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Abstract

Within the framework of ESA’s Earth Observation Program, the Medium Resolution Imaging Spectrometer
(MERIS) is developed as one of the payload components of the ENVISAT-1. MERIS is a fully programmable
imaging spectrometer, however a standard 15 channel band set will be transmitted for each 300 m. pixel (over
land) covering the visible and near-infrared wavelength range. Since MERIS is a multidisciplinary sensor
providing data that can be input into ecosystem models at various scales, we studied MERIS performance relative
to the scale of observation using simulated data sets degraded to various resolutions in the range of 12m. to 300m.
Algorithms to simulate MERIS data using airborne imaging spectrometer data sets are presented, including a case
study from GERIS 63 channel data over a agricultural site in central Spain (the Almaden test site). Through a pixel
purity analysis, end members are derived from the MERIS-type data and subsequently used as input to a spectral
unmixing analysis yielding fraction of end member (abundance) images. The original data as well as the
abundance images are spatially analyzed using variogram surfaces and mapping accuracy is modeled at various
spatial scales. We observe differences between the sampling resolutions (i.e., pixel size) found to be optimal for the
different ground cover types. I he optimal scale for observing different components of spectral mixtures varies
depending on the type of mixture, however, the best possible resolutions in all cases of mixtures studied is below the
envisaged 300 m. field of view for the MERIS sensor. The analysis of semivariogram surfaces demonstrates that the
spatial distribution of the variance of the mixtures is invariant with scale, thus the observed mapping discrepancies
are not related to the data processing but to the observations themselves.

Introduction

The use of spatial statistics embedded in regionalized
variables theory for the analysis of remotely sensed data
dates back to the pioneering work of P.J. Curran and C.E.
Woodcock in the late 1980’s. Contemporaneously these
authors explored the use of the semivariogram, i.e., a curve
showing variance versus sample spacing, to describe patterns
in remotely sensed imagery (Woodcock et al. 1988a+b;
Curran 1988). Since that time, many new applications of
geostatistics to aid in image interpretation and enhancement
have been developed including: replacement of missing or
bad data values (Atkinson et al. 1990; Rossi et al. 1994),
estimating signal to noise (Curran & Dungan 1989), noise
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removal (Green et al. 1988), estimating measurement error
(Atkinson 1997), mapping (Dungan et al. 1994),
classification (Van der Meer 1994) and the use of co-
kriging to combine field and image data (Atkinson et al.
1994; Van der Meer 1998). A recent summary of results can
be found in Stein et al. (1998). With the advent of new
spaceborne sensors with variable and selectable spatial and
spectral resolution the factor of scale and selection of
optimal support size in remote sensing becomes a pressing
issue. Research in this field dates back to 1987 (Woodcock
& Strahler 1987) and has recently been revived (Atkinson
& Curran 1995). Related to this, issues of up-and
downscaling are common problems combining geostatistical
practice and remote sensing (see Stewart et al. 1998 for a
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Table 1 MERIS main performance requirements based on Cutter et al. (1989), Rast et al. (1991), Rast & Bézy (1995) and the MERIS web site
http://www.estec.esa.nl/envisat/Satellite/Instruments/MERIS/.

MERIS Specification Cutter et al. (1989) Rast et al. (1991) Rast and Bézy (1995) web site

SYSTEM level IB-
Product

Liftime 4 years
Data rate: Reduced Resolution Mode (RR) 1.5Mbits/s 1.6Mbits/s
Full Resolution Mode FR) 22.5Mbits/s 24.0 Mbits/2

GEOMETRIC
Instrument Field of View (IFOV) 82º 81.52º 68.5º centred about nadir 68.5º
Swath width Envisat-1 orbit 1500 km 1450km 1150 1150
Spatial Resolution: RR 1200 1200 1200
FR 260 m 250 300 300
Locialisation Accuracy without <2 km

use of Landmarks
SPECTRAL Spectral range 400-1050 nm 400-1050 nm  390-1040 nm 400-1050 nm

Spectral Sampling Interval 1.25 nm-40 nm 1.25 nm 1.25 nm 1.25m
Transmitted/Programmable Bands 30 15 15 15
Spectral Band width 10 nm; 685-=5 nm 1.25 -30 nm 2.5-20nm
Registration Between Bands 0.12 RR IFOV
Band Centre knowledge < 1nm

RADIO- Polarisation Sensitivity <1% <1% <0.4 over full spectral range
METRIC Radiometric Accuracy 400-1000<2% 390-900<2% relative to sun 400-900 < 2%

 relative to sun
900-1050<5%

Dynamic Range albedo=1 up to albedo=1
S/N (over open ocean) 778 (b2); 190 (b8); from 1500 (b1) to 200 (b14)

54 (15)
OTHER Depointing Angle app. 20º along track

Orbit Envisat-1 sun synchronous sun synchronous polar
polar

Inclination 98.5º 98.5º
Nodal Crossing Time (descending) 9:55 AM 10:00AM
Mean Orbital Altitude 800 km 800km

recent review.
Within the framework of ESA’s Earth Observation

Programme, the Medium Resolution Imaging Spectrometer
(MERIS) is developed as one of the payload components of
the ENVISAT-1, proposed for launch on the first European
Polar Platform scheduled for 1999 (Rest et al. 1991; Bézy
et al. 1996). MERIS (Rest et al. 1999) is an advanced
optical sensor with high spectral and moderate spatial
resolution designed to acquire remote sensing data of
relevance to environmental management and to the
understanding of up- and downscaling from regional to
global scales. The MERIS optical arrangement is set up in
such a way that six contiguous optical modules view the
earth through a deflecting mirror, thus subdividing the
1150 km total field of view into six slightly overlapping
sub-scenes (each module covering approximately 14º; Rast
et al. 1991, Morel et al. 1993). The MERIS main
performance requirements are shown in table 1. Table 2
shows the 15 channels that will be transmitted as the
MERIS standard band set. MERIS is designed as a
multidisciplinary mission aimed at oceanographic
applications as well as at atmospheric and vegetation
features. The sensor should provide data that can be input
into ecosystem models that are used for environmental
modeling. Since the optimal scale of measuring related

variables may be dependent on the type and nature of the
parameter of study, it is important to evaluate MER1S’
potential relative to the scale of observation. In this paper
we present simulated MERIS data derived from airborne
imaging spectrometer data sets and derive products useful
for land applications at various spatial resolutions. These
products are used to assess the mapping accuracy of the
variable and indicate the relative optimal spatial resolution
to be achieved. This leads to a better understanding of the
expected performance of the sensor for different land
applications.

Simulating Data from ESA’s Medium
Resolution Imaging Spectrometer

Image (or spectral) simulation is only possible when the
source sensor has a spatial and spectral resolution finer and
better respectively than the target simulated sensor (Justice
et al., 1989). The Spectral Resampling of existing airborne/
spaceborne data sets towards the MERIS spectral properties
are not described in detail in the literature. Investigators
mention a simulation of MERIS data (Doerffer et al., 1995;
Verstraete et al., 1995), however without details on
resampling procedures of the existing wavebands and centres
towards the MERIS specifications. Spatial resampling
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Table 2 The MERIS 15 spectral bands. Note that the 765 rim channel as described in
former publications (Doerffer et al. 1995; Bezy et al, 1996) is excluded
(pers. comm. Mike Rast? 1998).

Band Band Band Potential Applications
Nr centre (nm) width (nm)

1 412 5 10 Yellow substance, Turbidity
2 442 5 10 Chlorophyll absorption maximum
3 490 10 Chlorophyll, other pigments, polarisation measurement
4 51 () I () Turbidity Suspended sediment, Red tides
5 560 10 Chlorophyll reference, Suspended sediment
6 620 10 Suspended sediment
7 665 10 Chlorophyll absorption
8 681.25 7.5 Chlorophyll fluorescence
9 705 10 Atmospheric correction, Red Edge
10 753.75 7.5 Oxygen absorption reference
11 760 2.5 Oxygen absorption R-branch
12 775 15 Aerosols, vegetation
13 | 65 20 Aerosols corrections over ocean
14 | 90 10 Water Vapour Absorption Reference
15 900 10 Water Vapour Absorption

Figure l Atmosphere spectrum with main gas absorption bands indicated. The topmost
par of’ the figure shows the wavelength coverage (bar) and the channels
center wavelengths (vertical lines) for MERIS and four airborne imaging
spectrometer systems which can be used to simulate MERIS data.

methods are described by Justice et al. (1989)
and Teillet and Staenz (1992). Both use a spatial
filter (gaussian blur filter) and sampling
mechanism (Fast Fourier Transforms) to simulate
coarse resolution data. Some simulation studies
have been conducted to aid in the understanding
of other future spaceborn imaging spectrometers
including MODIS (Kaufman el al. 1997) and
ASTER (Abrams & Hook, 1995) again without
documenting details on processing strategies.
We followed a essentially two-step procedure
A. Spectral resampling

- convolution over sensors Spectral Response
Function for each band in case of
oversampled input data

- band matching in case of undersampled
input data

B. Spatial resampling
- spatial degradation using the sensor’s Point

Spread Function for each band The
procedures are described in detail below.

Spectral resampling
As a general rule in simulation it can be

stated that only spectrally oversampled image
data cubes can be used to generate channels of
future sensor data types. We have explored the
use of AVIRIS, CASI, DAIS 7915 and GERIS
63 channel imaging spectrometer data (Figure
1) to simulate MERIS. The GERIS 63 channel
airborne imaging spectrometer system and the
DAIS 79 channel imaging spectrometer system
do not allow to simulate MERIS channels by
means of spectral gaussian re-sampling. For these
systems, only band matching techniques can be
applied in which the best matching bands are
selected to represent the designated MERIS
channels. In case of NASA’s Airborne Visible/
lnfrared Imaging Spectrometer (AVIRIS) and
Compact Airborne Spectrographic Imager
(CASI) over-sampling the MERIS channels
allows the use of gaussian re-sampling. This
procedure involves estimating the gaussian
spectral response function (SRF) of each MERIS
channel using the band center and width (in full-
width-half-maximum). This SRF is of the type

1R
i
 (λ

i
) = ————— e-0.5(λ-µ)2/σ 2

[1]
σ√

——
2π

where µ is the band centre, σ the standard
deviation (equivalent to the FWHM) of the
channel and λ the wavelength relative to µ and
R

i 
(λ) the spectral response. Note that the integral

over the SRF of Y is 1. For each MERIS channel
the spectral response curve is calculated using
the gaussian approximation of Eq. 1. The
channels of the higher spectral resolution airborne

imaging spectrometer data set that are within the wavelength range of
the selected MERIS channel are integrated by dividing them into the
derived SRF assuming that the initial SRF of the input data channels
are a single bright source (i.e., a continuous input spectrum). This is
done as follows
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Figure 2 Location of the study area and GERIS data take.

Figure 3 Color composite image of GERIS bands 35, 26,
and 4 displayed in RGB with decorrelation
stretching applied.

where ρ
res

(λ
i
) is the re-sampled spectrum using the continuous

spectrum ρ (λ) and the SRF R
i 
(λ). This deconvolution is achieved

by integrating between the lower (λ
1
) and upper(λ

2
) wavelength

limit of the designated (i.e., to be simulated) image channel. Since
the gaussian SR function only asymptotically approaches zero, we
truncated the SRF at 1.5 times the FWHM.

Spatial resampling
Spatial degradation is essentially a two-step process. The first

step requires modeling the transfer function between the initial data
and the desired data and deriving a spatial filter that allows simulation
of the coarse resolution imagery. The second step involves re-
sampling to the desired pixel size. As is the case in spectral
resampling with the spectral response function, the sensor’s Point
Spread Function (PSF) gives the spatial responsivity of the sensor.
The PSF is defined as (Schowengerdt, 1997)

αmax βmax

e
b
(x,y) = ∫   ∫ s

b 
(α, β) PSF (x-α, y-β) dαdβ [3]

α
min

β
min

where e
b
(x,y) is the resulting electronic signal for band b at location

given by coordinate (x,y), s
b
(α, β) is the input signal, whereas the

limits of the integral determine the spatial extend in two dimensions,
α and β, over which the physical signal is weighted. A common
model for the PSF like the spectral integration of Eq. 1 is given by

1PSF (x, y) = ———— e-x2/2a2e-y2/2b2

[4]
2πab

where a and b determine the width of the optics of the PSF in the
cross- and along track direction. In the absence of details on the
PSF for MERIS, we used a normalized detector PSF which is
equivalent to applying a square moving average filter of the desired
spatial resolution

1 a b

PSF (x, y) = ——Σ Σs
b

[5]
ab a=1 b=1

MERIS image products

As a preliminary analysis of scale effects in
MERIS data simulation we used atmospherically
corrected GERIS 63 channel imaging spectrometer
data from the Almaden study site (see Figure 2 for
location and Figure 3 for a sample image) in Central
Spain acquired during the EISAC ’89 campaign
and generated a 15 band MERIS sample data set at
various spatial resolutions between the original 12m.
resolution and the 300m. MERIS resolution. The
Almaden study site is an agricultural test site with
typical large scale patches of farm land which was
mostly bare during time of acquisition. The area is
underlain by two granitic intrusions of leucocratic
type. Details on the area and image pre-processing
can be found in Fan et al. (1997). From the
atmospherically corrected GERIS data the channels
matching the MERIS bands were extracted following
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Figure 4 Illustration of the MERIS simulation process.

Table 3. This resulted in a MERIS data cube at the original
12 m. GERIS resolution. This cube was subsequently re-
sampled stepwise from 12 m. Up to approximately 300 m.
following the degradation process described earlier. The
process is illustrated in Figure 4. In order to derive ground
abundances of various Earth materials we applied spectral
unmixing to the data cube.

We used the 12m. resolution “MERIS” data set to find
the purest endmember pixels. We used the Minimum Noise
Fraction (MNF) transformation of Green et al. (1988) to
determine the spectral dimensionality defining the number
of end members needed to optimally describe the spectral
variability. The MNF transformation is a two-step
principal component transformation where during the
first step using the noise covariance matrix the noise is
decorrelated to have unit variance and no band-to-band
correlation. The second principal component
transformation results in a data set where components
are ranked in terms of noise equivalent radiance. Consider
stochastic variables Z(x) = [Z

1
 (x)...Z

p
 (x)]T with expectation

E{ Z} = 0 and dispersion D{ Z} = Σ. New mutually orthogonal
variables with maximum signal-to-noise ratio can be
constructed as

Y
i 
= a

i1
Z

1
+...a

ip
Z

p
=aT

i 
,i=1,....,p [6]

Assuming additive noise (i.e., Z(x) = S(x) + N(x) where S
and N are uncorrelated signal and noise components,
respectively) the response equals Σ = Σ

S
 + Σ

N
 where Σ

S
 and

Σ
N
 are dispersion matrices for S and N, respectively. The

signal-to-noise ratio (estimated from the ratio of mean and
variance in a local window) for Y

i
 that needs to be maximised

can be defined as (Lee et al. 1990; Nielsen and Larsen,
1994)
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the factors λi are the eigenvalues of Σ
N
 with respect to Σ and

the factors a
i
 are the corresponding conjugate eigenvectors.

The inherent spectral dimensionality of the data set can be
found by examining the eigenvalues and associated MNF
images. Some of these MNF images are associated with
large eigenvalues and coherent (MNF) eigenimages while
the remainder if the MNF bands have near-unity eigenvalues
and images dominated by noise. Thus the MNF eigenvalues
and eigenimages yield the absolute number of end-members
required to model the image spectral response. The locations
of the end member pixels in the image data are found using
the Pixel Purity Index (PPI; Boardman et al. 1995). The PPI
is based on the approach developed by Smith et al. (1985).
This approach regards spectra as points in an n-dimensional
space (n being the number of bands). The body (referred to
as simplex) that spans the data points in a n=2-dimensional
space is a triangle having n+1 facets. The purest end-
members are found at the locations in this space where the
sides of the triangle intersect. This principle can be extended
to higher dimensions in a similar way. The PPI approach
compares the pixels in a scene with the best fitting simplex
and records the number of times a pixel is found at the
extreme facets of the simplex. Portraying this as an image
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Figure 5 MERIS-type end members derived through pixel purity index.

Table 3 Some airborne imaging spectrometers and the available bands to simulate MERIS spectral bands using the principle of direct band matching.

 MERIS GERIS DAIS CASI AVIRIS

No. Wavelength No. Wavelength No. Wavelength No. No. Wavelength band no No. Wavelength
1 0.4125 - - 4 tm 10 7 0.4121 5,6 5 0.41175
2 0.4425 - - 22 tm 27 24 0.4417 8,9 8 0.4408
3 0.49 2 0.489 1 0.501 49 tm 54 52 0.4907 13,14 13 0.48967
4 0.51 4 0.514 2 0.517 60 tm 66 63 0.5101 15,16 15 0.50934
5 0.56 8 0.564 5 0.567 88 tm 94 91 0.5595 20,21 20 0.55874
6 0.62 13 0.625 8 0.621 122 tm 128 125 0.6198 26,27 26 0.61824
7 0.665 16 0.662 11 0.671 148 tm 153 150 0.6644 30,31 31 0.66779
8 0.68125 18 0.687 12 0.689 157 tm 162 159 0.6805 34,35 35 0.68491
9 0.705 19 0.699 13 0.705 170 tm 175 173 0.7055 37,38 37 0.70398
10 0.75375 23 0.794 16 0.756 198 tm 202 200 0.7539 42,43 42 0.75174
11 0.76 24 0.761 16 203,204 203 0.7593 43 43 0.7613
12 0.775 25 0.774 17 0.773 208 tm 216 212 0.7755 44,45 44 0.77086
13 0.865 - 22 0.86 256 tm 267 262 0.8653 53,54,55 54 0.86665
14 0.89 - 24 0.895 273 tm 278 276 0.8905 56,57 56 0.88583
15 0.9 - 24 279 tm 284 281 0.8995 57,58 57 0.89542

of cumulative count values allows identification of the
locations in the data space of the initial set of spectrally
pure end members. The resulting end member spectra were
used as input to a spectral unmixing analysis to gain surface
fractional abundance estimates of various ground cover
types. Examples of some of the MERIS end members
derived are shown in Figure 5. The unconstrained spectral
unmixing technique we used is further described in Settle
& Drake (1993). These authors define a vector of expected
pixel signals µ

i
 = {µ

i1
, µ

i2
 ..... µ

in
} T for the n ground cover

classes giving an expected mixed pixel signal under strictly
linear conditions as

f
1
µ

1
 + f

2
µ

2
....f

c
µ

c
 = Mf [8]

The columns of the matrix M are the vectors µ
i
 which are

the end-member spectra. The observed signal of pure pixels
will exhibit statistical fluctuations due to sensor noise
characterized by a noise variance-covariance matrix N

i
.

Therefore pixels with the mixture f will exhibit fluctuations
around their mean value Mf characterized by the noise
covariance matrix N(f) given by

N( f ) = f
1
 N

1
 + f

2
 N

2
....+ f

c
N

c
[9]

If the N(f) is independent of f, thus when the noise
components are un-correlated, the linear model can be
defined according to Settle & Drake (1993) as

x = Mf +e [10]

where e is the vector of errors satisfying

E(e) = 0 and E(eeT) =N [11]
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Figure 6  Mean difference of the abundance estimated at coarse resolution as compared to the highest possible resolution of 12
m.

Figure 7 Illustration of a variogram model curve and indication of key parameters
describing the model.

This signifies that the expectation of e is zero and that the expectation
of noise component is close to the sensor noise component. The final
result were end member abundance images for several end members
of which we focus our analysis on the “vegetation” and “soil” end
member. A first result derived from these end member abundance
estimates is shown in Figure 6 where we have calculated the mean
difference in the fraction for the different scales (i.e., pixel sizes) as
compared to the 12 m. resolution results. From Figure 6 we can
observe an inflection point in the behavior of the trends in abundances
at 100 m. resolution. By means of geostatistical techniques, we will
further analyze the spatial variability in the end member fraction
images at the various spatial resolutions to better understand the
observed discrepancy illustrated in Figure 6.

Spatial variability

Regionalized variable theory assumes that spatial variation of a
variable z can be expressed as the sum of three components

z(x) = m(x) + e‘(x) + e‘’ [12]

where x is the position, m(x) is the structural component (a trend or a
mean), ε‘(x) is the term denoting the stochastic, spatially dependent

residuals from m(x), and ε‘’ is a residual, spatially
uncorrelated (Gaussian) noise. Once structural
effects have been accounted for, the remaining
variation is homogeneous in its variation, so that
differences between samples should merely be a
function of the distance between them. This
spatial relationship can be expressed by a
variogram (or semivariogram), which is a graph
of semivariance versus sample spacing. The
variogram in remote sensing can be estimated
from p(h) pairs of observations,z

v
 (x

l
) and z

v

(x
l
+h)  with 1=1,2,...,p(h) as

p(h)

γ (h) = 1/2 p(h)Σ {z
v
 (x

l
) - z

v
 (x

l
+ h)}2 [13]

l=1

Parameters of a fitted mathematical junction (the
variogram model) may include a range, a nugget
and a sill. The range of the variogram indicates a
spatial scale of the pattern, the nugget is an
indication of the level of uncorrelated noise in
the data and the sill reveals the total variation
(Figure 7). The resulting variograms for two
directions corresponding to maximum and
minimum variability are shown in Figure 8.
Variograms of remotely sensed measurements
should be interpreted with care. In remote sensing,
the support size (the area or volume of the
samples) equals the sample spacing. i.e. reflection
values are averaged over the pixel size of the
measuring device. Furthermore, the sensor’s
output is always a derivative of the complex
composition of radiation from the terrain. Some
major points for variogram interpretation are
(De Jong & Burrough 1995; Figure 7)
• The range is related to sizes of objects in the

terrain (for example batches of shrubs);
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Figure 9 Variogram surfaces at (from top to bottom) 180,
204, 228 and 252 m. resolution for MERIS band
7 showing strong anisotropy.

• The shape of the variogram is related to variability in size of objects
in the terrain;

• The height of the variogram is influenced by the density of
coverage of the objects and the spatial differences between the
objects;

• Regularisation (coarsening the spatial resolution) reduces the overall
variance of the data and blurs fine scale variation; consequently,
the sill height will reduce, the range will increase and the nugget
will increase;

• Anisotropy in the image is expressed by the variation of variogram
parameters with the direction of the transect.

An effective way to detect and display anisotropies in the pattern
occurring variability is a variogram surface. In this surface the
(semi)variance is not only related to the mere distance between two
points (the lag), but also to the direction. In calculating the variogram
value for pairs of points separated by a vector (hx, hy) all pairs are
grouped together whose separation is hx± ∆x, hy±∆y. In this case ∆x
and ∆y are half the support size, i.e. (in a rectangular coordinate
system) the pixelsize (Isaaks & Srivastava, 1989). The result is a
surface with for each vector a computed (semi)variance.

Variogram surfaces for simulated MERIS band 7 (Figure 9) were
analyzed showing a strong directional anisotropy and little change in
spatial structure with change in pixel size. Figure 10 shows two

variogram surfaces for the end member abundance
images for “soil” and “vegetation” at 300 m.
resolution again showing surprisingly little change
in spatial structure between these end members.

Figure 8 Directional variograms in northwest (top) and northeast (bottom) direction
for pixel sizes ranging from 156 up to 276 m.
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Figure 10 Variogram surfaces for the “soil” end member (top) and the
“vegetation” end member (bottom) at the MERIS resolution
of 300 m.

Mapping accuracy: optimal sampling sizes.

Woodcock & Strahler (1987) developed a method for
selecting a optimal spatial resolution in terms of the spatial
variation of an image. Let z(x

ij
) be the value of the pixel

located at x
ij
 in the ith row and the jth column of a image.

The local variance can be computed over a (2n+1) x (2m+1
) w indow by

i+n   j+m

σ2
ij
 =1/(2n+1)(2m+1) Σ Σ {z(x

kl
)-u

ij
} 2 [14]

k+i-nl=j-m

where u
ij
 is the mean of the (2n+1) x (2m+1) window

centered on x
ij
. The local variance can be computed for

varying pixel sizes using degraded image products. A plot
of local variance versus pixel size allows selection of the
optimal pixel size corresponding to the peak in variability

(Figure 11). For the “soil” end member a decrease of local
variance with spatial resolution is found thus indicating
that the optimal sampling size is equal to the highest
possible resolution. For the “vegetation” end member a
peak is found at around 100 meter resolution. Thus not only
do we observe difference between the sampling resolutions
(i.e., pixel size) found to be optimal for different ground
cover types, but they also both are smaller than the resolution
to be imaged by MERIS (i.e., 300 m.). Another observation
made is that the optimal scale for observing different
components of spectral mixtures varies depending on the
type of mixture. Again, the best possible resolutions in all
cases is below the envisaged 300 m. field of view.

Conclusions

Given the limitations of currently available airborne
imaging spectrometer systems it has been shown that MERIS
data can be simulated. In order to evaluate the spatial
aspects of this data, variograms and variogram surfaces are
calculated for MERIS band 7 and fractional abundance
estimates for a “soil” and a “vegetation” endmember. These
allow to gain insight into the nature of the data and its
spatial dependency showing however little noticeable
changes even at a sub-pixel level. However when evaluating
mapping accuracy clearly different optimal sampling sizes
are found for the different end members. For both
endmembers, the optimal sampling size corresponding to
the peak in the local variance curve is found at finer
resolution than the pixel size proposed for MERIS. We
observe differences between the sampling resolutions (i.e.,
pixel size) found to be optimal for different ground cover
types. The optimal scale for observing different components
of spectral mixtures varies depending on the type of mixture,
however, the best possible resolutions in all cases of mixtures
studied is below the envisaged 300 m. Held of view for the
MERIS sensor. The analysis of semivariogram surfaces
clearly shows that the spatial distribution of the variance of
the mixtures is invariant with scale, thus the observed
mapping discrepancies are not related to the data processing
but to the observations themselves.
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