, decreased 

rooting can lower N fixation per plant as well in the longer run through a 

decrease in number of potential sites for nodule establishment. Lower 

frequency of root development will also result in fewer branches that are 

attached to a root-bearing node. Since the presence of a root on the parental 

node increased the longevity of branches, N application and increased leaf 

removal severity or frequency could decrease longevity of a proportion of the 

branches. Since the proportion of branches that had a root on the parental 

node was low, this effect was not detectable in the present experiment. More 

research is required in which the effects of leaf removal and N application on 

frequency of root development on nodes and on branch development and 

survival are established. This work can probably be aimed at the spring and 

subsequent summer period. Spring is a crucial time in the establishment of 

clover, a period in which plant break up occurs due to high turnover rates of 

plant material, and the clover plant population consists of many small 

individuals (see Chapter 4). At this time, competition from fast-growing 

grasses for light and nutrients is strong. Extra stress could then result in a 
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lower survival rate of clover plants. For example, a spring drought resulted in 

a collapse of clover in Canterbury (Vartha and Hoglund, 1983; Hoglund, 

1985; Brock, 1988). This happened under rotational sheep grazing; in 

continuously stocked swards the clover recovered rapidly. The dense sward 

would have reduced direct solar radiation to the soil surface and hence heat 

stress to the plants (Brock, 1988). Subsequent work confirmed the 

importance of sward density for drought survival of white clover (Brock and 

Kim, 1994). 

The environment of clover nodes is crucial for the persistence of the 

species in grazed swards. Many factors influence this environment, and 

management should aim to develop sufficiently dense swards to protect the 

nodes from heat or water stress, and to sustain the sward height within a 

range where sufficient leaves are maintained for photosynthate supply and 

where nodes receive sufficient light to enable branch development and 

establishment. These requirements are equally valid for a system with or 

without the use of fertiliser N. However, they are perhaps harder to meet 

where N is used since the growth potential of the pasture is increased with 

added N, and management decisions must be both timely and accurate in 

order to maintain sward height and density within desired ranges for the 

clover population. 

Rooting was inhibited under CS4.9 and RG7.4 compared to RG4.9. 

Branching was not affected by grazing treatment. From the literature it is 

derived that defoliation decreases the allocation of photosynthates to stolon 

and root material. With the defoliation regimes of the present experiment, it 

appeared that root development was more affected than branch development. 

Indirecdy this can still have its implications for branch development when 

conditions are adverse, since the presence of a root on the parental node 

increases the longevity of a branch, and hence increases the chance of a 

successful establishment of a branch. 
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4. POPULATION AND PLANT STRUCTURE 

4.1 Introduction 
White clover plays an important role in supplying nitrogen for the 

growth of New Zealand pastures. However, N deficiency is widespread in 

New Zealand (Field and Ball, 1978; Ball and Field, 1982) and in relatively 

intensive production systems fertiliser N is used to boost herbage production. 

With continued use of fertiliser N, clover content in the sward generally 

decreases (see Chapter 1). In this Chapter, the effects of fertiliser N on white 

clover population and plant structure are explored as a basis for increasing 

our understanding of the processes involved in the decrease of clover when 

fertiliser N is used on mixed grass/clover pastures. This information is 

particularly important for cattle-grazed pastures, since fertiliser N is mainly 

used in intensive productions systems, such as dairying. 

Populations of higher plant species are usually comprised of many small 

plants and a fewer number of larger plants (Harper, 1977). The small plants 

within the population are often more vulnerable to adverse conditions for 

growth and survival since they do not have the same capacity for resource 

acquisition and storage that large plants possess, nor the same ability to 

integrate the effects of localised patchiness in resource availability by 

transferring resources within the plant (Harper, 1977; Turkington and Klein, 

1991). Therefore, when exploring the possible mechanisms for clover 

reduction in N fertilised, mixed swards, it is important to consider the effects 

of treatments on the structural organisation of clover plants and populations, 

and how this may affect the sward composition. 

In the 1980's some important research on the dynamics of clover stolons 

and plants in sheep-grazed swards was conducted (e.g. Brock et al., 1988; Hay 

et al., 1988). This work confirmed that the clover population in mixed swards 

consists of many small and a few large individuals. Furthermore, Brock et al. 

(1988) established that the branching structure of plants shows strong 

seasonal variation, with plant break-up occurring principally in spring. Thus 

the size distribution of individuals within the population is particularly skewed 

in spring, a time when the survival of small clover plants in the face of intense 

competition from associated grasses could be problematic. 
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Similar detailed information on the morphology of clover plants and 

populations under catde grazing was not available at the onset of this 

experiment. Furthermore, there was virtually no information available on the 

effects of fertiliser N on clover plant and population structure in grazed 

swards. Previous work includes the observations that fertiliser N decreased 

the secondary stolon/primary stolon weight ratio in potted clover plants 

(Hoglund and Williams, 1984), and decreased growing point density and 

stolon length and weight per unit area in sheep-grazed grass/clover swards 

(Caradus et ai, 1993). However, there is no systematic basis for predicting the 

effects of fertiliser N on clover plant and population measures in realistic, 

grazed situations. In Chapter 3 it has been shown that fertiliser N applied in 

autumn and winter did not decrease branching, but decreased rooting of 

nodes in the following spring. Thus the establishment and survival of clover 

branches could be limited when fertiliser N is applied, and this could have 

important consequences for population survival in this clonally growing 

species. 

This chapter describes a study of the effects of fertiliser N and cattle 

grazing management on plant morphology, and its dynamics, based on a 

census sampling approach using removal of intact turves from the sward to 

extract whole plants. Season and treatment effects are determined for whole 

plants and for individual stolon classes. The concept underlying this work is 

that knowledge of the size of individual ramets increases the understanding of 

their establishment and fate within the sward, and hence of the response of 

the whole population to management factors or environmental conditions. 

Preliminary results from this study were published by Pinxterhuis et al. (1993). 

4.2 Material and methods 

4.2.1 Treatments 

Three grazing treatments were applied: continuous stocking with 4.9 

bulls/ha (CS4.9), and rotational grazing with either 4.9 bulls/ha (RG4.9) or 

7.4 bulls/ha (RG7.4). Two self-contained replicate farmlets were assigned to 

each grazing treatment. N treatments consisted of no N application (no-N) or 

application of 50 kg N /ha as urea in autumn and again in winter (plus-N). A 

detailed description of the treatments and swards is given in Chapter 2. 
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4.2.2 The quadrat size 

A pilot study was undertaken in early September 1990 to determine the 

optimal quadrat size for sampling the populations in the current experiment. 

In selecting the quadrat size, the goal was to be able to extract sufficient 

'uncut' plants (where no plant part has been severed by the cutting edge of 

the quadrat as it is pushed into the soil) from each turf to give unbiased 

estimates of plant size, while keeping the turf size manageable. In general, the 

average plant size of uncut plants in the quadrat initially increases with 

increasing quadrat size after which a plateau is reached. This represents the 

'realistic' average plant size of the sward sampled. 

Clover plants were recovered from the sward using a steel quadrat (5 cm 

deep) and a spade to remove the turves. These were washed and dissected 

into individual clover plants and other plant material (Brock et a/., 1988). A 

clover plant is defined as the unit of stolon (i.e. stem), leaf and root material 

which is physically attached to one another: a physically-distinct individual 

(Sackville-Hamilton, 1989). Dissection of the turf was done carefully, to avoid 

breaking stolons. 

Four replicate turves each of the sizes 10x10, 15x15, 20x20, 30x30 and 

40x40 cm, were randomly taken from pastures under RG4.9, which was 

expected to have the largest plants of all the treatments in the experiment. 

The number of cut (by the quadrat edge) and uncut plants was recorded, as 

well as total plant, leaf and stolon dry weights (DW), and the data subjected to 

analysis of variance. The leaf and total plant DW was not significantly 

different between the five quadrat sizes. The stolon DW per uncut plant was 

significandy lower in the 10x10 cm quadrat than in the 40x40 cm quadrat. 

The number of uncut plants per turf increased significandy with quadrat size: 

on average 2.5, 21.8, 38.0, 62.3 and 111.8 uncut plants were found per turf of 

the five quadrat sizes in increasing order, respectively. From earlier work 

(Brock et al., 1988, Hay et a/., 1988) it was determined that a subsample of at 

least 20 plants was needed to obtain information on the 4th order plants, the 

most complex plants usually found in NZ swards and comprising 5-10% of 

the population in sheep-grazed swards. In the September 1990 pilot study, a 

quadrat size of 15x15 cm yielded enough uncut plants for this purpose. 

However, plants are smaller in spring than in other periods of the year (Brock 
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eta/., 1988; Hay eta/., 1988). This means that the number of uncut plants per 

turf recorded in this pilot study was probably at a maximum. Thus to increase 

the probability of obtaining at least 20 uncut plants per quadrat in other 

seasons, a larger quadrat size was considered necessary. The 40x40 cm 

quadrat was difficult to handle without breaking turves and thus plants. This 

was not a problem with the 30x30 cm quadrat size. For these reasons, a 

quadrat size of 30x30 cm was selected for the census sampling used in this 

study. 

4.2.3 The sampling of plants 

Two turves per treatment were taken from swards just prior to grazing. 

Turf sampling sites were selected randomly, but bare areas and visible dung 

patches were excluded. Turves were taken every four weeks between 

September 1990 and April 1991 (before N treatments were applied). 

Thereafter turves were taken every 7 weeks in winter when growth rates were 

low, and every 5 weeks in spring, summer and autumn, until December 1992. 

Clover plants were retrieved from the turves as described for the pilot 

study (section 4.2.2). The plants were divided into cut and uncut plants, and 

the number of plants in both groups was recorded. The cut clover plants (cut 

by the quadrat edge) were disregarded for further dissections. From the uncut 

plants, a random subsample of 20 (or all the uncut plants if the total number 

was equal to or less than 20) was taken for further dissection. The remaining 

uncut plants and the cut plants were dried in a forced-draft oven at 85 °C for 

at least 24 hours and the total dry weight (DW) of both plant groups was 

determined. 

4.2.4 Measurements on subsampled white clover plants 

The subsampled uncut plants from a single turf were grouped according 

to their degree of stolon branching (Brock et a/., 1988). First, second, third, 

fourth and fifth plant orders categories were separated. A higher order plant 

was found only a few times, and 34 fifth order plants were found over the 

entire experimental period. In all measurements were collected on 3111 first 

order plants, 3971 second order plants, 1529 third order plants and 270 

fourth order plants during the study. For each of these plants, the number of 

stolons (i.e. number of branches) and their cumulative length, and the number 
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of growing points, nodes, leaves, petioles, rooted nodes and inflorescences 

were recorded for each stolon order. Each plant was then dissected into 

stolon, leaf, root and inflorescence material. Within each subsample, stolon 

and leaf material from each stolon order was bulked for each plant order. All 

root and inflorescence material of the same plant order was bulked within 

each subsample. Thus for example, all second order plants of one subsample 

were dissected into primary stolon, primary leaf, secondary stolon, secondary 

leaf, root and inflorescence material. Primary leaves are produced by the 

growing point of the primary stolon, secondary leaves by the growing points 

of secondary stolons (Beinhart, 1963; Fig. 4-1). All plant material was dried in 

a forced draft oven at 85°C for at least 24 hours and weighed thereafter. 

3rd order plant 

1st order plant 

Figure 4-1 Distinguished parts of a white clover plant at dissection: PS = primary stolon, 
PL = leaf from primary stolon, SS = secondary stolon, SL = leaf from secondary stolon, 
TS — tertiary stolon, TL = leaf from tertiary stolon, R — root (not shown inflorescence 
material). 
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4.2.5 Separating the effects of defoliation, treading and excreta return 

The process of grazing includes several dimensions: defoliation, treading, 

excreta return. The fragmentation of plants by the treading action of cattle 

hoofs can be expected, while the return of nutrients in excreta could also 

affect plant parameters. To separate the effects of defoliation from the effects 

of treading and return of excreta on the size of plants, frames of 2x1 m, 

allowing catde to defoliate the enclosed area, but preventing treading and 

return of excreta were placed on the swards in August 1991. In both 

replicates of the grazing treatments, a frame was placed on both the plus-N 

and no-N areas in either of two paddocks. However, under RG4.9 the bulls 

moved the frames. Thus only results for CS4.9 and RG7.4, a total of 16 

frames, could be obtained. 

On 30 November 1992 one turf was sampled from each of the frames. 

At this date the areas underneath the frames had been free from treading and 

excreta return for 15 months. Plants were extracted from turves, subsampled, 

and measured using the same procedures described above. 

4.2.6 Treatment of data 

As the chance of a plant being cut by the quadrat edge is greater for 

larger plants, the sampling method may be biased against larger plants. Even 

though an optimal quadrat size was selected (section 4.2.2), all data were 

weighted using a program developed for this purpose (Brock et al, 1988). The 

program calculates a weighting factor for a plant: w — 1 / (1 -p), with^) being 

the probability that a plant of that particular size had been cut and excluded 

from the sample while its centre fell within the quadrat. The p of a particular 

plant was calculated from the length and width of the plant. To estimate the 

length and the width from the data collected, four "stolon sizes" were 

calculated, PS (length of the primary stolon), SS (twice the average length of 

the secondary stolons or the length of the secondary stolon if only one 

secondary stolon was present), TS and QS (both calculated as for SS, but 

using the tertiary and quaternary stolons, respectively). The largest of these 

values was considered to be the plant length, the next largest the plant width. 

All variables were analysed by plant order. The averages per plant were 

calculated per subsample and plant order for all characteristics. The sum of 
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the weighting factors of the plants which made up this average was used as a 

weighting factor in the analysis, thus also taking into account the number of 

plants making up the mean. 

4.2.7 Statistical analysis 

Each plant order was separately subjected to analysis of variance, using 

a split plot in time (Snedecor and Cochran, 1980; Steel and Torrie, 1980). The 

GLM procedure (SAS/STAT, Anonymous, 1990) was used, using the 

appropriate error strata to test effects of treatments or sampling date. It was 

assumed correlation between sampling dates would be small enough to 

include sampling date as a main effect in the analysis. For analysis of the main 

effect of the grazing treatments, and the differences between year of 

Table 4-1 Dates of turf sampling and division in years for the statistical analyses of the 
main effects of grazing treatments and differences between years of sampling. * = these 
samplings were not used in the analyses of the main effect of grazing treatments and year 
differences. 

Sampling Date Year 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

17 Sep 1990 
22 Oct 1990 
19 Nov 1990 
17 Dec 1990 
14Janl991 
11 Feb 1991 
11 Mar 1991 
08 Apr 1991 
27 May 1991 
15Jul 1991 
28 Aug 1991 
07 Oct 1991 
13 Nov 1991 
16 Dec 1991 
20 Jan 1992 
24 Feb 1992 
09 Apr 1992 
25 May 1992 
15 Jul 1992 
31 Aug 1992 
05 Oct 1992 
04 Nov 1992 
07 Dec 1992 

* 

* 
* 
* 

2 
2 
2 
2 
2 
2 
2 
2 
2 
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sampling, a model with year and grazing treatments as factors was used. This 

way, the data was balanced for seasonal effects. For this analysis, the year 

factor was assigned as shown in Table 4-1. For analysis of main effects of 

sampling dates, year and grazing treatments, and their interactions, NN-data 

(no-N data only, see Chapter 2) were used. PN-data were used to test main 

effects of N treatment and its interactions with grazing treatment or sampling 

date. For analysis of effects of treading and excreta return, the data from the 

turves taken underneath the frames and from the turves taken one week later 

in the corresponding treatments for the repeated samplings were used. 

Data were transformed where necessary for homogeneity of variances. 

The presented values are the least squares means and their standard errors 

(LSMEANS option of GLM procedure) of the full model, after back 

transformation where applicable. Where differences were significant, the 

PDIFF option of the LSMEANS option was used when needed, to establish 

where the differences occurred. 

4.3 Results 

4.3.1 Distribution among plant orders 

The distribution of clover plants among different plant orders is shown 

in Fig. 4-2. Second order plants dominated the population at most sampling 

dates and maintained on average 46% of the population. For this plant order, 

the main effect of sampling date was not significant. For 1st, 3rd and 4th 

plant orders, this effect was highly significant (P<0.001): a strong seasonal 

pattern in their distribution occurred. The percentage of 1st order plants 

peaked in spring, while the percentages of 3rd (especially) and 4th order 

plants were lowest in spring and peaked in early autumn. 

Effects of grazing management or N treatments for the distribution of 

plants among plant orders, nor interactions between grazing or N treatments 

and sampling date were found. 
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Figure 4-2 Seasonal variation of the distribution of clover plants among plant orders, 
expressed as percentage of the total plant population. Mean (+SE) of NN-data. 

4.3.2 Total plant dry weight and partitioning of dry matter 

For 1 st, 2nd and 3rd plant orders the average total DW per plant varied 

widely in the experimental period (Fig. 4-3). The main effect of sampling date 

was highly significant (P<0.001). The data set for 4th order plants was too 

unbalanced to estimate least squares means of each sampling date or of 

grazing or N treatments. The difference between years was significant for 1st 

(P<0.001), 2nd (P<0.01), and 3rd order plants (P<0.05), with the average 

DW being higher in the first year (30, 82 and 168 mg for year 1 and 23, 71 

and 146 mg for year 2, respectively). In general total plant DW was higher in 

early summer and decreased in late summer. The decrease in January 1991 

was very large for 1st and 2nd order plants, nearly halving the total plant DW. 

The partitioning of plant DW to stolon, leaf and root material is shown 

in Fig. 4-4. Again seasonality was strong, with the main effect of sampling 

date being significant at P<0.001. The main effect of year was not significant 

for the partitioning of DW; hence the decrease in average total plant DW in 

the second year was evenly distributed over stolon, leaf and root material. The 

allocation of DW was very similar for 1st, 2nd and 3rd order plants, with 

stolon>leaf>root. The percentage allocated to leaf material was higher in late 
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Figure 4-3 Seasonal variation of total plant dry weight (mg) per plant order and effect of 
N treatment on total dry weight of 1st order plants. Mean (+SE) of NN-data; for 1st 
order plants plus-N is also shown. 
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Figure 4-4 Seasonal variation of distribution of plant DW to stolon, leaf and root 
components per plant order. Mean (±SE) of NN-data. 
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spring/early summer (40%) and lower in late autumn/early winter (20%) for 

all plant orders. The partitioning of D W to stolon material showed the 

reverse and fluctuated between 40 and 55%. The percentage of D W allocated 

to roots was more stable, fluctuating between 15 and 25%. In winter the 

percentage allocated to roots was higher, in summer lower. 

Table 4-2 Grazing treatment effects on a) average total plant DW (mg) and leaf, stolon 
and root DW per plant for each plant order, and biomass distribution (as % of total plant 
DW) to leaf, stolon and root per plant order and b) per stolon order within each plant 
order (primary stolon being the main stolon, secondary stolon originates from the primary 
stolon, etc.). Data from December 1990 to December 1992. The significance of 
differences between the grazing treatments (grazing system: CS4.9 versus RG4.9, or 
stocking rate within RG: RG4.9 versus RG7.4) is given by ** (P<0.01), * (P<0.05), and ns 
(not significant). 

a) Total DW (mg/plant) and stolon, leaf and root DW (mg/plant and % of total DW) 

Plant order 

1st CS4.9 
RG4.9 
RG7.4 

grazing system 
stocking rate 

2nd CS4.9 
RG4.9 
RG7.4 

grazing system 
stocking rate 

3rd CS4.9 
RG4.9 
RG7.4 

grazing system 
stocking rate 

4th CS4.9 
RG4.9 
RG7.4 

grazing system 
stocking rate 

Total 
DW 

22.2 
31.2 
26.8 
ns 
ns 

66.2 
90.6 
76.5 

* 
ns 

134.3 
187.1 
161.5 

* 
ns 

253.9 
388.8 
340.7 

ns 
ns 

Stolon 
DW 

11.0 
14.8 
11.4 
ns 
ns 

34.2 
43.5 
34.7 
ns 
ns 

72.7 
91.2 
74.3 
ns 
ns 

138.6 
199.8 
167.5 

ns 
ns 

% 

50.7 
48.4 
43.4 
ns 
ns 

52.4 
48.7 
45.8 
ns 
ns 

55.0 
50.0 
46.6 
ns 
ns 

55.5 
52.8 
49.9 
ns 
ns 

Leaf 
DW 

5.2 
9.3 
9.0 
* 
ns 

15.8 
27.3 
24.1 
** 
ns 

27.5 
51.1 
48.8 
** 
ns 

55.2 
93.4 
92.1 
ns 
ns 

% 

24.9 
31.3 
34.0 

* 
ns 

24.9 
31.2 
32.5 
** 
ns 

22.1 
28.8 
31.4 

* 
ns 

23.3 
25.7 
28.3 
ns 
ns 

Root 
DW 

5.2 
6.2 
5.9 
ns 
ns 

14.4 
17.4 
16.0 
ns 
ns 

29.5 
35.7 
33.5 
ns 
ns 

51.6 
78.3 
69.6 
ns 
ns 

% 

24.4 
20.2 
22.5 
ns 
ns 

22.6 
19.7 
21.5 
ns 
ns 

22.6 
20.5 
21.5 
ns 
ns 

21.1 
21.0 
21.6 
ns 
ns 
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Table 4-2 Continued. 

b) Percentage of total DW distributed to leaf, stolon and root per stolon order within 
plant order 

Primary Secondary Tertiary Quaternary 
Plant order Stolon Leaf Stolon Leaf Stolon Leaf Stolon Leaf 

1st CS4.9 50.7 24.9 
RG4.9 48.4 31.3 
RG7.4 43.4 34.0 

grazing system ns 
stocking rate ns_ 

2nd CS4.9 39.6 11.0 12.8 13.9 
RG4.9 37.6 16.0 11.0 15.2 
RG7.4 34.4 15.7 11.5 16.8 

grazing system ns ** ns ns 
stocking rate ns ns ns ns 

3rd CS4.9 24.6 2.7 25.8 12.6 4.6 6.8 
RG4.9 21.1 3.3 23.8 17.3 5.1 8.2 
RG7.4 19.1 3.2 22.8 19.0 4.7 9.3 

grazing system ns ns * ** ns ns 
stocking rate ns ns ns ns ns ns 

4th CS4.9 13.8 0.4 25.0 5.4 15.3 12.6 1.4 4.8 
RG4.9 14.4 0.2 20.9 6.9 15.2 13.7 2.2 4.8 
RG7.4 9.9 0.4 17.2 4.7 19.6 16.4 3.2 6.9 

grazing system ns ns * ns ns ns ns ns 
stocking rate ns ns * ns ns ns ns ns 

Grazing treatment affected the total plant DW and its partitioning (Table 

4-2). There were no interactions between grazing treatment and sampling 

date. Plants within plant orders had on average a lower total DW under CS4.9 

than under RG4.9, especially due to a lower leaf DW. The percentage of DW 

allocated to leaf was lower under CS4.9 than RG4.9. 

The main N effect was not significant for total plant DW or the 

allocation of DW to the various plant parts. A few interactions occurred for 

1st order plants between sampling date and N treatments. In winter following 

the first N application, the mean total DW of 1 st order plants was lower for 

plus-N (Fig. 4-3a). In the following summer the mean DW was higher. 

Effects on 2nd and 3rd order plants were not significant. In the second year, 

the only difference found was a higher DW for plus-N, again for 1st order 

plants only, in spring/early summer (October and December 1992). The 
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increased DW was evenly distributed over the plant parts. A significant effect 

of fertiliser N on DW allocation was found for only one sampling date: for 

1st order plants the percentage allocated to leaves was lower for no-N than 

for plus-N in December 1990 (32.8 and 44.5%, respectively; P<0.05 for the 

interaction between sampling date and N treatment). 

The average biomass allocation within the plants to the different stolon 

orders is presented in Table 4-2b. Within each plant order, more biomass was 

allocated to stolon tissue than leaf tissue in older stolon orders, rather than 

younger stolon orders. For example, the primary stolon of 4th order plants, 

which is the oldest plant part, consisted almost solely of stolon tissue, while 

the quaternary stolon (the youngest stolon) had more biomass allocated to 

leaf than to stolon. The main grazing treatment effect was significant for 

several variables, as is shown in Table 4-2b. A lower percentage of DW was 

allocated to leaf under continuous grazing on primary stolon of 1st and 2nd 

order plants and secondary stolon of 3rd order plants. On the youngest 

branches the difference was less. The only significant effect of stocking rate 

under rotational grazing was the lower percentage of DW allocated to 

secondary stolon material of 4th order plants under the higher stocking rate. 

Biomass allocation to the different stolon orders for each plant order 

also varied widely between the sampling dates. This is shown for 3rd order 

plants in Fig. 4-5. Increase in leaf DW in spring was apparent for all three 

stolon orders. Some second and third order interactions occurred between 

grazing treatment, N treatment and sampling date for biomass allocation 

within stolon orders. However, these were generally one-off differences that 

did not occur in both years, nor did they occur for several stolon or plant 

orders at the same time. 

4.3.3 Morphological characteristics 

Seasonal variation and interactions with N applications of plant 

structural characteristics are presented in Fig. 4-6 and Fig. 4-7, for 1st and 3rd 

order plants, respectively. The main effect of sampling date was highly 

significant for these plant orders and for 2nd order plants (P<0.001), but was 

not significant for 4th order plants. The various parameters showed similar 

seasonal trends. Highest values for most variables were found in summer, 

followed by a decrease. Lowest values were found in spring. For 2nd order 
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Figure 4-5 Seasonal variation of the distribution of plant dry weight (mg) to root, stolon 
and leaf components per stolon order for 3rd order plants. Mean (+SE) of NN-data. 

78 



Population and plant structure 

plants seasonal trends were similar to those of 3rd order plants, but less 

pronounced. As with DW, numbers increased by about a factor two for each 

increase in plant order. 

For 1st order plants N application significantly decreased the number of 

plants with a growing point (main effect P<0.05, 0.97 for no-N and 0.95 for 

plus-N), but this was most apparent in winter/early spring 1992. In 

November 1992, late spring, more 1st order plants had a growing point for 

plus-N. The number of leaves per 1st order plant was higher following the 

first N application. In spring fewer leaves per plant were found for plus-N, 

reflecting the lower percentage of plants with a growing point. The number of 

rooted nodes on 1st order plants was higher in summer 1992 (January and 

February) and lower in September 1992 for plus-N compared to no-N 

(P<0.05). 

The number of stolons, growing points, nodes and leaves per 3rd order 

plant increased significandy following the autumn N application in 1991. In 

the following spring/early summer these numbers, as well as number of 

rooted nodes, were lower for plus-N. Flowering increased in summer 

1991/1992 in the N fertilised swards (P<0.001). 

Grazing treatments affected a few parameters, as described in Table 4-3. 

Under continuous stocking more petioles per plant were found than under 

rotational grazing. The number of leaves was lower under continuous 

stocking, but only significantly so for 1st order plants. The stolon length of 

2nd order plants was reduced by continuous stocking compared to rotational 

grazing and by the higher stocking rate under rotational grazing. 

4.3.4 Estimation of clover plant density 

Clover plant density per unit area can be estimated by two different 

procedures using the data collected (Table 4-4). The most accurate approach 

is to use data obtained from the tiller plugs collected to measure sward 

structural characteristics (Chapter 2), combined with plant data obtained from 

turf samplings. A second estimate is obtained by dividing total clover dry 

weight per turf (cut and uncut plants) by average plant DW. Tiller plugs were 

collected less often (3 times per year) than turves (8-9 times per year), and 

thus the first approach provides less detail of seasonal variations in estimated 

plant densities than the second approach. 
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Figure 4-6 Seasonal variation of plant characteristics of 1st order plants and the effect of 
N application. Mean (± SE) of grazing treatments. Triangles show the timing of N 
application. 
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Figure 4-7 Seasonal variation of plant characteristics of 3rd order plants and the effect of 
N application. Mean (± SE) of grazing treatments. Triangles show the timing of N 
application. 
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Table 4-3 Gra2ing treatment effects on plant morphological characteristics per plant 
order. Data from December 1990 to December 1992. The significance of differences 
between the grazing treatments (grazing system: CS4.9 versus RG4.9, or stocking rate 
within RG: RG4.9 versus RG7.4) is given by ~ (P<0.10), * (P<0.05), ** (P<0.01) and ns 
(not significant). 

1st order 2nd order 3rd order 4th order 

Stolon length (mm) 
CS4.9 
RG4.9 
RG7.4 
grazing system 
stocking rate 

Number of stolons 
CS4.9 
RG4.9 
RG7.4 
grazing system 
stocking rate 

Number of growing points 
CS4.9 
RG4.9 
RG7.4 
grazing system 
stocking rate 

Number of nodes 
CS4.9 
RG4.9 
RG7.4 
grazing system 
stocking rate 

Number of leaves 
CS4.9 
RG4.9 
RG7.4 
grazing system 
stocking rate 

Number of petioles 
CS4.9 
RG4.9 
RG7.4 
grazing system 
stocking rate 

27.1 
32.6 
27.2 
~ 
ns 

1.0 
0.9 
1.0 
ns 
~ 

14.4 
15.1 
14.2 
ns 
ns 

2.0 
2.4 
2.5 
* 
ns 

0.5 
0.3 
0.2 
** 
ns 

75.3 
83.5 
71.8 

* 
* 

3.7 
3.9 
3.7 
ns 
ns 

3.0 
3.1 
3.0 
ns 
ns 

31.9 
32.3 
29.5 
ns 
ns 

6.0 
6.8 
7.0 
ns 
ns 

1.7 
0.7 
0.6 
* 
ns 

150.3 
162.5 
153.2 

ns 
ns 

8.0 
8.8 
8.5 
ns 
ns 

6.1 
6.6 
6.6 
ns 
ns 

60.5 
62.1 
60.3 
ns 
ns 

12.1 
15.4 
17.2 
ns 
ns 

2.7 
1.1 
1.4 
* 
ns 

294.0 
330.4 
317.0 

ns 
ns 

15.5 
17.7 
16.7 
ns 
ns 

11.4 
13.1 
12.2 
ns 
ns 

109.2 
125.9 
110.9 

ns 
ns 

24.5 
29.6 
32.3 
ns 
ns 

2.6 
2.0 
1.5 
ns 
ns 

Number of rooted nodes 
CS4.9 5.0 
RG4.9 5.5 
RG7.4 5.4 
grazing system ns 
stocking rate ns 

9.0 
9.2 
8.9 
ns 
ns 

14.4 
15.7 
15.8 

21.2 
29.9 
25.8 
ns 
ns 
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In general higher estimates of plant densities were obtained using total 

clover biomass per turf compared to using data from tiller plugs. The 

apparent overestimation of plant density resulting from use of total clover 

biomass in turves is probably a result of the turf sampling procedure. Bare 

patches or visible dung and urine patches were avoided when turves were 

taken, but were not avoided when tiller plugs were removed. Thus tiller plugs 

give a truer estimate of plant density on a whole sward basis, incorporating all 

within sward spatial heterogeneity. 

The seasonal differences were similar, so Fig. 4-8 can be seen as a fair 

picture of fluctuations in clover plant density. Highest estimated plant 

densities occurred in winter/early spring and lowest densities in late 

summer/early autumn. Considerable variation between years is evident. 

3000 
Ng 2500 
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1990 1991 1992 

Figure 4-8 Seasonal variation of estimated density of clover plants. Mean (± SE) of 
grazing and nitrogen treatments. 

4.3.5 Effects of treading and excreta return on plant structure 

The proportion of the population constituted by 1st order plants was lower, 

and by 3rd order plants was higher, inside compared to outside the frames 

(Table 4-5). Total plant DW of 1st order plants was greater outside the 

frames. Third order plants showed the opposite effect and had greater plant 

DW inside the frames. The distribution of DW to stolon, leaf and root 

material was not affected for 1st and 3rd order plants. For 1st order plants, 

stolon length per plant was significantly less inside the frames (32.9 outside 

and 22.8 mm inside the frames; P<0.05), and fewer nodes had rooted (5.0 

outside and 3.8 rooted nodes per plant inside the frames; P<0.05). For 3rd 
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order plants stolon length was greater inside the frames (271 compared to 

147.2 mm outside the frames; P<0.05). 

Significant differences were observed for DW distribution between 

stolon orders for 2nd order plants (Table 4-6). Inside the frames more DW 

was allocated to the branches. This was not due to more branches, but the 

branches were bigger (Table 4-6). There were no N or grazing treatment 

interactions with frames. 

Table 4-5 Effects of excluding a sward from treacling and excreta return by a frame, on 
distribution of plants among plant orders and plant DW (mg) in spring. Mean of grazing 
and N treatments, per plant order. The significance of differences between the treatments 
is given by * (P<0.05), and ns (not significant). 

Plant order 

First 

Second 

Treatment 

no frame 
plus frame 

no frame 
plus frame 

Total plant dry 

27.4 
17.3 

* 

86.0 
79.1 
ns 

weight Percentage of population 

40.3 
35.8 

* 

47.6 
44.1 
ns 

Third no frame 
plus frame 

143.7 
261.4 

* 

9.8 
17.7 

Table 4-6 Effects of excluding a sward from treading and excreta return by a frame, on 
distribution of DW as percentage of total plant DW and morphological characteristics of 
2nd order plants. Mean of grazing and N treatments. The significance of differences 
between the treatments is given by *** (P<0.001), ** (P<0.01), * (P<0.05), and ns (not 
significant). 

Treatment 

no frame 
plus frame 

Primary stolon 
no frame 
plus frame 

Secondary stolon 
no frame 
plus frame 

Primary stolon 

32.5 
27.4 
ns 

Stolon length 
68.6 
57.9 
ns 

Stolon length 
23.7 
37.2 

* 

Primary leaf 

26.4 
16.6 
** 

Growing points 
0.9 
0.7 
* 

Growing points 
2.4 
2.5 
ns 

Secondary stolon 

6.9 
12.1 

* 

Nodes 
18.4 
16.7 
ns 

Nodes 
11.5 
17.2 
ns 

Secondary leaf 

13.7 
25.4 
*** 

Leaves 
2.1 
1.1 
*** 

Leaves 
3.0 
4.1 
ns 

Roots 

19.2 
18.1 
ns 

Roots 
7.5 
5.5 
ns 

Roots 
1.7 
3.6 
** 
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4.4 Discussion 

4.4.1 Seasonality of plant characteristics 

The population structure showed a strong seasonality. In sheep-grazed 

swards at a site near Palmerston North in the Manawatu (Brock et al, 1988; 

Hay et al., 1988) and in swards grazed by dairy cattle in the Waikato (Harris, 

1994) a very rapid increase in the proportion of 1st order plants in spring 

(from September to October) was noted, with a concomitant decrease in 3rd 

order plants. This pattern was also noted in the present study, but here the 

shift to a less-branched plant structure started in autumn and continued 

steadily through winter. The proportion of 1st order plants was in spring 

greater under catde grazing than under sheep grazing. 

The proportion of DW distributed to stolon decreased in spring for all 

plant orders, per plant and per stolon order. As is shown for 3rd order plants, 

this was pardy due to an increase in leaf DW for each stolon order, but also 

stolon DW decreased. It appears that in spring senescence of older stolon is 

faster than the production of new stolon material. Hence, the total stolon 

mass of the population is not maintained, as shown by the decrease in spring 

of clover stolon DW/m 2 in Chapter 2. Later in the growing season, new 

growth exceeded senescence, so the amount of DW distributed to stolon 

increased from early spring on, following an increase in leaf material. The 

great decrease in plant DW from January to February 1991 (Fig. 4-3) was not 

noticeable in clover stolon DW/m 2 in Chapter 2. The number of plants had 

not increased in this period; a decrease was even noticeable (Fig. 4-8). The 

only explanation of this is a rapid shift in the population structure to plants of 

a higher branching order. Indeed in Fig. 4-2 a steep decrease of percentage of 

plants of 1st order was recorded, with concomitant increase of percentage of 

plants of 3rd and 4th order. The number of growing points per plant within 

each plant order did not increase; appearance rate of branches was not 

especially high. Apparently the senescence of old stolon material was 

particularly slow in this period. This process was not recorded from the 

marked stolons (Chapter 3), and was also not obvious from the DW allocated 

to primary stolon material of 3rd order plants (Fig. 4-5). The variation in DW 

allocation to different plant parts of 4th order plants was too large, and the 
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number of plants of this order in January 1991 was too small, to draw 

conclusions for this plant order. 

There are very few published data on clover root DW in grazed swards. 

With the methods used in the present experiment, not all the root material 

would have been recovered. The turves were 5 cm deep; thus only roots in 

the top 5 cm were measured. Washing of the turves will have resulted in the 

loss of root hairs and a proportion of the finer roots. But since all turves were 

treated similarly, comparison of results between samplings and management 

systems is still valid. Root DW was approximately 20% of total plant DW, the 

same proportion as Young (1958) found per unit area in swards in Britain and 

Harris (1994) found per plant in Waikato dairy pastures. 

The number of rooted nodes per plant increased from autumn to spring 

(Fig. 4-6 and 4-7). This indicates root formation occurred in this period. Root 

DW did not show this pattern, but was relatively stable (Fig. 4-4 and 4-5), 

thus growth of the developed roots was slow. In spring the number of roots 

was at a maximum, but many roots were small, considering the total root 

DW. The survival of these roots was not high, the number of rooted nodes 

was at a minimum at the end of summer. The surviving roots increased in size 

and were relatively large at the end of summer, with maximum values for root 

DW per rooted node. 

4.4.2 Treatment effects 

Several previous studies have found that clover plants are smaller under 

continuous stocking compared to rotational grazing (Carlson, 1966a; Briseno 

de la Hoz and Wilman, 1981; Wilman and Asiegbu, 1982; Brock et al., 1988; 

Hay et al., 1988). This was also apparent in the present experiment. A lower 

proportion of total plant DW was allocated to leaf under CS. Both the 

proportion allocated to stolon and to root tended to be higher under CS, but 

this was not statistically significant. Brougham et al. (1978) and Chapman and 

Robson (1988) observed earlier that clover invested a higher proportion of its 

photosynthates in stolon material when continuously stocked. However, in 

the current experiment part of the explanation of the difference between 

grazing treatments is that clover plants were sampled just prior to grazing in 

the RG treatments. Hence the regrowth period was maximal under this 

grazing management, while this was not the case under CS where grazing 
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could have occurred just prior to sampling. This probably also caused the 

higher number of petioles and lower number of leaves per plant and per 

growing point under CS than under RG. 

The application of fertiliser N did not affect the distribution of plants 

among plant orders, average total plant DW or DW allocation to stolon, leaf 

and root and plant morphological characteristics within plant orders. 

Similarly, Harris and Clark (1996) and Harris et al. (1996) did not record 

differences between non-fertilised dairy pastures and pastures fertilised with 

200 kg N/ha/year, apart from a lower average root DW per plant for the 

whole population when 200 kg N was applied. 

In the present experiment, N application in autumn at first increased the 

number of nodes, growing points and leaves per 3rd order plant. The most 

obvious explanation for this would be increased branching rates with N 

application in autumn, however this effect was not found in the marked 

stolon study (Chapter 3). The proportion of plants of higher branching order 

did not increase following N application either. This can be explained by a 

higher branching rate of secondary stolons. This was not analysed for marked 

stolons (Chapter 3), but a higher number of tertiary growing points would 

confirm this hypothesis. In Fig. 4-9 these numbers are shown. While in the 

statistical analyses the main N effect and the interaction between N and 

sampling date were not significant, on average more than one extra growing 

point was found on tertiary stolons in the sample taken after the autumn N 

application in both years. Their survival rate was not high, since the number 

decreased again to no-N levels in the following samplings. 
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This increased branching, with low branch survival rate, results in a 

lower number of potential branching sites later, for example in winter or the 

following spring. A node never has a second chance to develop a branch. 

4.4.3 Cattle versus sheep 

No direct comparisons between cattle and sheep grazing were conducted 

in this study, but the availability of similar information on clover growth plant 

and population structure from sheep-grazed pastures located in the same 

region (Brock et al, 1988; Hay et a/., 1989a, b, 1991) allows some broad 

conclusions to be drawn about the effects of sheep and catde grazing on the 

environment for clover growth in a mixed pasture. 

Average clover growing point densities recorded in this study (3,900/m2) 

were higher than those reported by Brock et al. (1988) (2,100-3,250/m2). This 

was despite the fact that grass tiller densities were also higher in the present 

study (average 13,800/m2, compared to an average of 11,900/m2 in the 

sheep-grazing treatments monitored by Brock et al). This goes against the 

trend established by Brereton et al. (1985) toward lower clover growing point 

density as grass tiller density increases above about 5,000 per m2 and suggests 

that catde grazing may create a more favourable environment for clover to 

coexist with grasses than sheep grazing. One possible explanation for this is 

that cattle may select clover less selectively than sheep, (Briseno de la Hoz 

and Wilman, 1981; Cosgrove et al., 1996), and do not have the jaw and biting 

characteristics to select within intermingled grass/clover patches as well as 

sheep. 

The estimated density of clover plants in the present experiment was 

much higher than values for pastures grazed by sheep: 640-1310 plants/m2 

derived from data from tiller plugs and turves, compared to 200-800 

plants/m2 (Hay et al, 1989b). This is due to higher growing point densities, 

and a higher proportion of 1st order plants in the present, cattle-grazed 

pastures in comparison to sheep-grazed pastures (Brock et al, 1988; Hay et al, 

1988, 1989a). The number of stolons and growing points per plant within 

each plant order was less under cattle grazing in the present experiment than 

under sheep grazing in earlier experiments (Brock et al, 1988). So not only 

was a larger proportion of the plant population in the present cattle-grazed 

pastures of simpler plant structure, within the branched plants the structure 
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was simpler as well. 

More severe treading damage inflicted on swards by grazing cattle, or 

differences in pattern of excreta return, may provide the explanation for this 

difference in population and plant structure between sheep- and catde-grazed 

swards and its seasonal variation. Support for this hypothesis comes from the 

results of the study where treading damage and excreta return were excluded 

by frames. Here, a higher percentage of 3rd order plants, and a concurrent 

lower percentage of 1st order plants, were recovered for swards under the 

frames, in comparison to the sward outside the frames. Plants under the 

frames were sampled in late spring, when in general higher proportions of 1st 

order plants were found, and lower proportions of 3rd order plants (Brock et 

al, 1988; Hay et al, 1988; this chapter). The results from the study with the 

frames indicate that treading and/or excreta return contribute continually to 

the breaking up of plants in swards, and that this effect is stronger under 

catde grazing compared to sheep grazing. 

This difference in population and plant structure could make the clover 

population in cattle-grazed swards more vulnerable to adverse conditions 

such as a summer drought than under sheep grazing. Plants with a more 

complex branching structure have a greater capacity to buffer stress 

conditions by integrating the use of growth resources across the whole plant, 

and through greater ability to store reserves of energy and N (Chapman and 

Robson, 1992; Chapman et al, 1992b). 

In comparison to clover plants in sheep-grazed pastures (Brock et al. 

1988; Hay et al., 1991), within each plant order (except for 4th order plants), 

stolon length per plant was greater under catde grazing, while there were 

fewer nodes per plant. This implies greater internode length under cattle 

grazing, as was found in work by Briseno de la Hoz and Wilman (1981). Also, 

more rooted nodes per plant, as well as more leaves per growing point were 

found under catde grazing. A lower grazing frequency in the present 

experiment could explain this, possibly caused by higher herbage 

accumulation levels in the present experiment and lower stocking rates and 

partly by sheep grazing clover more selectively. A discrepancy in this respect 

is the lower DW of leaf material and higher number of leaves per plant in the 

present experiment. This implies lower DW per leaf in comparison to the 

plants in the sheep-grazed pastures used by Brock et al. (1988). In turn, this 
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may be due to the relatively high proportion of small-leafed, acyanogenic 

genotypes in this pasture (Williams and Cornege, 1979, Chapter 2), which may 

have derived from the Kent wild white clover ecotype introduced into New 

Zealand pastures in the early stages of agricultural development. Leaf size is 

generally found to be greater under cattle grazing than sheep grazing (Briseno 

de la Hoz and Wilman, 1981) when comparable clover varieties are used. 

4.4.4 Conclusions 

In the population of clover in these cattle-grazed swards, 2nd and 3rd 

order plants were the most important contributors. These plant orders 

provided the majority of growing points and rooted nodes of the population. 

It is also in these plant orders where a capacity for intra-plant integration in 

the use of growth resources (carbon, nutrients and water) can be expected: 

branches can support the main stolon and each other when conditions are 

adverse (Chapman et a/., 1992b), while old stolon material is not maintained 

for a prolonged time. 

Grazing treatments and N applications did not alter the distribution of 

plants among plant orders, while seasonal fluctuations were large. N 

application resulted in temporary differences for plant DW, distribution of 

DW and morphology only. Interactions between grazing and N treatments 

were few and also temporary, thus the scope for influencing clover plant 

structure and morphology by adapting grazing management to improve 

clover persistence when using fertiliser N appears to be limited. 
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5. DYNAMICS OF CLOVER IN RELATION TO 
CLIMATE 

5.1 Introduction 

The dynamics of clover leaf and stolon growth, in response to season, 

grazing management and N application are described in Chapter 3. Seasonal 

variation was evident for nearly all clover growth components measured, and 

was often large. In this Chapter, the specific climate variables related to 

seasonal variation in growth are identified, and their relative importance 

compared to management or treatment effects is explored. A simple, 

conceptual growth model has been created to establish the relationship 

between the weather pattern in the various seasons and plant growth, and to 

relate the magnitude of these relationships to the magnitude of management 

and N treatment effects. Differences between the rotation periods are used to 

determine the relative importance of the various climate variables for 

measured variables of clover growth. The result is a synthesis from which 

comparisons can be made with similar studies conducted elsewhere, and from 

which general conclusions can be drawn regarding the opportunities for 

management manipulation of clover growth in the environment in which this 

study was conducted. The latter aspect (opportunities for management 

manipulation) will be developed more fully in Chapter 6. 

Many previous publications have reported strong seasonal variation in 

clover growth (see the previous chapters), but few of these have related clover 

growth dynamics in a grass/clover sward to climate factors per se. Those that 

have done so concentrated mainly on rate of leaf appearance, which is also 

the birth rate of new nodes (for example Beinhart, 1963; Davies and Evans, 

1982). Other work in controlled environments has determined the effect of 

single or multiple non-compounded environmental factors on clover 

behaviour, as for example temperature (Mitchell, 1956; Mitchell and Lucanus, 

1962; Boiler and Nosberger, 1983; Hoglund and Williams, 1984), light 

intensity (Beinhart, 1963; Solangaarachchi and Harper, 1987), light duration 

(Mitchell and Lucanus, 1962; Boiler and Nosberger, 1983) or spectral quality 

of light (Solangaarachchi and Harper, 1987; Thompson and Harper, 1988). 

Only one series of papers deals in detail with component growth 
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responses to climate in a grazed grass/clover sward (Sackville-Hamilton and 

Harper, 1989; Sackville-Hamilton, 1990). Elgersma and Fengrui (1997) 

presented relationships between clover growth components and climate 

factors using data collected from mown swards in the Netherlands. 

Sackville-Hamilton and Harper (1989) demonstrated that the quantitative 

response relationships obtained for specific growth components in the field 

differ markedly from those obtained in controlled environments. They noted 

that correlated variables (for example temperature and the intensity, duration 

and spectral quality of light) occurring in the field, but not in controlled 

conditions, are likely to explain this discrepancy. They highlighted the need 

for more information from field environments closer to farming practice to 

increase our knowledge of clover responses to environment. This Chapter 

will draw comparisons with Sackville-Hamilton and Harper's (1989) and 

Sackville-Hamilton's (1990) results, and extend their findings obtained from a 

single year in one paddock under common management by using results 

collected in two years and considering the effects of grazing management and 

fertiliser N applications. 

5.2 Material and methods 

5.2.1 Treatments 

Three grazing treatments were applied: continuous stocking with 4.9 

bulls/ha (CS4.9) and rotational grazing with either 4.9 (RG4.9) or 7.4 (RG7.4) 

bulls/ha. Each grazing treatment was assigned to two self-contained replicate 

farmlets. Within the farmlets, N treatments were no fertiliser N (no-N) and 

50 kg N /ha as urea in autumn and again in winter (plus-N). More detailed 

information on the swards and treatments is given in Chapter 2. 

5.2.2 Data 

The data used are means for clover growth variables of each rotation 

period (Table 3-1) during the course of the experiment as described in 

Chapter 3. These variables are listed in Table 5-1. The climate data are shown 

in Fig. 5-1. Air (AIR, °C) and soil temperature at 10 cm depth (SOIL, °C), 

both expressed as mean of the maximum and minimum temperatures, total 

rainfall (RMM, mm), the coefficient of variation of rainfall (RCV, %) and the 
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a) Total rainfall per rotation period (RMM, mm) and coefficient of variation of rainfall 
(RCV, %) 
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b) Soil temperature at 10 cm depth (SOIL, °C) and air temperature (AIR, °C), both as 
mean of the maximum and minimum temperatures, and the mean radiation (RAD, 
MJ/m2/day) per rotation period. 
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Figure 5-1 Climate data per rotation period during the course of the experiment. 

mean radiation receipt (RAD, MJ/m 2 /day) were calculated per rotation 

period. The RCV was used to account for the distribution of the rainfall 

within a rotation period. For one rotation period, between 1 May and 20 May 

1991, the maximum soil temperatures were not recorded every day. Hence 

this rotation period is missing in the data set. 
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Table 5-1 List of clover growth variables used in the analyses. 

• Stolon elongation rate (cm/week) SER 

• Rate of leaf appearance (number per stolon/week) RLA 

• Leaf senescence rate (number per stolon/week) LSR 

• Leaf removal rate (number per stolon/week) LRR 

• Axillary bud appearance rate (number per stolon/week) AAR 

• Axillary bud senescence rate (number per stolon/week) ASR 

• Branch appearance rate (number per stolon/week) BAR 

• Branch senescence rate (number per stolon/week) BSR 

• Rooting rate of nodes (number per stolon/week) RR 

• Root senescence rate (number per stolon/week) RSR 

• Rate of loss of main stolons LOSS 
(due to senescence, grazing, dung, trampling or burial) 

5.2.3 Analysis 

First, principal component analysis (PCP, Genstat 5 Committee, 1993) 

was performed on the correlation matrix (Table 5-2; Manly, 1986). This 

analysis was used to determine if clover growth could be described simply by 

a few components derived from the original clover growth variables (Table 5-

1), since correlation between these variables was apparent (Table 5-2). A draw 

back of principal components is that the second and following components 

become increasingly difficult to interpret. Because of this, the individual 

variables were used for further analysis. 

Second, a straightforward (multiple) linear regression of clover growth 

variables (expressed as means per rotation period and ignoring treatment 

effects and within treatment variation) against climate variables was 

performed to give simple models of clover growth. The RSELECT procedure 

of Genstat (Genstat 5 Committee, 1993; Goedhart, 1998) was used to find 

the model of best fit, defined as the model which explained the highest 

percentage of residual variation (adjusted for the number of parameters in the 

model, maximum R2
adj) when only significant variables were included. Data 

transformations did not improve homogeneity of variance. Within the range 

of rainfall and temperatures of the current experiment, non-linear analyses, 

such as logistic or polynomial, did not explain any more of the variation than 

the linear model. Hence only linear models using untrans formed data are 

presented. This does imply the models are valid only for the range of rainfall 
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Table 5-2 Correlation coefficients for clover growth variables (Table 5-1) and climate 
variables. 

RLA 
LSR 
LRR 
AAR 
ASR 
BAR 
BSR 
RR 
RSR 
LOSS 
RMM 
RCV 
AIR 
SOIL 
RAD 

0.76 
0.10 
0.47 
0.61 
0.16 
0.69 
0.26 
0.24 
0.26 
0.14 

-0.32 
0.24 
0.54 
0.58 
0.60 
SER 

0.22 
0.62 
0.56 
0.27 
0.72 
0.39 
0.22 
0.22 
0.29 

-0.44 
0.38 
0.82 
0.84 
0.75 
RLA 

0.23 
0.04 
0.09 
0.17 
0.25 
0.20 
0.13 
0.05 

-0.05 
0.06 
0.33 
0.34 
0.36 
LSR 

0.56 
0.46 
0.61 
0.57 
0.30 
0.56 
0.23 

-0.26 
0.02 
0.62 
0.63 
0.55 
LRR 

0.40 
0.70 
0.31 
0.29 
0.45 
0.03 

-0.35 
0.13 
0.44 
0.44 
0.45 
AAR 

0.30 
0.54 
0.35 
0.55 
0.01 

-0.28 
-0.05 
0.41 
0.42 
0.34 
ASR 

0.43 
0.29 
0.38 
0.18 

-0.21 
0.19 
0.57 
0.65 
0.65 
BAR 

0.28 
0.52 
0.20 

-0.23 
0.07 
0.51 
0.56 
0.53 
BSR 

0.56 
-0.14-0.05 
-0.17 
-0.09 
0.05 
0.12 
0.04 
RR 

-0.21 
-0.09 
0.20 
0.24 
0.27 

-0.02 
0.32 
0.56 
0.54 
0.37 

-0.19 
-0.41 
-0.34 
-0.33 

RSR LOSS RMM 

0.42 
0.41 
0.21 
RCV 

0.97 
0.77 0.84 
AIR SOIL 

and temperatures encountered in the present experiment, extrapolation to 

more extreme climate conditions is not possible. 

The linear relationships between rate of leaf appearance and other 

appearance rates were considered as well, because of the relatively large 

correlation between rate of leaf appearance and other growth variables. Also 

the relationships between senescence and appropriate appearance rates were 

determined. 

Next, the Residual Maximum Likelihood (REML) procedure of Genstat 

5 Committee (1993) was used to fit models including the grazing and N 

treatment effects and interactions between treatments and climate variables. 

Data used were means per rotation period and replicate of each treatment. 

With REML, random variance can be subdivided into different components. 

Apart from the variance unaccounted for by the fixed terms in the models, it 

gives an estimate of the unexplained variation between, amongst other 

variance components, the rotation periods. The VWALD procedure in 

Genstat (Genstat 5 Committee, 1993; Goedhart et a/., 1998) was used to 

determine which variables in the fixed model were significant. Only 

significant variables were included in the fixed models. 
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5.3 Results 

5.3.1 Principal component analysis 

A total of seven components was required to account for more than 

90% of the variation in the clover growth variables as listed in Table 5-1. The 

first component (Zi) explained 47 % of the variation, the second component 

(Z2) 15%. These components were as follows: 

Z,=-0.33SER-0.36RLA-0.14LSR-0.38LRR-0.35AAR-0.28ASR-0.38BAR-0.31BSR-0.23RR-0.32RSR 

Z2=-0.44SER-0.37RLA+0.16LSR+0.04LRR-0.20AAR+0.40ASR-0.28BAR+0.29BSR+0.34RR+0.42RSR 

The first component is basically an index of development, with stolon 

elongation, appearance and senescence rates all having negative coefficients. 

The second component shows a contrast between stolon elongation and 

appearance rates of leaves, axillary buds and branches on the one hand and 

rooting rate of nodes and senescence rates of roots, axillary buds, branches 

and leaves on the other. 

5.3.2 Comparison of model type 

As mentioned in section 5.2.3, non-linear analyses did not improve upon 

the results of a linear model. As an example, in this paragraph the results for 

rate of leaf appearance (RLA) are given. Sackville-Hamilton and Harper 

(1989) used a third order polynomial to describe the relationship between soil 

temperature (SOIL) and RLA. Using data from the present experiment, 

adding the squared and cubed soil temperature did not significantly improve 

the model. This is shown in Table 5-3, where the means per rotation period 

were used. Also for the second data set (means per rotation period and 

treatment) adding squared and cubed soil temperature did not improve the 

model, as tested with the Wald statistic in the REML procedure (Genstat 5 

Committee, 1993). 

Fitting other non-linear curves did not improve the model either. In Fig. 

5-2 the resulting curves for a linear and a logistic relationship between RLA 

and SOIL are shown. It is obvious that the temperature was neither low 

enough nor high enough to fall much outside the linear phase of the curve for 

RLA. The percentage variation accounted for by using the different models, 

using the means per rotation period, was 68% (cubic, logistic and Gompertz), 

69% (quadratic) and 70% (linear). 
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Table 5-3 Accumulated analysis of variance for rate of leaf appearance, using means per 
rotation period. Given are the terms added to the model (starting with a constant), 
degrees of freedom for the term (d.f), mean square of the added term (m.s.) and the 
significance of adding the term to the model (F probability). 

Change d.f. m.s. F probability 

+ SOIL 
+ SOIL2 

+ SOIL3 

Residual 
Total 

1 
1 
1 
23 
26 

0.6300 
0.0019 
0.0040 
0.0108 
0.0340 

<.001 
0.680 
0.548 

0.9 

0.8 

0.7 

2 0.6 

&0.5 

0.4 -

0.3 

10 12 14 16 
soil temperature (°C) 

20 22 

Figure 5-2 Relation between rate of leaf appearance (RLA; number of leaves per 
stolon/week) and soil temperature (mean of maximum and minimum temperature, SOIL, 
°C). Shown are the raw data, the linear relationship and the results of a logistic regression. 

5.3.3 Relationships between clover growth and climate 

Table 5-4 presents the models of best fit for each clover growth variable 

tested, using means per rotation period. Average soil temperature explained in 

all cases the largest part of the variation, showing the seasonality of growth. 

For all variables, the constant was not significantly different from zero and 

was deleted from the model. None of the other climate variables significandy 

improved the explanation of the variance. 

Rate of leaf appearance showed the greatest response to soil 

temperature. The relationship between soil temperature and RLA was 

stronger than the relationship observed for all other variables. This 
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relationship, RLA = 0.0436 SOIL (P<0.001), explained 70% of the variation 

in leaf production found, and predicts an increase of 2.3 leaves per stolon per 

year for every 1 °C increase in mean soil temperature. The relationship 

between leaf appearance, senescence and removal rates and soil temperature 

is shown in Fig. 5-3. Leaf removal and appearance rates had a relatively high 

coefficient of correlation (0.62, Table 5-2); 44% of the variation in removal 

rate of leaves could be accounted for by a linear model using only leaf 

appearance as a term (Table 5-4). Leaf senescence, however, was less direcdy 

related to rate of leaf appearance, and the coefficient of correlation between 

these variables was low (0.22, Table 5-2). In the model with rate of leaf 

appearance as an explanatory term, soil temperature still significantly 

increased the percentage of variation accounted for (Table 5-4). Leaf removal 

rate did not explain an additional part of the variation. 

Ho.8 

§0.6 

^0.4 

«0.2 

6 8 10 12 14 16 18 20 22 
soil temperature (°C) 

Figure 5-3 Leaf appearance, removal and senescence rates (RLA, LRR and LSR, 
respectively; number per stolon/week) in relation to mean soil temperature (SOIL, °C). 
Given are the raw data (means per rotation period, symbols) and the fitted linear 
regressions (lines). 
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Table 5-4 Best fitting models for clover growth variables (Table 5-1) with only significant 
parameters. Used data are means per rotation period. Variables are number per 
stolon/week, for stolon elongation mm/week and for loss of main stolon percentage of 
marked stolons. Total and residual mean squares and the percentage of variation 
accounted for (R2adj) are given. 

SER 
RLA 
LSR 
LRR 
AAR 
ASR 
BAR 
BSR 
LOSS 

SER 
LSR 
LRR 
AAR 
ASR 
BAR 
BSR 
RSR 

Mean squares 
Total 

0.0164 
0.0340 
0.0037 
0.0337 
0.0092 
0.0006 
0.0142 
0.0017 
0.0010 

0.0163 
0.0037 
0.0340 
0.0089 
0.0006 
0.0142 
0.0017 
0.0023 

Residual 

0.0112 
0.0101 
0.0034 
0.0213 
0.0075 
0.0005 
0.0085 
0.0012 
0.0004 
0.0005 

0.0043 
0.0027 
0.0193 
0.0054 
0.0004 
0.0060 
0.0010 
0.0013 

R2adj 

32% 
70% 
4% 
38% 
19% 
17% 
38% 
25% 
55% 
49% 

73% 
25% 
44% 
40% 
37% 
58% 
44% 
45% 

regression 

0.0145 SOIL 
0.0436 SOIL 
0.0093 SOIL 
0.0246 SOIL 
0.0114 SOIL 
0.0012 SOIL 
0.0134 SOIL 
0.0032 SOIL 
-0.0479 + 0.0078 AIR 
0.0305 + 0.0056 SOIL 

0.8400 RLA - 0.0259 AIR 
0.0844-0.2690 RLA + 0.0158 SOIL 
0.5574 RLA 
0.2659 RLA 
0.1635 AAR 
-0.1370 + 0.5003 RLA 
0.2294 BAR 
0.4599 RR 

For axillary bud and branch appearance rates, soil temperature accounted 

for a significant part of the variance, but at 19 and 38%, respectively, this was 

considerably less than for rate of leaf appearance. For these variables, the 

model with rate of leaf appearance as explanatory variable explained a larger 

part of the variation, 40 and 58%, respectively. For the axillary bud and 

branch senescence rates, the matching appearance rates explained 

considerably more than soil temperature. With the matching appearance rate 

in the model, none of the climate variables explained a significant additional 

percentage of the variation. 

An important result was the lack of a relationship between climate 

variables and rates of rooting of nodes or root senescence. Differences 

between seasons were significant, with higher rates in spring and autumn (see 

Chapter 3), but these differences are not explained by the climate variables 
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considered here. Polynomials did not account for the variation either. There 

was also no relationship with rate of leaf appearance. The positive correlation 

between senescence and appearance was also apparent for roots, with 45% of 

the variation in root senescence rate being accounted for by rate of rooting of 

nodes. 

5.3.4 Interactions between treatment and climate 

Table 5-5 shows results of the REML procedure with different factors in 

the fixed model: season, grazing and N treatments (the experimental 

treatments) and their interactions. Seasons are spring, summer, autumn and 

winter, with the rotation periods allocated to the seasons as described in 

Chapter 3. The second and third columns of the table give the rotation period 

component of the variance and the total variance (sum of all components) of 

the clover growth variables, for a model which only incorporates a constant. 

Note that for the regressions shown in Table 5-4 means per rotation period 

were used, for the regressions in Table 5-5 and Table 5-6 means per 

experimental plots (treatments x replicates) and rotation period were used. 

Hence the total variation for the data used in Table 5-4 is very similar to the 

rotation component of the variance in Table 5-5 where the model 

incorporates a constant only. 

The fourth and following columns show the percentage of the variance 

components accounted for by three models, a model with season, 

experimental treatments and their interactions, another model with 

experimental treatments only, and a third model with season only. Where the 

percentage of variance accounted for is negative, the variance components 

could not be estimated properly due to ill-fitting of the fixed model. The 

importance of season was much greater than that of the experimental 

treatments for most variables. Interactions between season and management 

did not account for much of the variance either, since the percentage of 

variance accounted for was not increased much by the fixed model with these 

interactions, compared to the fixed model with only season as parameter. The 

biggest improvement was found for rate of rooting of nodes: experimental 

treatment effects and its interactions with season accounted for an additional 

11% of the total variation compared to the model with season only. For this 

parameter, the model with experimental treatment effects only explained 5% 
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of the rotation component of the variance, the largest percentage found with 

this model. 

Table 5-5 Variance components for the starting model (constant), and the percentage of 
the variance component accounted for by models with seasonal differences (SEASON, 
being spring, summer, autumn and winter, as in Chapter 3), or treatment effects (grazing 
(G) and nitrogen (N) treatments), and a model with season, treatments and their 
interactions. The random factors were rotation period, the experimental plots (treatments 
x replicates) and the interactions between experimental plots and rotation periods. Given 
are the rotation component (ROT) and the total of all components. 

Fixed 
model: 

SER 
RLA 
LSR 
LRR 
AAR 
ASR 
BAR 
BSR 
RR 
RSR 
LOSS 

Constant 
ROT 

0.0160 
0.0330 
0.0032 
0.0302 
0.0082 
0.0005 
0.0135 
0.0016 
0.0043 
0.0021 
0.0008 

total 

0.0283 
0.0485 
0.0112 
0.0527 
0.0171 
0.0016 
0.0249 
0.0032 
0.0140 
0.0043 
0.0024 

SEASON 
ROT total 

35 
60 
7 

30 
18 
-4 
31 
13 
21 
12 
64 

20 
41 
2 

17 
8 

-1 
17 
7 
6 
6 

23 

G*N 
ROT 

-2 
2 

-2 
1 
2 
5 
0 
3 
0 
2 
0 

total 

0 
1 
0 
1 
0 
0 

-1 
1 
5 
2 

-1 

SEASO> 
ROT 

38 
62 
10 
31 
17 
0 

31 
15 
21 
14 
66 

v!*G*N 
total 

29 
44 
1 

21 
11 
2 

18 
7 

17 
10 
19 

Table 5-6 shows the percentage of the same variance components 

accounted for by the models that include significant interactions between 

climate parameters and experimental treatments. Again mean soil temperature 

was the best fitting climate variable, with no additional significant 

contributions from the other climate variables used in the analyses. The 

interactions occurred for stolon elongation rate, leaf and branch appearance 

rates and axillary bud senescence rate. With N applications, the estimated 

stolon elongation rate was greater at higher temperatures, and less at lower 

temperatures than without N. The estimated stolon elongation rate was 

greater under RG4.9 than under CS4.9. In turn, under CS4.9 stolon 

elongation rate was greater than under RG7.4. These differences between 

grazing treatments increased with increasing soil temperature. 

Estimated rate of leaf appearance was very similar under CS4.9 and 

RG7.4, being under RG7.4 0.02 leaves per stolon/week lower than under 

CS4.9 within the temperature range of the present experiment. Compared to 
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the other two grazing treatments, the estimated rate was lower under RG4.9 

at temperatures below approximately 10 °C, and higher at temperatures above 

approximately 20 °C. This resulted in estimated rate of leaf appearances at for 

example 7 °C of 0.30, 0.38 and 0.35 leaves per stolon/week under RG4.9, 

CS4.9 and RG7.4, respectively, and at 21 °C of 0.93, 0.88 and 0.86 leaves per 

stolon/week, respectively. 

Table 5-6 Models of clover growth variables with statistically significant interactions 
(P<0.05) between climate parameters and experimental treatments. The distinguished 
components in the random model were rotation period, the experimental plots 
(treatments x replicates) and the interactions between experimental plots and rotation 
period. Given are the percentage of the variance accounted for by the models for the 
rotation component and the total of all variance components. 

Treatment Model rotation total 

SER CS4.9 no-N -0.0442 + 0.0167 SOIL 35% 26% 
RG4.9 no-N -0.0816 + 0.0212 SOIL 
RG7.4 no-N 0.0058 + 0.0115 SOIL 
CS4.9 plus-N -0.1500 + 0.0250 SOIL 
RG4.9 plus-N -0.1874 + 0.0303 SOIL 
RG7.4 plus-N -0.1000 + 0.0206 SOIL 

RLA CS4.9 0.1233 + 0.0361 SOIL 71% 49% 
RG4.9 -0.0077 + 0.0445 SOIL 
RG7.4 0.1011+0.0360 SOIL 

ASR no-N -0.0158+ 0.0030 SOIL 26% 9% 
plus-N 0.0023 + 0.0014 SOIL 

BAR CS4.9 -0.0299+ 0.0152 SOIL 44% 25% 
RG4.9 -0.1641 + 0.0245 SOIL 
RG7.4 -0.1081 + 0.0192 SOIL 

At lower temperatures (below approximately 14 °C) estimated branch 

appearance rate was lower under RG4.9 than under the other two grazing 

treatments. At higher temperatures the reverse was true, and was the 

estimated branch appearance rate higher under RG4.9 than under the other 

two grazing treatments. 

Senescence rate of axillary buds at soil temperatures above 11 °C was 

greater for no-N than for plus-N, the difference getting bigger with increasing 

soil temperature. 

In these analyses of interactions, effects of climate variables on rates of 
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rooting of nodes of root senescence were not found, nor were there any 

interactions between climate variables and experimental treatments. 

5.4 Discussion 
In this chapter it is shown that during the present experiment the most 

important climatic variable for clover development was temperature. The soil 

temperature at 10 cm depth, expressed as the mean of the daily maximum and 

minimum temperatures, was the variable most closely related to the various 

growth components. It appears that temperatures experienced during the 

present experiment were mainly in the linear phase of the growth curve, since 

linear relationships were equal if not better than non-linear relationships in 

explaining variation in growth. It should be noted that the models presented 

are only applicable to temperatures within the range of the present 

experiment, and extrapolation to more extreme temperatures may not be 

valid. 

Because of the lack of effects of rainfall or variability in rainfall on 

growth, it can be concluded that rainfall perse was not a limiting factor during 

the course of the study. On the contrary, the correlation between rainfall and 

all clover growth variables was negative, showing more often there was a 

surplus of water than a shortage (see also Chapter 2). Soil moisture, however, 

would probably have been a more appropriate parameter to relate clover 

responses to. Unfortunately as there are no data on evapotranspiration, soil 

moisture levels could not be calculated. 

Solar radiation was correlated with temperature, and never explained a 

larger part of the variation in growth of clover components than soil 

temperature, nor did it explain a significant additional part of the variation. 

5.4.1 Leaf appearance and soil temperature 

Sackville-Hamilton and Harper (1989) used a cubic relationship between 

RLA and soil temperature, because for RLA there is an optimum (air) 

temperature at approximately 25 °C (Mitchell, 1956; Mitchell and Lucanus, 

1962; Beinhart, 1963). In the present experiment adding the quadratic or 

cubic terms did not improve the model. The measured mean soil temperature 

ranged between 7 and 21 °C, being above the threshold value of clover 

growth (3 to 5 °C; Haycock, 1981; Chapman et a/., 1983; Frame and 
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Newbould, 1986), and below the optimum for RLA. Mean RLA ranged 

between 0.04 and 0.13 leaves per stolon/day. This is a narrower range than 

that measured by Sackville-Hamilton and Harper (1989; 0.02 to 0.17 leaves 

per stolon/day, with a temperature range of 4 to 19 °C). Their full model 

predicts zero leaf appearance at a soil temperature of 3.6 °C and lower, and a 

maximum of 0.20 leaves per stolon/day at 21.5 °C. Linearly, this represents a 

slope of 0.011 leaves per stolon/day per degree soil temperature. This is 

remarkably higher than the slope of 0.006 leaves per stolon/day per degree 

soil temperature in the present study. At lower temperatures the RLA is 

similar, but at higher temperatures the values found in the present experiment 

are lower than those found by Sackville-Hamilton and Harper (1989). In a 

situation where light intensity is limiting growth, rising temperatures, 

correlated with rising light intensity levels, may increase growth rates to a 

greater extent than in a situation where light intensity is uniformly high. When 

light intensity is not a limiting factor anymore, day length (light duration) 

becomes more important. In the UK days are longer in summer than in NZ, 

which could be the explanation of the greater RLA in summer found by 

Sackville-Hamilton and Harper (1989), compared to the present experiment. 

In agreement with this, Elgersma and Fengrui (1997) found significant 

cumulative effects of radiation and minimum air temperature in the 

Netherlands. In the present experiment, a model with minimum air 

temperature and radiation showed the latter term was not significant. In this 

model, the slope for the minimum air temperature was exactly the same as 

found by Elgersma and Fengrui (1997; 0.042 leaves per stolon/week per 

degree). 

Removal rate of leaves was strongly related to the rate of leaf appearance 

and thus soil temperature. Variation in senescence rate, however, was not 

explained to a large extent by soil temperature, and no significant relationship 

existed with leaf appearance rate alone, nor with rates of both leaf appearance 

and leaf removal. The result of this is increasing total leaf dry weight and 

number of leaves per plant with increasing temperatures (Chapter 4). 

5.4.2 Branch and root dynamics 

The rate of branching is strongly related to leaf appearance rate, which 

determines the number of potential sites for branching. With leaf appearance 
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rate in the model for rate of branching, no other climate variable significantly 

increased the percentage of variation accounted for. In Chapter 3 it was 

shown there is a difference between rate of branching and the percentage of 

nodes formed in a particular season that develop a branch. The former 

increased and the latter decreased from spring to summer. Hoglund and 

Williams (1984) found a reduced ratio of dry weight of secondary stolon to 

dry weight of primary stolon with increasing day/night temperature from 12.5 

°C/6.0 °C to 27.5 °C/18 °C under a 12 hrs photoperiod. Beinhart (1963) 

found a decreasing percentage of nodes on the primary stolon formed 

branches when temperature increased from 10 to 30 °C under a 14.5 hrs 

photoperiod. Mitchell and Lucanus (1962) found an optimum temperature of 

24 °C for the percentage increase per day in number of growing points at a 16 

hrs photoperiod. With a photoperiod of 8 hrs, no significant differences were 

found in the range of 7 to 35 °C. Boiler and Nosberger (1983) showed that 

the rate of branch appearance decreased when day/night temperature 

dropped from 18 °C/13 °C to 10 °C/7 °C with a photoperiod of 16 hrs. 

Because this temperature response was slighdy less pronounced than the 

decrease in leaf appearance, the percentage of branching (number of stolons 

per total number of nodes) increased with the lower temperature. The linear 

regressions in this chapter also show branching rate did not increase to the 

same extent as leaf appearance rate did with increasing temperature. This 

explains the differing results when branching is measured as percentage of 

nodes forming branches, dry weight ratios or branch appearance rates. Since 

the number of growing points is the important factor for clover yield, and 

each growing point produces potential sites for new branches, the actual rate 

of appearance of new branches is the most important branching characteristic 

to measure. 

Hoglund and Williams (1984) found large genetic variation in the 

branching of clover in response to changes in temperature and N. It is 

possible these genetic differences result in different responses to temperature 

in the various experiments. To investigate this and its importance in the field, 

development and survival of branches from primary as well as from 

secondary stolons of a range of cultivars should be screened in the field, in a 

grazed grass/clover sward. The large variation found in the present 

experiment illustrates that the clover population in these old swards has a 
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great genetic diversity, making it resilient to a wide range of (climatic) 

conditions. 

Persistence of clover depends on the survival of the branches. 

Senescence of branches was related to appearance of branches, without any 

additional effect of a climate variable. Also, adding season or the interaction 

between season and branch appearance rate did not explain an additional 

significant proportion of the variation found. It is not possible to fully explain 

the plant structure with the measured growth characteristics, because an 

important factor, the senescence of old stolon material, was not sufficiently 

recorded. Clover plants break up due to, amongst other things, senescence of 

old stolon material, resulting in a simpler branching structure. These 

processes are most rapid in spring. Within a plant order, changes were also 

apparent during the course of the experiment (Chapter 4). From spring 

through to early summer, the number of growing points per second or third 

order plant increased. From mid-summer through to the following spring, the 

number of growing points decreased. Indeed, since branch appearance rate 

increases more per degree increase in soil temperature than branch 

senescence, the number of growing points would be expected to increase with 

increasing temperature. The decrease in growing points per plant when the 

temperature decreases from mid-summer onwards is not explained by the 

relationships found for branch appearance and senescence rates, because at 

no point did the senescence rate of branches exceed the rate of branch 

appearance on the marked stolons. 

5.4.3 Grazing and nitrogen treatment interactions with climate 

Models incorporating the effects of grazing and fertiliser N treatments 

did not increase the percentage of variation accounted for to a large extent, 

compared to models including only the effects of soil temperature or season. 

However, some interactions between treatment and temperature occurred 

and should be taken into account. For example when looking at branching of 

clover, overall and even within season, no difference between the treatments 

was found (Chapter 3). However the analysis in this chapter shows differing 

slopes for the relation between branch appearance rate and soil temperature 

for the three grazing treatments. At a similar stocking rate, continuous 

stocking favoured increased branching at lower temperatures, whereas 
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rotational grazing favoured branching when temperatures were rising. This 

agrees with work of Hay and Baxter (1989) who measured increased clover 

growing point density when sheep-grazed pastures in southern New Zealand 

were continuously stocked in late winter/early spring. Continuous stocking in 

spring could well be negative for branch survival, however. In Chapter 3 it 

was shown that under continuous stocking the percentage of nodes 

developing roots was lower than under rotational grazing. The presence of a 

root on the same parental node as a branch significantly increased longevity 

of the branch. This effect would be exaggerated when a drought occurs. Thus 

lower root production rate could drastically increase senescence of existing 

branches during a drought. On the other hand, however, Brock and Kim 

(1994) showed that the denser sward of a continuously stocked pasture was 

beneficial to clover in drought conditions: clover recovered more rapidly in 

continuously stocked pastures compared to rotationally grazed pastures. 

Future research could be directed to integrate beneficial traits of either 

grazing system. Branching of nodes, as well as survival of these branches, are 

important parameters to study further when research is aimed at maintaining 

a good clover component while increasing pasture production by the use of 

fertiliser N. 
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6. GENERAL DISCUSSION 

6.1 The maintenance of clover populations 
In New Zealand, the overall target for pasture management is increased 

animal production without losing the benefits of white clover. To bring total 

herbage production to a higher level, fertiliser N can be applied in the period 

late autumn/early spring when contribution of clover N or mineralisation is 

limited. The study presented in this thesis examines the effects of fertiliser N 

applied in this period on clover growth processes and plant and population 

structure in cattle-grazed grass/clover pastures, aimed to identify grazing 

management or plant breeding strategies that improve the growth and 

persistence of clover populations in the presence of moderate to high 

fertiliser N applications. 

It is well-established that populations of white clover growing in moist-

temperate environments are maintained primarily through vegetative growth 

(Turkington et al, 1979; Chapman, 1983, 1987; Sheath and Hodgson, 1989; 

Chapter 3). The maintenance of clover populations, therefore, depends on the 

continued production and establishment of new branches. Plants break up 

due to senescence of older stolon material (Brock et al., 1988; Hay et al., 1988; 

Chapter 4), and branches may establish as new independent plants. Because 

of this, branching, and the branching structure of plants, were important 

points of focus in this study. To maintain a stable size population, only one 

replacement needs to be produced for every plant or stolon growing point 

(depending on which measure of population size is used) lost. 

The best measure of the rate of loss from the population in this study is 

the turnover of white clover growing points, which was seemingly high at 3 to 

11% of growing points on main (marked) stolons per week (Chapter 3). The 

rate of loss was highest in summer. To maintain the population of main 

stolons with a growing point, each week 1 node per 10 to 30 main stolons had 

to develop a branch with all the attributes necessary to enable it to establish 

successfully as a main stolon, i.e. independently of its parent stolon. Branches 

developed on 6 to 40% of main stolons (lower in winter and higher in 

spring/summer); 15 to 40% of these died before their parent stolons senesced 

and they became independent plants themselves. The highest senescence rates 
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were found in summer and autumn, and in the spring of 1992, when relatively 

old branches also died. Thus, on average, each week 1 out of every 3 to 20 

main stolons developed a potential main stolon (independent plant). This rate 

was clearly high enough to maintain the population of main stolons (it 

exceeds the estimated minimum rate necessary, 1 per 10 to 30 main stolons, 

above), an observation supported by the fact that there was no evidence of a 

decline in population density during the course of the study (Table 2-2). 

An important factor for the successful establishment of a branch is the 

occurrence of a root on the same parental node where the branch develops. 

This significandy increases the life expectancy of the branch (Chapman, 1983; 

Chapter 3). On average, each week a root developed on 5 to 20% of main 

stolons. However, 18 to 80% of these roots died before an associated branch, 

if present, would have developed into a lateral stolon (Thomas, 1987a), i.e. 

the stage where it has a good chance of surviving independendy as a main 

stolon. Only 2 to 10%, or 1 per 10 to 50 main stolons, produced per week a 

rooted node that had the potential to support a branch until that branch was 

established as a lateral stolon. This is lower than the number of main stolons 

producing a potential main stolon (1 per 3 to 20 stolons, above), illustrating 

that a certain proportion of the branches have to establish successfully 

without being supported by an associated root, to maintain the population of 

main stolons. This is possible if the conditions are favourable for rooting of 

nodes on the branch itself, making it less dependent on water and nutrients 

from the parental stolon. 

The studied clover population seemed in equilibrium with its 

environment and the grazing management imposed upon it, and capable of 

replacing stolon growing points lost from the population. There is, however, 

evidence of some asynchrony between the occurrence of root and branch 

organs at nodes, which perhaps leaves the population open to increased plant 

or stolon losses when increased stress occurs, such as drought, defoliation or 

strong increased grass growth due to (local) increased soil inorganic N levels. 

While the overall picture is one of relative stability, this disguises the 

substantial seasonal variation in the growth and structure of clover plants and 

populations that occurred throughout the study, and which has some bearing 

on the outcome of competition between grass and clover for growth 

resources within the sward. 
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6.2 Seasonal variation 
Seasonal effects dominated the growth of the pasture, and the growth 

dynamics of clover plants and populations, in the moist-temperate, fertile 

environment in which this study was conducted. Of the specific climatic 

variables associated with season that were examined in Chapter 5, soil 

temperature at 10 cm depth explained the greatest proportion of the variation 

in growth. Other studies also have identified the dominance of temperature in 

driving clover leaf appearance rate in moist-temperate climates (Beinhart, 

1963; Davies and Evans, 1982; Chapman eta/., 1983; Sackville-Hamilton and 

Harper, 1989). It appeared that the soil temperatures experienced during the 

present experiment, averages per month (Chapter 2) or per rotation period 

(Chapter 5), of between 7 and 21 °C, were mainly in the linear phase of the 

growth curves. Apparendy rainfall was not limiting clover development, 

however soil moisture availability could not be calculated. Since root 

primordia usually only develop when in contact with a moist medium 

(Thomas, 1987b), it seems likely that soil moisture is a crucial factor for root 

development. Rates of rooting or root senescence did not show any relation 

with the climate variables recorded (Chapter 5). 

Death of older stolon material (Chapman, 1983; Sackville-Hamilton and 

Harper, 1989), treading by cattle, death of growing points, and development 

of branches, resulted in a population of clover plants which varied widely in 

size and structure. This showed a strong seasonal pattern, with small plants of 

relatively simple structure being abundant in spring and more complex plants 

present in early autumn (Chapter 4), similar to the findings of Brock et a/. 

(1988) and Hay eta/. (1988) for sheep-grazed pastures, and Harris (1994) for 

dairy pastures in New Zealand. In general, plants within plant orders were 

larger in late spring/ summer; the DW per plant was higher as well as the 

number of nodes and leaves (Chapter 4). The best defined seasonal pattern 

was that of number of rooted nodes per plant, which was clearly highest in 

spring and lowest in the latter part of summer (January/February). 

The importance of successful development of nodal roots for clover 

growth and survival has been stressed previously (Chapter 1,3). Spring is a 

crucial season for this, since in this season the roots necessary for the clover 

plants to survive a possible summer drought will have to establish and 
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survive. The success of establishment of roots developed in autumn was 

higher than in spring, considering the relatively lower senescence rates, 

resulting in an increasing number of rooted nodes per plant throughout 

autumn and winter. Even though rooting rates were relatively high in spring 

(Chapter 3), from mid-spring onwards and throughout summer the number 

of rooted nodes per plant or per stolon declined (Chapter 4). In this period 

the root senescence rate exceeded the rate of root development on nodes. 

However, this was not observed on the scored stolons, which indicates that 

an important part of the population was not monitored in that part of the 

study. Rooted nodes (mainly older ones) would also have been present on 

stolons without growing points (for example on a large part of the primary 

stolons of 3rd and 4th order plants), and these were not included in the 

sample of marked stolons. 

6.3 Treatment effects 

Treatment effects on pasture production, and on clover growth 

dynamics and plant and population structure, were generally much weaker 

than seasonal effects (Chapters 2, 3, 4 and 5). The swards responded to 

fertiliser N with an increased rate of herbage accumulation equivalent to 

around 15 kg DM/kg N applied; this extra growth occurred mainly in autumn 

and summer (Chapter 2). White clover content and accumulation were 

depressed when N was applied; this depression was seen mainly in spring. In 

terms of sward structure, the only measured effect of N application was a 

decrease in the tiller density of grasses other than perennial ryegrass. 

Grazing treatments did not influence herbage accumulation or 

composition (Chapter 2). Tiller density of Lolium species was higher under 

continuous stocking than under rotational grazing, however the differences 

were smaller in the present study than in other studies comparing the two 

grazing methods under sheep grazing (for example Chapman et al., 1983; Hay 

et a/., 1989b; Hay et a/., 1991; Brock and Fletcher, 1993). At only one 

sampling, in late summer, was the clover growing point density and stolon 

length/m2 affected by grazing treatment; values for these variables were 

greater under continuous stocking compared to the rotational grazing 

treatments at this time. 

The lack of great differences in (clover) herbage accumulation and sward 
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density under the grazing treatments imposed can be explained by the similar 

rates of leaf appearance, senescence and utilisation found under these 

treatments (Chapter 3). The similar rate of leaf appearance for all three 

grazing treatments confirms previous reports of relative insensitivity of this 

important growth process to variation in defoliation treatment within the 

range normally found in grazing systems (Chapman, 1983; Chapman et al, 

1983). Leaf appearance rate was also relatively unresponsive to N application, 

with only the fertiliser applied in the first autumn resulting in a higher rate of 

leaf appearance. Stolon elongation rate was not affected by grazing treatment, 

but was increased by N application (average 27%), reflecting expected 

responses to increased shading of leaves and stolons through increased 

investment of growth resources in petiole and stolon extension to access light 

(Dennis and Woledge, 1982, 1985; Woledge, 1988; Robin et al, 1992; 

Thompson, 1993, 1995). This response is often accompanied by a decrease in 

stolon branching activity (Solangaarachchi and Harper, 1987; Thompson and 

Harper, 1988; Jones and Davies, 1988; Davies and Evans, 1990; Thompson, 

1995), a response not seen in the data collected from marked stolons 

(Chapter 3). The change in the pattern of resource allocation within the plant 

due to shading can also reduce allocation to root material (Thompson and 

Harper, 1988; Robin et al., 1992). Rooting generally occurred before 

branching at a node (Chapter 3), but, for a proportion of the nodes, the 

reverse was true. For these nodes only, N application reduced the subsequent 

probability of a root developing. It appears that in the presence of a better 

nutrient supply for pasture growth and consequently increased shading, the 

greater apical dominance of the branch inhibits the development of a root at 

the same parental node. 

Following leaf removal, translocation of assimilates from stolon, roots 

and remaining leaves occur in clover (e.g. Hoshino and Oizumi, 1968; 

Chapman and Robson, 1988; Marriott and Haystead, 1990). Root dry weight, 

nodule dry weight and N fixation capacity decreases following defoliation 

(Chu and Robertson, 1974). Culvenor et al. (1989b) measured in subterranean 

clover a 40% drop in root and nodule growth and maintenance respiration 

following removal of 70 or 80% of the shoot dry weight. Current 

photosynthate supply to roots in white clover decreases following one single 

defoliation (Gordon et al., 1986) or with frequent defoliation (Chapman et al, 
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1992b), and may result in a depressed root elongation (Evans, 1973). Also N 

for regrowth of leaves is mobilised from roots and branches (Culvenor et a/., 

1989a). However large the effects of defoliation on plant physiological 

processes, the differing defoliation patterns between the grazing treatments 

applied in the present experiment did not result in differences in biomass 

allocation to stolon or root material of clover plants (Chapter 4). Also 

population and plant structure and plant morphology did not differ much 

between the grazing treatments. 

6.4 Managing white clover in grazed pastures 

6.4.1 Grazing management 

Seasonal influences were much greater than the effects of grazing 

management on pasture production, clover population and plant structure in 

this study. Others have noted similar trends. It seems appropriate, therefore, 

to manage swards in accordance to these seasonal patterns. When plants are 

small they are more vulnerable to stress, so grazing should be carefully 

managed in late winter/early spring when plants are smallest (Brock and Hay, 

1996). 

Continuous stocking in late winter/early spring increased growing point 

density under sheep grazing in southern New Zealand (Hay and Baxter, 

1989), and results from the present experiment suggest that this could also be 

the case under catde grazing (Chapter 2, 5). However, for increased herbage 

production and proportion of clover, rotational grazing to low sward heights 

is generally recommended (Briseno de la Hoz and Wilman, 1981; Frame and 

Newbould, 1986; Brock and Hay, 1996). Furthermore, rotational grazing with 

a moderate stocking rate (RG4.9) increased the percentage of nodes rooting, 

and increased the rates of leaf appearance and branching at higher 

temperatures (Chapter 3). From this it can be derived that continuous 

stocking in late winter/early spring, followed by rotational grazing when the 

pasture growth rate increases with rising temperatures, could be the best way 

to manage a grass/clover sward. This is, indeed, very close to the grazing 

management employed on New Zealand sheep and beef properties, where 

animals are usually continuously stocked during lambing or calving in late 

winter/early spring, then moved into some form of rotational grazing when 
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breeding animals plus lambs or calves increases the effective stocking rate on 

pastures as growth rate also increases. Conservation of excess herbage as hay 

or silage helps to maintain control of herbage mass across the property and 

good conditions for clover growth. 

Despite adopting a grazing management that appears to strike a good 

balance between maximising total feed supply for animals and meeting the 

needs of the clover in the sward, New Zealand farmers are still faced with 

relatively low proportions of clover present in the total amount of pasture 

grown per year (Caradus eta/., 1996). Some increase in clover content through 

tactical grazing management seems to be possible (see above), but there is 

litde evidence that large and sustainable gains can be achieved through 

changes to grazing management. The results of the present study reinforce 

this conclusion. The reasons for this have not been explicidy tested, though 

they are likely to relate to factors such as sward structural changes in response 

to changes in defoliation pattern that favour a stable equilibrium between leaf 

growth and removal (Chapman and Lemaire, 1993; Chapter 3). In short, the 

unique biological features of grass/clover associations used in moist-

temperate regions appear to limit the extent to which the grass/clover balance 

can be shifted and sustained at some new level by grazing management 

manipulation. 

6.4.2 Use of N fertiliser 

The inability to change the grass/clover balance of pastures for increased 

herbage production through grazing management has led to increased use of 

N fertiliser to overcome N deficiencies for pasture growth in New Zealand. 

As explained in Chapter 1, N fertiliser use is commonly associated with 

reduced clover content in the mixture, making it more difficult to maintain 

the desired grass/clover balance. Schwinning and Parsons (1996a) showed by 

modelling the coexistence of grass and clover, that as soil inorganic N levels 

increase, the content of clover will decrease if the grass/clover system is self 

regulating these levels. However, the soil inorganic N level will not be 

elevated for a long time if N is fairly quickly utilised by the herbage and not 

applied frequendy. It will mainly benefit the grass component, but also clover 

can benefit at times when N fixation is limiting growth. 

In this study, the application of 100 kg N/ha/year decreased clover 
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growth and content moderately for some time after application, but not 

permanendy. Similarly, in dairy pastures relatively small reductions in clover 

content were measured when 200 kg N/ha/year was applied when stocking 

rate was high (4.48 dairy cows/ha; Harris et al., 1996). The negative effect of 

N fertiliser in Harris et al.'s study was much greater at a lower stocking rate 

(3.24 cows/ha). In general, very few strong effects of N fertiliser on the 

clover attributes were found in the present study. However, this does not 

mean that morpho-physiological mechanisms or responses are not involved. 

Rather, it is possible that the range of N application used (0 and 100 kg 

N/ha/year) was too narrow to generate responses that were sufficiently large 

to detect as being statistically significant amidst the well-known variability that 

exists between plants and micro-sites in grazed pastures. In contrast, Harris et 

al. (1996) detected quite large differences in clover plant and population 

structure in pastures grazed by dairy cattle and receiving 400 kg N/ha/year. 

Almost all plant size attributes measured by Harris et al. (1996) were lower in 

the 400 kg N/ha/year treatment compared to treatments receiving no N or 

200 kg N/ha/year. Harris et al. (1996) did not collect detailed information on 

stolon growth dynamics of the sort obtained in this study to identify how or 

when these differences developed. 

The relatively moderate effect of the N treatment used here, and the 200 

kg N treatment of Harris et al. (1996), on clover content shows that there is 

scope for increasing pasture production with the use of N fertiliser while 

maintaining something close to the clover contribution found in the absence 

of N, providing pastures are well utilised. However, it remains to be seen 

whether the clover in such systems is more prone to sporadic environmental 

stresses than in systems where fertiliser N is not used, or is used at still lower 

rates. Furthermore, a modelling study of population oscillations between a 

grass and a N fixing legume in a mixed sward showed sustained year-to-year 

variation in legume content at the field scale following a field-wide 

disturbance such as a fertiliser N application (Schwinning and Parsons, 

1996b). Greater oscillations will make it more difficult to plan pasture 

management and achieve the desired balance between grass and clover in the 

mixture. 
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6.5 Implications for breeding 
Breeding for clover varieties which have a higher N fixation capacity, or 

are more vigorous growers and stronger competitors in a grass/clover sward, 

may not necessarily lead to a higher production level of the whole sward nor a 

higher clover content in the sward (Ennik, 1981; Schwinning and Parsons, 

1996a). However, when the aim is to increase production in the cooler 

seasons, there are various ways to achieve this. Firstly, plant breeding could 

be directed towards increased N fixation rates at lower temperatures. 

Secondly, as was outlined in the section above, the use of fertiliser N in the 

cooler periods results in increased production of the whole sward. When this 

method is applied, the continuing contribution of clover needs to be secured. 

In Chapter 1 and 3 the importance of rooting and branching of nodes, to 

ensure maintenance of the clover population, has been stressed. Results in 

Chapter 3 indicate not branching itself, but survival of branches may be a key 

factor in clover persistence when fertiliser N is applied. The longevity of a 

branch increased when a root was present on the same parental node. 

Rooting of branched nodes was inhibited when N fertiliser was applied. 

Hence screening clover genotypes for variation in sensitivity of branching and 

rooting for the environment around the nodes, should make it clear if there is 

scope for selection and breeding of cultivars that are able to persist through 

successful establishment of branches in less favourable conditions. This 

would increase the range of management options for farmers, and protect the 

clover in swards to some extent from errors in management resulting in less-

than-ideal conditions for nodal development. 

Apart from a continuing contribution to the diet of the grazing animals 

when fertiliser N is used in cooler periods, clover should also maintain N 

fixation in the periods when the temperatures are sufficiently high, which is 

(late) spring through to (mid) autumn. The clover has to possess a sufficiently 

large rooting system from which a high rate of N fixation can be supported. 

Quantifying genetic variation in rooting rates of nodes and the rate of 

establishment of N fixation capacity, as well as higher N fixation efficiency, 

should indicate if it is possible to move to this goal through plant breeding. 

Hoglund (1973) suggested that selection for an increased rate of 

establishment of N fixation capacity is possible for lucerne. West et al. (1985) 

120 



General discussion 

showed the clover cultivar G18 (later renamed 'Grasslands Kopu') fixed more 

N than Huia, both in terms of kg N and % of total N accumulation in the 

plant, while inorganic N uptake was similar. Mytton and Rys (1985) showed 

genetic differences for nodulation and N fixation with applied N within the 

variety Aberystwyth S.100. Genotypic variation in root dry weight per plant 

when inorganic N is available was shown by Hoglund and Brock (1974). This 

does not necessarily mean variation in nodulation or N fixation, but 

availability of sites for nodulation does vary. 

6.6 Main conclusions 

The target for this study was to increase knowledge of clover plant 

growth processes and plant and population structure in grazed N fertilised 

pastures. This should help identify management strategies and plant breeding 

goals aimed to successfully combine fertiliser N applications and sustained 

clover contribution in grazed pastures. The results of this study show herbage 

production increases by the use of fertiliser N in autumn and late winter, and 

at a rate of 100 kg N/ha/year clover content and production are not 

permanently compromised. The grazing treatments applied did not result in 

great differences in herbage production or composition, and clover was 

maintained under all grazing treatments. Comparison with studies under 

sheep grazing indicates the environment under cattle grazing could be more 

favourable for clover in a grass/clover sward, than under sheep grazing, but 

that breaking up of plants through treading and/or excreta return is stronger 

under cattle than under sheep grazing. Especially in spring plants are small, 

and probably most vulnerable to stress. In this season rooting appeared to be 

inhibited when fertiliser N was used. It is possible that this decreased rooting 

makes branches and clover plants more susceptible to periods of stress. The 

results suggest continuous stocking in the cooler times of the year, with a 

shift to rotational grazing when temperatures rise, may help to increase 

occurrence of branching and rooting, and therefore increase persistence of 

clover. For improved herbage production at lower temperatures, plant 

breeding could be directed towards increased N fixation at lower 

temperatures, or maintenance of the clover contribution when fertiliser N is 

used at lower temperatures. For the latter goal, development and longevity of 

branches and roots are key factors, as well as N fixation capacity and 

efficiency at higher temperatures. 
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6.7 Future research 
This thesis clearly showed the large variation between clover plants in a 

grazed grass/clover sward. Small-scale differences in the environment define 

the dynamics of each individual growing point and node, be it from a main 

stolon or a branch. This variation that exists in the grass/clover sward should 

not be seen as undesirable, it can moderate the otherwise large differences 

that might be seen between years in clover content of the pasture when the 

pasture is relatively uniform with respect to factors such as inorganic N 

availability (Schwinning and Parsons, 1996b). 

The large variation implies that observations on a large number of plants 

or stolons are necessary to establish significant differences between 

treatments, or between seasons. Since the variation between seasons was 

larger than that between the applied treatments, the seasonal differences 

could be better established than differences between treatments. For future 

research, the total residual variances, which can be derived from Chapter 5, 

are a good guideline to determine the number of observations needed to 

establish the required differences. Also, in future research greater contrast 

between treatments could be used. In the present experiment extreme 

treatments were not used, so that the results would relate more directly to 

farming practice. The lack of large differences, and the problems of 

generating sufficient discriminatory power when background variation in the 

sample unit is high, are significant risks in this kind of applied research. 

The discrepancies in the results of scored clover stolons and dissected 

clover plants, showed that the method of scoring main stolons with a growing 

point present did not give a full description of processes in the whole clover 

plant population. For example, part of the population consists of stolons 

without a growing point, which also bear rooted and branched nodes. These 

were not included in the sample for the stolon observations described in 

Chapter 3. As soon as the branch became a main stolon itself, it would 

behave similarly to the marked stolons and could have been included in the 

sample. While intuitively it seems likely that a combination of results from 

marked stolons and census sampling of whole plants will generate greater 

explanatory power (as was expected at the outset of this study), there are 

important requirements for sample selection and representation, and sampling 
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frequency and intensity, that must be identified and met if this dual approach 

is to succeed. 

Further research is necessary to establish relationships between 

temperature, inorganic N levels in the soil, and the ability of clover roots to 

establish or maintain sufficient N fixation capacity in a grazed grass/clover 

sward. When temperatures rise in spring, the grasses respond first with higher 

growth rates, followed by the clover. Hence, for a time, clover faces increased 

competition from grasses for inorganic N and other nutrients, as well as 

competition for light. Simultaneously, increased death of old stolon leads to 

fragmentation of larger plants and an increase in small clover plants in the 

pasture with limited root capacity. Maintenance of the Rhi^obium symbiosis at 

this time when pressure on the energy supply of the clover plant is great, and 

the root system of plants is somewhat weakened, could be problematic. Such 

research should link with parallel work on genetic variation in the speed and 

efficiency of establishment of functional nodules (section 6.5). 

The importance of 2nd and 3rd order plants for the persistence of the 

clover population (either as number of plants or number of growing points 

per unit area), warrants more detailed measurements on these classes. 

Monitoring whole plants in a grazed sward, to determine the fate of branches 

and roots, would increase the understanding of the seasonality and various 

impacts on the plant, and hence on the population. However, it will be 

difficult to determine in which class a plant belongs, since much of the stolon 

material is usually buried. The fate of buried nodes and stolon material is hard 

to monitor in time with repeated measures. The method of Sackville-

Hamilton (1989) to excavate plants after a set period of time, will show the 

state of the material at that point in time, but clearly it is not possible to 

measure the same plant again at a later date. 

A better option might be to mark main stolons, record the events on the 

whole plant, also after the growing point has disappeared, and to monitor also 

all new growing points, i.e. the secondary and tertiary branches. Once the 

branch itself has developed around eight nodes and has rooted itself, it will 

probably behave similarly to main stolons monitored in the present 

experiment, but this still remains to be established. The importance of plant 

structure for the survival of plants and branches should be established. For 

example, do tertiary stolons of 3rd order plants survive better in adverse 
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conditions than secondary stolons of 2nd order plants? Severance of the roots 

can be used to determine the effects of rooting of the parental node. The 

vulnerability of main stolons and branches to local or temporal stresses 

should be tested. Monitored plants can be subjected to single stress factors, or 

to combinations of these, such as N fertiliser application, shading, surplus or 

shortage of water, hard or lax grazing. 

Reference was made earlier in this Chapter to the relative insensitivity of 

the grass/clover balance in pastures to management manipulation, and some 

possible reasons for this (section 6.4). Chapman et al. (1996) argued that 

expectations of more than 50% clover in the pasture (a commonly stated 

goal) may be unrealistic under grazing, and advocated that more attention be 

focused on determining the 'optimum' clover content from productivity, 

profitability and sustainability perspectives to set realistic goals for future 

research. The actual content will fluctuate seasonally, as seen from the results 

of this study and many others. It is important therefore to establish to what 

levels clover can decrease in winter and spring, and still be able to come back 

to such an extent in summer that it contributes significantly to the production 

and N supply of the pasture. The effect of added N on this recovery capacity 

should also be examined. For example, an optimal and attainable clover 

content for a grass/clover sward could be one that fluctuates between 10% of 

total DM production in winter and 50% in summer. Higher contents in 

summer may cause bloat, while the utilisation of proteins in the rumen is 

inefficient when there is an imbalance between carbohydrates (energy) and 

protein in the diet. A lower content in summer may be suboptimal for N 

supply to the sward. A lower content of clover in winter decreases the protein 

content of the animals' diet undesirably. 

In conclusion, field experiments are useful in determining practical 

implications of results from fundamental research, and to create new 

hypotheses about growth processes. However, they are not suitable for 

establishing the working of processes, because too many factors are involved 

in field experiments, which can not be controlled by the researcher. 

It is clear that variation in clover growth processes and population and 

plant structure is very large in the field. This variation makes determination of 

statistically significant differences between treatments difficult, especially so 

when moderate treatments, close to farming practices, are used. A large 
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number of observations is then required. This can be achieved by long term 

trials, running for several years, or by trials running at various locations. A 

further step towards this could be to bring together all the presently available 

data, from New Zealand and other countries, from catde- and sheep-grazed 

pastures. Such a data set also gives a range of soils and climates, further 

improving its power to detect influences of environment. At present powerful 

statistical methods are available to tackle this kind of data set. 
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SUMMARY 

Introduction 
The overall target for the present study was increased herbage 

production through the use of fertiliser N in the cooler times of the year, 

while maintaining the benefits of the white clover (Trifolium repens L.) 

component of the herbage. The continued use of fertiliser N generally leads 

to a decrease in the clover content. The mechanisms behind this decrease in 

clover are not fully understood. 

The experiment presented in this thesis studied clover population and 

plant structure and plant growth processes. Seasonal dynamics in cattle-

grazed pastures, the effects of fertiliser N applications, grazing management, 

and their interactions, were investigated. This helped to identify management 

strategies and plant breeding goals aimed to successfully combine fertiliser N 

application and sustained clover contribution in grazed pastures. 

The grazed sward, setting the scene 
The study was conducted at Aorangi field research station, an 

experimental area of AgResearch Grasslands, near Palmerston North, New 

Zealand. The grazing treatments imposed on the pastures were rotational 

grazing with either 4.9 or 7.4 Friesian bulls/ha (RG4.9 and RG7.4, 

respectively), and continuous stocking with 4.9 bulls/ha (CS4.9). Within the 

grazing treatments, fertiliser N (urea) was applied to strips within the pastures 

twice each year, in mid autumn and late winter, at 50 kg N /ha per dressing. 

Total herbage accumulation was 16.6 tonnes DM/ha/year in 1991 and 

16.0 tonnes DM/ha/year in 1992 (Chapter 2). Clover content was lowest in 

winter at 10%, increasing to 30% in summer. Grazing management did not 

affect the herbage accumulation or composition. The average efficiency of the 

applied fertiliser N was 17.5 kg DM/kg N in 1991 and 12.9 kg DM/kg N in 

1992, with the greatest response of herbage accumulation occurring after the 

autumn applications. On average N tended to reduce clover DM 

accumulation by 15% and clover content by 3.6%. The greatest reductions 

were recorded in spring. 

The tiller density of Ijolium species was on average 8800 tillers/m2 under 

CS and 6420 tillers/m2 under RG. The density of other grasses was on 

143 



average 7270 tillers/m2 without N and 6320 tillers/m2 with N. Seasonality 

was apparent, with highest grass tiller densities in winter. Clover density was 

on average 4000 growing points/m2, stolon length 110 m/m2 , and stolon 

weight 63 g/m2. Clover density increased greatly in the February 1992 

sampling (summer), which was the only sampling showing an effect of 

grazing treatment, with a greater density under CS4.9 than under RG7.4. N 

application did not affect clover density. 

Growth dynamics of stolons 
Seasonality and the effects of grazing and N treatments on clover growth 

dynamics are reported in Chapter 3. Growth dynamics were characterised by 

loss of growing points at the main stolon, appearance, removal and 

senescence of leaves, axillary buds, branches, roots and inflorescences, and 

stolon elongation of marked main stolons in the pastures described above. 

Seasonal effects were in general much stronger than treatment effects. In 

Chapter 5 growth dynamics are related to climatic variables. Growth was 

positively related to mean soil temperature at 10 cm depth, which explained 

the greatest part of the variation. The relations were linear with soil 

temperature, with monthly averages between 7 and 21 °C. However, the rates 

of rooting and root senescence could not be explained by the climatic 

variables recorded. These rates were highest in spring and autumn. 

Senescence rates of axillary buds, branches and roots were more closely 

related to appearance rates of the respective plant parts than to climatic 

variables. 

To maintain the population of main stolons each week 1 node per 10 to 

30 main stolons had to develop a branch that could survive independendy 

from the parental stolon. The longevity of a branch increased when the 

parental node had rooted, and a root showed an increased longevity when a 

branch was present at the parental node. Each week only 1 per 10 to 50 main 

stolons produced a rooted node that had the potential to support a branch 

until it could survive independendy from the parental stolon. Thus, to 

maintain the population of main stolons a certain proportion of the branches 

has to establish without the support of an associated root. 
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Summary 

Grazing treatments did not differ in rates of leaf removal, appearance, or 

senescence. Thus, utilisation of leaf growth was also similar for the grazing 

treatments, with an average of 46%. With the same stocking rate, the 

percentage of nodes that developed roots was lower under CS than RG. 

Under RG, the higher stocking rate resulted in a lower percentage of nodes 

rooting. Rate of rooting of nodes was suppressed in spring for plus-N, 

compared to no-N, particularly on branch bearing nodes. It appears the 

greater apical dominance of the branch inhibits rooting of the parental node. 

In periods with adverse conditions, such as drought, this may have 

implications for branch survival. 

A few interactions between climatic variables and treatments were found 

(Chapter 5). The rates of leaf and branch appearance were lower under RG4.9 

at low mean soil temperatures than under the other two grazing treatments, 

while at higher temperatures the reverse was true. 

Population and plant structure 
Plants were described by branching complexity, plant dry weight (DW), 

allocation of biomass to different plant parts (stolon, leaf, root and 

inflorescence), stolon length and numbers of stolons, growing points, nodes, 

leaves, petioles (without leafy material), roots and inflorescences per plant and 

per stolon order (Chapter 4). The plants were extracted from intact turves 

removed from the swards. 

The estimated plant density, based on growing point density and average 

number of growing points per plant, varied between 650 and 1300 plants/m2. 

In winter/early spring the estimated density was highest and in late 

summer/early autumn lowest. The population of clover plants varied widely 

in size and structure, and this showed a strong seasonal pattern. On the 

whole, plants of 2nd and 3rd order branching structure were most important 

in this clover population. In early autumn plant structure was most complex. 

From autumn on, the population shifted to a less branched structure. In 

spring the plants were small and of relatively simple structure, with mainly 1st 

and 2nd order plants. Within plant orders, plants were generally larger in late 

spring/ summer. 

Effects of grazing or N treatments were few. Plants under CS had a 

lower leaf DW than under RG. N application tended to decrease the number 
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of rooted nodes per plant in spring. Treading and/or excreta return 

contributed to breaking up of plants. 

Conclusions 

The target for this study was to help identify management strategies and 

plant breeding goals aimed to successfully combine fertiliser N application 

and sustained clover contribution in grazed pastures. For clover persistence, 

branches have to develop and establish successfully as independent plants. 

Increased rooting improves the chance of branch establishment. Continuous 

stocking in the cooler periods of the year, with a shift to rotational grazing 

when temperatures rise, may help to increase branching and rooting. Pasture 

production can be increased in the cooler times of the year by the use of 

fertiliser N. Clover content and production are not permanendy reduced with 

100 kg N/ha/year. However, rooting appeared to be inhibited in spring 

following N applications. Especially in spring plants are small, and probably 

most vulnerable to stress. It is possible that the decreased rooting makes 

branches and clover plants more susceptible to periods of stress, when N is 

applied. 

Apart from maintenance of the clover population, N fixation should be 

maintained in warmer periods. For both goals, root development and 

longevity are key factors. Genetic variation in root development and 

longevity, N fixation capacity and efficiency, and the rate at which N fixation 

capacity is established when temperatures rise, should be quantified. This 

should indicate if improvement of these characteristics could be achieved 

through plant breeding. 

Future research 

In the present experiment main stolons were only included in the sample 

of marked stolons when a growing point was present. However, part of the 

population of main stolons consists of stolons without a growing point. The 

branches and roots on these stolons were not monitored, but these also play a 

significant role in the clover population. Also, branching and rooting of nodes 

on secondary stolons were not considered in the present experiment. These 

parameters should receive attention in future research, to fully explain the 

structure of a clover plant population. The importance of plant size and 
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Summary 

structure for persistence of clover should be established. Monitored plants 

could be subjected to stress factors such as shading, defoliation, N fertiliser 

application, and surplus or shortage of water, to establish vulnerability of 

main stolons and branches to local or temporal stress. 
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SAMENVATTING 

Dynamiek van witte klaver in beweid grasland in 
Nieuw Zeeland 

Introductie 
Een doelstelling van graslandmanagement in Nieuw Zeeland is een 

hogere productie in de koelere tijden van het jaar te bewerkstelligen door 

gebruik van kunstmest N, terwijl toch voldoende witte klaver (Trifolium repens 

L.) aanwezig blijft om nog een belangrijke bijdrage aan het rantsoen en de N 

voorziening van het grasland te leveren. Regelmatig gebruik van kunstmest N 

leidt veelal tot een daling van het klaveraandeel in het grasland. Hoe dit 

precies in zijn werk gaat is nog niet bekend. 

Dit proefschrift presenteert een studie van de populatie- en 

plantstructuur en de groeiprocessen van klaver in grasland dat wordt beweid 

door rundvee. De dynamiek over de seizoenen heen wordt beschreven, en de 

effecten van beweidingmanagement, het gebruik van kunstmest N, evenals 

interacties tussen deze factoren. Het doel is om mede door dit werk 

strategieen vast te stellen voor gras/klaver management en veredeling van 

klaver, voor een succesvol gebruik van de combinatie van klaver en kunstmest 

N in beweid grasland. 

Beweid grasland, een schets van de omgeving 
De studie is uitgevoerd op Aorangi, bij Palmerston North in Nieuw 

Zeeland. Aorangi is een proefbedrijf van DSIR Grasslands (nu AgResearch 

Grasslands). Er werden drie typen beweiding toegepast, omweiden met 4,9 of 

7,4 Friese stieren/ha (RG4.9 en RG7.4), en standweiden met 4,9 stieren/ha 

(CS4.9). In de weilanden werden stroken aangelegd waar kunstmest N 

(ureum) werd gestrooid. Dit gebeurde twee keer per jaar, in het najaar en de 

winter. Per keer werd 50 kg N /ha gebruikt. 

De totale droge-stofproductie van het grasland was in 1991 16,6 

ton/ha/jaar en in 1992 16,0 ton/ha/jaar (Hoofdstuk 2). Het aandeel klaver in 

de droge stof was het laagst in de winter, met 10%, en steeg tot 30% in de 

zomer. De verschillende typen beweiding resulteerden niet in verschillende 
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opbrengsten of aandelen van de verschillende graslandcomponenten (raaigras, 

overige grassen, witte klaver, overige kruiden en dood materiaal). Gemiddeld 

was de efficientie van de gebruikte kunstmest N 17,5 kg droge stof/kg N in 

1991 en 12,9 kg droge stof/kg N in 1992. De grootste respons van de 

graslandproductie op de kunstmest N werd gemeten na de toediening in het 

najaar. Gemiddeld bleef de klaveropbrengst achter met 15% en daalde het 

aandeel klaver in de droge stof met 3,6% door toediening van kunstmest N. 

De grootste achteruitgang in klaver werd in het voorjaar gemeten. 

De spruitdichtheid van de ljolium soorten was gemiddeld 8800 

spruiten/m2 bij standweiden en 6420 spruiten/m2 bij omweiden. De 

dichtheid van andere grassen was gemiddeld 7270 spruiten/m2 zonder N en 

6320 spruiten/m2 met N. De spruitdichtheid van grassen was hoger in de 

winter. De dichtheid van klaver was gemiddeld 4000 groeipunten/m2, met 

een stolonlengte van 110 m/m2 en een stolongewicht van 63 g/m2. De 

klaverdichtheid was zeer hoog in februari 1992 (zomer). Dit was ook het 

enige tijdstip met verschillen tussen de typen beweiding: de dichtheid onder 

CS4.9 was hoger dan onder RG7.4. De toediening van kunstmest N had geen 

invloed op de dichtheid van klaver. 

Groeidynamiek van stolonen 
Het seizoensverloop en de effecten van beweidingmanagement en 

kunstmest N op de dynamiek van klavergroei zijn beschreven (Hoofdstuk 3). 

De groeidynamiek werd gekarakteriseerd door het verlies van groeipunten, 

het verschijnen, verwijderen en afsterven van bladeren, okselknoppen, 

zijscheuten, wortels en bloeiwijzen, en de verlenging van gemarkeerde 

hoofdstolonen. 

De verschillen tussen de seizoenen waren over het algemeen veel groter 

dan de verschillen tussen de toegepaste behandelingen. Relaties tussen de 

groeidynamiek en klimaatsfactoren werden berekend (Hoofdstuk 5). De groei 

was positief gerelateerd aan de gemiddelde bodemtemperatuur op 10 cm 

diepte, wat de belangrijkste verklarende factor was. De relaties waren lineair 

tussen de groeidynamiek en bodemtemperatuur, met gemiddelden per maand 

tussen 7 en 21 °C. Alleen het verschijnen en afsterven van wortels konden 

niet verklaard worden met de gemeten klimaatsfactoren. Meer wortels 

verschenen en stierven af in het voor- en najaar. Het afsterven van 
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okselknoppen, zijscheuten en wortels was meer gerelateerd aan het 

verschijnen van deze plantendelen, dan aan de gemeten klimaatsfactoren. 

Om de populatie hoofdstolonen te behouden, moest gemiddeld 1 op de 

10 tot 30 hoofdstolonen een zijscheut ontwikkelen die zich onafhankelijk van 

de hoofdstolon kon vestigen. Het benodigde aantal is afhankelijk van het 

seizoen. Een zijscheut leefde langer wanneer de knoop waarop deze zijscheut 

zat ook beworteld was. Andersom leefde een wortel ook langer door de 

aanwezigheid van een zijscheut. Op maar 1 op de 10 tot 50 hoofdstolonen 

ontwikkelde zich een wortel die lang genoeg leefde om een zijscheut te 

ondersteunen totdat het zich onafhankelijk van de hoofdstolon zou kunnen 

vestigen. Om de populatie van hoofdstolonen te behouden, moest daarom 

een deel van de zijscheuten zich kunnen vestigen zonder de ondersteuning 

van een wortel op dezelfde knoop. 

De verschillende typen beweiding resulteerden niet in verschillende 

snelheden van verwijderen, verschijnen en afsterven van bladeren. Dus de 

benutting van de bladgroei was ook gelijk voor de verschillende typen 

beweiding, met een gemiddelde van 46%. Met een gelijke veedichtheid 

wortelde een lager percentage van de knopen onder standweiden dan onder 

omweiden. Onder omweiden wortelde een lager percentage van de knopen bij 

de hogere veedichtheid. In het voorjaar was de beworteling minder na 

toediening van N, vooral van knopen waarop al een zijscheut was ontwikkeld. 

Het lijkt er op dat de grotere dominantie van het groeipunt van de zijscheut 

het wortelen van de knoop, waarop deze zijscheut gevestigd is, remt. In 

perioden met slechtere groeiomstandigheden, zoals droogte, kan dit 

consequenties hebben voor de overlevingskansen van de zijscheut. 

Een paar interacties zijn gevonden tussen klimaatsfactoren en beweiding-

en N-behandelingen (Hoofdstuk 5). De snelheid van verschijnen van bladeren 

en zijscheuten was bij lagere temperaturen lager onder RG4.9 dan onder de 

andere twee beweidingbehandelingen. Bij hogere temperaturen was dit juist 

omgekeerd en waren de snelheden hoger onder RG4.9. 

Structuur van populatie en plant 

Klaverplanten werden beschreven aan de hand van de mate van 

uitstoeling, het drooggewicht van de verschillende plantendelen (stolon, blad, 

wortel en bloeiwijze), de stolonlengte en de aantallen stolonen, groeipunten, 
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knopen, bladeren, bladstelen, bewortelde knopen en bloeiwijzen per plant 

(Hoofdstuk 4). De planten werden uit plaggen gehaald die regelmatig werden 

gestoken uit het grasland. 

De geschatte plantdichtheid, gebaseerd op de dichtheid van groeipunten 

in het grasland en het aantal groeipunten per plant, varieerde tussen 650 en 

1300 planten/m2. In de winter en het vroege voorjaar was de geschatte 

plantdichtheid het hoogst, in de late zomer en vroege najaar het laagst. De 

populatie van planten varieerde sterk in grootte en structuur, met een 

duidelijk seizoenverloop. Over het algemeen waren planten van de tweede en 

derde orde van uitstoeling het belangrijkst voor de huidige klaverpopulatie. In 

het vroege najaar was de structuur van uitstoeling het meest complex. Daarna 

nam de complexiteit af. In het voorjaar waren de planten klein en van een 

relatief simpele structuur, met voornamelijk planten van de eerste en tweede 

orde van uitstoeling. 

De beweiding- en N-behandelingen hadden maar weinig effect op de 

structuur van de populatie en de planten. De planten onder standweiden 

hadden een lager bladgewicht dan onder omweiden. Met toediening van N, 

waren minder knopen beworteld in het voorjaar. Het bleek dat betreding 

en/of uitwerpselen bijdragen aan het opbreken van planten in kleinere 

planten. 

Conclusies 
De doelstelling van deze studie was een bijdrage te leveren aan 

strategieen voor gras/klaver management en veredeling van klaver, waarmee 

klaver en kunstmest N in beweid grasland met succes zijn te combineren. 

Voor persistentie van klaver moeten zijscheuten de mogelijkheid krijgen zich 

te vestigen als jonge planten. Een goede beworteling verbetert de kansen voor 

vestiging van zijscheuten. Standweiden in de koelere perioden, gevolgd door 

omweiden als het warmer wordt, lijkt de vorming van zijscheuten en wortels 

te bevorderen. De graslandproductie kan in de koelere perioden van het jaar 

verhoogd worden door toediening van kunstmest N, waarbij klaver bij matige 

hoeveelheden kunstmest N niet blijvend onderdrukt wordt. Maar gebruik van 

kunstmest N resulteert in slechtere beworteling van klaver in het voorjaar. 

Juist dan zijn de planten klein en waarschijnlijk het meest gevoelig voor stress. 

De slechtere beworteling bij gebruik van kunstmest N kan deze gevoeligheid 
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vergroten, en daarmee de persistentie van klaver verminderen in perioden van 

stress. 

Behalve de persistentie van klaver, is ook de N binding in de warmere 

perioden belangrijk. Voor beide aspecten is het van belang dat veredeling zich 

richt op het wortelstelsel: de beworteling, de levensduur van de wortels, de 

capaciteit en efficientie van N binding, en de snelheid waarmee de capaciteit 

om N te binden wordt opgebouwd als de temperatuur stijgt. De genetische 

variatie in deze karakteristieken moet worden bepaald om vast te stellen of 

verbetering mogelijk is. 

Toekomstig onderzoek 
In dit onderzoek is gekeken naar hoofdstolonen met een groeipunt. Een 

deel van de populatie van hoofdstolonen heeft echter geen groeipunt meer. 

De dynamiek van zijscheuten en wortels aan deze stolonen is niet gevolgd, 

maar speelt wel een belangrijke rol in de klaverpopulatie. Ook werden de 

uitstoeling en beworteling van secundaire stolonen niet meegenomen in het 

huidige onderzoek. Deze aspecten dienen in toekomstig onderzoek aandacht 

krijgen om de structuur van de populatie en van de planten volledig te kunnen 

verklaren. Daarnaast dient het belang van de grootte en de structuur van de 

plant voor de persistentie van klaver te worden bepaald. Daarvoor kunnen 

gemerkte planten worden gevolgd terwijl er stress wordt uitgeoefend op de 

planten, zoals beschaduwing, ontbladering, gebruik van kunstmest N en een 

tekort of teveel aan water. 
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CURRICULUM VITAE 
Jentina Bertha (Ina) Pinxterhuis werd op 21 juli 1965 geboren in Meppel. 

De eerste vijf jaar groeide ze op in De Wijk en eind 1970 verhuisde het gezin 

naar Pesse. In 1984 behaalde zij het atheneumdiploma van de openbare 

scholengemeenschap De Groene Driehoek in Hoogeveen. Aan de 

landbouwuniversiteit in Wageningen studeerde zij van 1984 tot 1990 

Landbouwplantenteelt, orientatie Graslandkunde. Voor een afstudeervak 

Natuurbeheer bracht ze een half jaar door in Burkina Faso, waar begrazing 

door rundvee werd bestudeerd. Daarna vertrok ze naar Nieuw Zeeland voor 

een afstudeervak Graslandkunde. Hier bestudeerde ze klaver, begraasd door 

schapen, bij DSIR Grasslands in Palmerston North, Nieuw Zeeland. 

In augustus 1990 keerde zij terug naar DSIR (later AgResearch) 

Grasslands om tot begin 1994 promotieonderzoek te doen dat tot dit 

proefschrift heeft geleid. Zij keerde voor korte tijd terug naar Wageningen om 

haar proefschrift af te ronden, maar al spoedig kreeg zij een aanstelling bij het 

Praktijkonderzoek Rundvee, Schapen en Paarden (PR) in Lelystad. Daar 

werkte ze bij de afdeling Weidebouw drie jaar aan analyses van databestanden, 

onder andere van het Bedrijfslaboratorium voor Grond- en Gewasonderzoek 

(nu Bigg Oosterbeek). In September 1997 kreeg ze een vaste aanstelling bij 

het PR als projectcoordinator biologische melkveehouderij voor Aver Heino. 

Dit proefbedrijf schakelde eind 1997 om naar biologische melkveehouderij. 

Alles viel weer op zijn plaats: rundvee en klaver! 
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