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Stellingen 

1. Verbindingen als (Z)-9-pentacoseen en (Z)-7-pentacoseen worden vaak ten onrechte als 

niet-vluchtige verbindingen geclassificeerd. 

Dit proefschrift; Schiestl et al, 2000. J. Comp. Physiol. A. 186:567-574. 

2. Het nader specificeren van stoffen als 'mating stimulant pheromone', 'courtship 
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van den Heuvel et al, 2000. Proc. Natl. Acad. Sei. USA 97: 9455-9460; Helmchen, G., 1997. 

Enantiomer 2:315-316. 
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verbinding' in maïs zaailingen ten onrechte door Shen et al. geïdentificeerd als ß-

cadineen. 

Shen et al, 2000. Proc. Natl. Acad. Sei. USA 97:14807-14812. 

5. Cortes et al. hadden (+)-cyclozonarone eenvoudiger kunnen synthetiseren door uit te 

gaan van epi-manool, dat gemakkelijk te isoleren is uit terpentijn van de Europese larix. 

Cortes et al, 2001. J. Nat. Prod. 64:348-349. 

6. De maatregelen die door de overheid gebruikt worden in de strijd tegen BSE zijn 

overdreven in vergelijking met de (afwezigheid van) maatregelen die tegen de 

tabaksindustrie genomen worden in de strijd tegen longkanker. 

7. Goede wijn behoeft geen kurk. 

Intermediair, 7 september 2000. 
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Chapter 1 

Introduction 

1.1 Semiochemicals 

For insects, chemical cues are among the most important in locating food, finding a mate 

and in social interactions. Such chemicals used by insects and other animals are called 

semiochemicals, which can be divided in pheromones and allelochemicals. 

Pheromones act between individuals of the same species. Allelochemicals act between 

different species and consist of two categories: kairomones (chemical signals that 

benefit the receiver of the chemical stimulus, but are deleterious to the emitter) and 

allomones (chemicals that give an advantage to the emitter e.g. defensive secretions). In 

Figure 1.1 the different categories of semiochemicals are shown. 

Pheromones play an important role in the life of insects. The word pheromone is 

derived from two Greek words, i.e. pherein, which means "to bear, bring" and hormôn, 

which means "to excite" (Websters College Dictionary, 1997). Pheromones are defined 

as substances that are secreted by males and/or females to the environment (-pherein) 

and, when perceived by a second individual of the same species, trigger a specific 

response (-hormon). Several types are known, like alarm, sex, trail and aggregation 

pheromones. When chemicals are produced to attract the opposite sex within a species, 

these chemicals are called sex pheromones. Somewhat different from sex pheromones 

are the aggregation pheromones, which are compounds capable of attracting both sexes. 

Another important class of chemicals in heteropteran species is the group of alarm 

pheromones; substances emitted upon approach of a predator or under stress (Blum, 

1985). 
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receiver) 

floral scents 

Figure 1.1 Categories of semiochemicals, with examples of their biological function (Howse, 1998). 

Definition of synomone according to Dicke and Sabelis (1992). 

Because of the many chemicals playing a role in their orientation, the antennae of 

insects are highly specialised in perceiving chemicals, such as pheromones, from a far 

distance (Jacobson, 1972). Numerous studies have been performed on olfaction, i.e. 

sense of smell in relation with perceiving (sex) pheromones in Lepidoptera (e.g. Breer, 

1997 and references therein; Prestwich and Du, 1997 and references therein). These 

studies revealed that the antenna is covered with sensory sensilla (sensory hairs), which 

are sensitive to certain compounds. Each sensillum has one or more olfactory receptor 

neurones. A neurone recognises a particular molecule through binding with a receptor 

protein (pheromone binding protein, PBP) on the neurone. As the molecule binds to the 

protein, the neurone is stimulated, which results in a flow of positive sodium ions into 

the cell that depolarises the cell. This depolarisation lasts for only a few milliseconds and 

than the cell returns to the resting membrane potential of the unstimulated neurone. 

These neuronal signals travel along the axons of the sensory neurone towards the 

olfactory lobe in the brain where this pheromonal information is processed, which can 
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eventually lead to a behavioural response. Although, most of the studies on 

understanding the molecular mechanisms of pheromone perception have been conducted 

in moths (Cardé and Minks, 1997 and references therein), more and more studies are 

conducted on perceiving pheromones in the Heteroptera order (e.g. Dickens et al., 1995; 

Chintaetal., 1994). 

1.2 Sex pheromones 

1.2.1 General 

The first sex pheromone was isolated and identified by Butenandt et al. (1959). They 

identified the sex pheromone of the oriental silk moth, Bombyx mori (Lepidoptera: 

Bombycidae) as (Zs.ZJ-lO.n-hexadecadienol (bombykol). For almost 20 years it was 

believed that bombykol was the only component emitted by female B. mori, but in 1978 

Kasang et al. (1978) showed that the female also produces the corresponding aldehyde, 

(E.ZJ-lO^-hexadecadienal. This aldehyde was found to be part of the sex pheromone in 

the ratio alcohokaldehyde of 10:1. Sex pheromones can thus be only one compound or a 

blend of two or more compounds. It has become clear that sex pheromones consisting of 

only one compound are more exception than rule and that multiple component 

pheromones are widely found in insect species. The ratio in which these components are 

present is extremely important. For example, two species of the genus Archips share the 

same four components in their pheromones, but the two species differ in the relative 

proportion of the components; 60:40:4:200 for A. argyrospilus and 90:10:1:200 for A. 

mortuanus (Evans, 1984). 

Insects are extremely sensitive to sex pheromones. Male B. mori respond to 

amounts less than 10 pg (1011 gram) of its sex pheromone when offered on a piece of 

filterpaper (Kaissling, 1979). Experiments carried out with Adoxophyes orana showed 

that males were able to locate the sex pheromone source (virgin females) over a distance 

of 75 meter in just one night (Noordink and Minks, 1970). 
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Also in non-Lepidopteran species sex pheromones exist (McBrien & Millar, 

1999). The first attractant pheromone identified for a heteropteran species was in the 

spined soldier bug, Posidus maculiventris (Aldrich et al., 1978, 1984). More details on 

these sex pheromones are given in Section 1.4. 

1.2.2 Isolation of sex pheromones 

As can be seen from the flow chart in Figure 1.2, the bioassay is essential for the 

isolation and identification of pheromones. Only with a suitable bioassay available the 

isolation and analysis of sex pheromones is worthwhile. The bioassay-guided 

fractionation ensures that the maximum effort is concentrated on those fractions and 

those compounds that are involved in the behaviour of the insect. 

Source 

"""A. 

c 
Synthesis 

Jf 

~—^ A' 

Bioassay ) < 

Identification 

Isolation/concentration 

• 

Separation/fractionation 

Figure 1.2 Flow chart of procedure for isolation and identification of pheromones (Stevens, 1998). 

Isolation of sex pheromones is mainly achieved in two different ways. The first 

method is via (solvent) extraction, i.e. to extract the whole insect or body parts from the 

insects (e.g. pheromone glands if they are known) with an organic solvent like pentane, 

hexane or dichloromethane. The second method is via headspace collection, i.e. trapping 

of compounds emitted by living insects on a solid absorbent like Tenax, Porapak Q or 

activated charcoal or in a cold trap. There are many variations of both techniques. For 

example, Griepink et al. (2000) applied the first method not by extracting pheromone 

glands with a solvent, but by directly introducing the gland in the gas chromatographic 
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injector. The intact pheromone gland is heated in the GC, which causes the volatile 

compounds to evaporate, and subsequently to be trapped on the column. A different set­

up of this method is described in Chapter 2. A variation on the second method was 

introduced in the 1990's with Solid Phase Microextraction where compounds are trapped 

on a 100 urn thick layer of stationary phase (Arthur and Pawliszyn, 1990). 

Both isolation techniques have advantages and disadvantages. In the first method 

it is easy to obtain more material if necessary, by extracting more insects. When the 

number of insects is not limited, enough material can even be extracted to perform NMR 

analysis. However to obtain pure compounds, purification is necessary. This can be very 

time consuming, as with extracting (whole) insects, also many undesired compounds 

(e.g. defensive secretions or cuticular waxes) are extracted. This can be avoided by using 

the method of headspace collection. This method usually gives clean samples with only 

the volatile compounds emitted by insects (or plants if insects need to feed on plants to 

emit sex pheromone). However, this method is difficult to scale up and sometimes 

suffers from chemical background noise. 

1.2.3 Identification of sex pheromones 

Due to the volatility of sex pheromones gas chromatography is the ideal tool for 

analysis of complex mixtures obtained either via extraction or via headspace collection. 

Depending on the column used, compounds in the extract are separated based on their 

structural characteristics like carbon chain length, functional groups and/or double 

bonds. Information about these structural features can be obtained by comparing the 

retention times on two different columns e.g. a column coated with a polar polyethylene 

glycol phase and a column coated with an apolar dimethylpolysiloxane phase. 

Instead of using the common Flame Ionisation Detector (FID), other detection 

techniques can be coupled to the GC (on-line). Coupled gas chromatography-mass 

spectrometry (GC-MS) is nowadays a standard tool in sex pheromone research. With 

this method compounds separated on the GC-column are transferred individually to a 

mass spectrometer. In the mass spectrometer these compounds are fragmented and the 
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different fragments can be measured, based on their mass-charge ratio (m/z). Based on 

this fragmentation pattern often a tentative structural formula of the compound can be 

proposed (McLafferty and Turecek, 1993). 

A second detector that has been coupled to a GC is a specialised biological 

detector, called electroantennographic detector (EAD). Electroantennography (EAG) is a 

technique that relies upon the specificity and sensitivity of the olfactory system of the 

insect itself (Schneider, 1957), which is often located on the antennae of the insect. The 

simultaneous depolarisation of many receptor cells, when they are stimulated can be 

measured with EAG. A GC coupled to an EAG set-up (GC-EAD) (Arn et al., 1975) can 

be used as a screening technique (Roelofs, 1984) to determine which compounds in a 

complex mixture can be perceived by the insect, and which are thus likely candidates for 

sex pheromone constituents. Instead of testing all compounds in a bioassay only the 

EAD-active compounds need to be tested. One can however not always rely on EAG 

responses as was shown by Leal et al. (1998) where behaviourally active compounds did 

not elicit detectable EAG signals. It is also important to mention that EAG is restricted to 

whether an insect is able to recognise a certain compound or not. The behavioural 

response elicited by these EAD-active compounds should be tested using a separate 

bioassay such as windtunnel experiments, to see whether detected compounds are sex-, 

alarm- or aggregation pheromones or trigger no behavioural response. Thus, GC-EAD 

may be helpful, but results need to be thoroughly checked with additional behavioural 

bioassays. 

When certain compounds are active in the bioassays, their identification can be 

pursued. Comparing the retention times of GC-MS en GC-EAD analyses can locate the 

position of the EAD-active compounds in the GC-EAD gas chromatogram and 

subsequently give information about the structure of these EAD-active compound(s). 

When the active compound(s) can be isolated (e.g. by thin layer -, column 

chromatography or preparative GC) on a microgram scale, 'H-NMR-analyses can be 

performed to provide proof of the structure. However, as sex pheromones are normally 

present in very low amounts, full structure identification is mainly achieved by GC-MS 
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and synthesising (or buying commercially available) possible candidates and comparing 

retention times on GC. The final identification of a sex pheromone is to determine 

whether the artificial blend is able to attract the opposite sex, either in the windtunnel 

bioassay or in the field. 

1.2.4 Use of sex pheromones in Integrated Pest Management 

Since the 1940's insect pest control has been primarily achieved by the use of synthetic 

pesticides. Although these man-made compounds had a tremendous effect on insect 

populations, they also had unwanted effects on the environment. Knowing this, much 

research has been carried out to develop environmentally friendly alternatives; Integrated 

Pest Management (IPM) being one of them. The basic strategy behind IPM is to prevent 

insect populations from reaching their economic injury level, while avoiding ecological 

and sociological damage. One of the tools in IPM is the use of sex pheromones. In 

contrast with pesticides, sex pheromones are very specific compounds that are produced 

and used only by the insect species that has to be controlled. Therefore only these insects 

are affected, and because they use these compounds themselves for communicating with 

the opposite sex, there is little chance of resistance. Sex pheromones can be used in four 

different ways: 1) monitoring, 2) mass trapping, 3) mating disruption and 4) attract-and-

kill (Jones, 1998). 

Of these four different methods monitoring is most commonly used (e.g., Alford 

et al., 1979). With this method it is possible to obtain information about the population 

density of the insect species. When the population is reaching its economic threshold 

value, pesticides can be applied. In this case, pesticides are only used when necessary 

and thus a reduction of the use of these environmentally unfriendly compounds can be 

achieved. 

Mass trapping, as the name implies, traps the pest insect and in this way prevents 

it from causing substantial damage to the crop. This method is only efficient when 

practically all the insects are trapped (Roelofs et al., 1970). As this is almost impossible, 
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it is not widely used, although success has been achieved in mass trapping bark beetles 

(Borden, 1989) and in greenhouses (Kawai and Kitamura, 1990 and references therein). 

The third method, mating disruption, is successfully applied in several moth 

species (Cardé and Minks, 1995). With this method a high concentration of the sex 

pheromone is sprayed in the field thus disrupting the chemical communication and 

diminishing the chance that males and females can locate each other. Less copulation 

will thus occur, resulting in fewer offspring. As a result, the population density will be 

reduced till it reaches a value beneath the economic threshold. 

The attract-and-kill (or lure and kill) method aims at killing the insect when it 

reaches its target and has been applied among others against the pink bollworm moth, 

Pectinophora gossypiella (Haynes et al., 1986). This technique consists essentially of 

two components: the lure, which could consist of the sex pheromone, and an affector, 

which could consist of a potent insecticide. The lure (sex pheromone) is formulated 

together with liquid that contains the affector (insecticide). This liquid is then sprayed on 

the plant that has to be protected. When the insect reach the plant (attracted by the sex 

pheromone) and eats from the plant and liquid, they will be killed. 

1.3 The green capsid bug 

The insect studied in this PhD thesis is the green capsid bug (Lygocoris pabulinus 

(L.), Heteroptera: Miridae). This bug (Figure 1.3a,b) is a serious pest in fruit orchards 

and raspberries (Hill, 1952) in North-Western Europe and is difficult to control 

(Blommers, 1994; Ravn and Rasmussen, 1996). L. pabulinus has two generations each 

year (Figure 1.4), of which the summer generation feeds on herbaceous plants 

(Petherbridge and Thorpe, 1928). In autumn, females (from the second generation) 

oviposit their overwintering eggs in the stem of fruit trees, after which the adults die. In 

spring, when trees start to bloom, nymphs emerge from the eggs (Figure 1.4). In this 

stage most of the economical damage occurs as these nymphs feed on shoot tips, ovaries 

and young fruitlets, which causes russety malformation in the fruits (Blommers, 1997). 
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Figure 1.3a The green capsid bug, L pabulinus (left), and appels damaged by the green cpsid bug (right). 

Pictures from Frankenhuyzen (1988). 

Figure 1.3b Drawing of the green capsid bug, L. pabulinus. Left: fifth instar larva; Right: adult 

(Petherbridge and Thorpe, 1928) 
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• m egg larvae >:::-:-:-:::-:-:-:xl adults 

Figure 1.4 Life cycle of the green capsid bug (Frankenhuyzen, 1988). Most damage occurs during the 

larval stage. 

Damage of the fruit will thus directly affect the yield and the quality of the crop. 

Consequently, economic threshold values will be exceeded soon after the nymphs have 

emerged. Additionally, this threshold is exceeded already at very low population 

densities (van den Ende et al., 1996). Fruit growers cannot predict whether or not their 

fruit will suffer from bug damage in the following spring. 

In order to reduce the risk of damage, the growers apply insecticides against the 

green capsid bug before and after blooming each year, without determining the actual 

population density. This phenomenon is called "calendar-spraying" and requires a lot of 

insecticides. Additionally, there is no insecticide available that specifically kills this 

mirid, thus beneficial insects like natural enemies are also killed. Identification of the sex 

pheromone of this mirid may provide an efficient monitoring system so that the use of 

insecticides against this pest can be reduced. 

10 
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1.4 Pheromones in true bugs (Heteroptera) 

Since the identification of the first sex pheromone (Butenandt et al., 1959), there 

has been a continuing interest in these behaviour-modifying semiochemicals. 

Nevertheless, most of the attention has always been directed to lepidopterous insects. In 

recent years the research direction has changed and other insect orders, including 

Heteroptera to which Lygocoris pabulinus (see section 1.3) belongs, are receiving more 

and more attention (Hardie and Minks, 1999). Although a number of bug pheromones 

have been identified, pheromone identification is complex, as is shown in the review by 

McBrien and Millar (1999) on pheromones in phytophagous bugs. This complexity is 

mainly caused by a lack of knowledge about the behaviour of, and the site of production 

of the pheromone in these bugs. 

1.4.1 Scent glands in Heteroptera; their secretions and possible role as sex 

pheromone glands 

Chemical communication in insects requires a source of the signal molecules, 

such as pheromones. The source is often an exocrine gland, glands that secrete 

compounds through a duct to the outer part of the exoskeleton of the insect. When the 

compounds being released by these glands are (sex) pheromones, these glands are called 

(sex) pheromone glands. By far the greatest amount of work on the existence and 

function of these specific sex pheromone glands has been conducted with Lepidoptera. 

In numerous species such glands have been identified (Jacobsen, 1972). The scent 

glands, an important class of exocrine glands in heteropteran insects, have been studied 

in detail (Gupta, 1961 and references therein; Staddon, 1979, 1986). The main 

physiological role of these scent glands is to manufacture and store volatile substances 

for subsequent release (Staddon, 1979). These volatiles are usually highly odoriferous 

and therefore a defensive role was assigned to these compounds and the glands that 

produce them (Gupta, 1961). Two types of scent glands have been reported, i.e the 

abdominal scent gland and the metathoracic scent gland. The names given to the glands 

11 
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are from the parts of the body (abdomen, metathorax) in which they are found. The 

abdominal glands are dorsal and they may occur up to a maximum of four. These are 

essentially larval glands and only occasionally continue to function in adults. The 

metathoracic gland exclusively occurs in adults (Staddon, 1979). Postulated functions of 

the compounds released by these scent glands include 1) defence against predators, 2) 

defence against microorganisms, and 3) induction of specific patterns of behaviour 

(alarm, aggregation or mating). Of all these functions, only the defence against predators 

has been fully proven for correid and pentatomid bugs (Aldrich, 1995), although Gupta 

(1961) believes that in adults these glands have primarily a sexual function. 

Evidence for sex pheromone glands in Heteroptera was found with the discovery 

of sexually dimorphic glands. These glands were usually excessively developed in males 

(Aldrich, 1995), indicating that males are the producers of the sex pheromone. In some 

pentatomids the III-IV dorsal abdominal glands are small in females and extremely large 

in males (Aldrich et al., 1978). Further field studies proved that in most Heteropteran 

species males are attracting females. But the situation is more complicated as various 

species produce sex- and species-specific compounds from glands which are not 

sexually dimorphic (Aldrich, 1995). However, in many species no sex pheromone gland 

has been found yet. Isolation and identification of sex pheromones in these true bugs 

(Heteroptera) has thus been a challenging and difficult task. The overwhelming presence 

of alarm pheromones and defensive secretions makes the identification even more 

difficult. For an overview of the semiochemicals of true bugs, including sex, 

aggregation, alarm pheromones, and defensive secretions together with their production 

sites, several excellent reviews are available (Aldrich 1988a, 1988b, 1995). 

1.4.2 Sex pheromones in plant bugs (Miridae) 

In most heteropteran species in which attractant pheromones are known, males 

are the attractive sex. In contrast, in the Miridae family (plant bugs) the female attracts 

the males. Besides the evidence for a sex pheromone in Lygocoris pabulinus (Blommers 
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et al., 1988), in at least ten other mirid bugs females have been found to attract males; i.e. 

Lygus hesperus (Strong et al., 1970; Graham, 1987; Graham, 1988), Lygus lineolaris 

(Scales, 1968), Distantiella theobroma (King, 1973), tea mosquito bug, Helopeltis 

Antonii (Sundararaju et al., 1994), H. clavifer (Smith, 1977), Lygocoris communis 

(Boivin and Stewart, 1982, Graham et al., 1987); Atractotomus mali (Smith et al., 1994); 

Campylomma verbasci (Thistlewood et al., 1989), Lygus rugulopennis (Innocenzi et al., 

1998), Calocoris norvegicus (Welter, 1991), Neurocolpus longirostris (Rice and Jones, 

1989) and the rice leaf bug, Trigonotylus caelestialium (Kakizaki and Sugie, 1997). Yet 

of all the mirids the sex pheromone of only three species has been identified (Smith et 

al., 1991; Millar et al., 1997; Millar and Rice, 1998). 

In spite of the extensive studies on scent glands in Heteroptera (Staddon, 1979), 

little is known about the production site of the sex pheromones in mirids. Moreover, 

most of these studies were not carried out on secretions from the abdominal or 

metathoracic scent glands in mirids, but in pentatomids or coreid bugs (Aldrich, 1988a, 

1988b, 1995). Furthermore, studies carried out with other species than from the Miridae 

family cannot easily be used, as in mirids females emit the sex pheromone and not the 

males like in pentatomids. Authors have postulated that a site near the ovipositor may be 

the location of a sex pheromone producing organ (Graham, 1988) or the spermatheca 

(Strong et al., 1970, Aldrich, 1988b) might be the sex pheromone producing organ itself. 

Evidence that scent glands have a function as sex pheromone producing organs is 

therefore meagre, but as up to now only three (from 10,000) mirid sex pheromones have 

been identified, scent glands may still be the site of pheromone production. 

Another difficulty in the identification of sex pheromones in Miridae is that in 

only two species, D. theobroma and H. clafiver a female specific calling behaviour could 

be observed, i.e females raise their abdomen while releasing pheromone (King, 1973; 

Smith, 1977). In all other mirids it is unknown when females emit their sex pheromone. 
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1.4.3 Chemical composition of secretions in Miridae 

Typically unbranched aliphatic molecules of low molecular weight have been 

encountered in the secretions as major scent volatiles in Miridae. They include (E)-2-

hexenal, (£)-2-octenal, and (£)-4-oxo-2-hexenal. The latter and its C8 homologue are 

characteristic of the secretions from scent glands of Heteroptera, especially in 

pentatomids. In Miridae this keto-aldehyde has been encountered in only a few cases 

(Knight et al., 1984; Innocenzi et a l , 1998). Esters form by far the majority of 

compounds found in volatile extracts from mirids. Males and females of the tarnished 

plant bug, Lygus lineolaris, had different amounts of two esters, hexyl butyrate and (£)-

2-hexenyl butyrate. In males the ratio of (£)-2-hexenyl butyrate and hexyl butyrate is 

about 1:10, whereas in females equal amounts of these esters are found (Gueldner and 

Parrot, 1978). Esters formed also the majority of the volatile compounds present in the 

metathoracic gland of two capsid bugs, Pilophorus perplexus and Blepharidopterus 

angulatus (Knight et al., 1984). Other compounds found in the headspace from mirids 

are monoterpenes, like neral, neryl acetate and geranial (Hanssen and Jacob, 1982). In 

Figure 1.5 an overview of the compounds identified from mirid bugs is shown. 

1.5 Aim and justification 

The ultimate aim of this project was to develop an efficient monitoring system for 

L. pabulinus in fruit orchards, by identifying its sex pheromone. In a related species with 

a similar life cycle, Campylomma verbasci (Heteroptera: Miridae), identification of the 

sex pheromone and monitoring of this mirid pest has been successful (Smith et al., 1991 ; 

McBrien et al., 1994, 1996, 1997). Therefore, identification of the sex pheromone of L. 

pabulinus as well as the development of a monitoring system, based on the use of its sex 

pheromone, seemed feasible. Besides, L. pabulinus males are attracted by virgin females 

in the field (Blommers et al., 1988), which can be considered as additional support for 

this proposition. 
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Figure 1.5 Compounds identified from headspace or scent glands in Miridae. 

1: ethyl but} rate, 2: butyl butyrate, 3: (£)-2-butenyl butyrate, 4: hexyl butyrate, 5: (£)-2-

hexenyl butyrate, 6: (£)-2-octenyl butyrate, 7: butyl acetate, 8: hexyl acetate, 9: (£)-2-hexenyl 

acetate, 10: (£)-2- octenyl acetate, 11: (Z)-3-octenyl acetate, 12: octyl acetate, 13: ethyl 

hexanoate, 14: ethyl 2-hexenoate, 15: hexyl hexanoate, 16: (£)-2-hexenyl hexanoate, 17: ethyl 

myristate, 18: (£)-4-oxo-2-hexenal, 19: (£)-2-hexenal, 20: (£)-2-octenal, 21: acetaldehyde, 22: 

pentadecanol, 23: hexanol, 24: (Z)-3-hexen-l-ol, 25: nerol, 26: geraniol, 27: neral, 28: geranial, 

29: neryl acetate, 30: geranyl acetate, 31: phenyl acetaldehyde 32: indole, 33: benzothiazole. 

Data taken from Knight et al. (1984); Gueldner and Parrot (1978); Hanssen and Jacob (1982); 

Millar et al. (1997); Millar and Rice (1998) and Smith et al. (1991). 
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This project consisted of two components: (1) a biological study of the sexual 

behaviour of the green capsid bug, and (2) a chemical study to identify its sex 

pheromone. The biological part has been published recently in the thesis of A. T. Groot 

(Groot, 2000). 

The first attempt to identify the sex pheromone of L. pabulinus using 

conventional techniques, dates from the 1980's, but was not successful. Therefore within 

the chemical part of this study, the possibility of applying some new techniques in the 

identification of the sex pheromone, formed an important part. Because many other 

semiochemicals such as alarm, aggregation pheromones and allomones are being 

produced by true bugs, this study also attempted to identify these and other compounds 

playing a role in the chemical communication of the green capsid bug. In this thesis the 

identification of these semiochemicals of L. pabulinus as well as the application of these 

(new) techniques is described. 

1.6 Outline of thesis 

Previous research in our lab on direct gland introduction into a GC-injector 

(Griepink et al., 2000) showed the usefulness of on-line stripping of volatiles from 

glands. In Chapter 2 the application of thermal desorption of whole insects and parts of 

insects in pheromone research is described. This technique has been applied on two 

model insects, C. verbasci (Heteroptera: Miridae) and Adoxophyes orana (Lepidoptera: 

Tortricidae) as well as on the green capsid bug. 

Chapter 3 deals with two different extraction methods, the Solid Phase 

Microextraction (SPME) and the Stir Bar Sorptive Extraction (SBSE). These two 

methods are compared and used to identify airborne volatiles emitted by female L. 

pabulinus. 

One of the techniques frequently used to screen the activity of compounds 

produced by insects, is coupled electroantennography-gas chromatography (GC-EAD) 

(Arn et al., 1975, Roelofs, 1984). Studies on olfaction in male Lygus hesperus (Graham, 

1988) showed that the antennae play an important role in locating females. Therefore, 
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GC-EAD was also applied in this research. In Chapter 4 the successful application of 

GC-EAD in identifying compounds being perceived by male and female green capsid 

bugs is reported. Also the difference between male and female perception is described. 

Groot et al. (1998a, 1998b) found a sex specific courtship behaviour in male 

Lygocoris pabulinus. Males start to vibrate with their abdomen when they are in the 

vicinity of females. This behaviour was used to identify compounds that are involved in 

this courtship behaviour. In Chapter 5 the results obtained with live and dead males and 

females, different body parts and extracts from these body parts in this vibration 

bioassay, are described. Furthermore the chemical analysis of active extracts, to identify 

active compounds is reported. 

In Chapter 6 the testing of extracts from male and female legs, of which the 

latter cause vibrational behaviour in males, together with the testing of headspace 

extracts from male and female L. pabulinus in a Y-track olfactometer is described. The 

results obtained from GC-EAD analysis of these active extracts, on a different EAD set­

up as used in Chapter 4, revealed that there is evidence for a close-range attractant in L. 

pabulinus. 

In Chapter 7 all aspects of chemical communication in green capsid bugs are 

discussed. Furthermore, some preliminary studies on changes in the hydrocarbon profile 

in females are reported. In addition, the possible effect of stress in males and females are 

shown. In conclusion aspects of controlling L. pabulinus in apple orchards with a 

potential sex and/or close-range pheromone are discussed. 
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Chapter 2 

On-line thermal desorption-gas chromatography of 

intact insects* 

Abstract - By using a thermodesorption system (TDS) together with a programmable 

temperature vaporiser (PTV) injector, the composition of the known sex pheromones 

of Adoxophyes orana (Lepidoptera: Tortricidae) and Campylomma verbasci 

(Heteroptera: Miridae) was confirmed. Only a single insect per analysis was necessary. 

Intact females, males or pheromone glands were placed in the oven part of the TDS, 

which was subsequently heated. The compounds released by this heating process were 

transferred to the PTV, which was cooled to -150°C. Injection took place on a dual-

column GC by heating the PTV rapidly to 250°C. The major sex pheromone 

compounds of A. orana were found only in the pheromone gland of females. Male and 

female C. verbasci showed fingerprint-identical chromatograms, except for the two sex 

pheromone compounds, which were present only in females. No distinct differences 

were found in compounds released from female and male Lygocoris pabulinus 

(Heteroptera: Miridae). The advantages of this rapid method are the high sensitivity 

and the low degree of degradation and contamination. This technique was effective in 

analysing small insects by GC without prior manipulation, such as solvent extraction 

or distillation. 

Published in a slightly revised form: 
Drijfhout, F.P., van Beek, T.A., Visser, J.H., and de Groot, iE. 2000. J. Chem. Ecol. 26:1383-1392. 
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2.1 Introduction 

Insects emit sex pheromones to attract conspecific males or females for mating. 

Because of the volatility of these compounds, gas chromatography (GC) coupled to 

mass spectrometry is an ideal technique for their separation and identification. One of 

the difficulties in structure elucidation of sex pheromones is the small amounts in 

which they are produced. Collecting volatiles from insects, e.g., via headspace 

collection, sometimes needs to be done for several days, depending on the species 

(Smith et al., 1991; Millar et al., 1997; Millar and Rice, 1998), to obtain enough 

material for chemical analysis. An additional difficulty in the identification of sex 

pheromones in minds is the presence of defensive compounds that may conceal the 

presence of the sex pheromone. Sampling for longer periods may increase the amounts 

of these defensive compounds and hamper the identification of the sex pheromones. 

Many different techniques have been used to collect volatiles from insects. 

Bowman and Karman (1958) were the first to describe a crushing device for small 

samples in the injection area of the GC. A similar injection technique was described 

for the investigation of the constituents of single glands from insects, such as ants 

(Morgan and Wadhams, 1972; Morgan et al., 1979). Attygalle et al. (1987) 

reinvestigated the sex pheromone of Mamestra brassicae (Lepidoptera: Noctuidae) by 

using a solid sample injection technique in combination with mass spectrometry. Brill 

and Bertsch (1985) used a pyroprobe unit inserted into the injector of the gas 

Chromatograph to examine the cuticular hydrocarbon profile of Solenopsis richteri 

(Hymenoptera: Myrmicinae) workers. Recently, a thermal desorption injection method 

was applied successfully on the pheromone glands of Symmetrischema tangolias 

(Lepidoptera: Gelechiidae) and Scrobipalpuloides absoluta (Lepidoptera: Gelechiidae) 

(Griepink et al., 2000). In this chapter, the application of a different type of thermal 

desorption unit is described. A Lepidopteran species, Adoxophyes orana, and two 

Miridae species, Campylomma verbasci and Lygocoris pabulinus, were used as test 

insects. 
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2.2 Materials and Methods 

2.2.1 Insects Campylomma verbasci was reared according to Uiterdijk et al. (1997) and 

Adoxophyes or ana according to de Jong (1968). Lygocoris pabulinus was reared under 

summer conditions on potted potato plants, cultivar Bintje, in wooden cages in a 

greenhouse at 22 ± 2°C, 65 ± 5 % R.H., L18:D6, following the procedure of Blommers 

et al. (1997). Every 2-3 days the newly emerged adults were collected from the rearing 

cages, after which the sexes were isolated in separate rearing cages. In this way, virgin 

males and females of known ages were continuously available for the experiments 

(Grootetal., 1998). 

2.2.2 Chemicals Butyl butyrate, (£)-2-hexen-l-ol and butyryl chloride were all 

purchased from Acros Organics (Geel, Belgium), hexyl butyrate from Roth (Karlsruhe, 

Germany), and crotyl alcohol (containing ~5% of the Z-isomer) from Fluka (Buchs, 

Switzerland). (£)-2-butenyl butyrate and (£)-2-hexenyl butyrate were synthesised as 

described below. 

2.2.3 Synthesis of (E)-2-butenyl butyrate and (E)-2-hexenyl butyrate This was done 

according to Vogel (1989). Esters were prepared by refluxing 1 equivalent of the acid 

chloride with 1 equivalent of the corresponding alcohol for 1 hour. The mixture was 

poured into water, washed with NaHC03 solution, then with H20 and dried over 

MgS04. Esters were collected by filtering. Configuration and purity of the esters were 

confirmed by NMR (200 MHz; Braker AC200) and GC-MS. (£)-2-butenyl butyrate 

contained ~5% of the Z-isomer, which is in accordance with the amount of Z-isomer in 

the starting material. 

2.2.4 Thermodesorption System On-line thermal desorption-gas chromatography was 

performed by using a Thermodesorption System (TDS) (Gerstel, Mülheim am Ruhr, 

Germany) coupled to a GC (HP 5890) equipped with a split/splitless PTV-injector 
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(CIS 3, Gerstel). The TDS could also be used in split or splitless mode. A schematic 

drawing of the TDS equipment used is shown in Figure 2.1. 

Zones which can be heated or 

Figure 2.1 Schematic drawing of the Thermal Desorption System (TDS). 1: Thermal desorption System 

(TDS), 2: Oven part of TDS, 3: TDS tube, 4: gas flow (hydrogen/helium), 5: transferline 

(300°C), can only be heated, 6: PTV-injector, 7: FID, 8: GC 

Compounds were desorbed in the ovenpart of the TDS (2), transferred via a 

transferline (5) (14 cm x 0.25 mm deactivated fused silica), and trapped in the liner 

(1.4 mm i.d.) of the PTV-injector (6) at -150°C by using liquid nitrogen for cooling. 

Injection of the compounds onto the column was done by rapid heating of the PTV-

injector to 250°C (12°C/sec). 

The GC was a dual column GC equipped with an apolar DB-1 column and a 

polar DB-WAX column (both J&W Scientific (Folsom, California), 60 m x 0.25 mm; 

film thickness: 0.25 um) and two Flame Ionisation Detectors. After the PTV a 

Gerstel™ Graphpack-3D/2 flow splitter was installed to divide the injected sample in a 

ratio of 1:1 over both columns (not shown in Figure 2.1). Oven program: 40°C (2 min 

hold) to 238°C (10 min hold) with 4°C/min. Hydrogen was used as the carrier gas 

(inlet pressure 20 psi, linear velocity at 140°C: 35.5 cm/sec). Identification of the 
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compounds in the gas chromatograms was done by comparison of the Retention 

Indices (on both columns) of the unknown compounds with those of reference 

compounds. 

2.2.5 Collecting materials from insects A living male or female mirid, freshly 

dissected legs from L. pabulinus or an excised pheromone gland from A. orana, (half 

an hour before the females started calling) were put into a glass tube (175 mm long, 6 

mm O.D. and 4 mm I.D.), and two small silanised glass wool plugs were used to keep 

the specimen in place. The glass tube was placed into the oven part of the TDS kept at 

25°C (15 min) or heated to temperatures varying from 50°C to 250°C at l°C/sec. 

During this period, the carrier gas (flow rate 100 ml/min) was led over the specimen, 

and the volatile compounds were trapped in the PTV-injector. Compounds were then 

desorbed from the liner by heating the PTV to 250°C in the splitless mode. 

Headspace analysis was performed by using 8 female or male mullein bugs. These 

were kept in a glass cage with potato leaves and pollen. Moist air was passed 

through the cage. Volatiles were trapped on Tenax-TA (20-35 MESH or 200-900 

um, Chrompack, Middelburg, The Netherlands; TDS-tubes were loaded with 200 

mg of Tenax) for 8-24 hours at a flow rate of 60 ml/min. GC-analysis was done with 

the same thermodesorption system; helium was used as carrier gas. 

2.3 Results 

The major sex pheromone components of Adoxophyes orana have been identified 

as (Z)-9-tetradecenyl acetate (Z9-14:Ac) and (Z)-ll-tetradecenyl acetate (Zll-14:Ac) 

(Meijer et al, 1972; Minks and Voerman, 1973). Figure 2.2 shows the difference 

between the contents of the female pheromone gland and the abdomen of a male A. 

orana. The female pheromone gland contained primarily these two compounds. The 

male abdomen was almost "empty". 
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Figure 2.2 GC-profile of 2 female sex glands (upper trace) and a male abdomen (lower trace) of 

Adoxophyes orana after thermal desorption at 100°C. Column: DB1. (Z)-9-tetradecenyl acetate 

(Z9-14:Ac) and (Z)-ll-tetradecenyl acetate (Zl 1-14:Ac) only present in the female. 

This difference between males and females was also observed in the mullein 

bug, Campylomma verbasci. Figures 2.3 and 2.4 show similar chromatograms from a 

TDS-analysis (collection of the volatiles at 250°C and 25°C, respectively) of C. 

verbasci males and females. Two compounds were only present in females, and these 

were identified as butyl butyrate and (£)-2-butenyl butyrate [the sex pheromone 

components of C. verbasci, according to Smith et al. (1991)]. The 19:1 ratio, in which 

these two compounds were present according to the TDS analysis, is similar to that 

(16:1) found by Smith et al. (1991). They additionally reported the presence of hexyl 

butyrate in both sexes. This inactive compound was also observed in both TDS 

chromatograms. 
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15 20 

, Time (minutes) 

Figure 2.3 Chromatograms of one male (lower trace) and one female (upper trace) Campylomma verbasci 

analysed with the TDS (5 min at 250°C). Column: DB1.1: butyl butyrate, 2: (£)-2-butenyl 

butyrate, 6: hexyl butyrate. 

-> Tim e (m inutes) 

Figure 2.4 Chromatograms of two male (lower trace) and one female (upper trace) Campylomma verbasci 

analysed with the TDS (15 min at 25°C). Column: DB1.1: butyl butyrate, 2: (£)-2-butenyl 

butyrate, 6: hexyl butyrate. 

Figure 2.5 shows the dynamic headspace analysis of 8 female mullein bugs sampled 

for 8 hours. Among many other compounds, butyl butyrate and (£)-2-butenyl butyrate 

were present in the headspace extract. 
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Figure 2.5 Chromatogram of dynamic headspace collection of 8 female Campylomma verbasci. 

Column:DBl. Carrier gas: helium, 1: butyl butyrate, 2: (£)-2-butenyl butyrate. 

From the TDS-analysis of the green capsid bug, L. pabulinus, it is not clear which 

compounds may play a role in the sexual communication between females and 

males, because there was no distinct difference between males and females. Two 

chromatograms of the TDS-analysis of respectively a male and female green capsid 

bug are shown (Figure 2.6). Again, hexyl butyrate was present in both males and 

females and amounted to almost 90% of the total present. Two other compounds, 

(is)-2-hexenyl butyrate and (2s)-4-oxo-2-hexenal, were also found in both males and 

females. When legs of males and females were analysed there was a distinct 

difference in the hydrocarbon profile (Figure 2.7). In Chapter 5 this difference will 

be discussed in greater detail. 
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Figure 2.6 Chromatograms of a male (lower trace) and a female (upper trace) Lygocoris pabulinus 

analysed with the TDS (5 min at 250°C). Column: DB-WAX. 6: hexyl butyrate, 8: (£)-2-hexenyl 

butyrate, 9: (£)-4-oxo-2-hexenal. 

2.4 Discussion 

In the last two decades, many research groups have worked on the identification 

of sex pheromones in the Miridae family. However, only a few have succeeded in 

actual identifications (Smith et al., 1991; Millar et al., 1997; Millar and Rice, 1998). 

With the current method, it was possible to identify two compounds that were present 

only in females of C. verbasci using just one or two insects. These compounds were 

reported previously as being the sex pheromone of the mullein bug (Smith et al., 

1991). 

When the chromatograms are studied in detail, a clean baseline with only a few 

peaks is observed. The main compounds are hexyl butyrate and butyl butyrate; the 

latter is the main component of the sex pheromone. The minor component, (E)-2-

butenyl butyrate, is also clearly visible. Because of the high volatility of the 

pheromone compounds of these mirids, sampling at room temperature is sufficient to 

collect material for identification. Sampling at higher temperatures, such as 250°C 

(Figure 2.3), resulted in the elution of many small additional peaks. However, at these 

high temperatures, the peaks are still sharp, and it is possible to identify individual 
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compounds. For the identification of cuticular hydrocarbons present in insects, 

sampling at these high temperatures is necessary and possible as shown in Figure 2.7. 

14 

• A _ L J » O L A J I 

acetamide 
10 

13 

jMl 

16 

B 

I 

JjlWL*L*jj^-»"-*-

13 

14 

TfPi 

15 

/-vrrvywy^-,— 

16 

10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 

—> Time (minutes) 

Figure 2.7 Chromatogram of the TDS-analysis of dissected legs from a female (A) and male (B) L. 

pabulinus. Separation carried out on a DB23 column. 6: hexyl butyrate; 10: tricosane; 13: 

pentacosane; 14: (Z)-9-pentacosene; 15: (Z)-7-pentacosene; 16: (Z)-9-heptacosene. Details on the 

identification of the numbered compounds are given in Chapter 5. 

Another important observation is the close resemblance of the chromatograms 

from males and females (Figure 2.3). In fact they are virtually identical, except for the 
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sex pheromone components in female C. verbasci. In practically all TDS analyses of 

male and female insects, this close resemblance is apparent. 

By comparing the chromatogram of the TDS analysis of only one mullein 

bug analysed at 250°C with a dynamic headspace analysis (Figure 2.5) one sees that 

there is a significant difference. Butyl butyrate and hexyl butyrate are no longer 

almost the only compounds present, as in the TDS-analysis of C. verbasci. Although 

butyl butyrate is still the main compound, identification of the second pheromone 

component, (£)-2-butenyl butyrate, will be more difficult. Collecting volatiles 

during dynamic headspace requires the use of leaves as food for the mirids to 

prevent desiccation. As leaves produce volatiles, even more when insects feed on 

them (Bolter et al., 1997), these compounds are also trapped on the Tenax. When the 

sex pheromone is produced in small amounts and only at certain times during the 

day and/or night, these plant volatiles may conceal the sex pheromone components. 

Another explanation for more compounds being present in the headspace could be 

the production of defensive compounds, emitted by the bugs themselves when they 

are in a stressful situation. Collecting headspace from bugs in glass cages may cause 

this stress. By using the TDS-method, only volatile compounds present in the insect 

at that particular moment are collected and injected onto the column. The bugs are 

kept in their rearing cages until just before analysis and the insects are, most likely, 

stripped of their volatiles before they can produce de novo stress compounds. The 

average time between leaving the rearing cages and death of the insect was less than 

3 minutes. 

In the case of the green capsid bug, it is still not clear which compounds are part 

of the sex pheromone. It is possible that one or more compounds from the sex 

pheromone are present in both sexes. This was, for instance, the case with the 

pheromone of two mirid bug species (Phytocoris) (Millar et al., 1997; Millar and Rice, 

1998). On-going experiments with EAG (Chapter 4 and 6) and bio-assays (Groot et al., 
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1998) should give more information about other compounds that are present in females 

as possible sex pheromone compounds. 

With this rapid method, it is easy to determine the pheromone content from a 

single insect as a function of time. Normally to determine the pheromone content of 

insects or pheromone glands, extracts from whole insects or glands have to be made. In 

certain cases, many insects may be necessary. Because in the TDS-method all volatiles 

are directly injected onto the column, the pheromone content from a single insect can be 

determined. Furthermore, this technique is fast, because there is no work-up of any 

extracts or Tenax tubes as used during headspace analysis. 

The use of a thermal desorption injection technique to determine the pheromone 

content of pheromone glands was demonstrated previously with the potato tuber moth, 

Symmetrischema tangolias (Griepink et al., 2000). In this case, the pheromone gland 

was inserted into the liner (1.4 mm i.d.) of the PTV-injector. By heating the injector to 

350°C, the compounds were released and trapped on the GC-column (at 30°C). 

However, this approach Griepink et al., 2000) can be used only when the gland in 

which the sex pheromone is produced is known. In mirids no pheromonal gland has 

yet been found. The method described here can therefore be used to investigate the 

pheromonal content of these small insects, because whole insects can be used. 

Coupling of this system to an EAG recording system will provide a valuable 

tool in the elucidation of sex pheromones. In a single GC-analysis, compounds can be 

"extracted" from single insects, injected into the GC, separated, and provide EAG 

recordings. These EAG-active compounds can then be tested in a bioassay. Replacing 

the FID with an MSD, creating a TDS-GC-MS-EAD set-up, will form the ultimate 

system. In this way compounds are not only being identified as EAD active, but 

structural information can be obtained as well. 

This technique is, however, not suitable for measuring the emission of sex 

pheromones as a function of the day/night cycle. The insect dies during the collection 
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step. With the thermal desorption system, only the actual content of volatiles in the 

insect can be measured. When an insect stores its pheromone as a precursor, it will not 

be possible to detect the true pheromone compounds. To measure the active emission 

of pheromones on-line, sampling should be performed by using a different and bigger 

glass tube and more importantly, air has to be used. In Table 2.1, the advantages and 

disadvantages of the TDS are listed. 

TABLE 2.1 Advantages and disadvantages of the thermal desorption system 

Advantages 

Rapid 

Sensitive, only one insect per analysis necessary 

Not only suitable for the identification of sex 

pheromones, but also for cuticular hydrocarbons 

No chemical degradation, no interference from 

non-volatiles, introduction of impurities is 

avoided 

Disadvantages 

Only suitable for small insects (< 4 mm diameter) 

No determination of active pheromone emission 

Not applicable for insects in which the pheromone is 

stored as precursors 
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Chapter 3 

Solid Phase Micro Extraction versus Stir Bar 

Sorptive Extraction 

Abstract - Two methods were used to extract compounds emitted by female L. 

pabulinus. These methods, Solid Phase MicroExtraction (SPME) and Stir Bar Sorptive 

Extraction (SBSE), are both based on the partition (sorption) of analytes between the 

gas phase (headspace) and the stationary phase. SPME has already been used in 

pheromone research. SBSE is a relative new technique, which has not been applied in 

pheromone research before. Both methods are compared with regard to their 

usefulness in trapping volatiles emitted by insects. SBSE was found to be much more 

sensitive than SPME, although SPME was easier to operate. The advantages and 

disadvantages of these methods are discussed. 
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3.1 Introduction 

Solid Phase Micro Extraction (SPME) was recently developed for the extraction of 

organic compounds from aqueous solutions or from a gas (headspace) phase (Arthur 

and Pawliszyn, 1990). Since then, a number of applications have been published 

dealing with environmental research, volatiles in food and beverages, and water 

contaminants (e.g. Yang and Peppard, 1994 and references therein; Pelusio et al., 

1995). SPME is by nature an equilibrium technique (Louch et al., 1992; Pwaliszyn, 

1997), based on the partitioning of analytes between a stationary phase and the 

matrix (solvent or headspace) from which the compounds are extracted. An SPME-

unit consists of a fused silica fibre coated with e.g. a polydimethylsiloxane (PDMS) 

phase (7-100um) which can be drawn into a needle. Fibres can be coated with 

different stationary phases to enhance the sensitivity for certain compounds. SPME 

requires no solvent or complicated apparatus and can be used to concentrate volatile 

and non-volatile compounds in both liquid and gaseous phases. After the extraction 

of the analytes (according to their affinity to the stationary phase), they are 

thermally desorbed directly in the GC injector. Desorption in the GC-injector takes 

place by injection of the needle in the injector and pushing out the fibre in the heated 

zone. Because of its sensitivity, absence of solvents (that could mask compounds or 

introduce artefacts in GC runs) and simplicity of this method it has also been used in 

recent years in the identification of volatiles emitted by living plants (Vercammen et 

al., 2000) or in the identification of sex pheromones (Malosse, et al., 1995; Borg-

Karlson and Mozuraitis, 1996; Frérot et al., 1997; Rochat et al., 2000). Using this 

technique, the sex pheromones of Phyllonorcyter acerifoliella (Lepidoptera: 

Gracillariidae) and Ph. heegeralla were identified (Mozuraitis et al., 2000). Besides 

its usefulness in identification of sex pheromones from insects, SPME was also 

found to be useful in pheromone research of animals, such as elephants (Rasmussen 

et al., 1997). 
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A comparable approach to extract compounds from liquid matrices has 

recently been introduced: stir bars coated with PDMS (Baltussen et al., 1999a). This 

technique is called Stir Bar Sorptive Extraction (SBSE). PDMS coated stir bars are 

now commercially available in a device called Twister™ (Gerstel, Germany). The 

Twister consists of a magnetic stir bar (approx. 1 cm length) enclosed in glass, 

coated with a polydimethylsiloxane phase (0.2 -1.5 mm thick, 10 - 350 mg PDMS). 

A schematic drawing of the Twister is given in Figure 3.1. The advantage of this 

method above SPME is that the amount of absorption material (PDMS) on the 

Twister is roughly 100 times more. Therefore a larger amount of material can be 

trapped as the sensitivity of all sorptive techniques is primarily determined by the 

amount of sorbent employed (Arthur and Pawliszyn, 1990; Dugay et al., 1998). 

3.2 mm 

3.2 mm 
10 mm 

Figure 3.1 Schematic drawing of the Twister™ seen from two different sides. 

As for SPME, compounds sorbed on the Twister can be thermally desorbed. After 

extraction of the analytes, the stir bars (Twister) can be introduced in the glass tube 

from the Thermal Desorption System (TDS) as described in Chapter 2 and thermally 

desorbed. 

The SBSE-method was introduced as an extension of SPME (Baltussen et al., 

1999a). In this research these two similar extraction techniques are compared in 

their usefulness of trapping airborne volatiles produced by female L. pabulinus in 

order to establish the pros and cons of SBSE in the identification of semiochemicals 

of insects relative to SPME. 
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3.2 Material and Methods 

3.2.1 Insects L. pabulinus bugs were reared as described in Chapter 2. 

3.2.2 Collection of emitted compounds 

Twister Headspace from female L. pabulinus was collected on the Twister in two 

ways; by means of dynamic and static headspace. To extract volatiles by dynamic 

headspace 3-4 female L. pabulinus together with a potato sprout and pollen were 

introduced in a 250 ml flask. A Twister was placed downstream of the filtered 

(humidified) air that passed through this flask at 50 ml/min. The sampling was 

conducted in a greenhouse during 5-10 hours. In the second way (static headspace) the 

Twister was introduced inside a 20 ml vial with 1-3 females and pollen during 2-3 

hours. In this last experiment the females could walk on the Twister. 

To compare the static headspace extraction with dynamic headspace extraction the 

sampling time of the static headspace was prolonged to 10 hours. 

SPME Before the collecting periods, the routine conditioning of the SPME fibre (100 

um PDMS phase, Supelco, Bellefonte, PA, USA) was done at 250°C for 10 min in a 

GC injector. Then the fibre was introduced downstream into the filtered (humidified) 

air that had passed through a 250 ml cage with 3-4 female L. pabulinus together with a 

potato sprout and pollen (dynamic headspace). The sampling was conducted in a 

greenhouse during 5-10 hours. In the static headspace situation 1-3 female L. 

pabulinus were kept in 20 ml vials with only pollen. The fibre was now inserted 

through a septum and sorption took place for 2-3 hours. 

3.2.3 Chemical analysis 

Twister Desorption of the compounds from the Twister was done by using the thermal 

desorption system (TDS) (Gerstel, Mülheim am Ruhr, Germany), described in the first 

section, mounted on a HP 6890 GC with a split/splitless PTV injector (CIS 4, Gerstel, 

Germany). The desorbed compounds were trapped in the PTV inlet at -100°C using 

liquid nitrogen. After desorption, the PTV was heated to 250°C to inject the 
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compounds and analyse them on a capillary column. A DB-23 column (J&W 

Scientific (Folsom, California), 30 m x 0.25 mm; film thickness: 0.25 urn) was used 

with a temperature programme from 40°C (2 min hold) to 238°C (25 min hold) at 

8°C/min. At the end of the column the flow was split using an effluent splitter 

(Gerstel™ Graphpack-3D/2) in a 1:1 ratio to a Mass Selective Detector (HP 5973) and 

a Flame Ionisation Detector. The MSD system was used in full scan mode scanning 

from 30-500 amu. Helium was used as carrier gas (inlet pressure 20.5 psi). 

SPME The compounds absorbed on the fibre were identified with GC-MS analyses 

using the GC-MS system as described for the analysis of the Twisters, but without the 

TDS. The splhVsplitless PTV-injector temperature was set at 250°C and the splitless 

period was 1 min. SPME fibres were desorbed during 1 min. 

Identification of the compounds in the gas chromatograms was based on comparison 

of mass spectra with those present in the NIST/EPA/NIH Mass Spectral library 

(Version 1.6) and by comparison of the Retention Indices with those of reference 

compounds. 

3.3 Results and Discussion 

Volatiles produced by female L. pabulinus could be trapped on an SPME fibre 

as well as on a Twister. Placing more than one Twister in the glass bottles with females 

during the same sampling time produced an identical chromatogram for each Twister. 

In this study the sampling time was not varied, but similar sampling times were used 

for SPME and SBSE. Recently many studies have been done on the theoretical 

background of sorption on PDMS phases (Louch et al., 1992; Pwaliszyn, 1997; 

Baltussen et al., 1998, 1999b, 1999c; Dugay et al., 1998). From these studies it is 

evident that the number of moles of analyte absorbed by the stationary phase (ns) 

depends on (1) the volume of the PDMS phase (Vs), (2) partition coefficient of the 

analyte (K) and (3) the sampling time (before equilibrium). The theoretical background 

is illustrated by equations 1 and 2 (Pawliszyn, 1997; Dugay et al., 1998): 

KVsVaqCaq _. 
m = (1) 

KVs + Vaa 
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K = ^ (2) 
VsiVaqCoq-ns) 

where Caq is the initial concentration of the analyte solution (in water or air) and Vaq 

the volume of the sample. In most experiments the volume of the sample (Va<]) is many 

times more than the value of KVS, which means that Eq. 1 can be simplified to Eq. 3. 

Tis = KVSCaq (3) 

From this equation it is clear that there is a linear relationship between the number of 

moles absorbed by the stationary phase, the concentration of the analyte and the 

volume of the stationary phase. When dealing with headspace analysis the volume of 

the sample does not consist of water but of water. Therefore the volume of the sample 

can better be given as Vair instead of Vaq and the initial concentration of the analyte as 

Cair instead of C^. 

In this study the usefulness of Twisters in pheromone research was compared 

with that of SPME, and therefore the same conditions were used. To study the 

efficiency of SPME and the Twister it was not necessary to test different sorption 

times. To determine the optimal time for extracting volatiles from dynamic headspace 

for SBSE, further experiments are needed, but this was beyond the scope of this 

research. 

Another remark should be that the relative concentration of compounds in the 

stationary phase might not correspond with the relative concentration in the headspace, 

as the partition coefficient (AT-value) will not be the same for all compounds; see Eq. 1. 

Compounds with a higher affinity for the PDMS stationary phase will be more 

absorbed relative to those with a low affinity. Experiments to determine the partition 

coefficients for individual compounds (using Eq. 2) are therefore of much interest 

(Bartelt, 1997). One of the advantages of PDMS sorption (SPME and Twister) is that 

the stationary phase has been extensively studied in the past, as PDMS is the most 

common GC stationary phase. Literature data on retention of many compounds are 

available as Kovats' Retention Indices. Baltussen et al. (1997) presented a simple 

approach to calculate the partition coefficient (A"-value) from these Retention Indices 

46 



Chapter 3 

(RI). One can now use PDMS sorption in quantitative analyses without the necessity to 

measure the £-value for each individual compound. 

E2H 

i 
1-oct 

__A i I I l> J l feil1 m 

Static headspace 

Ww 

TTiffrn^ 

Y Dynamic headspace 

8.00 12.00 16.00 20.00 24.00 

-» Time (minutes) 

28.00 32.00 

Figure 3.2 GC-MS analysis of a Twister placed by 5 females L. pabulinus in resp. a static and dynamic 

headspace situation during 10 hours. Separation carried out on a DB23 column. 

A: sequiterpenoids, E2H: (£>2-hexenal, 4: hexyl acetate, 1-oct: 1-octanol, 5: nonanal, 6: hexyl 

butyrate, 8: (£)-2-hexenyl butyrate, 9: (£)-4-oxo-2-hexenaL 

In Figure 3.2 two TDS-analyses are shown; respectively extraction of volatiles 

in a dynamic and a static headspace situation both with the Twister. The concentration 

of compounds absorbed on the Twister in the static headspace was higher, compared to 

the dynamic headspace situation. Due to the fact that in the static headspace situation 

there is more time to reach the equilibrium (compounds are not being "blown" away), 
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a higher concentration of compounds can probably be achieved. It might be possible 

that the flow in the dynamic headspace situation was too high for the highly volatile 

compounds to absorb on the PDMS-phase. The explanations given above are, 

however, very speculative. More experiments are essential to explain the differences 

between static and dynamic headspace analyses. Besides this quantitative difference, 

also some qualitative differences can be seen. Several compounds (between retention 

times 20 and 25 minutes in Figure 3.2) were present in the dynamic headspace 

analysis, but absent in the static analysis. These compounds were all sesquiterpenoids, 

which are typically plant-produced compounds. During the dynamic headspace 

analysis, a potato sprout was added to the flask. Bugs feeding on these sprouts induce 

the release of plant volatiles, which is observed in the dynamic headspace analysis. 

Therefore these compounds were absent in the static headspace analysis. 

There was no consistent qualitative difference between SPME and SBSE 

(Figure 3.3). This was expected, as the same stationary phase (PDMS) was used in 

both extraction methods. In some cases, a similar feature as in Figure 3.2 was 

observed, where some compounds are only present in the SPME analysis, but not in 

the chromatogram of the Twister analysis. A straightforward explanation for this is not 

at hand, but one should be aware that insects do not always produce the same 

compounds. Due to their (social) environment, in certain cases, different compounds 

are emitted. Nevertheless, the amount trapped on the Twister was much higher than 

that on the SPME needle (Figure 3.3). Because the AT-value is identical for both SPME 

and SBSE, almost only the volume of the stationary phase is of importance (Eq. 1), 

which is much higher in case of the Twister. Dugay et al. (1998) already showed that 

the mass of compounds extracted depends on the partition coefficient and the volume 

of the stationary phase. Therefore it is now possible to reduce the duration of sorption 

using a Twister or alternatively with the same sampling time a much higher sensitivity 

can be achieved. 
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Figure 3.3 Comparison of extraction efficiency of Twister and SPME. Extraction carried out by static 

headspace with 3 female L. pabulinus in 20 ml vial with pollen. Separation was carried out on a 

DB23 column. *: Impurities from the column, Twister or SPME-needle. 

Besides the higher sensitivity of the Twister, it has several other advantages 

over SPME. SPME experiments are easy to perform when insects are calling and thus 

emitting sex pheromone (Mozuraitis et al., 2000). The needle can then be held a few 

millimetres away from the tip of the abdomen or the sex pheromone producing organ, 

and kept there for a short time, which is enough to extract the compounds emitted by 

the calling insect. With insects that do not have a specific calling behaviour it is much 

more difficult to perform SPME, as it is not known when to place the fibre nearby the 

calling female. Moreover (large) living insects can easily damage the fibre. In contrast, 

it is easy to place a fresh Twister every 2 or 3 hours nearby a female and collect all 

emitted compounds, because the Twister is much more robust than the SPME-fibre. In 

this study, experiments were done where the SPME-fibre was placed in close vicinity 

of female L. pabulinus. This is not always successful as the insects can easily damage 

the fibre as they come in contact with the fibre during their flight. On the other hand, 
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nice results were obtained when female L. pabulinus were on or close by the SPME-

fibre as can be seen in Figure 3.4. 

_/Ul_J«_Jj^^c__A»jiJuAlJuJ~*_-X i . • • •• • ••!• U_A>JUl ^jL~^^ 

6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 

-» Time (minutes) 

Figure 3.4 GC-MS analysis of an SPME needle placed in a 20 ml vial with 2 female L. pabulinus and some 

pollen. Separation was carried out on a DB23 column. C23-C27 hydrocarbons are present 

between 20 en 24 minutes. 

In this SPME experiment also marginally volatile compounds were absorbed on the 

fibre. These compounds are important in the courtship behaviour of males (Chapter 5 

and 6). Because Twisters cannot be damaged, it is much easier to put one or two 

Twisters with female L. pabulinus and after 2-3 hours these can be analysed with the 

TDS. With the help of a magnet Twisters can be placed at almost every desirable 

place. 

Secondly, Twisters used for the sorption of compounds can be stored in clean 

vials (1.8 ml). Thus there is no need for direct analysis as is necessary for SPME. This 

means that collection of volatiles on a Twister can be done in a different lab than the 

actual analysis of the Twister, since transport of Twisters from one lab to another is no 

problem. Although this has not been investigated, storing of the Twisters in clean vials 

means it might be unnecessary to clean them just before each experiment, which is 
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advisable for the SPME-fibre. Once they are thoroughly cleaned, they can be stored 

until the next sampling. 

In conclusion, working with a Twister is as simple as SPME, but is much more 

sensitive and can be used to collect material from insects where SPME cannot be 

applied. SPME on the other hand can be used with any GC, while for analysing 

Twisters, an expensive thermal desorption unit is required. 
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Coupled gas chromatographic -

electroantennographic responses of Lygocoris 

pabulinus to female and male produced volatiles 

Abstract - GC profiles of airborne volatiles produced by adult female and male green 

capsid bugs, Lygocoris pabulinus, showed almost no differences, although females 

produced a small amount of mono-alkenes. Coupled gas 

chromatography/electroantennogram detector (GC-EAD) recordings revealed that three 

compounds were consistently EAD-active. These were hexyl butyrate, (£)-2-hexenyl 

butyrate and (£)-4-oxo-2-hexenal. Male antennae reacted strongly to these three 

compounds whereas female antennae gave no or little response. These compounds may 

be important chemical signals for male L. pabulinus in their long-range communication 

with conspecifics. This is the first report with data on successful GC-EAD recordings in 

Miridae. 
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4.1 Introduction 

Since the application of the electroantennogram technique (Schneider, 1957) in 

coupled electroantennography-gas chromatography (GC-EAD) (Arn et al. (1975), this 

technique has been widely used as screening technique in Lepidoptera (Roelofs, 1984). 

Recently, GC-EAD has also been applied to non-lepidopteran species, such as 

Hymenoptera (e.g. Baehrecke et al., 1989; Thiery et al., 1990), Diptera (e.g. Guerin and 

Stadler, 1982; Tommerâs et al., 1993), Coleoptera (e.g. White et al., 1988; Leal et al., 

1992), Orthoptera (Torto et al., 1994), Trichoptera (Löfstedt et al., 1994), Thysanoptera 

(Pow et al., 1999), Homoptera (e.g. Dunkelblum et al., 1995) and Heteroptera (see 

further below). 

In contrast with the knowledge about olfaction in Lepidoptera (Cardé and Minks, 

1997), in heteropteran species, to which L. pabulinus belongs, the neural basis of 

reception of plant odours and pheromone compounds is poorly known (Chinta et al., 

1994). Olfactory responsiveness of a single neurone of Triatoma infestons to human 

breath was the first report on bug olfaction (Mayer, 1968). Later on, electrophysiological 

studies on Oncopeltus fasciatus revealed that adult milkweed bugs have olfactory 

receptors on their antennae that respond to host plant odours (Pantle and Feir, 1976). 

Electrophysiological studies have also been performed on the pentatomid Nezara 

viridula in its relation to their olfactory perception of cis and trans isomers of bisabolene 

epoxides (Brézot et al., 1994). In mirids, olfactory perception of plant and insect odours 

has been studied in detail in Lygus lineolaris (Chinta et al., 1994) and Lygocoris 

pabulinus (Groot et al., 1999). However, these electroantennogram studies have been 

unable to shed further light on the sex pheromones in these mirids. It has been found 

difficult to perform GC-EAD-recordings on heteropteran species (Bjostad, 1998). E AG 

responses are low and together with unstable baselines result in low signal to noise ratios 

compared to Lepidopteran species (Brézot et al., 1994). The first report on successful 

GC-EAG recordings on heteropteran species was with an Alydidae spp. (Leal et al., 

1995). Recently, other GC-EAG recordings were published on seed bugs (Heteroptera: 
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Lygidae) (Aldrich et al., 1997), and stink bugs (Heteroptera: Pentatomidae) (Leal et al., 

1998; Dickens, 1999; Weissbecker et al., 2000). However, successful application of GC-

EAG in mirids is scarce. Innocenzi et al. (1998) reported on GC-EAD recordings with 

Lygus rugulipennis, although no data were shown. Despite abundant evidence that males 

are attracted to females (see Chapter 1), the sex pheromones of many mirids remain 

unknown (McBrien and Millar, 1999). Application of GC-EAD in Miridae species, 

might enhance the change of success in the identification of their sex pheromones. 

In this study coupled electroantennography-gas chromatography was successfully 

performed with both male and female antennae on headspace extracts from male and 

female L. pabulinus. 

4.2 Materials and Methods 

4.2.1 Insects Lygocoris pabulinus was reared as described in Chapter 2. 

4.2.2 Sample collection Virgin males or females (6-9 days old) were placed in two clean 

250 ml glass bottles (h. 20 cm, diam. 5 cm) (5-7 bugs per bottle) together with a potato 

sprout and pollen. Purified air (50 ml/min) was led through a bottle filled with water and 

hereafter through the two bottles. Compounds were trapped on glass tubes filled with ca. 

200 mg of Tenax TA (200-900 um, Chrompack, The Netherlands). Every 2-3 days the 

potato sprouts and pollen were replaced with fresh potato sprouts and pollen and every 7 

days the bugs were replaced by new virgin males or females (6-9 days old). After 8-10 

days the compounds on the Tenax tubes were each eluted with 4-5 ml of pentane:ether 

(2:1). Hereafter the two extracts were pooled and concentrated by passive evaporation to 

the atmosphere at room temperature and 1 atm. to ca. 1 ml. 

4.2.3 Bioassays The Y-track olfactometer bioassays were performed according to Groot 

et al. (2001). Male and female headspace extracts were tested against the solvent used for 

the headspace extracts. 
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4.2.4 Electrophysiology (GC-EAD) 2 ui of the headspace extract was analysed by the 

GC-FID-EAD system described by Weissbecker et al. (2000). The GC was equipped 

with either a DB5 or a DB23 column, (both 30 m x 0.25 mm ID; film thickness: 0.25 

urn) (J&W Scientific, Folsom, California) and a cold on-column injector. The initial 

oven temperature was set at 45°C. After 1 min the oven temperature rose with 8°C/min 

to 238°C. Helium was used as the carrier gas. Two Y-shaped GlasSeal capillary tubing 

connectors (Supelco, Bellefonte, Pennsylvania) were used to mix the effluent of the 

column with a make-up gas (helium, 30 ml/min) and to divide the resulting gas flow 

over two pieces of deactivated fused silica capillary leading to the FID and the EAG 

interface, respectively. The length and diameter of these capillaries were selected such 

that the flow was split in a ratio of 2 (EAG) to 1 (FID). The outflow of the column (to 

the EAG interface) was mixed with humidified air (600 ml/min) and was directed over a 

L. pabulinus male or female antenna via a 15-cm long Teflon coated stainless steel tube 

(5 mm ID). The antennal preparation was as follows. The head and a small part of the 

prothorax were cut off, and the tip of the one antenna was then clipped off. The 

indifferent electrode was inserted into the excised prothorax/head. The distal end of the 

antenna was then placed in a saline (Weissbecker et al., 1999) filled electrode connected 

to an Ag/AgCl-wire and hereafter via an interface box to a signal interfacing board 

(IDAC; Syntech, Hilversum, The Netherlands). FID and EAG signals were monitored 

synchronously using software and a GC/EAD interface card from Syntech. 

4.2.5 Chemical identification Extracts, used for the GC-EAG recordings, were analysed 

on a HP 6890 GC coupled to a HP 5973 MSD. The GC was equipped with a DB-23 

column (J&W Scientific, Folsom, California; 30 m x 0.25 mm; film thickness: 0.25um). 

The column was split at the end using a Gerstel™ Graphpack-3D/2 flow splitter with a 

split ratio of ca. 1:1. One part was led to a flame ionisation detector, while the other part 

was led to the MSD. The initial oven temperature was set at 40°C. After 2 min hold the 

oven was programmed at 4°C/min to 238°C which was held for 25 min. Helium was 

used as the carrier gas (constant flow of 2.4 ml/min, linear velocity: 48 cm/sec). Mass 
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spectra (EI, 70eV) were recorded from 30 amu. to 500 amu. Identification of compounds 

in extracts was carried out with GC/MS using reference spectra from the 

NIST/EPA/NIH Mass Spectral library (Version 1.6) and by comparison of retention 

times with those of reference compounds. 'H-NMR (200 MHz) spectra of the 

synthesised compounds were recorded on a Bruker AC200 spectrometer. 

4.2.6 Chemicals 1-Hexanol, 2-ethylfuran and bromine were all purchased from Acros 

Organics (Geel, Belgium) and hexyl butyrate from Roth (Karlsruhe, Germany). (£)-2-

hexenyl butyrate was synthesised as described in Chapter 2. (Z)-9-Tricosene, (Z)-9-

pentacosene, (Z)-7-pentacosene and (Z)-9-heptacosene were all synthesised as 

described in Chapter 5. Both isomers of 4-oxo-2-hexenal were synthesised as 

described below. All the chemicals used were > 98% pure. All solvents used were 

distilled twice before use. 

4.2.7 Synthesis 

(£)-4-Oxo-2-hexenal was synthesised according to Pikul et al. (1987). 

(£)-4-Oxo-2-hexenal: NMR ô (CDC13) 1.1, t, (CH3); 2.6, q, (COCH2); 6.7 (HA), 6.8 

(HB), 9.7 (CHxO), ABX, J^ 16Hz, Ax 6Hz, JBX 1Hz, CHB=CHA-CHxO (^-isomer). 

For mass spectrum see Figure 4.1. 

(Z)-4-oxo-2-hexenal was synthesised in two steps. First 2-ethyl-2,5-dimethoxy-

2,5-dihydrofyran was synthesised according to Hamann and Wissner (1989). Careful 

acid hydrolysis of this intermediate to (Z)-4-oxo-2-hexenal was carried out according to 

MacLeod et al. (1977) with the exception that the extraction was performed with CH2C12 

instead of ether. 

(Z)-4-Oxo-2-hexenal: NMR 5 (CDC13) 1.1, t, (CH3); 2.6, q, (COCH2); 6.2 q, J 7,12 

Hz; (HA), 6.95 d, J 12Hz (HB), 10.2 J 7 Hz (CHxO), CHB=CHA-CHxO (Z-isomer). 

For mass spectrum see Figure 4.1 
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Figure 4.1 Mass spectra of (£)-4-oxo-2-hexenal (A) and (Z)-4-oxo-2-hexenal (B) 

4.3 Results 

Male L. pabulinus were only attracted to headspace extracts collected from 

females (Figure 4.2). When a male headspace extract was tested in the Y-track 

olfactometer, males did not make a choice, while when a female headspace extract was 

tested ca. 75% of the males walked towards the female extract. 

Chemical identification of compounds present in male and female extracts 

revealed that, although the female extract was much more active, males and females 

produced a similar blend. However, only headspace from females contained a small 

amount of mono-alkenes. The compounds present in female extracts are listed in Table 

4.1. From this Table it is clear that there was a large variation in composition of these 

extracts. 
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number of males towards control number of males towards extract 
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Figure 4.2 Number of males moving towards headspace extracts from males (A) and females (B) !.. 

pabulinus in the Y-track olfactometer. * P < 0.001; n.s. P > 03. Different letters indicate 

significant difference (p < 0.001). 

TABLE 4.1 

females.9 

Lygocoris pabulinus volatile compounds identified by GC-MS in headspace extracts from 

Compound % ± s.e. male EAG response*1 

butyl acetate 

(£)-2-hexenal 

1-hexanol 

3-heptanone 

(£)-4-oxo-2-hexenal 

unknown0 

octanal 

(Z)-3-hexenyl acetate 

hexyl acetate 

limonene 

pentyl butyrate 

nonanal 

(Z)-3-hexenyl butyrate 

hexyl butyrate 

(£)-2-hexenyl butyrate 

decanal 

a-copaene 

ß-caryophyllene 

5,9-undecadien-2-one, 6,10-dimethyl 

(Z)-9-pentacosene 

(Z)-7-pentacosene 

2.5 ±3.9 

0.1 ±0.1 

4.0 ± 5.0 

0.6 ±0.9 

4.3 ±3.7 

0.5 ± 0.8 

0.1 ±0.3 

0.5 ±0.7 

1.2 ±0.9 

0.1 ±0.2 

0.3 ±0.5 
0.9 ±1.1 

0.3 ±0.5 

6.0 ± 12.4 

4.5 ± 1.6 

0.4 ± 0.4 

0.3 ±0.7 

1.7 ±2.6 

0.5 ±1.0 

0.5 ±0.6 

0.1 ±0.1 

sometimes 

strong 

sometimes 

sometimes 

sometimes 

strong 

medium 

* The compounds are listed in order of elution on a DB5 column. The mean percentage (± s.e., n=6) of each 

compound is calculated according to their peak area in the gas chromatogram. 
b EAG response from 10 GC-EAD recordings with male antennae. 

'Mass spectrum: 55 (100), 112 (58), 83 (36), 57 (23),97 (14) 
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Figure 4.3 Gas chromatogram from the separation on a DB5 column of a female headspace extract and 

corresponding EAG-responses from the antenna of a male L. pabulinus. The data represents 

2 GC-injections using the same extract in the same amount. 

Coupled GC-EAG experiments with a male antenna as sensing element and 

separation on a DB5 column, showed two peaks that were EAG-active (Figures 4.3 and 

4.4). Changing from the DB5 column to a much more polar column (DB23) showed that 

there were three important EAG responses (Figure 4.5). 
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Figure 4.4 Enlargement from Figure 4.3 in which can been seen that the first EAG-response is not on peak 

A, but on the small peak 9 identified as (£)-4-oxo-2-hexenal. 

The three compounds responsible for these responses were identified as hexyl 

butyrate, (£)-2-hexenyl butyrate and (£)-4-oxo-2-hexenal. In a few cases nonanal, hexyl 

acetate, (Z)-3-hexenyl butyrate and 1-hexanol, also elicited EAG responses, as is shown 

in Figure 4.6. The synthesised (Z)-4-oxo-2-hexenal did not elicit any EAG response in 

both males and females. 

Male and female headspace extracts showed the almost same chemical profile 

and also the same EAG-active compounds. Changing from an apolar to a more polar 

column only showed that not only hexyl butyrate, but also (£)-2-hexenyl butyrate was 

EAD-active. Female extracts contained a small amount of two alkenes, i.e. (Z)-9-

pentacosene and (Z)-7-pentacosene. These alkenes were also found in the leg extracts 

from males and females (Chapter 5). Yet, these alkenes did not give an EAG response in 

the set-up used. 

63 



GC-EAG 

56 8 

/ 

A-Miv* «.•* iM.m*nm, »^^«wii^ynMW 

GC-EAD 

[W iy^MfK^U 

Figure 4.5 
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Gas chromatogram from the separation on a DB23 column of a female headspace extract and 

corresponding EAG-responses from the antenna of a male L. pabulinus. The data represents 2 

GC-injections using the same extract in the same amount. 3: 1-hexanol, 4: hexyl acetate, 5: 

nonanal, 6: hexyl but) rate, 8: (£>-2-hexenyl butyrate, 9: (E)~4-oxo-2-hexenal. The arrows 

indicate that sometimes small EAG responses were obtained for 1-hexanol, hexyl acetate and 

nonanal. 

There was a strong difference in male and female reactions to the three EAG-

active compounds. From Figures 4.5 and 4.7 it is clear that the male antennae reacts 

much stronger to the three EAG-active compounds in the headspace extracts. (£)-4-oxo-

2-hexenal only showed small EAG responses in a few cases with female antennae, while 

male antennae reacted strongly to this compound. 
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Figure 4.6 Gas chromatogram from the separation on a DB23 column of a female headspace extract and 

corresponding EAG-responses from the antenna of a male L. pabulinus. Z3HB: (Z)-3-hexenyl 

but\rate, E2HB: (£>2-hexenyl butyrate. 

4.4 Discussion 

This study shows that it is possible to perform coupled GC-EAG recordings with 

the antennae of the green capsid bug, L. pabulinus. To my knowledge this is the first 

report with substantial data on GC-EAG detection in Miridae insects. It was possible to 

conduct GC-EAD recordings with an antennal preparation for about 30 minutes, 

sometimes even longer. The kind of preparation appeared to be somewhat critical as 

preparations with more of the thorax sometimes resulted in more unstable baselines. 

Preparations with the head only had somewhat lower responses and lasted shorter. 

However these differences were small and not consistent. 
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Figure 4.7 Gas chromatogram from the separation on a DB23 column of a female headspace extract and 

corresponding EAG-responses from the antenna of a female L. pabulinus. The data represents 2 

GC-injections using the same extract in the same amount. 

3: 1-hexanol, 5: nonanal, 6: hexyl butyrate, 8: (£)-2-hexenyl butyrate, 9: (£)-4-oxo-2-hexenal. 

The asterisk in the lower GC-EAD trace indicates an off-line stimulus. 

Studies on male and female headspace extracts with GC showed no distinct 

difference between compounds being produced by the two sexes, although the headspace 

from females contained a small amount of alkenes (see also Chapter 6). Aldrich (1988) 

reported that in many Lygus spp. extracts do not appear to contain sex-specific 

compounds. However, it is still possible that sex pheromone compounds are present in 

very small amounts, not detectable by FID, or that they are being masked by other 
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compounds (McBrien and Millar, 1999). This study indicates that this is not likely in 

Lygocoris pabulinus. No EAG responses were found on "new" compounds or at times in 

the gas chromatogram where no or unidentified FID signals were seen. Changing from 

an apolar to a more polar column only showed that besides hexyl buyrate, (£)-2-hexenyl 

butyrate is also EAD-active. It was however already known that this compound is EAD-

active (Groot et al., 1999) in L. pabulinus. 

The presence (£)-4-oxo-2-hexenal in L. pabulinus was already mentioned in 

Chapter 2, but it did not appear to be a female specific compound. This ketoaldehyde is 

commonly found in secretions from the dorsal abdominal scent glands (DAG) in 

heteropteran species (Aldrich, 1988 and references therein; Aldrich et al., 1991; Borges 

and Aldrich, 1992; Pavis et al., 1994) and in Nematinus melanaspis and N. pavidus 

(Boeve et al., 1984) and is commonly assigned as an alarm pheromone (Aldrich and 

Yonke, 1975; Farine et al., 1992). Recently, this ketoaldehyde was also found in airborne 

volatiles from a mirid, Lygus rugulipennis (Innocenzi et al., 1998). Interestingly it was 

only found in virgin female entrainments. It was suggested that this compound is not 

used as an alarm pheromone, but is part of the sex pheromone of L. rugulipennes. 

Despite my research no function of this compound in Lygocoris pabulinus could be 

found yet, but as only males respond strongly to this compound and females showed 

little or no response, it is not likely that (£)-4-oxo-2-hexenal acts as a defensive 

compound. Furthermore, (£)-4-oxo-2-hexenal is being produced by the DAG's in 

nymphs, which are mostly absent in adults. In only a few cases this compound was 

found in secretions from the metathoracic gland in adult bugs (Gilby and Waterhouse, 

1964; Pinder and Staddon, 1965). Due to the lack of knowledge about the secretions of 

the DAG's in L. pabulinus nymphs or in other mirid nymphs (Aldrich, 1988), the 

function of this compounds remains unclear. 

Comparing the electrophysiological responses from male L. pabulinus with male 

Lygus rugulipennis, male Lygocoris pabulinus respond to the same three compounds, i.e 

(£)-4-oxo-2-hexenal, hexyl butyrate and (£)-2-hexenyl butyrate. Interestingly, all these 

three compounds were absent in male Lygus rugulipennis headspace extracts. Female L. 
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rugulipennis produce the two esters in a ratio of 39:1. In contrast, both male and female 

Lygocoris pabulinus produce these two compounds in a ratio of 20:1 in favour of hexyl 

butyrate. Hexyl butyrate and (£)-2-hexenyl butyrate are also found in Lygus lineolaris 

(Gueldner and Parrot, 1978), in which both sexes produce these esters, but in different 

ratios. Females produced equal amounts, whereas males produced much less of the 

unsaturated ester. As in Lygocoris pabulinus, male Lygus lineolaris showed stronger 

responses to these esters than females (Chinta et al., 1994; Groot et al., 1999). These 

results indicate that these esters, hexyl butyrate and (£)-2-hexenyl butyrate, are probably 

common esters in Miridae. The exact function of these compounds remains unknown as 

no sex pheromone of any Lygus or Lygocoris species has been identified yet. However, 

the fact that all the above mentioned species produce these esters sex specific, in distinct 

ratios or in combination with the ketoaldehyde, suggests that these compounds might 

play an important role in the sexual communication. 

In Lygocoris pabulinus, these compounds may not be the only important 

compounds. The other compounds giving EAG responses, nonanal, hexyl acetate, (Z)-3-

hexenyl butyrate, and 1-hexanol, should also be considered. Nonanal was found to be 

EAD-active in Lygus lineolaris when volatiles captured from females feeding on bean 

pods (Chinta et al., 1994) were analysed, indicating that this alcohol might be of 

importance in pheromonal attraction. Because of the huge amount of hexyl butyrate 

present in headspace extracts of Lygocoris pabulinus, nonanal can only be seen as a 

shoulder in front of hexyl butyrate. Therefore it is not always clear whether nonanal 

elicits an EAG response. More experiments on another column could be of help to 

determine the EAD activity of nonanal. 

Interestingly there was a strong difference in EAG response between male and 

female antennae. Males reacted strongly to all three compounds especially to the 

ketoaldehyde, whereas females showed only a low or no response. Females also had low 

responses to the two esters. In other Heteropteran spp. no difference in male and female 

responses were observed (Leal et al., 1995, 1996, 1998; Aldrich et al., 1997) or reported 

(Weissbecker et al., 1999) when using male or female antennae as sensing element in 
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GC-EAD experiments. The fact that males reacted stronger to these compounds than 

females suggests that these compounds could act as a kind of aggregation pheromone in 

males. Groot et al. (1999) already mentioned that the sexual difference in response to a 

different class of compounds might be due to the fact that in mirids males are attracted to 

females, while females may use plant volatiles for their orientation. So male L. pabulintis 

are probably not only responding to female-produced compounds but to male and female 

produced compounds. Field tests with hexyl butyrate, (E)-2-hexenyl butyrate and (E)-4-

oxo-2-hexenal failed to catch any male L. pabulinus, but because of the instability of the 

ketoaldehyde, maybe a different dispenser should have been used (see also Chapter 7). 

The Y-track olfactometer bioassays revealed that males were attracted to female extracts, 

while male headspace extracts did not attract any males, indicating that there are still 

essential compounds absent in male extracts. As female extracts do contain some alkenes 

and these alkenes are active as a close-range attractant (Chapter 5 and 6), there is 

evidence that these compounds might play a role in attracting males within a certain 

distance. An explanation for the absence of EAG responses to these alkenes could be 

condensation of these compounds in the 15-cm tube leading towards the antennae. In a 

different GC-EAD set-up it was possible to obtain EAG-responses on the alkenes present 

in female headspace extracts and in female leg extracts. These results and a possible 

function of these alkenes, (Z)-9-pentacosene and (Z)-7-pentacosene, will be presented in 

Chapter 6. 
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Chapter 5 

Close-range attraction in Lygocoris pabulinus 

Abstract - Males of the green capsid bug, Lygocoris pabulinus, exhibit a specific 

courtship behaviour, i.e. a vibration of the abdomen. When both live and dead females 

were offered to males, this vibration behaviour was elicited in most of the males tested. 

When females were dissected into separate body parts, heads, wings and legs elicited 

equal responses, while thorax plus abdomen elicited a much lower response. When 

separate body parts were extracted, the leg extracts elicited significantly stronger 

responses than any other extract. This suggests that female L. pabulinus legs are either 

the source of a close-range sex pheromone, or pheromone is accumulated on the legs due 

to grooming behaviour. The leg extracts contained several hydrocarbons such as n-

alkenes, «-alkanes and some methylalkanes. Female extracts contained more (Z)-9-

pentacosene and male extracts contained more (Z)-9-heptacosene. Substrates on which 

females had walked elicited similar responses as female legs, indicating that the 

pheromone is deposited on the substrate. This enlarges the functional range of low-

volatility compounds, which are thought to function only when sexes are in close 

vicinity or in contact. 

* To be published in a slightly revised form: 
Drijfhout, F.P., and Groot, A.T. 2001. J. Chem. Ecol. in press 
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5.1 Introduction 

Sex pheromones are commonly used by insects to locate mates at long range and 

to stimulate mating at close range (Carlson et al., 1971; Cardé et al., 1975; Muhammed 

et al., 1975). Long-range sex pheromones have first been described and chemically 

identified in moths (Butenandt et al., 1959), and are now widely used for monitoring of 

lepidopterous pests (e.g. Minks and van Deventer, 1992; Cardé and Minks, 1997). In 

mirids (Heteroptera: Miridae), where virgin females attract males, long-range sex 

pheromones have been identified for three species up to now (Smith et al., 1991; Millar 

et al., 1997; Millar and Rice, 1998; McBrien and Millar, 1999). 

Close-range sex pheromones initiate courtship behaviour. Such pheromones are 

usually less volatile than long-range pheromones (Blomquist et al., 1993). Despite their 

low volatility, close-range pheromones may play an important role in the decision of an 

insect to land at a certain spot (Carlson et al., 1971). Without the addition of such 

pheromones, arriving males may not enter a trap (Cardé et al., 1975; Kennedy, 1977). In 

mirids close-range sex pheromones have not been reported so far. Major focus has been 

on attractive and alarm compounds from the metathoracic and accessory scent glands 

(e.g. Carayon, 1971; Staddon, 1979; Aldrich, 1988). Compounds identified from these 

glands have a carbon chain length of 2 to a maximum of 15 carbon atoms, and are most 

commonly aliphatic acids, aldehydes, ketones, alcohols, and esters (Staddon, 1979; 

Aldrich, 1988). Close-range pheromones may have carbon chain lengths of 20 to 30 or 

even more (Blomquist et al., 1993). The source of long-range pheromones in mirids has 

been suggested to be the metathoracic scent gland (Aldrich, 1988), or at least the thoracic 

region (Millar et al., 1997), although Graham (1988) identified the ovipositor region as 

source of attraction. Since the chemical nature of close-range pheromones may differ 

completely from long-range pheromones, their sources probably differ as well. 

To identify close-range sex pheromones, a specific arousal or courtship 

behaviour of one of the sexes should be distinguished. Males L. pabulinus exhibit a 

characteristic sex-specific courtship behaviour, namely a repeated vibration of the 

abdomen. Only males vibrate in the presence of females and only when they are 
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sexually mature (Groot et al, 1998). This vibration behaviour of male L. pabulinus 

was used to determine the source of attraction in females at close-range. Additionally, 

the compounds probably involved in this close-range attraction were identified. 

5.2 Methods and Materials 

5.2.1 Insects Lygocoris pabulinus were reared as described in Chapter 2. 

5.2.2 Bioassays Glass Petri dishes of 5 cm diameter were cleaned with acetone, and the 

bottoms were covered with white filter paper discs of the same diameter. The stimuli to 

be tested (on filterpaper) were placed in the Petri dishes, after which one male per dish 

was introduced. Stimuli consisted of one bug equivalent per Petri dish, and originated 

from bugs that were virgin and 6-9 days old. All males were observed for 15 min. If a 

male in a dish started to vibrate within this period, that dish was set aside and counted as 

a positive response. The number of Petri dishes with positive responses was calculated as 

a fraction of the total number of Petri dishes in which the stimulus had been applied. One 

to two hours before each test, virgin males of 6-9 days old were collected from the 

rearing cages and isolated in small glass tubes. Different stimuli were tested at the same 

time, and stimuli were tested on several different days. All experiments were carried out 

at 19-23 °C between 10.00 and 14.00 hours. 

5.2.3 Stimuli Tested First, a series of live females, dead females, live males and dead 

males were tested. Bugs were anaesthetised with C02, after which the heads were 

clipped off. In a following series freshly anaesthetised females were dissected into heads, 

wings, legs, and thorax plus abdomen. Thorax and abdomen were not subdivided, since 

clipping would mean cutting through several organs and glands that run from thorax to 

abdomen, which may then release a variety of chemicals. Thirdly, extracts were made of 

the different body parts of females, i.e. heads, wings, legs, and thorax plus abdomen. 

After anaesthetising fresh females with C02, the body parts were dissected and placed in 

1.8 or 4 ml vials. After dissecting all available females, 15-50 (il of either 
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dichloromethane, pentane, pentane:ether (2:1) or water per female was added, and this 

amount was set as one female equivalent of the regarding extract. The extracts were 

stored in a freezer (-20 ± 2° C) until used in bioassays. All extracts were used 1-14 days 

after the initial dissections. In a fourth series one female equivalent of a synthetic 

mixture (2.5 ug in total) was tested. The synthetic mixture consisted of 1-hexanol (40 

ng), hexyl butyrate (500 ng), (£)-2-hexenyl butyrate (25 ng), (Z)-9-tricosene (150 ng), 

(Z)-7-pentacosene (200 ng), (Z)-9-pentacosene (1000 ng), (Z)-9-heptacosene (200 ng), 

tricosane (80 ng) and pentacosane (80 ng) according to Table 5.1. 

5.2.4 Chemical Analysis Extracts were analysed with a dual column GC (HP 6890) 

equipped with an apolar DB-1 column (J&W Scientific, Folsom, California; 60 m x 

0.25 mm; film thickness: 0.25 urn) and a polar Stabilwax column (Restek, Bellefonte, 

Pennsylvania; 60 m x 0.25 mm; film thickness: 0.25 um) and two flame ionisation 

detectors. Oven program: 30°C (2 min hold) to 238°C (25 min hold) with 4°C/min. 

Hydrogen was used as the carrier gas (constant flow of 2.4 ml/min, linear velocity: 48 

cm/sec). GC/MS analysis was carried out on a Varian 3400 GC connected to a 

Finnigan MAT95 mass spectrometer. The BP5-column (SGE, Australia; 25 m x 0.25 

mm; film thickness: 0.25 urn) was programmed from 50°C to 270°C (4 min hold) at 

5°C/min. The mass spectrometer was operated in the 70 eV EI mode and scanning was 

done from mass 24 to 500 at 0.7 sec/dec. !H NMR (200 MHz) spectra were recorded 

on a Bruker AC200 spectrometer. FT-IR spectra were recorded on a Perkin-Elmer 

1725X spectrometer. Identification of compounds in extracts was carried out by 

GC/MS using reference spectra from the NIST/EPA/NIH Mass Spectral library 

(Version 1.6) and by comparison of retention times of reference compounds on the 

dual column GC. The position of the double bond in the alkenes was determined by 

derivatisation with DMDS according to Carlson et al. (1989). 

5.2.5 Chemicals Hexanol, tricosane, pentacosane, 1-bromotetradecane, 1-

bromohexadecane, 1-bromooctadecane, triphenylphosphine, nonanal, heptanal, n-

butyllithium in hexane, DMDS and urea were all purchased from Acros Organics 
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(Geel, Belgium), hexyl butyrate was purchased from Roth (Karlsruhe, Germany). (£)-

2-hexenyl butyrate was synthesised as described in Chapter 2. (Z)-9-Tricosene, (Z)-9-

pentacosene, (Z)-7-pentacosene and (Z)-9-heptacosene were all synthesised as 

described below. All the chemicals used were more than 98% pure. All solvents used 

were distilled twice before use. 

5.2.6 Synthesis 

Alkyltriphenylphosphonium bromide: A mixture of 0.3 mmol of the 

alkylbromide (1-bromotetradecane, 1-bromohexadecane or 1-bromooctadecane) and 

0.3 mmol of triphenylphosphine was heated to 140°C under a nitrogen atmosphere for 

5 hours. The reaction mixture formed a solid when cooled down and 5 ml of dry 

acetone and 12 ml of dry diethyl ether was added to the solid and cooled to -20°C 

(overnight). After filtration the alkyltriphenylphosphonium bromides were obtained as 

white crystals. 

Alkenes: A slurry of 5 mmol of powdered alkyltriphenylphosphonium bromide in 

10 ml of THF was prepared under nitrogen. The mixture was cooled in an ice bath and 5 

ml of DMSO was added after which 5 mmol of n-butyllithium in hexane was injected. 

The butyllithium was added at such a rate that the temperature of the mixture remained 

at 10-15 °C. After 5 min, 5 mmol of the aldehyde (nonanal or heptanal) was injected, 

and the resulting mixture was stirred for 30 minutes at ambient temperature. The mixture 

was diluted with water and extracted with petroleum ether 40/60. The extract was dried 

(MgS04), filtered and concentrated to give the alkene in 90% yield. The alkene was 

further purified with column chromatography on silica gel and eluted with hexane to 

give a mixture of Z- and is-isomers in a ratio of 85:15. 

5.2.7 Separation ofZ- andE-isomers The two isomers of the alkenes obtained from the 

synthesis were separated making use of their different complexation with urea 

(Leadbetter and Plimmer, 1979). One part of alkene and 5 parts of urea were dissolved in 

20 parts of methanol and the solution was left to crystallise at room temperature. The 

white crystals were separated by filtration. The methanol from the filtrate was 
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evaporated to obtain the (Z)-isomer in 97% purity. To obtain the (Z)-isomer in even 

higher purity the procedure was repeated. If the alkene could not be dissolved in 

methanol, isopropanol was added. 

(Z)-9-Tricosene: 

'H NMR ô* (CDCI3) 0.83-0.89, t, (6 H, -CH3); 1.2-1.6, m, (34 H, -CH2CH r); 2.0, m, (4 

H, =CH-CH2), 5.3-5.35, m (2 H, CH=CH); MS: m/z = 322 (M+); Kovats' Indices: 2320 

on Stabilwax and 2271 on DB-1. IR (film): vHc=cH(ds) 722 (m) cm"1 

(Z)-7-Pentacosene: 

'H NMR 8 (CDCI3) 0.83-0.89, t, (6 H, -CH3); 1.2-1.4, m, (38 H, -CH2CH2-); 1.9-2.0, m, 

(4 H, =CH-CH2), 5.3, m (2 H, CH=CH); MS: m/z = 350 (M4); Kovats' Indices: 2526 on 

Stabilwax and 2477 on DB-1; IR (film): vHC=cH(dS) 722 cm'1 

(Z)-9-Pentacosene: 

'H NMR 8 (CDCI3) 0.83-0.89, t, (6 H, -CH3); 1.2, m, (38 H, -CH2CH2-); 1.9-2.2, m, (4 

H, =CH-CH2), 5.3-5.4, m (2 H, CH=CH); MS: m/z = 350 (M+); Kovats' Indices: 2519 on 

Stabilwax and 2470 on DB-1; IR (film): vHC=CH(ris) 722 cm"1 

(Z)-9-Heptacosene: 

•H NMR 8 (CDCI3): 0.9, t, (6 H, -CH3); 1.1-1.5, m, (40 H, -CH2CH2-); 2.2, m, (4 H, 

=CH-CH2), 5.3, m (2 H, CH=CH); MS: m/z = 378 (M4); Kovats' Indices: 2721 on 

Stabilwax and 2671 on DB-1; IR (film): vHC=cH(cis) 722 cm"1 

5.2.8 Statistical Analysis If males responded to a source, differences in responses 

towards the different sources were statistically analysed by fitting a logit regression 

model with overdispersion to the daily observed counts of responses of a test 

(McCullagh and Neider, 1989), using the computer programme Genstat 5 (release 4.1, 

PC/Windows NT, 1997). In the model, source was taken as explanatory variable and the 

variance was assumed to be proportional to the binomial variance. First a chi-square test 
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for the residual deviance was conducted to determine overdispersion. Overall effect of 

treatments was determined by performing an F-test for the ratio of the mean deviance for 

treatment and the mean deviance of the rest. If the overall test was significant (p < 0.05), 

pairwise comparisons between treatment means on the logit scale were conducted, using 

the t-test. 

5.3 Results 

Live and dead females elicited similar responses, the fractions of vibrating males being 

0.88 ± 0.08 and 0.74 ± 0.09 (mean ± s.e.), respectively (Figure 5.1A). Live and dead 

males elicited vibration responses in few males. When the bodies of females were 

dissected, the head, wings and legs were equally attractive and as attractive as dead 

females, while the thorax plus abdomen of females were significantly less attractive 

(Figure 5.IB). Responses to freshly dissected wings and heads may be due to grooming, 

which spreads attractive compounds over the body surface. For confirmation of the 

presence of attractive compounds on the whole body surface, small pieces of filter paper 

were rubbed over female bodies (after anaesthesia and clipping off heads). When these 

pieces of paper were offered in clean Petri dishes, almost half of the tested males (0.41 ± 

0.07, mean ± s.e.) started vibrating (n=46). 

After extraction of the separate body parts of females with an organic solvent, leg 

extracts elicited significantly more vibrational response than all other extracts (Figure 

5.1C). Extracts from thorax plus abdomen did not elicit a response from males, which 

may be due to defensive compounds in the metathoracic gland. Therefore, extracts were 

also made of females' thorax plus abdomen, from which the metathoracic gland was 

removed by gently cutting the cuticle with two sharp tweezers, trying to destroy as little 

tissue as possible. Few males did respond to this extract (Figure 5.1C). When differences 

in responses between freshly dissected body parts and their corresponding extracts were 

statistically compared, male responses to the leg extracts were not significantly different 

from responses to freshly dissected legs, while wing and head extracts elicited 

significantly lower responses (P < 0.05) than freshly dissected wings and heads. 



Close-range attraction 

% 

1.0 

0.8 i 

0.6 

0.4 

0.2 

! 

B 
c 

Q 

> 
(0 

n 
E 

* c 
o 

2 

Females alive Females dead Males alive 
(16)1 (23) (16) 

1.0 

0.8 • 

0.6 " 

0.4 

0.2 -

0 

T 
V 
f s£ 

V 

a 

T 
•&^=~ 
s ^ S = -

s ^ = * 

l ^ ^ i = » 

a 

:^^= 
^=*^^ 
=^^= 

b 
T 

C O 
Head Wings Legs Thorax & A t 
(12) (27) (143) (50) 

domen 

Males dead 
(12) 

E 
"6 
c o 

2 

1.0 

0.8 

0.6 

0.4 

0.2 

0 
Extract 

Head (10) 
Extract 

Wings (54) 
Extract 

Legs (48) 
Extract Thorax 
& Abdomen2 

(12) 

Extract Thorax 
& Abdomen3 

(10) 

Figure 5.1 Male L. pabulinus responses (mean ± s.e.) to different stimuli. A: whole insects, B: body parts of 

females, C: extracts of female body parts in dichloromethane. 
1 Total number of males tested, 
2 Metathoracic gland left in thorax, 
3 Metathoracic gland removed from thorax. 

Significant differences were determined between sources within one group (A, B, C). Different 

letters above the bars indicate significant differences in each group at the S % level. See text for 

statistical methods used. *Not included in the statistical analyses, as no males responded. 

Figures in the bars kindly provided by A.T. Groot. 
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Solvent used for extract 

Figure 5.2 Response of male L. pabulinus to extracts of female legs prepared in different solvents. Mean ± 

S.E. (n= number of males tested). Different letters above bars indicate significant differences at 

p<0.05(2-tailed). 

Extracts prepared with organic solvents stimulated significantly more males to 

vibrate than aqueous extracts (Figure 5.2). The graph indicates that aqueous extracts 

caused only minimal vibration in males. Legs from female bugs, used for these 

aqueous extracts, still elicited vibratory behaviour in males. No significant differences 

in male vibration occurred using dichloromethane, pentane or a mixture of pentane 

and ether (Figure 5.2). 

In both male and female leg extracts the major part of the compounds consisted of 

hydrocarbons (Figure 5.3A). These hydrocarbons consisted of alkenes (75%), alkanes 

(20%) and some methylalkanes (5%). (Z)-9-Pentacosene was the most abundant alkene 

in females, while (Z)-9-heptacosene was the most abundant in males. The ratio of (Z)-9-

pentacosene and (Z)-7-pentacosene was opposite in males and females. 

Furthermore, sometimes the female extracts contained more (Z)-9-tricosene than 

male extracts (Figure 5.3B, C). Both male and female extracts contained three oxygen 

containing compounds: hexyl butyrate, (£)-2-hexenyl butyrate and sometimes 1-
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hexanol. Other minor compounds identified in the leg extracts of male and female L. 

pabulinus are listed in Table 5.1. Table 5.2 lists some characteristics used to identify the 

most abundant alkenes present in the extracts. 
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Figure 5.3 Gas chromatograms of L. pabulinus leg extracts. A: female leg extract. Enlargement of the 

cuticular hydrocarbon part of female (B) and male (C) extracts. Separation carried out on a 

DB-Wax column, Detector: FID. For explanation of the numbers see Table 5.1. 
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TABLE 5.1 Average composition (%) of extracts of legs from female and male L. pabulinus. 

No* Compound Females Males 

3 Hexan-1-ol° 

6 Hexyl butyrate b 

8 (£)-2-Hexenyl butyrate b 

10 Tricosaneb 

11 (Z)-9-Tricoseneb 

(Z)-9-Tetracosene 

Tetracosane 

12 2-Methyltetracosane 

13 Pentacosaneb 

14 (Z)-9-Pentacoseneb 

15 (Z)-7-Pentacoseneb 

9-Hexacosene 

2-Methylhexacosane 

16 (Z)-9-Heptacosene b 

(Z)-7-Heptacosene 

Heptacosane 

(Z)-9-Nonacosene 

1.7C±1.8 

19.2 ±13.7 

0.8 ±0.5 

6.3 ±1.9 

3.1 ±1.7 

<0.2 

<0.2 

3.3 ±1.5 

8.6 ±2.8 

40.8 ±9.2 

8.7 ±1.9 

<0.2 

<0.2 

7.6 ±4.6 

<0.2 

<0.2 

<0.2 

0.6 ± 0.4 

22.3 ±23.4 

0.8 ± 0.9 

0.4 ± 0.7 

0.1 ±0.1 

<0.2 

<0.2 

1.8 ±0.2 

10.6 ±4.9 

3.4 ±2.3 

20.5 ±4.8 

<0.2 

<0.2 

39.6 ±13.2 

<0.2 

<0.2 

<0.2 

" Numbers according to Figure 53 and Figure 5.4 
b Compounds used in the synthetic mixture 

c All values reported are mean % ± SD. 

TABLE 5.2 Characteristics used in identification of the four major alkenes present in leg extracts of L. 

pabulinus. 

Compound 

Name 

(Z)-9-tricosene 

(Z)-9-pentacosene 

(Z)-7-pentacosene 

(Z)-9-heptacosene 

Number in 

Table 1 

11 

14 

15 

16 

Kovats' Indices 

DB1 Stabilwax 

2271 2319 

2470 2518 

2477 2526 

2670 2719 

MS Characteristics 

m/z of parent peak and major fragments 
M 

after DMDS derivatisation 

322 173 (CrC9), 243 (C10-C23), 416 (M*) 

350 173 (CrC9), 271 (do-C»), 444 (M4) 

350 145 (C,-C7), 299 (C8-C25), 444 (Nf) 

378 173 (CrC9), 299 (Cio-Cj,), 472 (M4) 
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TABLE 5.3 Male vibration response to different parts of female legs 

Source fraction of males responding ± s.e. 

female legs 0.70 ± 0.05 143 

forelegs Ó.76±Ó.14 17 a1 

middle legs 0.71 ±0.15 17 a 

hindlegs 0.88 ±0.10 17 a 

coxae + femorae 0.45 ±0.14 22 b 

tibiae + tarsi 0.41 ±0.14 22 b 

1 different letters indicate significant differences between pairs (p < 0.05), 
2 different letters indicate significant differences between groups (p < 0.05). 

See text for statistical methods used. 

The vibrational bioassays suggest that female legs are the source of a close-range 

sex pheromone. To determine whether the source of attraction could be defined more 

precisely, female legs were subdivided into (A) forelegs, middle legs and hindlegs, or 

into (B) coxae plus femorae, and tibiae plus tarsi. In series A one pair of forelegs, middle 

legs or hindlegs of three females was placed in one Petri dish, so that 6 legs per dish 

were offered. In series B the 6 coxae plus femorae of one female were placed in one 

Petri dish, and the 6 tibiae plus tarsi in another. Table 5.3 shows that all parts of the legs 

were equally attractive, no significant differences were found between any pair. 

However, when the overall response to fore, middle and hind legs was compared to the 

overall response to coxae plus femorae and tibiae plus tarsi, responses to entire legs were 

significantly stronger than to those of parts. 

When legs contain attractive compounds, these compounds may be deposited on 

the substrate on which female L. pabulinus walk. To determine possible deposition of 

attractive compounds, three different substrates were tested: a piece of potato leaf 

(cultivar Bintje), a piece of green bean leaf (Phaseolus vulgaris, cultivar Miracle) and 

the glass of an empty Petri dish. One L. pabulinus female was allowed to walk in each 

dish for 75-140 min. As a control pieces of potato leaf or empty dishes on which males 

had walked for 60-120 min were tested, as well as pieces of potato leaves on which no 

bug had walked. In Table 5.4 is shown that males did respond to substrates on which 
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females had walked, while no males showed vibration behaviour in any of the control 

dishes. 

TABLE 5.4 Male vibration response to substrate on which females had walked 

Substrate 
Fraction of males 

responding ± s.e. 

potato leaf on which female had walked for 75-140 min 

bean leaf on which female had walked for 75-140 min 

empty Petri dish in which female had walked for 75-140 min 

potato leaf on which male had walked for 60-120 min 

empty Petri dish in which male had walked for 60-120 min 

potato leaf 

0.68 + 0.10 

0.64 ±0.13 

0.37 ± 0.09 

0 

0 

0 

39 

22 

46 

15 

10 

10 

a' 

a 

a 

* 
* 
* 

1 different letters indicate significant differences ( p < 0.05). See text for statistical methods used. * Not 

statistically analysed, as no male responded. 

During the 75-140 min that females walked around in the dishes, a 

characteristic pheromone-laying behaviour was not observed. In a second experiment 

a solid-phase microextraction (SPME)-needle [100 um polydimethylsiloxane coating 

from Supelco (Bellefonte, USA)] was positioned on the bottom of the Petri dish 

through a hole in the side. A metal strip was placed in a V-shape around the needle to 

reduce the amount of space the bug had, thus increasing the chance of bug-needle 

contact. One or two bugs were then placed in the Petri dish for 2-3 hours. Desorption 

of the SPME-needle (250°C) revealed the same hydrocarbon profile as found in the 

leg extracts of the corresponding sex. From Figure 5.4 it is clear that when females 

walked on or near the needle, a high concentration of (Z)-9-pentacosene was deposited 

on the needle. The volatile compounds 1-hexanol, hexyl butyrate and (£)-2-hexenyl 

butyrate were not always present. 

When the synthetic mixture, containing compounds derived from female leg 

extracts, was tested in the vibration bioassay, no males started to vibrate. A few males 

showed vibratory behaviour when male legs, loaded with (Z)-9-pentacosene, were 

offered (Table 5.5). Adding (Z)-9-tricosene to these legs did not result in more males 
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vibrating. When female legs were loaded with a high dose of (Z)-9-heptacosene, a 

similar amount of males showed vibration behaviour as when untreated female legs 

were offered (Table 5.5). 
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Figure 5.4 Gas chromatographic analysis of an SPME-needle on which a female bug had walked. 

Separation carried out on a DB-Wax column, Detector: FID. For explanation of the 

numbers see Table 5.1. 

TABLE 5.5 Male vibratory response to freshly dissected legs, with or without alkene added 

(n = number of males). 

Source 

synthetic mixture 

male legs 

male legs + 5 ug (Z)-9-pentacosene 

male legs + 5 ng (Z)-9-pentacosene + 1 ug (Z)-9-tricosene 

female legs + 5-8 ug (Z)-9-heptacosene 

female legs 

Fractions of males responding ± s.e. 

0 

0 

0.19±0.11 

0.05 ±0.06 

0.76 ±0.13 

0.70 ±0.06 

n 

32 a* 

5 a 

29 a 

10 a 

21 b 

143 b 

different letters indicate significant difference at p <, 0.05 (2-tailed). 
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5.4 Discussion 

The legs of L. pabulinus females consistently elicited vibration behaviour in 

males, suggesting that legs are the source of compounds involved in this close-range 

attraction in this species. Legs have been recognised as the site of sex pheromone 

release in the aphid Megoura viciae (Marsh, 1972), the mosquito Culiseta inornata 

(Lang, 1977), the tsetse fly Glossina morsitans morsitans (Carlson et al., 1978), the 

housefly Musca domestica (Schlein et al., 1980), and the parasitoid braconid 

Ascogaster reticulatus (Kainoh and Oishi, 1993). In some species, specific glands in 

the legs have been identified as the site of sex pheromone excretion (Marsh, 1972; 

Schlein et al., 1980). In L. pabulinus, responses to fore, middle and hind legs were 

equally strong. The lower response to parts of the legs compared to entire legs may be 

due to the lower amount of leg biomass per Petri dish in the latter group. From these 

experiments no specific site of possible glands in legs became apparent. 

Perhaps contact sex pheromones are not synthesised in specific glands in the 

legs. Cuticular hydrocarbons are probably synthesised by oenocytes, large cells in 

which smooth endoplasmatic reticulum and mitochondria are abundantly present, 

which appear to be restricted to epidermal tissue in thorax and abdomen (Gu et al., 

1995; Schal et al., 1998). After synthesis, attractive hydrocarbons may be deposited at 

specific target sites, as in the German cockroach Blattella germanica, where the wings 

accumulate large amounts of pheromone (Gu et al., 1995). Hence, the cuticle of legs 

may be the specific target deposition site of attractive compounds. 

The presence of close-range sex pheromone on the legs may also be due to 

grooming. Grooming may either accumulate pheromone from other body parts on the 

legs (Howard and Blomquist, 1982), or it may spread the pheromone from leg glands 

over the whole body surface, as in polistine wasps (Beani and Calloni, 1991), whose 

territorial marking pheromones from leg glands function as sex attractants as well. L. 

pabulinus males and females groom frequently (Groot et al., 1998) and the attractive 

compounds are not only present on female legs, but also on other body parts, as is 
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shown by the male response to female wings and heads, and to pieces of filter paper 

rubbed over female bodies. In short, the site of sex pheromone production does not 

have to be the site of pheromone release, specific glands are not necessarily involved, 

and grooming may enhance chemical dispersion or accumulation at specific sites. 

In mirids, close-range or contact pheromones have not been studied so far, and 

to my knowledge this is the first study on cuticular hydrocarbons of a mirid species. In 

L. pabulinus the major part of the hydrocarbons consisted of mono-alkenes with 

double bonds at A (C23:i-C29:i), followed by «-alkanes (C23-C27) and some 2-methyl 

alkanes (2-MeC24 and 2-MeC26). All compounds were C23-C29 hydrocarbons. This is 

also the first time that in L. pabulinus a clear-cut difference was found between male 

and female derived compounds, i.e. females produce a high amount of (Z)-9-

pentacosene, whereas males produce high amounts of (Z)-9-heptacosene. Because of 

the low amount of (Z)-9-pentacosene present in males, the ratio of (Z)-9-pentacosene 

and (Z)-7-pentacosene is opposite in males and females. To my knowledge, there are 

only two other studies on cuticular hydrocarbons in heteropteran species, the 

milkweed bug, Oncopeltus fasciatus (Lygaeidae) (Jackson, 1983), Triatoma infestans 

and T. mazzotti (Reduvidae) (Juarez and Blomquist, 1993). In all these species mostly 

«-alkanes, branched methylalkanes and dimethylalkanes were found. Furthermore 

hydrocarbons up to 41-43 carbon atoms were found. More importantly, male and 

female O. fasciatus, T. infestans and T. mazzotti had similar profiles, whereas L. 

pabulinus males and females produce a different blend of hydrocarbons. 

The hydrocarbons of L. pabulinus females appear to elicit vibratory behaviour 

in males, because the aqueous extracts from legs (in which no hydrocarbons are 

present) were not active. Furthermore, female legs used for water extraction remained 

active, indicating that the compounds were still present on the legs. Fractionation of 

the extracts on silica gel, eluting with subsequently pentane and a mixture of 

pentanerether (2:1), lead to two fractions; Fraction 1 containing the apolar 

hydrocarbons and Fraction 2 containing more polar oxygenated compounds. Vibration 
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bioassays with these two fractions suggested that both fractions were needed to elicit 

vibration behaviour in males, although only a slight increase was observed (Figure 

5.5). 

25.0 

20.0 

2 
n 
> 
(A 
O 
IS 

£ 
o 
c 
o 

15.0 

10.0 

Female 
Fraction 1 

and 2 (n=166) 

Male Fraction 1 

and female 

Fraction 2 (n=7) 

Female 
Fraction 1 and 
male FracUon2 

(n=21) 

Figure 5.5 Response of male L. pabulinus to different fractions from male and female leg extracts after 

fractionation on a silica gel column. Fraction 1: eluted with pentane; containing hydrocarbons. 

Fraction 2: eluted with pentane:ether; containing oxygenated compounds 

The composition of the fraction with oxygenated compounds of males and 

females did not show any difference. The similarity of this fraction between males and 

females was supported by the finding that this fraction from males combined with the 

hydrocarbon fraction of females did cause some vibratory behaviour in males. These 

results are however very preliminary as only a few males vibrated. Further research on 

the identification of active compounds is described in Chapter 6. 

In various species cuticular hydrocarbons have been identified as contact 

pheromones (e.g. Muhammed et al., 1975; Carlson et al., 1978; Bolton et al., 1980; 

Dillwith et al., 1981; Blomquist et al., 1993; Gu et al., 1995; Fukaya et al., 1996; Doi 

et al, 1997). Especially alkenes seem to be involved in the sexual communication 

(Howard and Blomquist, 1982). More precisely, (Z)-9-pentacosene is often the main 
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hydrocarbon present in beetles (Baker et al., 1979), ants (Morgan et al., 1992) and 

bees (Paulmier et al., 1999). In L. pabulinus, (Z)-9-pentacosene, in spite of being the 

only compound obviously present in lower amounts in males than in females, on its 

own was not active in bioassays. As the synthetic mixture did not elicit vibration 

behaviour in males either, probably more compounds are part of the contact pheromone. 

The most abundant male alkene, (Z)-9-heptacosene, did not act as a repellent, because 

female legs sprayed with a high dose of this alkene still elicited vibratory behaviour in 

males (Table 5.5). More experiments (which are described in Chapter 6) are needed to 

determine if there are other compounds present in the extracts that act as a vibration 

elicitor. 

The attractive compounds on female legs may be deposited on a substrate. Male 

L. pabulinus showed strong responses to substrates on which females had walked. The 

fraction of males responding to potato leaves, on which females had walked, was even 

similar to responses to female legs. When females were allowed to walk on an SPME-

needle, a similar chemical profile was found as in attractive female leg extracts. These 

results support the hypothesis that these hydrocarbons are deposited on the substrate. As 

a characteristic pheromone-laying behaviour was not observed, I suspect that deposition 

on the substrate occurs passively, or that pheromone is adsorbed to the substrate. 

Adsorption or deposition of attractive compounds on the substrate increases the 

probability of sex encounters, as it elicits intensive searching by males in these areas 

(Colwell et al., 1978; Fauvergue et al., 1995). Depending on their volatility, these 

pheromones are active at some distance, as in Megoura viciae (Pickett et al., 1992), or 

they elicit response at close range or upon contact, as in the other species mentioned. 

Adsorption of pheromone to a substrate also increases the surface area from which 

pheromone evaporates, thereby increasing both the degree of volatilisation and the 

possible communication distance (Colwell et al., 1978). Males may follow a gradient of 

intensity, created by the release of the compounds over time, to orient their movements 

towards females (Fauvergue et al., 1995). In this way, the functional range of low-

volatile cuticular hydrocarbons would be greatly enlarged. 

92 



Chapter 5 

Identification of the sex pheromones of mirid species is a challenging task. This 

study indicates that the sex specific cuticular hydrocarbons, probably in combination 

with esters, may play a role in the sexual communication of these bugs. Evidence is 

accumulating that such hydrocarbons not only function as contact pheromones, but are 

also involved in attraction at a (short) distance. Uebel et al. (1978) demonstrated that 

field catches of male Fannia canicularis and F. pusio increased slightly when alkenes 

were loaded on the lures. Connor et al. (1980) reported that the pheromone of the 

arctiid moth Utetheisa ornatrix (Z,Z,Z)-3,6,9-heneicosatriene plus a small quantity of 

an unidentified C2i tetraene), perhaps serves as a close-range orientation cue for 

locating the female. Recently, Schiestl et al. (1999, 2000) reported that flowers of 

Ophrys orchids also mimic the odour profile of bees by using this class of alkenes in 

order to attract these bees. Successful pheromone trapping of mirids might also have to 

take these close-range cues into account. 
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Chapter 6 

Mate location in the green capsid bug, Lygocoris 

pabulinus 

Abstract - Headspace extracts from female L. pabulinus, as well as female leg extracts 

attracted males in Y-track olfactometer bioassays. In contrast, only female leg extracts 

were active in the vibration bioassay. Male extracts had no activity at all in either 

bioassay. When the leg extract was analysed by coupled gas chromatography-

electroantennography (Z)-9-pentacosene and (Z)-7-pentacosene were EAD-active. (Z)-9-

pentacosene and sometimes (Z)-7-pentacosene were also observed in female headspace 

extracts. EAG responses could be obtained for (Z)-9-pentacosene. A mixture of (Z)-9-

pentacosene and (Z)-7-pentacosene in the ratio 5:1 elicited vibrational behaviour in 

males. These results indicate that these alkenes are important cues for male L. pabulinus 

in mate location behaviour. 
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6.1 Introduction 

Although some sex pheromones of the Miridae-family have been identified 

(Smith et al., 1991; Millar et al., 1997; Millar and Rice, 1998), little is known about the 

biology of these insects. It is still unknown where the pheromones are produced and the 

actual communication between sexes is also a black box. The courtship behaviour of 

some bugs has been studied (e.g. Dunbar, 1972; Borges et al., 1987; Rodriguez and 

Eberhard, 1994; Wang and Millar, 1997), but not in relation to the production site or 

identification of their sex pheromone. Recently, the sexual behaviour of Lygocoris 

pabulinus has been studied in detail in order to identify its sex pheromone (Groot, 2000). 

However, the sex pheromone and its production site remained unclear. Field and 

laboratory tests have shown that males are attracted to females (Blommers et al., 1988; 

Groot et al., 1996). Nevertheless, no specific calling behaviour of the females was 

observed (Chapter 5). Recently a sex specific behaviour of males was discovered, i.e. a 

vibration of the abdomen. Hence, a vibration bioassay was developed to test the activity 

of different extracts from males and females (Groot et al., 1998a, 1998b). In Chapter 5 

the chemical composition of these active extracts has been described, however, full 

identification of the active compounds eliciting the vibration behaviour was not 

accomplished. 

Apart from this vibration bioassay, Groot et al. (2001) described a different 

bioassay: the Y-track olfactometer. In this bioassay, females were found to be attractive 

to males, whereas males did not attract other males. In the present research the leg 

extracts used in the vibration bioassay, as well as headspace extracts from males and 

females were tested using this Y-track olfactometer. The results from the Y-track 

olfactometer bioassay and the vibration bioassay are compared. The activity of the two 

important alkenes, (Z)-9-pentacosene and (Z)-7-pentacosene (reported in Chapter 5) 

were also tested in the vibration bioassay. A possible system for mate location in male L. 

pabulinus is postulated. 

100 



Chapter 6 

6.2 Methods and materials 

6.2.1 Insects Lygocoris pabulinus was reared under summer conditions as described in 

Chapter 2. 

6.2.2 Bioassays 

Olfactometer tests The set-up used for conducting these experiments was as described 

by Visser and Piron (1998) with specific adjustments according to Groot et al. (2001) 

(see Figure 6.1). 

Figure 6.1 Schematic drawing of open Y-track olfactometer. The open front was covered by a black cloth 

during experiments. 1) incoming clean air, 2) air flow control, 3) open/close valve, 4) glass bottle 

under a tungsten lamp (25 W), used to test volatiles produced by living insects, 5) lamp in black 

cylinder with red filter, 6) glass tube with gauze, place where the filterpaper with extract or 

control (solvent) was placed, 7) brass rod (diameter: 4 mm, length to junction 13 cm) with 

extension at base for placing a male bug (reproduced with permission from Groot et al., 2001) 

101 



Mate location 

The Y-track was placed in a dark box under a halogen lamp (4-12V DC, 10 VA). To 

suppress flight intention of males, this lamp was placed in a black socket sealed with a 

red filter, so that the light intensity at the base of the Y-track was 6.3-6.5 lux only. 30-40 

ul of the extract to be tested was pipetted on a piece of filter paper (5 x 0.5 cm), which 

was placed in the outlet of the glass tube, approximately 10 cm from the Y-branch (of 

fork). One to two hours before each test, virgin males of 6-9 days old were collected 

from the rearing cages and isolated in small glass tubes. The extracts tested were (I) 

female headspace extract, (II) male headspace extract, (III) extract from female legs and 

(IV) extract from male legs. These were all tested against a control that consisted of filter 

paper loaded with 40 ul of the solvent used in preparing the extracts, i.e. pentane or a 

mixture of pentane:ether (2:1). 

Vibration Bioassays This bioassay was carried out as described in Chapter 5. The 

filterpapers (5 cm diameter) to be tested were loaded with 1 FE of female leg extract or 

ca. 70 ug of a mixture of (Z)-9-pentacosene and (Z)-7-pentacosene in a ratio of 5:1. In a 

second series hexyl butyrate and (£)-2-hexenyl butyrate (25 ug in a ratio of 20:1) were 

added to the alkene-mixture. 

6.2.3 Sample collection 

Headspace extracts Volatiles from males and females L. pabulinus were collected as 

described in Chapter 4. 

Leg extracts After anaesthetising fresh L. pabulinus with C02, the legs were dissected 

and placed in 1.8 ml vials. After dissecting all available insects, 15-25 ul of pentane per 

bug was added, the amount of which was set as one male or female equivalent of the 

regarding extract. The extracts were stored in a freezer (-20 ± 2° C) until used in 

bioassays. All extracts were used within 1-14 days after the initial dissections. 

6.2.4 Coupled gas chromatography-electroantennography (GC-EAD) Extracts were 

analysed by a GC-FID-EAD system. A Varian 6000 GC, with two injector-ports and a 

Flame ionisation detector (FID), was equipped with a DB23 column, (40 m x 0.20 mm 
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ID x 0.25 um film thickness) (J&W Scientific, Folsom, California). 2 ul of the extract 

was injected splitless (during 0.8 min) at an injector temperature of 250°C. The initial 

oven temperature was set at 50°C. After 1 min the oven was programmed at 8°C/min to 

238°C. Hydrogen was used as the carrier gas. The column effluent was split 1:1 (using a 

Y-connector) into two 35 cm long deactivated fused silica columns (0.25 mm ID), one 

connected to the FID and the other to the EAD. Make-up gas (nitrogen, 15 ml/sec) was 

added just before the split point (also using a Y-connector) to accelerate the effluent 

through the deactivated columns. The end of the column to the EAD passed through the 

second injector-port on the GC (T=250°C) and hereafter through a heating device 

(T=250°C) and extruded 1-2 mm out of the heating device into a Liebig condenser (45 

cm long). Humidified air (ca. 900 ml/min), which was cooled by leading the tubing for 

the air, upstream of the Liebig condenser, through a bucket of ice-water, was directed 

over the L. pabulinus antennal preparation. Additionally, cold water (3-7°C) was led 

through the Liebig condenser to further cool the humidified air so that the temperature at 

the antennal preparation was approximately 15°C (see also Figure 6.2). 

Liebig condenser 

water (3-7°C) 

4 antennae 

probe + 
amplifier 

column 

Figure 6.2 GC-EAD set-up. A: Pipet for off-line stimuli 

The antennal preparation was prepared as follows: four excised male antennae 

were placed between two gold wires (probe) (gold kindly provided by Dr. M.A. 
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Posthumus). This probe was subsequently attached to the input of an amplifier (Syntech, 

Hilversum, The Netherlands). The end of each gold wire was spoon-shaped and a drop 

of electrode gel (Spectra 360, Parker Laboratories Inc., USA) was placed on the spoon 

part. The tips of the four antennae were then inserted into the gel thus establishing 

electrical contact and holding them in place. Hereafter the probe was connected to the 

amplifier and inserted into the Liebig condenser so that the antennae were within 5 mm 

of the end of the column. FID and EAG signals were monitored synchronously using 

software and a GC/EAD interface card from Syntech. 

6.2.5 Chemicals Hexyl butyrate was purchased from Roth (Karlsruhe, Germany). (£)-2-

hexenyl butyrate was synthesised as described in Chapter 2. (Z)-9-pentacosene and (Z)-

7-pentacosene were synthesised as described in Chapter 5. 

6.2.6 Chemical analysis The analysis of extracts from male and female legs has been 

described in Chapter 5. The headspace extracts were analysed by gas chromatography 

and coupled GC/MS as described in Chapter 4. 

6.2.7 Statistical analysis Results from the Y-track olfactometer and the vibration 

bioassay were analysed by the software programme SAS (version 8), procedure 

GENMOD for logistic regression (1997). The following comparisons were made: 

Al: response towards the control versus response towards each of the tested extracts in 

the Y-track olfactomter. 

A2: response towards the female leg extract versus response towards the female 

headspace extract. 

Bl : response towards each of the tested extracts or chemicals in the vibration bioassay. 

6.3 Results 

In Figure 6.3 the response of males in the Y-track olfactometer towards the different 

sources is shown. Males walked significantly more towards either the female headspace 
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extracts or towards the female leg extracts. In total 130 (73%) males walked towards the 

female headspace extract versus only 49 males who walked towards the control. In case 

of the female leg extract 93 (72%) of the males walked towards the extract and 37 

towards the control. In case of the male headspace extract or the male leg extract, equal 

amounts of males walked towards the extract and the control. There was no significant 

difference between the female headspace extract and the female leg extract. 

response of males towards control response of males towards extract 

60 40 20 

* b 

20 40 60 80 100 120 140 

Figure 6.3 Responses of male L. pabulinus towards different sources in the Y-track olfactometer. A: 

male leg extract, B: male headspace extract, C: female leg extract, D: female headspace 

extract. * P < 0.001; n.s. P > 0.3. 
1 Different letters indicate significant differences (P < 0.001). 

Males did elicit the sex specific vibration behaviour when a mixture of (Z)-9-

pentacosene and (Z)-7-pentacosene was introduced in the bioassay. About 50% of the 

males vibrated when (Z)-9-pentacosene and (Z)-7-pentacosene were used in the ratio 5:1 

(Table 6.1). Adding hexyl butyrate and (£)-2-hexenyl butyrate to the stimuli did not 

effect the percentage of males vibrating. There was no significant difference between the 

female leg extract and the mixture of (Z)-9-pentacosene and (Z)-7-pentacosene. Extracts 

made from male legs were inactive. 
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TABLE 6.1 Male vibration response to male and female L. pabulinus leg extracts and synthetic compounds 

Source Fraction of males 

Responding ± s.e. 

1) Female leg extract 

2) (Z)-9-pentacosene + (Z)-7-pentacosene (5:1) 

3) (Z)-9-pentacosene + (Z)-7-pentacosene (5:1) + 

hexyl butyrate and (£)-2-hexenyl butyrate (20:1) 

4) male leg extract 

0.53 ±0.28 

0.52 ±0.17 

0.43 ±0.17 

0.03 ±0.05 

201 

83 

30 

33 

a 

a 

a 

b 

'Different letters indicate significant differences ( p < 0.001). 

The chemical composition of the leg extracts from males and females has been 

described in Chapter 5. In summary, females contained a high concentration of (Z)-9-

pentacosene and males had a high concentration of (Z)-9-heptacosene present. 

Furthermore the ratio of (Z)-9-pentacosene and (Z)-7-pentacosene was 5:1 in females 

and ca. 1:5 in males. In Figure 6.4 the gas chromatogram of a female leg extract is 

shown. The female leg extract contained very few highly volatile compounds, but a high 

amount of hydrocarbons. GC-EAD recordings shown in Figure 6.5 revealed that of these 

hydrocarbons two alkenes were EAD-active. 

10 

C 
(£)-2-hexenyl butyrate 

13 

JÜ 

14 

15 

16 

JAJUJL 
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> Time (minutes) 
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Figure 6.4 Chromatogram of GC-MS analysis of a female L. pabulinus leg extract. Column: DB23. 6: 

hexyl butyrate, 10: tricosane, 13: pentacosane, 14: (Z)-9-pentacosene, 15: (Z)-7-pentacosene, 16: 

(Z)-9-heptacosene. 
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Figure 6.5 Gas-chromatogram from the separation (on a DB23 column) of a female leg extract and 

corresponding EAG-responses from 4 male L. pabulinus antennae. * indicates consistent EAG 

responses. Other spikes/"signals" were not consistently showing up. 
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Figure 6.6 Chromatogram of GC-MS analysis of headspace extract from female L. pabulinus. Insert: 

Reconstructed Ion Chromatogram with m/z value of 350 amu (M+ of both (Z)-9-pentacosene 

and (Z)-7-pentacosene). 
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From Figure 6.6 it is clear that female headspace extracts contain a small amount 

of (Z)-9-pentacosene and (Z)-7-pentacosene. 

JUL. 

(Z)-9-pentacosene 
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Figure 6.7 Gas-chromatogram from the separation (on a DB23 column) of a female headspace extract and 

corresponding EAG-responses from 4 male L. pabulinus antennae. 6: hexyl butyrate, 8: (£)-2-

hexenyl buyrate, 9: (£)-4-oxo-2-hexenal. * indicates EAD-active compounds. 

t indicates spikes. 

GC-EAD recordings of these female headspace extracts in this set-up also 

revealed that (Z)-9-pentacosene is EAD-active (Figure 6.7). Although the signals are low 

and some false positive EAG-responses are seen, the EAG response on (Z)-9-

pentacosene was consistent in most of the recordings and can therefore not be 

characterised as a false positive EAG-response. 
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6.4 Discussion 

All the male extracts tested in the two bioassays were neither attractive to males 

nor did any vibration occur in males. This is in accordance with results of Blommers et 

al. (1988), i.e. males are only attracted to females, and hence there is evidence for a 

female produced sex pheromone. Interestingly, both female headspace and female leg 

extract attracted males in the Y-track olfactometer. When these two different extracts 

were chemically compared, a distinct difference can be seen. The headspace extracts 

contain primarily volatile compounds, while the leg extracts contain mostly 

hydrocarbons (C23-C27), which are only marginally volatile. In contrast, female and male 

headspace extracts were almost identical. Variations of compounds present (Table 4.1 in 

Chapter 4) and different ratios between these compounds were not sex specific. 

Variation between males and females was similar to that between females themselves 

and males themselves. In addition, both male and female headspace extracts contained 

the three most EAD-active compounds, i.e. hexyl butyrate, (£)-2-hexenyl butyrate and 

(£)-4-oxo-2-hexenal (Chapter 4) of which only the latter was absent in all leg extracts. 

However, hexyl butyrate and (£)-2-hexenyl butyrate failed to attract any males in the Y-

track olfactometer or in the field. Furthermore, these two compounds were present in 

similar concentrations and ratios in the headspace and leg extracts from males, which 

were not attractive to males. 

The only distinct difference between male and female headspace extracts was the 

presence of a small amount of (Z)-9-pentacosene and (Z)-7-pentacosene in female 

headspace extracts (Figure 6.6). These two compounds comprised also the main 

difference in male and female leg extracts (Chapter 5). Interestingly (Z)-9-pentacosene 

and (Z)-7-pentacosene were also EAD-active in female leg extracts (Figure 6.5). Only 

(Z)-9-pentacosene elicited EAG responses in GC-EAD recordings of female headspace 

extracts (Figure 6.7), but this is probably due to the low concentration of (Z)-7-

pentacosene in these extracts. Earlier GC-EAD recordings (Chapter 4) did not show any 

EAG responses on these alkenes, probably due to the long distance (15 cm) between the 

end of the column and the antennal preparation used. In the current set-up this distance is 
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very small (maximum of 5 mm), and therefore there is no chance of condensation of 

these alkenes. The signal-to-noise ratios of the responses obtained were however small 

compared to those with the set-up used earlier because of the unstable baseline in the 

current set-up. A different antennal preparation, like the one used in Chapter 4, could 

give a more stable baseline resulting in a higher S/N value. In order to accomplish this 

some technical adjustments regarding the antennal preparation have to be carried out. 

Therefore, a hole should be made in the Liebig condenser, near the outlet of the column, 

where the glass electrodes can be inserted. Although these alkenes are marginally 

volatile compounds, this is not the first time that EAG responses of such compounds 

have been recorded (Shiestl et al., 2000; Connor et al, 1980). 

In L. pabulinus, (Z)-9-pentacosene and (Z)-7-pentacosene elicit vibration 

behaviour in males. Earlier (Chapter 5) no activity was found using these alkenes, 

although some activity was found when male legs were loaded with a 5 times higher 

amount of (Z)-9-pentacosene than present in female legs. The amounts used in the 

current bioassays were 10-15 times higher than in the natural samples. Why males do 

vibrate when a much higher dose is offered is not clear. It might be that the actual 

concentration on the legs is higher if the amounts are plotted per area, because the piece 

of filterpaper has a larger surface area than legs. In addition, compounds may be 

absorbed by the filterpaper, hampering their release. Little is known about the actual 

release rate of these rather involatile compounds, and therefore in bioassays higher 

amounts than present in natural samples are used (Schiestl et al., 2000). 

There is still no evidence that the ratio of 5:1 is important for eliciting this 

vibration behaviour in males. Due to the lack of insects no experiments could be carried 

out with different ratios of (Z)-9-pentacosene and (Z)-7-pentacosene. It is even not 

certain whether (Z)-7-pentacosene is really necessary to elicit vibrational behaviour. 

More important is that a mixture of these two alkenes induced vibration behaviour in 

males. 

Alkenes or alkadienes are commonly used as recognition cues in (social) insects. 

Many reviews have been published on the function of alkenes and alkadienes in insects 
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(Howard and Blomquist, 1982; Blomquist et al., 1987; Lockey, 1988; Howard, 1993; 

Singer, 1998; Paulmier et al., 1999). It is thus clear that alkenes have different functions 

in insect communication. They can function as a mating stimulant pheromone, e.g. (Z)-9-

pentacosene in the little house fly (Uebel et al., 1977), contact pheromone or even an 

attractant at a short distance (Carlson and Beroza, 1973; Uebel et al., 1978; Schietsl et 

al., 1999,2000). 

In L. pabulinus these two alkenes probably do not only elicit vibration behaviour, 

but might also act as an attractant, as the female leg extract attracted as many males as 

the female headspace extract in the Y-track olfactometer. As (Z)-9-pentacosene and (Z)-

7-pentacosene are present in both female headspace and female leg extracts, it is likely 

that (Z)-9-pentacosene and probably (Z)-7-pentacosene play a role in attracting males in 

the Y-track olfactometer bioassay. This Y-track olfactometer is probably not suitable to 

distinguish between long-range and close range communication, due to the small 

distance (ca. 10 cm) between source (filterpaper) and insect. Because of this small 

distance, the Y-track olfactometer is probably a close range bioassay rather than a long-

range bioassay. Attraction of males in this bioassay is thus probably due to the presence 

of the alkenes in female extracts. This can explain why extracts from female legs and 

headspace extracts are equally attractive to males, although they contained compounds 

of different volatility. The absence of the alkenes, or their incorrect ratio, explains why 

male extracts are not attractive to males. Olfactometer tests with a mixture of the two 

active alkenes should provide proof whether they attract males either alone or in 

combination with volatile compounds present in headspace extracts. 

Nevertheless, it is unlikely that they serve as long-range cues in mate location. 

Still males could be trapped in the field (Blommers et al., 1988) indicating a long-range 

mate location behaviour in L. pabulinus. An explanation for this discrepancy could be 

that communication in L. pabulinus is indeed divided in two distinct steps: a long-range 

(Blommers et al., 1988; Groot et al, 1998a, 1999), and a close range step (Groot, 2000; 

Chapter 5). Long-range and close range communication has been found in the green 
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stink bug, Nezara viridula (Hemiptera: Pentatomidae) (Borges et al., 1987), i.e. long­

range mate location and a close range courtship behaviour. When extracts from males 

were used instead of males, only long-range female behaviour was observed. Borges et 

al. (1987) concluded that this close range behaviour involved sound signals, which has 

also been found by other authors (Ota and Cokl, 1991; Ryan and Walter, 1992; Jeraj and 

Walter, 1998). Yatsynin and Rubanova (1997) reported that various extracts from the 

female sunn pest {Eurygaster integriceps) did not cause long-distance attraction in 

males, but grooming and copulation were provoked in the immediate vicinity. Doi et al. 

(1997) proposed a similar long-range communication and a close range courtship 

behaviour in Drosophila ananassae. The sex pheromone was identified as (Z,Z)-5,25-

hentriacontadiene. It was supposed that after aggregation of males and females on the 

plant, involving (Z)-ll-octadecenyl acetate and (Z)-ll-eicosenyl acetate as aggregation 

pheromone (Schaner et al., 1989), male flies recognise conspecific females by this 

involatile hydrocarbon. Likewise, Syvertsen et al. (1995) found that once a male 

parasitoid Cardiochiles nigriceps (Hymenoptera: Braconidae) has located a female, 

antennation and mounting of the female are in part mediated by the alkadiene (Z,Z)-7,13-

heptacosadiene. Thus, compounds being produced by both male and female L. pabulinus 

may act as semiochemicals in the males to locate other green capsid bugs. Once they are 

in the vicinity of other L. pabulinus they might use (Z)-9-pentacosene and (Z)-7-

pentacosene to locate the females. These alkenes may trigger the decision of males to 

make a certain choice, as was found in the olfactometer test with the headspace extracts 

from females (Figure 6.3, entry C and D compared to A and B), or males will probably 

not enter the trap (Cardé, 1975). Furthermore field studies are necessary to investigate if 

males need both volatile compounds (present in headspace extracts) and alkenes (present 

in leg extracts) to actually enter the trap. 

Alternatively, as females deposit these alkenes on the substrate (Chapter 5) males 

may perceive these compounds and follow the trail towards the female or start to vibrate. 

It is not likely that the vibration behaviour in male L. pabulinus is elicited by sound 

signals from females, as males also vibrate when dead females or only legs from fe are 
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offered (Chapter 5). Whether females react on this vibration by males in a way as was 

found in N. viridula (Ota and Cokl, 1991), remains unclear. 
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Final results and discussion 

7.1 Techniques 

In this thesis the isolation and the identification of semiochemicals, which are being 

produced by Lygocoris pabulinus are described. Different methods (Chapter 2, 3 and 4) 

were used to accomplish this, and to determine whether males and females produce the 

same or different compounds. The sex specific compounds could be involved in the sex 

pheromone of L. pabulinus. Very promising results were obtained with the Thermal 

Desorption System (TDS) regarding the sex pheromone of Campylomma verbasci. The 

two sex pheromone compounds, butyl butyrate and (£)-2-butenyl butyrate (Smith et al., 

1991), were only produced by female C. verbasci. Volatiles stripped from male and 

female L. pabulinus however did not show any differences, but when legs from males 

and females were analysed a different hydrocarbon profile was found in the two sexes. A 

similar difference was found when a solvent extraction method was used to make the leg 

extracts (Chapter 5). Trapping airborne volatiles from males and females on Tenax 

(Chapter 4) did not reveal sex specific compounds, which was in accordance with the 

TDS method. TDS analysis revealed three major peaks in male and female L. pabulinus: 

hexyl butyrate, (üT)-2-hexenyl butyrate and (E)-4-oxo-2-hexenal, which were also found 

in the headspace extract together with other (plant) products. These results are illustrative 

of the potential of the TDS-method. The (apparent) absence of sex specific compounds is 

thus not the result of the method used, but caused by the fact that there are probably no 

sex specific compounds in the volatile secretions of the green capsid bug, this in contrast 

with C. verbasci. 

Stir Bar Sorptive Extraction (SBSE) is a useful way to extract volatiles from 

insects. Although the optimal conditions for using the Twister have not been 

investigated, similar compounds were present in analyses of Twisters compared with the 
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classical headspace collection via Tenax. In my opinion there are several ways (see also 

below) in which the Twister can be applied in pheromone research, of which only a few 

have been studied in Chapter 3. Additional studies to determine the optimal conditions 

are essential. On the other hand, a Thermal Desorption System is expensive and for this 

reason, SPME is likely to remain the most widely used method. 

7.2 Female Lygocoris pabulinus 

Female L. pabulinus did not show any calling behaviour, in contrast with two 

other minds, Distantiella theobroma (King, 1973) and Helopeltis clafiver (Smith et al., 

1977). Yet, this calling behaviour is more exception than rule, as in no other mirids, 

where sex pheromones are involved, calling behaviour could be observed or has been 

studied (McBrien and Millar, 1999). Because of the absence of this calling behaviour, it 

is still unknown when females are emitting pheromone. L.H.M. Blommers (pers. 

communication) found that females are active in the afternoon leading to the conclusion 

that they probably emit their sex pheromone at that time. In my experiments, volatiles 

were trapped during several days, disregarding the emission periods of females. As these 

extracts were as active as live females in the Y-track olfactometer (Chapter 6), the 

compounds involved in the attraction must also have been trapped. If females only emit 

sex pheromone during a short period, these compounds will be present only in small 

amounts, and may be overwhelmed by other compounds. Thus by comparing headspace 

from males and females these compounds might be overlooked. Therefore GC-EAD 

recordings with these extracts were carried out, but these experiments did not reveal 

additional active compounds, other than those already identified in the analyses of all the 

extracts. These results may be explained in two ways; either one or more of the EAD-

active compounds (Chapters 4 en 6) attract males towards females, or attractive 

compounds do not give detectable EAG responses (Leal et al., 1998). 

Aldrich (1988) suggested that the metathoracic scent gland (MTG) might be the 

site of pheromone production in mirids. Therefore the content of the metathoracic scent 

glands in females was studied using the TDS-method. Hexyl butyrate and (£)-2-hexenyl 
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butyrate (20:1) comprised almost 95% of the compounds present in this gland, but (E)-4-

oxo-2-hexenal was not found. The two esters, alone or in combination, failed to attract 

any males; hence the metathoracic scent gland is not likely to be the sex pheromone-

producing gland in L. pabulinus. Furthermore, hexyl butyrate and (E)-2-hexenyl butyrate 

are found in many other mirids (Gueldner and Parrot, 1978), indicating that at least more 

compounds must be involved in the sex pheromone. Little droplets excreted by female 

(and male) L. pabulinus at the legs were found to consist of almost pure (£)-4-oxo-2-

hexenal, but nothing is known about the origin. Hypothetically (£)-4-oxo-2-hexenal can 

be biosynthesised from (£)-2-hexenyl butyrate via hydrolysis a reduction and an 

oxidation step and in this way it may be derived from the metathoracic scent gland. 

These droplets were formed when handling the insects, suggesting that they may have a 

defensive role (Aldrich, 1988). On the other hand, the sex specific olfactory response 

caused by (£)-4-oxo-2-hexenal, described in Chapter 3, is not typical for defensive 

compounds. 

As little is known about when female L. pabulinus produce sex pheromone, it is 

also unknown if and when females stop producing pheromone. Groot et al. (2001) 

suggested that female L. pabulinus probably stop emitting pheromone when they are 

exposed to high concentrations of hexyl butyrate. Traps baited with live females and 2 

dispensers (each loaded with 20 mg hexyl butyrate) failed to catch any males. In order to 

study the behaviour of females in the vicinity of high amounts of hexyl butyrate, 

headspace was taken from females in the presence of 1 dispenser with 20 mg hexyl 

butyrate. Because of the large amount of hexyl butyrate it was difficult to compare the 

results with headspace taken from undisturbed females. It was also not possible to 

expose the females for longer periods to hexyl butyrate, as within 15 hours all the 

females died. According to A.T. Groot (pers. comm.) females stayed alive during the 

field experiments, indicating that the concentration of hexyl butyrate in the field was 

probably lower. Apparently when females are exposed to high concentrations of hexyl 

butyrate this leads to drastic changes in their physiological state and ultimately even to 

death. Probably long before this time this leads to a stop in pheromone production. It 
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may therefore be premature to conclude (Groot, 2000) that in the presence of high 

concentrations of hexyl butyrate females have a choice in starting or halting the active 

release of sex pheromone. In addition, one should be careful in stating that the 

unattractiveness of females is specifically caused by hexyl butyrate. Other esters of 

similar volatility, such as pentyl pentanoate or octyl acetate should be tested in a similar 

way to determine whether the observed effect can be specifically contributed to hexyl 

butyrate. 

This is not to say that hexyl butyrate has no effect at all on the sexual behaviour 

in females. Therefore more studies were carried out on females under stress conditions, 

maybe induced by hexyl butyrate produced by conspecifics. Some preliminary TDS-

analysis of female legs showed that disturbed females (5 females in a 20 ml vial), 

sometimes showed a different hydrocarbon profile. Most females have a pattern as 

described in Chapter 5 with (Z)-9-pentacosene and (Z)-7-pentacosene present in a ratio 

of 5:1 and low amounts of (Z)-9-heptacosene. However in a few cases it was observed 

that females had similar amounts of (Z)-9-pentacosene and (Z)-7-pentacosene present, or 

that even more (Z)-9-heptacosene was present than (Z)-9-pentacosene resembling the 

situation found in males. 

Figures 7.1 and 7.2 show the difference in hydrocarbon pattern in an undisturbed female 

and a disturbed female. Unfortunately there was no possibility to test individual females 

(disturbed or undisturbed) in bioassays and afterwards to analyse their legs to determine 

the hydrocarbon pattern. One thing that became clear from these preliminary 

experiments is that females can have different hydrocarbon patterns, which may affect 

on their attractiveness to males. The hydrocarbons are thus not present in fixed amounts, 

but their ratio can change. This provides evidence that these hydrocarbons in females do 

have more functions than only to constitute a waxy layer to prevent water loss. If 

prevention of desiccation should be the only function, one would not expect a 

differentiation between males and females. 
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Figure 7.1 TDS analyses from legs from A: disturbed females and B: undisturbed females. Separation was 

carried out on a DB23 column. 

Figure 7.2 Enlargement of the dashed blocked area in Figure 1. A: Disturbed females; B: undisturbed 

females. Note the difference in amounts of (Z)-9-pentacosene (14) and (Z)-9-heptacosene (16). 

15: (Z)-7-pentacosene 
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For numerous insects, analyses have shown that cuticular hydrocarbons are 

modified during the course of development (Brown et al., 1992; Provost et al., 1993 and 

references therein; Jurenka et al., 1998; Desena et a l , 1999) or influenced by the social 

environment (Trabalon et al., 1988; Benziane and Campan, 1993; Howard, 1998). 

Although diapausing face flies (Musca autumnalis) had a hydrocarbon profile different 

from reproductive insects, males and females had similar profiles (Jurenka et al. 1998). 

Nevertheless, Jurenka et al. (1998) mentioned that it would be interesting to determine 

the hydrocarbon profiles before and just after mating, as Uebel et al. (1975) reported that 

female face flies use several alkenes as sex pheromones. Literature about changing 

hydrocarbon profiles influenced by their social environment is sparse. Trabalon et al. 

(1988) showed that the total hydrocarbon level of unreceptive female Calliphora 

vomitoria dropped more than 70% compared to receptive females. Additional research 

(Benziane and Campan, 1992) showed that there was also a slight increase in both the 

relative proportions of the cuticular hydrocarbons and the concentrations of all 

hydrocarbons when female C. vomitoria were reared under isolated conditions. A 

reduced mating success might thus be mediated by changes in cuticular hydrocarbons. 

Before concluding too much from these results, it should be tested if females have 

the normal pattern before disturbance and if the profile changes during disturbance. 

Changes in the female hydrocarbon profile do not necessarily have to occur during 

disturbance; it can be the result of the rearing conditions (Benziane and Campan, 1992). 

Irrespective of when the hydrocarbon profile changes, it should be determined whether 

female L. pabulinus are receptive or unreceptive in relation to their hydrocarbon profile. 

If females with a different hydrocarbon profile are indeed unreceptive this will provide 

more evidence that the alkenes play an important role in the communication between 

male and female L. pabulinus. 

Further research to determine when these changes occur is necessary. To 

accomplish this the following experiment might be carried out: undisturbed females 

should walk on or nearby a Twister, which can then be analysed. Hereafter the same 

female should be disturbed and again allowed to walk on or nearby a Twister. After 
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analysing the second Twister, and comparing it with the previous one, the hydrocarbon 

pattern of the same individual female can be compared in a disturbed and undisturbed 

situation. 

7.3 Male Lygocoris pabulinus 

Like females, male L. pabulinus are also subjected to stress and may therefore not 

always be responsive to pheromones. Extracts tested twice in bioassays did not always 

give the same results, indicating that males (and females) must be in an appropriate 

physiological state to respond to an offered stimulus (or to produce pheromone). It is 

however unknown which conditions make L. pabulinus males become unresponsive to 

pheromones. Once during EAG experiments males did not respond 

electrophysiologically to (£)-4-oxo-2-hexenal (Figure 7.3). 

In Chapter 4 (£)-4-oxo-2-hexenal was found to be an EAD-active compound 

giving high EAG responses. Because the peak consisting of hexyl butyrate and (E)-2-

hexenyl butyrate (6+8 in Figure 7.3) did give clear EAG-responses, as normal (see 

Chapter 4), one cannot conclude that something was wrong with the EAG set-up. 

Besides, a mixture of (£)-4-oxo-2-hexenal, (£)-2-hexenyl butyrate and (Z)-3-hexenyl 

butyrate showed only EAG responses for the two esters. 

It is very peculiar that only one compound is not EAD-active at all, while 

normally this compound gives the best EAG response, even at low concentrations (see 

Figure 4.3 and Figure 4.4). The males used for this experiment all came from one rearing 

cage. A possible explanation for males not responding is a blockage of the receptor on 

the male antenna. This intriguing result can explain why in some cases males do not 

react positively in the Y-track olfactometer or in the vibration bioassay. 
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Figure 7.3 Gas chromatogram from the separation on a DB5 column of a female headspace extract and 

corresponding EAG-recordings from the antenna of a male L. pabulinus as described in 

Chapter 4. The data represents 2 GC-injections using the same extracts in the same amount. A: 

antenna responding to hexyl butyrate and (£)-2-hexenyl butyrate (6+8), (£)-4-oxo-2-hexenal (9) 

and small response on nonanal (5). B: antenna responding to hexyl butyrate and (£)-2-hexenyl 

butyrate (6+8) and small response on nonanal (5) but NOT responding to (£)-4-oxo-2-hexenal 

(9). 

Blocking of receptors has been noticed in other insects as well. Roelofs and 

Comeau (1971) did extensive field studies on compounds having synergistic or 

inhibitory effects in traps baited together with the sex pheromone of the red-banded leaf 

roller, Argyrotaenia velutinana. Other studies on pheromone perception in Trichoplusia 

ni and Mamestra brassicae moths showed that N-alkylmaleimides are able to block the 

receptor irreversibly (Berger and Estes, 1987; Renou and Brousset, 1994). No response 
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recovery was found in treated insects after 24 h, although no lethality was observed. 

Although high concentrations of the sex pheromone also caused inhibition of the EAG 

response, this was reversible within 15 minutes (Renou and Brousset, 1994). Studies 

done on pheromone detection with EAG in the processionary moth, Thaumetopoea 

pityocampa, showed an inhibition of the EAG-response up to 95 % when insects were 

exposed to pheromone inhibitors just before EAG-recordings (Parrilla and Guerrero, 

1994). Tests in the field with traps baited with the sex pheromone formulated together 

with pheromone analogues, showed a significant reduction of trap catches in several 

species (Riba et al., 1994; Parrilla and Guerrero, 1994) suggesting that males were 

unable to sense the sex pheromone with their antennae. It is however premature to 

explain this discovery solely by a blocking effect. To better understand the behaviour of 

L. pabulinus, with respect to stress, additional research is essential. 

From the results described above it can be concluded that both male and female 

L. pabulinus are sensitive to stress. This stress may affect the behaviour in females and 

stop the production of sex pheromone or change the hydrocarbon pattern. Stress may 

also affect the behaviour of males, by not responding to offered stimuli or by not 

responding positively in bioassays. Furthermore, it became clear that identification of the 

sex pheromone of the green capsid bug was not straightforward and that chemical 

communication between males and females in L. pabulinus is more complex than 

originally assumed. 

7.4 Applications in the field 

In Chapter 6 the role of (Z)-9-pentacosene and (Z)-7-pentacosene as attractants 

was already discussed. The question arises whether males can perceive these alkenes 

from a certain distance or only by making contact. Experiments done with SPME 

showed that a relatively high amount of these alkenes were found on the fibre. As the 

fibre was always in the vicinity of the insects, female L. pabulinus could easily walk on 

the needle, and deposit low-volatile compounds on the fibre. Walking on the fibre was 
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also observed with a video camera. Even when the fibre was held nearby dead females 

without touching them, these hydrocarbons were found on the needle (Figure 7.4). 
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Figure 7.4 Volatiles from 6 dead female L. pabulinus analysed with SPME on a DB23 column. The SPME 

fibre was placed with females in 4 ml vial during 18 hours and did not contact the dead bodies. 

6: hexyl butyrate, 8: (£)-2-hexenyl butyrate, 10: tricosane, 14: (Z)-9-pentacosene, 15: (Z)-l-

pentacosene, 16: (Z)-9-heptacosene. 

This gives evidence that (Z)-9-pentacosene and (Z)-7-pentacosene are present in 

the headspace of dead females, which leads to the conclusion that males also should be 

able to perceive these marginally volatile compounds, without touching females or 

leaves on which females had walked. Various studies have shown that cuticular 

hydrocarbons are involved in sexual attractiveness (for a review see Blomquist et al., 

1987). Some of these compounds have been described as pheromones involved in the 

sexual communication e.g. (Z)-9-tricosene in Musca domestica (Carlson et al., 1971), 

(Z)-7-tricosene in Drosophila stimulans (Howard and Bomquist, 1982) or (Z)-ll-

hentriacontene in Fanniapusio (Uebel et al., 1978). 

To establish the real function of the alkenes together with the EAD-active 

compounds windtunnel and field studies are essential. A mixture of all possibly EAD-

active compounds, i.e. hexyl butyrate, (£)-2-hexenyl butyrate, (£)-4-oxo-2-hexenal and 
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probably nonanal, 1-hexanol, hexyl acetate and (Z)-3-hexenyl butyrate, should be tested 

both in the windtunnel as in the field to determine whether males are attracted to these 

compounds. Addition of (Z)-9-pentacosene and (Z)-7-pentacosene should reveal if the 

number of males respond or trapped increases. Apart from these EAD-active compounds 

it remains unclear if tricosane plays a role in the (sexual) communication in L. pabulinus. 

From the Figures 1.7 and 5.3 it is clear that this alkane is more present in females than in 

males. Tricosane may function as an aggregation (or alarm) pheromone, as was proposed 

for tridecane in nymphs from Nezara viridula (Lockwood and Story, 1985). 

Earlier experiments with dispensers in the field had no success in trapping males. 

Compounds used for these dispensers are listed in Table 7.1. Yet, several aspects have to 

be taken into account, before drawing any conclusions. First of all, the control traps 

(baited with three live females) caught an average of only 4 males per trap per week in 

1998 or even worse, 1-2 males per trap per week in 1999 (Groot, 2000). Secondly, the 

instability of (£)-4-oxo-2-hexenal should be considered. Although some antioxidants 

were added to the dispensers it is not certain whether this unstable keto-aldehyde will not 

decompose too soon. Thirdly, almost no variation in the total amount of active 

ingredients in the dispenser was tested, although this can be of importance (Millar and 

Rice, 1997). Finally, only the delta traps used by Blommers et al. (1988) were used. 

When the alkenes are essential, it may be important to investigate the trap-design. 

Carlson and Beroza (1973) used seven different traps baited with 0.5 - 100 mg of (Z)-9-

tricosene (muscalure). The electric grid traps were most effective, probably not because 

of a better release rate, but because flies caught in the other traps could escape from these 

traps. In addition Schiestl et al. (2000) were able to attract bees from a distance of about 

50 cm with dummy-bees which were scented with C2o-C29 hydrocarbons. Because little 

is known about the exact release rate of these alkenes, a different trap might be necessary 

to catch the green capsid bug. Further research is essential to define the release rate of 

the alkenes in relation to the trap. 
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TABLE 7.1 Cmpounds used for lures in the field * 

(£)-2-hexenyl butyrate pentyl butyrate 

(£)-2-octenyl butyrate (£)-2-hexenal 

(£)-4-oxo-2-hexenal nonanal 

(Z)-3-hexenyl butyrate 1 -hexanol 

hexyl butyrate (Z)-9-tricosene 

butyl acetate (Z)-7-pentacosene 

hexyl acetate (Z)-9-pentacosene 

* Compounds were used in different ratios 

Although the ultimate aim formulated in Chapter 1 has not been reached, 

substantial data on the semiochemicals of both male and female L. pabulinus have been 

gathered. In addition, important knowledge about the function of the hydrocarbons in L. 

pabulinus was obtained. This research also showed that GC-EAD is a valuable tool in 

order to determine electrophysiological compounds present in secretions from bugs. 

Besides GC-EAD, several new techniques, i.e TDS, SBSE and SPME could be applied 

in the identification of both volatile and marginally volatile compounds from mirids. 

Especially the TDS has been found useful to identify marginally volatile compounds, 

such as cuticular hydrocarbons present in males and females (Chapter 2 and Figure 7.1). 

Several studies have shown that these hydrocarbons are useful compounds in 

chemotaxonomy (Lockey, 1991). Application of TDS in chemotaxonomy has therefore a 

wide perspective. 

Nevertheless, the sex pheromone has not been identified yet, but several 

compounds have been found in male and female L. pabulinus eliciting either an EAG 

response or a behavioural response in males (Chapter 4 - 6). Unfortunately, only a few 

experiments in the field were conducted with these compounds. There is still a lot of 

work to be done before final conclusions can be drawn on the application of the sex 

pheromone of L. pabulinus in IPM. In principle, monitoring the pest with its sex 

pheromone is possible, but Groot (2000) feels that in practice sex pheromone traps will 
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probably not be efficient or reliable tools. To support this statement, Groot (2000) refers 

to the low trap catches with caged females. Monitoring the pest with its sex pheromone 

is therefore probably difficult and may not be feasible as only one male per trap already 

indicates that damage thresholds will be exceeded (van den Ende, 1996). This does not 

mean that L. pabulinus cannot be controlled by means of its sex pheromone. Mating 

disruption might still be a promising possibility. The sex pheromone of Campylomma 

verbasci could be identified, yet catches in the field were not high. Caged females caught 

between 1-2 males per day (Smith et al., 1991). Blommers et al. (1988) caught an 

average of about 5 male L. pabulinus per week, which is more or less similar to the trap 

catches for C. verbasci. In spite of the low number of male C. verbasci trapped, mating 

disruption with the sex pheromone of C. verbasci has been successful (McBrien et al., 

1996, 1997). According to these results mating disruption of L. pabulinus might be 

feasible, although there is still a long way to go. 

In conclusion monitoring the green capsid bug by means of its sex pheromone 

needs to be further evaluated once the right blend of essential compounds is known. In 

addition, controlling this mirid pest by mating disruption might also be feasible. Several 

candidate compounds are now available to be tested in the field, to determine which of 

these compounds are necessary for controlling L. pabulinus. 
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Summary 

The green capsid bug, Lygocoris pabulinus (L.) (Heteroptera: Miridae) is a 

serious pest in fruit orchards, which is difficult to control. Because it is difficult to 

determine the actual population density, fruit growers apply insecticides against the 

green capsid bug on regular times to reduce the risk of crop damage (calendar 

spraying). Previous studies have shown that males are attracted to females and this 

might open the possibility to monitor this mirid pest with its sex pheromone. This 

ultimately would lead to a reduction in the usage of insecticides. Therefore this study 

to unravel the chemical structure and composition of the sex pheromone of this mirid 

was undertaken. 

Several methods were used to collect and identify volatiles emitted by male and 

female L. pabulinus. First of all, a thermodesorption system (TDS) was used. Intact 

females, males or pheromone glands were placed in the oven part of the TDS, which 

was subsequently heated, thereby stripping volatile compounds from the insect. With 

this method the composition of the known sex pheromones of Adoxophyes orana 

(Lepidoptera: Tortricidae) and Campylomma verbasci (Heteroptera: Miridae) were 

confirmed, using only a single insect per analysis. The advantages of this rapid method 

are its high sensitivity and the low degree of degradation and contamination of the 

stripped off compounds. This technique was effective in analysing volatiles from small 

insects by gas chromatography without prior manipulation, such as solvent extraction 

or distillation. 

Secondly, two similar methods were used to extract compounds from the 

headspace of female L. pabulinus. These methods, Solid Phase Microextraction 

(SPME) and Stir Bar Sorptive Extraction (SBSE) were both successful in trapping 

volatiles from L. pabulinus. SBSE was found to be much more sensitive than SPME, 

but SPME was easier to operate. 
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Bioassays play an important role to determine the biological activity of extracts or 

compounds. A disadvantage of the methods described above is that no material can be 

gathered to use in any bioassay. Therefore samples from both sexes of L. pabulinus were 

collected in two other ways. Firstly, headspace extracts were obtained by trapping 

volatiles from males and females on Tenax and subsequently eluting the Teanx with an 

organic solvent. Secondly, extracts were made from different body parts of the green 

capsid bug. 

In order to determine the biological activity of these extracts and of the pure 

compounds, two different bioassays were used, 1) a vibration bioassay and 2) a Y-track 

olfactometer. 

In the so-called vibration bioassay the specific courtship behaviour, i.e. a 

vibration of the abdomen, of male L. pabulinus was used. When both live and dead 

females were offered to males in this bioassay, vibration behaviour was elicited. When 

females were dissected into separate body parts, heads, wings and legs elicited equal 

responses, while thorax plus abdomen gave a much lower response. When these separate 

body parts were extracted with an organic solvent, the leg extracts elicited significantly 

stronger responses than any other extract. This suggests that female L. pabulinus legs are 

either the source of a (close-range) sex pheromone, or that female L. pabulinus 

accumulates the pheromone on the legs by grooming behaviour. Live and dead males or 

male legs did not elicit any vibration behaviour in males. Substrates on which females 

had walked elicited similar responses in males as female legs, indicating that the female 

deposits the pheromone on the substrate. This occurs passively as no depositing 

behaviour was observed in the females. 

In the Y-track olfactometer, males had to choose between two different sources of 

volatiles: the male or female extract to be tested and the solvent used to make these 

extracts as a control. Headspace extracts from male and female L. pabulinus, as well as 

male and female leg extracts were tested in the Y-track olfactometer. Both the female leg 

and headspace extracts attracted males. Male extracts had no activity at all. 
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All the extracts were analysed by Gas Chromatography/Mass Spectrometry 

(GC/MS) and coupled Gas Chromatography-Electroantennography (GC-EAD). Male 

and female headspace had an almost similar profile, except for a small amount of mono-

alkenes, sometimes present in female headspace extracts. Chemical analysis of the leg 

extracts showed that these contained several hydrocarbons such as «-alkenes, w-alkanes 

and some methylalkanes. Female leg extracts contained more (Z)-9-pentacosene while 

male leg extracts contained more (Z)-9-heptacosene. Furthermore, two alkenes were 

present in different ratios in males and females. (Z)-9-pentacosene and (Z)-7-pentacosene 

were present in the ratio of 5:1 in females, but in about 1:5 in males. (Z)-9-pentacosene 

and (Z)-7-pentacosene were also the two alkenes observed in female headspace extracts. 

GC-EAD recordings with the headspace extracts from both males and females 

revealed that three compounds were consistently EAD-active. These were hexyl 

butyrate, (£)-2-hexenyl butyrate and (E)-4-oxo-2-hexenal. These compounds were also 

found with the thermal desorption system (TDS) in males and females. Besides these 

compounds, sometimes EAG responses were obtained for 1-hexanol, hexyl acetate, 

nonanal and (Z)-3-hexenyl butyrate. In a different GC-EAD set-up the female leg 

extracts as well as the female headspace extracts were analysed. These recordings 

showed that also (Z)-9-pentacosene and (Z)-7-pentacosene were EAD-active. 

Although female headspace and female leg extracts differ much in composition, 

both attracted males in the Y-track olfactometer. On the contrary, male leg extracts did 

not attract males in this bioassay. The only difference between male and female leg 

extracts was the ratio of various alkenes. A mixture of (Z)-9-pentacosene and (Z)-7-

pentacosene in the ratio 5:1 elicited vibrational behaviour in males. The results indicate 

that these alkenes are important cues for male L. pabulinus and are probably also 

responsible for the attraction of males in the Y-track olfactometer by female headspace 

extracts. 

Male antennae reacted strongly to hexyl butyrate, (£)-2-hexenyl butyrate and (£)-

4-oxo-2-hexenal whereas female antennae gave little or no response, suggesting that 

these compounds may be important chemical signals as well for male L. pabulinus in 
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their communication with conspecifics. These three compounds, with or without any of 

the other compounds giving irregular EAG-responses, together with the alkenes are 

probably used by male green capsid bugs to locate females. Further research is needed to 

determine exactly which compounds are needed in a particular ratio to attract male L. 

pabulinus. 
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Samenvatting 

De groene appelwants, Lygocoris pabulinus (L.) (Heteroptera: Miridae) is een lastig te 

bestrijden plaag insect in de fruittteelt. Een betrouwbare methode om de 

populatiedichtheid te bepalen, ontbreekt. Daarom spuiten fruittelers elk jaar op geregelde 

tijden tegen dit insect. Eerder onderzoek heeft aangetoond dat de mannetjes van de 

groene appelwants gelokt worden door vrouwtjes. Daarom is een studie verricht naar het 

seksferomoon van deze wants met het doel synthetisch seksferomoon bij de bestrijding 

van deze plaag in te zetten. 

Diverse methoden werden in dit onderzoek gebruikt om de stoffen die door 

mannetjes en vrouwtjes van de groene appelwants worden afgescheiden te identificeren. 

Als eerste werd een zogenaamd Thermisch Desorptie Systeem (TDS) gebruikt. Met 

deze methode is het mogelijk om stoffen van het insect op de kolom van een 

gaschromatograaf (GC) te brengen door middel van verhitting van het monster. Intacte 

mannetjes en vrouwtjes, dan wel delen van het insect werden in een buis in de oven van 

de TDS gebracht. Na verhitting van de oven werden de stoffen die vrijkwamen 

geconcentreerd door middel van een zgn. koude val (-150°C) in de injector van de GC. 

Door snelle verhitting van de koude val (injector) werden de stoffen op de kolom 

gebracht, waarna deze stoffen gescheiden kunnen worden. Met deze methode werd de 

samenstelling van het seksferomoon van zowel de toortswants, Campylomma verbasci 

(Heteroptera: Miridae) als de vruchtbladroller, Adoxophyes orana (Lepidoptera: 

Tortricidae) bevestigd. Slechts een enkel insect was hiervoor nodig. Het voordeel van 

deze snelle methode is de hoge gevoeligheid en kleine kans op ontleding van de 

vrijgekomen stoffen en verontreinigingen. De methode is vooral geschikt voor de 

analyse van stoffen die door kleine insecten worden geproduceerd. 

Als tweede werden twee verschillende methoden getest om stoffen uit de 

headspace van de groene appelwants te extraheren. Deze methoden, Solid Phase 

MicroExtraction (SPME) en Stir Bar Sorptive Extraction (SBSE), zijn met elkaar 

vergeleken om te bepalen 1) of ze geschikt zijn als concentratie stap en 2) of er een 

voorkeur voor één van de twee methoden is. Beide methoden waren geschikt als 
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concentratie stap. SBSE is veel gevoeliger dan SPME, maar SPME kan veel 

gemakkelijker toegepast worden. 

Biotoetsen zijn van groot belang om de biologische activiteit van extracten en 

zuivere stoffen aan te tonen. Een nadeel van de hierboven genoemde methoden is dat er 

niet voldoende materiaal verzameld kan worden om biotoetsen mee uit te voeren. 

Daarom werden op twee andere manieren stoffen verzameld voor de biotoetsen. Dit 

werd in de eerste plaats gedaan door de vluchtige stoffen die door de wantsen werden 

afgescheiden op een absorbens (Tenax) te verzamelen en vervolgens met een organisch 

oplosmiddel van de Tenax af te spoelen. Bij de tweede methode werden bepaalde delen 

van het insect, waaronder de poten geëxtraheerd met een organisch oplosmiddel. 

Twee biotoetsen werden toegepast om de activiteit van deze extracten te testen. 

De eerste biotoets berustte op het sekse specifieke vibratiegedrag van de mannetjes. 

Mannetjes gaan namelijk trillen met het achterlijf als ze in de buurt van vrouwtjes 

komen. Mannetjes bleken dit trillingsgedrag te vertonen als levende of dode vrouwtjes 

werden aangeboden. Verschillende delen van het insekt, zoals poten, vleugels en kop 

gaven een zelfde respons te zien. Het borststuk met het achterlijf gaf een veel lagere 

respons. Wanneer deze verschillende delen met een organisch oplosmiddel werden 

geëxtraheerd, induceerde de extracten van de poten duidelijk veel meer trillingsgedrag 

dan de andere extracten. Dit zou erop kunnen wijzen dat de poten een bron van een 

zogenaamd korte afstand feromoon zijn. Een andere mogelijkheid is dat deze stoffen 

ergens anders geproduceerd worden, maar dat ze door het poetsgedrag van de vrouwtjes 

op de poten terechtkomen. Mannetjes van de groene appelwants, levend of dood, 

veroorzaakten geen enkel trillingsgedrag als ze aan andere mannetjes werden aangebo­

den. Als een bepaald substraat, bijvoorbeeld blad, waarop een vrouwtje van de groene 

appelwants een tijd lang had gelopen, aan mannetjes werd aangeboden, werd dit 

trillingsgedrag ook waargenomen. Dit geeft aan dat deze stoffen ook door de vrouwtjes 

aan het substraat worden afgegeven. Dit gebeurt waarschijnlijk passief, aangezien geen 

enkel actief depositie gedrag in vrouwtjes werd waargenomen. 
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In de tweede biotoets, een verticale Y-staaf olfactometer, konden de mannetjes 

kiezen uit twee aangeboden geurbronnen; het te testen extract en als controle het 

oplosmiddel gebruikt voor het maken van het extract. De headspace van vrouwtjes en 

mannetjes, evenals de extracten van de poten van vrouwtjes en mannetjes werden in de 

Y-staaf olfactometer getest. Zowel de headspace als de extracten van de poten van 

vrouwtjes waren aantrekkelijk voor de mannetjes. Geen van de mannetjesextracten was 

aantrekkelijk, dat wil zeggen de mannetjes maakten geen keuze tussen de extracten en 

de controle. 

Alle extracten werden geanalyseerd met gekoppelde gaschromatografie en massa 

spectrometrie (GC/MS) en gekoppelde gaschromatografie en electroantennografie 

(GC-EAD). Uit de GC/MS analyses bleek dat er bijna geen verschil was tussen de 

headspace van mannetjes en vrouwtjes; een aantal alkenen werden echter alleen in de 

headspace van de vrouwtjes gevonden. Chemische analyse van de potenextracten van 

mannetjes en vrouwtjes wees uit dat deze diverse koolwaterstoffen bevatten, zoals 

n-alkenen, n-alkanen en methylalkanen. Er was een duidelijk verschil in verhouding van 

deze koolwaterstoffen in mannetjes en vrouwtjes. De extracten van de poten van de 

vrouwtjes bevatten meer (Z)-9-pentacoseen dan de extracten van de pootjes van de 

mannetjes, terwijl de extracten van de pootjes van de mannetjes juist meer 

(Z)-9-heptacoseen bevatten. Verder was de verhouding waarin (Z)-9-pentacoseen en 

(Z)-7-pentacoseen in de extracten van de poten van mannetjes en vrouwtjes voorkwam 

niet hetzelfde. In vrouwtjes was deze verhouding 5:1 ten gunste van (2)-9-pentacoseen 

terwijl dat in mannetjes ongeveer 1:5 was. Deze twee alkenen werden soms ook in de 

headspace van vrouwtjes gevonden. 

Uit de GC-EAD afleidingen, van zowel mannetjes als vrouwtjes headspace 

extracten, kan worden afgeleid dat drie verbindingen constant goede EAG responsen 

geven. Deze verbindingen werden geïdentificeerd als hexyl butyraat, (£)-2-hexenyl 

butyraat en (£)-4-oxo-2-hexenal. Deze verbindingen werden al in een eerder stadium 

met de TDS-analyses gedetecteerd. Naast deze drie verbindingen werd een aantal 

andere verbindingen gevonden die alleen af en toe een EAG respons gaven. Deze 
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verbindingen zijn 1-hexanol, hexyl acetaat, nonanal en (Z)-3-hexenyl butyraat. Tijdens 

GC-EAD metingen op een andere opstelling werden ook EAG responsen gevonden 

voor (Z)-9-pentacoseen en (Z)-7-pentacoseen. 

Alhoewel de potenextracten van vrouwtjes en de headspace van vrouwtjes erg 

van elkaar verschilden in samenstelling, waren beide aantrekkelijk voor mannetjes in de 

Y-staaf olfactometer. Het extract van de pootjes van mannetjes was dat echter niet. 

Vergelijking van de extracten van de poten van mannetjes en vrouwtjes leverde een 

verschil in de alkenen samenstelling. Verder werd gevonden dat een synthetisch 

mengsel van (Z)-9-pentacoseen en (Z)-7-pentacoseen in de verhouding 5:1 eveneens 

trillingsgedrag in mannetjes opwekte. Deze resultaten geven aan dat deze alkenen een 

belangrijke rol spelen bij het gedrag van de mannetjes van de groene appelwants. Het is 

heel goed mogelijk dat deze alkenen ook verantwoordelijk zijn voor de aantrekking van 

de mannetjes in de Y-staaf olfactometer proeven aangezien deze alkenen ook in de 

headspace van vrouwtjes gevonden werden. 

De antennes van de mannetjes waren beduidend gevoeliger voor de EAG actieve 

stoffen dan de antennes van vrouwtjes. Hexyl butyraat, (£)-2-hexenyl butyraat en 

(£)-4-oxo-2-hexenal gaven sterke EAG signalen met de antennes van mannetjes, terwijl 

de antennes van de vrouwtjes weinig tot geen EAG signalen gaven. Dit geeft aan dat 

deze drie stoffen juist voor de mannetjes erg belangrijk zijn in de communicatie met 

andere soortgenoten. Deze drie stoffen, met of zonder de stoffen die alleen af en toe een 

EAG respons gaven, in combinatie met de alkenen worden waarschijnlijk door de 

mannetjes gebruikt bij het zoeken naar vrouwelijke soortgenoten. Verder onderzoek zal 

moeten uitwijzen welke combinatie van deze verbindingen in welke verhouding in staat 

is mannetjes van de groene appelwants te lokken. 
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List of abbreviations used in this thesis and numbering of 

compounds 

DMDS 

EAG 

FE 

FID 

FT-ffi. 

GC 

GC/MS 

GC-EAD 

MTG 

NMR 

PTV 

SBSE 

SPME 

TDS 

dimethyl disulphide 

electroantennogram 

female equivalent 

flame ionisation detector 

Fourier transform infra red spectroscopy 

gas Chromatograph 

coupled gas chromatography-mass spectrometry 

coupled electroantennography-gas chromatography 

metathoracic gland 

nuclear magnetic resonance 

programmable temperature vaporiser 

stir bar sorptive extraction 

solid phase microextraction 

thermal desorption system 

Numbering of compounds 

1 

2 

3 

4 

5 

6 

7 

8 

butyl butyrate 

(£)-2-butenyl butyrate 

1-hexanol 

hexyl acetate 

nonanal 

hexyl butyrate 

(Z)-3-hexenyl butyrate 

(£)-2-hexenyl butyrate 

9 

10 

11 

12 

13 

14 

15 

16 

(£)-4-oxo-2-hexenal 

tricosane 

(Z)-9-tricosene 

2-methyltetracosane 

pentacosane 

(Z)-9-pentacosene 

(Z)-7-pentacosene 

(Z)-9-heptacosene 
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