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ABSTRACT 

Vriezinga, C.A., 2000. Thermal runaway and Instability in microwave heated slabs, 

cylinders, and spheres, Ph. D. Thesis, Wageningen University, the Netherlands, 

144 pp., with English and Dutch summary, ISBN 90-5808-206-7 

This study analyzes the runaway of microwave (2450 MHz) heated slabs, cylinders, 

and spheres in free space. It is shown that the phenomenon can be described with an 

S-shaped response curve of steady-state temperature versus microwave power at any 

position within the sample. The analysis demonstrates that the direct influence of the 

temperature dependent loss factor in the absorption of electromagnetic energy is 

canceled by the attenuation constant. Runaway can be understood from the behavior 

of the waves within the sample. In foodstuffs the small decrease of the phase constant 

with increasing temperature causes resonance at certain temperature, which can be 

considered as the physical origin of runaway. So characteristic dimension of food 

samples have to be smaller than a quarter of the temperature dependent wavelength 

to prevent runaway. The investigation of a slab of alumina demonstrates that thermal 

runaway in ceramics with a dielectric loss factor exponentially increasing with 

increasing temperature is caused by the strongly increasing attenuation constant at 

high temperatures. This means that only relatively thick ceramic objects will not be 

damaged by the runaway. The physical and mathematical aspects of bistability are 

investigated for a system with a microwave power directly proportional to time. 

Keywords: microwave heating, thermal runaway, bistability, relaxation oscillations 
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Voorwoord 
Een proefschrift kan niet tot stand komen door de inspanning van een persoon 

alleen. Er is een omgeving nodig, die ruimte biedt aan de promovendus om te onder-

zoeken (niet al te zeer gehinderd door bestuurlijke perikelen en persoonlijke pro-

blemen), er zijn faciliteiten nodig (bijv. computers), er is stimulans nodig, er is 

overleg nodig, er is afstemming nodig, enz. Naast deze algemene zaken, van 

toepassing op iedereen die een werk verricht, is er de concrete hulp. De promo­

vendus kan tijdens zijn onderzoek terecht komen op voor hem onbekend terrein, of 

hij raakt in gevecht met computer programma's, of hij wordt geconfronteerd met 

extreem hoge eisen van uitgevers van wetenschappelijke tijdschriften, of hij komt op 

een andere manier vast te zitten. Dan is er concrete hulp nodig. 

Tal van mensen hebben in meer of mindere mate een bijdrage geleverd in het 

tot stand komen van dit proefschrift. Mijn dank gaat uit naar hen alien, maar de 

mensen die direct betrokken waren bij dit onderzoek, wil ik met name noemen. 

Om te beginnen wil ik de begeleidingscommissie, bestaande uit Gerard Bot, 

Johan Grasman, Wim Jansen en Paul Bartels bedanken. Gerard, bedankt voor het 

creeren van de ruimte voor dit onderzoek in een bestuurlijk zeer turbulente tijd en 

ook bedankt voor de vele adviezen op het terrein van de warmtetransport. Johan, 

welk een genoegen was het om te ontdekken dat dit onderzoek nauw verwant is aan 

een van jouw specialiteiten, de relaxatie oscillaties. Bedankt dat je de bedding en de 

stimulans hebt gegeven om daar iets mee te doen. Wim, nestor van de Nederlandse 

microgolf wereld, bedankt voor je enthousiasme en voor de wijze waarop je mij in 

de internationale wetenschappelijke wereld geintroduceerd hebt. Paul, bedankt voor 

je adviezen in relatie tot de praktijk van de microgolf verwarming. Met jou wil ik 

ook je beide collega's Eric Torringa en Eric Esveld bedanken. 

De eigenlijke inhoud van dit proefschrift bestaat voor het merendeel uit 

artikelen, gepubliceerd in gerenommeerde wetenschappelijke tijdschriften. Iedere 

publicatie is beoordeeld door een referee. Vaak was het oordeel zeer positief, maar 

ook waren er kritische kanttekeningen, die mij dwongen bepaalde stellingen opnieuw 

te overwegen en zo nodig te nuanceren. Op internationale congressen werd ik 

aangesproken op mijn werk of zocht ikzelf de discussie op. De onbekende referees 
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en het contact met de buitenlandse vakbroeders gaven mij het klankbord voor dit 

onderzoek. In dit verband wil ik drie mensen noemen. Dat zijn Gregory Kriegsmann, 

Lynn Johnson en Barmatz. De gesprekken met hen waren zeer stimulerend en 

motiveerden mij om door te gaan op de ingeslagen weg. 

De volgende persoon, die ik wil noemen, is mijn oud-collega Henk van 

Remmen. Samen met jou heb ik de eerste stappen gezet in de microgolf wereld. 

Bedankt Henk voor je steun en kameraadschap. 

Mijn dank gaat ook uit naar de totale fysica groep, waarin we ondanks de 

ogenschijnlijk verschillende onderzoeksgebieden als team opereren. Bedankt Edo 

Gerkema, Hennie Boshoven, Dane Bicanic, Wilko van Loon, Ies van Haneghem en 

Joost van Opheusden. Aan jullie denk ik bij concrete hulp op velerlei gebied. Rachel 

van Ooteghem en Paul van Espelo wil ik bedanken voor hun hulp bij het maken van 

mooie plaatjes. 

Mijn speciale dank gaat uit naar Josie Zeevat voor haar volkomen belangeloze 

correctie van het Engels. Mijn eerste publicatie voor het Journal of Applied Physics 

kreeg ik retour met de opmerking:"Very interesting article, but the English needs 

improvement". Zonder Josie zou het nog steeds in aanmerking komen voor 

improvement. 

Tot slot wil ik degenen bedanken, die mij het naaste staan. In de eerste plaats 

wil ik mijn erkenning uitspreken voor de positie die mijn vrouw Yt heeft ingenomen, 

namelijk naast mij, als een vriend. Ook de kinderen Sjoertje, Evert, Nelleke en 

Gerrit wil ik bedanken. Het was geweldig leuk om samen met jullie in de tijd te 

reizen, ook al geloofden jullie er soms niets van. In deze rij van naasten horen ook 

mijn ouders, mijn zus en mijn broer. Zij vertegenwoordigen de omgeving waarin ik 

ben opgegroeid. Mijn ouders hebben mij de ruimte, de faciliteiten en de stimulans 

gegeven om fysica te studeren, uitmondend in dit proefschrift. Aan mijn ouders, Yt 

en de kinderen draag ik deze thesis op. 
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Chapter 1 

General introduction 

formulation of the problem 

The use of microwaves (frequency 2450 MHz) has found its way into various 

applications in industry. Perhaps the largest consumer of microwave power is the 

foods industry where it is used for cooking, tempering, drying, pasteurization, 

sterilization, etc. (Decareau1, Mudgett2). Another application is the joining and 

sintering of ceramics (Metaxas3, Sutton4). Both foodstuffs and ceramics have in 

common that, within the dynamic range of operation, a slight increase of the 

microwave power causes the temperature of the irradiated sample to increase rapidly. 

This is the so-called thermal runaway phenomenon. Because of this foodstuffs and 

ceramics might become overheated. 

the aim of the investigation 

In this study the physical-mathematical modeling of the runaway effect is the 

leading theme. The understanding of this process is still somewhat empirical and 

speculative due to its highly nonlinear character. Therefore the runaway effect cannot 

be predicted accurately. Insight in the physical origin and the formulation of the 

conditions necessary for runaway, could lead to rules to prevent this, sometimes 

catastrophic, phenomenon. 

A second difficulty associated with the application of microwave heating is the 

nonuniform temperature distribution within the sample, linked to the uneven spatial 

dissipation of energy. Also this problem has its roots in the basic physics of the 

heating process and is related to the runaway problem. Therefore also the spatial 

distribution of energy dissipation has been studied. 
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starting-point of the investigation 

Thermal runaway, meaning that a slight increase of the applied microwave 

power causes the temperature of the irradiated sample to increase rapidly, has first 

been reported in the microwave sintering of ceramics (Brodwin et al.5). This process 

especially is seriously hampered by thermal runaway. Kriegsmann6 (1992) introduced 

the S-shaped response curve of a ceramic slab steady-state temperature versus 

microwave power as a plausible explanation of the observed runaway phenomenon. 

At the 4th International Conference on Microwave and High Frequency Heating 

(Goteborg, 1993) Stuerga et al.1 and Zahreddine8 demonstrated that the response 

curve of an isothermal slab of water could also be S-shaped. Based on this 

observation they introduced a new type of bistability. Heating an isothermal slab of 

water with the microwave power directly proportional to time would result in an 

instantaneous(l) jump of the slab temperature at a certain moment. They also claimed 

to have experimental evidence for their statement (Stuerga et al.9). This discovery 

drew much attention, because real macroscopic, bistable behavior is a remarkable 

phenomenon in physics. It justifies the choice of the topic for the present study. 

outline of the thesis 

Preceding the investigation of thermal runaway a study was made of the 

dissipated energy within an microwave irradiated object. This work was done in 

cooperation with the Agrotechnological Research Institute (ATO, Wageningen). It 

has led to an approximation in the form of a model from geometric optics with 

multiple reflections and interference of beams (Van Remmen and Vriezinga10). 

Knowledge of the interaction of electromagnetic waves with slabs, cylinders and 

spheres, including the implementation of equations in computer programs, was 

necessary for the comparison of the approximation with the exact solution based on 

Maxwell's equations. The theory on the microwave heating of slabs, cylinders and 

spheres is presented in Chapter 2. 

For a better understanding of the concept of bistability (as introduced by 

Stuerga et al.1) a thorough analysis of a microwave heated isothermal slab of water 

is necessary. This analysis can be found in Chapter 3. Besides the bistability in case 
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of a time-dependent power, the physical origin of runaway and the possibilities of 

avoiding runaway are investigated. 

The experimental evidence of Instability, which shows a notable curve of the 

• slab temperature versus time, including a (not instantaneous) jump, needs a 

theoretical foundation. In cooperation with mathematicians of Wageningen and 

Murcia University (Spain), this theoretical foundation has been developed and 

discussed. This mathematical analysis is formulated in Chapter 4. 

The microwave heated isothermal slab can be described by a relatively simple 

one-dimensional model. The next question is: Are the principles based on such a 

simple model also applicable to other objects than the slab? This is the subject of 

Chapter 5, which analyzes the microwave heating of isothermal slabs, cylinders and 

spheres of water. The aim of this article is to investigate how the geometry of the 

irradiated object influences runaway. The physics and mathematics of irradiated 

cylinders and spheres are rather sizeable. Where necessary reference has been made 

to Chapter 2. 

So far isothermal objects have been investigated with respect to runaway. The 

next step in this investigation is the analysis of real nonisothermal microwave heated 

samples. By doing so the other problem of microwave heating (the uneven spatial 

dissipation of energy within the sample) becomes part of the investigation. The non-

isothermal slab of water is discussed in Chapter 6. Besides the description of the 

runaway phenomena, it contains a comparison of temperature profiles calculated with 

a temperature dependent and a temperature independent permittivity. 

In addition to Kriegsmann6 the nonisothermal ceramic slab is analyzed in 

Chapter 7. The aim of this investigation is to find the physical origin of thermal 

runaway in the case of ceramics and to understand why the isothermal approach of 

Kriegsmann in his explanation of runaway is justified. Also the influence of 

resonance within the slab has been studied. 

As remarked in the beginning of this introduction, the physics of microwave 

heated foodstuffs and ceramics are rather similar. Therefore the runaway phenomena 

of both kind of materials have many aspects in common. A comparison of the 

thermal runaway phenomena of foodstuffs and ceramics can be found in Chapter 8. 
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General conclusions are presented at the end of this thesis in Chapter 9. 

The physical-mathematical modeling of the runaway effect and its consequen­

ces are reported in the articles (Ch.3-Ch.8) and in the general conclusions (Ch.9). 

The theory of microwave heating (Ch.2) has been written to account for the power 

formulas, which are used in the articles. Therefore this chapter contains a brief 

introduction to the electromagnetic description of the microwave heating process, 

starting with Maxwell's equations and ending at the wave equation and the general 

relation for the absorbed power (Section 2.1-2.4). For the calculation of the 

temperature the absorbed power has to be combined with the heat conduction theory 

(Section 2.10). The reader who is familiar with the general theory of microwave 

heating can easily skip over Chapter 2, after taking notice of Section 2.5, because the 

notation in this thesis differs from the conventional one. 

REFERENCES 
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Chapter 2 

Theory of microwave heating 

2.1. INTRODUCTION 

The microwave heating of dielectrics is caused by the interaction of the 

electromagnetic waves with permanent and induced dipoles of the irradiated sample. 

The free charges (free electrons, ions etc.) are responsible for an additional heating. 

The oscillating electromagnetic field causes alternating currents of the free charges, 

which yields ohmic heating. The interaction of the field and the dipoles also causes 

alternating currents, but the mechanism is different. The oscillating field rotates the 

dipoles. It is possible to describe the interaction of an electromagnetic field and 

molecules in terms of a damped harmonic oscillator (Feynman1). Using this model 

the "friction" in the rotation of the dipoles can be regarded as the origin of dielectric 

heating. 

It is not necessary to describe the details of this interaction. In this thesis the 

absorption of electromagnetic energy is expressed by a known complex permittivity 

or complex dielectric constant. The imaginary part of the dielectric constant, the so-

called dielectric loss factor, expresses the fact that the dielectric absorbs 

electromagnetic energy. By the introduction of the complex permittivity it is possible 

to describe the absorption of electromagnetic energy with Maxwell's equations and 

the Pointing vector in the complex formulation. Maxwell's equations contain the 

charge and current density of the free charges. The current density becomes part of 

the complex permittivity. The loss factor expresses the dielectric heating as well as 

the ohmic heating. The impact of the free charges does not vanish in the 

electromagnetic boundary conditions. There will be surface charges and surface 

currents. The analytical description of such a system (a mixture of a dielectric and 

conductor) is possible, but in this chapter the theory is limited to pure dielectrics. It 
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is assumed no free charges are present. 

The temperature of the irradiated sample increases during the heating process. 

This is described by Fourier's differential equation, where the source term 

corresponds to the absorbed electromagnetic energy. The problem of microwave 

heating is to find simultaneous solutions of electromagnetic and thermal equations. 

An analytical solution is hardly possible, because of the uneven spatial absorption of 

energy and because the permittivity depends on temperature. However formula's are 

needed for a better understanding of the heating process. For this reason the 

calculations in this chapter are limited to isothermal objects, where an analytical 

description of the absorbed power is possible. These solutions, combined with a 

numerical analysis, yield sufficient insight in the microwave heating process. 

This chapter starts with Maxwell's equations and the Pointing vector (section 

2.2-2.4). The electromagnetic wave equation and the general expression for the 

absorbed power are developed. The general theory can be found in many textbooks 

(e.g. Stratton2, Blok et al}, Reitz et al.4). A brief description of this theory, applied 

to an isothermal slab is found in Ayappa et al.5 

The power formula's for the isothermal slab are developed in section 2.6. The 

electromagnetic waves and the formula for the absorbed power in an isothermal 

cylinder (irradiated in two different ways) are described in the next two sections 2.7. 

and 2.8. The power formula for the isothermal sphere is developed in section 2.9. 

The general theory of electromagnetic waves in cylinders and spheres was deducted 

from Panofski et al.6 and Stratton2. 

Section 2.10. briefly outlines the heat conduction of the microwave heated 

sample, based on 6zi§ik7. 

The power formula's are complicated and interpreting them in physical 

processes is difficult. Therefore, these formula's are simplified. This is the subject 

of section 2.11 of this chapter. The theorems about the special functions are from 

Spiegel8. 

Finally a list of symbols for this chapter is given. 



Theory of microwave heating 

2.2. MAXWELL'S EQUATIONS 

Microwave heating is a macroscopic phenomenon. The theory of classical 

electrodynamics provides the best way describing this process. Maxwell's equations: 

- . dDr . 
V*ff = —^ + Jr (1) 

at 

Supplied with compatibility equations 

V-D = p ( 3 ) 

V-B = 0 <4> 

where £ r and i / r a re the electric and magnetic fields, Dr e lectric displacement, Br 

magnetic induction, p r and Jr a re the charge density and current flux of the external 

charges (the free charges) . 

In the case of linear, non-instantaneously reacting materials D r , Br and Jr obey 

an equation of the form 

Qr(t,T) = f R(t',T) Er(t-t<) dt' (5) 

where R(t',T) is a response function characteristic of the quantity D r , Br o r / , and the 

material at the temperature T. The temperature is an external parameter , depending 

on position and t ime during the dielectric heating process, but is kept constant in this 

definition of linear medium. Let us consider the electric displacement to illustrate the 

mathematical description of the dielectric heating process . In accordance with 
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equation (5) we have 

Dr{r,t) = f[e0b(t) + %(r,t)] Er(r,t-t') dt' (6) 

where e0 is the permittivity in vacuum and % the (temperature dependent) response 

function. Assuming the electric field is turned on at t=0, equation (6) becomes 

Dr{r,t) = e0Er(r,t) + fx(.r,t) Er(r,t-t) dt' (7) 

We are interested in the response of materials to radiation of a particular (angular) 

frequency w. The complex electric and magnetic field E and H are introduced 

according to: 

Er(r,t) = Re(i(f)e-"°') and Hr(r,t) = Re(H(f)e10") (8) 

Alternatively eml can be used to express the time dependence. 

Many dielectric heating processes (e.g. Debeye's dipolar loss process) can be 

described by rotating dipoles returning to their equilibrium according to an 

exponential decay law. This process is expressed by the response function. 

X(r,t',T) -ae-^ (9) 

where a and the molecular relaxation time x depends on temperature at the position 

of the electric field. Substituting the decay law in (7) and using complex fields, yields 

i 

D(r)e -** = e0E(r)e "'"' + fae ,'he,u"'E(r)e ~iu" dt' (10) 
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D(r) = e0£(r) + - ^ 1 -e'"'e ' r t)£(r) Q n 

When T is small compared to t, the time dependence disappears and we are able to 

introduce a complex permittivity e. 

D(r) = eE(r) = e„(l+ -)E(r) K ' 
1 -f'G)T 

Thus, the complex dielectric constant K = e/e0 can be written as 

K = K » + -r— (13) 
1 - /COT 

where K0 (K„) is the dielectric constant at frequency 0 (°°). This expression 

corresponds to the formula of the dielectric constant for water. See eq.(2.5) in 

chapter 4. The (1 +ia>x) in eq.(2.5) is caused by the e,at choice in eq.(8) for the time 

dependence of the fields. 

This example illustrates the frequency dependence and the complex character 

of the permittivity, and the fact that many materials react instantaneously in 

microwave heating processes. For linear, isotropic and instantaneously reacting 

materials the following constitutive relations apply. 

D = e i B = \iH J = oE (14) 

where e is the permittivity, \i the permeability, and a the electric conductivity of the 

free charges within the medium. These quantities are temperature dependent. During 

the microwave heating process the temperature will change (in the case of runaway 
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very rapidly). Therefore D, B and J are time dependent. "The change in temperature 

acts as an extra generator of fields". In the complex formulation Maxwell's and 

compatibility equations read 

V x i = iu>\inH (15) 

V x H = -ioiEnE (16) 

V-D - p <17) 

V-fi = o (18) 

with 

Vn=ll+-^L a n d en=e+ — + ~r (19> 
O dr O) G) df 

With the condition of electro neutrality of the materials considered [which implies 

V(V-£)=0 ] eq.(16) can be inserted in eq.(15) to obtain the classical wave equation 

V2^ + k2E = 0 (20) 

where k2 = o>2 finen (21) 

k is called the complex wave number or propagation constant (in this thesis). The 

main problem in microwave heating is finding the solution of eq.(20). 

The complex permittivity is usually written as the sum or the difference of a 

real part e' and an imaginary part e", where e' and e" are positive numbers. 

e = z' ± it" (22) 

10 
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In this section we have to choose the sum to express the lossy character of the 

dielectric. Let us neglect the (dzldt)=(dtldT) (dT/dt) term in eq.(19) and assume that 

the electric conductivity o is a real number, then eq.(16) can be written as 

V x H = ( - /we + a)E = -iuz'i + (coe" + o)E (23) 

Thus, by choosing the plus sign in eq.(22) the dielectric conductivity o is increased 

by the dipolar relaxation QE ", expressing the extra absorption of electromagnetic 

energy. By choosing the e,at in eq.(8) for the time dependence of the fields, one is 

forced to choose the minus sign in eq.(22) to express the lossy character of the 

dielectric. 

2.3. POWER DISSIPATION 

The power flux associated with a propagating electromagnetic wave is represented 

by the Pointing vector 5. The time average flux for harmonic fields is given by 

<S> = -[(E*H*) + (E**H)] (24) 
4 

The average power dissipated per unit volume is 

D = -V-<S> (25) 

Inserting Maxwell's equations (15) and (16) in (24) and (25), yields 

(26) D = —[(£ * - e ) | £ | 2 + (u * -u )\H\2] 
4 

Writing e„ and fx,n as the sum of a real and imaginary part 

I . II . I . II /O-TN 

e = e + it and u = u + JU (II) 

11 
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gives the general expression for the absorbed power per unit volume 

D = - co fe^ i l 2 + u" |# |2] (28) 
2 

The e '"' convention in eq.(8) yields eq.(26) multiplied by a minus sign, but the 

convention obliges to choose eq.(27) with minus signs instead of plus signs, and the 

result (28) is the same. 

2.4. DIELECTRIC PROPERTIES 

In food systems, as well as in ceramics, the permeability \i is well approximated by 

its value fiQ in vacuum. This means that the magnetic part in the expression of the 

absorbed power (28) disappears. It is also assumed that there are no free charges. 

This study describes the behavior of pure dielectrics. The oscillating electromagnetic 

field rotates the permanent and induced dipoles of the material specimen. The 

specific character of this process is expressed by the complex permittivity e. This 8 

depends on the temperature of the irradiated object. Because the temperature 

increases with increasing time during the heating process, the time dependence of the 

permittivity has to be taken into account. Investigations have shown that the influence 

of the term d(ie)/d(o}t) of eq.(19) can be neglected (see chapter 6). With these 

considerations the main equations of the heating process reduce to 

V2^ + k2E = 0 (29) 

k2 = o>2n0e (30) 

D = -ue"\E\2 = -(X>E.K"\E\2 (3D 

2 2 o i l VD 

The permittivity is usually replaced by the dielectric constant K, which equals the 

permittivity divided by the permittivity of vacuum e0. The dielectric loss factor K" 

12 
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is the imaginary part of the dielectric constant. Representing the dielectric properties 

of materials in tabulating the values of K' and K" is customary. The propagation 

constant k is represented as a complex quantity 

k = a + j'P (32) 

where the phase constant (or real wavenumber) a and the attenuation constant P are 

related to the dielectric properties of the medium and frequency of radiation by 

a = — 
N 

K' (]/l +tan26 + 1) (33) 

P = ° 
N 

K' (v'l +tan25 - 1) (34) 

tan 5 (35) 

where c (=1/^^ fiQ) is the speed of light, so wlc is the propagation constant in 

vacuum. The use of a and P, instead of K' and K", gives more insight in the 

microwave heating process. 

13 
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2.5. ABOUT THE NOTATION 

The notation used in this thesis differs from the conventional one. Therefore a 

comparison is given. 

Conventional 

Er = Re (£ e + 'u ') 

V*£ - y2E = 0 

Y = propagation constant 

y = a + j'P 

a = attenuation constant 

P = phase constant 

Y = -Q2(e )u 
CO 

e = permittivity 

, i • >k e = e0(er - /e r ) 

/ . // e. - ie 

This thesis 

Er = Re (E e""") 

V2^ + k2E = 0 

^ = propagation constant 

k = a + J'P 

a = phase constant 

6 = attenuation constant 

or(e + —)u 
G) 

e = permittivity 

e = z! + / e " 

K = K ' + JKW 

e = relative permittivity 

er = dielectric constant 

e. = loss factor 

K = complex dielectric constant 
K' = dielectric constant 
K" = loss factor 

Many authors leave out the subscript r in the conventional symbols for dielectric 

constant and loss factor. 

Most of the calculations in this thesis are expressed in terms of the phase and 

attenuation constant, so by changing the meaning of a and p compared to the 

conventional meaning, this thesis can easily be read. 

14 
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2.6. THE POWER FORMULA OF A SLAB 

Consider a slab in free space, irradiated from one side by microwave radiation. The 

wave is a plane, harmonic one and impinges normally upon the material (Fig.l). 

E 

Plane p-wave 

air 

Figure 1. A slab, being irradiated from one side, in an echofree cavity. 

It is assumed that the slab is isothermal continuously. The field equation (29) 

becomes a one-dimensional differential equation. 

d2E 

dxJ 
+ k2E = 0 (36) 

with the solution 

El = Axe
ik'x + Bxe~ik'x 

(37) 

E2 = A2e "» + B2e (38) 

Ez = A3e (39) 

The subscript 1 refers to the space where the microwave source has been located, the 

subscript 2 belongs to the irradiated slab, and 3 refers to the free space at the rear 

side of the slab. The integration constants follow from the electromagnetic boundary 

15 



Chapter 2 

conditions. 

d£, dE2 dE2 d£3 

E1=E2 ; = at x=0 and ^2=E3 ; = at x=L (40) 
dx dx dx dx 

The thickness of the slab is L. Introducing the reflection and transmission coefficient 

Rn and Tl2 according to, 

p - I B \,a« - *' *2 • T - \T \*iz" - Ul 
Kn -\Kn\e ~ , T ' ln ~ Iyi2 | e 

fcj +k2 kx +k2 
(41) 

makes it possible to write the electric field within the medium as 

i k, x „ 2 i k, L -i k, x 

E2 - Tn 1 -f!L! ' Ax (42) 

Adding the waves, going back and forwards within the slab, gives the same result. 

The sum of all the waves is a simple arimethic sum. The power flux of the incident 

wave (the microwave power) P equals 

P = - c e„ A 2 

2 0 "1 (43) 

The absorbed power as a function of the position x within the slab is 

.. 2^-i l i> \.-^*^.n„ r _ i„ ...A wlp v.-***.2** o „ , e ^-2\R,7\e ^cos(2a,L-2a,x+b,,) + \R,.\2e v*e 
D = P-K'\T, I2 ' 12 ' 2 2 12 ' 1 2 ' 

c 
* 2 I x 1 2 I 

l-2|JR12|
2e"2P2icos(2a2Z+2612) + |/e i2|

4e" lp2i 

(44) 

16 
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Integration over the slab yields the total amount of absorbed power 

D,„, = P — K? \ T M \ X 

tot 2 I 12 I - n 

c 2P, 

4P2
 ( 4 5 > 

(l-e~2Pl£) (l+|/f12|
2e"2P2i) - —|^12|e"2p2isin(a2I)cos(a2I+812) 

«2 

1-2|/J12|
2e P2 cos(2a2I+2512) + |^12 |

4e"4P2t 

In case of a slab, irradiated from two sides symmetrically (at the surface of the slab 

the incident waves are in phase), the same kind of calculation yields 

D = P * K" |r12 |
2 

(46) 

[1 -2\Rn\e "p2icos(a2i+812)+|/i12|
2

e ~
2^][e ~2^+e '^^'"Kle ~Pjicosa2(L-2x)] 

1 -2\Ru\
2e ^cos(2a2L+26n) + \Rn\

4e 

and 

_ _ (x> II i _ 12 1 
D,o, = P ~ K2 l^ial 7 - x (47) 

c [J, 

[1 -2\R„\e "p2icos(a2I+512) + |J?12|
2e ~2p2i] [1 -e "2p2 i+J-2

e ^sin(a2I)] 
K 2 

l-2|/?12|
2e"2P2Lcos(2a2I+2512) + |JR12|

4e"4P2i 

Because of the symmetry there is always a hot spot at the center of the nonisothermal 

slab. 

17 
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2.7. THE POWER FORMULA OF A CYLINDER (A) 

Consider an isothermal cylinder in free space, irradiated from one side by a plane, 

harmonic wave. The electric field vector Ez of the incident field is parallel to the 

central symmetry axis of the cylinder, while it propagates along the x-axis (Fig.2). 

Figure 2. A cylinder, being irradiated by a plane (Ez, Hy) wave from one side, in an 
echo free cavity. 

Expressing the wave equation (29) in polar coordinates r and (J) is convenient. 

d2E d2E i dE 1 ~-± + i ^ - i + k2 E =0 
r2 dp dr: dr 

(48) 

Substituting Ez(x,y) = R(r) $((()) splits the wave equation in two other equations 

+ « 2 $ = 0 d 2 $ .2, 

d(j>2 

with the solution <I> =c em(,> + d e <t> 4 - / / p-'"<t> 

(49) 

(50) 

where «=0, ±1 , ±2,... , because <E>((j)) = 0(<P+2TT). 

The second equation is the differential equation of Bessel. 

18 
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k2r2-^- + kr— + ( *V - n2)R = 0 , 5 n 

d(*r)2 d(*r) ^ 1 ; 

so J? (AT) = A J„ (kr) + B N„ (kr) (52) 

where J„ is the Bessel function of the first kind of order n, and N„ is the Bessel 

function of the second kind (Neumann's or Weber's function). 

The incident field equals Ax e
 ,kx. Using the generating function for Jn 

E-w" <53> 
x(»--)/2 

e ' 

the incident field becomes 

Axe
iKx =Ale

lkirm* = ̂  E ^. (*, O (0 " *'" * (54> 

The scattered field should read e'kr/V(r) for large values of r. Therefore, the scattered 

field is written as 

• = -'» 

where Hn = Jn + i Nn is the Hankel function of the first kind. 

The total field outside the cylinder is the sum of the incident and scattered field. 

E™ = *, E WW (0" e"* +A, E «. # (V> «"* <56> 
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Because the Neumann function becomes -°° for r - 0 , this function should be dropped 

in the description of the field within the cylinder. 

* . m ^ , E c.' .(V>«<"* (57) 

At the surface of the cylinder one has the conditions 

£ C » = £ < » . * <»=*<» ; H™=H*> (58) 

where 

I dE dE 
iu\i0Hr = — — and ~i<^i0H^ = —- (59) 

r o(p or 

Applying these boundary conditions, generates the an and cn. 

= [*, JJikjR) jfaR) - k2 Jn(ktR) • />,*)] (/)" ( 6 0 ) 

c - = ; ; 
*, Jn{k2R) #,(*,*) -1, ./„(*,*) #„(*,*) 

(61) 

The radius of the cylinder is R. The prime refers to the derivative with respect to kxr 

or k2r. The numerator of cn can be simplified by using recurrence formulas. 

-.n + l 
2 (0" 

(62) 71 R [ k2 j'n{k2R) Hn{k,R) - t , . / ,(*,*) #„'(*,*) ] 

According to eq.(31) the absorbed power as function of the position (r,(t>) is 

20 
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D - \ ^ X IE .̂(V)«'"*I2 (63) 

For the total amount of absorbed power one has 

271 R +, 
1„~J'A* r f I T . r / i _ x - M > | 2 _ J A J . - ( 6 4 > 

*=0 r=0 

1 // . 2 

r=0 

-we^^,2 2u r [ |cj2 |y0(V)l2 + 2El cJ2 k.(V)l2 i r d r 

2 

and 

|K ( * j r ) | 2 '•d'* = 
•=o 

k2 R Jn*(k2R)J^k2R) - k* R Jn(k2R) j'n\k2R) _ <65) 

-4 i a2 p2 

P2 R Re{J*nj'n) + «2 * /mC/.V.') 

- 2 cc2 P 2 

and I c_ 12 

4/(Ttz/Jz) (66) 

| M ' l 2 K I2 + kl\j\2\H'\2 - k.{k,j'HJ*H'* + KJ'*H*JH'') 
l L R i i R l l l B l l B l 1 x Z fl II R B Z R H R R ' 

21 



Chapter 2 

2.8. THE POWER FORMULA OF A CYLINDER (B) 

This section describes the irradiation of the cylinder by a plane, harmonic wave 

(Ey, Hz) instead of the wave (Ez, Hy) as formulated above (Fig.3). 

Figure 3. A cylinder, being irradiated by a plane (Ey, Hz) wave from one side, in an 
echofree cavity. 

This means that the role of the electric and magnetic components has been changed. 

On the analogy to the former calculations the magnetic field will be 

*.} = A« £ ' . (v> (0" •'•• + 4 , E «. *.(V> e'n* (67) 

H? =AH E caJn(k2r)e'" (68) 

where AH is the amplitude of the magnetic component of the incident field. The 

boundary conditions read 

Hm = H™ r.0) _ W (2) (69) 
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X dH dH 
-icocE = and ' " e £ A = — ' - (70) 

r r 3(j) * 8r 

These conditions yield 

[k2 Jn(k2R) jfaR) - *, JfaR) J&2R)] ( i )" (71) 

kx HfaR) JfaR) - k2 Jn(k2R) HfcR) 

k2 [jfcR) #„(*,*) - JJjkf) / / > , * ) ] ( /)• 
cn = (72) 

t , • / > , * ) #.(*,*) - k2 Jn(k2R) # > , * ) 

or 

- 2 * 2 (/)"
+1 

', = ; ; (73) 
Tit,* [ k^k^H^R) - k^k^H^R) ] 

According to eq.(31) the absorbed power equals 

D - -coe0K2 ( \Ex | + | £ r | ) (74) 

In polar coordinates 

n 1 // 1 fl
dH^l2 , 1 ^ ( 2 ) | 2 , (75) 

D = —OJE.K, ( r + r ) v ' 
2 ° co2|e2|2 9r ' r d(|) 

Using recurrence formulas for Bessel functions this can be written as 
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i lib \2A2 

2 co2|eJ2 

41 (76) 

[ I V . + E C . C - i -Jr.+i) cos(«<f))|2 + | J > , (•/,.,+•/,_,) sin(«<j>)|2 ] 
B=l 

The incident wave is a plane, harmonic one. This means that AH
2 = e0 A^IHQ , where 

Ax is the amplitude of the electric component Ey of the incident field. With eq.(30) 

the factor of (75) before the brackets becomes 

I a) e0 < A l- (77) 

Integrated over (J) 

1 // . 2 1 

2 l K
2 l 

r=0 " = 1 

4| * 2 | 2 / (7T 2 * 2 * 2 ) 

iVJV.'l2 + *,2k'l2l*J2 " M^'.VX* - V.'X'X) 

The integral over r is known, see eq. (65). 

(78) 

(79) 
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2.9. THE P O W E R F O R M U L A O F A SPHERE 

An isothermal sphere is irradiated from one side by a p lane harmonic wave in free 

space (Fig.4) . 

^ z 

2R 

Figure 4. A sphere, being irradiated by a plane (Ex , Hy) wave from one side, in an 
echo free cavity. 

In spherical coordinates (r,Q,$) the wave equation reads 

1 a . 23£\ 1 a , . r,dE 
—-H'- —) ( s i n 6 — ) + 

i d2E 

r*dr dr r
2sin6 36 36 r2sin26 d<b2 + k2E = 0 (80) 

This is a vector equation. The solution for one component i|r of the electric field (the 

scalar equation) is well known. The substitution \^=J{r)7(6,<J)), where y=$((|)) 7(6), 

generates three other equations. The first one is the Bessel equation 

; 2 i !£ + X*E_ + [x2 _ / ( / + 1 ) _Ij = 0 

dx2 dx 4 (81) 

where x=kr andf=g/V(kr). Sof(r) equals Zl+Vl{kr) /V(kr) , where Zl+l/i refers to the 

Bessel, Neumann or Hankel function of order l+Vi. The second equation reads 

d 2 $ 

dc|>2 
+ OT2$ = 0 (82) 
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with the solution 0=a cos(m<$>)+b sin(/w<j)) and m=0,±l,+2,.. .The third equation 

is Legendre's associated differential equation. 

2. d2T ( 1 - x ' ) ^ - - 2x — + [1(1 + 1) 
dx2 dx 

m 

1 -x' 
-] T = 0 (83) 

where x=cos(0). The solution is a combination of the associated Legendre functions 

of the first (/>/") and second (<2/*) kind. Summarizing 

(84) 

The function Y,m is the spherical harmonic of order (l,m) ; / is a positive integer and 

m=l, l-l, 1-2, . . .,-/. If I|J is a solution of the scalar equation, then Vi|; and 

r x Vx|f are solutions of the vector equation. Applying this theorem, results in two 

set of equations: the electric and magnetic multipole fields. The electric multipole 

fields (E-type) are 

Er = ELllz^Y^Qd) ; Ee = I -l [ rZ ; ( fe . ) ]A [r / '» (0>(t, ) ] 
r Ar 30 

7 = tm d 

r sin0 dr 

£ Am 

•[rrjCb-Myfce,*) ; Hr = 0 
(85) 

^ H sino \ H do 
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The magnetic multipole fields ( M-type) are 

E. = 0 ; Ee = - ^ - 2pr) r,"(6,<|» 
sinU 

% = -ikzfkr) j-[Y?$m : Hr = ^ 1 !^z{kr) T,m{B.to 
fx r (86) 

" e = 
^ H r dr do 

H. <t> \ 
£ *" -^-[«J(*r)]7l"(e,<|)) 
H r sin 6 dr 

where 

zfkr) 
\ 2kr 

ZMn{kr) (87) 

Introducing even and odd functions is customary. The even function has a factor 

cos(mc|)), while the odd function contains a factor sin(mcj)). The aim is to write the 

incident, scattered and transmitted field in terms of the multipole fields. The incident 

field is a plane harmonic wave (Ex, Hy), propagating in the direction of the +z-axis. 

it,; iJfcjr cos6 
Ex = Axe

 ,z ix = Axe ' (sin0 coscp ir + cos0 coscj) iQ - sin(|) z\) (88) 

with the property 

« " •""" = E ' ' ( 2 / + 1) j/ik^PfrosQ) (89) 
/=i 

Comparing (88), (89), and the corresponding expressions for H , to the multipole 
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fields, results in 

Ex = A, J2^1LlL [ £ ( / , i ; odd) + 4 ( / , l ; even) ] 

(90) 

H = -.* £ ^ 1 - i i l l I £ * ( / . ! ; odd) + jyB(/ , l ;even) ] 
/=! *, /(/ + 1) 

The zt(kr) corresponds to the Bessel function j,(kr) in this expansion. 

The scattered field should be described with the Hankel function, because for large 

r we have 

h,(kr) = j,(kr) + iit,(kr) = (-/) ,+ I — (91) 
kr 

Corresponding reasoning yields the scattered field. 

V^EV -^T- [«/ 4c l •• o d d > + */ 4 c ! ; even> i (92) 
,=1 *, / ( / + 1) 

together with the corresponding formula for Hs. The field outside the sphere is the 

sum of the incident and scattered field. The field within the sphere reads 

£ ( 2 ) = i , E — ^-^~ I c, 4 C . 1; odd) + d, 4 / , 1; even) ] 
z=i *, /(/ + 1) 

(93) 

Hm =-AxY
l— ^ - ^ - [ c, 4 ( / , l ; o d d ) + rf, 4 ( / , l ; even ) ] 

i=i k. 1(1 + 1) 

In spherical components 
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— bn Jn + m(kir) dP"(C°!. } C0S4> S i n 0 ( W ) 

2k2r d(cos0) 

'8 A\ ̂ E«" 
B = l 

2» + l 7H dP (cos0) 
[ an J.*inW 

2k2r d(cos 0) 

n+1 dP (cos8) 

t2r do 

(95) 

**W^,E'" 
2n + l 

„=i «(n + l ) > 

7T; dP (COS0) 

2/fc2r d0 

n + 1 d.P,(cOS0) 
+ /* . < -7— ^+i/2(V) - - W V ) > . „. 1 sin(t> 

V d(cos0) 

(96) 

where Pn are the Legendre polynomials and Pn
l correspond to the associated 

Legendre functions of the first kind. 

At the surface of the sphere one has the following boundary conditions. 

„o> = Hm 

O) ^ pO) _ £?(2) , £?P) £ 1 ' + £ " ' = E. <t> ^ e 

< + <> = < + *? 
(97) 

The coefficients a„ and bn can be found by applying these conditions. 
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an = *lV/*,*2 [ Jtt+m{kxR) #+3 /2(M> - H^ik.R) Jn+m(ktR) ] / 

[ ^ 1 (n + l) Jn+m{k2R) Hn+m(klR) - ( 9 8 ) 

K 

~ k2 Jn^klR) Hn.mW> + kl Jn + mW) Hn+m{k,R) ] 

bn = k{Sjkxk, [ Jn+m{kxR) Hn+m(klR) - Hn^(k.R) Jn+in(klR) ] / 

K~k. (99) 
[ J^± (l-n) Jn+m(k2R) Hn+m(klR) -

K 

~ kA J
n^

k,R) H
n,miKR) + *,*2 Jn.m(k2*) H^k.R) ] 

where R is the radius of the sphere. The numerator of an and bn can be written as 

-2i ( kl k2)
Vi 17i R (applying the recurrence formulas for Bessel functions). 

The absorbed power is 

D = I co e0 < (\Ef + | £ e |
2
 + \Etf) ( 1 0 0 ) 
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2.10. THE HEAT CONDUCTION 

The absorbed power D is the source term in Fourier's differential equation (the heat 

balance or heat conduction equation). 

p C a r ( r , ° = V-(K Vr(r,0) + D(r,T) (101) 
p dt 

where p is the material density, Cp is the specific heat capacity, K is the thermal 

conductivity, and Tis the temperature, depending on position and time. 

We write an energy balance for the boundary surface 5, as 

-* , | I | = k{T\ - Ta) + em, o (T* \ - T*a) (102) 

where dldnt denotes differentiation along the outward-drawn normal at the boundary 

surface 5,. The symbol ht is the heat transfer coefficient related to the convective heat 

loss. The radiative heat loss is expressed by the second part of the equation with emi 

the emissivity of the surface, and o the Stefan-Boltzmann constant. Ta, the ambient 

temperature, equals the initial temperature of the sample at t=0. 

The slab is described with a one-dimensional model. 

p c dTOcJl _ ±{K dT0cA) + D{%) ( 1 0 3 ) 
p dt dx dx 

K H = h(T - Ta) + em a (7"4 - T*) , x=0 
dx 

-K — = h(T - Ta) + em a (T4 - T*) , x=L 
dx 

(104) 
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The thermal boundary conditions (102) are parts of the heat balance in case of 

isothermal objects. For an isothermal slab one reads 

P C L-^- = -2h(T-Ta) - lem a{TA - T*) + DM (105) 
at 

The isothermal cylinder 

p c nR2-^- = -2nR[h(T-Ta) + em o(TA - T*)] + DM (106) 
at 

The isothermal sphere 

p C -TiR3— = -4nR2[h(T-TJ + em a(T* - T4)] + Dti 
" 3 dr 

(107) 

The total ammount of absorbed power for an isothermal slab Dlot (45) equals the 

microwave power P times an absorption function D,. In chapter 3 and 4 the effect 

of a time dependent microwave power P(t) is studied, where D,ol is written as P(f)D,. 

It should be emphasized that this is only correct, if P{f) is a slowly varying function 

compared to the 2450 MHz oscillations of the electromagnetic field. 
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2.11. APPROXIMATIONS OF POWER FORMULA' S 
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The equations of the total amount of the absorbed power are complicated and 

interpreting them in physical processes is difficult. A simplification of the formulas 

is necessary. This is done for two material specimens: Water (as an example of a 

foodstuff) and alumina (A1203, as an example of a ceramic). The dielectric properties 

are shown in fig. 5 and fig. 6. 

THE SLAB 

The simplification of eq.(45) is easy. For both materials 512 is about -n. Neglecting 

small terms 

water Dm * P *, < |T12 |2 - I l— (108) 
2 P j 1 - 2\Rm\2e P 2cos(2a , I ) 

-" IT I2 _ L 
'"" * *» "2 ' » ' 2 p V* " ' ( 1 0 9 ) 

alumina Z> ~ P k. K" \T.,\2 —— (1 - e Vl ) 

THE CYLINDER 

The equations for the total amount of absorbed power for the (A)-cylinder (64), (65), 

and (66), have been formulated in terms of Bessel and Hankel functions. These are 

difficult to interpret. Therefore, these functions are replaced by sine and cosine 

functions. For x is large, we have 

N(x) 
N 

2 M7I U . 

— cos(* - — - —) 
TZX 2 4 
_ (HO) 

2 . . «TC 71. 

— sin(x - - —) 
7tx 2 4 

The x equals k{r (kx= 51.3 m"1) or k2r (for water k2~ 430 m"1, for alumina k2~ 162 

m"1). The application of these theorems generates 
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Z> = P k. K, c 2 x 
2B It I 
^ H 2 1*21 

[ | c j z { (1 -e H 2 ) - — - e 2 cos(2a2#) } + 
a . 

-22^ |c |2{ (1 ~e ) e Vl cos(2a2R - nil) } ] 

where 

k j 2 = [ 44 ,1^1 .^] / Wt + MK+e-**) - 2«1*,0-'"4M) + 

(111) 

+2(*j2-|jfc2|
2)e"2P2*{ sin(2a2R-niz) - l-^—cos(2a2R-nil) } ] 

(112) 
2kA 

"l 1*21 

Write 

I , 2 4 * 1 2 

I - 1 1 2 I 
t ' + l * , ! 2 ^ * , ^ ( 1 1 3 ) 

I*i21 = — 5 tan(812) 2 , , i " 2 , , 

Jfc,+|Jfc2|
z+2Jfcja2 *i~l*2l 

Neglect the factor exp(-4p2i?) in the denominator of (112) and use 812 = -n. 

• 12 = F 2 l e \Ta\ (114) 
I I I I -

k2~\t I2 

1+2 !—!-^ e P2sin(2a2J?-HTi) 
^ + |fc2|

2+2fc,a2 
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It can be demonstrated that 

*12 

*i2 + l*: 

Finally' 

*>„ = 

-W 
2 | 2+2*,a 2 

eve have 

P k, K2 |r„ 

1*12 

12 _ 

where k. < \k,\ and P, < a. (115) 

X 

2P2 

(1-e HH - —-cos(2a2R) (l-e 2 ) - —-e 2 cos(2a2R-mt) 

[ ? >E * 
1 - 2|/J12|e

 2P2Ssin(2a2i?) »=i 1 - 2\Rn\e ^lRsm(2a2R-nv:) 

(116) 

The terms in this series have equal weight. In the original expression (64) the terms 

decrease with increasing order, where n is large. Which terms one has to take into 

account, depends on the radius R. For very thick cylinders ( R> 10 cm) the zero 

order term of (116) is enough. For cylinders with a radius between 0.5 and 10 cm 

a very good approximation (compared to the numerical analysis) has been achieved 

by the combination of the first and second order term. Neglecting the small factors 

in this sum, results in 

water D,o/ * P *, < |T12|
2 - 1 L - ( 1 1 7 ) 

202 1 + 2\Rn\
2e ^cos(2a2I) 

" I T H J _ ( l - e'
2^) 

2P2
 ( } (H8) 

alumina Dm ~ P k{ K2 | r i 2 |2 —^ (1 - e H2 ) 

where L is the diameter of the cylinder. The approximation of alumina (118) is quite 

rough, but this is done to emphasize the difference in the physical origin of thermal 
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runaway in water and alumina. The development of eq. (78) and (79) of the cylinder 

(B) in sine and cosine functions is accordingly. The result is the same. 

THE SPHERE 

The integration of (100) over the volume of the sphere, with the approximation 

(110), yields two kinds of terms. 

202* B 
\a |2 —- [(l-e"4p2*)cos(2a2tf-n7i) + — (1 +e ^lR)sm(2a2R-rtn:)] (119) 

4TI | * 2 |P 2 a2 

2M 9 R 
l*J — r ~ ^ T K 1 - e > + e sin(2a2/?-»Ti:)] (120) 

4 7T | Jfc2 [ p 2 a 2 

The numerators of |a„|2 and \b„\2 are proportional to 4fc,|&2|/(Tu R2)2 while the 

denominators are complicated expressions with Bessel and Hankel functions. See eq. 

(98) and (99) for the definition of numerator and denominator. This means 

i 2 M 
D ~Pk ^ ± k . i (121) 

1 2 P 2
 ! n*R2 

In the first approximation the Dm is temperature independent, because K / is divided 

by B2 (See fig.5 and fig.6). The factor exp(2P2/?) becomes part of the denominator 

of an and bn in the same way as has been done to the slab and the cylinder. 
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2.12. LIST OF SYMBOLS 

Whenever the description refers to electric or magnetic field, the complex amplitude 

of the field is meant. Real fields are discerned from the complex fields by the 

addition real. 

symbol description unit introduced 

in section 

A integration constant in R(kr) 

Ax real amplitude of incident electric field 

component 

A 2 , A l integration constants in field expressions 

AH real amplitude of incident magnetic field 

component 

a integration constant 

a integration constant in $(4)) of sphere 

at coefficient in the sum of the scattered 

electric field of the sphere 

an coefficient in the sum of the scattered 

electric field component of the cylinder 

an coefficient in the sum of the scattered 

magnetic field component of the cylinder 

a„ coefficient in the sum of the electric field 

components within the sphere 

B integration constant in R(kr) 

Bl,B2, B3 integration constants in field expressions 

B complex amplitude of magnetic induction 

Br real magnetic induction 

b integration constant in <&((j)) of sphere 

b, coefficient in the sum of the scattered 

electric field of the sphere 

V/m 

A/m 

2.7 

2.6 

2.6 

2.8 

2.2 

2.9 

2.9 

2.7 

2.8 

2.9 

2.7 

2.6 

2.2 

2.2 

2.9 

2.9 
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bn coefficient in the sum of the electric field - 2.9 

components within the sphere 

c velocity of light m/s 2.4 

c integration constant in Q>{§) of cylinder - 2.7 

c, coefficient in the sum of the electromagnetic - 2.9 

field within the sphere 

cn coefficient in the sum of the electric field - 2.7 

component within the cylinder 

c„ coefficient in the sum of the magnetic field - 2.8 

component within the cylinder 

Cp specific heat capacity 

D time average dissipated power 

Dtol total amount of absorbed power 

in slab per unit area 

in cylinder per unit distance 

in sphere 

D complex amplitude of electric displacement 

Dr real electric displacement 

d integration constant in 3>((|)) of cylinder 

d, coefficient in the sum of the electromagnetic 

field within the sphere 

E complex amplitude of electric field 

ET real electric field 

EE electric component of electric multipole field 

EH electric component of magnetic multipole field 

Es scattered electric field of sphere 

EP electric field within sphere 

EY,E2, E3 component of the electric field in medium 

1 ,2 or 3 

Er, E^, EZ polar components of the electric field - 2.7 

40 

J/kgK 

W/m 3 

W/m 2 

W/m 

W 

-

C/m2 

-

-

-

V/m 

-

-

-

-
_ 

2.10 

2.3 

2.6 

2.7 

2.9 

2.2 

2.2 

2.7 

2.9 

2.2 

2.2 

2.9 

2.9 

2.9 

2.9 

2.6 
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Er
a\E^l\ polar components of the electric field - 2.7 

Ez
w outside the cylinder 

E®\E^2), polar components of the electric field - 2.7 

Ez
2) within the cylinder 

E}2), Ey2\ rectangular components of the electric - 2.8 

Ez
(2) field within the cylinder 

Er, Ee, E^ spherical components of the electric field - 2.9 

Er
m,Ee

w, spherical components of the electric field - 2.9 

E^{1) outside the sphere 

E®\ Ed
(2\ spherical components of the electric field - 2.9 

E^2) within the sphere 

em emissivity - 2.10 

emi emissivity at surface / - 2.10 

fij) radius dependent function - 2.9 

g abbreviation offV(kr) - 2.9 

H complex amplitude of magnetic field - 2.2 

Hr real magnetic field A/m 2.2 

HE magnetic component of electric multipole field - 2.9 

HM magnetic component of magnetic multipole - 2.9 

field 

Hs scattered magnetic field of sphere - 2.9 

H(2) magnetic field within sphere - 2.9 

Hr, H^, HZ polar components of the magnetic field - 2.7 

HT
m,H^a\ polar components of the magnetic field - 2.7 

Hz
l) outside the cylinder 

Hr
(2\H^2\ polar components of the magnetic field - 2.7 

Hz
{2) within the cylinder 

Hx
(2),Hy

(2), rectangular components of the magnetic - 2.8 

Hz
2) field within the cylinder 

Hr, He, HQ spherical components of the magnetic field - 2.9 
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I /O) i / ( D 

H, ( 2 > , tfe
<2), 

A 

A, 
h, 
i 

J 

I 
Jn 

Ji 

K 

k 

L 

L 

K 

n, 
P 

P„Pn 
pm 

Q,m 

spherical components of the magnetic field 

outside the sphere 

spherical components of the magnetic field 

within the sphere 

Hankel function of the first kind of order n 

heat transfer coefficient 

heat transfer coefficient at surface i 

Hankel function in zt 

imaginary unit 

unit vector of x-axis 

spherical unit vectors 

compl.ampl.of current flux of free charges 

real current flux of free charges 

Bessel function of the first kind of order n 

Bessel function in zt 

thermal conductivity 

thermal conductivity at surface i 

complex propagation constant 

propagation constant in air 

complex propagation constant in medium 2 

slab thickness 

diameter of cylinder 

Bessel function of the second kind of order n 

(Neumann's or Weber's function) 

Neumann function in z, 

power flux of incident field 

Legendre polynomial of order / or n 

associated Legendre function of the first 

kind of order (/, m) 

associated Legendre function of the second 

kind of order (/, m) 

2.9 

2.9 

-

W/m2K 

W/m2K 

-

-

-

-

-

A/m2 

-

-

W/mK 

W/mK 

m1 

m1 

-

m 

m 

-

. 

W/m2 

-
. 

2.7 

2.10 

2.10 

2.9 

2.2 

2.9 

2.9 

2.2 

2.2 

2.7 

2.9 

2.10 

2.10 

2.2 

2.6 

2.6 

2.6 

2.11 

2.7 

2.9 

2.6 

2.9 

2.9 

2.9 
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Qr(t,T) 

R 

R 

R, R(r) 

R(t,T) 

^12 

r 

s, 
<s> 
T 

T, 7(0) 

Ta 

Ti2 

t 

X 

X 

Y(d,<$>) 

Y,m 

^1+1/2 

z, 

symbol for Dn Br or Jr 

radius of the cylinder 

radius of the sphere 

radius dependent function 

response function 

complex reflection coefficient from 

medium 1 to medium 2 

position vector 

surface i 

time average power flux 

temperature 

fheta dependent function 

ambient temperature 

complex transmission coefficient from 

medium 1 to medium 2 

time 

abbreviation of kr in Eq.(81) 

abbreviation of cos(0) in Eq.(83) 

theta and phi dependent function 

spherical harmonic function of order (/, m) 

Bessel, Neumann or Hankel function of 

order /+1/2 

abbreviation of Zl+1/2\/(n/2kr) 

-

m 

m 

-

-

-

m 

m2 

W/m2 

K 

-

K 

-

s 

-

-

-

-

~ 

-

2.2 

2.7 

2.9 

2.7 

2.2 

2.6 

2.9 

2.10 

2.3 

2.2 

2.9 

2.10 

2.6 

2.2 

2.9 

2.9 

2.9 

2.9 

2.9 

2.9 

Coordinates 

x, v, z rectangular coordinates m 2.2 

r, (J), z polar coordinates m, rad, m 2.7 

r, 0, (|) spherical coordinates m, rad, rad 2.9 
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Greek symbols 

a 

a2 

P 
P2 
8 

812 

e 

e' 

e" 

Eo 

e„ 

< 

C 
K 

*0 

K„ 

K' 

K" 

K2' 

K2" 

M 

Mo 

Mn 

Mn' 

Mo" 

P 

P 

Pr 
a 

a 

phase constant 

phase constant of medium 2 

attenuation constant 

attenuation constant of medium 2 

loss angle 

amplitude of Ru 

complex permittivity 

real part of E 

imaginary part of e 

permittivity in vacuum 

time dependent complex permittivity 

real part of en 

imaginary part of en 

complex dielectric constant 

dielectric constant at o)=0 s~' 

dielectric constant at o)=°° s"1 

dielectric constant, real part of K 

dielectric loss factor, imaginary part of K 

dielectric constant of medium 2 

dielectric loss factor of medium 2 

complex permeability 

permeability of vacuum 

time dependent complex permeability 

real part of ^n 

imaginary part of /un 

density 

comp. ampl. of charge density of free charges 

charge density of free charges 

Stefan-Boltzmann constant 

electric conductivity of free charges 

m"1 

m1 

m"1 

m1 

rad 

rad 

-

C2/Nm2 

C2/Nm2 

C2/Nm2 

-

C2/Nm2 

C2/Nm2 

-

-

-

-

-

-

-

-

Tm/A 

-

Tm/A 

Tm/A 

Kg/m3 

-

C/m3 

W/m2K4 

S/m 

2.4 

2.6 

2.4 

2.6 

2.4 

2.6 

2.2 

2.4 

2.4 

2.4 

2.2 

2.3 

2.3 

2.4 

2.2 

2.2 

2.4 

2.4 

2.8 

2.6 

2.2 

2.4 

2.2 

2.3 

2.3 

2.10 

2.2 

2.2 

2.10 

2.2 
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T 

T12 

* , * ( < ! > ) 

X(r, t) 

Y 

0) 

molecular relaxation time 

amplitude of Tn 

phi dependent function 

time dependent electric susceptibility 

component of electric field 

angular frequency 

s 

rad 

-

C2/Nm2s 

-

s-1 

2.2 

2.6 

2.7 

2.2 

2.9 

2.2 
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ABSTRACT 
The dissipation of electromagnetic energy within a microwave heated layer has been 
analyzed. It has been shown that the dissipation oscillates as a function of 
temperature, regardless of the material specimen. This oscillation, combined with 
the heat loss, is found to be responsible for thermal runaway phenomenon in 
isothermal slabs. Based on such an observation, a general rule to prevent thermal 
runaway was developed. Slab temperature analysis for time dependent microwave 
power indicates that the concept of bistability is not the appropriate term to describe 
the observed jumps in temperature. 
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3.1. INTRODUCTION 

The application of microwave heating in, for example the food industry is 

seriously hampered by two problems which have their roots in the basic physics of 

the heating process. The first difficulty is the uneven spatial dissipation of energy 

within foodstuffs. The second difficulty is the catastrophic phenomenon of thermal 

runaway in which a slight change of microwave power causes the temperature to 

increase rapidly. In this article we will study the second problem. The motive for this 

research was the introduction of the concept of bistability in microwave physics. 

According to Stuerga1, the temperature of a microwave heated slab, when irradiated 

by microwave power directly proportional to time, shows bistable behavior.. As usual 

the bistable phenomenon is accompanied by a hysteresis loop. Stuerga also claims to 

have found experimental evidence for this idea. However, up to now the predicted 

hysteresis loop has never been found. 

A number of bistable phenomena exist in physics. Probably the one which is 

best known is the phase transition of vapor into liquid. A vapor may be compressed 

to a pressure well above the vapor pressure of the liquid without condensation taking 

place and, on the other hand, a liquid may be heated well above its boiling point 

without boiling. Both processes are limited to certain values of pressure above 

(below) at which condensation (boiling) starts. This is a typical metastable or bistable 

phenomenon. This bistable behavior can be described according to the Van der Waals 

equation, which is very remarkable because it is an equation of state related to a gas 

and contains nothing about phase transitions. Van der Waals law suggests bistability, 

but for a complete understanding the theory of phase transitions has to be added. 

It seems that the same kind of situation is present in microwave physics. 

Fourier's differential equation suggests bistability (for time dependent microwave 

power), but this is insufficient for a complete understanding. The purpose of the 

study described in this article was to develop a kind of phase transition theory, 

aiming to explain and support the idea by Stuerga. 

The phenomena of thermal runaway and bistability are closely related. In fact 

the idea of bistability was inspired by thermal runaway. This is why the first part of 

this article contains a study of dissipation which, combined with heat losses, might 
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result in thermal runaway. The aim was to find the origin of the runaway process and 

hope that it would lead to the real explanation of bistability. A side product of this 

part of the investigation resulted in a rule to eventually prevent thermal runaway. In 

the final part of the article the concept of bistability in microwave heating is 

discussed. 

3.2. THE ORIGIN OF THERMAL RUNAWAY IN ISOTHERMAL SLABS 

Consider a layer of specimen material, irradiated from one side by microwave 

radiation with a frequency of 2450 MHz. The wave is a plane, harmonic one and 

impinges normally upon the material. In order to explain the principles of thermal 

runaway, the simplest possible system was conceived. The absence of reflection from 

the cavity in which the actual experiment was performed, is assumed. This means 

that the initial wave is reflected, absorbed, and transmitted (Fig.l). 

a i r ( 1 ) 
p l a n e 
m i c r o w a v e 

s l a b ( 2 ) a i r ( 1 ) 

Figure 1. A layer, being irradiated from one side, in an echofree cavity 

It is also assumed that the temperature throughout the layer is the same at every 

moment. This can be achieved by taking a liquid as the medium and mixing it in such 

a way that the spatial equalization of temperature is much faster than the process 

causing temperature increase. This process is due to the dissipation of 

electromagnetic energy within the slab. Under these conditions simple relationships 

evolve, which indicate the reasons for thermal runaway in isothermal slabs. 

Initially a system without convective and radiative thermal losses is 

considered. The differential equation, describing the relationship between 

temperature Tand time t, (Fourier's law) reads: 

49 



Chapter 3 

pCL — = D (1) 
p At 

where p is the density, Cp is the thermal capacity, L is the layer thickness, and D the 

production of heat (total amount of power per square meter generated along the z-

axis, extending from z=0 to z=L). This power follows from Maxwell's equations, 

together with the appropriate boundary conditions at the surfaces of the slab. 

According to Stratton2 or Ayappa3 for a pure dielectric one has: 

D = P ^ ,</' | r i 2 | > numerator (2) 
c denominator 

with 

— ( l - e ^ X l + l t f . J V 2 ^ ) - —\R.,\e~2^ sin (a.L) cos(a,I+612) (3) 
2P2 a2 

as a numerator and 

1 - 2|tf12|V
2P2icos(2512+2a2I) + \Rn\*e~^lL (4) 

as a denominator, where P is the intensity of the initial microwave, better known as 

the microwave power. The frequency has the symbol co and c refers to the speed of 

light in vacuum. 

The dielectric constant K is written in the usual way as the difference between 

a real part K' and an imaginary part K". 

K = K'-JK" (5) 

K' and K" are material constants, independent of the geometry of the system. They 

only depend on frequency and temperature. They are not very appropriate to describe 

the propagation of waves, however, and this is why the wavenumber (phase constant) 

a and the attenuation constant p are introduced. For this free layer model a and p 

are related to the dielectric properties of a medium and frequency of radiation by 
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a = — 
^ 

K ^ I + tan2 6 + 1] 
(6) 

B = 0) VVh/l + tan2 6 - 1 ] 

c 2 
(7) 

with 

tan 6 = K"I K' (8) 

The reflection coefficient Rn and the transmission coefficient Tn are related to a and 

Pby 

|2 _ 
M2l 

(a, - a2)2 + (p, - p2)
2 

(a, + a2)2 + (P, + P2)
2 

(9) 

l r I2 = 
I -1 1 2 I 

4(a* + P2) 

(a, + a2)2 + (p, + p2)2 
(10) 

tan 
-2(o,p2 - a2p,) 

(a2 - a2) + (P2 - p2) 
(11) 

The objective now is to find the solution to equation (1), i.e., the temperature as a 

function of time. 

The electromagnetic dissipation is always directly proportional to K", 

regardless of product's geometry. From this it follows that in crude approximation 

the temperature-time graph is governed by the temperature behavior of K". For in­

stance, if K" decreases exponentially in temperature, the temperature will exponen-
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Figure 2. The real (K') and imaginary (K") part of the dielectric 
constant of water plotted versus temperature, at 2450 MHz, according 
to Kaatze. 
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Figure 3. The phase (a) and attenuation (P) constant of water plotted 
versus temperature at 2450 MHz. 
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tially increase to a constant value in time. According to this approximation no sudden 

jumps in temperature or other nonlinear behavior will ever occur. So thermal 

runaway, if present, is caused by the interference of waves within the irradiated 

material. In order to investigate this process in detail the above relationships have to 

be simplified. Only then will it be possible to see which phenomenon is responsible 

for thermal runaway. 

In experimental set-ups medium 1 is usually air. Air hardly absorbs electro­

magnetic energy, so P[ = 0. Medium 2 is a liquid or solid, so a, will be smaller than 

a2. From the definition of a Eq.(6) and p Eq.(7) it is obvious that p is always smaller 

than a. With these considerations the 2/a2 term in the numerator can be neglected 

and thus the numerator is proportional to l/2p2. For the absolute value of the 

transmission coefficient one roughly obtains: 

2a. 
|7 I 2 | = —~ (12) 

a2 

Without the denominator the dissipation D is roughly proportional to K2" | Tn 12/2P2. 

From Eqs.(6) and (7) it follows that a2P2 = w2 K2"/2c2. With this expression and 

equation (12) one can conclude that for a slab the dissipation, as far as its 

temperature behavior is concerned, is proportional to l/cc2. In the 2450 MHz region 

a2 hardly varies with temperature, so our final conclusion is that in the first 

approximation the dissipation in a slab is independent of temperature! The 

temperature dependency of K' and K" is more or less canceled out and the 

temperature as a function of heating time will be represented as a straight line 

(Fig.5). 

In the denominator the small temperature dependency of <x2 becomes very 

important, because a2 is part of the argument of a cosine. With increasing 

temperature the denominator oscillates. In the temperature-time diagram this 

oscillation is superimposed on the straight line. Here we see the reason for "sudden" 

temperature jumps in isothermal slabs. 
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Figure 4. The relative dissipation DIP oscillates as a function of 
temperature. 

Figure 5. In the first approximation the temprature-time diagram is a 
straight line (+ + + curve for L=4 cm). Superimposed on this line is an 
oscillation of which the amplitude increases with temperature, but 
decreases with layer thickness (P=0.2L kW/cm2). 
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To illustrate these ideas a numerical example for demineralized water is given. 

Water has been taken, because its dielectric constant is well-known. Kaatze4 

describes the behavior of K2' and Kj" as a function of temperature between 0 and 50 

°C. In this example his formulae are extrapolated to 100 °C. Figure 2 shows the 

temperature behaviour of K2' and Kj". More important is the behaviour of oc2 and P2 

(Fig.3). Based on these data the relative dissipation DIP for several layer thicknesses 

L, is calculated and plotted in Fig. 4. The oscillating character of the dissipation is 

clearly seen. This oscillation is caused by the interference of waves. In a slab without 

damping, the wave reflected on the rear side of the layer is in phase with the initial 

wave if L=nX2/2 for n = 1,2,3,... . This situation corresponds to maximal dissipation. 

The dissipation is small when reflected wave and initial wave more or less cancel 

each other. This is the situation forL=(2«+l)A,2/4andn=0,l,2,... . The wavelength 

k2 of water varies from 1.34 cm at 0 °C to 1.65 cm at 100 °C. For example, if L=4 

cm, the dissipation starts at 0 °C at a maximum (L=3A.2). With increasing 

temperature it will run to a minimum (L=llA2/4), followed by a maximum 

(L = 5k2/2), and finally it falls off to a neutral situation at 100 °C (Fig.4). For a 

complete period of oscillation the layer thickness L must be equal to n/Aa2, where 

Aoc2 is the difference between the maximum and the minimum value of cc2. For water 

this results in a layer thickness of 3.5 cm. Important for this oscillation is the 

behavior of its amplitude as a function of temperature. The amplitude is proportional 

to exp^PjL). If P2 decreases strongly with temperature (as is the case for water), the 

amplitude increases strongly and the deviations from the straight line in the 

temperature-time diagram are larger. In such a case the oscillation becomes 

significant at higher temperatures. For large L the amplitude is small. Many periods 

of oscillation exist, but they are hardly noticeable. A small L (< TC/ACC2) results in a 

large deviation from the straight line, but no complete period exists. Applied to 

water, the combination of all of these effects, results in a significant temperature 

jump for a thickness of about 4 cm. Figure 5 shows temperature-time diagrams for 

several values of L. In these plots the quotient P/L is constant. 
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3.3. THERMAL RUNAWAY AND HEAT LOSS 

In this section the heat loss at the surfaces of the slab is taken into account. 

The convective heat loss is proportional to the temperature difference (T - T0) to the 

ambient. For small temperature differences this is also the case for radiative loss. 

40 60 

temperature ( °C) 

Figure 6. The marked intersection points of dissipation and heat loss 
correspond to stable steady-state slab temperatures (L=4 cm, P=2 
W/cm2, h=0.01 W/Kcm2, 7"0=0 °C ). 

Thus the total heat loss can be described by some effective heat transfer coefficient 

h, multiplied by the temperature difference (T - T0). Equation (1) is then transformed 

into 

PCL -*L = D - h(T - J0) 
df 

(13) 

Because the right-hand side of Eq.(13) is only dependent on temperature, the steady-

state temperature Tf of the slab follows from 

D - h(Tf - r0) = 0 (14) 
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Depending on the microwave power P and the layer thickness L one has one or more 

intersecting points of the functions D and h(T - T0), as shown in Fig. 6. For certain 
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Figure 7. Only the upper and lower branch of 5-shaped curves 
represent stable steady-state temperatures. The steady-state temperatures 
will be "high" or "low", depending on the initial slab temperature. 

layer thicknesses L this results in an S-shaped or multi 5-shaped curve in a plot 

showing the steady-state slab temperature versus the microwave power P (Fig. 7). 

Only the upper and lower branch of the S-shape represent stable final temperatures. 

Between these two branches an unstable temperature region exists. Depending on the 

initial temperature of the slab the steady-state temperature will either be "high" or 

"low" as a result of the microwave heating. It is seen that a small increase of the 

microwave power might lead to the well-known thermal runaway phenomenon, i.e. 

a jump from the lower to the upper branch. For more details on these phenomena see 

Kriegsmann5 (for a ceramic slab) and Stuerga6 (for water). The 5-shape or multi 5-

shape is caused by oscillations of the dissipation. Without oscillations there is no 5-

shape and hence no thermal runaway. For half a period of oscillation there is only 

a single point of intersection of the dissipation D and the heat loss h(T - T0), which 
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suggests the following rule: If the layer thickness is smaller than 7i/2Acc2, where Acc2 

is the difference between the maximum and minimum value of the phase constant a2, 

no thermal runaway will ever occur. No materials will be damaged by thermal 

runaway if the layer thickness is smaller than n/2Aa2. For water this results in a 

thickness of 1.75 cm. A detailed analysis gives 2.2 cm as a safety thickness. For the 

drying of food products this observation might be of great importance. 

3.4. BISTABILITY 

Besides instability and thermal runaway, the oscillation of the dissipation, 

combined with heat loss, causes a third problem. If the dissipation takes a minimum 

value with increasing temperature and this minimum value is of the same order of 

magnitude as the heat loss at that very same temperature, it takes a lot of time to 

reach a desired final temperature. This is a very inefficient situation. For a fixed L, 

only one degree of freedom exists to accelerate this process and that is the variation 

of the microwave power in time. For this reason the heat balance is written down as: 

pC L — = P(t)Dl - h(T - T0) (15) 
At 

where Dt is the temperature dependent factor calculated from D=P(t)Di. 

Kriegsmann5 and Tian7 suggest several functions P(t) to accelerate the sintering 

process of a ceramic slab. 

Physically very interesting is a control of heat in such a way that the 

temperature, as a function of time, describes the 5-shape as shown in Fig. 7. This 

will be the case when the microwave power P of Eq.(14) is replaced by yt, where 

y is a constant. This leads to the requirement: 

ytDl - h(T - r0) = 0 (16) 

from which 
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dT 

dt 

-yo. 

yt 
d£»j 

dl\ 

(17) 

Substitution of Eq.(16) and Eq.(17) into Eq.(15) yields a desired function P(t): 

Pit) =yt - — r—Z (18) 

t 

PCPL 

dZ>, Dx 

dT T - T0 

With this P(t) the temperature-time curve is 5-shaped. Because the temperature 

cannot go back in time, all kinds of remarkable effects such as bistability and 

transient temperature 

0.5 1 1.5 2 2.5 3 3.5 

time (s) or microwave power ( W/m ) x 10* 

Figure 8. Plot of steady-state temperature Tf as a function of time-
independent microwave power, compared to a plot of transient 
temperature versus time for microwave power directly proportional to 
time, resulting in artificial bistability (L=4 cm, P= t W/m2, /i=100 
W/Km2, ro=0°C). 
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hysteresis, occur. As explained in the introduction, Instability is a rare physical 

phenomenon that needs a more complete explanation. In the case considered here 

the explanation is very simple. The function P{t) becomes negative in the unstable 

temperature region. One has negative irradiation. The best way to avoid this is to 

omit the second term in equation P{t). If the second term is small in comparison with 

yt, the temperature-time curve will follow the S-shape, except in the unstable 

regions. Figure 8 shows a plot for P{t)=t and L=4 cm. The temperature increases 

rapidly from the lower to the upper branch of the S-shape in the unstable region. This 

temperature jump has been found experimentally8, but it is incorrect to interpret this 

phenomenon as evidence of bistability. As a consequence of the absence of 

bistability, hysteresis will never be found. 

3.5. CONCLUSIONS 

In the first approximation the dissipation in a slab is independent of the 

temperature within the slab, so that the temperature-time diagram is a straight line. 

An oscillation is superimposed on this straight line. This is caused by the temperature 

dependency of the wavenumber. For isothermal slabs the convective and radiative 

heat losses amplify the effects of oscillation, resulting in instability and thermal 

runaway. Thermal runaway never occurs for a layer thickness smaller than Ti/2Aa2, 

where Aa2 is the difference between the maximum and minimum value of a2. 

Finally, it has been shown that the concept of bistability is not the appropriate 

term to describe the temperature jumps for a system for which the microwave power 

is directly proportional to time. 
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Thermal runaway in microwave heating: A mathe­

matical analysis1 

C.A. Vriezinga, S. Sanchez-Pedreno G.2 and J. Grasman 

Department of Agricultural, Environmental and Systems Engineering, Wageningen 
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ABSTRACT 

A study is made of the solution of a differential equation modelling the heating of 

a layer of material specimen by microwave radiation. Depending on the micro­

wave power bi-stable steady-state temperatures may be expected. When changing 

the power, a switch from one stable branch to another one may arise. The sudden 

increase of temperature, known as thermal runaway, is studied from the differen­

tial equation using asymptotic methods. Such analysis reveals distinct stages in 

the process of thermal runaway. At the moment the solution leaves a branch, and 

becomes unstable a particular type of behaviour is observed (onset of runaway). 

The most specific element at this stage is a time shift delaying the rapid change in 

temperature. For this shift a simple expression in terms of the parameters of the 

system is given. Next it is shown that the rapid transition from one branch to the 

other can be put in a mathematical formula that smoothly matches the two steady 

1 Part of this investigation has been supported by a grant of the "Subprograma 
de Estancias de Investigadores Espanoles en Centros de Investigacion Extan-
jeros (SEUID, Ministerio de Education y Culura)". 

2 On leave from the Dept. of Mathematics, University of Murcia, Campus de 
Espinardo, 30100 Murcia, Spain. 
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state solutions. 

keywords: microwave heating, thermal runaway, Instability, relaxation oscillations. 

4.1. INTRODUCTION 

The use of microwaves has found its way in various applications in 

industry e.g. in ceramics and in food processing. The understanding of the 

microwave heating process still is somewhat empirical and speculative due to its 

highly nonlinear character. In this study we take up this problem and analyse 

mathematically the dynamics of a first order differential equation model of a layer 

of material specimen heated by microwave radiation, see Kriegsmann [1] and 

Vriezinga [2]. Typical for the system is the rapid return to a steady state (relax­

ation time), meaning that the differential equation, when appropriately scaled, 

must be of the form 

e — =f{T,F) (1.1) 
At 

with T the temperature, P the microwave power and e a small positive parameter. 

The steady state T(P) satisfies the equation f(T, P) = 0. If in the P,r-plane the 

graph has an 5-shape we have to deal with bistability (Stuerga et al., [3]). When 

changing the power with time we may observe hysteresis type of phenomena. 

In our mathematical analysis we consider the behaviour of a solution of 

(1.1) in the limit e - 0 for some given P = P(t). In case of instability such a limit 

solution T0(t) can be discontinuous, see Grasman [4]. In figure 1 we sketch the 

various functional relations for the differential equation derived in section 2. 

The limit solution gives a clear picture of the dynamics. However, for 

quantitative purposes it may not be sufficiently accurate. In a next step we assume 

that e is small and construct a refined approximation. Since e multiplies the 

derivative, we may expect that away from the steady state the temperature T 

changes rapidly. In singular perturbation theory (Kevorkian and Cole, [5]) one 

introduces a so-called boundary layer approximation for such time interval. In 
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order to connect this approximation to the steady state solution, a local approxi­

mation at the beginning of interval of rapid change has to be made. This solution 

expressed in the Airy function (Abramowitz and Stegun, [6]) reveals a new 

element in the onset of thermal runaway: the rapid change is delayed with a time 

of order 0(em). For this time shift an expression is given. 

*- p 

e = 0 

-»• t 

(a) (b) 

e > 0 

» t 

(d) 

Figure 1. A solution of (1.1) as e -> 0 for a given function P(t), see (c). The function 

f(T,P) is from (2.10) with L = 4. In (d) the parameter e = 0.167. 

In section 2 we derive the specific form of Eq. (1.1) for the problem of 

microwave heating of a layer. Next in section 3 we carry out the asymptotic 

analysis and determine the time shift at the onset of thermal runaway. Finally, in 
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section 4 we compare the asymptotic solution with the numerical solution for 

parameter values that agree with an experimental set up for a layer consisting of 

demi-water, see Kaatze [7]. 

4.2. DERIVATION OF THE DIFFERENTIAL EQUATION 

We consider a layer of material specimen, irradiated from one side by 

microwave radiation with a frequency of 2450 MHz. The wave is a plane, 

harmonic one and impinges normally upon the material. In order to explain the 

principles of thermal runaway, the simplest possible system was conceived. The 

slab was located in free space, so no other waves than the incident one would be 

involved. It is also assumed that the temperature throughout the layer is the same 

at every moment. Solving Maxwell's equations (see e.g. Stratton, [8] or Ayappa 

et al., [9]) yields the classical wave equation in one dimension. 

— + k\T)E = 0 , (2.1) 
Ax2 

where the electric field £ is a function of position x and temperature T at that 

position. The coefficient k(T) stands for the temperature dependent complex 

wavenumber, which is connected to the dielectric constant K (kappa) of the 

medium by the following equation. 

k2 = — ( K + ) , (2.2) 
c
2 to dt 

where to is the angular frequency and c the velocity of light. Eq. (2.2) takes into 

account that the medium is a pure dielectric and that the permeability of the 

irradiated object almost equals /*0, being the permeability in vacuum. Many 

materials treated by microwaves fulfil this last requirement. The time dependent 

term in Eq. (2.2) is very small compared to the dielectric constant and can be 

neglected. Eq.(2.1) has to be combined with the electromagnetic boundary 

conditions, which read: 
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AE, d£, 
Ex = E2 and —- = — - (2.3) 

dx dx 

at the boundaries x=0 and x=L (L is the thickness of the slab). The subscript 1 

refers to vacuum or air and the subscript 2 is related to the irradiated medium. We 

also need the formula of the absorbed power D : 

L 

D = P - < J(|£2|
2/£,2)d* , (2.4) 

where P is the microwave power, Et the amplitude of the incident wave, and K is 

written as the difference of a real and an imaginary part, according to K=K ' - /K" . 

For water we have 

K2 = K, + , (2.5) 
1 + /G)T2 

with 

10log(K0) = 1.94404 - 1.991 •10"3(r - 273.15), 

K, = 5.77 - 2.74• 10 \T - 273.15), 

X. = 3.745•10"15((1 + 7*10 5)(T - 300.65)2 )e
229"-10"3/T. (g 1 ) 

where T is in Kelvin. Substituting the field E of (2.1) in Eq.(2.4) yields 

w „ |2<x2(l - e
 2p^)(l+|J?12|

2
g "

2P^)-4p2|j;12le
 2^sin(a2X)coS(q2Z+612) 

D - P—K2 I Tn | — 
2a2p2(l-2|/?12|V

2Mcos(2a2I+2512) + |*12|V
4P2L) 

(2.6) 
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The dielectric constant has been replaced by the wavenumber (phase constant) a 

and the attenuation constant p. 

a, = 51.3 m1 and a2 = — I K ^ I +tan262 + l)/2 } in (2.7) 

P, = 0 m1 and P2 = — <K2(̂ /l +tan282 - l)/2 ) m (2.8) 

with tan 52 = K 2"/K 2 ' . 

The reflection coefficient Rn and the transmission coefficient Tu are related to a 

and p by 

]Rp = ( « r a 2 ) 2 + (P,-P2)
2 ^ ( = 4(a2+p2) ( 2 9 ) 

(a,+a2)
2 + (p1+p2)

2 ' U (a1+a2)
2 + (p,+p2)

2 

-2(a,p,-a,p,) 
512 = tan1 [ lH2 2Hl ] (2.10) 

(a2-a2) + (P
2-P2) 

To calculate the temperature within the isothermal slab as a function of time 

Eq.(2.6) has to be combined with Fourier's law. For small temperature differ­

ences (T-TQ) to the ambient one reads 

pC L— = D - h(T-TQ) , (2.11) 
p dt 

where p is the density, Cp is the thermal capacity, and h is some effective heat 

transfer coefficient. In this study we take 

p = 1000 kg/m2 , C = 4186 J/Kkg and h = 100 W/Km2 . 

It is assumed that TQ is also the initial temperature of the slab at t=0. 
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For certain thicknesses L of the slab a plot of the steady-state temperature 

versus the microwave power shows an 5-shaped curve. This means that (in the 

neighbourhood of the unstable region) a slight change of the microwave power 

causes the temperature to increase rapidly. This is the catastrophic phenomenon of 

thermal runaway. This runaway process is caused by resonance of the microwave 

within the slab. It is evident that in experimental tests only the upper and lower 

branch of the 5-shaped curve will be found. This can be done by measuring the 

steady-state temperature for a large number of microwave powers and initial 

temperatures of the slab. Another much less elaborate way of testing the theory is 

by measuring the transient temperature of the slab as a function of time by using a 

time dependent microwave power. The idea was that a plot of the transient 

temperature versus time (choosing P=t) would be equal to the 5-shaped curve 

except for the unstable region, where a jump from the lower to the upper branch 

was expected. This experiment has been performed [3]. The results were more or 

less in agreement with the idea mentioned above. The only problem was that the 

idea did not had a theoretical foundation. 

4.3. ASYMPTOTIC APPROXIMATION OF THE ACTUAL TEMPERA­

TURE 

From figure Id it is seen that the system (1.1) does not follow exactly the 

steady state if P changes with time. In the following we compute the small change 

in T in the regular state and the shift in the jump time during runaway. The 

system (2.11) is of the form (1.1): 

e — = f(T,P(t)) (3.1) 
dr 

where the small parameter e is a measure for the relaxation time of the system. 

Our approximation is based on the assumption that e is asymptotically small. In 

figure 1 it is indicated how the occurrence of runaway can be deduced from the 

functions P(t) and f(P,T). In the sequel it is assumed that P(t) is chosen such that 

runaway only occurs in generic situations. It means that P'(t) * 0 for points PQ for 
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which df/dT = 0 including an e2/3-neighbourhood of these points (P lies in an e2'3-

neighbourhood of P0 if \P-PQ\ < L e2'3 with L an arbitrary large number inde­

pendent of e). 

- i 1 1 1 -

0 0.5 1.0 1.5 2.0 2.5 3.0 

Figure 2. The graph off(T,p) = 0 for £ = 4 cm and the numerical solution of (3.1) 
for p = t W/m2. 

For any starting value (P(0),T(0)) = (P0,T0) the system rapidly tends (within a 

time interval of order e) to a stable branch of the curve f(T,P) = 0. A branch of 

this curve is stable if df/dP < 0. Then the temperature is approximated by 

T(t) = Q0(P(t)) + e 
Q0'(P(t))P'(t) 

fT(Q0(P(t)),P(t)) 
(3.2) 

where QQ(P) satisfies f(P,Q0(P)) 

substituting 

= 0. The approximation (3.2) is found by 

T=Q0(t) + eQi(t)+... 
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into (3.1) and equating terms with equal powers in e. When approaching the time 

t=tl the state (P,T) arrives in a neighbourhood of the value CP,,^) where df/dT=-

0. 

Start of runaway 

In order to analyze the behaviour of the system near this point (P^T^ we apply 

two stretching transformations: 

T = T{ + ye113 and P = /», + xem . (3.3ab) 

The choice of the powers of e follows from the type of degeneration of (3.1) 

arising after substitution of (3.3ab) and letting e - 0. For the present choice of the 

exponent of e in (3.3ab) the limiting system contains a maximum of local infor­

mation; it reads 

P%) *L = LlLy*+dlx (3.4) 
dx 2 dT2 dP 

if one switched to P as dependent variable, which can be done in view of the 

condition of genericity. The general solution of (3.4) can be expressed in Airy 

functions. For that purpose we make the transformations 

y = yu and x = pv (3.5ab) 

with 

Y = — — -^(7-,,/VP2 , P3 = — , (3.6ab) 
P'(t.) dP d2f df 

dT2 dP 
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so that 

= u2 + v . (3.7) du 2 

dv 

Then by setting u = -z'(v)/z(v) we obtain 

z"(y) + vz(v) = 0 or z(v) = ^Ai(-v) + K2Bi(-v), (3.8) 

where Ai(-) and Bi(-) denote the two Airy functions, see Abramowitz and Stegun 

[6]. The integration constants K^ and K2 follow from the matching of (3.3)-(3.8) 

for x - -°° with (3.2) for t -> tl. Carrying out some computations one finds that 

(3.2) then behaves as 

r = r + [ I J L Q0\h)Y^ JF^p (3.9) 
2 dr2 

and that (3.8) has the same behaviour if K2 = 0 so that w(v) = Ai'(-v)/Ai(-v). 

For vT - a we arrive at the first zero of the Airy function then the temperature 

behaves as 

T * T, + y — for P T Px + ape2'3 . (3.10) 
/>, + aPe2/3 - P 

Thermal runaway 

Thus as P approaches Pj + ocpe2'3 from bellow T increases rapidly and approaches 

the value Tv see figure 2, while P only changes order e near Pj + ape2'3. Inter­

changing the dependent and independent variable and introducing 

p = (P - />, - ape2 '3)^1 (3.11) 

we arrive at the approximating system 
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T 

±- &- = — — or p{T) = [ —l— dZ + K , (3.12) 
"(0 dr f{T,P.) i XLPJ 

where T is a fixed value between Tx and T2 and AT the integration constant. Since 

firsj = i/n-cr^XT- - T,)2 (3.13) 

for T \ Tx, we may easily check that in this limit (3.12) precisely matches (3.10) 

indepently of the choice of K (K represents the next order in the shift of P coming 

after ape2'3). At the other hand for T \ T2 the integrand (3.12) behaves as 

y(7',p1)*/7<r2,i»1xr-r2), 

so that 

p(T) = !— ln(r2 - 7"). 

It means that T approaches T2 exponentially fast. Then we have arrived at a stable 

branch where an approximation of the type (3.2) holds. 

4.4. NUMERICAL VERSUS ASYMPTOTIC APPROXIMATION 

Let us consider a time dependent microwave power P(t) = t in Eq. (2.11). 

The S-shaped curve representing the steady-state temperature shows that critical 

behaviour occurs for values of P of the order 104 W/m2, so time is rescaled as 

follows 

/ = 1 0 4 T . (4.1) 
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Figure 3. Numerical solutions of (4.2) for different values of L- The asymptotic shift 

aPe2/3 is indicated by a vertical line segment. 
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In the new time scale Eq. (2.11) changes into 

e— = 102xD(T) - \Q-2h(T - T0), (4.2) 

where 

e = lO^pC^L. 

From formula (3.10) we know that runaway starts as P approaches the value P, + 

a(3e2/3 where -a = -2.338107... is the first (negative) zero of the Airy function 

and P is given by (3.6b). In this formula the term d2f/dT2(Pl,Tl) is approximated 

numerically. In table 1 we compare the time shift ccPe2'3 from the asymptotic 

solution with the difference between the moment the numerical solution crosses 

respectively the lines P = Px and T = Tv Since we take P = t, the difference 

indicates the delay A in crossing the line T = Tx with respect to the steady state 

solution. In figure 3 we give the delay based on the asymptotic expression ccPe2'3. 

Table 1. The difference between the delay in the asymptotic approximation (ape2'3) and 
in the numerical solution (A). 

L(cm) 

1 

2 

4 

6 

10 

6 

4.19.102 

8.37.10'2 

1.67.10'1 

2.51.10'1 

4.19.10-' 

cxpe2/3 

0.10 

0.30 

0.31 

0.43 

0.35 

0.43 

0.28 

A 

0.26 

0.34 

0.31 

0.41 

0.31 

0.50 

0.32 
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ABSTRACT 
The absorption of electromagnetic energy within a microwave heated isothermal 
slab, cylinder, and sphere is analyzed and compared to each other. It is shown that 
the absorbed heat oscillates as a function of temperature, regardless of the geometry 
of the irradiated object. It is possible to formulate this behavior in a simple 
mathematical equation, which proves that the oscillation is basically caused by 
resonance of the electromagnetic waves within the object. This oscillation, combined 
with the heat loss, is found to be responsible for thermal runaway phenomenon in 
isothermal objects. Based on such an observation, a general rule to prevent thermal 
runaway has been developed. 
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5.1. INTRODUCTION 

One of the difficulties associated with the application of microwave heating 

(frequency range 2450 MHz) is the catastrophic phenomenon of thermal runaway, 

in which a slight change of microwave power causes the temperature of the irradiated 

object to increase rapidly. The microwave sintering of ceramics especially is 

seriously hampered by this phenomenon. The aim of this investigation is to find the 

physical origin of the runaway process and hope that it leads to a general rule in 

preventing runaway. The simplest possible system is conceived in order to achieve 

this. In the first place it has been assumed that the irradiated object is situated in free 

space without any reflections from the ambient. The object was irradiated by a plane 

harmonic wave from one side. Deliberately the choice has been not to describe actual 

experiments, because then the characteristics of the oven combined with the 

irradiated object might veil the physical origin of the runaway. In the second place 

it has been assumed that the objects are isothermal. This does not look very realistic, 

but in the case of small Biot numbers it is a good approximation. In the small Biot 

number limit many studies have been performed on ceramics. Another category of 

materials which behave almost isothermal is the liquids. The temperature gradient 

within the liquid causes strong convection, which diminishes the temperature 

differences in the liquid. The study of isothermal systems might be regarded as an 

initial step towards a more complete understanding of the runaway phenomenon. 

Nonisothermal objects will be taken into account in the second stage of this 

investigation. The idea is to regard such a system as a multilayer of isothermal layers 

with different temperatures. 

The principles developed are applied to demineralized water. Compared to 

other materials water has a number of advantages. Its physical parameters are well 

known1; as a liquid it behaves almost isothermally, and the theory can been verified 

experimentally with little effort. A potential application of the study of water in 

relation to thermal runaway is the improvement of the quality of microwave dried 

foodstuffs. The mathematical formulas developed below are generally true and also 

applicable to ceramics. However one should be very careful in generalizing the 

results of the calculations. When compared to ceramics the dielectric constant of 
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water hardly depends on temperature. The dielectric loss factor in many ceramics 

especially is a strong function of temperature, which is a major factor in thermal 

runaway in these materials. On the other hand there are some remarkable similarities 

between the thermal behavior of water and ceramics. 

The specific aim of this article is to investigate how the geometry of the 

irradiated object influences the runaway process. This has been done by comparing 

a slab, a cylinder, and a sphere to each other. In an earlier article2 based on the work 

of Kriegsmann3 and of Stuerga et al.4, it was shown that the runaway effect in a slab 

of water is caused by resonance of the electromagnetic waves inside the irradiated 

object. It is a matter of standing waves. It is obvious that the same thing will happen 

to (infinitely long) cylinders and spheres, irradiated from all sides, with the condition 

that the waves at the surface are in phase. This is analogous to a slab irradiated from 

two sides with coherent waves. The only difference is that the "standing waves" are 

described by cylindrical functions (Bessel and Hankel functions) or spherical 

functions. 

In the case of cylinders and spheres irradiated from one side there is neither 

cylindrical nor spherical symmetry. It is impossible to apply the basic idea of 

standing waves, as developed for the slab, to cylindrical or spherical waves, because 

these waves are not present in an elementary form. It will be demonstrated that also 

in this case the phenomenon of thermal runaway is still present. 

Attention has to be paid to the notation. In contravention of the usual notation5 

the symbol a will be used as the phase constant and P as the attenuation constant. 

Both are real numbers. This notation reads easier and it fits in better with the theory 

of wave propagation as described in classic books. The runaway phenomenon, as 

described in this article, is a result of the application of the wave propagation theory. 

5.2. THE ISOTHERMAL SLAB 

Let us consider a layer of material specimen, irradiated from one side by 

microwave radiation with a frequency of 2450 MHz. The wave is a plane, harmonic 

one and impinges normally upon the material (Fig. 1). 
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air(1) 
plane 

microwave • 

slab (2) air(1) 

• 

Figure 1. A layer, being irradiated from one side 
in an echo-free cavity. 

The differential equation describing the relationship between temperature T and time 

t (Fourier's law) reads: 

L P C AT 
dt 

= D - 2h (T-T.) (1) 

where p is the density, Cp is the thermal capacity, and L stands for the layer 

thickness. D is the heat production (total amount of power per square meter 

generated along the z-axis, extending from z=0 to z=L). The total heat loss is 

described by an effective heat transfer coefficient h, multiplied by the temperature 

difference (T-T0) between slab and ambient. The expression for the heat loss is an 

approximation, only valid in the case of small temperature differences. The absorbed 

energy D follows from Maxwell's equations, together with the appropriate boundary 

conditions at the surface of the slab. Approximately one obtains: 

D ~ P 
4a, 

[1+2|*. |V 2 P 2 i cos(2oc2I)] (2) 

where P is the microwave power and Rn the reflection coefficient. This 

approximation is based on two requirements; first, the phase constant a, of air is 

much smaller than the phase constant a2 of the irradiated medium. This is a very 

general demand and most solids and liquids answer this demand; second, a2 should 

be much smaller than the attenuation factor P2 of the medium. This is true for water. 
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The special thing about water as compared to ceramics is the fact that a2 

hardly depends on temperature. This means that in the first approximation the 

transient temperature as a function of heating time will be represented as a straight 

line. Superimposed on this line is an oscillation of which the amplitude increases with 

temperature, but decreases with layer thickness (Fig. 2). 

100 

100 200 300 400 500 600 
time (s) 

Figure 2. Transient temperature of a slab without heat loss as a function of heating time, 
showing that the absorbed microwave power is almost temperature independent. L=\ .6 cm, 
P=40 kW/m2, water. 

The oscillation is caused by resonance within the medium. With respect to wave 

propagation the slab behaves like a violin string. The heat production has a maximum 

if the wavelength X2 of the medium equals ILIn for n = 1,2,3... The steady-state 

temperature follows from 

D - 2h (T-TQ) = 0 (3) 
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In order to have runaway three intersecting points of heat production and heat 

loss are necessary. This will be the case if the cosine has a maximum around 80 °C, 

which results in a thickness L of 1.6 cm for n = 2. This is the smallest thickness for 

which runaway might occur (Fig. 3). 

x 10 

50 
temperature (°C) 

100 

Figure 3. The absorbed microwave power oscillates as a function of temperature. This 
oscillation, combined with the heat loss (the straight line), is responsible for thermal 
runaway. Slab 1=1.6 cm, P=40 kW/m2; cylinder L= 1.2 cm, P=9 kW/m2; sphere Z=1.4 cm, 
P=150 kW/m2; h=\00 W/m2, ambient temperature is 0 °C; the medium is water. 

A plot of the steady state temperature versus the microwave power for L = 1.6 cm 

shows the familiar S-shape (Fig. 4). 
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100 

20 40 
microwave power (kW/m2) 

60 

Figure 4. The S-shaped curve of a slab (water, L=l.6 cm). Increasing the microwave power 
from 40 to 45 kW/m2 results in a temperature jump of about 40 °C. 

5.3. THE ISOTHERMAL CYLINDER 

A cylinder is irradiated by a plane harmonic wave from one side in the same 

way as the slab. The electric field vector of the incident field is parallel to the central 

symmetry axis of the cylinder (Fig. 5). 

air(1) air(1) 

Figure 5. A cylinder, being irradiated from one 
side, in an echo-free cavity. 
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The equation of the heat balance differs a little from Eq.(l), because the surface is 

larger. 

I l p C i I = ^ £ - 2 * <J-T0) (4) 
2 ' dr i t l 

In this case L is the diameter of the cylinder. 

The heat production D is directly proportional to the absolute square of the 

electric field E2 within the cylinder. In polar coordinates r and <J) the field is6: 

E2 = A E Cn JnW *""> (5) 

where A is the amplitude of the incident electric field, Jn is the Bessel function of the 

first kind of order n, and k2 is the complex wavenumber (kf=a2+i$}. The 

coefficients cn determine the character of the field. They can be found by applying 

the boundary conditions at the surface of the cylinder. 

cn = (6) 
k/^VH^R) - kMkjRWfcR) 

here Hn are Hankel functions of first kind of order n, R is the radius of the cylinder, 

and £, = a,. To achieve the total absorbed energy D of the isothermal cylinder the 

absolute square of the electric field has to be integrated over the cross section of the 

cylinder. This can be done analytically, but the result is a very complicated 

meaningless equation. A much better result is achieved by using the asymptotic 

expansion of the Bessel function. 

'.(*> 
> 

2 , nit 71 „ . 
— cos(x - — —) (7) 
TXx 2 4 

where x is large. 

Replacing Bessel functions by cosines and integrating over the cross section 
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yields 

D ~ [1 - 2\Rn\
2 e'2^ cos(2a2I)] (8) 

Except for the sign this equation is identical to Eq.(2) of the slab. A maximum heat 

production is expected for L = A2(l +2«)/4, where n = 0,1,2,... . This means that 

the diameter L should equal 1.2 cm in order to have a maximum at 80 °C (Fig. 3) for 

n=\ (water). The consequence is thermal runaway (Fig. 6). 

100 

5 10 15 
microwave power (kW/m2) 

20 

Figure 6. The S-shaped curve of a cylinder (water, £=1.2 cm). Increasing the microwave 
power from 14 to 15 kW/m2 results in a temperature jump of about 50 °C. 

The same kind of S shape has been calculated for ceramic cylinders in the small Biot 

number limit7. Numerical calculations demonstrate that, in the first approximation, 

the heat production is temperature independent. The runaway process for water is 

caused solely by the temperature dependence of the phase constant. 

The phenomenon of thermal runaway has also been studied in the case of an 

isothermal cylinder irradiated from one side by a plane harmonic wave with the 
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electric field vector lying in the plane of incidence (perpendicular to the vector drawn 

in figure 5). This leads to the same behavior as described above. Especially equation 

(8), the most important one, was exactly the same. 

5.4. THE ISOTHERMAL SPHERE 

A sphere is irradiated from one side by a plane harmonic wave in free space. 

In this case Fourier's law reads 

1 T „ AT 2PD „ , ,„ ^ 
- L p C = - 2h (T-T0) 
3 ' dt KI2 

(9) 

where L is the diameter of the sphere. The mathematical description of the 

electromagnetic field is based on the so-called Mie theory8. In terms of spherical 

coordinates r, cj) and 6 the spherical components of the electric field within the 

sphere are 

Er=AY,t"1 2» + l 

V > 

•n dP(cosQ) 
bn J L(k2r) —-—— cos (J) sin 0 (10) 

2k2r </(cos0) 

E6 =A £ / " 2/1 + 1 

i /i(n + l ) \ 2k2r 

TT dP(cosd) 
[anJn+1(k2r) " 

</(cos0) 

- ibn { — J , (*2r) - J 3(k2r) 
K2r 2 2 

^'(cosG) 

ae 
] cos <j) (11) 

_. , ^ . . 2/»+l I 7i af^cosB) 

* U «(»+!) \ 2v " -Y 2 ae 
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, „+i , </i>„(cos6) 
+ ib { !—^- J i(k.r) - J 3(k.r) ( —- ] sin <j> (12) 

k2r "+7 "+7 rf(cos6) 

where Pn are the Legendre polynomials and P' correspond to the associated 

Legendre functions of the first kind. The coefficients an and bn can be found by 

applying the electromagnetic boundary conditions at the surface of the sphere. For 

an, respectively bn, one yields 

liJk^/TiR 

(A,-*,)(!!+1) 2 2 

— — J \H 1 - k,, J 3H 1 + kt J XH 3 
D «+— B + — L n+— n+— l n+— B + — 

A 2 2 2 2 2 2 

(13) 

liJk^/TzR 

(* 2 -* , ) ( l -« ) 
2 ' - J iH 1 - k.k. J 3H ! + ifc.ifc, J iH 3 

«+— B+— ' Z B+— B+— ' ' B+— B+ — 
2 2 2 2 2 2 

(14) 

R 

The Bessel functions have the argument k2R, while the Hankel functions always 

depend on k{R. Here R is the radius of the sphere. The total amount of absorbed heat 

D of the isothermal sphere is proportional to the integral over the volume of the 

sphere of the absolute square of the total electric field. The last one equals the sum 

of the absolute squares of the spherical field components. This (very elaborate) 

integration is analytically possible, but it also results in a meaningless equation. The 

problem is that the equation does not converge in such a way that the first order 

terms of the Bessel and Hankel functions are the most dominant ones. The most 

dominant term is determined by the diameter of the sphere. However, numerical 

analysis (in the case of water) shows that a simplification of the exact solution is 

possible. For relatively small L (L < 3 cm) the oscillating behavior of D is mainly 

described by I a, 12. If the diameter lies somewhere between 3 and 6 cm then Eq.(8) 

creates a perfect fit. The minimum diameter for which runaway occurs is 1.4 cm 

(Fig. 3). The high and sharp peak causes a large jump of the steady-state temperature 
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(Fig. 7). On the other hand this first order (n = 1) runaway effect is very sensitive 

to small changes of the diameter. Increasing or decreasing the diameter of 1.4 cm by 

0.1 cm is enough to destroy the runaway phenomenon. Numerical analysis proves 

that also in the case of the sphere the absorbed heat D is temperature independent in 

the first approximation, resulting in the same kind of graph as in figure 2. Studies of 

a ceramic sphere inside a rectangular cavity9 also show how the absorbed microwave 

power oscillates as a function of the radius. 

100 

500 
microwave power (kW/m2) 

1000 

Figure 7. The S-shaped curve of a sphere (water, L=\A cm). Increasing the microwave 
power from 78 to 80 kW/m2 results in a temperature jump of 60 °C. 

5.5. DISCUSSION AND CONCLUSION 

The isothermal slab, cylinder, and sphere, irradiated from one side by a plane 

harmonic microwave, behave in the same way in relation to thermal runaway. In the 

first approximation the dissipated microwave power is independent of temperature. 

The phenomenon of thermal runaway is basically caused by the temperature 
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dependence of the phase constant of the irradiated medium in combination with heat 

loss. For watery objects the absorbed energy D is reflected by a simple 

approximation: 

D ~ 1 ± 2\Rn\
2 e'2hL cos(2a2L) (15) 

where the + sign refers to the slab. L is the thickness of the slab or the diameter of 

the cylinder or sphere. In all three cases the oscillation is caused by resonance within 

the objects. This suggests that the geometry of an irradiated isothermal object is 

irrelevant in relation to thermal runaway. If there is a possibility for resonance of the 

electromagnetic waves within the object, thermal runaway will occur. 

The calculations demonstrate that the characteristic dimension must be at least 

equal to a complete wavelength (slab) or to 3/4 of a wavelength (cylinder and sphere) 

at a relatively high temperature, in order to have runaway. At that specific 

temperature the heat production has a maximum. This maximum has to precede a 

minimum at low temperatures. This might already be the fact if a quarter of a period 

of oscillation is present. 

Thus the conclusion is that any isothermal object with characteristic dimension 

L, irradiated from one side by microwaves, will never be overtreated or damaged by 

the phenomenon of thermal runaway if L is smaller than Tt/4Aa2, where Aa2 is the 

difference between the maximum and the minimum value of the phase constant a2. 

For water this results in a dimension of about 1 cm. 
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ABSTRACT 

The microwave heating of slabs of water bound with a gel is modeled and analyzed 

without any restriction to the Biot number regime. Despite the fact that the tem­

perature distribution over the slab is not uniform at all, the phenomenon of thermal 

runaway is basically caused by resonance of the electromagnetic waves within the 

object, combined with heat loss. A plot of the steady-state temperature at any posi­

tion within the slab, versus the microwave power, is an S-shaped or a multi S-shaped 

curve. With respect to thermal runaway there is a strong similarity between iso-. 

thermal and nonisothermal slabs. Using the average temperature of the non-

isothermal slab, regardless of its Biot number, yields a reasonable approximation to 

describe the runaway. This is caused by the specific characteristic of the dielectric 

loss factor of water, which decreases with increasing temperature. This results in an 

almost constant absorption of energy over the whole slab without disturbing the wave 

character of the absorption. It turned out that this smoothing of the absorbed power 

plays a dominant role in the calculations of the temperature profiles. Any calculation 

where the temperature dependence of the permittivity is omitted, will not only pass 

the phenomenon of thermal runaway but its temperature profiles will differ substan­

tially from the ones where the temperature dependence has been taken into account. 

91 



Chapter 6 

6.1. INTRODUCTION 

The application of microwave heating (frequency range 2450 MHz) is 

seriously hampered by two problems, both having their roots in the basic physics of 

the heating process. The first difficulty is the uneven spatial absorption of energy 

within the irradiated object. The second difficulty is the catastrophic phenomenon of 

thermal runaway in which a slight change of microwave power causes the 

temperature of the object to increase rapidly. The aim of this investigation is to find 

the physical origin of the runaway process and hope that it leads to a general rule in 

preventing runaway. Temperature profiles of the irradiated slab are necessary in 

order to achieve this. These temperature profiles give a good insight in the uneven 

spatial absorption of energy. Both problems, the uneven spatial absorption and the 

thermal runaway, are related to each order. The process of thermal runaway is a non­

linear problem and can be explained by taking the temperature dependence of the 

permittivity e into account. This means that the temperature profiles, as shown in this 

article, will also reflect this temperature dependence. Many studies of microwave 

heated slabs of foodstuffs (see f.i. Dolande et all.) have been performed, but the 

majority ignores the temperature dependence of the permittivity arguing that this is 

a second order phenomenon. As will be shown in this study, the process of thermal 

runaway is caused by resonance within the irradiated medium due to the temperature 

dependence of e. Resonance is always a very strong phenomenon and it must not be 

regarded as a second order effect. It has a major impact on the absorption of energy, 

and by this, as will be shown on the temperature profiles. The study of thermal 

runaway in microwave heated objects usually starts by formulating the equation of 

the absorbed power D. 

D = -oie"\E\2 (1) 
2 

where a> is the angular frequency, e" is the imaginary part of the permittivity, and 

E is the electric field within the object. Instead of e" one can also formulate Eq.(l) 

with the dielectric loss factor, which equals e" divided by e0, the permittivity of 

vacuum. Equation (1) is a very powerful equation because it is a general equation and 
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does not depend on the geometry of the irradiated object. All problems involved in 

the geometry of the object are expressed by the field E. The absorbed power is 

always directly proportional to e" or the dielectric loss factor. The microwave 

sintering of ceramics especially is seriously hampered by the phenomenon of thermal 

runaway. The dielectric loss factor of ceramics strongly increases with increasing 

temperature. Looking at Eq.(l) the explanation of thermal runaway in ceramics is 

almost evident. While the temperature increases, the absorbed power will increase, 

resulting in a stronger increase of the temperature, which then results in more 

absorbed power, etc. This "hand-waving" argument can often be heard. Kriegsmann2 

formulated a plausible explanation of thermal runaway in ceramics in the small Biot 

number regime. Strangely enough the hand-waving argument does not play a major 

role in his explanation. Kriegsmann did not mention it but, in fact, he describes the 

phenomenon of resonance in an almost isothermal slab of ceramics. That the 

phenomenon of resonance within an isothermal slab results in thermal runaway 

became clear by the study of demineralized water (Stuerga etal}). The dielectric loss 

factor of water hardly depends on temperature as compared to ceramics. It decreases 

a little bit with increasing temperature. It is obvious that in the case of water the 

hand-waving argument is not appropriate in explaining runaway. All of this does not 

mean that the argument is complete nonsense. Probably the hand-waving argument, 

combined with resonance, plays an important role in the description of runaway of 

ceramics in the large Biot regime. Resonance as the origin of thermal runaway in 

isothermal objects has been studied in earlier articles4,5. The aim of this study is to 

investigate the phenomenon of thermal runaway in nonisothermal slabs of foodstuffs 

without any limitations with respect to the Biot number. 

Water is a major constituent of many foodstuffs and its Biot number can be 

quite large (Bi =14). This is why water (bound with a gel) has been used to illustrate 

the theory. Because the dielectric loss factor of ceramics strongly increases with 

increasing temperature, which is completely opposite to water, the results of this 

investigation in the large Biot number regime cannot be used to explain the behavior 

of ceramics. From time to time some remarks will be made about the impact of 

certain parts of the theory in relation to ceramics. An analysis of this study probably 
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makes it clear why it is suggested that the hand-waving argument in combination with 

resonance plays an important role in explaining thermal runaway in ceramics in the 

case of large Biot numbers. 

Attention has to be paid to the notation. In contravention of the usual notation6 

the symbol a will be used as the phase constant and P as the attenuation constant. 

Both are real numbers. This notation is easier to read and it fits in better with the 

theory of wave propagation as described in classic books. The runaway phenomenon, 

as described in this article, is a result of the application of the wave propagation 

theory. 

6.2. THEORY 

Consider a layer of material specimen, irradiated from one side by microwave 

radiation with a frequency of 2450 MHz. The wave is a plane, harmonic one and 

impinges normally upon the material. In order to explain the principles of thermal 

runaway, the simplest possible system was conceived. The slab was located in free 

space, so no other waves than the incident one would be involved. Solving Maxwell's 

equations (see f.i. Stratton7 or Ayappa et a/.8) yields the classical wave equation in 

one dimension 

d E + k\T)E = 0 (2) 
dx< 

where the electric field £ is a function of position x and temperature T at that 

position. The k(T) stands for the temperature dependent complex wavenumber, which 

is connected to the permittivity e of the medium by the following equation: 

i_2 2 , ' d£ i c , ,-,s 
* = " > 0 ( e + —r- + —) (3) 

(x> dt 0) 

This equation takes into account that the permeability of the irradiated object almost 

equals n0, being the permeability in vacuum. Many materials treated by microwaves 

fulfill this requirement. The symbol o is the ohmic electric conductivity, caused by 

the free charges of the object (free electrons, ions, etc.). The presence of free 
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charges is not without consequences. The electric field causes surface charges and 

surface currents, which have their impact on the electromagnetic boundary 

conditions. The analytical description of a mixture of an isolator (dielectric) and 

conductor is nearly impossible without any numerical assumption of the ohmic 

conductivity. For this reason the ohmic conductivity is neglected, as is usually done 

in this kind of research, at least with respect to the electromagnetic boundary 

conditions. Therefore, this article deals with pure dielectrics. With this assumption 

the electromagnetic boundary conditions read 

dE, dE. 
Ex = E2; 1 = 2- (4) 

dx dx 

at the boundaries x=0 and x=L (L is the thickness of the slab). The subscript 1 refers 

to vacuum or air and the subscript 2 is related to the irradiated medium. 

The second term of Eq.(3) is very interesting because it can be written as the 

product of de/dT times dT/dt. In the case of thermal runaway the temperature 

increases rapidly and this could result in a significant contribution of the second term 

during the temperature jump. On the other hand, this term is small compared to the 

first term z of Eq.(3), because it is divided by to (2K X2450x 106 s"1). Including the 

second term in Eq.(l) of the absorbed power D results in 

1 . . , / / . 1 de' d7\ D = -co(e" + - L ^ L ^ - ) | £ | 2 (5) 
2 co dr At 

where e is written as the difference of a real and an imaginary part, according to 

e=e'-ie". For foodstuffs and also for ceramics, the temperature dependence of e' is 

so small, that Eq.(5) might be replaced by the familiar Eq.(l) without any loss of 

generality. The second term has no consequences for the absorbed power. The 

interesting impact of the second term is found in the expression of the real 

wavenumber, or phase constant a. Omitting the small terms it yields 

CO ^ »V • *' - !*i^I) (6) 
\ 2 co dT df 
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For water e" decreases with increasing temperature, resulting in a decreasing 

wavenumber or increasing wavelength. At certain temperature the wavelength "fits" 

within the slab, causing resonance. Exactly at that moment the temperature will rise 

strongly and the time dependent term in Eq.(6) will become significant in an 

interesting way. It will resist the decrease of a, keeping the system in the resonant 

mode. This effect has been investigated with the aid of computer simulations applied 

on water. The conclusion is that compared to e", the time dependent term is just too 

small to have any influence. Perhaps in the case of ceramics, where the temperature 

dependence of the permittivity is much larger, there will be some effect. 

To calculate the temperature within the slab as a function of position and time 

the three electromagnetic equations (1), (2) and (4) have to be combined with 

Fourier's law. 

P c , f - r ^ • D (7, 
P dt dx2 

where p is the density, Cp is the thermal capacity, and K is the thermal conductivity. 

Although these parameters depend upon the temperature T, they are assumed constant 

for the following reason. The phenomenon of runaway is caused by resonance due 

to the temperature dependence of the wavelength within the slab, as will be shown 

later in this article. The temperature dependence of the three parameters mentioned 

above has no influence on the appearance of the resonance. The only consequence 

which can be found, is a small shift of the average temperature for which resonance 

occurs. The heat balance in Eq.(7) has to be accomplished by its boundary 

conditions. For small temperature differences between the surface of the slab and the 

ambient read: 

K^L = h(T~Ta) , x = 0 (8) 
ox 

K— = -h{T-Ta) ,x=L (9) 
dx 
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where h is some effective heat transfer coefficient related to the convective and 

radiative heat loss. Ta is the ambient temperature and also the initial temperature of 

the slab at t=0. 

6.3. STEADY STATE SOLUTIONS 

The heating process evolves as follows: while the temperature T increases, the 

electrical properties k and e" of the slab will change. This, in turn influences the 

absorbed power D, resulting in a new temperature. A complete analytical solution 

of this nonlinear problem is nearly impossible. Only a partially analytical solution can 

be formulated. In order to formulate this solution the slab has to be divided into a 

large number of small subslabs. The heating process starts with heating of an 

isothermal slab at t=0. The analytical description and the solutions of this process 

is well known. Thus at t=At the temperature at each position x within the slab is 

known, where At is small. Assuming each subslab n is isothermal it is possible to 

calculate the electric field En in each subslab n with these data. 

En(x,T) =Ane'k"(T)x
 +Bne-'k"iT)x (10) 

This is the solution of Eq. (2). The integration constants An and Bn depend on the 

temperature of subslab n and the temperature of its neighbours, the subslabs n+1 and 

n-1. With the aid of the electromagnetic boundary conditions it is possible to write 

(/4„,5„) as a function of (An+l,Bn+l) or as a function of (An_x,Bn_{). This process of 

replacing the integration constants by its neighbours goes on until the surfaces of the 

slab has been reached. At x=0 and x=L the boundary conditions are numerically 

known. This means that the value of An and Bn for each subslab n is known. 

Substituting field (10) in the expression of the absorbed power, generates new 

temperatures for each sub-slab at t-2At, and so on. This is how the computer 

program has been set up. 

This computer program has been applied to demineralized water, bounded 

with a gel. See Kaatze9 for the dielectric properties. Other data which has been used 

are: Cp=4186 J/kgK, K=0J W/mK, p = 1000 kg/m3, and A = 100 W/Km2. The 

thickness of the slab must be chosen. It is the only degree of freedom. In the case of 
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an isothermal slab the thickness L plays a very important role. There is a kind of 

standing wave within the slab if L=n it/a. («=1,2,3.. .)• However, not every standing 

wave causes thermal runaway. Thermal runaway is possible, but only if the 

temperature at which the standing wave occurs, has been preceded by a lower 

temperature at which the waves more or less cancel each other. These conditions, 

combined with an approximated formula for a as a function (a=470-0.97; Tin °C) 

of temperature results in thicknesses where the phenomenon of thermal runaway 

should be possible. The minimum thickness for runaway in an isothermal slab is 

120 

0.6 0.8 
x (cm) 

Figure 1. Steady-State temperature profiles in a 1.6 cm slab of water. 
The microwave power increases from 4 to 40 kW/m2 in steps of 4 kW/m2. 
Notice the large gap, illustrating the phenomenon of thermal runaway. 

about 1.6 cm («=2). In the case of L=4 cm, the effect of runaway is very 

pronounced («=5). The behavior of a thick slab, L=10 cm , where two temperature 

jumps (n= 13,14) are expected, is also interesting. 
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For these reasons nonisothermal slabs with a thickness of 1.6, 4.0, and 10.0 

cm have been investigated. The steady-state temperature profiles as a function of the 

microwave power have been plotted in Fig.l, 2 and 3. 

120 

1.5 2 2.5 
x (cm) 

Figure 2. Steady-state temperature profiles in a 4 cm slab of water. 
The microwave power increases from 4 to 28 kW/m2 in steps of 4 kW/m2. 
Notice the large gap, illustrating the phenomenon of thermal runaway. 

The jumps in temperature can be seen clearly and the conclusion is obvious. The 

behavior of the nonisothermal slab with regard to thermal runaway is the same as the 

behavior of the isothermal slab. The Biot number does not play a role. Even in the 

case of the relatively thick slab of 10 cm (Bi=hL/K= 14.3) the origin of thermal 

runaway is resonance once again. A plot of the steady-state temperature at every 

position x within the slab versus the microwave power will show an S-shaped curve 

or a multi S-shaped curve. The behavior of the complete slab can be described with 

the average temperature. To have a standing wave the only thing which counts is the 
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way the wave fits within the slab. It makes no difference if the wavelength is large 

in the middle and small at the sides of the slab due to the temperature differences 

within the slab. 

160 

O 120 

Figure 3. Steady-state temperature profiles in a 10 cm slab of water. 
The microwave power increases from 2 to 22 kW/m2 in steps of 2 kW/m2. 
Notice the two gaps, illustrating the phenomenon of thermal runaway. 

If the wave fits then, there is resonance. This is one of the reasons why the slab, with 

respect to runaway, can be described with the average temperature. Replacing the 

local temperature T by the average temperature T in Eq.(7), and integrating over x 

yields 

pC L 
p df 

dT dT 

ax dx 
D. (11) 
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where Dlot is the total amount of absorbed power within the slab. Substitution of the 

thermal boundary conditions (8) and (9) results in 

AT 
pC 1 - ^ - = -2h(T - T ) + D, 

At 
(12) 

This is the heat balance of an isothermal slab in free space. 

100 

isotherm 

10 15 20 25 30 
microwave power (kW/m2) 

40 

Figure 4. Steady-state response curves for an isothermal and noniso-
thermal slab of water (L= 4 cm). The graph of the nonisothermal slab 
is in fact an S-shaped curve. 

Fig.4 shows the S-shaped curve of the approximated solution of Eq.(12), compared 

to the computational analysis of the correct Eq.(7) for L=4 cm. The correct curve 

shows the upper and lower branch of an S-shaped curve. If one starts the heating 

with the initial condition that the temperature of the slab equals the ambient 
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temperature Eq.(7) has no physical or mathematical solution in the instable region. 

It does demonstrate the dramatic jump in temperature. The complete correct S-shaped 

curve will be found if one equals Eq.(7) to zero. The smaller the Biot number, the 

better the approximation, as has been proven by Kriegsmann, but the main 

conclusion, that the origin of thermal runaway in a nonisothermal slab (regardless of 

the value of the Biot number), is caused by resonance, still remains. 

6.4. TIME DEPENDENT SOLUTIONS 

That the phenomenon of thermal runaway can be described so successfully by 

regarding it as an isothermal slab with one temperature T, while the real slab is not 

V. 3 

Figure 5. Evolution in time of the absorbed power (MW/m2) in a 4 cm 
slab of water. The exponentially decreasing function (t=0 s) evolves to 
a constant oscillation (f=40 s and /=320 s). The ampitude of this 
oscillation increases strongly at t=200 s, because of the resonance. 
The microwave power is 200 kW/m2. 
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isothermal at all, needs a more thorough explanation. The reason can be found in the 

specific character of water. The dielectric loss factor of water decreases by increasing 

temperature, while the penetration depth increases. These two factors are responsible 

for the fact that the absorbed power becomes constant in the average very soon. Only 

the small temperature dependence of the wavelength remains and this can change the 

absorbed power significantly because of the resonance. These phenomena have been 

illustrated in Fig.5. In the case of ceramics the dielectric loss factor increases and the 

penetration depth decreases by increasing temperature. The behavior of ceramics will 

be opposite to that of water. While water tends to smooth the electromagnetic energy 

over the whole slab, ceramics will concentrate the energy on the hot spot at the start 

of the heating process. Here it becomes clear why the hand-waving argument 

mentioned in the introduction, cannot be ignored and replaced by the argument of 

resonance only. 

The steady-state solutions of the former chapter are interesting because they 

give a good insight in the origin of thermal runaway. On the other hand, in the 

industrial processing of foodstuffs, one does not usually wait until the steady state has 

been reached. It just takes too long; if one heats a 4 cm slab of water with a 

microwave power of 18 kW/m2 under the circumstances as described in this article, 

it will take about 2.2 h before the steady state (T = 55 °C) has been reached. Using 

200 kW/m2 in stead of 18 kW/m2 will result in an average temperature of 55 °C 

within 2 min. Fig.6 shows the temperature profiles as a function of the heating time. 

As could be expected, resonance is still present. At a certain moment the temperature 

rises strongly in a very short time. Suppose this jump in temperature is not wanted 

because it will overtreat the foodstuff, then the only way to prevent this kind of 

thermal runaway is by stopping the microwave heating at the right moment. Fig.7 

shows the temperature profiles of water neglecting the temperature dependence of the 

dielectric constant, assuming that the value of the dielectric constant at 20 °C will 

result in a rather correct plot of the profiles. As can be seen, this is not the case. Not 

only the jump in temperature is missing, but the smoothing of the absorbed power 

by increasing temperature has also not been described. This demonstrates that the 

method of neglecting the temperature dependence of the dielectric constant yields a 
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x (cm) 

Figure 6. Transient temperature profiles in a 4 cm slab of water. 
The time increases from 0 to 320 s in steps of 40 s. Notice the 
gap between /=200 and /=240 s. The microwave power is 200 
kW/m2. 

Figure 7. Same as Fig.6, except the temperature dependence of 
the permittivity has been omitted. 
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very poor approximation. The investigation of the uneven spatial absorption of the 

electromagnetic energy within the irradiated object (one of the main problems in the 

application of microwave heating) by omitting the temperature dependence of the 

permittivity has little value, at least with respect to watery objects. 

6.5. CONCLUSIONS 

The behavior of the nonisothermal slab in relation to thermal runaway is 

analogous to the behavior of the isothermal slab. The Biot number does not play a 

role. Even in the case of relatively large Biot numbers, the physical origin of thermal 

runaway is still the phenomenon of resonance. A plot of the steady-state temperature 

at any position within the slab, versus the microwave power, will be an S-shaped or 

a multi S-shaped curve. 

It is possible to approximately describe the complete nonisothermal slab 

regarding thermal runaway by its average temperature similar to the description of 

the isothermal slab. This means that a nonisothermal slab with thickness L, irradiated 

from one side by microwaves, will never be overtreated or damaged by the 

phenomenon of thermal runaway if L is smaller than 7t/4A<x, where Aa is the 

difference between the maximum and the minimum value of the phase constant a 

within the temperature interval of the heating process. For water this results in a 

dimension L of about 1 cm. The main reason for the similarity between isothermal 

and nonisothermal slabs can be found in the specific character of water, where the 

permittivity decreases by increasing temperature. The absorbed power within the slab 

will be small at hot spots and large at cold spots. The result is an almost constant 

absorption of energy over the whole slab. Only the wave character remains, causing 

runaway. This smoothing of the absorbed power during the heating process is very 

dominant. The calculations where the temperature dependence of the dielectric 

constant has been omitted, yield temperature profiles which substantially differ from 

the profiles where the temperature dependence has been taken into account. 
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ABSTRACT 

The microwave heating of ceramic slabs is modeled and analyzed with the aim of 

finding the physical origin of the phenomenon of thermal runaway. It is 

demonstrated that the strong increase of the dielectric loss factor with increasing 

temperature is not immediately responsible for the runaway process. The argument 

should be that it is the strong increase of the attenuation constant, while the phase 

factor remains constant in the relevant temperature interval. The phenomenon of 

thermal runaway is basically caused by the behavior of the attenuation constant, 

combined with heat loss. A plot of the steady-state temperature at any position within 

the slab, versus the microwave power, is an S-shaped curve. With respect to thermal 

runaway there is a strong similarity between isothermal and nonisothermal slabs. 

Using the average temperature of the nonisothermal slab, regardless of its Biot 

number, yields a reasonable approximation to describe the runaway. This explains 

the success of the isothermal approximation in explaining runaway. The isothermal 

approximation is also very useful in predicting the position within the slab, where 

the runaway will start and the slab will finally melt. In contrast to the microwave 

heating of foodstuffs the phenomenon of resonance hardly influences the thermal 

runaway process in ceramics. 
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7.1. INTRODUCTION 

The application of microwave heating (frequency range 2450 MHz) is 

seriously hampered by two problems, both originating from the basic physics of the 

heating process. The first difficulty is the uneven spatial absorption of energy within 

the irradiated object. The second difficulty is the catastrophic phenomenon of thermal 

runaway in which a slight change of microwave power causes the temperature of the 

object to increase rapidly. The aim of this investigation is to find the physical origin 

of the runaway process and hope that it leads to a general rule in preventing 

runaway. Temperature profiles of the irradiated slab are necessary in order to 

achieve this. These temperature profiles give a good insight in the uneven spatial 

absorption of energy. Both problems, the uneven spatial absorption and the thermal 

runaway, are related to each other. The process of thermal runaway is a non-linear 

problem and can be explained by taking the temperature dependence of the 

permittivity e into account. This means that the temperature profiles, as will be 

shown in this article, will also reflect this temperature dependence. 

The study of thermal runaway in microwave heated objects usually starts by 

formulating the equation of the absorbed power D. 

D = -ae"\E\2 = -oenK"\E\2 (1) 
2 2 

where Q is the angular frequency, e" is the imaginary part of the permittivity, and 

E is the electric field within the object. Instead of e" one can also formulate Eq.(l) 

with the dielectric loss factor K", which equals e" divided by e0, the permittivity of 

vacuum. Eq.(l) is a very powerful equation because it is a general equation and does 

not depend on the geometry of the irradiated object. All problems involved in the 

geometry of the object are expressed by the field E. The absorbed power is always 

directly proportional to e" or the dielectric loss factor. The microwave sintering of 

ceramics especially is seriously hampered by the phenomenon of thermal runaway. 

The dielectric loss factor of ceramics strongly increases with increasing temperature. 

Looking at Eq.(l) the explanation of thermal runaway in ceramics looks almost 

evident. As the temperature increases, the absorbed power increases, resulting in a 
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stronger increase of the temperature, which then results in more absorbed power, etc. 

This hand-waving argument is often heard. Kriegsmann1 formulated a plausible 

explanation of thermal runaway in ceramics in the small Biot number regime, but it 

does not become clear what the role of the hand-waving argument is in his 

mathematical analysis. 

Not only the microwave sintering of ceramics, but also the microwave heating 

of foodstuffs (f.i. water) are hampered by the phenomenon of thermal runaway. The 

dielectric loss factor of water hardly depends on temperature as compared to 

ceramics. It decreases a little bit with increasing temperature and it is obvious, that 

in the case of water, the hand-waving argument is not appropriate in explaining 

runaway. The physical cause of runaway in water is the phenomenon of resonance 

within the slab, as became clear by the studies of Stuerga et al.2 (isothermal slab) and 

Vriezinga3 (nonisothermal slab). 

Resonance is always a very strong phenomenon. It is expected that it will 

effect the microwave heating of ceramics. On the other hand the strong increase of 

the dielectric loss factor in Eq.(l) cannot be ignored. 

Attention has to be paid to the notation. In contravention of the usual notation4 

the symbol a will be used as the phase constant and p as the attenuation constant. 

Both are real numbers. This notation is easier to read and it fits in better with the 

theory of wave propagation as described in classic books. The runaway phenomenon, 

as described in this article, is a result of the application of the wave propagation 

theory. 

7.2. THEORY 

Consider a layer of material specimen, irradiated from one side by microwave 

radiation with a frequency of 2450 MHz. The wave is a plane, harmonic one and 

impinges normally upon the material. In order to explain the principles of thermal 

runaway, the simplest possible system was conceived. The slab was located in free 

space so no other waves than the incident one would be involved. Solving Maxwell's 

equations (see f.i. Stratton5 or Ayappa et al.6) yields the classical wave equation in 

one dimension: 

109 



Chapter 7 

+ k2{T)E = 0 (2) d2E 

dx2 

where the electric field E is a function of position x and temperature T at that 

position. The k(T) stands for the temperature dependent complex wavenumber, which 

is connected to the permittivity e of the medium by the following equation. 

k2 = oVoe (3) 

This equation takes into account that the permeability of the irradiated object almost 

equals fi0, being the permeability in a vacuum. Many materials treated by micro­

waves fulfil this requirement. Formally Eq.(3) should include the term d(ie)/d(co?)> 

but this term is very small compared to e itself and can be neglected. The equation 

also reflects the assumption that the irradiated medium is a pure dielectric (no free 

charges). With this condition the electromagnetic boundary conditions are: 

dE, dE, 
Ex =E2 ; L = 2- (4) 

dx dx 

at the boundaries x=0 and x=L (L is the thickness of the slab). The subscript 1 refers 

to vacuum or air and the subscript 2 is related to the irradiated medium. To calculate 

the temperature within the slab as a function of position and time the three 

electromagnetic equations (1), (2) and (4) have to be combined with Fourier's law. 

p C , f .K*Z.D 0> 
Pdt dx2 

where p is the density, Cp is the thermal capacity, and K is the thermal conductivity. 

Although these parameters depend upon the temperature T, they are assumed 

constant. They have no real impact on the phenomenon of runaway. The heat balance 

equation (5) has to be accomplished by its boundary conditions. 
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K^- = h(T-Ta)+em.o(TA-T*) , x = 0 (6) 
ox 

K^- = -h{T-Ta)-em.o(T*-Tl) ,x=L (7) 
ox 

where h is the heat transfer coefficient related to the convective heat loss. The 

radiative heat loss is expressed by the second part of the equations with em the 

thermal emissivity of the ceramic surface, and o the Stefan-Boltzmann constant. Ta 

is the ambient temperature and also the initial temperature of the slab at t=0. 

7.3. THE ISOTHERMAL SLAB 

The heating process evolves as follows: while the temperature Tincreases, the 

electrical properties k and e" of the slab will change. This, in turn influences the 

absorbed power D, resulting in a new temperature for each position in the slab. At 

the start of the heating process the slab is isothermal. In that case it is possible to 

describe the heating process in formulas. At low slab temperatures we have: 

D = P^\Tn\
2 x 

c 

e ^-2\Rn\e ^cos(2a2(L-x)+6n) + \Rn\
2e ~^e 

l-2|JJ12|
2e"2plLcos(2a2I+2512) + |/f12|

4e"4p2i 

where P is the microwave power. The symbols Tn and Rl2 refer to the complex 

transmission and reflection coefficient, defined as follows 

*1 + * 2 *1 + * 2 

where kl = ai is the wavenumber in air and &2 = cc2 + /p2 the complex wavenumber in 
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the isothermal medium. Integrated over the slab yields the total amount of absorbed 

power 

D = j ^ ' i r |2_L x 
c 12 2p2 

(l-e ~2filL)(l+\Ru\
2e -2^)-^l\Ru\e ~2hLsm(a2L)coS(a2L+bn)

 (W) 

^ 2 

1 -2\Rn\
2e "2P2icos(2a2I+2812) + |iJ12|

4e "4Pli 

Substituting the parameters of f.i. alumina at low temperatures and neglecting the 

small terms, reduces Eq.(lO) to 

D,B, = r-<\Tn\^~e^) (ID 
c 2(i2 

This is a very good approximation. It means that the heat absorption can be described 

by just one penetrating wave (Lambert-Beer approximation) at low temperatures. The 

ceramic slab is almost transparent to microwaves at the start of the heating process. 

The L-independent factor of Eq.(l 1) is very interesting. It can be rewritten into 

'-•Xi'^-- ^ — <*> 
c ZH2 a, a. 1 +K, 

1+— + — ( -) 
a, a2 2 

where K2' is the real part of the dielectric constant, according to K2=K2'-iK2". 

Because K2' hardly depends on temperature the total amount of absorbed 

power becomes a function of the phase factor a2. This function has a maximum at 

a2 = a1v
/((l+K2')/2). In the case of alumina, the top proceeds at about 104 m"1. If 

temperature increases from 27 °C to 3500 °C the phase factor will increase from 140 

m"1 to 400 m"1, resulting in a decreasing(l) amount of absorbed energy. On the 

temperature route, from ambient temperature (27 °C) to the melting point of alumina 
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(2050 °C) the phase constant remains even constant. The dielectric loss factor K" of 

equation (1) is replaced by the oc2-dependent function (12). This function is almost 

a constant for the relevant temperature region, just as in the case of water. This 

means that the hand-waving argument, as stated in the introduction, is incorrect. The 

idea is that this is not only valid for isothermal objects, but also applicable to 

nonisothermal objects. How the temperature distribution within the slab looks, is not 

important; the expression of the total amount of absorbed power will always be 

x 10 

0 500 1000 1500 2000 2500 3000 

temperature ( °C) 

Figure 1. The curve of the absorbed heat (solid line) and the heat loss 
(dashed line) of a 3 cm isothermal slab of alumina almost coincide. 
The microwave power is 5500 kW/m2. 

proceeded by the dielectric loss factor times the square of a transmission coefficient 

divided by some effective attenuation factor. To explain the origin of thermal 

runaway we have to study the behavior of the electromagnetic field within the 

irradiated object. In the case of water this study lead to the phenomenon of resonance 

being basically responsible for runaway effects. 

113 



Chapter 7 

The isothermal formulation of the heat balance for ceramics is 

d r pCL = -2h(T-Ta) - 2em.a(TA-T*) + Z>„ 
At 

(13) 

where Dtot refers to Eq.(lO). Fig. 1 shows a plot of the heat loss and absorbed power 

versus temperature for a 3 cm slab of alumina. There are three intersection points, 

of which the first and the last one correspond to stable steady-state temperatures. The 

intersection point in the middle is an unstable point, so there will be runaway. A plot 

of the steady-state temperature as function of the microwave power (the solution of 

Eq.(13) with ATI At = 0 ) shows the familiar S-shaped curve (Fig. 2). 

8 9 

microwave power (W/m2) x IQ6 

Figure 2. Typical S-shaped response curve of a 3 cm slab of alumina, 
illustrating the phenomenon of thermal runaway. 

Looking at figure 1 one sees something very remarkable: The curve of the absorption 

and the curve of the heat loss almost coincide. This means that the system is very 
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sensitive. In the calculations presented in this article, the ambient temperature is kept 

constant at 27 °C. Suppose that the experiment is performed in an oven, instead of 

free space, the wall temperature of the oven (the ambient temperature) will increase 

during the heating process, resulting in a different curve of the heat loss and because 

of that there will be another kind of runaway (Jackson et al.1). 

There is another remarkable thing about Fig.l: At high temperatures the heat 

absorption decreases. This is caused by the function (12), illustrating the fact that the 

hand-waving argument is not appropriate to explain the phenomenon of runaway. 

If the dielectric loss factor increases, then the phase factor and the attenuation 

constant will increase, according to 

«2 = « i ^ 

h = «, 

<«l 1 + (KJ/KJ) + 1) 

2 

<<i , , II, ' s 2 

1 + (KJ/KJ) " 1) 

(14) 

N 
(15) 

As has been mentioned before, the phase factor remains constant in the relevant 

instable temperature region. The strong increase of the absorption is mainly caused 

by the strong increase of the attenuation constant (32. This can be understood by 

looking at Eq.(l 1). The total amount of absorbed power is the constant (12) times the 

strongly increasing factor l-exp^PjL). At the start of the heating process the slab 

is almost transparent to microwaves. The absorption of energy is small and the 

temperature will increase slowly. Suddenly, at certain temperature, the penetration 

depth (l/2p2) will decrease, meaning that more energy will be absorbed, resulting in 

a higher temperature, causing a smaller penetration depth, meaning more absorbed 

energy, etc. This is the cause of the phenomenon of thermal runaway in isothermal 

ceramic slabs. This looks like the hand-waving argument. One might say that the 

hand-waving argument is still correct, but no-one can come to such a conclusion by 

looking at the dielectric loss factor only. One has to translate the real and imaginary 
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parts of the dielectric constant to the wave characteristics a and p for a more 

complete understanding. For insight one has to look inside the material. 
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Figure 3. Transient temperature profiles in a 3 cm slab of alumina. 
The time increases from 0 s to 7200 s in steps of 800 s. Notice the 
gap between t = 6400 s and t = 7200 s. The dashed lines at 6500, 
6600, and 6700 s are the temperature profiles during the runaway. 
The microwave power is 7000 kW/m2. 

7.4. THE NONISOTHERMAL SLAB 

A complete analytical solution of this non-linear problem is almost impossible, 

but there is a way of escaping from this problem by looking at the Biot number. In 

this article this number will be defined as 

Bi 
(h + em.oSTm)L 

(16) 
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where Tm is the average of the ambient and the surface temperature of the slab in 

Kelvin. For instance: the Biot number increases from 0.1 at 300 K to 0.2 at 2300 K 

for a 2 cm slab of alumina. This is relatively small, but because of the internal heat 

generation, it does not mean that a small slab of alumina might be regarded as 

isothermal. On the other hand the heating process will start irradiating an isothermal 

object. It is expected that at low temperatures the isothermal (K=°°, Bi=0) 

approximation is appropriate. This will be confirmed if we look at the temperature 

3500 
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% 2500 
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1000 

Figure 4. Temperature profiles in a 3 cm slab of alumina, irradiated 
from two sides. The runaway process starts at the center. One time 
step is 100 s. The microwave power is 8000 kW/m2. 

profiles of a nonisothermal slab (Fig. 3). Up to 1000 °C the dielectric constant of 

alumina8
 €0COK" =0.002 exp(0.78(r-ra)/ra) is almost temperature independent, 

resulting in isothermal temperature profiles. The runaway process starts above the 

1000 °C. The jump is very fast, about 20 times faster than the time needed to reach 
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the 1000 °C. The figure also shows that initially the temperature increases the most 

at the position where Eq.(8) has a maximum. This is position x where the cosines 

equal one. With the aid of the isothermal formula of the absorbed power it is possible 

to predict the position within the slab where the runaway will start. This is also the 

position where the slab will start melting. At the end of the runaway process the 

exp(-2p2r) becomes very dominant, resulting in the heating of the skin of the slab. 
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Figure 5. Evolution in time of the absorbed power in a 3 cm slab of 
alumina, irradiated from two sides. At first the center is heated, at the 
end the skin of the slab. This yields the temperature profiles of Fig.4 

These phenomena are better illustrated by considering a slab irradiated from two 

sides. In this case the absorbed power is proportional to 

D e *+e 2 +2e ^cos(a.L-2a.x) (17) 
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Fig.(4) shows the temperature profiles during the runaway process, illustrating that 

the slab will start melting in the center, according to Eq.(17). The profiles of the 

absorbed power emphasize the skin effect (Fig.5). This numerical analysis suggests 

that the temperature profile T(x,At) during the runaway process can be found by 

assuming ^ = 0 (so B/=°° !) in Eq.(5). This yields 

D(x,Tn)At gD At 
IXxM ~~ T0 + ' °' (1 + A T ~^-) (18) 

pCp dT ° pCp 

where At is the increase of time, starting at the isothermal solution at 7*0, so D(x,T0) 

equals Eq.(8). The isothermal expression of the absorbed power can be used to 

approximately predict the temperature profiles during the jump, though this does not 

mean that the slab is isothermal. In spite of this fact the isothermal approach is still 

very useful, because it gives a very good insight in the process of thermal runaway 

by expressing it in the S-shaped curve of the steady-state temperature versus the 

microwave power. A plot of the steady-state temperature versus the microwave 

power at any position within the nonisothermal slab will also result in an S-shaped 

curve. 

7.5. RESONANCE 

For the isothermal slab the phenomenon of resonance is described by the 

denominator of Eq.(10) . In the case of microwave heated water the a2 decreases 

with increasing temperature, resulting in a small denominator at certain temperature, 

which causes the runaway. The a2 of alumina is a constant in the unstable 

temperature region. Resonance is not the cause of thermal runaway here, but the 

resonance does have an influence on the shape of the S-curve of Fig. (2), because 

the heat loss curve and the absorption curve almost coincide. Changing the ambient 

temperature will alter the curve of the heat loss; changing the denominator of Eq.(10) 

will alter the curve of the absorbed power. The folding of the S-shaped curve 

depends on dP/dT in the relevant temperature region. One has a real folded 5 if 

dP/dT is negative, which will happen if 
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d£> M > 1 dV 

D,, AT 
tot 

V dT 
(19) 

where Vis the heat loss of Eq.(13). If D,ol is large this demand is violated and the S 

will be unfolded. 

5 10 
thickness (cm) 

15 

Figure 6. The relative absorbed heat in an isothermal slab of alumina 
versus the thickness of the slab.The oscillation is caused by the pheno­
menon of resonance. 

Fig.6 shows D,JP as a function of the thickness L of the isothermal slab. No thermal 

runaway, as defined in the introduction, will occur at very thick slabs (> 9 cm) and 

in the neighborhood of 4.6 and 6.7 cm. The phenomenon of resonance prevents the 

runaway, unless the slab is thin (< 3 cm). In the case of water, resonance causes 

the runaway, in the case of isothermal ceramics it prevents the runaway. One has an 

unfolded S for L=4.6 cm (Fig. 7) and one has a folded 5 for L=5.6 cm (Fig. 8), 
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2000 • 
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o 1000 

microwave power (W/m ) 

Figure 7. An unfolded S-shaped curve of the isothermal slab. The 
unfolding is caused by resonance. The response curve of the non-
isothermal slab is still a folded S. Only the upper and lower branch 
of the folded S have been plotted. The thickness is 4.6 cm. 
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Figure 8. Same as Fig.7, except the thickness is 5.6 cm. 

121 



Chapter 7 

illustrating the oscillating character of the S-shaped curve. Unfortunately this is only 

correct in the isothermal approximation. The figures also show the upper and lower 

branch of the S-shaped curve of the nonisothermal slab. There will be no unfolding 

of the S, unless the slab is very thick. The isothermal formulation has its limitations. 

7.6. CONCLUSIONS 

The absorbed power in any microwave heated object is always proportional 

to the dielectric loss factor times the square of the absolute value of the electric field. 

This study has demonstrated that one cannot explain the phenomenon of thermal 

runaway in ceramics by looking at the dielectric loss factor only. One has to calculate 

the electric field within the irradiated object to understand the physical origin of the 

runaway process. These calculations show that the attenuation constant strongly 

increases with increasing temperature. At low temperatures a ceramic slab is almost 

transparent to microwaves (small absorption of energy), while at high temperatures 

the irradiated skin of the slab absorbs most of the energy. The behavior of the 

attenuation constant might be regarded as the origin of thermal runaway in ceramics. 

This also means that one has almost no possibilities to avoid runaway with respect 

to the thickness of the slab. Only the sintering of very thick slabs will not be 

hampered by the runaway process. 

Numerical calculations show that the steady-state temperature versus the 

microwave power at any position within a nonisothermal slab, is an S-shaped curve. 

This explains why the isothermal approximation of the heating process is useful in 

understanding the runaway process, because it too generates an S-shaped curve, 

illustrating the instability of the system. The isothermal approach has another 

advantage. It is possible to predict where the runaway process will start by looking 

at the analytical formula of the adsorbed power. On the other hand one should not 

rely too much on the values of the steady-state temperatures generated by the 

isothermal approximation. This approximation suggests that an unfolded S is possible 

in case of resonance, but in reality (the nonisothermal slab) that will not happen. 
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ABSTRACT 

The microwave heating of slabs is modelled and analysed with the aim to find the 

physical origin of the phenomenon of thermal runaway. This study demonstrates that 

one cannot explain the phenomenon of thermal runaway by looking at the dielectric 

loss factor. The process of thermal runaway can only be understood by translating 

the real and imaginary parts of the dielectric constant into the phase and attenuation 

constant. In the case of foodstuffs the phenomenon of resonance, combined with the 

heat loss, might be regarded as the origin of thermal runaway. The resonance is 

caused by the small decrease of the phase constant with increasing temperature. In 

the case of ceramics the phase constant is almost temperature independent in the 

relevant temperature region, but the attenuation constant increases strongly with 

increasing temperature. This, combined with the heat loss, causes the runaway 

process here. Also the impact of resonance within a ceramic slab is studied. 
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8.1. INTRODUCTION 

One of the difficulties associated with the application of microwave heating 

(frequency range 2450 MHz) is the catastrophic phenomenon of thermal runaway in 

which a slight change of microwave power causes the temperature to increase 

rapidly. The microwave sintering of ceramics is seriously hampered by this 

phenomenon, but also foodstuffs might be over treated because of runaway effects. 

The aim of this investigation is to find the physical origin of the runaway process for 

both kind of material specimen and hope that it leads to a general rule in preventing 

runaway. 

The study of thermal runaway in microwave heated objects usually starts by 

formulating the equation of the absorbed power D. 

D = -U£nK"\E\2 (1) 
2 

where a> is the angular frequency, e0 is the permittivity of vacuum, K" is the 

dielectric loss factor, and E is the electric field within the object. Eq. 1 is a general 

equation. All problems involved in the geometry of the object and environment are 

expressed by the field E. The absorbed power is always directly proportional to the 

dielectric loss factor. The dielectric loss factor of ceramics strongly increases with 

increasing temperature. Looking at Eq. 1 the explanation of thermal runaway in 

ceramics looks almost evident. While the temperature increases, the absorbed power 

will increase, resulting in a stronger increase of the temperature, which then results 

in more absorbed power, etc. This hand-waving argument can often be heard. 

Kriegsmann [1] formulated a plausible explanation of thermal runaway in ceramics 

in the small Biot number regime, but it does not become clear what the role is of the 

hand-waving argument in his analysis. The hand-waving argument is not appropriate 

in explaining the thermal runaway process in foodstuffs. The dielectric loss factor of 

f.i. water hardly depends on temperature as compared to ceramics. It decreases a 

little bit with increasing temperature. The physical cause of runaway in water is the 

phenomenon of resonance, as became clear by the studies of Stuerga et al. [2] 

(isothermal slab) and Vriezinga [3] (nonisothermal slab). So we have two 
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explanations of runaway: The hand-waving argument for ceramics and the resonance 

argument for foodstuffs. The questions are: What is the correctness of the hand-

waving argument and what is the impact of resonance in ceramic slabs. 

8.2. THE HAND-WAVING ARGUMENT 

Consider a pure dielectric (no free charges), irradiated from one side. The 

wave is a plane, harmonic one and impinges normally upon the surface of the slab. 

The slab is located in free space. The permeability of the slab equals the permeability 

in vacuum. Applying the wave propagation theory (see e.g. Stratton [4] or Ayappa 

[5]) yields the formula for the total amount of absorbed power Dm, assuming the slab 

is isothermal. 

n = .piVlTVf-L x 
e 2p 

(1 -e ^L)(l + \R\2e -*!*)-IP |*|« -2pLsin(aI)cos(aI+6) ( 2 ) 

a 
1 -21R12e "2(3icos(2ai +26) +1R14e ~^L 

where P is the microwave power, c is the velocity of light, L is the thickness of the 

slab, a is the phase and |3 the attenuation constant, Tr is the transmission and R = 

\R\ exp(i8) the reflection coefficient of air and the irradiated medium. This equation 

equals Eq.l, integrated over the slab, and because of this the total amount of 

absorbed power is proportional to the dielectric loss factor too. 

It looks like that the hand-waving argument can still be used, but one has to 

consider the entire equation for a more complete understanding. For this reason the 

L-independent factor of Eq. 2 is transformed. 

/> iV|7>f_L = ^ (3) 
c 2P , a a i , l + < 

1 + — + — ( ) 
0Cj a 2 
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Figure 1.. Plot of the absorbed heat (solid line) and the heat loss (dashed 
line) of a 4 cm isothermal slab of water. P=25kW/m2, h=\00 W/m2K , 
em=l,T=27°C. 
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Figure 2. Plot of the absorbed heat (solid line) and the heat loss (dashed 
line) of a 3 cm isothermal slab of Alumina. P=5000 kW/m2, ^=100 
W/m2K,e/n=l,ra=270C. 
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where a{ is the phase constant in air (51.3 m"1), and K' is the real part of the dielectric 

constant, according to K=K'-iK". Foodstuffs and ceramics have in common that K' is 

almost temperature independent. The phase constant of water (which will be used 

as an example of foodstuffs) is also more or less temperature independent. 

Surprisingly this is also the fact for alumina (an example of a ceramic) in the relevant 

temperature region between the initial slab temperature (27 °C) and the melting point 

(2050 °C). This means that the L-independent factor is almost a constant with 

increasing temperature, as well as for water (foodstuffs) and for alumina (ceramics). 

The temperature dependent behaviour of the dielectric loss factor in Eq. 1 is not 

directly reflected in the absorbed power. The hand-waving argument, as formulated 

in the introduction, is not correct. The idea is that this is not only valid for isothermal 

objects, but also applicable to nonisothermal (real) objects. How the temperature 

distribution within the slab looks like, is not important; the expression of the total 

amount of absorbed power will always be proceeded by the dielectric loss factor 

times the square of a transmission coefficient divided by some effective attenuation 

factor. 

The physical origin of thermal runaway must be found in the second part of 

Eq. 2. The character of the wave within the slab determines the kind of runaway. 

Neglecting small terms the second part of Eq. 2 reduces to: 

for water D. ~ (4) 
l-2|tf |V2p icos(2aI) 

for alumina Dm ~ (1 -e ~2(3i) (5) 

In the case of water the small decrease of the phase constant with increasing 

temperature causes the absorbed power to increase (resonance). The origin of thermal 

runaway for ceramics is completely different. The strong increase of the attenuation 

constant with increasing temperature causes the absorbed power to increase strongly. 

For a complete description of the runaway phenomenon the absorbed power has to 

be combined with the heat loss. The heat loss Vat the two surfaces of the isothermal 

slab is 
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Figure 3. Isothermal alumina slab. The absorbed power oscillates 
due to resonance. 
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microwave power (kW/m2) 

Figure 4.Isothermal alumina slab. The S is unfolded due to 
resonance at the thickness of 4.6 cm. 
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V = 2h(T-Ta) - 2em.o(T*-T*) (6) 

where h is the heat transfer coefficient, em is the emissivity, o is the Stefan-

Boltzmann constant, and T is the isothermal slab temperature. Ta is the ambient 

temperature and also the initial temperature of the slab at f=0. Fig.(l) and (2) show 

plots of the heat loss and absorbed power versus temperature. There are three 

intersection points. The point in the middle is an unstable point, so there will be 

runaway. A plot of the steady-state temperature versus the microwave power results 

in the familiar S-shaped curve. It is important to notice that the mechanism (the 

physical origin and the combination with heat loss), which leads to the phenomenon 

of runaway as being developed for isothermal slabs, is also applicable to real 

nonisothermal slabs. This has been demonstrated in the case of water [3], but is it is 

also correct in the case of alumina. 

8.3. RESONANCE 

Resonance is always a very strong phenomenon. It is expected that it will 

effect the microwave heating of ceramics. As argued above resonance is not the 

cause of runaway here, but it has influence on the folding of the S-shaped curve 

(steady-state temperature versus microwave power), because the curves of the 

absorbed power and heat loss almost coincide (Fig. 2). Changing the denominator 

of Eq. 2 by changing the thickness of the slab will alter the curve of the absorbed 

power. The folding of the S-shaped curve depends on dP/dT in the relevant 

temperature region. One has a real folded S if dPIdT is negative, which will be the 

fact if 

_L _^i£i > 1 Al (7) 
Dtol d7 V dT 

In the case of resonance Dlot is large, and the S will be unfolded. If the waves within 

the slab cancel each other more or less Dm will be relatively small, and we have a 

folded S. Fig. 3 shows the L-dependent factor of Eq. 2 as a function of the thickness 
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L of the isothermal alumina slab. The folding of the S oscillates. No thermal 

runaway, as defined in the introduction will occur at very thick slabs ( > 9 cm) and 

in the neighbourhood of 4.6 cm (Fig.4) and 6.7 cm. The phenomenon of resonance 

prevents the runaway, unless the slab is too thin ( < 3cm). Unfortunately this does 

not work in reality. The S-shaped curve of the real nonisothermal slab of alumina 

will not be unfolded enough to prevent runaway. 

8.4. CONCLUSIONS 

The physical origin of thermal runaway in microwave heated slabs can be 

found by analysing the isothermal heating process. It is demonstrated that one cannot 

explain the phenomenon of thermal runaway by looking at the dielectric loss factor. 

The hand-waving argument explaining runaway in ceramics is false. The runaway 

in ceramics is caused by the strongly increasing attenuation constant with increasing 

temperature. In the case of foodstuffs the relatively small decrease of the phase 

constant with increasing temperature causes the runaway (resonance). The 

phenomenon of resonance might prevent the runaway when heating isothermal 

ceramic slabs. 
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Conclusions 

the concept of bistability for an isothermal slab of water 

This thesis starts with the analysis of a microwave heated isothermal slab of 

water, taking into account the temperature dependence of the dielectric constant. The 

analysis shows that bistability is not appropriately described by the temperature jump 

for a system for which the microwave power is directly proportional to time (Stuerga 

et al.'). It is shown that the behavior of the experimental curve of temperature versus 

time can be explained from the different time constants present in the nonlinear 

system. It belongs to a class of phenomena known as relaxation oscillations. 

the analysis of thermal runaway in isothermal samples of water 

An isothermal slab, cylinder and sphere of water, irradiated from one side, 

have been investigated with respect to thermal runaway. It has been demonstrated 

numerically as well as theoretically, that in the first approximation the absorbed 

power in every object (slab, cylinder, sphere) is independent of the temperature 

within the object. The direct influence of the dielectric loss factor is canceled by the 

attenuation constant. The runaway phenomenon can only be understood by looking 

at the behavior of the waves within the sample. The small decrease of the phase 

constant with increasing temperature results in oscillating absorption, because of the 

interference of the waves. Thermal runaway is possible if the resonance peak of the 

absorption is preceded by a de-interference of the waves during the heating process. 

Combined with the heat loss this produces an S-shaped response curve steady-state 

temperature versus microwave power. This explains the thermal runaway in which 

a slight change of microwave power causes the temperature to increase rapidly. It has 

been demonstrated that this is correct for the isothermal slab, cylinder and sphere. 
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The geometry of the irradiated sample has no influence on the presence of runaway. 

If resonance is possible, runaway will be there. The better understanding of the 

physical origin of the runaway process, provides rules in relation to the thickness of 

the object to avoid runaway. Relatively large objects will not be overheated by 

runaway, because the amplitude of the oscillating absorption as a function of the 

temperature is too small to create (with the heat loss) an S-shaped response curve. 

Also very small objects will not be damaged by runaway, because one needs at least 

one quarter of a wavelength within the object for a standing wave. Stated more 

precisely: Any isothermal object with characteristic dimension L, irradiated from one 

side by microwaves, will never be overheated or damaged by the phenomenon of 

thermal runaway if L is smaller than 7i/(4Aa), where Aa is the difference between 

the maximum and the minimum value of the phase constant a. For water this results 

in a dimension of about 1 cm. 

the analysis of thermal runaway in nonisothermal samples of water 

The study of a nonisothermal slab of water shows that there is a strong 

similarity between isothermal and nonisothermal slabs. A plot of the steady-state 

temperature at any position within the slab, versus the microwave power, will be an 

S-shaped or multi S-shaped curve. The main reason for this similarity can be found 

in the specific character of water, where the permittivity decreases by increasing 

temperature. The absorbed power within the slab will be small at hot spots and large 

at cold spots. The result is an almost constant absorption of the energy over the 

whole slab. Only the wave character remains, causing runaway. This smoothing of 

the absorbed power is very dominant. Any calculations where the temperature 

dependence of the permittivity is omitted, will not only pass the phenomenon of 

thermal runaway but its temperature profiles will differ substantially from the ones 

where the temperature dependence has been taken into account. The nonisothermal 

cylinder and sphere have not been studied in extension, because the principles of 

thermal runaway, developed for the nonisothermal slab, can easily be applied to 

objects with other geometry. No other effects in relation to thermal runaway are 

expected because of the geometry. 
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general conclusions about thermal runaway of foodstuffs in free space 

Water stands for an example of foodstuffs. The foodstuffs, where the dielectric 

constant as a function of temperature is similar to that of water, will behave in the 

same way as water. Generalizing and summarizing the principles developed above: 

Thermal runaway of watery foodstuffs in free space is caused by the small decrease 

of the phase constant with increasing temperature (resonance). Very small and very 

large objects will not be overheated by the runaway effect. Analyzing an isothermal 

slab is sufficient to develop the principles of runaway. Omitting the temperature 

dependence of the permittivity yields poor results. 

the analysis of thermal runaway in a nonisothermal slab of alumina 

In addition to the analysis of the isothermal microwave heated ceramic slab 

by Kriegsmann2 the real nonisothermal slab has been investigated. It has been 

demonstrated that the slab is almost isothermal up to the start of the runaway. During 

the runaway the slab is not isothermal. Good approximations of the temperature 

profiles for the unstable temperature region have been performed by neglecting the 

internal thermal conduction. This illustrates that the small Biot number has no 

physical meaning in this process with internal heat generation. A plot of the steady-

state temperature at any position within the slab, versus the microwave power, is an 

S-shaped curve. This explains the success of the isothermal approximation in 

explaining runaway by the introduction of the S-shaped response curve. On the other 

hand one should not rely too much on the values of the steady-state temperatures 

generated by the isothermal approximation. Just as for foodstuffs the direct influence 

of the dielectric loss factor in the absorption is canceled by the attenuation constant. 

Also here the physical origin of thermal runaway must be found inside the slab. 

Calculations show that the attenuation constant strongly increases with increasing 

temperature. This behavior, combined with the heat loss, results in the S-shaped 

response curve, and therefore it could be regarded as the physical origin of runaway 

in ceramics. This means that one has almost no possibilities of avoiding runaway 

with respect to the thickness of the slab. Only the sintering of very thick slabs will 

not be hampered by the runaway process. The plots of the absorbed power and the 
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heat loss versus the isothermal slab temperature almost coincide. The folding of the 

S-shaped curve will be influenced by a change of the heat loss or the absorption. It 

has been shown that for resonance within an isothermal slab the S will be unfolded. 

In reality (the nonisothermal slab) the S is not unfolded. 

general conclusions about thermal runaway of ceramics in free space 

Generalizing the developed principles: Thermal runaway of ceramics (with an 

dielectric loss factor exponentially increasing with increasing temperature) in free 

space is caused by the strong increase of the attenuation constant (skin effect). Only 

very thick objects will not be damaged by the runaway effect. Analyzing an 

isothermal slab is sufficient to develop the principles of runaway. The folding of the 

S is very sensitive to changes in the heat loss or absorption. 

thermal runaway of ceramic samples in resonant cavities 

The above-mentioned principles have been developed by the analysis of 

microwave heated samples in free space with a fixed ambient temperature. In real 

experiments the sample is always in a microwave oven or resonant cavity. The 

question is: Does there exist any meaningful correspondence between the free space 

model and the runaway phenomena, as has been observed in oven or cavity? This is 

especially a problem with respect to ceramics, where it actually has been reported 

that a small increase of the microwave power led to a rapid increase of the 

temperature, resulting in a melted sample (Brodwin et al.3, Johnson4). 

The main objections against the free space model are the following. In a cavity 

there are no plane waves, moreover, the power input to the cavity (the sum of the 

power absorbed in the sample and the power absorbed in the cavity walls), is the only 

objectively meaningful power to use in examining whether an S-shaped response 

curve of a characteristic sample temperature versus power could explain thermal 

runaway (Tian5). In later work, Tian et al.6 found exact solutions of the coupled 

electromagnetic and thermal equations for an alumina sample that has a loss factor 

that increases rapidly with increasing temperature at high temperatures. They 

interpreted their calculated results as indicating occurrence of thermal runaway for 
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some conditions. They did not plot steady-state temperature versus input power, so 

the criterion for an S-shaped heating curve was not examined. Jackson et al.7 

calculated exact simultaneous solutions of electromagnetic and thermal equations for 

a cylindrical TM010 mode and alumina samples having loss factors that at high 

temperatures increased rapidly with increasing temperature. Response curves for 

steady-state temperature versus input power to the cavity were calculated and plotted. 

No S-shaped response curve was found in those calculations. In later work, extensive 

parameter studies were conducted for heating curves on exact calculations (Jackson 

et al.%). Again no evidence for S-shaped response curves and thermal runaway was 

found in those studies. On the other hand Kriegsmann9 has demonstrated that the 

microwave heating of a sample of alumina in a TE103 waveguide applicator could 

result in an S-shaped response curve. The S will be unfolded in case of a tuned 

cavity. 

In this thesis it has been demonstrated that the folding or even the existence 

of an S-shaped response curve depends in a highly sensitive way on changes in heat 

loss and absorption. For resonance within an isothermal slab in free space the S is 

unfolded. It is remarkable how this corresponds with the unfolded S of Kriegsmann 

in a tuned cavity (i.e. resonance in an empty cavity). In a cavity one has resonance 

effects, an additional absorption in the walls, and another ambient temperature, 

which will certainly influence the heating response curve. Besides these obvious 

items one should pay attention to every detail which could have some impact on the 

response curve (e.g., the temperature dependence of the thermal conductivity), 

because the system is so sensitive. This could explain the difference between the 

results of the studies by Tian and Jackson (mainly based on the numerical analysis 

of realistic models) and the rather simplified, analytical approach by Kriegsmann. 

thermal runaway of foodstuffs in ovens 

The problem whether the concept of the S-shaped response curve is a correct 

explanation of the observed runaway phenomena, is not the subject of discussion in 

the microwave heating of foodstuffs. It has not been reported that a slight increase 

of the microwave power causes the temperature of the foodstuff sample to increase 
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rapidly, except for the few experiments (Stuerga10) which have been performed to 

create experimental evidence for the correctness of the model with the S-shaped 

response curve. One can easily understand why this kind of runaway has not been 

reported. Under normal circumstances the temperature of the oven wall is higher than 

the 0 or 20 °C , which have been used as ambient temperatures in this thesis. This 

means that the steady-state temperatures, belonging to the lower branch of the S-

shaped curve, will only be found at very small input powers. These small powers are 

normally not used in the food industry. The temperature immediately jumps to a 

steady-state temperature of the upper branch. This kind of runaway, where the 

transient temperature increases rapidly at a certain moment, have been reported (e.g., 

in potatoes, Dolanda"). It shows the influence of the phenomenon of resonance, as 

described in this thesis. An interesting application of this type of runaway can be 

found in the thawing of ice, where not only the temperature, but also the thickness 

of a layer of water will increase in time (Lee12). 

follow-up research 

The next step of the investigation as described in this thesis, could be the 

analysis of thermal runaway phenomena of ceramic and food samples in ovens and 

cavities. 

final conclusion 

The physical-mathematical modeling of the thermal runaway effect provides 

insight in the physical origin and the formulation of the conditions necessary for 

runaway. Based on this better understanding rules to prevent runaway have been 

formulated. 
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Summary 

The microwave heating of foodstuffs and ceramics can be seriously hampered 

by the phenomenon of thermal runaway, which means that the temperature of the 

irradiated sample suddenly increases rapidly, resulting in a temperature well above 

the desired one. The subject of this thesis is the analysis of the thermal runaway 

phenomena, which can be described with an S-shaped response curve of a 

characteristic sample steady-state temperature versus microwave power. This causes 

a jump of the steady-state temperature from the lower to the upper branch of the S 

by a slight increase of the microwave power. It has been reported in the microwave 

sintering of ceramics that a small increase of the applied power led to a rapid 

increase of the temperature. The description with the S-shaped response curve 

provides a plausible explanation of the observed phenomenon, but there are a number 

of studies of microwave heated ceramic samples, for which the response curve does 

not have an S-shape. 

The aim of this thesis is to have a better understanding of thermal runaway and 

bistability, enabling the formulation of rules to avoid runaway. The main part of this 

thesis consists of the physical-mathematical modeling of microwave heated slabs, 

cylinders, and spheres. The models demonstrate that the response curve of water (as 

an example of foodstuffs) can be S-shaped and that this is caused by the phenomenon 

of resonance within the sample. The temperature dependency of the phase constant, 

causing resonance, can be regarded as the physical origin of thermal runaway in 

foodstuffs, even if there is no S-shaped response curve. This means that very small 

objects will never be overheated by thermal runaway, because one needs at least a 

characteristic dimension equal to a quarter of a wavelength for a standing wave. Also 

very large objects will not be overheated, because the increase of the absorbed power 

(due to resonance) diminishes with increasing thickness of the sample. 
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The study of the nonisothermal slab of water shows that the influence of the 

temperature dependency of the permittivity cannot be regarded as a second order 

phenomenon. Any calculations omitting the temperature dependency, will not only 

pass the phenomenon of thermal runaway but its temperature profiles will differ 

substantially from the correct ones. This study also analyzes the response curve at 

any location within the slab. 

The mathematical aspects of the theory, describing a microwave heated 

isothermal slab of water with a time dependent microwave power, have been 

analyzed. In particular this has been done to formulate a theoretical base for the 

correct interpretation of an experimentally established curve reported in literature. 

It was shown that the plot of transient temperature versus time can be interpreted as 

a relaxation oscillation. 

Besides foodstuffs, also ceramics are investigated. The dielectric loss factor 

of watery foodstuffs decreases with increasing temperature, in contrast to the loss 

factor of many ceramic material specimen, which increases strongly with increasing 

temperature (e.g. alumina). The absorbed power is proportional to the loss factor 

times the square of the amplitude of the electric field. Therefore one could easily 

think that the strong increase of the loss factor is the cause of runaway in ceramics. 

However, the study of a microwave heated slab of alumina demonstrates that the 

direct influence of the loss factor is always canceled by the attenuation constant. One 

has to consider the waves within the slab to explain the runaway. It turned out that 

the strongly increasing attenuation constant with increasing temperature should be 

regarded as the physical origin of thermal runaway of ceramics, even if there is no 

S-shaped response curve. The answer on the question whether or not an S-shaped 

curve exists, depends on the balance between the absorbed heat and the heat loss. 

This investigation shows that the balance is very delicate. A small change in 

absorption or heat loss has a strong impact on the shape of the response curve. This 

could explain the contradiction in the results of the studies of thermal runaway in 

ceramics, as mentioned in the beginning of this summary. 
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Samenvatting 

De microgolf verwarming van levensmiddelen en keramiek kan ernstig 

gehinderd worden door net verschijnsel "thermal runaway". Hiermee wordt bedoeld 

dat de temperatuur van het te verwarmen object plotseling sterk toeneemt tot een 

waarde ver boven de gewenste temperatuur. Het onderwerp van dit proefschrift is de 

analyse van het verschijnsel thermal runaway, dat beschreven kan worden met een 

S-vormige respons curve van de stationaire temperatuur uitgezet tegen het microgolf 

vermogen. Dit betekent dat de stationaire temperatuur een sprang maakt van de lage 

naar de hoge tak van de S bij een kleine toename van het microgolf vermogen in het 

relevante gebied. Bij microgolf sintering van keramische materialen is waargenomen 

dat een kleine toename van het toegepaste vermogen leidde tot een snelle stijging van 

de temperatuur. De beschrijving met de S-vormige respons curve kan een verklaring 

inhouden van het waargenomen fenomeen, maar er bestaan ook een aantal studies 

van microgolf verwarmde keramische objecten, waarvoor de respons curve geen S-

vorm heeft. 

Het doel van dit proefschrift is het ontwikkelen van een beter begrip van 

thermal runaway en bistabiliteit, in de hoop dat dit leidt tot regels, waarmee runaway 

vermeden kan worden. Het hoofdbestanddeel van deze thesis bestaat uit de fysisch-

mathematische modelering van microgolf verwarmde vlakke platen, cilinders en 

bollen. De modellen laten zien dat de respons curve van water (een belangrijk 

bestanddeel van levensmiddelen) S-vormig kan zijn en dat dit veroorzaakt wordt door 

resonantie in het object. De temperatuur afhankelijkheid van het golfgetal, 

verantwoordelijk voor de resonantie, kan worden aangemerkt als de fysische 

oorsprong van runaway in levensmiddelen, zelfs als er geen S-vormige respons curve 

is. Dit betekent dat zeer kleine objecten nooit een overbehandeling zullen ondergaan 

ten gevolge van de runaway, omdat er minstens een karakteristieke afmeting ter 

grootte van een kwart golflengte nodig is voor een staande golf. Ook relatief grote 

objecten zullen niet oververhit raken, omdat de stijging van het geabsorbeerd 
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vermogen (t.g.v. de resonantie) minder is, naar mate het object groter is. 

De studie van de niet isotherme vlakke plaat water toont aan dat de invloed 

van de temperatuur afhankelijkheid van de permittiviteit niet als een tweede orde 

effect beschouwd mag worden. Iedere berekening, waar de temperatuur afhankelijk-

heid genegeerd wordt, zal niet alleen het verschijnsel thermal runaway missen, maar 

tevens temperatuur profielen genereren, die substantieel afwijken van de correcte 

profielen. Deze studie omvat ook een onderzoek naar de aanwezigheid van een S-

vormige respons curve voor iedere positie in de plaat. 

De wiskundige aspecten van het gedrag van een isotherme vlakke plaat, die 

verwarmd wordt met een tijdsafhankelijk microgolf vermogen, worden beschreven. 

Dit is vooral gedaan om een theoretische grondslag te formuleren voor de correcte 

interpretatie van een experimented verkregen kromme. Aangetoond wordt dat de 

grafiek van de temperatuur, uitgezet tegen de tijd, als een relaxatie oscillatie kan 

worden gei'nterpreteerd. 

Naast levensmiddelen zijn ook keramische materialen onderzocht. De dielek-

trische verliesfactor van waterachtige levensmiddelen neemt af met toenemende 

temperatuur, in tegenstelling tot de verliesfactor van vele keramische materialen, die 

sterk toeneemt met toenemende temperatuur (bijv. alumina). Het geabsorbeerd 

vermogen is evenredig met de verliesfactor maal het kwadraat van de amplitude van 

het elektrisch veld. Daarom is de verleiding groot om de sterke toename van de 

verliesfactor als oorzaak van thermal runaway in keramiek aan te merken. Echter, 

het onderzoek aan een met microgolven verwarmde vlakke plaat alumina toont aan 

dat de directe invloed van de verliesfactor altijd teniet gedaan wordt door de 

verzwakkingsfactor. Om runaway te verklaren moet men het gedrag van de golven 

in het object bestuderen. Het blijkt dat de sterke toename van de verzwakkingsfactor 

bij toenemende temperatuur beschouwd moet worden als de fysische oorzaak van 

runaway in keramiek, zelfs bij de afwezigheid van een S-vormige respons curve. Het 

antwoord op vraag of er wel of geen S-vormige kromme bestaat, is afhankelijk van 

de balans tussen geabsorbeerde warmte en warmteverlies. Dit onderzoek toont aan 

dat die balans zeer gevoelig is. Een kleine verandering in absorptie of verlies heeft 

grote gevolgen voor de vorm van de respons curve. Dit kan een verklaring zijn voor 
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de tegenstrijdige onderzoeksresultaten op het terrein van thermal runaway in 

keramiek, waaraan in het begin van deze samenvatting gerefereerd wordt. 
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