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Abstract 

The objective of this paper is to investigate the scope for improving the environmental per
formance of pig farms in the short and the long run. In the short run, such an 
environmental improvement can be obtained by improving the environmental efficiency of 
farms relative to the currently available technology. In the long run, however, an improve
ment in environmental performance requires switching to new and cleaner technologies, 
which involves substantial investments in, e.g. buildings. Improvement of environmental 
performance in the short run is investigated by generating environmental efficiency scores 
for mineral excretion and ammonia emission on farm data using Data Envelopment Analy
sis. These environmental efficiency scores are an indication for the scope reducing 
excretion and emission in the short run, relative to the currently used technology. 

Improvement of environmental performance in the long run is investigated in two 
stages. In the first stage, input-output combinations for new and cleaner technologies and 
new restrictions in pig farming are generated with the Technical Model Pig Feeding, de
veloped by The Research Institute for Pig Husbandry (PV) in the Netherlands. To analyse 
the potential future improvements on pig firms, 60 hypothetical, but technically feasible, 
pig farms are generated using this model. 

In the second stage, generated data are used to obtain a frontier of optimal input-
output combinations. This frontier is compared with the frontier that was found using panel 
data from a stratified sample of specialised pig farms that participate in the LEI Farm Ac
countancy Data Network (FADN). These data include all expenses and revenues, as well 
as information on mineral excretion and ammonia emission. 

Environmental performance of pig firms in the long and short run is computed as the 
sub-vector efficiency of the environmentally detrimental input. The shift of the frontier in
dicates by how much new technologies will improve the technical or environmental 
performance of farms. 

The average efficiency score of FADN farms shows that identical output can be pro
duced with 10% reduction in inputs. When data on new technologies are added, a further 
reduction of 4% in inputs is possible. The ammonia emission can be reduced with 30% (by 
current housing systems) conditional on output and the conventional inputs. When the 
technology embedded in green label housing systems is added to the data set, a total re
duction of ammonia emission with 43% is possible. 
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1 Introduction and background 

Recently, the Dutch government has introduced a sizeable amount of legislation in Dutch 
pig farming in order to decrease environmental pollution and improve animal welfare. 
Generally, reduction in pollution levels can be attained by more efficient use of current 
practices and through the use of new, more environmental friendly techniques. Two lines 
of research can be distinguished in the literature on the analysis of potential efficiency 
gains. The first line is based on the analysis of actual data, whereas the second line focuses 
on potential improvements by new farm practices. 

To gain insight in the economic, environmental and technical efficiency of transfor
mation processes in (pig) farming and in the potential improvements by new techniques, 
researchers use production functions that describe input-output relations and technological 
development at farm level. Dijk et al. (1998) compared the approaches used by agrono
mists, economists and sociologists. Thus far, these disciplines have not been integrated into 
one method. Agronomic and economic evidence has been combined by Kaufmann and 
Snell (1997) in the estimation of a production function that relates grain production per 
hectare to a large number of variables (fertiliser applied, weather). This approach is only 
suitable in case of one output, and cannot be applied if multiple outputs (good and bad) 
have to be modelled. Another approach followed by Van Os et al. (1993) estimates the re
lation between one output and one input. However, this approach requires the estimation of 
several input-output relations and may result in biased estimates due to the omitted vari
able problem. Moreover, both approaches do not incorporate future available techniques in 
their analysis. 

Economists obtain estimates of the production functions using statistical techniques 
and mathematical programming. Models obtained by statistical techniques (ex post esti
mates) are based on observed input-output relations (e.g. Reinhard et al., 1999). 
Mathematical programming models also use observed input-output relations, but can easily 
incorporate technical information that is not reflected in observed input-output data (Wos-
sink, 1993). Technical researchers use simulation models to analyse input-output 
relationships. The Research Institute for Pig Husbandry (PV) developed various simulation 
models, which compute pig production conditional on inputs and restrictions specified. 

This study aims at integrating the economic and technical approach into one method 
to analyse input-output relations of the Dutch pig sector. Such a method provides perform
ance measures of pig farms relative to the best currently available technique and relative to 
future available technologies. 

The report is structured as follows. Chapter 2 describes the objective, which is fol
lowed by a literature review of methods towards combining technical and economic 
information in the analysis of input-output relations (i.e., chapter 3). The Farm account
ancy Data Network and the Technical Model Pig Feeding are discussed in chapter 4. 
Empirical results are presented in chapter 5. We conclude with conclusions and discussion 
(i.e., chapter 6). 

9 



2 Objective 

In order to analyse the technical, economic and environmental performance of Dutch pig 
farms now and in the future, it is required to have estimates of production possibilities. The 
standard method to compute technical and environmental performance (efficiency) is to 
compare the observation with a (best practice production) frontier. This frontier is esti
mated (or computed using mathematical programming) based on an aggregated set of 
inputs and outputs. This approach suffers from a few disadvantages (i) efficiency scores 
can only be estimated for existing data sets, new techniques cannot be evaluated (ii) a lot 
of technical production information is lost in the aggregation of inputs and outputs. The 
technical production characteristics determine to a large extent the emission of pollution. 

The objective of this research is to combine the normative technical production ap
proach and the economic (econometric) approach to construct a model that allows the 
computation of technical and environmental efficiency scores. The approach that is fol
lowed in this study consists of two stages. In the first stage, input-output combinations for 
new technologies and new restrictions in pig farming are generated with a farm technical 
model. In the second stage, the observed data and generated data are used to obtain a fron
tier of optimal input-output combinations. 
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3 Literature review of methods to combine technical and 
economic information 

3.1 Introduction 

This section provides a literature review of methods towards combining technical and eco
nomic information in the assessment of input-output relations. Two lines of research can be 
distinguished in the current literature: (i) Inefficiency measurement Data Envelopment 
Analysis (DEA) is used to combine different attributes of the production process and (ii) 
data generated in technical simulation models are used in a second stage analysis using 
metamodels. These methods will be discussed in section 3.3 and 3.4. Section 3.2 gives a 
general discussion of the literature on performance measurement. 

3.2 Performance measurement 

Efficiency scores are performance measures on the basis of which production units are 
evaluated. In efficiency measurement observations are compared with optimal production 
conditional on inputs (or outputs, depending on the definition used). Efficiency scores 
readily show the potential improvements. Technical efficiency measures do not need price 
information nor do they require the specification of any a priori weight on the environ
mental impacts that are being aggregated (Tyteca, 1996). The basis of standard efficiency 
methodology was developed by Farrell (1957). He proposed that the efficiency of a firm 
consists of two components: (i) technical efficiency, which reflects the ability of a firm to 
obtain maximum output from a given set of inputs, and (ii) allocative efficiency, which re
flects the ability of a firm to use the inputs in the optimal (profit maximising) proportions, 
given their respective prices. These two components are then combined to provide a meas
ure of total economic efficiency (overall efficiency). Farrell also introduced an input-
oriented technical efficiency measure, defined as the ratio of minimum potential to ob
served input required to produce the given output. Thus the analysis of technical efficiency 
can have an input-conserving orientation or an output-augmenting orientation. Efficiency 
is a relative measure; efficiency scores depend on the firms that are compared. 

Assessing the multi-attribute performance frontier for forward looking analysis is 
more complicated because it cannot be limited to best current practices but has to account 
for redesign, i.e., substitution by new techniques not yet implemented in practice (MacRae 
et al., 1990). Including only best practice technology would be insufficient for a forward-
looking analysis - under changing policy and market conditions technical change can be 
significant. Not only efficiently used current techniques are relevant but also experimental 
techniques and speculative ones not yet applied in agricultural practice. Tyteca (1996) 
points out this problem of the 'ideal'frontier and suggests two approaches: (1) technologi
cal definition based on the best existing techniques and expert opinions on what will 
become available in the next few years, and (2) metabolism approach based on fundamen-
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tal principles governing the processes involved. For the current study the first approach 
combined with efficiency analysis seems most suitable. 

To assess the frontier several methods can be distinguished. These methods vary ac
cording to: (1) the way the frontier function is specified (parametric or non-parametric), (2) 
the calculation method used to assess the function (programming techniques or economet
ric, i.e., statistical techniques), and (3) the way in which deviations from the frontier 
function are interpreted: as inefficiency (deterministic methods) or as a mixture of ineffi
ciency and noise (stochastic methods). As pointed out by Reinhard et al. (2000), the 
econometric approach allows hypothesis testing, whereas the DEA approach is more suit
able if environmental indicators are to be taken into account. An introduction to these 
methods can be found in Coelli et al. (1998). Parametric methods are based on assumptions 
on the shape and level of the frontier function, whereas non-parametric functions are esti
mated by means of programming or statistical techniques. Non-parametric methods do not 
use a specification and employ programming techniques (Färe et al., 1994). Non-
parametric methods in general are deterministic whereas parametric methods are stochas
tic. Moreover, parametric methods base the frontier on all observations in the sample, 
whereas non-parametric methods use only the most efficient observations for the frontier. 
The most popular non-parametric method is the Data Envelopment Analysis (DEA). DEA 
is based on linear programming; it truly envelops a data set. Subject to assumptions about 
the structure of the production technology, it envelops the data as tightly as possible. 

Thrikawala et al. (1998) generated alternative field fertility distributions with a pro
duction technical model for their analysis of the optimal Management Unit Size of a 
simulated field. They generate a single fertility level for each cell in their analysis by 
varying the mean, coefficient of variation and correlation coefficient for a log normal dis
tribution that follows an AR (1) process. In the second stage they estimate the potential 
efficiency gains of variation in management size units based on the generated input-output 
combinations. 

3.3 DEA-analysis 

Recently, the standard DEA method has been extended by several researchers in order to 
address issues of environmental efficiency and sustainability. 

Färe and Whittaker (1995) extend the standard DEA model to fit intermediate out
puts as well (i.e., dairy farming is separated into crop and livestock production). Their 
motive for incorporating intermediate products is that it is a better representation of reality. 
More realistic models of production enable the analyst to examine aspects of production, 
which have not been available before. They studied real farm data of 137 farms from a 
complex survey (non-parametric estimation technique). They modelled the dairy produc
tion process as being composed of two sub-production processes, crop and livestock 
production. Each of these sub-processes could be decomposed into more sub-processes, 
and so on, down to the level of the biochemistry of crop and milk production. They model 
the two distinguished sub-processes in a directed network, using intensity variables. These 
intensity variables allow each farm to be classified as efficient in either of both sub-
processes, where presence on the frontier required efficiency in both processes. 
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Tyteca (1997) uses DEA to integrate emissions of several pollutants by individual 
firms in one environmental efficiency indicator. The method is suitable to integrate a large 
number of pollutants and other factors. A further example of this method is provided by 
Callens and Tyteca (1999) who use DEA to combine economic, social and environmental 
efficiency indicators. A fundamental standpoint adopted is to view economic, social and 
environmental efficiency as a necessary (but not sufficient) step towards sustainability. 
They assume that they have available observations on economic, social and environmental 
factors for a set of Decision-Making Units (DMU). The efficiency of each DMU is com
puted from a set of observed data, using mathematical programming techniques. The 
frontier obtained from observations on existing DMU's merely reflects best practice, which 
as such does not imply sustainability. If past observations are used, the results obtained 
will be based on how industries made their choices in the past. Replacement of best prac
tice frontier by some kind of ideal frontier reflecting sustainability goals that society may 
formulate for production units will provide another useful extension of the methods devel
oped herein. 

De Koeijer and Wossink (1999) present a method to quantify sustainability of arable 
farms based on the economic theory of productive efficiency using Data Envelopment 
Analysis (DEA). The deviation of observed input-per-unit-of-output ratios from the agro
nomic efficiency frontier is considered to be associated with agronomic inefficiency of the 
farms involved. The optimal point is found by weighing the inputs according to the contri
bution to the objective function. The environmental impacts can be used as weights 
(similar to prices in the computation of cost efficiency). The carrying capacity of the envi
ronment should be measured per unit of area. The weight reflecting the environmental 
impact is expressed per hectare. In contrast to the standard approach, they measure eco
nomic efficiency as the financial returns per unit of area. For a specific combination of 
environmental efficiency and economic efficiency the point farthest from the origin is the 
most efficient. The dominating set contains those combinations that provide maximum lev
els of environmental efficiency for alternative levels of economic efficiency and vice 
versa. In the calculations of the sustainability scores it was assumed that there are no criti
cal minimum levels concerning the environmental and economic performance. They 
recommend incorporating threshold values in the measurement of the sustainability per
formance. 

De Koeijer et al. (1999) present different definitions of the efficiency concept from 
economic and agronomic point of view. It is not realistic to study the effects of a change in 
only one input, since the efficiency of this input would be very low if the levels of the 
other inputs would not be adapted to the level of the concerning input. The driving force 
for technological change has evolved from mainly production into a multi-objective (eco
nomic and ecological) one. This shift in the direction of technological development is quite 
different from the earlier aim of primarily increasing production. This means that input-
output relations and trends based on historical data sets are not suitable in a forward-
looking analysis. De Koeijer et al. (1999) present a model (an agronomically based model 
that consists of four equations) that represents the relation between agricultural output, 
growth limiting and growth reducing factors conditional on the growth defining factors. 
They do not estimate this model and conclude that a model, which combines agronomic 
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possibilities, normative economic restrictions and human behaviour, is needed for the 
analysis of input-output combinations. 

3.4 Metamodels 

Metamodelling is an analytical procedure that has been developed to gain insight into the 
behaviour of complex simulation models. A simple way to analyse the results of simulation 
models is to plot the input and output in a diagram. In that case a curve can be fitted and 
conclusions drawn to what extent a parameter has an important effect on a dependent vari
able. However, if more variables are taken into account metamodels are used to detect the 
interactions between the different variables. Metamodels often have the form of a regres
sion analysis on input and generated output of simulation models and mathematical 
programming models. A simulation model is a causal model of some problem entity; this 
model may be deterministic or stochastic. Metamodels allow the combination of several 
databases in one production function (and for validation and verification). A theoretical 
underpinning of these 'metamodels' can be found in Kleijnen and Sargent (1999). The de
velopment of metamodels can serve different purposes (Ruben and Van Ruijven, 1999). In 
the first place, metamodeling is meant to simplify the outcomes of simulation models with 
the objective to gain better understanding of the crucial relationships within the simulation 
model. Secondly, metamodels are used for the validation and verification of the robustness 
of simulation models. Finally, metamodels are often much smaller in size and can be used 
to replace the original simulation model in subsequent analyses. The latter objective is es
pecially relevant fore the purpose of our project, whereas we are looking for possibilities to 
integrate information derived from technical production simulation models with economic 
and environmental aspects of production 

3.5 Conclusion 

From the aforementioned two methodologies we selected DEA to elaborate in this study. 
Data Envelopment Analysis (DEA) is flexible and has been used before to add technical, 
economic and social information in one model (e.g., Callens and Tyteca, 1999). De Koeijer 
and Wossink (1999) used DEA to compute agronomic and economic efficiency. Advan
tage: the standard DEA-approach is straightforward. If we succeed in analysing the 
standard options we can extend the analysis by incorporating more details in the DEA-
model. Metamodels are not as accepted as DEA in (economics) literature. The capacity for 
this project is limited. Therefore we focus on an approach that has proven to be successful 
and that can be performed by our staffing. 
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4 Technical model, selection of inputs and outputs 

4.1 Introduction 

The data used in this research consist of observed and generated data on inputs and outputs 
of pig farms. The observed data come from a stratified sample of pig farms in the Nether
lands and the generated data come from a technical model that generates input-output 
combinations based on future available technologies. This section describes characteristics 
of the observed data (section 4.2) and the Technical Model Pig Feeding used to simulate 
generated data (section 4.3). In addition, the choice of relevant in- and output categories 
that are included in the empirical analysis are discussed (section 4.4). 

4.2 The Farm Accountancy Data Network (FADN) data 

In this study we use data describing the production activities of specialised fattening pig 
farms (i.e., more than two thirds of the production stems from fattening pigs) that were in 
the Dutch Farm Accountancy Data Network (FADN) for part or all of the 1994-1998 pe
riod. The FADN is a stratified random sample. Stratification is based on economic farm 
size, age of the farmer, region, and type of farming. We have a total of 117 observations in 
this unbalanced panel. However 2 farms were confronted with swine fever in 1997. Both 
farms were deleted from the data set. Furthermore, 19 farms were located in a region with 
transport restrictions due to the swine fever. Production at these farms was more or less 
adversely affected by this transport restriction; therefore they were all discarded from the 
data set in 1997. Hence, our data set consists of 96 observations on animal data of 36 pig 
farms and so each farm appears 2.7 times on average. The in- and outputs we specified 
were based upon the production process of pig farms. We distinguished the following in
puts: concentrates and veterinary costs, buildings and labour. One desirable output, i.e., 
value of pigs produced, and two undesirable outputs, i.e., ammonia emission and phospho
rous surplus per farm, were specialised. 

The value of pigs produced is computed as the total of sales and growth of pigs (the 
pigs bought are distracted). The quantity produced (in kg slaughtered pig) does not reflect 
the difference in quality produced. The price that farmers receive for their pigs depends on 
their weight and meat percentage. Differences in prices between farmers result from differ
ences in quality. Therefore we prefer an implicit quantity index. Implicit quantity indexes 
are obtained as the ratio of value to the price index and, therefore, output is in prices of a 
specific year, 1998 is the base year. This price index varies over the years but not over the 
farms, implying that differences in the composition of a netput or quality are reflected in 
the quantity (Cox and Wohlgenant, 1986). If prices are available at farm level in the FADN 
(for instance for concentrates), they are used to calculate price indexes. If prices are not 
present in the FADN, price indexes are taken from Statistics Netherlands/LEI (1999). The 
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same method has been used for buildings and variable inputs (concentrates and veterinary 
cost). Labour input consists of total labour, measured in hours. The building costs contain 
interest, depreciation and maintenance costs. The phosphorous surplus is the difference 
between phosphorous in feed and phosphorous in pigs produced (based on the materials 
balance). The ammonia emission is computed from the nitrogen surplus as described in 
section 4.4. The nitrogen surplus is computed likewise. 

Table 4.1 Characteristics of the F ADN sample variables 

Variable Unit Mean Minimum Maximum Std. Dev. 

Concentrates 1998 NLG 387,833 117,502 1,598,828 283,347 
Labour hours 2,032 615 6,520 1,078 
Buildings 1998 NLG 78,019 9,999 326,656 65,501 
Veterinary costs 1998 NLG 20,524 2,026 130,795 17,390 
Value Pigs produced 1998 NLG 453,284 101,487 1,823,465 338,175 
Ammonia emission kg NH3 6,660 1,842 27,934 5,237 
Phosphorous Surplus kg P205 4,332 1,282 18,429 3,608 
Pig places number 1,280 279 5,535 1,097 

4.3 Simulated farm data 

In addition to data from practical pig farms, simulated technical, economical and environ
mental data of fattening pig farms were analysed. The Technical Model Pig Feeding 
(TMV, Van der Peet-Schwering et al., 1999) was used to generate a set of 20 different 
farms, assuming new techniques such as multiphase feeding, and animals with a high ge
netic merit for protein deposition (see appendix 1). In addition, for each simulated pig 
farm, three housing systems were investigated, a standard housing system for fattening 
pigs and two Green Label systems (certified environmentally friendly housing systems 
with lower ammonia emission). 

Growth and body composition of a fattening pig is influenced by many factors. The 
main ones are amount of feed, feed composition, genotype, sex, climate, housing system, 
health and stress. 

Growth and body composition according to TMV 

From the daily food intake and the dietary nutrient composition, TMV calculates the daily 
energy intake and the daily ileal digestible amino acid intake. Part of this daily energy and 
amino acid intake is required for maintenance; the rest is available for growth. Depending 
on the maximum capacity for protein deposition and the marginal ratio between fat and 
protein deposition, the daily protein, fat, ash and water deposition of the fattening pig is 
predicted. 

Literature shows that there is a relationship between protein deposition and live 
weight of the pig. It is generally accepted that protein deposition increases rapidly in early 
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life, plateau's during the growers/finishers stages and then decreases towards zero at ma
turity. In addition, it is assumed that there is an intrinsic upper limit to body protein 
deposition, which is influenced by genotype and sex. TMV assumes that the maximum ca
pacity for protein deposition is constant during the fattening stage (20-110 kg). 

The maximum capacity for protein deposition (Pdmax) depends on the genotype and 
sex of the fattening pig. In practice, Pdmax equals around 130 grams per day for castrates, 
145 grams per day for sows and 160 grams per day for boars. In this study, additionally, a 
Pdmax of 175 and 190 grams per day was investigated, referring to two fictive pigs with a 
high genetic merit for protein deposition (see appendix 1). 

The marginal ratio (MR) determines the ratio between the lipid and protein deposi
tion from one extra MJ of energy intake when the pig has not reached Pdmax yet. So in 
fact, it is the ratio between the slopes of the lines describing lipid and protein deposition 
with increasing energy intake. When the protein deposition equals Pdmax, the extra energy 
is used for fat deposition. The marginal ratio depends on sex and body weight. Proposed 
values for castrates, sows and boars on practical pig farms are .06, .05 and .04 respectively. 
In this study, additionally, a MR of .03 and .35 was investigated, referring to two fictive 
pigs with a high genetic merit for protein deposition (see appendix 1). 

The basic model is validated with experimental data that are not used for model de
velopment. This validation showed that TMV predicts protein deposition, average growth 
rate, feed and energy conservation ratio and percentage of meat accurately, whereas it 
overestimates fat deposition. 

To simulate the growth, body composition, mineral excretion, indirect energy con
sumption and financial results for a fattening pig with the basic model of TMV, the 
following information has been used: 

a weight at the start of the growing period of 25 kg; from this the initial chemical 
body composition of the pig was computed; 
daily food and water intake (for more detailed information see appendix 1); 
nutrient composition of the various feeds: energy (MJ, ME, apparent ileal digestible -
amino acids, protein, total and digestible phosphorous (see appendix 2); 
genotype and sex of the animal; which indirectly determines parameters related to ef
ficiency of protein and fat deposition, like Pdmax and the Marginal Ratio (MR); 
a live weight of 113 kg at the end of the growing period was assumed, resulting in a 
growing period between 101 and 114 days. 

Additional calculations 

The housing systems, in addition to the inorganic nitrogen excretion of the pig, also deter
mine the ammonia emission per fattening pig (see appendix 3). Ammonia in pig housing is 
mainly formed from the urea in the urine. The release of ammonia from its source (urea 
which is inorganic N) is a slow process, governed by factors such as urea concentration, 
pH of slurry, temperature and air velocity in the housing system. In addition to nitrogen 
excretion, therefore, pen design and indoor climate, therefore, influence ammonia emission 
per fattening pig. In this study, three different housing systems were considered: the stan
dard housing system for fattening pigs currently in practice, and two Green Label systems, 
i.e., a pen with separate manure channels and a pen with water and manure channel. 
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Technical, economical and environmental data were expressed on an annual basis 
and at farm level, assuming 2,000 pig places per farm. 

Table 4.2 Characteristics of the TMV sample variables 

Variable Unit Mean Minimum Maximum Std. Dev. 

Concentrates 1998 NLG 533.708 520.267 576.877 16.621 
Labour hours 2.663 2.504 2.810 109 
Buildings 1998 NLG 164.254 155.732 168.769 6.081 
Veterinary costs 1998 NLG 31.563 29.687 33.293 1.288 
Value pigs produced 1998 NLG 757.128 701.677 807.045 15.899 
Ammonia emission kg NH3 2.959 2.504 3.752 340 
Phosphorous Surplus kg P205 3.916 1.495 7.185 1.780 

4.4 Choice of inputs and outputs 

Before the different approaches can be used to develop the frontier function a choice 
should be made about the relevant in- and outputs to be taken into account. A standard ap
proach in the agricultural economics literature is to aggregate inputs and outputs into a 
reasonable set and to determine the frontier function using the described methods. The dis
advantage of this approach is that only limited use is made of available production 
technical knowledge. 

First it is essential to make the data of FADN and TMV comparable. Whenever pos
sible we used price and quantity information to link the value of inputs and outputs from 
TMV to the FADN data set. 

The average FADN feed price in 1998 corresponds well tot the feed price used in 
TMV, we concluded that the quality of concentrates bought in FADN does not differ from 
TMV. Therefore, we could simply connect the value of feed as simulated by TMV with the 
observed value of feed from FADN in the basis year. The veterinary costs included costs 
for artificial insemination. TMV did distinguish artificial insemination costs, but used a 
constant value for veterinary costs, i.e., five guilders per slaughtered pig. We used the 
summation of feed cost and veterinary costs in our analysis. 

The costs for capital consist of depreciation, interest and maintenance costs. Both 
FADN and TMV distinguished these components. However we had no information about 
the exact farm system in FADN; only the availability of a 'green label system' is recorded 
in FADN (in 1997 and 1998). None of the FADN farms selected had a 'Green label system' 
in 1998. In FADN digressive depreciation is applied to the book value of buildings and in
stallations. Also interest and maintenance costs are based on the book value. We applied 
the FADN 1998 interest rate (3.5%) to all years. TMV only contains the new value of 
buildings. The mean share of depreciation, interest and maintenance in total building costs 
was similar in FADN and TMV. To make these data comparable we computed the mean 
housing costs per pig place from FADN of the 10 farms with the highest ratio of book 
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value and new value and more than 900 pig places. These mean housing costs per pig place 
(NLG 77.87) are inserted in TMV. 

We used the FADN meat price per kg slaughtered pig from the basis year (1998) to 
compute the implicit quantity indexes of meat for the TMV data too. 

The ammonia emission from FADN farms was computed in an identical way as the 
one used for the common systems in TMV; we corrected for the feed stocks. Also the same 
standard animal factors used for computation of the emission in TMV are used for compu
tation of the NH3-emission in FADN (see description TMV). For the phosphorous surplus 
both data sets did have comparable parameters, the phosphorous surplus in TMV is con
verted into a phosphorus surplus (identical to FADN). 

To increase the variation of selected variables, especially for TMV, all parameters 
are expressed per hour of labour (in the remainder of the text we use only the name of the 
numerator of the inputs and outputs). Table 4.3 gives the characteristics of the FADN vari
ables and TMV variables, which are used in the analyses. The standard deviation of the 
TMV data is a lot smaller than that of the FADN farms. 

Table 4.3 Characteristics of the adjusted FADN and TMV variables, used in analyses 

Variable Unit Mean Minimum Maximum Std. Dev. 

FADN data 
Concentrates + 
veterinary costs 1998 NLG/hour 201.45 57.74 451.48 79.26 
Buildings 1998 NLG/hour 37.36 5.36 121.81 21.12 
Pigs produced 1998 NLG/hour 221.74 42.00 491.75 93.80 
Ammonia emission kg NH3/hour 2.11 0.58 4.35 0.84 
Phosphorous Surplus kg P2/hour 3.24 0.83 7.26 1.36 

TMV data 
Concentrates + 
veterinary costs 1998 NLG/hour 212.74 197.02 236.47 12.98 
Buildings 1998 NLG/hour 61.78 55.43 67.40 3.41 
Pigs produced 1998 NLG/hour 284.20 273.21 288.66 4.16 
Ammonia emission kg NH3/hour 1.12 0.89 1.46 0.16 
Phosphorous surplus kg P2/hour 1.48 0.53 2.80 0.68 
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5 Empirical analysis 

5.1 Data Envelopment Analysis (DEA) using farm data 

Technical efficiency measurement using DEA is illustrated in figure 5.1, where each dot 
represents a combination of one input, x and one undesirable output, w of farms producing 
the same quantity of desirable output. In figure 5.1, the farms are labelled A, B and C. Data 
Envelopment Analysis creates a piecewise linear isoquant from the observations of the 
farms. In figure 5.1, the piecewise linear isoquant is constructed from the input combina
tions from farm B and C. Therefore, farms B and C are technically efficient farms. Farm A 
uses more of x and produces more w, while producing the same quantity of desirable out
put. The technical efficiency of farm A is given by the ratio OA'/OA. Note that this measure 
of technical efficiency assumes that both input and undesirable output (x and w) can be 
contracted radially, i.e., with an equal proportion given by 1-OA'/OA. 

Another measure of technical efficiency that can be derived from figure 5.1 is sub-
vector efficiency, which indicates the possibility for reduction of the undesirable output or 
the use of the input. In figure 5.1, farm A sub-vector efficiency of the undesirable output is 
given by the ratio 0'A'70'A. Therefore, farm A could reduce the use of input w by a pro
portion given by 1-(0'A"/0A). 

Figure 1. Input oriented Technical and Sub vector Efficiency 
with DEA 

x 

Î 0' 

B 

C 

0 • w 

Figure 5.1 Input oriented Technical and Sub-vector Ejfciency 
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Another representation of the technology is given in figure 5.2, depicting the relation 
between input, jc and output, y (a similar relation holds between an undesirable output w 
and desirable output y). 

Figure 5.2 Increasing, Constant and Decreasing Returns to Scale 

Figure 5.2 displays two frontiers, one under the assumption of constant returns to 
scale and one under the assumption of variable returns to scale. The line OB is the produc
tion frontier under constant returns to scale and represents the maximum ratio of output 
over input. The segment ABC gives the frontier under the assumption of variable returns to 
scale, consisting of a region with increasing returns to scale (AB), constant returns to scale 
(point B) and decreasing returns to scale (BC). The frontier under representing non-
increasing returns to scale is given by the lines OBC, i.e., the increasing returns to scale re
gion from the variable returns to scale frontier is excluded. 

The representation of the technology in figure 5.2 allows for demonstrating different 
efficiency measures for the observed farm D. The variable returns to scale efficiency 
measure of farm D is given by the ratio D'/D and the constant returns to scale efficiency is 
D"/D. The scale efficiency of this farm is the ratio D7D', and is a measure for the differ
ence between the variable returns to scale frontier and the constant returns to scale frontier 
(Coelli et al., 1998). The non-increasing returns to scale efficiency measures are derived in 
a similar way, i.e., by relating the observations to the non-increasing returns to scale fron
tier, OBC. Furthermore, it can be seen that farm D is in the region of increasing returns to 
scale, since the horizontal line from D crosses the variable returns to scale frontier in the 
region of increasing returns to scale. Similarly, it can be seen that farm E is in the region of 
decreasing returns to scale. 

0 > x 
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5.2 Exploring the efficiency of new technologies using DEA 

A problem associated with measuring efficiency using actual farm data is that it is a re
flection of the best currently used technologies. Therefore, any technologies that are 
available, but not yet applied, i.e., best available technologies not entailing excessive costs 
(BATNEEC, see Cairncross, 1993; Tyteca, 1996) are neglected. If the characteristics of 
these new technologies are known, e.g., from experiments or from model simulations, then 
the efficiency of farms in a sample relative to the BATNEEC can be assessed using DEA. 
Figure 5.3 displays a piecewise linear isoquant representing the most efficient currently 
used technologies {i.e., the isoquant made up of farms B and C) and an isoquant that repre
sents the BATNEEC, which is made up of the virtual farms Mi and M2. The observations 
on the virtual farms may have been obtained from experiments or model simulations. 

Technical efficiency and the sub-vector efficiency of the undesirable output of farm 
A relative to the currently used technologies are given, as before, by the ratios OA'/OA and 
O'A'70'A. However, the BATNEEC frontier allows for an additional reduction of input and 
undesirable output, which is reflected by the frontier movement from A' to M'. This 
movement is an approximation for technological change that is feasible given the currently 
available technologies. The ratio between the two frontiers OM'/OA' is an index of frontier 
productivity, i.e., it indicates the productivity of the best currently available technologies 
relative to the best currently used technologies. The overall efficiency of farm A relative to 
the BATNEEC is given by the ratio OM'/OM, whereas sub-vector efficiency of the undesir
able output is given by the ratio OM'70'A. 

Figure 3. Input oriented Technical and Sub vector Efficiency 
relative to new Technologies 

x 

M 

0 > w 

Figure 5.3 Input oriented Technical and Sub-vector Efficiency relative to new Technologies 
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5.3 Linear programming models for technical and sub-vector efficiency 

This section discusses the linear programming models that allow for calculating the meas
ures of technical and sub-vector efficiency given in the previous section. The discussion of 
the linear programming models starts from a set of observations of farms in a sample that 
use a vector of inputs (x) to produce vectors of desirable (y) and undesirable outputs (w). 
Input oriented technical efficiency for farm i is calculated from the following linear pro
gram: where 0 is the technical efficiency score (0 e [0,1]) for the i-th firm and X is a vector 
of parameters (firm weights). 

Min 6 
8  , Ä  

s . t .  -  y  {  +  Y / 1 > 0 

ex - xx > o  
( i )  

0w i = WÀ 

N V À  =1 

À > 0 

The first and the second constraint indicate the quantities of inputs that are required 
to produce desirable outputs, whereas the third constraint indicates the quantity of undesir
able output. The desirable outputs are strongly disposable (i.e., their quantities can be 
reduced without costs), whereas the undesirable outputs are weakly disposable (i.e., re
ducing the quantity involves costs). Weak disposability of the undesirable outputs is 
reflected by the equality constraint on undesirable outputs. The constraint N1 Yk= 1 implies 
that the sum of the lambda's equals one and allows for variable returns to scale. Note that 
the problem in (1) must be solved for each farm in the sample '. 

Sub-vector efficiency of the undesirable output is calculated in a similar way using: 

1 In case there are three farms, one desirable output, one undesirable output and one input, the DEA model 
Min 6 e .1 

for farm 1 becomes : - y , + ( y , A , + >• 2 X 2 + >•, A 3 ) > 0 
6 > x ,  -  (  x ,  X  ,  +  x  2  X  2  +  x , A ,  )  >  0  

9 W , - ( H' , X , + W 2 X 2 + W 3 X 3 ) = 0 
A I + i 2 "t" ^ 
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Min 6 
e ,x 

s . t .  -  y (  +  Y Â  >  O  

x ,  -  X Â  > 0  
(2) 

0 w = W  A ,  

N V A .  =1 

À  > 0  

It can be seen that the sub-vector efficiency model does not scale down inputs x  as 
the technical efficiency model does. Therefore, the sub-vector efficiency model involves 
finding a frontier that minimises the quantity of the undesirable output. 

5.4 Results 

The FADN data set selected consists of 96 observations of 36 farms. The TMV data set 
contained 20 different animals (farms) and three different housing systems. Two data sets 
were composed for the DEA analysis. One contains FADN data only, the other contains 
FADN data as well as TMV data. 

We model the environmentally detrimental variables as conventional inputs, rather 
than as an undesirable output. Cropper and Oates (1992), Ball et al. (1994) and Tyteca 
(1997) also followed this approach. Waste emissions are treated simply as another factor of 
production. Reductions in these emissions result in reduced output. Pittman (1981) also 
modelled pollution as input in the production function because the relation between an en
vironmentally detrimental variable and output looks like the relation between conventional 
input and desirable output. We were able to measure the environmentally detrimental input 
usage, but we are unable to measure the environmental repercussions. 

For the analyses we used the program Onfront. Onfront 2.0 (we used a beta version) 
offers the possibility to compute sub-vector efficiency scores. The model contains 4 inputs 
(Feed including veterinary costs, capital, phosphorous surplus and ammonia emission). We 
use the input-oriented approach because we are interested in minimisation of the environ
mentally detrimental inputs conditional on the desirable output. 

First, the FADN data are analysed, we compute the three distinguished returns to 
scale models (see section 5.2). Consistent with the theory we find that the constant returns 
to scale (CRS) input oriented efficiency scores are smaller than the non-increasing returns 
to scale (NIRS) and the variable returns to scale (VRS) scores (see table 5.1 for the FADN 
farms). The latter contains the largest number of efficient farms. The average efficiency 
score is about 0.9, suggesting that identical output can be produced with 10% radial reduc
tion of inputs. The scale efficiency is computed as the ratio of the CRS score and the VRS 
score (table 5.1). Nine farms are scale efficient. Seventy-one farms operate in the Increas
ing Returns to Scale segment of the frontier. The remaining 16 farms are located in the 
decreasing returns to scale portion of the frontier. 
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Table 5.1 Results of analyses with FADN data only 

CRS NIRS VRS Scale efficiency 

Mean efficiency 0.886 0.888 0.902 0.982 
Standard deviation 0.081 0.083 0.073 0.049 
# efficient farms 9 12 16 9 
Efficiency minimum 0.546 0.546 0.681 0.546 

Second the entire data set (FADN and TMV data) is analysed. The mean VRS effi
ciency score of the FADN farms decreases 4% when the data set is expanded with the 
TMV data (see table 5.2). Thus the technology represented by the TMV data enables an
other 4% reduction in inputs on average for the FADN-farms. 

Table 5.2 Results of the analyses with TMV and FADN data combined 

CRS NIRS VRS Scale efficiency 

Mean efficiency FADN farms 0.840 0.848 0.864 0.974 
# efficient FADN farms 6 10 12 6 
# efficient TMV data 3 3 3 4 
# farms 5 efficiency 90 86 84 89 
Avg. change vs. FADN 0.048 0.045 0.044 0.008 
Min. efficiency FADN farms 0.499 0.499 0.651 0.499 
Min. efficiency TMV data 0.800 0.800 0.800 0.994 

The number of efficient FADN-observations decreases if TMV data are added. The 
frontier is now also defined by three TMV data points. Thus the frontier has changed due 
to the TMV-data. However, the majority of the efficient farms in the FADN data (12 out of 
16) remain on the frontier when the TMV data are added. This result suggests that the 
TMV data only affect a portion of the frontier. The input-oriented efficiency is to a small 
extent affected by the inclusion of new techniques. The input-efficiency score of all ineffi
cient FADN-observations (in the entire data set) is effected by the inclusion of TMV-data 
(denoted in table 5.2 by '# farms 8 efficiency). 

We want to discriminate between potential efficiency gains due to improved man
agement practice, and efficiency gains due to investments in green label pig housing. 
Therefore we deleted the 40 TMV data points based on improved housing systems, the 
TMV data based on the current housing system remain in the data set. The frontier deter
mined by this data set could be attained by improved management. Now only one TMV 
data is located on the frontier. The change in efficiency scores (compared with the effi
ciency scores based on FADN data only) is only marginally smaller than in the case 60 
TMV data were used. However the one efficient TMV data point is a pig with a very large 
protein deposition, such a large protein deposition is not feasible in practice yet. 
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Table 5.3 Results of analyses with current housing systems using FADN data and part ofTMV data 

CRS NIRS VRS Scale efficiency 

Mean efficiency FADN farms 0.841 0.849 0.865 0.973 
# efficient FADN farms 6 10 12 6 
# efficient TMV farms 1 1 1 2 
# farms 5 efficiency 90 86 84 89 
Avg. change vs. FADN 0.047 0.044 0.043 0.009 
Min. efficiency FADN farms 0.499 0.499 0.651 0.499 
Min. efficiency TMV farms 0.811 0.811 0.811 0.999 

We are mainly interested whether the new technology, put forward by TMV, change 
the best practice frontier with respect to the environmentally detrimental variables (condi
tional on the output). In the previous analyses the four inputs were reduced 
equiproportionally. Therefore, we now compute sub-vector efficiencies by keeping the 
conventional input (feed and housing costs) fixed and reducing the ammonia emission and 
the phosphorous surplus, conditional on the desirable output. Thereafter, we minimise the 
environmentally detrimental variables separately conditional on the other environmentally 
detrimental variable, the conventional inputs and the desirable output. We analysed sub-
vector efficiencies in variable returns to scale context, because the data are most closely 
enveloped by the frontier in that case. Farms that are located on the frontier (compare the 
input-oriented efficiency scores in table 5.1) remain all efficient when sub-vector effi
ciency is computed (irrespectively of the dimension of the frontier). 

Table 5.4 Results of the sub-vector analyses (VRS) with FADN data only 

P-surplus and NH3 P-surplus NH3 

Avg. efficiency 0.882 0.861 0.868 
Standard deviation 0.085 0.098 0.088 
# efficient farms 16 16 16 
Efficiency minimum 0.675 0.628 0.675 

Consistent with the theory the sub-vector efficiency scores in the FADN sample are 
smaller than the corresponding VRS input-oriented efficiency scores (table 5.1). However 
they are only to a small extent (2-4%) smaller than the comprehensive input-oriented effi
ciency scores, indicating that the environmentally detrimental inputs are not utilised very 
inefficiently compared with the conventional inputs; condition on the current best practice 
technology. The sub-vector efficiency of phosphorous surplus and ammonia emission is 
almost identical. 
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Table 5.5 Results of the sub-vector analyses with TMV and FADN data combined 

P-surplus and NH3 P-surplus NH3 

Avg. eff. FADN farms 0.657 0.644 0.571 
# eff. FADN farms 12 12 12 
# eff. TMV data 3 3 2 
# farms 5 efficiency 84 84 84 
Avg. change vs. FADN 0.257 0.248 0.339 
Min. efficiency FADN farms 0.332 0.329 0.127 
Min. efficiency TMV data 0.598 0.598 0.190 

When the entire data set (FADN and TMV) is analysed we find more pronounced 
differences between the input-oriented efficiency scores and the corresponding sub-vector 
efficiency scores. This result indicates that the TMV data move the frontier in the direction 
of minimisation of the environmentally detrimental inputs. The ammonia emission can be 
reduced with 43% if the frontier TMV technology is implemented in practice (table 5.5). 
This large potential reduction is due to the different housing systems in TMV. Two out of 
three TMV efficient data stem from green label housing systems. 

The potential reduction in phosphorous surplus is not as large (35%) for the FADN 
farms. The variation in phosphorous efficiency scores within the TMV data is smaller than 
in the ammonia efficiency scores (the different housing systems do not affect the phospho
rous surplus). The combined phosphorous and ammonia sub-vector efficiency is almost 
totally determined by the phosphorous surplus inefficiencies (table 5.5). 

To assess the potential reduction of the environmentally detrimental inputs by im
proved management, we focus on the possibilities offered by the current housing system 
(defined by FADN and 20 TMV data). We find that the phosphorous sub-vector ineffi
ciency is identical to the corresponding inefficiency scores of the total TMV data (the 
housing system does not affect the phosphorous surplus). However the ammonia emission 
can now only be reduced with about 30% by current housing systems (table 5.6). The 
combined environmental efficiency score is now determined by the ammonia inefficiency. 
The environmental performance of farms can increase with 30%, based on improved man
agement. 

Table 5.6 Results of sub-vector analyses with current TMV systems and FADN data combined 

P-surplus and NH3 P-surplus NH3 

Avg. eff. FADN farms 0.708 0.644 0.705 
# eff. FADN farms 12 12 12 
# eff. TMV data 1 1 1 
# farms ô efficiency 84 84 84 
Avg. change vs. FADN 0.174 0.248 0.186 
Min. efficiency FADN farms 0.434 0.329 0.434 
Min. efficiency TMV data 0.645 0.598 0.645 
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In a second stage analysis Tobit is used to explain the efficiency scores (see appendix 
4). A significant relation between the magnitude of the input-oriented efficiency scores and 
farm size and feed costs per pig place is found. An increase in the number of pig places has 
a significant positive effect on the efficiency score. Higher feed costs, related to a higher 
feed quality, are positively related to the efficiency score. Capital costs per pig place are 
negatively related to the ammonia sub-vector efficiency scores Feed per pig place and 
labour per pig place have a positive (marginal) impact on the ammonia sub-vector effi
ciency scores. Further analysis is needed to analyse the possible relation between 
inefficiency scores and farm characteristics (management aspects). 

1 The ammonia emission is calculated without considering the type of buildings used. 
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6 Conclusions and discussion 

6.1 From a scientific perspective 

For a correct interpretation of results with respect to the pig production sector, we should 
realise that data on, e.g., pig welfare and meat quality, were not included in this analyses. 
Data analyses included technical data and a few environmental parameters, i.e., N and P 
surplus per farm and NH3 emission per farm. FADN data, however, show only limited 
variation in NH3 emission per farm because only standard housing systems were present in 
the data set. 

FADN farms can decrease their input costs on average by 10%. Hence, possibilities 
for technical improvement on practical pig farms are limited. The ammonia emission of 
FADN farms, however, can be reduced by 43%, due to both genetic selection and multi
phase feeding (30%) and introduction of green-label housing systems (13%). As expected, 
the potential reduction in P-surplus was smaller than the reduction in NH3 emission, i.e., 
35% for FADN farms. The TMV feedmix and housing system minimise the nitrogen input, 
but are less effective in minimising phosphorous input. 

Simulated data used to determine the available technology not implemented yet in 
practical farms (BATNEEC) frontier focuses on measurements for ammonia emission re
duction. Hence, determination of the BATNEEC frontier is a very important phase in a 
DEA analysed including but practical and simulated data. Further improvements of techni
cal and environmental efficiency for pig farms requires development of new innovative pig 
production systems. Technical, environmental, and societal performance of these innova
tive systems should be used to determine the BATNEEC frontier. 

Different procedures can been applied to assess the possibilities for improving eco
nomic performance and reducing environmental emissions in agricultural production (see 
section 3). Models based on statistical techniques, mathematical programming methods 
and simulation procedures differ with respect to (i) the type of input-output data that are 
used (i.e. currently available and/or potential faest practice' technologies), (ii) the specifi
cation of behavioural and technical parameters (i.e. management practices and investment 
decisions) and (iii) the relationship between economic and environmental criteria (i.e. 
trade-offs and externalities). 

Programming methods have been widely used in agricultural policy analysis to iden
tify trade-offs between economic and environmental objectives at farm and regional level 
(Van Rheenen, 1995; Schipper, 1996). These models provide adequate insights into opti
mal land use patterns and the potential conflicts between income and environmental effects 
forthcoming from different technically efficient production systems. Within this frame
work, actual production techniques are combined with simulated technologies to construct 
different scenarios for simulation purposes (Rabbinge et al., 1994; Van Keulen and 
Veeneklaas, 1992). 
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Econometrie procedures are usually applied for the analysis of the performance of 
economic systems, taking into account actual farm household behaviour. Therefore, pro
duction functions can be estimated that includes primary inputs, environmental 
externalities and relevant farm household characteristics (Mausolff and Färber, 1995; 
Heerink and Ruben, 1996). The latter variables can be subsequently used to explain effi
ciency deviations from the frontier function, making use of Tobit analysis. 

Data Envelopment Analysis (DEA) is recently proposed as an approach that permits 
to identify potential options for cost-efficient improvement of farm environmental per
formance. While original DEA analyses are based on the estimation of the efficiency 
frontier with actual farm data, the standard approach has been extended to include data de
rived from simulation models. 

Finally, meta-modelling offers an alternative framework for the simultaneous analy
sis of technical and economic efficiency of actual and simulated production systems, 
identifying dynamic trade-offs between income objectives and environmental effects. This 
procedure is used to fit continuous production functions from discrete data sets that are 
subsequently linked to decisions-support models at higher aggregation levels, including the 
usual price effects. Table 6.1 provides a comparative overview of the four methods and in
dicates the type of parameters and procedures that are applied within each framework. 

Table 6.1 Different analytical methods to assess economic-environmental information 

Production Programming Data Envelopment Meta-modelling 
functions methods Analysis (DEA) 

Actual technologies + + + + 
Simulated technologies + + + 
Environmental trade-offs + + 
Environmental externalities + + 
Price endogeneity + + 
Adoption behaviour + + + 

Compared to other procedures used for the appraisal of economic and technical data, 
DEA exhibits a number of clear advantages. Whereas programming and metamodels only 
identify static trade-offs between economic and environmental objectives, DEA enables a 
simultaneous assessment of economic efficiency and environmental externalities. Further
more, DEA yields direct insight into the costs associated with the reduction of 
environmental effects (undesirable outputs). Finally, DEA permits to compare economic 
and environmental implications of different options for technology change and/or im
proved farm management practices (i.e. sub vector efficiency). 

The DEA application to the Dutch pig sector reveals that input efficiency scores of 
most current production techniques (FADN farms) are only slightly below best practices as 
derived from the (TMV) simulation model. However, the latter data include an additional 
segment of the production frontier. This is especially true for ammonia emissions that re
quire substantial fixed investments for the establishment of low-emission housing systems. 

30 



This points to the fact that DEA is especially suitable as a procedure for the analysis 
of investment options, while (marginal) adjustments in farm management practices that of
fer minor efficiency gains are easily outweighed. 

Even while the DEA methodology enables in principle a sound analysis of the inter
actions between economic and environmental criteria, aspects of factor substitution are not 
explicitly addressed. Therefore, DEA tends to be most appropriate for capturing long-term 
effects of technological change (i.e. shifts of the production frontier) but cannot be directly 
used to assess short-term adjustments. In principle, parametric models and meta-modelling 
procedures offer suitable alternatives for the analysis of factor substitution effects. 

DEA analysis might be reinforced through the application of a number of additional 
procedures. First, empirical proof regarding the possibility for 'pooling' currently available 
and potential best practice' technologies into a single analytical procedure is required (Pin-
dyck and Rubinfeld, 1991:223-231). Meta-modelling procedures can be helpful to 
determine whether both data sets can be combined. Second, it might be useful to make a 
clear separation between (short run) input use and (long run) investment decisions, since 
the latter require usually a substantial higher benefit-cost ratio for being adopted. Third, 
dynamic applications of DEA are required to assess the pathways of transition from current 
towards potential technologies. 

6.2 From a policy perspective 

Information about improving economic performance and reducing environmental emis
sions simultaneously contributes to the development of integral policy instruments. The 
process of developing environmental policies is directed by public and private interests, in
formation about environmental and economic possibilities and consequences, and power 
mechanisms. Environmental policy making is therefore a complex process in which high 
quality information on what can be possibly achieved by individual farmers will be highly 
valued. 

Extended DEA is attractive when potential best practice' technologies and relevant 
behavioural parameters are specified. The spectrum of actual and potential efficiency 
scores is highly relevant from a policy perspective. Therefore, a sufficient 'time horizon' of 
potential technologies should be taken into account by DEA to enable support of long term 
policy decisions. Integrating farm management parameters in the proposed approach re
quires information on the presence of suboptimal practices. Therefore, future FADN 
activities should include farm management parameters. 

Not only the spectrum of actual and potential efficiency scores is relevant from a 
policy perspective. Given adequate assessments on best practices', information on the dy
namics of this spectrum over time contributes to improved assessment of policy 
alternatives. 

The approach contributes both to private and public environmental policy making. 
Public policies have a more generic character. The approach supports the process of deter
mining generic emission values (i.e. forfeits). From a private policy perspective, the 
approach can help determining valuable best practices'. 
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Appendix 1 Parameter values for 20 alternative simulated 
pig farms 

Animal 
on 
farm 

Geno-
Type 

Pdmax Marginal 
Ratio 

Efficiency 
Protein 
deposition 

Feeding_ 
strategy 

Feed intake of various feeds (kg/produced pig) Animal 
on 
farm 

Geno-
Type 

Pdmax Marginal 
Ratio 

Efficiency 
Protein 
deposition 

Feeding_ 
strategy 

S98 S99 V98 NMR NMA 

1 Castrate 130 .06 .45 2 44.84 - 207.1 - -

2 Castrate 130 .06 .45 M 44.84 - - 47 160.1 
3 Castrate 130 .06 .54 2 44.84 - 190.11 - -

4 Castrate 130 .06 .54 M 44.84 - - 44.87 147.78 
5 Boar 145 .05 .45 2 41.05 - 206.15 - -

6 Boar 145 .05 .45 M 41.05 - - 58.92 147.23 
7 Boar 145 .05 .54 2 41.05 - 187.28 - -

8 Boar 145 .05 .54 M 41.05 - - 58.48 128.8 
9 Sow 160 .04 .45 2 41.05 - 194.15 - -

10 Sow 160 .04 .45 M 41.05 - - 58.92 135.23 
11 Sow 160 .04 .54 2 41.05 - 178.91 - -

12 Sow 160 .04 .54 M - 41.05 - 78.2 97.82 
13 Fictive 175 .035 .54 2 - 41.05 173.18 - -

14 Fictive 175 .035 .54 M - 41.05 95.27 75.08 
15 Fictive 175 .035 .6 2 - 41.05 167.51 - -

16 Fictive 175 .035 .6 M - 41.05 - 94.13 70.53 
17 Fictive 190 .03 .54 2 - 41.05 170.34 - -

18 Fictive 190 .03 .54 M - 41.05 - 94.7 72.8 
19 Fictive 190 .03 .6 2 - 41.05 164.67 - -

20 Fictive 190 .03 .6 M - 41.05 - 94.13 70.53 

* 2 = two-phase feeding; m = multi-phase feeding 
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Appendix 2 Nutrient composition of various possible feeds 
in the diet 

S98 S99 V98 NMR NMA 

Price (excl. VAT) (//100 kg) 42.64 44.50 36.51 37.00 35.50 
DM-content (g/kg) 880 880 880 880 880 
Metabolic energy (EW) (//kg) 1.070 1.070 1.050 1.050 1.050 

Output analyses g/kg g/kg g/kg g/kg g/kg 

Amino acids 
(apparent ileal digestible) 
- Lysine 8.90 10.20 7.00 8.00 6.00 
- Methionine 2.90 3.40 2.40 2.54 1.90 
- Methionine + Cystine 5.30 6.10 4.40 4.70 3.60 
- Threonin 5.70 6.50 4.50 5.10 3.80 
- Tryptophane 1.70 2.00 1.40 1.50 1.20 
- Isoleucine 5.70 6.50 4.50 5.10 3.80 

Crude protein (CP) 180.0 185.0 160.0 165.0 140.0 
Digestible CP 144.0 148.0 128.0 132.0 112.0 
Phosphorus 5.50 5.50 4.60 5.00 4.34 
Apparent digestible P 3.00 3.00 2.00 2.20 1.60 
Ash 71.0 71.0 69.0 68.0 61.0 
Crude fat (Cfat) 50.0 50.0 54.0 56.0 58.0 
Digestible Cfat 3.6 3.6 43.0 45.0 46.0 
Crude fiber (Cfiber) 55.0 55.0 65.0 53.0 57.0 
Digestible Cfiber 22.0 22.0 26.0 21.0 23.0 
Nitrogen free extract (NFE) 524.0 519.0 532.0 538.0 564.0 
Digestible NFE 462.0 462.0 485.0 470.0 491.0 
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Appendix 3 Computation of ammonia emission per pig per 
year 

For each pig farm simulated, three different housing systems were considered. Ammonia 
emission/animal place/year for these three systems are taken from Staatscourant (1999, 
139: pg. 16). Annual emission of NH3/animal place in the standard housing system was 3.5 
kg for an average Dutch pig (which is in this study 0.5 x standard castrate (animal 1) + 0.5 
x standard sow (animal 9). An average Dutch pig excretes 8.87 kg of inorganic N per year. 
Hence, ammonia emission expressed as percentage of inorganic N excretion is 32% and 
was used in all other alternative situations. In this way, a reduction in N intake of a fatten
ing pig directly resulted in a reduction in inorganic N excretion and therefore in ammonia 
emission. 

Similarly, two Green Label systems were considered, in which the emission of NH3 

was either 2.5 or 1 kg per animal place. 
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Appendix 4 Tobit estimation results of the second stage 
analysis of efficiency scores 

Table A4.1 Tobit parameter estimates of the second stage analysis of the input-oriented, efficiency scores 
of the F ADN farms 

Variable Parameter estimate Standard error T-value 

Number of pigs - 0.000167 0.000104 - 1.594 
Capital per pig - 0.000459 0.000487 -0.941 
Labour per pig 0.0448 0.0193 2.323 
Feed per pig 0.00189 0.000184 10.299 
Veterinary costs per pig -0.00186 0.00183 - 1.018 
Output per pig 0.0000007 0.0000003 2.193 

Table A4.2 Tobit parameter estimates of the second stage analysis of the Ammonia sub-vector efficiency 
scores of the F ADN farms 

Variable Parameter estimate Standard error T-value 

Number of pigs - 0.000268 0.000210 - 1.278 
Capital per pig - 0.00434 0.000986 - 4.397 
Labour per pig 0.0847 0.0389 2.173 
Feed per pig 0.00180 0.000362 4.971 
Veterinary costs per pig -0.00108 0.00371 -0.291 
Output per pig 0.0000009 0.0000006 1.541 
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