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SENSITIVITY ANALYSIS BY EXPERIMENTAL DESIGN AND METAMODELLING FOR 

INTERIBR-ENDEMIC 

A. VONK NOORDEGRAAF', M. NIELEN* J.P.C. KLEUNEN *' 

SUMMARY 

In many scientific studies, sensitivity analysis of simulation models is performed by 
changing only one factor at a time. Such an approach results in less accurate estimates of factor 
effects, and does not allow for estimation of interaction between factors. Experimental design 
and metamodelling (Kleijnen & Sargent, 2000) supports a structural approach to sensitivity 
analysis, and is more effective and efficient in estimating factor effects, including interactions. 
This paper applies these techniques to the simulation model InterlBR-endemic, which simulates 
the spread and control of BHV1 within and between cattle farms (Vonk Noordegraaf et al., 
2000). Linear (OLS) and non-linear (logistic and tobit regression) regression metamodels were 
fitted to the input-output data of the simulation experiments. When dealing with a censored 
outcome variable, tobit regression is considered more appropriate than OLS. Future field studies 
should focus on getting better estimates of factors to which the simulation model is most 
sensitive. 

INTRODUCTION 

To support decision makers in the national BHV1-eradication program in The Netherlands, 
the spatial, dynamic and stochastic simulation model InterlBR-endemic was developed (Vonk 
Noordegraaf et al., 2000). InterlBR-endemic simulates the spread and control of BITVl within 
and between cattle farms in The Netherlands. This model contains many uncertain input factors 
and as part of verification and validation, it is important to evaluate the sensitivity of model-
outcome to these factors. Sensitivity analysis allows for identification of parameters that have 
most impact on model outcome. In many scientific studies, sensitivity analysis is performed by 
changing only one factor at a time (OAT designs). This results in less accurate estimates of 
factor effects, and does not allow for estimation of interaction between factors (Kleijnen, 1998). 
The techniques of Design of Experiments (DOE) and metamodelling (Kleijnen and Sargent, 
2000) support a structural approach to sensitivity analysis, and are more effective and efficient 
in estimating factor effects, including interactions. 

In a simulation context, DOE can be defined as selecting, from the great number of possible 
combinations of factor levels, the set that actually needs to be simulated in an experiment with 
the simulation model, in order to quantify factor effects (Hunter & Naylor, 1970). The 
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Simulation model is run for this set of combinations, and resulting input-output data are analysed 
by regression analysis to derive conclusions about the importance (sensitivity) of the factors. 
This analysis is based on a metamodel, which is defined as a model of the simulation model. 
Figure 1 shows the relationships among metamodel, simulation model and problem entity. 

Problem entity 

modeling 

Simulation model 

metamodeling 

Metamodel 

Fig 1. Metamodel, simulation model and problem entity . 

The concept of metamodels can be explained by viewing the simulation model as a function 
that turns input factors into output performance measures. The explicit form of this function is 
unknown, but by experimentation with the model this function is approximated with a 
metamodel. The metamodel then treats the simulation model as a black box (Bettonvil & 
Kleijnen, 1996). The purpose of a metamodel is to estimate the response surface; the metamodel 
can then be used, instead of the actual simulation program, to learn about how the response 
surface would behave over various regions of the input-factor space (Law & Keiton, 2000). 

The main goal of this paper is to show how the techniques of experimental design and 
metamodelling can be applied in the sensitivity analysis of complex simulation models. 
Furthermore, the application of three regression techniques fitting the simulation input-output 
transformation is demonstrated: Ordinary Least Squares (OLS), logistic and tobit regression. A 
theoretical discussion on the application of these regression techniques in veterinary 
epidemiology has been presented at the SVEPM in 1998 (Carpenter, 1998). 

MATERIALS AND METHODS 

The ten steps suggested by Kleijnen and Sargent (2000) were adopted for development of a 
metamodel: (1) Determine the goal of the metamodel; (2) Identify the inputs and their 
characteristics; (3) Specify the domain of applicability; (4) Identify the output variables and their 
characteristics; (5) Specify the accuracy required of the metamodel; (6) Specify the metamodeFs 
validity measures and their required values; (7) Specify the metamodel, and review this 
specification; (8) Specify a design including tactical issues, and review the DOE; (9) Fit the 
metamodel and (10) Determine the validity of the fitted metamodel. In this paper only a few of 
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these steps are highlighted, with the main emphasis on step 9, regression techniques to fit the 
metamodel. 

Metamodel variables 

In steps 2 and 3, factors and their levels were identified. Just as in OAT designs, there was 
no general prescription for which factors to select and what levels to assign to each factor; this 
depends on the goal of the study. A total of 31 factors used in the simulation model InterlBR-
endemic was selected. These factors were all related to disease spread, and had in common that 
they were uncontrollable by decision makers and their estimation contained uncertainty. The 
control program was considered fixed. Sensitivity analysis requires that each factor has at least 
two levels, and therefore a lower and upper level were determined for each factor. Values 
assigned to each level reflected uncertainty of factor values in real life, based on data if 
available, or expert opinion otherwise. These levels also determined the experimental frame for 
which the metamodel was valid. Factor levels were standardised to 0 and 1, to enable comparison 
of factor effects by relative importance. 

In step 4, simulation outputs of interest in the sensitivity analysis were selected. These were 
used as dependent variables in regression analysis, and for each of these outputs a metamodel 
was specified. In this paper the focus is on only one simulation outcome; mean number of weeks 
necessary to reduce the prevalence level to 5% in the dairy cattle population, applying the 
national control programme. Because simulation stopped when this prevalence level was not 
reached within 1000 simulated weeks, data were considered to be censored. 

Metamodel definition and analysis 

Specification of the form of the metamodel was required in step 7 of the metamodelling 
process. Initially, the metamodel was specified as a simple first-order polynomial, in which the 
independent variables (X) were standardised at either 0 or 1 : 

.y I=# )+£Lt/Mu,+e1 

In this additive metamodel, yi denoted the simulation response of factor combination i, ßo 
the overall mean, ßh the main effect of factor h, x;,h the value of the standardised factor h in 
combination i, and e* represented approximation error. Later, this metamodel was extended with 
effect modifiers (interactions). 

To allow efficient estimation of the coefficients (factor effects) in this metamodel, an 
experimental design was constructed (step 8). In this design, each scenario represented a 
combination of factor levels. Dealing with 31 factors and two levels for each factor, a total of 231 

scenarios could be constructed. However, to give unique estimates of the 31 main effects and 
overall mean of the metamodel, a minimum of 32 factor scenarios would suffice. Because 
estimation of certain two-factor interactions requires more scenarios, a design with 64 scenarios 
was constructed, by applying the Foldover principle to a 231"26 fractional factorial design 
(Kleijnen, 1998). The resulting design matrix was orthogonal, thereby minimising the variance 
of the estimated factor effects. In total, 64 simulation experiments were performed with the 
simulation model, each experiment replicated twice. Using 5 computers, (Pentium III, 600 Mhz), 
total calculation time was about 2 weeks. 
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Fitting the specified metamodel to the resulting input-output data (step 9), classic DOE uses 
Ordinary Least Squares (OLS). When the 5% prevalence level was not reached within 1000 
weeks (threshold), simulation output was set to 1000 weeks, although the true value could have 
been much higher. This is called upper censoring. With OLS regression, censored observations 
will result in underestimation of the factor effects, and therefore produce inconsistent estimates. 
Dealing with censored data, a censored regression model or tobit model may be more 
appropriate (Long, 1997; Greene, 1997; Carpenter, 1998). The tobit model includes information 
about the censoring, and thereby provides consistent estimates of factor effects (Long, 1997). 
The form of the underlying tobit metamodel was similar to the OLS metamodel, with the 
difference that the dependent variable y was now a latent variable. Observations were never seen 
above the threshold value of 1000 weeks. Tobit regression is based on maximum likelihood 
estimation, where the log likelihood of the censored regression model consists of two parts; one 
corresponding to the classical regression for the non-limit observations and one corresponding to 
the probabilities for the limit observations (Greene, 1997). Using tobit regression, the expected 
value of an upper censored variable equals (Long, 1997): 

E(y | x, ) = \?x(uncensored \xt)x E(y \ y < r) + \Pr(censored \xt)x E(y \ y = T)] 

where Pr(censored|xi) is the probability of a scenario with factor combination Xi being censored 
and x the threshold value. Long (1997) shows that E(y|xi) is non-linear in x. To identify which 
factors significantly contributed to the event that the simulation outcome censored at 1000 
weeks, lpgistic regression was performed. For the logistic model, the dependent variable was 
made dichotomous by transforming simulation output to 1 if censored (y=1000), and to 0 if not 
censored (y<1000). Logistic regression uses a log linear model in which the probability of the 
simulation outcome being censored (y=l) is modelled as (Hosmer & Lemeshow, 1989): 

eA>+A*,+- -+ßtxk 

E(y\xi) = n(xi) = 

Estimation of factor effects by logistic regression is based on a maximum likelihood procedure, 
using the logit transformation of 7c(x) (Hosmer & Lemeshow, 1989). For all regression models, 
factors were excluded from the model with a backward elimination procedure. Possible 
interaction terms were investigated and added to the regression model with a forward 
conditional selection procedure. 

Metamodel validation 

To validate the metamodel with respect to the simulation model (step 10), new scenarios 
could be run, and simulation output compared with metamodel output. Because the simulation 
model required a lot of computer time, the technique of cross-validation, which requires no new 
simulation runs, was applied. Cross-validation means that factor input combinations (scenarios) 
are eliminated one by one, the regression model re-estimated, and the resulting metamodel used 
to predict simulation realisation for the combination eliminated. These predictions are then 
compared with the corresponding simulation responses (Van Groenendaal & Kleijnen, 1997; 
Kleijnen & Sargent, 2000). Cross-validation was applied to the metamodel estimated by OLS, 
deleting all 64 scenarios one by one, re-estimating coefficients on 63 scenarios, and predicting 
simulation realisation for the deleted scenario. 
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RESULTS 

From the 64 scenarios simulated, 23 did not reach a 5% prevalence level in the dairy cattle 
population within 1000 weeks. Table 1 shows the fitted metamodel applying OLS and tobit 
regression of y on x for all observations, with the censored observations included as y=1000. 

Table 1. Factor estimates and individual p-values of fitted metamodel for simulation outcome 
'weeks to 5% prevalence', using OLS and tobit regression. 

Factor 

Intercept 

Local spread 

Reactivation rate transport 

Yearly reactivation rate 

Professional contact 

Ro non-vaccinated 

Ro killed vaccine 

Weeks young stock infected 

Hygiene certified farm 

Bulk threshold prevalence 

Sero sensitivity 

Vaccine type used 

Interactions 

Vaccine type x Ro killed 

Local x Hygiene 

Local x Ro non 

OLS 

Estimate 

217.6 

175.9 

158.5 

226.1 

92.4 

91.4 

125.5 

-89.6* 

-52.4 

-98.9a 

-118.7 

103.7 

188.0 

-201.2 

280.8 

regression 

P-value 

0.002 

0.005 

0.000 

0.000 

0.011 

0.070 

0.014 

0.013 

0.294 

0.007 

0.001 

0.041 

0.010 

0.006 

0.000 

Tobit 

Estimate 

-18.0 

251.5 

220.8 

297.1 

139.7 

109.6 

200.0 

n.s.b 

-64.0 

n.s. 

-117.2 

173.1 

212.6 

-297.1 

445.3 

regression 

P-value 

0.840 

0.004 

0.000 

0.000 

0.005 

0.093 

0.004 

0.325 

0.020 

0.011 

0.042 

0.004 

0.000 
'Sign of factor estimate opposite to expectation 
b Main effect of factor not significant (p<0.05) in backward elimination procedure and 
therefore not included in final metamodel 

The adjusted R2 of the linear regression model using OLS was 0.82. Estimates for each 
factor in Table 1 reflect the expected change of the outcome variable when changing a factor 
from its low (0) to high (1) level. For example, changing the yearly reactivation rate in the 
simulation model from its low to high value increased the number of weeks required to reach the 
5% prevalence level in dairy cattle to 226 weeks according to the metamodel fitted with OLS. In 
general, using upper censoring, tobit regression resulted in increased estimates compared to OLS 
regression. Most factors had a positive estimate due to increased risk of virus transmission. 
However, increasing hygiene on certified farms and sensitivity of serological tests, reduced the 
value of the outcome variable both in the OLS and tobit model, reflecting preventive effects. In 
the OLS metamodel, two factors had negative signs not in keeping with prior expectation, but 
these factors were not significant using tobit regression. In both models, three interactions had a 
significant effect on simulation outcome. 
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Table 2 shows the metamodel based on logistic regression, where the event of interest was 
the simulation not reaching a 5% prevalence level within 1000 weeks. Factors in this model also 
appeared significant in the OLS and tobit regression model. 

Table 2. Factor estimates and individual p-values of fitted metamodel using logistic regression 
where event was the simulation outcome being censored at 1000 weeks. 

Factor 

Constant 

Local spread 

Yearly reactivation rate 

Ro non-vaccinated 

Ro killed vaccine 

Hygiene certified farm 

Vaccine type used 

Estimate 

-10.6 

4.2 

3.4 

4.1 

4.1 

-2.9 

4.1 

St. error 

3.2 

1.5 

1.4 

1.4 

1.2 

1.4 

3.2 

P-value 

0.001 

0.013 

0.004 

0.004 

0.013 

0.004 

0.001 

From this metamodel, the probability of the outcome value being censored was calculated 
for each scenario, and compared to the simulation outcome. Using a cut-off value of 0.5, the 
overall fraction of correctly classified scenarios by the metamodel was 92.2%. From the 
scenarios being censored, 21 out of 23 were classified correctly by the logistic metamodel, and 
from the uncensored scenarios, 38 out of 41 were classified correctly. 

Figure 2 shows a scatter plot of the results from cross-validating the metamodel based on 
OLS regression. The correlation coefficient between predicted and true outcome was 0.97. 
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Fig 2. Scatter plot of OLS regression prediction and simulation realisation, where 
metamodel prediction was based on cross-validation procedure. 
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DISCUSSION 

The main goal of this paper was to present the application of experimental design and 
metamodelling as part of verification and validation of a complex simulation model. Whereas 
changing one factor at a time is common practice for sensitivity analysis of simulation models in 
the field of veterinary epidemiology and economics, it does not meet the statistical requirements 
that are obtained by experimental design and metamodelling in estimating and testing for 
significance of factor effects and interactions between factors. An exception is the study of Stärk 
and Pfeiffer (1999), although their focus was on five factors only. 

Another goal of this paper was to show the application of three different regression 
techniques to the fitting of simulation input-output data obtained from this experiment. Whereas 
OLS and logistic regression are well known in veterinary epidemiology, tobit regression has 
only been applied recently (Ekstrand & Carpenter, 1998). Based on the adjusted Br and cross-
validation results, model fit using OLS was quite good and the metamodel appeared to be valid 
with respect to the simulation model. Two factors that entered significantly into the metamodel, 
however, had an estimated sign opposite to prior belief. Programming code for these factors was 
verified and tested, but no errors were found. These factors did not appear significant in the 
metamodel using tobit regression. In general, dealing with censored data, OLS will produce 
inconsistent estimates of factor effects, whereas tobit regression takes into account information 
obtained from censored data (Greene, 1997). Logistic regression uses the information less 
efficiently than tobit regression, because continuous output is transformed into binary data. In 
this study it did provide additional information on factors for which the simulation model was 
most sensitive. 

This paper only showed the metamodel for one output of the simulation model. Other 
outcome variables were investigated, such as the total disease control costs and number of 
outbreaks on certified farms. For each output a separate metamodel was developed. Because 
response variables were correlated, multivariate regression was also applied. 

The goal of this study was to identify which uncertain factors had greatest impact on model 
outcomes of interest. Factors included in the final metamodel had most impact on outcome of 
the simulation model, changing factor level from low to high. It is essential to realize that the 
importance is based on the low and high level assigned to each factor (i.e., experimental frame). 
Low and high values chosen in this study, were supposed to reflect uncertainty of these factors 
in the real world. If the model is a good representation of the real system, a sensitive region 
established in the model can, by association, be considered to be so in the real system. With this 
assumption, it can be concluded that field studies must focus on getting better estimates of 
factors included in the metamodels. These may include; local spread, reactivation rate at 
transport and on farm, professional contact, Ro for non-vaccinated herds and for herds 
vaccinated with killed vaccine. Also, some factors found to be important can be used to support 
advice given to farmers in the current eradication programme, such as the importance of hygiene 
on certified farms and preference for live vaccine. Three interactions between factors were 
found to be significant. If factor 'vaccine type used' was at its high level (all farmers use killed 
vaccine), the level of Ro for killed vaccine was found to be very important on model outcome. 
Also, interactions between 'local spread' and 'hygiene certified farms' and between 'local 
spread' and 'Ro non-vaccinated herds' were found to be significant. Most interactions were 
related to the risk of introduction of virus on a farm (local spread), and the consequent virus 
circulation (hygiene, Ro killed vaccine and Ro non-vaccinated herd). If a sensitivity analysis had 
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been performed with one factor at a time, these interaction effects could not have been 
estimated. 
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