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Stellingen 

It is evident that aquaculturists should feed their fish rather than their pond. 
This thesis 

In aquaculture enterprises, the whole nitrogen cycle must be optimized to 
minimize nitrogen discharges into the environment. 

This thesis 

Rate differences between the various parts of the nitrogen cycle result from 
environmental differences between aquaculture systems. 

The concepts in the minds of scientists are easier to discuss and improve when 
they are presented as mathematical models. 

Fish driven resuspension increases pond productivity. 

In spite of growing computing power, computers will remain only tools to 
understand our environment better. 

"Data become information if we know the processes involved in the system. 
Information becomes knowledge if we understand how the system is operating. 
But knowledge becomes wisdom only when we see how the system must change 
and deal with reality" (Peter Allen: Coherence, Chaos and Evolution in the 
Social Context. Futures 26: 597, 1994). 

"A man with one watch knows what time it is. A man with two watches is never 
sure" (Segal's law). 
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General Introduction 

Background 

Aquaculture represents one of the fastest growing food producing sectors. By 

1998, the total production of cultured finfish, shellfish and aquatic plants reached 39.43 

million tons (FAO 2000). World food production will have to increase to satisfy the 

increasing demands of the growing world population, which will have grown to 8 

billion people by 2025. Fisheries production can not increase further, and therefore, any 

future growth in fish protein supply will have to come from aquaculture. The potential 

of aquaculture to meet the challenges of food security is clearly demonstrated by the 

rapid expansion of this sector, which has grown at an average annual rate of almost 10% 

since 1984 compared to 3% for livestock meat and 1.6% for capture fisheries production 

(FAO 1997). 

Aquaculture uses natural resources like water, land, fertilisers and feed. Ground 

and surface freshwater resources are finite, while societal demands for these resources 

are growing. Considering the explosive growth of aquaculture and the limited availability 

of its resources, there is a need for more efficient resource use. 

Aquaculture production systems can be characterised based on input/management 

levels, from extensive (low level of input/management) to intensive (high level of 

input/management). Growth in land-based aquatic production since 1984 was partly the 

result of intensification combining the use of high quality feeds, with increased stocking 

densities and water use. The high nutrient input levels applied in intensive culture may 

surpass the carrying capacity of the culture environment, and lead to water quality 

problems. By replacing the nutrient rich water with clean, nutrient poor water, culture 

problems due to bad water quality are avoided. However, the large amounts of water 

needed to maintain good water quality are not always available, and shortage leads to 

eutrophication of pond ecosystems. Dominance or frequent blooms of blue green algae 

(Sevrin-Reyssac and Pletikosic 1990), higher daily fluctuations in pH or dissolved oxygen 

concentrations (Smith 1985) and highly unbalanced C:N ratios (Avnimelech et al. 1992) 

are some of the problems related to eutrophication. In addition, discharging large amounts 

of nutrient rich water leads to eutrophication of the surrounding surface waters, where the 

above mentioned problems will also occur. With high levels of eutrophication, diseases 

occur more frequently, as reported for shrimp farms (Lightner et al. 1992). In regions with 

a high farm density, diseases easily spread among farms through the surrounding surface 
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waters. In all cases disease outbreaks leads to significant losses of farmed stocks and 

diminished financial returns. 

Nitrogen and aquaculture 

Nitrogen is an essential element in aquaculture. It is mainly present as protein, 

which is found in all life organisms. However, many inorganic forms of nitrogen are also 

present, and some forms can be toxic to aquatic organisms. Nitrogen inputs in the form of 

feeds/fertilisers enhance the aquatic production but simultaneously increase the potential of 

pollution of the surrounding environment. Control of nitrogen transformation processes 

in the pond combined with optimal feed utilisation in aquaculture systems are needed. 

On average, 30% of the nitrogen added to ponds as feed or fertiliser is recovered by the 

target organism, which means that 70% of the nitrogen input is excreted in a dissolved 

or particulate form (Edwards 1993). Nitrogen loading rates of aquaculture ponds are 

often limited by the capacity of the pond to assimilate nitrogenous excretion 

(Hargreaves 1998). 

The principal end product of protein metabolism in fish is ammonia. After oxygen, 

ammonia is the second most common limiting factor for fish stocking density (Robinette 

1976; Colt and Tchobanoglous 1978; Tomasso et al. 1979; Tomasso et al. 1980; Shilo and 

Rimon 1982; Schwedler and Tucker 1983; Palachek and Tomasso 1984; Meade 1985). 

Not all the effects of sub-lethal ammonia levels on growth are known, but ammonia may 

lead to proliferation of the gill epithelium, thus reducing the oxygen uptake capacity of the 

gills and affecting growth (Burrows 1964; Larmoyeux and Piper 1973). Production losses 

maybe substantial (Meade 1985). 

Just as in any other (intensive) agricultural practice, nitrogen discharge is one of 

the principal sources of pollution due to aquaculture (Jorgensen and Rasmussen 1991). The 

amount of nitrogen discharged from aquaculture farms is influenced by several factors 

such as the amount of feeds/fertilisers applied and their efficiency of use within the system. 

An important goal today is to maintain good water quality while improving the retention of 

the nutrient inputs into harvestable products. As a result, less nutrients will be discharged 

or lost. 

The nitrogen cycle in ponds is a mixture of various biotic and abiotic processes. 

The complexity of the nitrogen cycle, with many different forms of nitrogen existing side 
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by side, and the numerous transformation processes are shown in Figure 1. Although the 

basic processes of the nitrogen cycle were described in detail, it remains difficult to 

understand the complexity of the whole nitrogen cycle. 

NHj 

J SEDIMENTS, OXYDIZED I 

Organic N 
(fish, algae) 

Nitrification 

• 

Organic N 
(dissolved) 

Degradation 

Organic N 
(fish, algae) 

Resuspension 

Ammonifi cation 

Organic N 
Particulate Ammonification 

NR, 

Nitrification 

• 

Organic N 
Particulate 

SEDIMENTS, REDUCED | 

Ammonification 

Organic N 
Particulate 

Assimilation 

Ammonification 

i ' Nitrate reduction 

N03" 

Organic N 
Refractory 

Figure 1. Principal nitrogen forms and processes within the nitrogen cycle 
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Most of the literature on nitrogen cycling in shallow aquatic systems has been 

directly applied to aquaculture ponds. Management strategies to control the deleterious 

effects of nitrogen accumulation in the system have been proposed, but their 

effectiveness is limited by our present understanding of the nitrogen cycle in 

aquaculture ponds. Studies of nitrogen cycling under the particular circumstances 

prevailing in earthen aquaculture ponds are scarce. A better understanding of the fluxes 

and transformations of nitrogen in aquaculture production systems is, therefore, needed. 

Modelling of the nitrogen cycle 

Modelling of the nitrogen cycle allows to explore, to understand, and to re-evaluate 

relationships between N-species in the system. In aquaculture, the use of computer models 

both to understand the basic structure and function of systems and to evaluate the impact of 

management practices has increased considerably. Still, application of mathematical 

modelling to aquaculture is a relatively new endeavour. General principles of modelling 

and simulation of aquaculture systems were reviewed (e.g. Bolte et al. 1986; Piedrahita 

1988; Cuenco 1989; van Dam 1990). Most of the models, though, are related to particular 

aspects of the functioning of the aquaculture system (Colt and Orwicz 1991; Wheaton 

1991; Piedrahita 1991; Kochba et al. 1994; Avnimelech et al. 1995; Hargreaves 1997; 

Montoya et al. 1999; Drapcho and Brune 2000; Verdegem et al. 2000). Models for 

nitrogen dynamics of whole farming systems have been proposed recently. Jamu (1999) 

proposed a model for integrated aquaculture/agriculture systems and Nielsen et al. (1999) 

proposed a model for the nitrogen cycle in a system for combined production of rice and 

crayfish. 

The principal chemical and/or biological processes involved in the nitrogen cycle 

are: nitrification (some times divided into nitritification as the microbial oxidation of 

ammonia to nitrite, and nitratification, the oxidation of nitrite to nitrate, with a number of 

less important intermediates), denitrification (the dissimilatory reduction of oxidised 

nitrogen into gaseous oxides and nitrogen gas), nitrate reduction (another dissimilatory 

reaction, known also as nitrate respiration), ammonification (the bacterial conversion of 

organic nitrogen into NH3 or NH/), nitrogen utilisation (also known as assimilation or 

nitrogen immobilisation), fixation (the biological utilisation of N2 by some prokaryotic 
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organisms) and excretion (by plants and animals). Besides, some physical processes are 

also involved in the cycle, namely volatilisation (a transport process from the water 

column to the air), and diffusion-flux (a passive physical process of movement of gases or 

dissolved nitrogen between the sediment-water interface, along a concentration gradient). 

Hargreaves (1998) presented an extensive review of nitrogen biogeochemistry in 

aquaculture ponds. 

Nitrification 

Nitrification has been generally modelled as a first-order process following one or 

two step oxidation processes (Zison et al. 1978). The Monod equation, analogous to 

Michaelis-Menten (single enzyme, single substrate) has been used and is normally written 

as: 

dC , , „ C 
—— = t'xCtfi< — 
dt C + Ks (1) 

where k' is the specific substrate uptake rate, C is the substrate concentration, Ks is the 

Monod half-saturation constant, and CM is the concentration of nitrifiers. If in a system the 

concentration of nitrifiers CM is constant (e.g. in steady state conditions), the Monod 

equation can be simplified to: 

dC_ 

dt 
= k* 

C 

C + Ks 
(2) 

where k is the first-order rate constant. Stratton and McCarty (1967) applied Monod 

kinetics to nitritification and nitratification in ammonium or nitrite enriched water samples 

of a river, and calculated k' and Ks for measurements done under different temperatures 

and different initial substrate (NH4+ or NO2") concentrations (Table 1). Typical values of 

kinetic constants for nitrification, following the Monod model, were reviewed by Painter 

(1977) and Sharma and Ahlert (1977). 
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Table 1. Some reported parameters for nitrogen processes in aquatic environments 

Process/ 
Parameter 

Nitrification 
k' 

ks 

e 
Denitrification 

k 
b 

kd 

kd 

kd 

kd 

kd 

Ammonification 
kNH4 

kNH4 

Assimilation 
kN 

kN03 

kNH4 

kN 

kN 

kN 

Name 

Specific substrate uptake 
rate 
Monod constant 

Temperature coefficient for 
nitrifying organisms 

Kinetic parameters 
Kinetic parameters 
First-order rate constant 
(nitrogen balance) 
First-order rate constant 
(calibration) 
First-order rate constant 
(curve fitting) 
First-order rate constant 

First-order rate constant 

First-order rate constant 

First-order rate constant 

First-order rate constant 

Michaelis-Menten constant 
for nitrate 
Michaelis-Menten constant 
for ammonium 
Michaelis-Menten constant 

Michaelis-Menten constant 
Michaelis-Menten constant 

Value 

0.75 to 2.52 d_l a 

3.44 to 7.56 d-"" 
1.85 to 5.59rag!/1" 
0.06 to 1.77 mgL"'b 

0.877 to 1.120 

12 to 143 
0.4 to 0.9 
0.02 to 0.03 d'1 

0.039 to 0.044 d"1 

0 to 1.3 d'1 

0.17 to 1.21 d"1 

0.406 to 1.175 d"1 

0.021 to 0.120 

0.1 d"1 

0.15 d"1 

0 to 0.035 mg L"1 

0.025 mg L"1 

0.2 mg L'1 

0.005 mg L'1 

0.001 to 0.009 mg L'1 

Source 

Stratton and McCarty 
1967 
Stratton and McCarty 
1967 
Jenkins 1969; Zanoni 
1969; Smith 1977 

Andersen 1977 

j0rgensen et al. 1978 

Jorgensen et al. 1978 

Billen 1978 

Van der Borght and 
Billen 1977 
Madsen 1979 

Fallon and Brock 1979 

Avnimelech et al. 1995 

Avnimelech et al. 1995 

Scavia 1980 

Scavia 1980 

Lehman et al. 1975; 
Chen and Orlob 1975 
Scavia and Park 1976 
Pasciak and Gavis 1974 

1 nitratification 
5 nitritification 

Several models consider oxygen, temperature and/or pH as limiting factors for 

nitrification (see Box 1). According to Ohgaki and Wantawin (1989), the most crucial part 

of modelling nitrification is the accurate estimation of nitrifying bacterial growth, and the 

reliability of nitrification modelling will therefore depend on the quality of the bacterial 

growth model. 
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BOX 1. Factors affecting nitrification 

Oxveen 
In their review, Sharma and Ahlert (1977) presented an overview concerning the influence oj 

oxygen concentration on the nitrification rate. According to these authors, oxygen becomes 

limiting at DO levels below 4 ppm (bulk water column). 

Temperature 
For the effect of temperature on nitrification, an exponential expression has been used (Ohgaki 

and Wantawin 1989): 

^ = JUm,refX0{T-Tref)) (3) 

where p„ and nm,„f are the maximum specific constants at temperature T and Tref (0°C), 

respectively and 8 is a constant for a specific temperature range referred to as the temperature 

coefficient. Some values for the temperature coefficient for nitrifying organisms are summarised in 

Table 1. For the temperature range of 15 to 25°C, Stratton and McCarty (1967) determined 

relations describing the temperature dependence of the specific uptake rates: 

k N H 4 =1 .47e 0 0 8 4 * ( T 2 0 ) (4) 

kNO2=4.90e°-056> (T-20> (5) 

where kNH4 and kno2 <*re the specific uptake rates of ammonium and nitrite, respectively. Similar 

relations were found by Knowles et al. (1965) for the temperature range of 8 to 3(fC: 

kN H 4=2.54e a 0 9 5* ( T-2 0> (6) 

kNO2=12.3e0059*<T-20> (7) 

M 
ConcerningpH limitations, nitrification seems to be pH-limited when pH is higher than 9 or lower 

than 7 (Sharma and Ahlert 1977); an optimum pH within that range with rapidly decreasing rates 

outside this range has been demonstrated (Grady and Lim 1980). 

Bacterial population 
To describe the growth of nitrifying bacteria, the empirical microbial growth equation after 

Monod has been employed. Watanabe et al. (1980) applied a zero-order reaction as the intrinsic 

growth rate of nitrifying organisms. Megee et al. (1972) proposed the growth model which uses a 

double substrate expression instead of the single substrate Michaelis-Menten expression. Muller et 

al. (1980) proposed double Monod kinetics for intrinsic growth rates in their mass transfer 

equations to evaluate nitrification in rotating biological reactors. Also Wanner and Gujer (1984) 

used the same double Monod function for growth rates when studying the competition between 

heterotrophs and nitrifying organisms. 

In stratified or periodically mixed fish ponds, nitrification at the sediment-water 

interface is more important than nitrification in the water column (Hargreaves 1998). 

Although few direct measurements have been made, nitrification rates in aquaculture pond 



Nitrogen Transformation and Fluxes in fish ponds 

sediments are in the order of 15 to 25 mg N m"2 d"1 (Henriksen and Kemp 1988). 

According to Hargreaves (1998), the magnitude of nitrification in aquaculture ponds is 

relatively small compared to the rate of other N transformations, being elevated only 

during periods between cropping cycles when pond bottoms are exposed to air. 

Denitrification 

A first-order model for denitrification in aquatic systems was proposed by Toms et 

al. (1975). Van der Borght and Billen (1977) and Billen (1978) found a first-order rate 

constant by curve fitting of the model to nitrate concentration profiles of sediment cores 

(Table 1). 

A more complex approach was followed by Andersen (1977), who used two 

different models for the description of denitrification in sediments of six Danish fresh 

water lakes. The models were applied to the decrease of the nitrate concentration of the 

overlying water at 10°C under aerobic or anaerobic conditions. One of the models followed 

the Monod approach described above, and the other model was: 

n (dC\ , „„ 
'-"nj* U-'-*^ (8) 

where y is the nitrate flux in mg N m"2 d"1, Fis the volume of the overlying water, Q is the 

surface of the sediment, k and b are the kinetic parameters, and C is the concentration of 

nitrate in the overlying water. The kinetic parameters are presented in Table 1. The value 

of b was almost equal to 1 under aerobic conditions, and this supports the first-order 

model; but under anaerobic conditions b was much lower, probably because of 

denitrification in the overlying water and the reduced importance of transport limitation. 

Jorgensen et al. (1978) used a denitrification coefficient based on nitrogen balance, and by 

automatic calibration they obtained similar values (Table 1). 

Temperature has been frequently included in denitrification models (see Box 2). 

Madsen (1979) studied denitrification in sediment samples of fresh water lakes and a salt 

water fjord in Denmark using the 15N03-method and calculated first-order k-values; there 

was not much difference between results from salt and fresh water, and kd presented a clear 

seasonal fluctuation due to differences in temperature and organic matter content. 
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The rate of denitrification in marine fish ponds was in the order of 45 to 80 mg N 

m"2 d"1 (Blackburn et al. 1988; Roos and Eriksen 1995). Since the concentration of nitrate 

in aquaculture ponds is typically below 0.5 mg N L"1, denitrification is probably substrate 

limited. 

BOX 2. Effect of temperature on denitrification 

The dependence of denitrification on temperature was included in the model proposed by Toms et al. 

(1975). They determined the temperature dependence for their first-order rate constant in the range of 5 

to30°Cas: 

kNH4=0.018e°'065><(T-20 ) (9) 

Van Kessel (1976) also determined the temperature dependence of the overall denitrification rates for 

sediments. In the temperature range of 4 to 25" C for nitrate and nitrite respectively, he found the 

following relations: 

rN03 =4.4xT + 70mgN m2 d' (10) 

rN01 =7.2xT + 70mgN m} d' (11) 

where rnos and rN0: are the overall denitrification rates, and Tis the temperature. 

Stanford et al. (1975) studied temperature dependence of denitrification in soils. Optimum temperature 

seems to be between 60 and 65°C. They found mathematical relations in a nitrate concentration range 

of4-100 ppm for the first-order rate constants (d1): 

Forll°C< T<35°C: 

k = 0.0318e0070><(T-20) (12) 

k = 0.0065e0078x(T-20) (13) 
ForT<ll°C: 

kNH4=2.396e°'483><(T-20 ) (14) 

kN H 4=0.646e° '4 1 4 , < ( T-2 o ) (15) 

where T is the temperature and k is the first-order rate constant. 

Ammonification 

Simple first-order models for the description of biodegradation of organic matter in 

aquatic systems have been used. The most simple equation for ammonification is the 

Streeper-Phelps first-order equation proposed by Stones (1979): 

— = -kxC (16) 
dt 

10 
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where C is the concentration of BOD, COD or particulate organic matter. However, this 

model appeared to match measurements only partially. As time proceeded during 

decomposition the value of k turned out to decrease, probably because the substrate 

consists of components with different degradability. The more easily degradable 

components are decomposed first, and the refractory part of organic matter degrades more 

slowly, or not at all. This latter fraction consists of humic acids and similar substances 

(Jewell and McCarty 1971; Sudo et al. 1978; Stones 1979). In order to make a correction 

for the refractory part (/), the first-order equation was written as (Stones 1979): 

^- = -kx[C-ifxCo)] (17) 
at 

where C and Co are the substrate concentrations at time t and to, respectively, and k is the 

kinetic parameter. Although / i s not a perfect constant in reality, this model was quite 

successfully used in a number of mineralization tests (e.g. De Pinto and Verhoff 1977; 

Sudo et al. 1978; Ulen 1978). Values for/usually ranged from 0.10 to 0.40, and the first-

order rate constants (k-values) ranged from 0.021 to 0.120 d"1 (e.g. Fallon and Brock 

1979). 

Foree et al. (1970) constructed a model to estimate the refractory parts of nutrients 

in particulate organic matter originating from algae. They assumed that nutrient 

regeneration may take place in two ways: if a cell contains an excess of a particular 

nutrient, this nutrient will be regenerated at a relatively high rate (excess regeneration) and 

if the nutrient is present in the cell in its minimal concentration (3-5% for nitrogen) the 

nutrient regenerates with the same rate as organic-C mineralises (proportional 

regeneration). The model was fitted to the results of a large number of decomposition 

experiments, aerobic as well as anaerobic and in salt as well as in freshwater, by variation 

of the critical nutrient fraction. The model gave a satisfying fit for a wide range of values 

of refractory part. 

The decomposition rate coefficient of organic matter in mud can also be modelled 

assuming a first-order reaction (Nakanishi et al. 1986): 

*-DM£fi 

i i 
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where k is the decomposition rate coefficient (d"1), t is the incubation period (days), Sd is 

the ultimate biodegradable nitrogen at 35°C after 30 days (ug g"1 wet mud), So is the initial 

soluble nitrogen (ug g~' wet mud) and St the soluble nitrogen after t days with the same 

temperature as field conditions. 

In aquaculture, the production of ammonia by the decomposition of organic matter 

has been modelled as a first-order process (Piedrahita et al. 1983). Avnimelech et al. 

(1995) considered mineralization to follow first-order kinetics with an average rate 

constant of 0.1 (d"1). 

Ammonia volatilisation 

Volatilisation can be described mathematically by the use of the so-called two-film 

theory of mass transfer, in which the water phase is assumed to be well-mixed except near 

the interface. Ammonia is very soluble in water, but since the concentration in the 

atmosphere is low, volatilisation of ammonia always takes place, especially at high pH 

when the equilibrium between ammonia and ammonium is displaced towards the free form 

(Jorgensen 1989). Sherlock et al. (1989) estimated the ammonia flux into the atmosphere 

using the equation: 

Fa = cx (up - upb) (19) 

where Fa is the ammonia flux at the height at which this flux to the atmosphere is 

measured, c is a constant calculated to be 0.11, up is the upwind, mean horizontal flux 

density of ammonia from the system, and upt, is the mean upwind horizontal flux density 

of ammonia for a background sampler. 

The transfer rate can also be calculated as the re-aeration coefficient and as a 

function of wind velocity (Piedrahita et al. 1983; Boyd and Teichert-Coddington 1992). 

Reported rates of ammonia volatilisation in fish ponds are between 10 and 70 mg N m"2d"' 

(Schroeder 1987; Gross etal. 1999). 

Nitrogen utilisation 

The microbial assimilation of nitrogen can be calculated assuming that degradation 

of the organic carbon present in the system follows first-order kinetics (e.g. Avnimelech et 

al. 1995). In most of the models, it is assumed that the concentration of bacteria 

12 
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responsible for nitrogen compound transformations is invariable, and its biomass is 

included in the form of a rate constant. However, the concentration of micro-organisms 

that oxidise, for example, ammonium and nitrite may increase 2-3 orders of magnitude 

within a few days (Mijake and Wada 1968). 

Nitrogen uptake by phytoplankton in fish ponds can be as high as 1500 mg N m"2 

d"1 (Hargreaves 1998), and is the principal pathway of dissolved inorganic nitrogen 

removal in aquaculture ponds (Tucker et al. 1984). Algae preferentially assimilate 

ammonia over nitrate (Syrett 1981) and the preference for ammonia uptake is generally 

modelled by a Michaelis-Menten expression in terms of ammonia concentration, the 

preference for ammonia being reflected in the value or the half-saturation constant (kN). 

Several reported constants are presented in Table 1. Nitrogen uptake by algae can also be 

estimated assuming that uptake is equal to the daily primary production times the C:N ratio 

in algal cells (Kochba et al. 1994). 

Nitrogen uptake by phytoplankton occurs over a time scale of minutes to hours, 

and few models take this into account (Collins and Park 1989). The number of algal 

groups to be modelled is another aspect to consider. Scavia (1980) modelled five groups of 

algae, while other models include four (e.g. Canale et al. 1976; Park et al. 1985). 

Photosynthesis is usually represented as a function of multiplicative factors for 

light, nutrients and temperature (Park et al. 1985). The ecological models which take into 

account the impact of phytoplankton and zooplankton on the conversion of mineral 

nitrogenous matter describe the nitrogen compound transformation in comparatively 

simple mathematical formulations along with models which cover a more diverse 

composition of media components (e.g. Thomann et al. 197'4; Ikeda and Adachi 1976). 

Two principal ways of modelling nutrient limitation are used in current models: growth 

can be expressed as limited by external nutrient concentrations or by internally stored 

nutrients (Collins and Park 1989). Most comprehensive models use the minimum limiting 

nutrient construct. In the internal nutrient approach, nutrient limitation is assumed to be 

based on a threshold relationship: the most limiting internal nutrient determines the rate of 

photosynthesis. 

Excretion 

There are several forms of nitrogen excretion in water systems, but in fish ponds, 

the excretion by the cultivated organism (faeces and ammonia) is probably the most 

13 
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important one. From the efficiency offish nitrogen assimilation, it can be estimated that 60 

to 70% of the N added in the feed is excreted. Faeces consist of a mixture of non-

assimilated feed (settable, suspended and dissolved faeces) plus different non-reabsorbed 

residues of body origin from the intestine (mucosal cells, digestive enzymes, other 

excretions and microflora). Total nitrogen excretion (not considering faecal excretion) is 

the sum of endogenous excretion and exogenous excretion (Brett and Groves 1979). In 

fish, this excretion consists of NH3, urea and negligible amounts of uric acid, amino acids, 

and other nitrogen containing compounds (Goldstein and Forster 1970; Fischer 1977). For 

the quantification and modelling of ammonia excretion by fish, approaches based on the 

intermediate metabolism and biochemical pathways were used (e.g. Machiels and Henken 

1986; 1987). 

Excretion of nitrogen by zooplankton and phytoplankton has also been studied. 

Paulson (1980) developed models of ammonia excretion that showed good agreement 

between actual and predicted values. The coefficient used, representing the inorganic 

nitrogen content of zooplankton excreta, was 0.08. A coefficient of 0.09 for nitrogen 

excretion by phytoplankton based on a carbon to nitrogen ratio of 5.5 was used by Canale 

et al. (1974). Excretion of ammonia by zooplankton and fish has been expressed also as 

function of respiration rate and population size (Piedrahita et al. 1983). 

Diffusion-flux 

Diffusion of nitrogen is important, since the different biotic and abiotic reactions 

that take place in the sediment cause a steep concentration gradient of dissolved 

components near the sediment-water interface. 

The diffusion of dissolved components can be described according to the second 

law of Fick (Berner 1980): 

— = Dmx 
St 

f82C^ 

bz1 
(20) 

where SC/St is the concentration gradient of a nitrogen form, C is the concentration of 

that nitrogen form, t the time, Dm the molecular diffusion coefficient, and z the depth 

coordinate. A correction factor related to porosity of the sediment can also be 

incorporated: 

14 
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— = Dmx 
St 

f52C^ 

v& 2 J 
xkn (21) 

where k is a diffusion resistance factor with a value of approximately 0.3, and 71 is the 

porosity. 

The diffusion rates in the interstitial and overlying water differ markedly from 

each other (Davison 1985) since in the first the transport occurs mainly by molecular 

diffusion, while in the second convective processes are important too. The diffusive 

boundary layer is defined by Berner (1980) and Van Luijn (1997) as a thin layer of 

water adjacent to the sediment that is formed due to the decrease of the velocity towards 

the sediment surface. The exchange rate of dissolved species then depends on the 

thickness of the diffusive boundary layer (Revsbech et al. 1986). 

Since ammonia accumulates in the reduced sediments of aquaculture ponds, this 

diffusion flux has received particular attention. However, estimates of ammonia flux in 

freshwater and marine aquaculture ponds are very variable, oscillating between less than 

10 and more than 150 mg N m~2 d"1 (e.g. Avnimelech 1984; Hargreaves 1997; Riise and 

Roos 1997). 

Sedimentation can also be considered as a diffusion flux of nitrogen. It is very 

important in ecological modelling as it represents a considerable mass transfer from the 

water column into the sediments. Suspended matter is removed from the water by 

sedimentation or settling. Settling rates depend on the viscosity of the water, the size and 

shape of the particles, the difference in density between the suspended matter and the 

water, the turbulence and velocity of the flow field. The removal of nitrogen by settling is 

most often described as a first-order reaction. A simulation model that partitioned the fate 

of nitrogen added to semi-intensive shrimp ponds predicted that 48 to 66% of the nitrogen 

will settle on the pond bottom in the form of phytoplankton (Lorenzen et al. 1997). 

Objectives and outline of the thesis 

If pond aquaculture is to satisfy the increasing demand for fish, more efficient and 

intensive fish production systems will be required. Such systems operate with high levels 

of nitrogen input. To minimise negative effects on water quality and prevent 

15 



General Introduction 

environmental problems, effective management strategies for nitrogen will have to be 

developed. Although much is known about the basic processes of the nitrogen cycle, the 

ways in which separate processes are linked together and their relative importance under 

the unique conditions prevalent in earthen aquaculture ponds need further investigation. 

Models facilitate the understanding of complex systems and are essential for a quantitative 

approach that can lead to practical management recommendations. Thus, the principal 

objectives of this study were: 

1. to integrate the information available on nitrogen processes in fish ponds into a 

predictive dynamic simulation model; 

2. to identify and study processes on which information is lacking, and 

incorporate the results in the simulation model; and 

3. to use the improved model to evaluate the effect of possible management 

strategies on the nitrogen dynamics in fish ponds. 

This thesis is divided into five chapters. Chapter 1 deals with nitrogen budgets and 

fluxes in fish ponds. Most of the work on nitrogen balances in fish ponds is based on 

information obtained by comparing pond dynamics at the start and at the end of the growth 

cycle. In this work, the mass nitrogen balances were constructed for different periods 

during the growing cycle. Through this temporal approach, more information can be 

obtained. A complete overall recovery and good temporal recoveries were found for N 

accumulation in fish, accumulation in the sediment and for seepage. A first-order rate 

constant for decomposition of organic nitrogen for the whole pond was also obtained. 

In Chapter 2, a simulation model for nitrogen dynamics and fluxes is proposed. To 

date, there are few integrative models for feed-driven fish ponds, and the model integrates 

existing knowledge about nitrogen transformations in fish ponds. The model is divided 

into three modules: fish, phytoplankton and sediment-water. After calibration and 

validation, the model was used for the simulation of nitrogen dynamics in fish ponds. 

Results show that the model needs improvement with regard to simulation of organic 

matter accumulation in the sediment. Therefore, two studies were done to investigate 

further the organic matter dynamics in the bottom. 

In the first study (Chapter 3), the organic matter accumulation in the pond bottom 

is investigated. A simulation model that considers dead phytoplankton, uneaten feed and 
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faeces as the three principal nitrogen sources of organic matter in the pond bottom is 

constructed. First-order rate constants for mineralization of organic carbon and nitrogen 

are determined experimentally and used to parameterise the model. 

In the second study (Chapter 4), sedimentation/resuspension is investigated as 

another process related to organic matter accumulation/decomposition in the pond bottom. 

The sedimentation and resuspension of organic nitrogen are determined over a growing 

cycle, in relation to nutrient input, water quality parameters, fish biomass/numbers and 

fish size. Using a dilution analysis method, it was possible to differentiate between 

sedimented and resuspended particles, so that sedimentation and resuspension rates 

could be calculated independently. 

Finally, Chapter 5 integrates the information from Chapters 1, 3 and 4 into the 

model presented in Chapter 2. The improved model is validated with an independent set of 

data, and the output compared with the output of the initial model. At the end of the thesis, 

an overall discussion concerning nitrogen dynamics and fluxes in fish ponds is presented 

in the light of the initial objectives. 
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Chapter 1 

Abstract 

Following other studies in which nitrogen balances were obtained by comparing 

the pond at the beginning and at the end of a growth cycle, in this work nitrogen in the 

pond system was monitored during the growing cycle to obtain more information 

through this temporal approach. The accumulation of nitrogen in the water column, in 

the sediments, fish and seepage water was quantified during a production cycle of 

Colossoma macropomum. By combining estimates of the deposition rates of uneaten 

feed, faeces and dead phytoplankton with measurements of nitrogen accumulation in the 

sediment, the rate of decomposition of organic matter in the sediment was evaluated. 

The first order rate constant was 0.237 ± 0.019 d"1, representing the decomposition rate 

of organic nitrogen in the pond as a whole. The total nitrogen recovery during the first 2 

periods was about 65%. Later, during periods 3-5, the nitrogen recovery was close to 

100%. The cumulative recovery at the end of the experiment was almost 100%, 

meaning that the nitrogen budget in the system studied can be fully explained without 

any consideration of nitrogen volatilisation, due to either denitrification or ammonia 

volatilisation. Feed conversion was positively correlated with nitrogen accumulation in 

sediment and water column, and inversely correlated with nitrogen accumulation in fish 

tissue. In the beginning of the growth cycle, the major flux of nitrogen was the 

sedimentation to the bottom soil. Intensive microbial degradation processes took place 

about 3-4 weeks later, leading to a release of inorganic nitrogen and an approach toward 

a steady state with regard to the accumulation of organic nitrogen. Feed was irregularly 

applied during the experiment but fish growth followed a smooth line, showing that the 

fish utilized detrital or planktonic feed during periods of low feeding. Nitrogen 

accumulated in the pond during periods of excessive feeding and was utilized by the 

fish during periods of low feeding. This cycling should be further studied and may be an 

important pond management technique. 

Keywords: nitrogen budget; nitrogen balance; nitrogen flux; fish pond. 
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Introduction 

In most aquaculture systems, fish retain only 20-30% of the nitrogen applied as 

feed (Avnimelech and Lacher 1979; Boyd 1985; Krom et al. 1985; Porter et al. 1987; 

Green and Boyd 1995). Inorganic nitrogen (ammonia and nitrite) may be harmful to 

fish, especially in intensive systems (Hargreaves 1995). Nitrogen not retained by fish is 

accumulating in the water column, and in the sediments, while smaller fractions are lost 

with discharged water (drainage, seepage) or lost through volatilisation of NH3 and N2 

gas. There are reports that 30-95% of the nitrogen added to the ponds accumulates in the 

sediment (Avnimelech and Lacher 1979; Schroeder 1987; Myint et al. 1990; Olah et al. 

1994). Several processes affect the accumulation of nitrogen in the sediment, such as 

sedimentation (Schroeder et al. 1991), resuspension (Avnimelech and Wodka 1988; 

Avnimelech et al. 1999) and decomposition (Avnimelech 1984), all processes that are 

not well quantified. In previous works (Avnimelech and Lacher 1979; Boyd 1985; 

Krom et al. 1985; Porter et al. 1987; Green and Boyd 1995), nitrogen budgets were 

made by sampling the pond at the start and end of a growth cycle, without giving much 

attention to these processes. However, pond nitrogen budgets made at different points in 

time can help to quantify some of these processes. 

Nitrogen fluxes are also related to feeding strategy. In ponds, nutrients provided 

through organic wastes stimulate the heterotrophic food chain and depending on fish 

species, a part of the fish growth is indirectly based on the exploitation of the 

heterotrophic food web (Schroeder 1983; Middendorp and Huisman 1995). Ekanem 

(1996) fed fish on alternating days. Here also, the feed provided, directly or indirectly, 

nutrients for the heterotrophic food chain. The fish exploited this food chain, thereby 

optimizing the overall food conversion efficiency. 

This study quantified the accumulation of nitrogen during a production cycle in 

feed driven ponds, both in the water column and in the sediment. In addition, by 

combining estimates of the deposition rates of uneaten feed, faeces and dead 

phytoplankton with measurements of nitrogen accumulation in the sediment, the rate of 

decomposition of organic matter in the sediment was quantified. 

Colossoma macropomum, a fast growing species (Van der Meer et al. 1995) 

which is commercially cultured in several South American countries (Goulding and 

Carvalho 1982) was used in this study. In ponds, C. macropomum grow best when 
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provided with a nutritionally balanced feed (Van der Meer and Martinez 1993), even 

when pond-feeding rates are high. The possibility of applying high feed loads to the 

ponds while maintaining good growth was considered advantageous for the present 

study. 

Materials and Methods 

Feeding and Fish Management 

Four ponds of 65 m2 and 1 m depth were stocked with C. macropomum of 30 g 

each at 1 fish m"2. Fish were grown for 111 days. The growing cycle was divided into 

six periods of about 20 days each. Fish weight was estimated and samples of the 

sediment and water column were taken at the beginning of the experiment and on days 

20, 34, 55, 76, 90 and 111. At least 60% of the fish population in each pond was 

sampled, ensuring a highly representative population sample. 

Fish were fed with 3-mm dry floating pellets with 35% crude protein. The 

feeding levels applied are given in Table 1. The daily ration was divided into two equal 

portions applied at 0700 and 1500 hours, broadcasted evenly over the pond surface. 

During the first three weeks technical problems caused excessive feed administration of 

14.3% body weight per day. Dissolved oxygen (DO) concentration just above the pond 

bottom was measured daily at 0630 hours. Fish were not fed when the early morning 

DO concentration was < 2 mg L"1. Feeding was resumed when the early morning DO 

concentration increased to > 5 mg L"1. The number of days fish were fed per sampling 

period is given in Table 1. Fish were not fed on sampling days. 

Nitrogen Budgets 

A nitrogen budget was prepared for each pond and for each sampling period. 

Nitrogen inputs considered were feed and in-flowing water. Nitrogen accumulations in 

fish, water column and sediment, as well as nitrogen losses through seepage were 

quantified. 

The protein content on a wet weight basis of fed, pond-reared Colossoma 

macropomum is 15% (Van der Meer and Martinez 1993). The protein content of the fish 

was assumed to remain constant during the culture period. To estimate the amount of N 

storage at stocking and on sampling days in each pond, water and sediment samples 
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were collected from three locations (inlet, outlet and center) and pooled together. 

Composite water column samples were filtered through a GF/C Whatman glass fiber 

filter and the filtrate analyzed for NO3-N (cadmium reduction), NO2-N (diazotization) 

and NH4
+-N (phenate method) (APHA 1989). Chlorophyll-a in non-filtered water 

column sample was performed using standard methods (APHA 1989). To measure 

particulate nitrogen, 500 mL of sample was filtered through a pre-washed 0.45-um filter 

and the nitrogen retained on the filter was analyzed (Kjeldhal) according to AOAC 

(1980). Sediment samples were taken using a sampling tube of 6-cm diameter, 15-cm 

depth. In order to consider the patchy distribution of organic matter in sediments, the 

three soil samples were analyzed for organic matter content (dry ashing, Nelson and 

Sommers 1982); the uniformity of ignition loss between samples was used as the 

criterion permitting composite sampling. Only samples with < 5% difference in ignition 

loss were combined. Soil pore water was obtained by centrifugation (4000 rpm; 10 min) 

of the topmost 5-cm depth core, and dissolved nitrogen analyzed using standard 

methods (APHA 1989). The remaining soil was dried and the particulate nitrogen was 

determined after persulphate digestion of the samples (Raveh and Avnimelech 1979). 

Nitrogen losses due to seepage were calculated. A staff gauge was mounted in 

each pond to measure water level. Water loss was measured daily, and seepage was 

calculated as: 

S = L - E + P (1) 

where L is the measured water loss, E is the evaporation loss, and P is the precipitation. 

Daily-recorded evaporation and precipitation data (in mm per day) from a 

meteorological station located at a distance of 100 m from the experimental site were 

used. Water addition after filling was limited to replacement of losses due to seepage 

and evaporation. It was assumed that the seepage water had the same nitrogen 

concentration as the pore water collected from the sediment. The ponds were 

constructed in sandy soil and thus had a high hydraulic conductivity and extensive 

seepage water losses. 
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Decomposition Rate Estimation 

The observed accumulation/decrease of organic matter (as nitrogen) in the pond 

sediments was used to estimate the decomposition rates of organic matter based on the 

following assumptions: 

(a) chlorophyll-a concentration was converted to phytoplankton nitrogen by assuming a 

ratio of 5 mg N per mg chlorophyll-a (Laws and Bannister 1980); 

(b) 50% of the phytoplankton biomass deposits daily (Schroeder et al. 1991); 

(c) From the feed offered 15% is not eaten (Boyd and Tucker 1995); 

(d) Overall feed digestibility is 70% (van Dam and Penning de Vries 1995); and 

(e) 30% is excreted as faeces (Porter et al. 1987; Lovell 1988). 

The rate of organic nitrogen decomposition was calculated from the changes of 

total organic nitrogen concentration in the sediment between the initial and final 

sampling dates. The first order decomposition rate constant (K<jecomp) was obtained 

through nonlinear regression of the equation proposed by Avnimelech et al. (1995): 

dS/dT = B - K(C) (2) 

or its integrated form, 

S = B/K<jecomp — [ (B - Kdecomp S 0 ) e J / K^ecomp ( 3 ) 

where S is the concentration of organic nitrogen, B is the daily addition of component S, 

T is the time and S0 is the concentration of organic nitrogen at T=0. 

Statistical Analysis 

A Pearson's correlation matrix was calculated for the principal parameters 

related to feed conversion, N input, accumulation (fish, sediment, water column) and 

seepage in the ponds. On each sampling date, the N input, accumulation and seepage 

were summed over all previous sampling periods. These periods are further referred to 

as 'pooled periods'. 
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Results and discussion 

The principal flux in feed driven ponds is the feed. This flux was highly variable 

in the current experiment. Excessive feed was applied during the first period. Later on, 

low oxygen levels limited the application of feed. Details of feed application levels and 

timing are given in Table 1. The percentage of growing days during which feed was 

applied for each period varied from 100% to 29%. 

Table 1. Feeding levels and nitrogen input (n=4 ponds, standard deviation given within 

parenthesis) 

Period 

1 
3 
Z 1 

2 

3 
• 

4 

5 

6 

All 

c 
p. 

11 
P S 
1-20 
(20) 

21-34 
(14) 

35-55 
(21) 

56-76 
(21) 

77-90 
(14) 

91-111 
(21) 

1-111 

Feeding 

•a 

en >< es 
Q 

20 (+ 0.0) 

10 (±1.3) 

7 (±1.3) 

15 (±2.8) 

6 (±1.7) 

6 (±1.7) 

63 (±5.3) 

•a 
o 

•a o u o. 
£3 

9,828 
(± 498) 

5,558 
(± 766) 

4,447 
(± 802) 
15,292 

(± 3,095) 
6,573 

(± 2,003) 
8,666 

(± 2,469) 
50,363 

(±4,231) 

15 
•a oo 

84.7 
(±4.2) 

47.9 
(±6.6) 

38.3 
(±6.9) 

131.7 
(+ 26.7) 

56.6 
(± 17.3) 

74.7 
(±21.3) 

433.9 
(± 36.5) 

Fish 

o g. 

3.78 
(± 0.22) 

4.39 
(±0.17) 

2.33 
(± 0.07) 

2.93 
(± 0.06) 

2.05 
(± 0.05) 

1.89 
(±0.18) 

2.89 
(± 0.95) 

c o 

o 

5.05 
(± 0.33) 

1.90 
(±0.27) 

1.11 
(±0.21) 

2.13 
(± 0.62) 

1.39 
(±0.42) 

0.76 
(±0.14) 

2.06 
(± 1.48) 

Fish growth, flux of nitrogen to the fish and Feed Conversion Ratio (FCR) for 

each period are given in Table 1 and fish growth in Figure 1. In 111 days, the fish grew 

from 30 to 698 g (± 48.5, SD) realizing an average feed conversion ratio of 1.3 for the 

different culture periods. Fish growth followed a smooth line, regardless of the abrupt 

changes in feed application. Growth was not inhibited even in periods when feed was 

given only 29% of the time. Overall daily fish growth rate was 2.9% of body weight, 
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which is excellent compared to other results with the same fish (e.g., van der Meer et al. 

1995). The fast growth is accompanied by an extensive use of nitrogen. 

800 

<D 

s 
-£400 

3 

0 20 40 60 80 100 120 

Tlme(d) 

Figure 1. Fish growth of Colossoma macropomum over a 111 days growth period. 

The smooth growth of the fish can be explained by assuming that the fish 

utilized detrital or planktonic feed during periods of low feeding. According to several 

works, fish store less than 25% of the feed protein (Avnimelech and Lacher 1979; 

Schroeder et al. 1990; Green and Boyd 1995). In certain experimental periods, protein 

retention was lower than the equivalent uptake of nitrogen by the fish (Table 2). The 

difference between the actual uptake of nitrogen and the potential supply from feed (last 

column, Table 2) is assumed to represent the protein uptake from the reserves built up 

in the pond. In period 6 protein uptake from the pond amounted to more than 50% of 

total protein uptake by the fish. 
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Table 2. Comparison of actual uptake of nitrogen and potential supply from feed in g 

nitrogen per day (mean ± SD, n = 4). 

Period 

1 
2 
3 
4 
5 
6 

FeedN 

26.66 (±1.33) 
21.54 (±2.97) 
11.49 (±2.07) 
39.50 (± 8.00) 
25.47 (± 7.76) 
22.39 (± 6.38) 

Theoretical feed 
N uptake" 

6.66 (± 0.33) 
5.38 (± 0.74) 
2.87 (± 0.52) 
9.88 (± 2.00) 
6.37 (±1.94) 
5.60 (±1.59) 

N retained 
(RNd1) 

2.27 (±0.11) 
4.90 (± 0.81) 
4.43 (+ 0.23) 
8.26 (±1.74) 
8.01 (± 1.43) 

12.51 (±1.66) 

Actual N uptake 
from water 

- 4.40 (± 0.35) 
-0.48 (±0.81) 

1.56 (±0.58) 
-1.62 (±3.16) 

1.65 (±2.33) 
6.91 (±0.57) 

a 25% of feed N 
b feed nitrogen uptake minus assumed nitrogen from feed. Negative values mean that the 

fish accumulate less than expected values. Positive values are indication offish N uptake 

from planktonic or benthic sources. 

Another major flux is the sedimentation flux. The experimental ponds were hardly 

used before the present experiment and thus, initially, the sediment had low levels of 

organic carbon and nitrogen (Table 3). Within the first 20 days, the total nitrogen 

concentrations in the sediment increased by a factor of 50, from about 6 ppm N to about 

250 ppm N. The nitrogen accumulation in the sediment during this period comprised 

54% of the added nitrogen (Figs. 2, 3). One possible reason for the very high 

accumulation is the fact that feeding during the first period was excessive, yet, since 

even at optimal feeding about 75% of the nitrogen is not used, similar accumulation 

should be expected under normal pond operation. 

Looking into the composition of the total nitrogen in the sediment (Table 3), 

during the first period the increased total nitrogen concentration was not followed by an 

increase of adsorbed ammonium in the sediment and not by any increase of inorganic 

nitrogen in the interstitial water. The increase in adsorbed ammonium and of soluble 

inorganic nitrogen took place only later, reaching a peak at about the end of the 3d or the 

4th periods, i.e. after about 60 days. The increase of organic nitrogen accumulation in 

the sediment seemed to slow down with time. 

The first obvious process to take place was the sedimentation of the residual 

organic nitrogen. The microbial degradation of the sedimented organic nitrogen was 

very slow in the beginning, thus an insignificant amount of inorganic nitrogen was 

released. Later, microbial degradation processes were taking place, leading to a build up 
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of high levels of inorganic nitrogen, both adsorbed and soluble. This accelerated 

decomposition is also reflected in the lowered accumulation of organic nitrogen in the 

sediment. This trend led to a lower percentage of sedimented nitrogen relative to the 

added nitrogen (Figs. 3,4). 

Table 3. Concentration of organic carbon and nitrogen in sediments and pore water (mean 

± SD, n=4) 

Period 

Initial 

1 

2 

3 

4 

5 

6 

N-NH4
+ 

Hgg 
3.27 

(± 0.07) 
2.14 

(± 0.05) 
4.57 

(±0.11) 
7.13 

(± 0.08) 
4.13 

(±0.12) 
5.09 

(± 0.06) 
2.10 

(± 0.09) 

Sediments 
KjeldhalN Org 
-i 

6.25 
(± 0.94) 
254.51 

(±15.51) 
389.60 

(± 30.72) 
301.04 

(± 30.42) 
399.52 

(±12.13) 
137.74 

(± 93.99) 
225.38 

(± 123.89) 

anic Carbon 

mgg"' 
0.24 

(±0.10) 
2.75 

(±1.79) 
11.27 

(+ 0.36) 
6.73 

(± 0.54) 
14.32 

(± 0.48) 
13.70 

(± 0.40) 
16.37 

(± 0.47) 

Porewater 
N-NOj- N-NH4

+ 

mgL'1 

2.67 1.42 
(± 0.56) (± 0.47) 

3.60 2.29 
(±3.41) (±2.65) 

8.97 7.56 
(±0.94) (±6.71) 

17.99 23.64 
(±3.80) (±16.00) 

19.95 29.98 
(±2.84) (± 11.44) 

24.01 57.95 
(±8.77) (±57.39) 

46.91 62.28 
(±2.71) (±41.98) 

140 

Figure 2. Nitrogen input (as feed and supply water) and total nitrogen accumulation in 

sediments by period (n=4). 
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Figure 3. Percentage of N-input found in fish tissue and sediment, and calculated loss 

through seepage by period. The percentage of N input found in the sediment is listed by 

period. Nitrogen accumulated in the water was < 0.15% and is not shown. 
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Figure 4. Percentage of N-input found in fish tissue and sediment, and calculated loss 

through seepage, pooled over time. The percentage of N input found in the sediment is 

listed by pooled period. Nitrogen accumulated in the water was < 0.10% and is not shown. 

A relatively high percentage of accumulation was found in period 4, but this is 

probably due to the very high feed input in this period. 
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It is interesting to note that high nitrate levels were built up in the interstitial 

water. This indicates that aerobic conditions occurred in the sandy sediment in the 

experimental ponds. It is possible that some inorganic nitrogen diffused from the 

sediment into the water column, although nitrogen levels in the water remained. The 

heavy nitrogen loss through seepage (Fig. 3) is a clear implication of the elevated 

soluble nitrogen in the sediment. Such losses are not typical for ponds having an 

impermeable bottom and low seepage of water. 

An important internal flux is the organic matter and organic nitrogen 

decomposition fluxes. The decomposition of organic nitrogen was evaluated by 

comparing the expected accumulation of organic nitrogen with the actual one (Table 4). 

Table 4. Estimated deposition rate of organic nitrogen and decomposition rate based on 

periodic determinations of organic nitrogen in the sediments of four ponds. 

Pond 

1 
2 
3 
4 

Estimated 

Uneaten 
feed 
60.6 
64.6 
55.8 
53.6 

organic nitrogen deposition rate 
(mgNm'd'1) 
Faeces Dead 

phytoplankton 
20.6 49.2 
22.0 54.5 
19.0 53.9 
18.2 52.5 

Organic nitrogen 
accumulation rate 

(mg N rn2 d-1) 

4.8 
2.3 
6.2 
4.1 

Mean 
±SD 

Decomposition 
rate 

(mg N m"2 d"') 

125.6 
138.7 
122.4 
120.2 
126.7 
±8.3 

'v-decomp 

(d-y 

0.236 
0.263 
0.227 
0.219 
0.237 

±0.019 

' First order rate constant for decomposition 

Organic nitrogen sedimentation originated from uneaten feed, faeces and dead 

plankton. The amounts of these fluxes were calculated based on published results from 

the literature (Porter et al. 1987; Lovell 1988; Schroeder et al. 1991; Boyd and Tucker 

1995). The difference between the expected sedimentation and the actual one is 

considered as the amount of decomposed nitrogen. The rate of nitrogen decomposition 

is represented by the first order rate constant, K, which was calculated. In the present 

study, the rate of nitrogen decomposition, as expressed by K was 0.237 ± 0.019 (CV = 

8%). This value is higher than the values given by Avnimelech et al. (1995) for the 

decomposition rate constants in pond bottom sediments, yet, the decomposition 

processes considered here are taking place in the whole pond, i.e. sediment plus water. 
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In this regard, our results can be compared with those of Avnimelech et al. (1992), who 

also studied whole system decomposition in tanks and mixed ponds. Their rate constant, 

0.06 d"' is also lower than what was found here. The higher decomposition rate constant 

found in the present study could partly be explained by differences in temperature. It is 

obvious that sound quantitative data on decomposition of organic matter in fish ponds 

are lacking. The present data indicate that this process may be quite significant for 

understanding the pond dynamics. 

In Table 5 a correlation matrix is given relating nitrogen input and utilization to 

N balance parameters. Feed conversion was positively correlated with N accumulation 

in sediment and water column, and inversely correlated with N accumulation in fish 

tissue. There was a strong positive correlation between N input and sediment N 

accumulation, and fish N accumulation was negatively correlated with water column N 

accumulation and with seepage N loss. 

Table 5. Two-tailed Pearson correlation matrix based on six sampling periods and four 

ponds (24 data points). Bold values showed significant correlation (P<0.05). 

(unit) 

Feed conversion 
N-input 
Fish-N accumulation 
Sediment-N accumulation 
Water column-N accumulation 

3 
P. 
a 
Z 

kg ha ' 

0.3483 

a 

*1 
•=» 3 

kg ha-1 

-0.5815 
0.3461 

a 
Z . 2 

H 3 
CO a 

kg ha"1 

0.4808 
0.8446 
0.1996 

S c 

i -2 J2 n 
o g 

rt cd 

£ z 
kg ha' 

0.5624 
-0.1786 
-0.5626 
0.1346 

W 
O 

Z 
<u 
60 
et 

<u 
00 

kg ha ' 

0.0440 
-0.4274 
-0.5688 
-0.3155 
0.3368 

The nitrogen budget for each separate period is given in Figure 3 and the 

cumulative budget in Figure 4. Three nitrogen fluxes are considered: fish uptake, 

sedimentation and seepage. Sedimentation was the major flux during the first two 

periods, followed by substantial seepage. The total nitrogen recovery during the first 2 

periods was about 65%. Later, during periods 3-5, the nitrogen recovery was very close 

to 100% (104.0 ± 3.9). The recovery in the last period was almost 150% (Fig. 3). The 

cumulative recovery (Fig. 4) is lower than 100% all along the first 5 periods, affected by 

the incomplete recovery during the first 2 periods. However, the cumulative recovery at 
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the end of the experiment is 100%. These results lead to several interesting conclusions. 

It seems that the nitrogen budget in the system can be fully explained without any 

consideration of nitrogen volatilisation, due to either denitrification or ammonia 

volatilisation. Gross et al, (1999) found substantial volatilisation in catfish ponds in 

Alabama. However, in the present study ammonium concentrations in the water were 

low and it seems that the pond bottom was aerated. Possible denitrification in deep 

sediment layers may have been overlooked in the present study because they were 

integrated with the seepage losses. The fact that initially nitrogen recovery was 

incomplete and the fact that a complete recovery was found at the end of the experiment 

are puzzling. One possible explanation is that nitrogen sedimentation in the first period 

was patchy and thus the recovery of nitrogen in the sediments was incomplete (CV, the 

coefficient of variation of nitrogen in the sediment was in the order of 5% normally, but 

was much higher, 17%, during periods 1 and 2). It is possible, yet not proven, that the 

degradation of the patches of nitrogen led to formation of colloidal material, which was 

subsequently distributed more uniformly over the bottom. 

Following other works where nitrogen balance was obtained by comparing the 

pond in the beginning and at the end of the growth cycle, in this work nitrogen in the 

pond system was followed along the growing cycle. More information can be obtained 

through this temporal approach. In the beginning of the growth cycle, the major flux of 

nitrogen was the sedimentation onto the bottom soil. Intensive microbial degradation 

took place about 3-4 weeks later, leading to a release of inorganic nitrogen and an 

approach toward a steady state with regard to the accumulation of organic nitrogen. The 

whole pond first order rate constant pertaining to organic nitrogen decomposition was 

0.237 d"1, a value that is important for pond simulation studies. 

A complete overall recovery and fairly good temporal recoveries where found as 

fish N accumulation, accumulation in the sediment and seepage. The reasons for low 

recovery of nitrogen during the first few weeks and subsequent N release should be 

studied further. 

An important scientific and practical conclusion is the storage of protein in the 

pond system and its subsequent utilization by fish. Nitrogen accumulated in the pond 

during periods of excessive feeding and was utilized by the fish during periods of low 

feeding, yielding an overall smooth growth and low FCR. This cycling should be further 

studied and may be an important pond management technique. 
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Chapter 2 

Abstract 

Nitrogen is a key element in aquatic environments and an important pond 

management variable. In some aquatic systems the accumulation of nitrogen leads to a 

deterioration of the system. The interactions between various N-species are complex 

and difficult to understand as a whole. Modelling can improve our understanding of the 

underlying complexity. This paper integrates existing knowledge about nitrogen 

transformations in fish ponds into a model that predicts the amounts of various N-

compounds in the water column and in the sediment. The model is also used to gain 

insight into the relative importance of transformation processes between the various N-

compounds. 

The model was divided into three modules: fish, phytoplankton and sediment-water. 

The fish module is based on physiological and bio-energetic principles; the 

phytoplankton dynamics module is based on physico-chemical principles of algal 

growth. The water-sediment module is based on the bacterial transformations and 

chemical fluxes of N-species across the water-sediment interface. Relationships and 

parameter values were taken from the literature except for a few parameters that were 

estimated by fitting model predictions to observed data. The model was implemented in 

Turbo Pascal (7.0) using a fixed time step of one hour, and it was calibrated using a set 

of data from an earthen fish pond stocked with Colossoma macropomum. The validation 

was done using data from earthen ponds stocked with Oreochromis niloticus. The 

difference between the calibrated and validated model was related to the fish species. 

All concentrations of the various N-species present were simulated well except the N 

retained in organic matter in the sediment (average relative error -0.34). 

Sensitivity analysis revealed that the concentrations of inorganic-N compounds both 

in the water column and in the sediment are more affected by changes in specific 

parameters included in the fish and phytoplankton modules, than by changes in other 

forms of nitrogen in the pond. The model works well, except for organic matter 

accumulation in the sediment. Further research should concentrate on a better 

understanding of the bottom organic matter dynamics, to make the model a powerful 

predictive tool. 

Keywords: fish culture; nitrogen dynamics; modelling; fish pond; simulation 
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Introduction 

Nitrogen is a key element in aquatic environments and aquaculture systems. 

Nitrogen input in the form of feeds or fertilizers is needed to enhance aquatic production of 

cultivated animals, and it is considered an important pond management variable. Nitrogen 

input in aquaculture systems also increases the potential of pollution to the surrounding 

environment. Although the basic processes of the nitrogen cycle are known, the ways in 

which they are linked together is poorly understood, and have to be investigated further. 

In ponds, nitrogen is present in different forms. Wasted feed, dead plankton and 

faeces are mineralized and the resulting dissolved nitrogen species can be re-used by 

autotrophic organisms forming complex molecules again (Diab and Shilo 1986). 

Oxygen availability, water temperature, pH, light penetration and bacterial species 

composition in the system influence these transformations (Painter 1970; Otsuki and 

Hanya 1972; Stanford et al. 1975; Andersen 1977). The metabolic end products of 

nitrogen in feeds, as well as the microbial decomposition of organic matter in the 

surrounding water, lead to increased concentrations of free ammonia and nitrite, both 

toxic to fish even at low concentrations (Meade 1985). 

Control of nitrogen transformation processes in the pond and optimal feed 

utilization in aquaculture systems are needed. A better understanding of the fluxes and 

transformations of nitrogen in aquacultural production systems is needed and the 

development of appropriate simulation models of pond aquaculture is recommended 

(Lannan et al. 1983). Models of varying degree of complexity were used for research of 

nitrogen compound transformations in aquaculture, and mathematical approximations of 

these processes can be found in the literature. General principles of computer modelling 

of aquaculture systems have been reviewed by Bolte et al. (1986), Piedrahita (1988) and 

van Dam (1990). 

Numerous studies concentrated on N-transformation in aquaculture, and 

processes of the N-cycle were described mathematically. Paulson (1980) presented 

different models of ammonia excretion for trout; Lightfoot et al. (1993) presented a 

steady-state nitrogen model for a wetland rice field ecosystem with and without fish; 

Piedrahita et al. (1984) and Piedrahita (1991) simulated dissolved inorganic nitrogen 

concentrations in ponds; Kochba et al. (1994) developed a model to evaluate the effect 

of water exchange rate on dissolved inorganic nitrogen concentration in intensively 
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aerated fish ponds; Avnimelech et al. (1994) presented a model relating the 

concentration of any given residue to the water exchange rate in controlled intensive 

systems. Hargreaves (1997) developed a model for ammonium dynamics in channel 

catfish ponds. Lorenzen et al. (1997) used a mathematical model to investigate the 

impact of farming intensity and water management on nitrogen dynamics; Montoya et 

al. (1999) simulated nitrogen dynamics in intensive shrimp culture systems; Nielsen et 

al. (1999) simulated nitrogen dynamics in rice-crayfish systems; Jamu (1999) described 

the dynamics of nitrogen in integrated aquaculture-agriculture systems; and Verdegem 

et al. (2000) proposed a bio-energetic model of growth and waste production of tilapia 

in recirculation systems. 

This paper integrates existing knowledge about nitrogen transformations in fish 

ponds into a predictive model for Tilapia {Oreochromis niloticus) and tambaqui 

(Colossoma macropomum) ponds in the tropics. Every hour, the model calculates the 

quantities of different N-compounds in the water column and in the sediment of ponds. 

After calibration and validation, the model can be used to (1) evaluate the sensitivity of 

the N-cycle to changes in individual processes; (2) pinpoint the principal sinks for N in 

the system; and (3) identify those processes that need further study. 

Model description 

General model description 

The model contains three modules: the fish module, the phytoplankton module 

and the sediment-water module. The fish module is based on the model proposed by 

Machiels and Henken (1986, 1987), later adjusted for tilapia by van Dam and Penning 

de Vries (1995). The model developed by Jimenez-Montealegre et al. (1995) was used 

as a basis for the phytoplankton module. The sediment-water module was newly 

developed, and concentrates on transformations and fluxes between inorganic and 

organic N-compounds in both the water column and the sediment. Within this module, 

other biota normally found in sediments are included and are considered as organic 

nitrogen. The principal N-compounds, N-transformations and N-fluxes in the model are 

conceptualized in Figure 1. Table 1 presents the principal variables considered in each 

module; and in Annex 1 a description of the variables used and the related equations are 

presented. 
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"(oxygen level T 

Figure 1. Conceptual model of nitrogen transformations and fluxes and relations between 

modules. All state variables have dimensions of mg N L"1 

The model analyses N-transformations and fluxes between compartments in 

stagnant water ponds. The only N-inputs considered are the protein in the feed and the 

dissolved N-compounds in the in-flow water. Nitrogen fixation is considered negligible 

in aquaculture ponds (El Samra and Olah 1979; Lin et al. 1988) and was ignored in this 

model. In the fish module, a distinction is made between wasted (e.g., non-consumed) 

and consumed feed; the consumed feed is partly transformed into fish biomass, and the 

rest is excreted (as ammonium) or egested (as faeces). It is assumed that fish growth is 

only based on the feed input, and not on other sources from the pond biota. 

Phytoplankton assimilates both nitrate and ammonium ions for growth. In the 

sediment/water module, the N-transformations and N-fluxes between the various N-

compounds in water and sediment are included. 
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Table 1. Principal states, rates and auxiliar variables used in the model 

Water-sediment module 
State variables 
N N2 in sediments 
N N2 in water 
N NH3 in sediments 
N NH3 in water 
N NH4

+ in sediments 
N NH4

+ in water 
N N0 3" in sediments 
N N0 3" in water 
Organic matter (as N) in sediments 

Dimensions Symbol 
ragNL" 
mg N L" 
mgN L' 
mgNL ' 
ragNL" 
mgN L" 
mgNL" 
mgNL" 
mgNL" 

s n2sed 
s n2wat 
s nh3sed 
s nh3wat 
s nh4sed 
s nh4wat 
s no3sed 
s no3wat 
sornsed 

Rate variables 
Ammonia excretion rate 
Ammonification rate in sediments 
Ammonification rate in water 
Denitrification rate in sediments 
Egestion rate of protein 
N2 flux rate 
NH3 flux rate 
Refill rate for NH„+ 

NH4
+ flux rate 

Nitrification rate in sediments 
Nitrification rate in water 
Refill rate for N03" 
N03" flux rate 
Phytoplankton dead rate 
Uneaten feed, dm 
Volatilisation rate of N N2 

Volatilisation rate of N NH3 

Dimensions 
mg N L"1 h"1 

m g N L ' V 
mg N L"1 h"1 

mgNL"'h"' 
mg N L"1 h"1 

mgNL"V 
mg N L"1 h"1 

mgNL"'h"' 
mg N L"' h"1 

mg N L"1 h"1 

mg N L"1 h"1 

mg N L"' h"' 
mg N L"1 h"1 

mg N L"' h"1 

mg N L"1 h"' 
mg N L"' h"' 
mg N L"' h"' 

Symbol 
r ammnpro 
r ammonifsed 
r ammonifwat 
r denitrifsed 
regspro 
r n2flux 
r nh3flux 
r nh4fill 
r nh4flux 
r nitrifsed 
r nitrifwat 
r no3fill 
r no3flux 
r_phytom 
r uneadm 
r volatn2 
r volatnh3 

State variables 
Phytoplankton biomass 
Dead phytoplankton biomass 

Rate variables 
Growth rate 
Death rate 

Auxiliar variables 
Light limitation factor 
Nutrient limitation factor 
Radiation per hour 
Water temperature 

Phytoplankton module 
Dimensions 
mg N L"1 

mg N L'1 

Dimensions 
mg N L"V 
mgNL-'h'1 

Dimensions 
dl 
dl 
lyh"1 

°C 

Symbol 
s_phytobiom 
s_phytodead 

Symbol 
r_phytogrowth 
r jhytom 

Symbol 
alighlim 
anutrilim 
aradhor 
a temp 
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Table 1 (cont.) 

Fish module 
State variables 
Amount of AA" converted into protein 
Amount of AA converted into glucose 
Total pool of glucose available 
Total pool of body lipid 
Organic matter in sediments 
NH3 in water 
Individual fish weight 

Rate variables 
Rate of gluconeogenesis 
Aminoacid oxidation rate 
Nitrogen in ammonia excreted 
Ammonium excretion rate 
Rate of digestion of carbohydrates from feed 
Egestion rate of protein as nitrogen, in faeces 
Real feeding rate 
Lipid digestion rate 
Lipid oxidation rate 
Lipid synthesis rate from glucose 
AA production rate from digested feed 
Protein synthesis rate 
Uneaten feed (dm) 
Nitrogen in uneaten feed 
Fish growth rate 

Auxiliar variables 
Daily feed ration 
Proportion of energy supplied by fat 
Fraction of protein in feed (wet) 

Dimensions 
gr amino acids 
g amino acids 
g glucose 
g lipids 
mgNU 1 

ragNL' 
g (fresh) 

Dimensions 
g amino acids d"1 

g amino acids d"' 
mg N L"1 h"1 

gNH/h"1 

g carbohydrates d"1 

mg N L"1 h"1 

g feed d"1 (dry) 
g lipid d"1 

g lipid d"1 

g lipid d"1 

g amino acids d"1 

g protein d"1 

g feed d"' (dry) 
mgNL-'h'1 

g fish d"1 (fresh) 

Dimensions 
g feed (fresh) 
dl 
% dry matter 

Symbol 
s aapooll 
s aapool2 
s glpool 
s libiom 
s ormsed 
s nh3wat 
s_wf 

Symbol 
r aagluc 
r aaox 
r ammnpro 
r ammpro 
r_cardig 
r egspron 
r fdrtdm 
rlipdig 
r l ipox 
r lipsyn2 
r_prodig 
r_prosyn 
r uneadm 
r unean 
r_wfrate 

Symbol 
a ration 
a aalirat 
a feedpr 

Aminoacids 

Organic matter in the sediment is composed of wasted feed, dead phytoplankton 

and faeces. Decomposition of organic matter in the sediment results in ammonia-

ammonium (N-NH3 + N-NH4
+), that may be transformed into NO3" and possibly N2 

both in the water and in the sediment by nitrification-denitrification. Both seepage and 

biota that could escape from the system (flying insects) are considered not relevant for 

the nitrogen balance, and the emission of gaseous nitrogen (N-NH3 and N-N2) is 

assumed to be the only loss of nitrogen from the system. 

Fish module: 

The module (Fig. 2) was developed by Machiels and Henken (1986, 1987) on 

the basis of physiological and biochemical principles. Digestion of feed protein, 

carbohydrates and lipids results in amino acids, glucose, fatty acids and glycerol. 
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Figure 2. Fish module relational diagram 
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Amino acids are used for the synthesis of protein or glucose; fatty acids and 

glucose are used for the synthesis of body lipids. Van Dam and Penning de Vries (1995) 

assumed that the relative oxidation of lipids and protein for energy is determined by the 

protein feeding level and the protein/energy ratio of the feed. This approach allows the 

estimation of the ammonia excretion and faeces egestion rates of the fish: 

rammnpro = (14/17) * (0.16*(r_aaox + raagluc)) (1) 

0.16 = % of nitrogen in protein 

14/17 = nitrogen to ammonia ratio 

rammnpro = ammonium excretion rate (mg N L/'h') 

r aaox = aminoacid oxidation rate (g amino acids d"1) 

raagluc = gluconeogenesis rate (g amino acids d"1) 

s_nh3wat(t) = s_nh3wat (t-dt) + (rammnpro - r_volatnh3 - r_nh3flux) * dt (2) 

s_nh3wat = N_NH3 in water (mg N L"') 

rammnpro = ammonium excretion rate (mg h"1) 

r_volatnh3 = NH3 volatilisation rate (mg N I/1 h"1) 

r_nh3flux = NH3 flux rate (mg N I/'h'1) 

regspron = 0.16*(r_egspro) (3) 

regspron = faeces egestion rate (mg N L"'h"') 

regspro = protein egestion rate (g protein h'1) 

In the present model the uneaten feed was also included (Verdegem et al. 2000): 

runean = aration * pmors (4) 

runean = uneaten feed (mg N I/'h"1) 

aration = feed ration (g feed, dry weight) 

pmors = fraction of feed not eaten (dl) 

The excreted ammonia becomes part of the dissolved ammonia in the water, and 

both the faeces and the uneaten feed adds to the organic nitrogen pool in the sediments 

(Fig. 1, equation 9). Because in the model of van Dam and Penning de Vries (1995) all 

variables were expressed in g fresh weight, variables were converted to mg NL"' to 

make the fish module compatible with the other modules. The model assumes a 12-hour 
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feeding period. For further details, reference is made to Machiels and Henken (1986, 

1987) and van Dam and Penning de Vries (1995). 

Phvtoplankton module: 

The module is based on a dynamic simulation model for the blooming of 

Oscillatoria agardhii (Jimenez-Montealegre et al. 1995). The biomass of phytoplankton 

is assumed to be affected by two different rates: growth and natural mortality (Fig. 3). 

Nutrients 

NO, in water TAN in water 

Figure 3. Phytoplankton module relational diagram 

Light and nutrient availability directly control growth rate and limitations are 

assumed to be multiplicative: 
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r_phytogrowth = p_maxgrphyto * (a_nutrilim*a_lighlim)*s_phytobiom (5) 

r_phytogrowth = phytoplankton growth rate (mg N L/'h'1) 

pmaxgrphyto = rate constant for phytoplankton growth (1 d'1) 

anutrilim = nutrients limitation (dl) 

alighlim = light limitation (dl) 

s_phytobiom = phytoplankton biomass (mg N L"') 

Light limitation is based on the formula proposed by Di Toro et al. (1971), 

taking into account the equation proposed originally by Steele (1965) which assumes an 

optimum radiation with a reduction of growth at intensities both above and below the 

saturation level. Light extinction is based on Beer's law with provision for self-shading 

due to suspended biomass, and photoperiod is used to estimate the actual radiation 

every hour. Nutrients (ammonium, nitrate, and phosphorus) come from refill water, fish 

excretion and organic matter decomposition (both in the water column and in the 

sediments); its availability is used to estimate the limitation for growth using the 

relation of Monod kinetics. It was assumed that the phytoplankton species use 

ammonium first and, only when this ion is depleted, nitrate seconds (McCarthy 1981; 

Syrett 1981). The phytoplankton natural mortality rate is a function of the water 

temperature: 

r_phytom = pmrphyto * exp (atecorm) * s_phytobiom (6) 

r_phytom = phytoplankton death rate (mg N L"1 h"1) 

pmrphyto = rate constant for phytoplankton mortality (1 d"1) 

atecorm = temperature correction for mortality (d"') 

For further details reference is made to Jimenez-Montealegre et al. (1995). 

Water-Sediment module: 

Water and sediment compartments are highly correlated in ponds, and are considered 

together as a module that holds several state variables (Fig. 4). Water pH and dissolved 

oxygen were inputs of the model; minimum values for these parameters were 

considered in the respective equations. Organic matter consists of wasted feed, dead 

phytoplankton and faeces from fish. The amount of wasted feed is difficult to assess in 
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ponds. Frier et al. (1995) proposed a model in which the fraction of feed eaten can be 

calculated by iteration knowing the actual fish growth for a given period and the amount 

of feed offered. Phillips et al. (1985) estimated that 15-30% of the feed in rainbow trout 

cage culture is wasted; Thorpe et al. (1990) found feed losses of 19% in salmon cage 

culture; and van der Meer et al. (1995) found for Colossoma macropomum, raised in 

recirculation units and fed at levels near satiation, feed losses fluctuating between 9 and 

20% irrespective of the fish size. 

\ oxygen level )--

Figure 4. Water-Sediment module relational diagram 

In our model this value was set to 35% considering the system conditions (earthen 

fish pond, low fish density). Dead phytoplankton first decompose in the water column: 

rammonifwat = if (a_phwat>2) and (a_dowat>2) then (s_phytodead * pammonifwat) else 0 (7) 

rammonifwat = ammonification rate in the water column (mg N L"'h"') 

a_phwat = water pH 

adowat = dissolved oxygen in water (mg 0 2 L'1) 

54 



Conceptualization and validation of a dynamic model for the simulation of nitrogen 

s_phytodead = dead phytoplankton biomass (mg N L"1) 

pammonifwat = rate constant of ammonification in water (d"') 

The rest of the organic matter (wasted feed, partly decomposed phytoplankton, faeces) 

is assumed to settle and decompose in the sediments: 

rammonifsed = if (a_phsed>2) and (a_dosed>2) then (sornsed * pammonifsed) else 0 (8) 

rammonifsed = ammonification rate in the sediments (mg N L'h"1) 

a_phsed = sediment pH 

adosed = dissolved oxygen in sediment (mg 0 2 L"1) 

sornsed = organic matter (as nitrogen) in sediments (mg N L"1) 

pammonifsed = rate constant for ammonification in sediments (d1) 

sornsed (t) = sornsed (t-dt) + (runean + regspron + r_phytom - r_ammonifsed)*dt (9) 

runean = rate of nitrogen input in uneaten feed (mg N L''h"') 

regspron = egestion rate of protein (as nitrogen) in faeces (mg N L"'h"') 

The compound resulting from ammonification/mineralization is TAN (total ammonia 

nitrogen, N NH3 + N_NH4+). Its concentration is influenced by pH and dissolved 

oxygen levels (Reddy and Patrick 1984; Olah et al. 1987). In the model, the percentage 

of free ammonia is based on pH and temperature conditions (Delince 1992). In the 

water column, ammonium can be used by phytoplankton for growth (see above), be 

transformed into nitrate: 

rnitrifwat = if (a_dowat>2) then (p_nitrifwat*s_nh4 wat) else 0 (10) 

rnitrifwat = nitrification rate in water (mg N L"1 h"1) 

adowat = dissolved oxygen in water (mg 0 2 L"1) 

pnitrifwat = rate constant for nitrification in water (d1) 

s_nh4wat = dissolved N_NH4
+ in the water column (mg N L"') 

or be diffused to the sediments based on a concentration gradient: 

r_nh4flux = (-p_porosity * p_nh4dif * (((s_nh4sed-s_nh4wat)/1000)/p_seddepth)) (11) 

r_nh4flux = flux of N_NH4
+ (mgN L"V) 

p_porosity = soil porosity (dl) 

p_nh4dif = diffusion coefficient for N_NH4
+ (m2 d"') 
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s_nh4sed = dissolved N_NH4
+ in sediments (mg N L"1) 

pseddepth = sediment depth (m) 

The flux of nutrients is based on Fick's first law of diffusion, corrected for porosity and 

tortuosity of the sediments (Berner 1980). Due to the higher concentration of nutrients 

frequently found in the sediments (Boyd et al. 1994) the flux is most likely to occur 

from the sediments towards the water column and possibly transformed into nitrate 

and/or nitrogen gas: 

rnitrifsed = if (a_dosed>2) then (pnitrifsed * s_nh4sed) else 0 (12) 

rnitrifsed = nitrification rate in sediments (mg N L'h'1) 

adosed = dissolved oxygen in water (mg 0 2 L'1) 

pnitrifsed = rate constant for nitrification in sediments (d"') 

s_nh4sed = dissolved N_NH4
+ in the sediments (mg N L~') 

The latter process is oxygen dependent (Sharma and Ahlert 1977), and in the model this 

is taken into account. When oxygen is depleted in the sediments, nitrate can be 

transformed into nitrogen gas via denitrification: 

rdenitrifsed = if (a_dosed>2) then 0 else (pdenitrifsed * s_no3sed) (13) 

rdenitrifsed = denitrification rate in sediments (mg N L'h"') 

adosed = dissolved oxygen in water (mg 0 2 L"') 

pdenitrifsed = rate constant for denitrification (d1) 

s_no3sed = dissolved N03" in the sediments (mg N L"') 

Both ammonia and nitrogen gas (if any) can escape to the air via volatilisation 

depending on their concentrations in the water. The rate constants for volatilisation 

consider the diffusion coefficient of the respective gas, and the thickness of the water-

air interface: 

r_volatn2 = p_volatn2 * s_n2wat (14) 

r_volatn2 = N2 volatilisation (mg N L'h'1) 

pjvolatn2 = constant for N2 volatilisation rate (h1) 

r_volatnh3 = p_volatnh3 * s nh3wat (15) 

r_volatnh3 = NH3 volatilisation (mg N L''h'') 
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p_volatnh3 = constant for NH3 volatilisation rate (h1) 

Model implementation and parameterization 

The model was implemented in Turbo Pascal (7.0) using Euler's rectangular 

method for numerical integration. Because processes such as oxygen consumption 

and/or production could have high rates of change, the time coefficient for each state 

variable was calculated. The highest rate of increase (or decrease) during the simulation 

was identified, and the relative rate for that period calculated. Time coefficients, defined 

as the inverse of the relative rate of change, varied from 1.96 to 92.31 hours. De Wit 

and Goudriaan (1978) suggest that the time step for rectangular integration should be 

one tenth of the smallest time coefficient. However, a fixed time step of one hour was 

selected because a further reduction of the time step in the model did not improve the 

simulations substantially. 

The program uses the following input data: water temperature, water pH, 

dissolved oxygen in both water and sediments, the rate of input of ammonium and 

nitrate via refill water, and the amount of feed offered daily. The general output of the 

model is the nitrogen concentration in water and sediments (as organic-N, N-NH4 + and 

N-NO3"), and the nitrogen stored in fish and phytoplankton biomass. 

Material and methods 

Experimental data collection for calibration 

The data for the calibration (Table 2) were collected during an experiment 

designed for this purpose. A stagnant pond with an area of 65-m2 and 1.2 m depth was 

used. The pond was stocked with Colossoma macropomum (Cuvier 1818) at a density 

of 1.1 fish per m . Fish were fed a 32% protein commercial feed; weekly average fish 

weight was used to estimate the amount of feed offered, considering a feeding rate of 

2.5% body weight per day, and the amount of feed given was used as an input into the 

model. Dissolved oxygen, water pH and temperature in the middle of the water column 

were measured at 0600 and 1800 hours. The dissolved oxygen, and the temperature for 

each hour were estimated using linear interpolation assuming peak values at those 

hours. To estimate the hourly value of pH the concentration of H30+ was also 

interpolated and the pH value obtained. 
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Table 2. Experimental data collected to perform the calibration of the model* 

Day 

Initial 

7 

14 

21 

28 

35 

42 

49 

56 

s_nh4wat 

0.081 

0.032 

0.102 

0.190 

0.239 

0.290 

0.334 

0.419 

0.439 

s_nh4sed 

0.206 

0.026 

0.078 

0.135 

0.181 

0.191 

0.224 

0.263 

0.318 

s_no3wat 

0.619 

0.546 

0.539 

0.555 

0.585 

0.596 

0.624 

0.644 

0.700 

State variable 

s_no3sed a 

0.105 

0.167 

0.200 

0.259 

0.416 

0.563 

0.689 

0.849 

0.963 

fishw 

35.0 

42.1 

50.0 

62.4 

74.9 

90.8 

108.4 

128.1 

151.5 

s_phytobiom 

0.322 

0.766 

0.869 

0.803 

0.906 

0.880 

0.960 

0.994 

1.032 

sornsed 

140.29 

139.10 

138.72 

140.23 

139.75 

140.50 

141.13 

141.24 

142.34 

All state variables are expressed in mg N per liter, except fish weight which is expressed in terms of 

grams per fish (individual fresh weight). For names explanation see Table 1. 

The pond was sampled weekly for nitrogen contents in phytoplankton, sediments 

and water. The nitrogen cycle, especially the rates of transformation of dissolved 

inorganic compounds, is very dynamic and important changes in concentrations occur 

during the day (Meade 1985; Mires et al. 1990; Abdalla et al. 1996). For the 

comparison between simulated and observed values this fact was considered by 

comparing only values from similar hours of sampling. 

Dissolved nitrogen (N-NO3" and N-NH/ + N-NH3) in water and sediments was 

determined using traditional methods (APHA 1989). Organic nitrogen in water, 

sediments and phytoplankton was determined using the method of AOAC (1980). The 

nitrogen stored in fish biomass was calculated weekly based on average fish weight, and 

the determination of total nitrogen in fish flesh at harvest was determined using the 

micro-Kjeldahl method (AOAC 1980). After each weekly sampling, the volume of 

water lost via evaporation was replaced with water of known nitrogen (nitrate and 

ammonium ions) concentration. Soil porosity was also determined following the method 

described by Corredor and Morell (1985). 
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Calibration 

The fish module was first calibrated for Colossoma. Field and laboratory 

determinations at the beginning of the experiment were used as initial values (Table 3). 

Table 3. Initial conditions used in the simulations. Only parameters changed during 

calibration and validation runs are included 

Variable 

Fish number 
Fraction of protein in feed 
(wet) 
Carbohydrate digestibility 
coefficient 
Lipids digestibility 
coefficient 
First factor for lipid oxidation 
rate 
Second factor for lipid 
oxidation rate 
Minimum fat % in fresh 
weight of fish 
Pond area 
Protein percentage in fish 
(fresh weight) 
Reference temperature for 
routine metabolism 
Routine metabolism 
coefficient 
Total pool of body lipid 
NH3 in sediments 
NH3 in water 
NH4

+ in sediments 
NH4

+ in water 
N03" in water 
Organic nitrogen in 
sediments 
Phytoplankton biomass 
Total body protein biomass 
Individual fish weight (wet) 

Symbol 

afishnb 
afeedpr 

p_digca 

p_digli 

p f a c l 

p_fac2 

plipfin 

p_pondarea 
p_prperc 

preftemp 

prmcf 

s_libiom 
s_nh3sed 
s_nh3wat 
s_nh4sed 
s_nh4wat 
s_no3wat 
sornsed 

s_phytobiom 
s_prbiom 
s wf 

Dimension 

# 
% in dry matter 

% 

% 

dl 

dl 

% 

™ 2 m 
gprot/lOOg 
fish 
°C 

mole ATP/ 
g d 
g lipid 
mg N L"' 
mg N L" 
mg N L"' 
mg N L" 
mg N L" 
mg N L" 

mg N I/1 

g protein (dm) 
g 

Calibration 
Colossoma 

macropomum 

70 
0.32 

0.60 

0.80 

6.456 

0.9046 

3.5 

65 
15.0 

25 

1.05e-3 

2.800 
0.105 
0.002 
0.206 
0.081 
0.619 

140.29 

0.322 
5.95 
35.0 

Validation 
Oreochromis 

niloticus 

960 
0.30 

0.50 

0.50 

4.300 

1.2000 

3.0 

800 
17.0 

26 

1.21eJ 

2.808 
0.002 
0.005 
0.105 
0.240 
0.114 
38.18 

0.113 
5.97 
35.1 

Calibration was carried out by adjusting the equation coefficients in order to 

improve the fit between simulated and observed data. During the process, one selected 

coefficient value was changed at a time and the model was run for the whole simulation 

period. When the coefficient was previously reported in the literature that value was 

used as the initial value for the simulation. 
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Table 4. Coefficient values used in the model after calibration. Calibrated coefficients are 

in boldface. 

Variable 
g amino acids needed for 1 
mole ATP 
Fraction of digested protein 
used for gluconeogenesis 
Ammonification in sediments 
rate coefficient 
Ammonification in water rate 
coefficient 
Ratio carbon/nitrogen in 
phytoplankton 
Constant for extinction 

Denitrification rate coefficient 
in sediments 

Diffusion coefficient for NH3 

Carbohydrate digestibility 
coefficient 
Lipid digestibility coefficient 

Protein digestibility 
coefficient 
Light extinction due to water 

First factor for aalirate 
equation 
Second factor for aalirate 
equation 
Initial lipid 

Half saturation constant for 
Nitrogen 
Cost of lipid synthesis 

g lipids needed for 1 mole 
ATP 
Minimum fat percentage in 
fresh weight of fish 
Phytoplankton growth rate 
coefficient 
Fraction of feed given to fish 
but not eaten 
Phytoplankton mortality rate 
coefficient 
Cost of gluconeogenesis 

Diffusion coefficient for NH3 

Diffusion coefficient for NH4
+ 

Symbol 
p_aaatp 

paafdgl 

pammonifsed 

pammonifwat 

pcnratio 

p_constext 

p_denitrifsed 

p_diffcoefnh3 

pdigca 

pdigli 

p_digpr 

p_exwa 

p_facl 

p_fac2 

piliper 

p_kn 

pliatco 

pl iatp 

plipfin 

p_maxgrphyto 

pmors 

p_mrphyto 

p_neoatco 

p_nh3dif 
p nh4dif 

Units 
g aa/mole 
ATP 
dl 

lh"1 

lh"1 

gC/gN 

dl 

Id"1 

cm2 h 1 

% 

% 

% 

lm-' 

dl 

dl 

%fw 

mg N L"1 

mole ATP 
g 1 

g lipid/mole 
ATP 
% 

lh ' 1 

dl 

lh"1 

mole ATP 

g 
m2d-' 
m2d-' 

Value 
4.76 

0.05 

5.04e-6 

5.04e"3 

6.622 

0.085 

(0.0318* 
exp(0.078* 
(a temp-20)) 
0.115 

0.50 

0.50 

0.80 

0.27 

4.3 

1.2 

8.0 

0.3 

0.015 

1.96 

3.0 

0.104 

0.35 

2.086^ 

-0.095 

1.0 
1.7107e-4 

Initial source 
v. Dam & Penning de 
Vries 1995 
Machiels & Henken 
1986 
Bemer 1974 

Otsuki & Hanya 
1972 
Redfield ratio 

after Scavia 1980 

Stanford et al. 1975 

Broeker1974 

v. Dam & Penning de 
Vries 1995 
v. Dam & Penning de 
Vries 1995 
v. Dam & Penning de 
Vries 1995 
Scavia 1980 

estimated after v.d. 
Meer & v. Dam 1998 
estimated after v.d. 
Meer & v. Dam 1998 
v. Dam & Penning de 
Vries 1995 
Chen & Orlob 1975 

v. Dam & Penning de 
Vries 1995 
v. Dam & Penning de 
Vries 1995 
v. Dam &Pauly 1995 

Scavia 1980 

estimated 

Jorgensen et al. 1978 

Li & Gregory 1974 

Brezonik 1994 
Li & Gregory 1974 
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(Table 4, cont.) 

Variable 
Nitrification in sediments rate 
coefficient 
Nitrification in water rate 
coefficient 
Diffusion coefficient for N03" 

Pond area 

Soil porosity 

Cost of protein synthesis 

Protein percentage in fresh 
weight 
Q10 factor metabolism 

Saturation light intensity 

Reference temperature for 
routine metabolism 
Routine metabolism 
coefficient 
Routine metabolism exponent 

Maximum temperature for 
phytoplankton 
Volatilisation of NH3 rate 
coefficient 
Water depth 

Water/sediment film tickness 

Symbol 
p_nitrifsed 

p_nitrifwat 

p_no3dif 

p_pondarea 

p_porosity 

p_pratco 

p_prperc 

p_qlO 

pradop 

preftemp 

p rmcf 

p rmex 

ptemax 

p_volatnh3 

pwaterdepth 

p_zfilm 

Units 
lh"' 

lh"' 

m2h-' 

m2 

dl 

mole ATP 

gprot(100 
g)"1 fish 
dl 

lyh-1 

°C 

mole ATP 
g-°V 
dl 

°C 

h"1 

m 

cm 

Value 
0.010 

4.17e-4 

6.84e-6 

70 

0.84 

0.075 

17.00 

2.0 

1.67 

26 

5.04e-5 

0.8 

35 

3.19e-3 

1.2 

0.3 

Source 
Bansal 1976 

Bansal 1976 

Li & Gregory 1974 

own observation 

own observation 

v. Dam & Penning de 
Vries 1995 
v. Dam & Penning de 
Vries 1995 
Machiels & Henken 
1986 
van Liere et al. 1978 

Saint-Paul 1988 

v.d. Meer & v. Dam 
1998 
v.d. Meer & v. Dam 
1998 
Chen & Orlob 1975 

Wolfe etal. 1986 

own observation 

Wolfe et al. 1986 

In some cases a range for the coefficient was reported in literature, so the 

calibration was performed changing the coefficient within that range. Calibrated rate 

coefficients are indicated in Table 4. The degree of agreement between simulated and 

observed data over the whole simulation was determined at every time when field data 

were available, calculating the relative error: 

RE — (Ssim - Sobs) / Vi (Ssjm + S0bs) (16) 

in which RE is the relative error, and SSjm and S0bS are the simulated and observed values 

of the state variables at each moment. This way of calculating the RE takes into account 

the fact that both observed and simulated values are an approximation of the real value. 

Using a reiterative trial and error procedure, the coefficients were adjusted until the RE 
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was at least equal or lower than 0.25 for any sampling period (25% deviation from 

observed data); the same procedure was used for each coefficient. Final simulation was 

performed when all coefficients were set (Table 4) and the average relative error (ARE) 

for each state variable was used to assess the agreement for the whole experiment (van 

Dame/ al. 1996). 

Sensitivity analysis 

Each time a selected rate coefficient was changed by +/- 10% of the value that 

gave the best fit between simulated and observed data, maintaining the other 

coefficients unchanged. The difference between the value of the state variable at each 

sampling date for the highest rate coefficient (+10%) and the value for the lowest rate 

coefficient (-10%) expressed as a percentage of the value using the coefficient obtained 

after calibration was used to quantify the sensitivity of the model to that particular 

coefficient (Piedrahita 1986). 

Validation 

For the validation of the model, independent data sets were used (Table 5). Two 

stagnant ponds of 800 m2 and 1.2 m depth were stocked with 35.1 g (± 7.0 SD) 

Oreochromis niloticus at a density of 1.2 fish m"2. Fish were grown for 91 days and 

sampled every three weeks, sampling at least 50% of the entire pond population. Fish 

were fed a 3 mm 30% protein pellet. Average fish weight was used to estimate the 

amount of feed offered using a feeding rate of 2.5% body weight per day. The daily 

ration was divided into two equal portions and administered at 0700 and 1500 hours; 

fish were not fed on sampling days. Table 3 compares the initial conditions for the 

calibration and validation runs. 

Dissolved oxygen, water pH and temperature in the water column were 

measured twice a day and interpolated to obtain hourly values as in the calibration 

experiment. Ponds were sampled weekly for nitrogen contents in phytoplankton, 

sediments and water using the methods described. 
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Table 5. Experimental data collected to perform the validation of the model . Standard 

deviation is indicated between brackets 

Day 

Initial 

7 

14 

21 

28 

35 

42 

49 

56 

63 

70 

77 

84 

90 

s_nh4wat 

0.240 
(0.027) 

0.011 
(0.002) 

0.087 
(0.031) 

0.096 
(0.041) 

0.192 
(0.061) 

0.250 
(0.020) 

0.261 
(0.016) 

0.412 
(0.095) 

0.327 
(0.042) 

0.427 
(0.055) 

0.344 
(0.210) 

0.624 
(0.083) 

0.621 
(0.212) 

0.791 
(0.015) 

s_nh4sed 

0.105 
(0.011) 

0.077 
(0.055) 

0.067 
(0.041) 

0.087 
(0.014) 

0.162 
(0.014) 

0.153 
(0.027) 

0.174 
(0.027) 

0.281 
(0.069) 

0.211 
(0.027) 

0.266 
(0.081) 

0.388 
(0.040) 

0.355 
(0.149) 

0.504 
(0.013) 

0.509 
(0.068) 

s_no3wat 

0.114 
(0.012) 

0.111 
(0.037) 

0.076 
(0.010) 

0.095 
(0.012) 

0.114 
(0.011) 

0.162 
(0.007) 

0.189 
(0.024) 

0.168 
(0.005) 

0.192 
(0.007) 

0.273 
(0.016) 

0.401 
(0.064) 

0.439 
(0.107) 

0.406 
(0.048) 

0.422 
(0.067) 

afishw 

35.1 
(7.0) 

61.8 
(12.8) 

102.4 
(12.2) 

161.3 
(19.1) 

236.1 
(19.8) 

s_phytobiom 

0.113 
(0.028) 

0.527 
(0.017) 

0.752 
(0.036) 

0.837 
(0.051) 

0.854 
(0.043) 

0.961 
(0.032) 

1.085 
(0.089) 

0.879 
(0.181) 

0.923 
(0.135) 

1.017 
(0.067) 

1.076 
(0.087) 

1.204 
(0.072) 

1.191 
(0.080) 

1.125 
(0.137) 

s_ornsed 

38.18 
(1.4) 

38.76 
(2.2) 

38.02 
(1.3) 

41.14 
(3.7) 

45.53 
(2.3) 

58.03 
(5.3) 

54.54 
(7.8) 

64.45 
(8.5) 

82.23 
(3.8) 

83.34 
(7.4) 

85.54 
(9.5) 

85.14 
(8.0) 

81.52 
(12.9) 
90.83 
(19.8) 

All state variables are expressed in mg N per liter, except fish weight which is expressed in terms of 

grams per fish (individual fresh weight). For names explanation see Table 1. 

Results 

Most of the coefficients used in the model were taken from literature. When 

information was not available, the coefficients were estimated by fitting model 

predictions to observed data for a time series of data and for all the state variable's. 

The calibrated model was run for the whole experimental period (56 days in this 

case) and simulated values were plotted against the observed values (Fig. 5). 

Ammonium and nitrate concentrations in the water column (s_nh4wat and s_no3wat) 

were well simulated, with predicted values randomly around the observed values. 

Simulated values for sediment organic and inorganic nitrogen compounds were higher 

than observed values most of the time, but average relative errors (AREs) remained 
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equal or below 0.11 (Table 6). The agreement between simulated and observed fish 

weight and phytoplankton biomass was good. 

0.25 

N NH/in water N NH,+in sediments 

0.80 

i0 .60 

0.40 
1.00 

130 

ARE = 0.01 
(0.01 to 0.02) 

140 150 

Observed 

Figure 5. Calibration results for the model. The bisector represents perfect agreement 

between simulated and observed values (ARE = Average Relative Error, relative errors 

range is given within brackets) 
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The combination of all the coefficient values at the end gave relative errors oscillating 

between 0 and -0.23 (Table 6). The simulation of ammonium in the sediments 

(s_nh4sed) presented the highest positive deviation from observed values on days 7 and 

21 (+0.22 and +0.16, respectively) while the highest negative deviation occurred on 

days 7 and 12 (-0.23 and -0.12, respectively) for the simulation of nitrate in the 

sediments (s_no3sed). 

Table 6. Relative errors (RE*) of state variables after calibration 

Day of 
simulation 

1 
7 

14 
21 
28 
35 
42 
49 
56 

ARE** 

N-NH4
+ 

(water) 

* RE = (Ssim -

**ARE 
Sobs 

0.00 
0.00 
0.14 
0.07 

-0.03 
0.05 
0.03 

-0.04 
0.02 
0.02 

Sobs) / 

= 
= 

= I(RE)/n 
ARE 
n 

N-NH/ 
(sediments) 

0.08 
0.22 
0.10 
0.16 
0.11 
0.08 
0.11 
0.07 
0.05 
0.11 

'/2(Ssim + Sobs) 

N-N03-
( water) 

0.00 
0.01 
0.02 
0.01 

-0.02 
-0.01 
-0.01 
0.00 

-0.04 
0.00 

Simulated state value 
Observed state value 

= Average relative error 
= Number of observations 

State variable 
N-NO3" 

(sediments) 
-0.03 
-0.23 
-0.12 
0.14 
0.09 
0.06 
0.04 

-0.03 
-0.02 
-0.01 

Fish 
weight 

0.00 
0.05 
0.07 
0.04 
0.05 
0.04 
0.04 
0.03 
0.02 
0.04 

Phyto-
plankton 

0.00 
0.03 

-0.04 
0.06 

-0.03 
0.03 

-0.02 
-0.02 
-0.02 
0.00 

Organic N 
(sediments) 

0.02 
0.01 
0.02 
0.01 
0.01 
0.01 
0.01 
0.02 
0.01 
0.01 

The concentration of ammonium in the sediments also presented the higher 

average relative error (ARE) for the whole simulation period. 

The response of the state variables to a 10% increment and 10% decrement in 

the value of selected parameters was used as a quantification of model sensitivity 

(Piedrahita 1986); sensitivity analysis was used to identify coefficients which have a 

strong effect over different state variables. Table 7 summarizes the sensitivity to 

selected parameters, and the corresponding state variable(s). The concentration of 

ammonium in the water column (s_nh4wat) was strongly affected by the percentage of 

protein in the feed and by the routine metabolism exponent; this last coefficient also had 

an important effect on the concentration of ammonium in the sediments (s_nh4sed) and 

in the fish weight (s_fw). Fish weight was also strongly affected by the protein 

digestibility coefficient. 
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The validation was performed using two independent data sets from earthen 

ponds. Fourteen field data points collected weekly in both ponds were used to evaluate 

model performance. Most of the coefficients obtained during calibration (Table 4) were 

maintained unchanged, whereas the only parameters being changed were the initial 

conditions of the system, and the fish species-specific coefficients (see Table 3). 

Because the fish species was changed, the corresponding coefficients that characterize 

the species were also changed accordingly and the fish module was first calibrated for 

this species. Fish density and initial weight were maintained equal. The pond area, and 

the initial conditions, specially the amount of organic nitrogen in the sediments, were 

also different. 

Table 7. Sensitivity analysis. Effect of increasing or decreasing by 10% the indicated 

coefficient 

Coefficient 

g amino acids needed for 1 
mole ATP 

Protein digestibility 
coefficient 
Routine metabolism 
exponent 

Fraction of protein in feed 

Carbon/nitrogen ratio 

Constant for light 
extinction 

Module 

Fish 

Fish 

Fish 

Fish 

Phytoplankton 

Phytoplankton 

State variable affected 

N-NH4
+ in water 

N-NH4
+ in sediments 

Fish weight 

Fish weight 

N-NH4
+ in water 

N-NH4
+ in sediments 

N-N03" in sediments 

Fish weight 

N-NH4
+ in water 

N-NH4
+ in sediments 

N-NO3' in sediments 

N-NO3" in water 

Phytoplankton 

N-NO3" in water 

Phytoplankton 

± 10% * 

18.3 

16.7 
-15.9 

22.6 

25.4 

22.3 
18.0 

-20.9 

21.6 
19.7 

16.6 

15.5 

-18.4 

15.5 

-18.4 

Numbers indicate the difference between the final value of the state variable when the respective 
coefficient was increased by 10% and the value of the state variable when the coefficient was decreased 
by 10% as a percentage of the state variable value obtained using the coefficient after calibration. The 
sign represents under- or over-estimation depending whether the sign is negative or positive. Table 
includes only coefficients whose change affected by more than 15% the value of any state variable. 
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Figure 6 presents the comparison between the predicted output from the 

simulation model and the experimental data used during the validation, and Table 8 

summarizes the relative errors for the principal state variables. For all state variables 

there were no significant differences between the two ponds (paired t-test, p>0.05), so 

data sets were averaged. The organic nitrogen in the sediments (sorgnsed) was poorly 

simulated, especially after day 28; the average relative error (ARE) was also the highest 

(-0.34) indicating that predicted values were lower than observed values. 

N 

>j 

/, 

_NH„* 

. • 

in water 

' / 

ARE- -0.08 
(-0.86 to 0.32) 

1.0 

0.5 

N N H / in sediments 

/• 

ARE - -0.08 
(-1.58 to 0.27) 

0.5 
Observed 

0.5 
Observed 

U.b 

0.3 

N N03 

^y 

in water 

ARE " -o.oi 
(-0.26 to 0.26) 

0.3 
Observed 

Individual fish weight 

ARE = 0.01 
(0.00 to 0.04) 

Phytoplankton biomass Organic nitrogen in sediments 

ARE - -0.34 
(-0.62 to 0.02) 

Figure 6. Predicted output from the simulation model and experimental data (mean, n = 2) 

used during validation. The bisector represents perfect agreement between simulated and 

observed (ARE = Average Relative Error, relative errors range is given within brackets) 
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Table 8. Relative errors (RE*) of state variables obtained during validation. REs are 

calculated for the average of the two ponds used 

Day of 
simulation 

1 
7 

14 
21 
28 
35 
42 
49 
56 
63 
70 
77 
84 
90 

ARE** 

N-NH/ 
(water) 

0.00 
-0.76 
-0.86 
0.11 

-0.23 
-0.07 
0.07 

-0.18 
0.17 
0.15 
0.32 
0.02 
0.10 
0.03 

-0.08 

N-NH4
+ 

(sediments) 

0.00 
-1.58 
-0.74 
-0.15 
-0.24 
-0.06 
0.10 

-0.21 
0.27 
0.12 

-0.03 
0.04 

-0.11 
0.00 

-0.19 

State variable 
N-NO/ 
(water) 

0.00 
-0.10 
0.26 
0.14 
0.03 

-0.20 
-0.17 
0.10 
0.13 

-0.04 
-0.26 
-0.20 
0.03 
0.12 

-0.01 

Fish 
weight 

0.00 

0.00 

0.02 

0.02 

0.04 

0.01 

Phytoplankton 

0.00 
0.07 

-0.02 
-0.02 
0.01 

-0.07 
-0.15 
0.09 
0.08 
0.02 
0.00 

-0.07 
-0.03 
0.06 
0.00 

Organic N 
(sediments) 

0.00 
-0.01 
0.02 

-0.04 
-0.13 
-0.35 
-0.28 
-0.42 
-0.62 
-0.61 
-0.61 
-0.58 
-0.51 
-0.59 
-0.34 

* RE - (Ssjm - S0bs) / '/̂ (Ssim + Soos) 
SSim

 = Simulated state value 
Sobs= Observed state value 

** ARE = Z(RE)/n 
ARE = Average relative error 
n = Number of observations 

Simulated values for ammonium in the sediments (s_nh4sed) were lower than 

observed values most of the time, and presented a high ARE (-0.19); nitrate 

concentration in the water column (s no3wat) was simulated better than ammonium 

(s_nh4wat). The fish weight (swf) and the phytoplankton biomass (s_phytobiom) were 

well simulated by the model, presenting the lowest ARE. In the case of fish, this was 

expected as we calibrate the fish module first for this species. 

Discussion 

A comprehensive simulation model, covering the fish, phytoplankton and the 

pond physical environment was developed, calibrated and validated. Most of the initial 

values of the coefficients used in the model were found in the literature and were set 

after calibration within reported ranges (Table 4). Data used for calibration and 
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validation originated from ponds of different area (800 m2 vrs 65 m2) and length/surface 

area ratio (0.15 vrs 0.50); this could affect the ecological conditions of the systems, but 

the model simulated most of the nitrogen allocation sources in the pond fairly well. 

Simulation of inorganic nitrogen species in the water column 

Total ammonia nitrogen (TAN) and nitrate in the water column were fairly well 

simulated. In the model it was considered that TAN originates from mineralization in 

situ of organic nitrogen, fish excretion, or diffusion from the sediments, and that 

mineralization was influenced by pH and dissolved oxygen (Reddy and Patrick 1984; 

Olah et al. 1987). This approach led to reasonably accurate predictions. 

The nitrate concentration in the water was also predicted with reasonable 

accuracy. According to Sharma and Ahlert (1977), nitrification is a function of 

dissolved oxygen, temperature, pH, substrate concentration, light and number of 

nitrifying bacteria. Numbers of nitrifying bacteria were not included in the present 

work, assuming that the pond is in a steady state with regard to microbial population. 

Hargreaves (1997) assumed that the nitrification rate could be described by a first-order 

reaction. The first order constant is then temperature dependent 

(p_nitrifwat=0.002+0.0025*a_temp). In our model the nitrification coefficient 

(p_nitrifwat) was set constant (see Table 4), and it was assumed that nitrification did not 

proceed when dissolved oxygen was lower than 2 ppm (Knowles et al. 1965; 

Wuhrmann 1968); the rate of nitrification was determined by substrate concentration 

when oxygen was above this value (equation 10). Both approaches gave similar results 

with differences between simulated and observed dissolved nitrate and ammonium 

concentrations not higher than 15%. 

During the validation, positive and negative differences between simulated and 

observed values of N-NH4+ or N-NO3" were negatively correlated to each other (Table 

8). This is possibly related to the nitrification rate. However, when changing the value 

used for the rate constant of nitrification (4.17 x 10"4 h"1; Bansal 1976), the simulations 

were not improved. Considering the "preference" of phytoplankton for ammonium 

instead of nitrate (McCarthy 1981), another explanation could be the uptake rate of 

TAN by the phytoplankton and TAN's concentration: at the higher negative N-NH4
+ 

difference (day 14) the phytoplankton uptake rate was 39.28 mg N m"2 d"1, while at the 
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higher positive difference (day 70) the uptake rate was 20.24 mg N m"2 d"1. If the uptake 

rate of TAN is higher than estimated it causes a negative difference of its concentration. 

Phytoplankton 

Phytoplankton biomass increased from an initial concentration of 0.322 to 1.032 

mg of nitrogen per liter. When the nitrogen content in the dead phytoplankton was also 

taken into account, the total produced biomass of algae was estimated to be 1.16 mg L"1 

on day 56. The importance of phytoplankton as a regulator of ammonia concentrations 

in fish ponds is well known (Tucker et al. 1984; Krom et al. 1989), and uptake of 

dissolved inorganic nitrogen from the water column is the primary pathway of nitrogen 

removal (Barica 1974; Boyd 1974). The uptake rate of nitrogen by phytoplankton was 

264.4 mg N m"2 d"1 at the beginning of the experiment, and decreased during the 

growing cycle partly due to nutrient and light limitations, the last caused by algal self-

shading. 

To facilitate practical use of the model, phytoplankton biomass was measured as 

chlorophyll-a concentration. This does not permit separation of phytoplankton biomass 

into species or groups of algae. Still, the proposed model was accurate enough to predict 

phytoplankton concentrations. During calibration, phytoplankton was very well 

simulated with an ARE of 0 and REs not greater than 0.06. Validation, using different 

initial conditions for phytoplankton such as initial biomass and pond area (Table 3) also 

resulted in good agreement of simulated and observed data. 

Simulation of nitrogen species in the sediments 

The concentration of inorganic nitrogen in the sediments was less well simulated 

than in the water column. The ammonium concentration in the sediments presented the 

higher ARE after calibration (0.11, see Table 6) with always positive REs. Several 

factors can cause model estimations to exceed observed values. Ammonium can be 

adsorbed by negatively charged soil colloids (Boyd 1995). Soil pH was assumed to 

follow a daily fluctuating pattern based on field determinations and, if actual pH values 

were lower than assumed, then part of the N-NH4
+ would not be accounted for. Since 

laboratory measurements of TAN included both dissolved and adsorbed nitrogen in 

sediments, cation exchange capacity (CEC) was not considered. Sediment samples used 

for the laboratory analysis were taken from the upper 5 cm layer. According to Diab and 
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Shilo (1986), the concentration of free and bound ammonia is lower in the upper layer, 

increases with depth up to 15-20 cm and decreases in deeper layers. The profile of N-

NH/ seems important to consider, and a separation of layers could result in a better 

simulation of nitrogen compounds in the sediments. Finally, if part of the dissolved N-

NH/ seeps through the pond bottom, the model will overestimate N-NH/. Although 

seepage data were not available, the ponds used were rather old and seepage in earthen 

ponds is reduced over time (Boyd 1990). Another possible pathway for N-NH4+ is 

diffusion towards the water column. According to Hargreaves (1998), sediments are a 

source of ammonium to the water column. Within the equations for diffusion rate, both 

the concentration gradient between water and sediments and a fixed soil porosity 

(p_porosity = 0.84) were included. As stated before, N-NH4 in the water column was 

simulated well and, again, any increase of the coefficients of the flux rate equation did 

not improve the simulations any further. The nitrate concentration in the sediments was 

fairly well simulated although it can be noticed that the highest positive difference of N-

NH4
+ and the highest negative difference of N-NO3" also occurred on the same day (day 

7). 

Organic matter accumulated in the observed system. The calibrated organic 

nitrogen in the sediments was well simulated (Fig. 5). However, validation showed that 

this state variable is not simulated well. The organic nitrogen in the sediment might be 

partly incorporated in biota, as insect larvae that fly out of the system. Reports on insect 

larval abundance in shallow ponds are highly variable, in the order of < 0.5 up to > 100 g 

m"2 (e.g., Merla and Miiller 1970; Drake and Arias 1995; Stagliano et al. 1998). 

Information on this aspect is scarse and it should be investigated further. 

To keep the model simple, the ammonification rate was modeled as a first-order 

reaction with respect to organic matter concentration, taking into account a minimum 

pH and dissolved oxygen to proceed. The dynamics of organic matter decomposition 

are much more complex. Anaerobic decomposition of organic matter was not 

considered in the model. However, anaerobic bacteria in sediments can produce 

ammonium at the same rate (or even higher) as aerobic ones (Jacobsen and Jorgensen 

1975). The anaerobic ammonia production is dependent on the C:N ratio of the organic 

material, soil texture, pH, temperature, and nutrient availability (Reddy and Patrick 

1984). Furthermore, higher oxygen concentrations affect the microbial transformations 

of nitrogen or organic carbon degradation (Avnimelech et al. 1992). Therefore, it might 
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be useful to include the sedimentation and resuspension of organic matter in future 

studies. Avnimelech and Wodka (1988) found that resuspended material accounted for 

50% of the total sedimentation flux in a reservoir of 8 m deep, and this value is much 

higher in aquaculture ponds (Avnimelech et al. 1999). 

Simulation offish growth 

Well documented and reported values of parameters from the literature were 

directly used for the growth simulations of tilapia and Colossoma (Table 3). Simulation 

for the size used (35 to 155 g in calibration runs, 35 to 270 g in validation runs) resulted 

in REs not greater than 0.07. Because of the good agreement between simulated and 

observed values, any further assessment of these coefficients is not a priority for model 

improvement. 

Feed sources are difficult to assess in fish ponds, particularly in extensive or 

semi-intensive systems. In manured fish ponds, 50-80% of the fish yield originates from 

algal-based food webs harvested primarily after the algae had been processed within the 

detritus of the pond bottom (Schroeder 1987). Depending on the fish species, 

phytoplankton could be an important natural food source for fish cultured in extensive 

culture systems (Yusoff and McNabb 1997). In our case, it was assumed that fish 

preferred artificial feed to natural feed, and that fish take artificial feed independent of 

the concentration of natural feed sources (Schroeder 1978; Brummett and Noble 1994; 

Milstein et al. 1995; Jamu 1999). The amount of feed not eaten is also difficult to assess 

(Nijhof 1994; van der Meer et al. 1995), but the assumption that 35% of the feed 

offered was not eaten (pmors = 0.35) proved adequate. The effect of this parameter on 

the simulation of fish growth is presented in Figure 7. Sensitivity analysis (see below) 

demonstrated that changing this value by +/- 10% did not result in relevant effects on 

the simulations. Only when this coefficient was changed by more than 30% (that is 

increasing or decreasing pmors to 0.45 or 0.25), the simulation of state variables such 

as TAN in water or sediments was affected. 

The fish growth module, in general, had a strong impact on the N budget in 

water and in sediments. This is logical since feed nitrogen is the largest N-input, and 

feed utilization and metabolism should have a large influence on the sinks of nitrogen in 

the system. The fact that the model simulates most N-variables well also means that 

such dynamic modelling of metabolic processes is a good approach. 
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Figure 7. Effect of feed spill parameter (pmors) on fish growth 

Sensitivity analysis 

Sensitivity analysis resulted in the identification of coefficients with important 

effects on the model simulations. The principal state variables affected by changing the 

specific coefficients were N-NH4
+ and N-N03" both in water and sediments (Table 7). 

The C:N ratio in phytoplankton presented an important effect on the phytoplankton 

module. In the model this parameter was used to convert phytoplankton biomass into 

organic carbon, so it influences the rate of degradation of organic matter. With a large 

C:N ratio, the substrate does not supply enough nitrogen to satisfy microbial 

requirements (Boyd 1990). Hence, nitrogen will be immobilized rather than 

mineralized. 

In summary, the present model simulates fairly well most of the nitrogen 

allocation sources in the pond. Simulated organic nitrogen in sediments was higher than 

observed values most of the time. Special attention should be given to soil organic 

matter equations. The dynamics of organic matter accumulating in the sediments, 
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especially the processes of deposition/accumulation and decomposition should be 

studied. All coefficients that presented high sensitivity in the model belong to the fish 

and phytoplankton modules, and as stated before, the simulation of these two state 

variables were good after calibration and during validation, so changes in their 

coefficients would not be a priority for model improvement. 
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Variable 

Annex 1. Variables used in the model during calibration, and respective equation involved. 

Equation involved 

paaatp 
paafdgl 

pammonifsed 
pammonifwat 
p_cnratio 
pconstext 
p_denitrifsed 
p_diffcoefnh3 
pdigca 
pdigli 
p_digpr 

pexwa 
p f ac l , p_fac2 

piliper 
p k n 
pliatco 
pl iatp 
plipfin 

pmaxgrphyto 
pmors 

pmrphyto 
pneoatco 
p_nh3dif 

p_nh4dif 

p_nitrifsed 
pnitrifwat 
p_no3dif 

p_pondarea 
p_porosity 

p_pratco 
p_prperc 

p_qlO 

raaox = a_aaswtch*r_atpmet*p_aaarp 
saapooll(t) = s_aapooll(t - dt) + ((l-p_aafdgl)*r_prodig - r_prosyn) * dt 
s_aapool2(t) = s_aapool2(t - dt) + (p_aafdgl*r_prodig - r_aagluc) * dt 
rammonifsed = if (a_phsed > 2) and (adosed >2) then (s_ornsed*p_ammonifsed) else 0 
rammonifwat = if (a_phwat>2) and (a_dowat>2) then (s_phytodead*p_ammonifwat) else 0 
a_poc = s_phytobiom*p_cnratio 
atotlext = p_exwa+p_constext*a_poc 
p_denitrifsed = (0.0318*EXP(0.078*(a_temp-20)))/24 
p_volatnh3 = p_diffcoefhh3/(p_waterdepth*100*p_zfilm) 
rcardig = r_fdrtdm*(a_feedca)*p_digca* 1.11 
rlipdig = r_fdrtdm*(a_feedli)*p_digli*0.96 
r_prodig = r_fdrtdm*(a_feedpr)*p_digpr* 1.18 
regspro = ((l-p_digpr)*a_feedpr*r_fdrtdm) 
atotlext = p_exwa+p_constext*a_poc 
aaalirat =MAX(0, 0.95-(p_facl/100)*a_prolev-(p_fac2/100)*(a_pe* 
SQRT(SQRT(a_prolev)))) 
Initial lipid 
anutrilim = if (a_nleft<=0) then 0 else (nleft/(p_kn+a_nleft)) *(a_pleft/(p_kp+a_pleft)) 
r_atplip = p_liatco*r_lipsynl 
r l ipox = a_liswtch*r_atpmet*p_liatp 
aaaswtch = if a_liperc>p_lipfin then (l-a_aalirat) else 1 
aliswtch = if a l iperOplipfin then aaalirat else 0 
r_phytogrowth = p_maxgrphyto*(a_nutrilim*a_lighlim)*s_phytobiom 
rfdrtdm = a_ration*a_feeddm*(l-p_mors) 
rfdrtfw = a_ration*(l-p_mors) 
runeadm = a_ration*a_feeddm*p_mors 
runeafw = a_ration*p_mors 
r_phytom = p_mrphyto*EXP(a_tecorm)*s_phytobiom 
ratpneo = p_neoatco*r_aagluc 
r_nh3flux =(-p_porosity*p_nh3dif*(((s_nh3sed-s_nh3wat)/1000)/ pseddepth)) 
*( 1000/(24 *p_waterdepth)) 
r_nh4flux =(-p_porosity*p_nh4dif*(((s_nh4sed-s_nh4wat)/1000)/ pseddepth)) 
*(1000/(24*p_waterdepth)) 
rnitrifsed = if adosed >4 then (p_nitrifsed*s_nh4sed) else 0 
rnitrifwat = if (a_dowat>2) then (p_nitrifwat*s_nh4wat) else 0 
r_no3flux = (-p_porosity*p_no3dif*(((s_no3sed-s_no3wat)/1000)/ pseddepth)) 
*( 1000/(24*p_waterdepth)) 
a_pondvol = (pj)ondarea*p_waterdepth)*1000 
r_n2flux = (-p_porosity*p_n2dif*(((s_n2sed-s_n2wat)/1000)/p_seddepth)) 
*( 1000/(24*p_waterdepth)) 
r_nh3flux = (-p_porosity*p_nh3dif*(((s_nh3sed-s_nh3wat)/1000)/ pseddepth)) 
*(1000/(24*p_waterdepth)) 
r_nh4flux = (-p_porosity*p_nh4dif*(((s_nh4sed-s_nh4wat)/1000)/ pseddepth)) 
*(1000/(24*p_waterdepth)) 
r_no3flux = (-p_porosity*p_no3dif*(((s_no3sed-s_no3wat)/1000)/ pseddepth)) 
*(1000/(24*p_waterdepth)) 
ratppro = p_pratco*r_prosyn 
r_wfrate = (r_prosyn-r_aaox)/(p_prperc/100) 
r_wfraten = 0.16*r_wfrate*(p_prperc/100) *(1000/a_pondvol) *a_fishnb 
rroumet = p_ql0A((a_temp-p_reftemp)/10)*p_rmcf* (swf^prmex) 
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(Annex 1, cont.) 

pradop 

preftemp 
p rmcf 
p rmex 
pseddepth 

p temax 
p_volatnh3 

pwaterdepth 

pzfilm 

ajighlim = ((2.178*a_phoper)/(a_totlex*p_waterdepth))*(EXP (-
(a_decisor/p_radop)*EXP(-a_totlext*p_waterdepth))) - EXP(-(a_decisor/p_radop)*EXP(-
a_totlext*p_waterdepth)) 
rroumet = p_qlOA((a_ternp-p_reftemp)/10)*p_rmcf* (swf^prmex) 
rroumet = p_qlOA((a_temp-p_reftemp)/10)*p_rmcf* ( swPp rmex ) 
rroumet = p_qlOA((a_temp-p_reftemp)/10)*p_rmcf* (s_wfAp_rmex) 
r_n2flux = (-p_porosity*p_n2dif*(((s_n2sed-s_n2wat)/1000)/p_seddepth)) 
*( 1000/(24*p_waterdepth)) 
r_nh3flux = (-p_porosity*p_nh3dif*(((s_nh3sed-s_nh3wat)/1000)/ pseddepth)) 
*( 1000/(24*p_waterdepth)) 
r_nh4flux = (-p_porosity*p_nh4dif*(((s_nh4sed-s_nh4wat)/1000)/ pseddepth)) 
*( 1000/(24*p_waterdepth)) 
r_no3flux = (-p_porosity*p_no3dif*(((s_no3sed-s_no3wat)/1000)/ pseddepth)) 
*( 1000/(24*p_waterdepth)) 
atecorm = IF a_temp>p_temax then (atemp-ptemax) else 0 
p_volatnh3 = p_diffcoefnh3/(p_waterdepth*100*p_zfilm) 
r_volatnh3 = p_volatnh3*s_nh3wat 
r_n2flux = (-p_porosity*p_n2dif*(((s_n2sed-s_n2wat)/1000)/p_seddepth)) 
*( 1000/(24*p_waterdepth)) 
r_nh3flux = (-p_porosity*p_nh3dif*(((s_nh3sed-s_nh3wat)/1000)/ pseddepth)) 
*( 1000/(24*p_waterdepth)) 
r_nh4flux = (-p_porosity*p_nh4dif*(((s_nh4sed-s_nh4wat)/1000)/ pseddepth)) 
*( 1000/(24*p_waterdepth)) 
r_no3flux = (-p_porosity*p_no3dif*(((s_no3sed-s_no3wat)/1000)/ pseddepth)) 
*( 1000/(24*p_waterdepth)) 
ajighlim = ((2.178*a_phoper)/(a_totlex*p_waterdepth))*(EXP (-
(a_decisor/p_radop)*EXP(-a_totlext*p_waterdepth)))-EXP(-(a_decisor/p_radop)*EXP(-
a_totlext*p_waterdepth)) 
a_pondvol = (p_pondarea*p_waterdepth)*1000 
p_volatn2 = p_diffcoefn2/(p_waterdepth*100*p_zfilm) 
p_volatnh3 = p_diffcoefhh3/(p_waterdepth*100*p_zfilm) 
p_volatn2 = p_diffcoefn2/(p_waterdepth*100*p_zfilm) 
p volatnh3=p diffcoefnh3/(p waterdepth*100*p zfilm) 

Parameters 
p_aaatp, g amino acids needed for 1 mole ATP; p_aafdgl, fraction of digested protein used for gluconeogenesis; 
p_ammonifsed, instant rate of ammonification in sediments; p_ammonifwat, instant rate of ammonification in water; 
p_cnratio, ratio carbon/nitrogen in phytoplankton; p_constext, constant for extinction; p_denitrifsed, instant rate of 
denitrification; p_diffcoefn2, diffusion coefficient for N2; p_diffcoefnh3, diffusion coefficient for NH3; p_digca, 
carbohydrate digestibility coefficient; p_digli, lipid digestibility coefficient; p_digpr, protein digestibility coefficient; 
p_exwa, light extinction due to water; p_facl, first factor for aalirat equation, p_fac2, second factor for aalirat equation; 
pjliper, initial lipid; p_kn, half saturation constant for Nitrogen; p_kp, half saturation constant for phosphorus; pjiatco, 
cost of lipid synthesis; pjiatp, g lipids needed for 1 mole ATP; pjipfin, minimum fat percentage in fresh weight offish; 
p_maxgrphyto, instant rate of phytoplankton growth; p_mors, fraction of feed given to fish but not eaten; pjnrphyto, 
instant rate of phytoplankton mortality; p_neoatco, cost of neoglucogenesis; p_nitrifsed, instant rate of nitrification in 
sediments; p_nitrifwat, instant rate of nitrification in water; p_n2dif, diffusion coefficient for N2; p_nh3dif, diffusion 
coefficient for NH3; p_nh4dif, diffusion coefficient for NH4; p_no3dif, diffusion coefficient for N03; p_pondarea, pond 
area; p_porosity, soil porosity; p_pratco, cost of protein systhesis; p_prperc, protein percentage in fresh weight; p_qlO, 
Q10 factor metabolism; p_radop, saturation light intensity; p_reftemp, ref. temp, routine metabolism; p_rmcf, routine 
metabolism coefficient; p_rmex, routine metabolism exponent; p_seddepth, sediment depth; p_temax, maximum 
temperature for phytoplankton; p_volatnh3, instant rate of volatilisation of NH3; p_volatn2, instant rate of volatilisation 
of N2; p_waterdepth, water depth; p_zfilm, water/sediment film tickness. 

States 
s^aapooll, amount of AA converted into protein; s_aapool2, amount of AA converted into glucose (gluconeogenesis), 
s_n2sed, N2 in sediments; s_n2wat N2 in water; s_nh3sed, NH3 in sediments; s_nh3wat, NH3 in water; s_nh4sed, NH4 
in sediments; s_nh4wat, NH4 in water; s_no3sed, N03 in sediments; s_no3wat, N03 in water; s_ornsed, amount of 
organic nitrogen matter in sediments; s_phytodead, organic N (as dead phytoplankton) in water; s_phytobiom, 
phytoplankton biomass; s_wf, individual fish weight(wet weight). 

Auxiliars 
a aalitrat, proportion of energy sypplied by fat; a_aaswtch, switch, becomes 1 when fat percentage of fish falls below 
p_lipfin, thus switching energy to 100% protein oxidation; a_decisor; a_dosed, dissolved oxygen in sediment; a_dowat, 
dissolved oxygen in water; a_feedca, fraction of carbohydrate in feed (wet); a_feeddm, fraction of dry matter in feed; 
afeedli, fraction of lipid in feed (wet); a_feedpr, fraction of protein in feed (wet); a_fishnb, number of fish present 
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initially; a_lighlim, light limitation factor; ajiperc, fat percentage of the fish; ajiswtch, switch, becomes 0 when fat 
percentage of fish falls below plipfin, thus switching off lipid oxidation; anleft, N that remains in water; anutrilim, 
nutrients limitation; a_pe, feed protein/gross energy ratio; a_phoper, photoperiod; a_phsed, sediments pH; a_phwat, 
water pH; a_pleft, P that remains in water; a_poc, organic carbon in phytoplankton; a_pondvol, pond volume; a_prolev, 
actual protein feeding level; aration, daily feed ration; atecorm, temperature correction for mortality; atemp, water 
temperature; a_totlext, total light extinction. 

Rates 
r_aagluc, rate of gluconeogenesis; r_aaox, amino acid oxidation rate; r_ammonifsed, ammonification in sediments; 
r_ammonifwat, ammonification in water; r_atplip, rate of energy use for lipid synthesis from lipid; r_atpmet, rate of 
energy use for total metabolism; r_atpneo, rate of energy use for gluconeogenesis; ratppro, rate of energy use for protein 
systhesis; rcardig, rate of digestion of carbohydrates from feed; r_egspro, egestion rate protein; r_fdrtdm, real feeding 
rate; r_fdrtfw, feed consumption rate; Mipdig, lipid digestion rate; rjipox, lipid oxidation rate; rjipsynl, lipid synthesis 
rate from digested lipids; r_n2flux, flux of N2; r_nh3flux, flux of NH3; r_nh4flux, flux of NH4; r_nitrifsed, nitrification 
in sediments; r_nitrifwat, nitrification in water; r_no3flux, flux of N03; r_phytogrowth, phytoplankton growth; 
r_phytom, phytoplantion death; r_prodig, amino acid production rate from digested feed; r_prosyn, protein synthesis rate; 
rroument, routine metabolic rate; r_uneadm, uneaten feed (dw); rjjneafw, uneaten feed (fw); r_volatnh3, ammonia 
volatilisation; r_wfrate, fish growth rate; r_wfraten, fish growth rate in terms of nitrogen. 
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Abstract 

In aquaculture ponds with high loads of organic inputs, organic matter 

accumulates at the bottom over time. Uneaten feed, senescent phytoplankton and faeces 

are the principal sources of accumulated material, but quantifications are scarce. The 

sedimented organic matter develops into a flocculent layer in which different processes 

transform the material into inorganic forms. A better understanding of factors 

influencing organic matter accumulation/decomposition in the sediment is needed to 

better understand and manage the dynamics of nitrogen in fish ponds. In this study, the 

rate of mineralization of organic nitrogen and the nitrogen flux between the sediment 

and the water column were measured. Organic matter accumulation in fish ponds was 

quantified, and the data were used to construct, calibrate and validate a dynamic 

simulation model of organic matter deposition/decomposition in fish ponds. The 

accumulating material consisted of dead phytoplankton, fish faeces and uneaten feed. 

Through model calibration, the proportion of these materials in the total accumulated 

organic matter was determined. In the model, gross photosynthetic rate was estimated 

from an empirical relationship with feed input. After calibration, the model was 

validated using independent data. The model simulated well the concentrations of 

organic carbon and nitrogen in the sediments but it may be developed further, especially 

by considering the effects of resuspension. 

Keywords: organic matter; accumulation; nitrogen model; modelling; nitrogen flux. 
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Introduction 

Fish production in aquaculture is characterized by high loads of organic matter 

in the form of feed and/or organic fertilizers. As a result, organic matter accumulates in 

pond soils over time (Tucker 1985; Ayub et al. 1993). In channel catfish ponds, 

sediment organic matter increased by 0.23% year"1 (Tucker 1985). In sediments of 

ponds enriched with chicken manure, Ayub et al. (1993) reported an increase of organic 

carbon in the order of 0.1% month"1. At the bottom surface, settled particulate matter 

develops into a dynamic, flocculent, organic layer (Visscher and Duerr 1991; Hopkins 

et al. 1994). With the accumulation of organic matter, the oxygen demand increases 

and oxygen depletion in the sediments may occur. Aerobic and anaerobic 

decomposition result in a thin aerobic top layer above a gradually more reduced 

sediment (Brown et al. 1987). The micro-organisms in anaerobic soils produce reduced 

substances such as nitrite, hydrogen sulfide, ferrous iron, and manganese. Ammonia 

also accumulates in the reduced sediment layer because the biochemical pathway of 

ammonia transformation requires oxygen. When anaerobic conditions develop in the 

pond bottom, fish growth is adversely affected because of the formation of toxic 

substances such as ammonia, nitrite and hydrogen sulfide (Boyd 1990) and because fish 

avoid grazing in the anaerobic sediments (Avnimelech et al. 1981). 

The nitrogen concentration in the sediment is the net result of the deposition of 

organic nitrogen, the decomposition of the organic matter, and the flux between the 

water and the sediments. The main sources of organic nitrogen are uneaten feed, faeces 

and dead phytoplankton. The amount of uneaten feed is difficult to assess in ponds. For 

fish cage culture, Phillips et al. (1985) and Thorpe et al. (1990) estimated feed spills of 

15-30%. In aquarium systems, van der Meer et al. (1997) found that 21% of the feed 

offered to Colossoma macropomum remained uneaten. Boyd (1995) stated that uneaten 

feed usually is less than 5-10%, but more conclusive measurements are scarce. Faeces 

generally account for 5-15%o of the nitrogen ingested by fish (30-40% being 

incorporated into fish biomass, 25-80% excreted as ammonia or dissolved organic 

nitrogen; Guerin-Ancey 1976; Kaushik 1980; Krom et al. 1985; Porter et al. 1987; 

Lovell 1988). Phytoplankton is considered the major source of organic matter in 

aquaculture ponds (Boyd 1995). Schroeder et al. (1991) found that as much as 50% of 

the algal standing crop settles on the sediment surface each day. 
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A wide range of values for decomposition rates are reported in the literature. 

Rate constants for decomposition for different algae and aquatic plants varied between 

0.03 d"1 and 0.20 d"1 (Sudo et al. 1978; Fallon and Brock 1979). For the decomposition 

of organic matter in the water column, values in the order of 0.001 to 0.340 mg N L"1 d"1 

are reported (e.g. Harrison 1978; Barat and Jana 1987). Decomposition rates of organic 

matter in the sediments varied threefold, ranging from 0.011 to 0.032 d"1 (Foree and 

McCarty 1970). The flux of nutrients from the sediment into the water column depends 

on factors such as concentration gradient and bioperturbation, and fluctuate between 

0.07 and 6.72 mg N L"1 d"1 (e.g. Krom and Berner 1980; Schroeder 1987; Blackburn and 

Henriksen 1983; Seitzinger 1988; Valdes and Real 1994). Estimates of total ammonia 

nitrogen (TAN, NH3-N + NFLt+-N) flux from marine and freshwater sediments into the 

overlying water vary between 0.03 and 22 mg N m"2 d"1 (Boynton et al. 1980; Brannon 

etal. 1985). 

The present study is part of a larger project with the objective to gain more 

insight into the nitrogen dynamics of feed driven fish ponds by constructing a dynamic 

simulation model. Changes in concentrations of N-species in the water column and 

sediments in earthen fish ponds were modeled (Chapter 2, this thesis), but the model 

was not accurate in predicting the concentration of organic matter in the sediments. A 

better understanding of the factors that affect organic matter accumulation in the 

sediment is needed. Therefore, the objectives of the present study were: (1) to estimate 

the rate of mineralization of organic nitrogen; (2) to measure the flux of inorganic 

nitrogen forms between sediments and water; (3) to quantify the amount of organic 

matter accumulating in the sediment of semi-intensively managed fish ponds, and (4) to 

use that information to construct, calibrate and validate a dynamic simulation model of 

organic matter deposition and decomposition in fish ponds. 

Material and Methods 

General 

Three pond experiments were done at the 28 Millas Research Station of the 

Universidad Nacional (UNA) in Limon, Costa Rica, between February and September 

1998. At this site, fish ponds have sandy-soils, and water is collected from a nearby 

wetland. In Experiment 1, organic nitrogen mineralization rate was measured. In 
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Experiment 2 the flux of organic nitrogen species between water and sediment, and the 

accumulation of organic matter in pond sediment were quantified. A simulation model 

for organic matter accumulation and mineralization was then formulated and the data 

from Experiment 2 were used for calibration. An independent set of data (Experiment 3) 

was used for model validation. 

Experiment 1 

Four earthen fish ponds (Ponds 7-10) of 800 m2 were stocked with 47.2 ± 0.1 g 

(mean ± SD) Colossoma macropomum at a density of 1 fish m"2. Fish were fed 32% 

protein pellets at 2% of the average individual body weight per day, for 90 days. Every 

fortnight, primary productivity using the light-dark method was measured in each pond. 

Samples where incubated at two depths (20 cm and 60 cm) for two hours, and the 

average gross photosynthetic rate (GPR, g C m"2 d"1) calculated. A relationship between 

gross photosynthesis rate and feed input was estimated. 

To determine mineralization of organic nitrogen, soil samples from the four 

ponds were taken using a soil corer of 8 cm diameter and the cores were transported 

carefully to the laboratory. After dissection of the soil, the undisturbed samples from the 

top layer (0-5 cm) were placed in tubes of the same diameter. Water samples taken from 

three different parts of the pond were mixed, and the mixture poured carefully over the 

soil samples for incubation. During incubation, the water was sampled for TAN every 9 

hours and analyzed using standard methods (APHA 1989). The initial and final 

concentrations of organic matter in the soil were determined using the method proposed 

by Raveh and Avnimelech (1972). The amount of ammonia-nitrogen produced and the 

loss of organic matter during incubation were used to calculate the mineralization rate 

constants for nitrogen and carbon. 

Experiment 2 

Two 1-m deep 800-m2 ponds (Ponds 1 and 2) were stocked with Oreochromis 

niloticus at a density of 1.25 fish per m2 for 84 days (Table 2). The initial fish weight 

was 35.3 + 8.6 g for one pond, and 74.9 ± 20.5 g for the other. Fish were fed a 

commercial 30.5% protein floating pellet at a feeding rate of 2.2% of the average body 

weight per day. No water flow-through was allowed in the ponds, and evaporation and 

seepage losses were replenished weekly. 
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Every day at 0600 and 1700 hours, dissolved oxygen, water pH and temperature 

were measured. Water samples were taken every Tuesday (0900) at different locations 

in the ponds, the samples of each pond mixed, and the composite water sample was 

filtered through a Whatman GF/C glass fibre filter and analyzed for dissolved NCV-N, 

NO2-N, TAN and alkalinity. Another sample without filtration was analyzed for 

chlorophyll-a in the water column using standard methods (APHA 1989). Each pond 

was divided into 8 sectors of 100 m2 and three soil samples of 6 cm diameter and 15 cm 

deep from each sector were taken every three weeks using a soil corer. One sample was 

divided into three sub-samples (0-5 cm, 6-10 cm and 11-15 cm depth) and analyzed for 

soil porosity, TAN (trapped and absorbed) and total nitrogen (Kjeldahl) (APHA 1989). 

For the determination of inorganic nitrogen fluxes, the other two soil samples 

were used. The water above the undisturbed soil samples was removed and replaced 

carefully with 300 mL of filtered (0.45 )xm) pond water. Cores were incubated in the 

dark for 6 hours and the difference between initial and final concentrations in the water 

column was used for the determination of flux rates of TAN, NO2-N and NO3-N. 

At the end of the trial, the ponds were emptied and the final fish weight and fish 

mortality determined. Proximate whole body composition was determined at the 

beginning and at the end of the experiment. 

Experiment 3 

Four small stagnant ponds (65 m2) were stocked with Colossoma macropomum 

of 30-g (±0.5 SD) (Ponds 3-6) at a density of 1 m"2. Fish were fed a 3-mm dry floating 

pellets with 35% crude protein, at a ration of 2.5% of the average body weight per day. 

In every pond, accumulated soil organic nitrogen was measured five times during 76 

days. 

Statistical analysis 

In Experiment 1, a linear regression between TAN and time was estimated. 

From the initial and final concentration of soil organic matter a linear relationship was 

calculated. The mineralization rate was estimated from the slopes of the two lines. 

For Experiment 2, mean values of soil porosity, soil TAN and total nitrogen 

were compared by repeated measures Analysis of Variance (ANOVA) with three depths 

and two ponds as main factors and five sampling periods as sub-factor (Gomez and 
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Gomez 1984), with eight cores per pond (n=240). Mean values of fluxes of TAN, NO2" 

and NO3" were compared also by repeated measures ANOVA with pond as the main 

factor and sampling period as the sub-factor. When a main effect was significant, pair-

wise comparison of treatment means was done by Tukey HSD test (a = 0.05). All 

analyses were done using ANOVA procedure of SAS version 6.12 (SAS Institute Inc., 

CaryNC 27513, USA). 

Model formulation 

The model includes four state variables: (1) sediment organic nitrogen 

(s_organic_N); (2) sediment organic carbon (s_organic_C); (3) total ammonia nitrogen 

in the sediment (s_TAN_sediment); and (4) total ammonia nitrogen in the water column 

(s_TAN_water). 

Table 1. Parameters settings after model calibration. 

Parameter* 

P protein digestibility (%) 

P carbohydrate digestibility (%) 

P C mineralization rate constant (d"') 

P N mineralization rate constant (d1) 

P % protein in diet (%) 

P % carbohydrate in diet (%) 

P maximum gross photosynthesis 

(g C m"2 d1) 

P TAN flux rate constant (d1) 

I initial C:N ratio 

P phytoplankton sedimentation rate 
constant (-) 

P faeces sedimentation rate constant (-) 

P feed sedimentation rate constant (-) 

P fraction uneaten (%, from feed 
offered) 

Value used 

80 

50 

3.83-2.68 xlO"5 

5.20 - 3.64 x 10-4 

30.5 

46.6 

7.70 

0.10-0.25 

106/16 

0.20 

0.70 

0.90 

30 

Source 

van Dam and Penning de Vries 1995 

van Dam and Penning de Vries 1995 

Experiment 1 (this study) 

Experiment 1 (this study) 

Experiment 1/2 (this study) 

Experiment 1/2 (this study) 

Experiment 1 (feed input vs. chlorophyll-a) 

Experiment 2 (this study) 

Redfield ratio 

calibration 

calibration 

calibration 

calibration 

' for symbols explanation see text 
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Table 2. Total ammonia nitrogen (TAN-N) and Total nitrogen (Total N) in sediments at 

three different depths (mean ± SD, n=8). Samples were collected in ponds 1 and 2 at 5 

different periods during the growing cycle 

TAN-N (|ig g1) Total N (mg lOOg') 

Period Pond 0-5 cm 6-10 cm 11-15 cm 0-5 cm 6-10 cm 11-15 cm 

1 1.15 ±0.29 1.59 + 0.25 2.28±0.49 46.25 ± 5.52 28.68 + 7.19 21.01 ±4.29 
1 

2 1.65 ±0.37 2.06 ±0.52 2.66 ±0.60 42.56 ±9.41 27.41 ± 6.27 18.34 + 3.83 

1 1.30 ±0.41 1.67 ±0.45 2.53 ±0.41 60.18 ±5.12 36.84 ±9.81 28.00 ±3.68 
2 

2 1.76 ±0.77 2.35 ±0.89 3.02 ±0.84 64.02 ± 5.75 39.35 ± 10.05 30.36 ±5.25 

1 3.27 ±1.00 4.89 ±1.81 7.28 ±2.08 65.82 ± 7.63 39.52 ±9.21 30.47 + 8.57 
3 

2 3.66 ±2.25 6.57 ±1.76 9.33 ±1.52 61.59 + 7.71 38.91 ±8.98 28.62 ±6.31 

1 2.62 ±1.76 4.38 ±2.29 5.73 + 2.65 72.95 ± 7.42 44.70 ±14.08 34.46 ±11.40 
4 

2 3.05 ±2.15 5.14 ±2.33 7.27 + 2.34 75.07 ± 8.79 44.65 + 13.25 34.65 + 9.91 

1 2.37 ±0.73 3.34 ±0.71 4.29 + 0.91 88.55 ± 14.80 60.73 ±19.16 53.64 ±16.08 
5 

2 2.80 ±1.30 3.87 ±1.79 6.22 ±2.56 83.86 ±20.51 64.94 ±18.14 50.64 ±7.55 

The sources of bottom organic carbon and nitrogen were dead phytoplankton, 

fish faeces, and uneaten feed. Sedimentation rates were related to the production rates of 

these three sources: 

rcsedimentation = a_c_gross_photosynthesis * p_phyto_sedimentation_rate constant (1) 

where 

rcsedimentation = sedimentation rate for carbon (mg C m"2 d"1) 

a_c_gross_photosynthesis = gross photosynthesis rate (mg C m"2 d"1) 

p_phyto_sedimentation_rate_constant = phytoplankton sedimentation rate constant (-) 

Similar equations were defined for the sedimentation rates of nitrogen from 

phytoplankton and of carbon and nitrogen from faeces and uneaten feed. 

The rates of mineralization of organic carbon and nitrogen were modeled as 

first-order functions based on organic matter concentration: 

90 



Bottom organic matter accumulation in fish ponds 

rcmineralization = s o rgan iccso i l * pcmineralizationrate constant (2) 

where 

rcmineralization = mineralization rate for carbon (mg C m'2 d"1) 

s_organic_c_soil = organic carbon in soil (mg C m"2) 

pcmineralizationrate constant = carbon mineralization rate constant (d1, Table 1), 

and 

rnmineralization = s o rgan icnso i l * pnmineralizationrate constant (3) 

where 

rnmineralization = mineralization rate of nitrogen (mgN m"2d"') 

s o rgan icnso i l = organic nitrogen in soil (mg N m"2) 

pnmineralizationrate constant = nitrogen mineralization rate constant (d"1, Table 1). 

The rate of mineralization of organic matter decreases with increasing C:N ratio 

(Alexander 1961). The initial C:N ratio was assumed to be 6.625 (the Redfield ratio): 

pnrnineralization rate constant = if aCNra t i o > 6.625 then A else B (4) 

where 

pnrnineralization rate constant = nitrogen mineralization rate constant (d'1) 

aCNra t i o = carbon to nitrogen ratio (-) 

6.625 = the Redfield ratio (-) 

A, B = possible values for nitrogen mineralization rate constant, 

and 

pcmineralization rate constant = if aCNra t i o > 6.625 then C else D (5) 

where 

pcmineralization rate constant = carbon mineralization rate constant (instant rate, d"') 

C, D = possible values for carbon mineralization rate constant 

In the model , a C N r a t i o was calculated from the sediment organic carbon and 

nitrogen concentrations. 

The resulting TAN in the sediments diffuses into the water column if a 

concentration gradient is formed: 

r t an f lux = if ( s t anso i l < s_tan_water) then 0 else (s_tan_soil * p_tan fluxrate constant) (6) 
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where 

r t an f lux 

s t anso i l 

s_tan_water 

p tan flux rate constant 

= rate of TAN flux or diffusion (mg N m"2 d"') 

= TAN soil concentration (mg N m"2) 

= TAN water column concentration (mg N m"2) 

= TAN flux rate constant (s_tan_soil, after calibration, Table 1). 

Gross photosynthesis rate was estimated empirically in the model by establishing a 

relationship between feed input and photosynthesis in Experiment 1. A relational 

diagram of the model is presented in Figure 1. Principal parameters used in the model 

are presented in Table 1. The model was implemented in Stella® version 5.1.1. (High 

Performance Systems Inc., Hanover NH 03755, USA) 

Figure 1. Principal variables and their relations in the model. Calibrated parameters are 

underlined: measured parameters are italicized. For symbols explanation see text. 

Model Calibration 

Data from Ponds 1 and 2 (Experiment 2) were used for model calibration. The 

actual feed input, feed composition (percentage of protein, carbohydrates, dry matter), 

pond dimensions and fish density used in Experiment 2 were input parameters in the 
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model. Digestibility for protein and carbohydrates were set at 80% and 50%, 

respectively (van Dam and Penning de Vries 1995). Since no data are available on the 

sedimentation rate constants of each of the sources of organic matter (dead 

phytoplankton, fish faeces and uneaten feed), a range of most probable values was 

evaluated during calibration. Values for the mineralization of organic carbon and 

nitrogen (A, B, C and D in equations 4 and 5) were also derived through calibration. 

Using a trial and error procedure, each parameter was changed until the simulated 

values for sediment organic nitrogen and carbon were within 15% of the field data. 

To assess the agreement between simulated and observed data, the relative error 

was calculated for each sampling date: 

n r _ \ " S » ^Obs) (j\ 

0-5*(SSim+SObs) 

where 

RE = relative error 

Ssim = simulated value of the state variable 

Sobs = observed value of the state variable, 

and the average relative error for the whole culture period: 

ARE--

ARE 

n 

TRE 

n 

= average relative error 

= number of observations 

(8) 

Sensitivity analysis 

For selected state variables and parameters, sensitivity analysis was performed 

by changing the value of the parameter by ± 10% of the calibrated value (while 

maintaining the other parameters unchanged) and looking at the effect on the state 

variable. Sensitivity was calculated as the difference between the values of the state 

variable at the high and low parameter values divided by the calibrated value of the state 

variable (expressed as a percentage; Piedrahita 1986). 
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Model validation 

The calibrated model was run with the input parameters from Experiment 3 and 

model output was compared with the observed field data. 

Results 

Organic nitrogen mineralization rate (Experiment 1) 

Figure 2 shows the results of the soil incubation experiments. The regression 

equation of TAN concentration (y) and time (x) was y = 0.00104x + 0.31892 (R2 = 0.97, 

n=32, P<0.01). From the difference between final and initial TAN concentration and the 

volume of the water in the cylinder, it was calculated that 0.0061 mg N were produced 

in 63 h. Assuming that the soil sample contained 4.5 mg N (45 mg 100g"' dry soil as 

determined in Experiment 2, sample size in cylinder 10 g), this leads to an 

ammonification rate constant of 5.20 x 10"4 d"1. 

The equation for the decrease in organic matter was y = -0.00083x + 521.61. 

The difference between initial and final organic matter content was 0.052 mg lOOg"1. 

With the mean organic matter content of 521.59 mg lOOg"1, this resulted in a 

mineralization rate constant of 3.83 x 10"5 d"1. 

Accumulation of organic matter in the sediments and flux of organic nitrogen species 

between water and sediment (Experiment 2) 

During the 84 days of Experiment 2, the fish in Pond 1 grew to 238.7 ± 63.5 g 

with an average growth rate of 2.27% individual body weight per day and a feed 

conversion ratio of 2.1; the fish in Pond 2 grew to 330.3 ± 103.0 g with an average 

growth rate of 1.77% individual body weight per day, realizing a feed conversion ratio 

of 2.3. In both ponds, there were recruits of tilapia that accounted for 33.1% and 25.9% 

of the total final biomass, respectively. These recruits were included in estimating feed 

conversion ratio. The mortality of stocked fishes over the whole culture period was 32% 

and 27% for ponds 1 and 2, respectively. 
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Figure 2. Organic matter concentration in soil and TAN concentrations in water during 63 

h of incubation of sediment samples in Experiment 1 (n=4). 

The average concentration of nitrogen species in the water column showed 

values of 0.6 ± 0.2 mg L"' (N03"-N), 0.04 ± 0.03 mg L"1 (N02"-N) and 0.06 ± 0.05 mg 

L"1 (TAN) (mean ± SD, n=24) for the whole period. Overtime, these parameters did not 

show clear increase/decrease. Total alkalinity (in meq L"1) decreased with time from 1.2 

± 0.3 to 0.4 ± 0.6, while chlorophyll-a increased steadily from 51.9 ± 16.5 to 190.9 ± 

54.4 mg m"3 at the end of the experiment. Secchi disk visibility decreased in both ponds 

accordingly, with values from >100 cm at the beginning of the experiment to 45 cm at 

the end. 

For both ponds, porosity of the sediment was always higher in the top layer and 

lower in the deeper layer (ANOVA, P = 0.0001); there was an increase with time in 

porosity at each depth but the difference between depths did not change over time. TAN 

in the sediments ranged from 1.15 ± 0.29 to 9.33 + 1.52 ug g"' dry sediment (Table 2), 

being always higher in lower layers (P = 0.0001). There was a significant difference 

between ponds (P = 0.0046) and periods (P = 0.0001). Total nitrogen (Kjeldahl-N) was 

95 



Chapter 3 

significantly different at different depths (P= 0.0001) and increased over time in both 

ponds, with values ranging from 18.34 ± 3.83 at the beginning of the experiment to 

88.55 ± 14.80 mg N (100 g)"1 dry soil at the end; ponds were not different (P = 0.7459). 

All periods, except 2 and 3, were significantly different (P<0.05, Table 2). 

NC^'-N and NO3-N flux rates were always negative (net flux from the water 

column into the sediments) and ranged from 0.02 to 0.46 mg N m"2 d"1 for nitrite, and 

from 0.07 to 0.39 mg N m~2 d"1 for nitrate. For the NCV-N flux rate, the difference 

between ponds was marginally significant (P = 0.0569), and for NCV-N was not 

significant (P = 0.2557). TAN flux rate was always positive (net flux from the soil to 

the water column) and ranged from 1.15 to 7.42 mg N m"2 d"1 (Table 3). 

Table 3. Flux rate of total ammonia nitrogen (TAN), nitrite (N02) and nitrate (N03) 

estimated after laboratory incubations (mean ± SD, n=8). Negative sign indicate flux from 

the water column to the sediment. 

Period 

1 

2 

3 

4 

5 

Pond 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

TAN 

7.42 ±3.41 

7.20 ±3.44 

4.26 ±2.24 

1.85 ± 1.05 

4.93 ± 1.63 

5.76 ± 1.46 

3.40 ±1.61 

1.89 ± 1.18 

5.91 ±3.00 

1.15 ±0.78 

Flux rate (mg N m"2 d"1) 

N02-

-0.02 ±0.01 

-0.11 ±0.04 

-0.10 ±0.01 

-0.03 ±0.01 

-0.24 ± 0.03 

-0.46 ± 0.22 

-0.16 ±0.13 

-0.23 ± 0.07 

-0.23 ±0.11 

-0.26 ±0.13 

N03" 

-0.21 ±0.06 

-0.23 ±0.11 

-0.22 ±0.15 

-0.27 ±0.15 

-0.14 ±0.06 

-0.15 ±0.04 

-0.17 ±0.11 

-0.07 ± 0.05 

-0.39 ±0.19 

-0.18 ±0.08 

The estimated first-order rate of ammonium diffusion was in the range of 0.10 to 

"\ TAN flux rate 

and ponds (P = 0.0215). 

0.25 d"1. TAN flux rate was significantly different, both between periods (P = 0.0001) 
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Data collection for validation (Experiment 3) 

During the 76 days of Experiment 3, fish grew from 30 g to 390 g (±23.5, SD) 

realizing an average growth rate of 3.35% individual body weight per day and a feed 

conversion ratio of 2.1. Fish mortality remained below 10% in all ponds. Mean 

sediment organic nitrogen concentration increased from 0.3 g N m"2 to about 13.9 g N 

m"2 at the end of the experiment (Table 4). 

Table 4. Organic nitrogen in sediments (g m"2) in ponds 3 to 6 used for the validation of the 

model (mean + SD, n=3) and overall mean (n=12). 

Period Pond 3 Pond 4 Pond 5 Pond 6 Mean 

1 0.274 ±0.018 0.542 + 0.073 0.149 ±0.048 0.355 ± 0.032 0.330 ±0.154 

2 4.733 + 0.418 4.588 ±0.220 4.649 + 0.292 6.034 ±0.224 5.001 ±0.675 

3 7.170 ±0.085 7.920 ±0.509 8.922 ±0.343 8.312 ±0.254 8.081 ±0.722 

4 9.433 ±0.644 9.319 ±0.594 11.723 ±0.375 12.118 ±0.097 10.648 ±1.398 

5 15.042 + 1.487 13.077 ±0.924 13.652 ±0.836 13.737 ±0.498 13.877 ±1.137 

Model calibration 

The regression equation between gross photosynthesis rate and feed input in 

Experiment 1 was (Fig. 3): 

GPR = 0.4780 * F + 2.2742 (R2=0.95, PO.01) for 0 < F < 11.5 

7.70 for F> 11.5 (9) 

where 

GPR = gross photosynthesis rate (g C m"2 d"1) 

F = feed input (g feed m"2 d"1) 
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Figure 3. Relation between gross photosynthesis rate (GPR) and feed input (n=4 ponds) in 

Experiment 1. The continuous line represents the equation used in the model (see text). 

Data points used for calculating the sloping line are filled, points for the plateau are open. 

Best results were achieved when the instant ammonification rate constants were 

reduced by 30% when the C:N ratio was higher than the Redfield ratio. Equations 4 and 

5 can then be re-written as: 

pnmineralization rate constant = if aCNra t i o > 6.625 then 3.64 x 10"4 else 5.20 x 10"4 (10) 

and 

pcmineralization rate constant = if aCNra t i o > 6.625 then 2.68 x 10'5 else 3.83 x 10"5 (11) 

Calibration of the sedimentation rate constants of phytoplankton, faeces and 

uneaten feed resulted in values of 0.20, 0.70 and 0.90, respectively. Calibration results 

are presented in Figure 4. Relative errors for sediment organic nitrogen were between 
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+0.01 and +0.08, and for sediment organic carbon between +0.02 and +0.17, while the 

average relative errors were +0.06 and +0.10, respectively. 

e 
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• Model organic Carbon 
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Figure 4. Simulated values and field data (average of Ponds 1 and 2, Experiment 2) of 

organic nitrogen and carbon (after calibration). 

Sensitivity analysis 

Table 5 shows the results of the sensitivity analysis. The mineralization rate 

constants had the strongest effect on sediment organic nitrogen and carbon (9.30 and 

- 9.62%, respectively), while the sedimentation rate constant of phytoplankton also had 

an important effect on both nitrogen and carbon (-6.22 and -6.20, respectively). 
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Table 5. Sensitivity analysis. Effect of increasing or decreasing by 10% the indicated 

parameter on soil organic nitrogen and soil organic carbon *. 

Parameter 

P % carbohydrate (%) 

P % protein (%) 

P faeces sedimentation rate constant (d1) 

P feed sedimentation rate constant (%, daily basis) 

P phytoplankton sedimentation rate constant (%, 
daily basis) 

P fraction uneaten (%, from feed offered) 

P C mineralization rate constant (d"1) 

P N mineralization rate constant (d1) 

State variable 

S organic N soil* 

-0.96 

-1.92 

-1.92 

0.13 

-6.22 

-0.13 

2.09 

9.30 

S organic C soil* 

-1.92 

-0.77 

-0.76 

0.12 

-6.20 

0.12 

-9.62 

-2.13 

* Numbers indicate the difference between the value of the state variable for the highest parameter and 

the value for the lowest parameter as a percentage of the calibrated parameter. The sign of the value used 

as sensitivity represents under- or over-estimation depending whether the sign is negative or positive. 
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Figure 5. Field data of soil organic nitrogen and model output in stagnant Colossoma 

macropomum. Bars represent the standard deviation of field determinations in the ponds 

(n=4) and the confidence limits of model simulations (n=4). 

100 



Bottom organic matter accumulation in fish ponds 

Model validation 

The validation of the model for sediment organic nitrogen using data from 

Experiment 3 (Ponds 3-6) is presented in Figure 5. The ARE's for the four ponds were 

all 0.09-0.10, with RE's ranging from -0.36 to +0.18. 

Discussion 

The first objective of this study was to estimate the rate of mineralization of 

organic nitrogen in semi-intensive fish ponds. The values for the mineralization rate 

constants of nitrogen and carbon obtained from the incubation of pond sediment were 

5.2 x 10"4 d"1 (0.190 y"1) measuring the increase of ammonium concentration, and 3.83 x 

10"5 d"1 (0.014 y"1) measuring the decrease of organic matter. Relating those values to 

the actual organic nitrogen concentrations resulted in a rate of ammonification of 7.21 

mg N m"2 d"1. For natural systems, Billen (1978) reported an ammonification rate of 

25.4 mg N m"2 d"1. Similarly, Blackburn and Henriksen (1983) reported rates of 24.2 and 

1.45 mg N m"2 d"1 for aerobic and anaerobic ammonification, respectively. For fish 

ponds, Avnimelech (1984) also reported values for not freshly deposited material, with 

first order rate constant close to 0.213 y"1. The rate of organic nitrogen decomposition in 

our fish ponds was comparable to values reported in these other studies. 

The second objective was to measure the flux of inorganic nitrogen forms 

between sediments and water. TAN fluxes measured (Table 3) were similar to the 

values found in manured polyculture ponds (4.2 mg N m"2 d"1; Schroeder 1987) and for 

intensive fish pond systems (11 mg N m"2 d"1; Avnimelech 1984). The directions of the 

fluxes show that aquaculture pond sediments are a source of reduced inorganic nitrogen 

(ammonium) and a sink for oxidized inorganic nitrogen (nitrate and nitrite) (Hargreaves 

1998). Concentrations of dissolved nitrogen species in the water column (NCV-N, NCV-

N and TAN) were low, and did not increase or decrease much during Experiment 2. The 

low concentrations were probably related to phytoplankton biomass. Throughout 

Experiment 2, chlorophyll-a concentration increased, Secchi disk depth decreased and 

alkalinity decreased simultaneously. Dissolved inorganic nitrogen uptake by 

phytoplankton in ponds is the primary pathway of nitrogen removal, and in semi-

intensive aquaculture ponds a dense phytoplankton population often develops 

(Hargreaves 1998). 
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The third objective was to quantify the amount of organic matter accumulating 

in the sediment. Total nitrogen (Kjeldahl-N) in the sediment indeed increased with time 

(Table 2). Nitrogen recovery (% of N input found in the bottom sediments) was 15.5 ± 

2.9 % in Pond 1 and 14.6 ± 5.2 % in Pond 2. Similar results were found in an intensive 

eel pond (8-13%; Chiba 1986) and in semi-intensive shrimp ponds (15-22%; Hopkins et 

al. 1994). 

Soil porosity was always higher in the top layers and increased with time due to 

the looseness of fresh organic matter that accumulates in the bottom during the growing 

cycle (Tucker 1985). For systems with high biological activity (such as fish ponds), the 

high porosity is particularly important because resuspension enhances the aeration of 

the upper layers of soil. This facilitates the exchange of pore water with pond water 

(Boyd 1995), stimulates the decomposition of organic matter and increases the flux of 

nutrients towards the water column (Henriksen et al. 1980; Blackburn and Henriksen 

1983). 

TAN in sediments ranged from 1.15 to 9.33 ug g"1 dry sediment. Ammonium 

concentration was low at the sediment-water interface (0-5 sediment layer) and 

increased with depth. Total nitrogen (consisting mainly of organic nitrogen forms) was 

higher in the surface layer and decreased with depth. This opposite trend of TAN and 

organic matter with depth was found in other studies of fish pond sediments (e.g. 

Avnimelech and Lacher 1979; Shilo and Rimon 1982) and is caused by the constant 

addition of organic matter by sedimentation from the water column and the 

simultaneous ammonification with a flux of ammonia to the water column. 

With regard to the fourth objective to construct a simulation model of organic 

matter deposition and decomposition in fish ponds, a good fit between simulated and 

observed concentrations of sediment organic carbon and nitrogen was achieved in the 

calibrated model with relative errors lower than 0.17 and average relative errors of 6% 

for organic nitrogen and 10% for organic carbon (Fig. 4). During validation with the 

independent data of Experiment 3, the average relative errors for the simulation of 

organic nitrogen remained below 10% (Fig. 5). Although the datasets for calibration and 

validation were substantially different (notably with regard to pond size and fish 

species), the model performs well under different conditions. 

The sedimentation rate constants of the three organic matter sources were 

estimated through model calibration, and gave good results in the validation. 90% from 
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the uneaten feed, 70% of the faeces and 20% of the phytoplankton standing crop settles 

to the pond bottom every day. Sinking rates, calculated using Stock's equation, take into 

consideration the volume and density of the particles, the density and the viscosity of 

the medium, and the acceleration due to gravity (J0rgensen 1989). Because faeces and 

feed have higher densities, volume and weight than planktonic cells, higher sinking 

rates are expected. For the sedimentation rate constant of phytoplankton, Schroeder et 

al. (1991) reported that as much as 50% of the algal standing crop settles to the 

sediment surface each day. Our lower estimate of 20% is in accordance with Larocque 

et al. (1996) who reported a daily settlement of 2-16% of the epilimnetic algal biomass 

for a temperate lake. 

The sensitivity analysis showed that both soil organic nitrogen and soil organic 

carbon are strongly affected by its respective mineralization rate. In the original model, 

the mineralization rate of settled organic nitrogen and carbon only depended on its own 

concentration and did not take into account the proportion of carbon and nitrogen in the 

organic matter (C:N ratio). In the present model, nitrogen and carbon mineralization 

rates were dependent on the C:N ratio. The assumption that the C:N-ratio of the organic 

matter plays a key role in its decomposition rate has been documented earlier (e.g. van 

der Borght et al. 1977; Almazan and Boyd 1978; Blackburn and Henriksen 1983; Boyd 

1995), but little quantitative information on the relationship between C:N ratio and 

mineralization exists. The 30% reduction in mineralization of both organic C and 

organic N with a C:N ratio above the Redfield ratio was derived by calibration of the 

model. More research is needed before a better description of this process can be 

incorporated into the model. 

Although not considered in the present work, the suspension/resuspension of 

sediments plays an important role in the transfer of chemical components between the 

water column and the sediment. Resuspension is an important process in fish ponds 

(Avnimelech et al. 1999), and probably has an effect on the amount of organic matter 

that accumulates in the sediments. Avnimelech et al. (1999) found that resuspended 

material accounted for approximately 60 to 90% of the total sedimentation flux. 

Because in this study resuspension was not taken into account, the apparent rate of 

decomposition was calculated. Incorporation of suspension/resuspension in the model 

could represent a major change, and therefore will be the subject of further studies. 
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With the information from this study, the comprehensive pond model (Chapter 

2, this thesis) can be improved. The sedimentation rate of phytoplankton and the 

mineralization rates were the most important ones in determining the accumulation of 

organic nitrogen and carbon in the pond bottom. Sedimentation increased steadily, as it 

was related to the feeding rate and faeces production (both increasing with increasing 

fish biomass) and primary production (also increasing with time). Decomposition of 

organic matter is governed by the decomposition rates of organic nitrogen and carbon. 

Because organic nitrogen is decomposed more rapidly than organic carbon, as shown by 

the different values of the decomposition rate constants, the C:N ratio of the sediment 

increases with time. This leads to even slower decomposition rates and enhances 

accumulation of (more and more refractory) organic matter in the sediment (Fig. 6). 

Management measures to avoid accumulation would include the reduction of 

sedimentation of organic matter, e.g. by prevention of feed losses and increasing the 

digestibility of diets. Another possibility would be to harvest primary production before 

it can settle to the sediment using a herbivorous fish species (although this would create 

another flux of faecal matter to the sediments). Results from studies on the use of 

substrates in aquaculture ponds show that particulate organic matter may be trapped by 

periphyton (Keshavanath et al. 2001). It may also be possible to manipulate the C:N 

ratio of sediments by changing the composition of feeds (Avnimelech et al. 1999), thus 

preventing the decomposition process from slowing down. The mechanisms explored in 

the current model will be incorporated in a more comprehensive simulation model that 

includes primary productivity, fish growth, sedimentation and resuspension, and 

decomposition processes, and will be used to evaluate different management 

alternatives. 
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Chapter 4 

Abstract 

Pond bottom soils are subjected to the continuous deposition and decomposition 

of organic matter. Deposited organic matter accumulates or mineralizes in situ, or is 

resuspended into the water column. In this study the rates of sedimentation and 

resuspension were measured during a tilapia {Oreochromis niloticus) production cycle, 

while considering nutrient input, water quality and fish size and biomass. Fish were fed 

for 50 days, after which feeding was stopped until day 65, when feeding was resumed. 

Starting on days 7 and 9, two sediment traps were placed on the bottom of the pond 

every fortnight. Material collected in the traps and undisturbed soil samples collected at 

the same time as the trap material, were dried, weighed and analyzed for organic 

carbon, total nitrogen, and iron and aluminum concentrations. Concurrently with trap 

placement, water samples were taken to measure chlorophyll-a and total suspended 

solids. Primary productivity was measured using light/dark bottles. Measuring the 

dilution of iron or aluminum to differentiate between sedimented and resuspended 

particles, sedimentation and resuspension rates were calculated. The rate of material 

collected in the traps increased from 88.5 ± 7.1 g m"2 d"1 initially to 330 g m"2 d"1 on day 

50. Although the fish biomass increased over time, while fish density remained nearly 

constant, the relative rate of resuspension did not change significantly, being always in 

the range of 42 to 47% of the total amount of collected material in the traps. Comparing 

measured and expected organic carbon sedimentation rates, the measured sedimentation 

rate was on average 10.9 times higher. When comparing measured and expected organic 

carbon resuspension rates, the measured resuspension rate was on average 8 times 

higher. Total solids sedimentation and resuspension rates were both highly correlated (P 

< 0.01) to fish weight/biomass, chlorophyll-a, water suspended solids, total feed input 

and Secchi depth. 

Keywords: fish pond sediment; sedimentation rate; resuspension rate; total Nitrogen; 

organic Carbon. 
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Introduction 

In aquatic systems, the increase or decrease of organic matter in the sediments is 

the difference between the in situ produced and allochtonous material that reaches the 

bottom before being mineralized, and the amount of organic matter that is mineralized 

in the sediment. The rate of sedimentation (deposition) of particulate matter is 

determined by factors such as the particle size, shape, density relative to water density, 

and viscosity (Jorgensen 1989). In pond aquaculture, the allochthonous part is 

considerable due to the addition of feed and/or organic fertilizer. For fish ponds, 

Avnimelech et al. (1999) reported sedimentation rates of total nitrogen and organic 

carbon in the order of 1-3 g m"2 d"1 and 15-30 g m~2 d"1, respectively. 

Settled particles can be resuspended. Organic matter decomposition in fish pond 

bottoms leads to anoxic conditions, and resuspension would favor the aerobic 

decomposition of organic matter. Considering that the various biotic and abiotic 

reactions in the sediments result in large concentration differences between the 

sediments and the overlying water (Boyd 1995), resuspension would also increase the 

material fluxes between water and sediments. 

Resuspension has not been considered in most works of organic matter 

accumulation and decomposition. Information regarding the significance of 

resuspension in fish ponds as well as in other aquatic systems is rather new. Avnimelech 

and Wodka (1988) found that resuspended material accounted for 50% of the total 

sedimentation flux in a reservoir of 8 m deep. In fish ponds, resuspension of organic 

matter accounted for 60 to 90% of the total solids flux (Avnimelech et al. 1999). 

Scheffer (1998) reviewed and developed quantitative approaches regarding 

resuspension in shallow lakes. Resuspension depends upon the hydromechanics of the 

pond bottom, the less consolidated soils being more sensitive (Lee 1970). Water 

turbulence also causes resuspension, transport and resettling of sediments at places with 

less activity (Peterson 1999). The size of the lake, its depth and wind speed are very 

important factors in resuspension (Scheffer 1998), although for fish ponds, having a 

relatively small size and short wind fetch, the wind effect is probably limited. Sediment 

resuspension by fish was found to be of importance also in lakes, having an 

approximate linear relationship between benthivorous fish biomass (carp or bream) and 
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resuspension. The resuspension (kg resuspended per day) was found to be 

approximately 5 times the fish biomass (Breukelaar et al. 1994; Scheffer 1998). 

Of special interest in fish ponds is the bio-turbulence created by fish. Fish move 

around actively while searching for food, causing water turbulence (Havens 1991; 

Tatrai et al. 1997). Resuspension is largely a fish-driven process, whereas sedimentation 

is a function of primary productivity and nutrient input. Direct measurements of 

resuspension and sedimentation are scarce, as is information about factors that influence 

the rates of sedimentation and resuspension. Several studies have identified fish weight 

and/or fish biomass, together with the fish species, as the main determinants of 

resuspension rate in fish ponds (e.g. Tatrai et al. 1997; Avnimelech et al. 1999). 

Primary productivity and nutrient input, that partly determine the sedimentation rate, 

were not considered concurrently. The objectives of this study were to compare two 

methods to measure sedimentation and resuspension rates during a growing cycle of 

Oreochromis niloticus in ponds, and to identify and quantify the principal factors (e.g. 

feed input, fish weight and number, and water parameters such as chlorophyll-a 

concentration) that contribute to resuspension or to sedimentation. 

Material and methods 

Sedimentation was measured by placing sediment traps on the pond bottom. 

Because resuspended material can contribute to trap yield (Fig. 1), the measured 

sedimentation will be the sum of primarily organic matter that settles down from the 

water column plus the material that is resuspended from the bottom: 

ST = Sed + Res (1) 

where ST is the total material trapped, Sed is the trapped material from sedimentation 

and Res is the trapped material from resuspension. The material sedimenting from the 

water is mainly organic, while resuspended material contains a larger fraction of 

inorganic matter. The amount of organic matter caught in the trap equals: 

ST_OM = (Sed_OM * Sed) + (Res_OM * Res) (2) 
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where Sed_OM and Res OM are the fractions of organic matter in the sedimented (Sed) 

and resuspended (Res) material, respectively. A similar equation can be written for the 

inorganic material trapped: 

STJnorg = (Sedjnorg * Sed) + (Reslnorg * Res) (3) 

where STInorg is the total inorganic matter trapped, Sed_Inorg is the fraction 

inorganic matter in the sedimented material, and Res_Inorg is the fraction of inorganic 

matter in the resuspended material. Equivalent equations can be formulated for other 

fractions collected in the sediment traps. 

When organic matter is considered, one method to distinguish between the 

sedimented material ("first-time" settled) and the resuspended organic matter, is by 

comparison between the concentrations of tracers in seston, trap catch and the upper 

part of the sediment. This enables assessment of resuspension because the elemental 

composition of resuspended particles is different from particles originating from the 

water column. Avnimelech et al. (1999) proposed a dilution analysis to evaluate the 

magnitude of sedimentation and resuspension based on the assumption that in most fish 

ponds resuspended material contains elements (Fe, Al, Si) abundant in the soil. The 

method requires that these elements be at very low concentrations in the particles 

originating from the water. The concentration of an element in the material collected is 

the weighed average of the concentration in the sedimentation and the resuspension 

fluxes. If the concentration of the relevant ions (Fe, Al or Si) in the resuspension flux is 

assumed to be identical to the composition of the upper layer of the pond bottom, and 

the concentration of that soil-derived element in the sedimentation flux is assumed to be 

zero, then the calculation of the total resuspension and sedimentation flux rates in terms 

of g m"2 d"1 is possible, if the trap cross-sectional area and the retention time are 

considered (Avnimelech et al. 1999): 

Wr/Wt = Ct/Cr (4) 

where Wr is the dry weight of material collected from resuspension, Wt is the total mass 

collected in the trap, and Ct and Cr are the concentrations of Fe, Al or Si in the material 

collected, and in the resuspension flux, respectively. This approach was followed in the 
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present study, and the different components used for the calculations are shown in 

Figure 1. 

Sed_Inorg 

ST = Sed + Res < 

Sed OM 

ST: total materia] trapped 
Sed_OM, Res_OM: organic matter from sedimentation or 
Sed_!norg, Res_Inorg : inorganic matter from sedimentation or resuspension 
Sed, Res: trapped material from sedimentation or resuspension 
Wt: total mass collected in the trap 
Wr: mass of resuspended material 
Ct: concentration of Fe/Al in the material collected 
Cr: concentration of Fe/Al in the resuspended material 

Res_Inorg Res OM 

Wr?/ 
Dry weight 

Wr/Wt = Ct/Cr < 

Al/Fe 
concentration 

Figure 1. Components considered for the determination of the sedimentation and 

resuspension rates based on Al and/or Fe analysis. Wr is calculated using the equation; all 

other terms of the equation are obtained from laboratoy determinations. 

An earthen fish pond of 800-m and 1-m depth was stocked with 87-g 

Oreochromis niloticus at 1.5 fish m"2. Fish were fed a 5-mm dry floating pellets with 

30% crude protein, at a feeding rate of 2% body weight per day at the beginning of the 

experiment, decreasing towards 1.2% at the end of the experiment. The daily ration was 

divided into three equal portions applied at 0700, 1100 and 1500 hours, broadcasted as 

evenly as possible over the pond surface. After 50 days, feeding was stopped for a 

fortnight to get insight into the influence of feeding on the parameters measured. 

Feeding was resumed after day 65. 

Starting on days 7 and 9, two sediment traps were placed 20 meters apart at the 

pond bottom. Depending on the amount of sample collected by the traps, the tubes were 
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removed from the pond after 24-48 hours. Until day 77, traps were replaced every 

fortnight. The sediment traps were made from PVC pipe with a diameter of 7 cm. Traps 

were placed firmly in the pond bottom and trap heights were always close to 30 cm with 

no difference between samplings. All the material collected was transferred to plastic 

bags. Soil immediately next to the trap was also sampled using a soil corer of 6 cm 

diameter. 

The top 2-cm layer of the pond bottom soil cores, and the material collected in 

the traps was dried. The weight of the material collected was determined following 

drying at 60°C to constant weight. Soil and collected material were analyzed 

potentiometrically for organic carbon following a dichromate oxidation (Raveh and 

Avnimelech 1972), and for total Kjeldahl nitrogen (AOAC 1980). Fe and Al 

concentrations in the material collected in the soil core samples and in the traps were 

determined using atomic absorption spectroscopy after acid digestion (Lim and Jackson 

1982). 

Pond water was sampled, on the same days the sediment traps were placed, 

using a 10 cm diameter, 60 cm height sampling tube. Samples were collected from three 

locations (near the inlet, outlet and center) and thoroughly mixed before analysis. 

Chlorophyll-a concentration (acetone extraction) and total suspended solids (gravimetric 

and volumetric bases) in unfiltered samples were determined (APHA 1989). The water 

samples were filtered through a GF/C Whatman glass fiber filter and the filtrate 

analyzed for total alkalinity, NO3-N (cadmium reduction), NO2-N (diazotization) and 

TAN (NH/-N+NH3-N, phenate method) (APHA 1989). Also during trap placement, 

primary productivity (light/dark bottles) was also measured at two depths (20 cm and 50 

cm below water level), and the primary production values from both depths were 

averaged. 

Sedimentation and resuspension rates were calculated for total solids, organic 

carbon and total nitrogen. The measured organic carbon sedimentation was compared to 

the estimated organic carbon sedimentation assuming that all the carbon in the feed not 

retained in the fish sediments, and that the amount of algae that settles on the bottom is 

equal to the primary production. The last assumption yields an upper limit for algal 

sedimentation, since part of the dead algae is probably degraded in the water prior to 

sedimentation. 
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To assess the possible correlation between the sedimentation/resuspension rates 

and other parameters, a Pearson correlation matrix was constructed. The parameters 

included were chlorophyll-a in the water column, Secchi disk depth, fish 

weight/biomass, total feed offered, and water column suspended solids. 

Results 

The fish grew from an average weight of 86.6 ± 17.9 g to 210.0 ± 64.0 g in 77 

days, realizing a specific growth rate of 1.15% body weight, and a feed conversion ratio 

of 1.75 over the culture period. The feed input at the beginning of the experiment was 

3.24 g m"2 d"1, and reached 6.19 g m"2 d"1 on day 77. The overall fish biomass reached 

2729 kg ha"1 and the total mortality was 13% (Table 1). Both water suspended solids 

and chlorophyll-a increased steadily until day 63, and decreased drastically between day 

63 and 65, indicating that an algae crash occurred during that time interval (Table 1). 

On day 77, water suspended solids and chlorophyll-a concentrations increased again. 

The rate of material collected (dry basis) during the experiment increased from 

88.5 ±7.1 g m"2 d"1 (first week) to 330.7 g m'2 d"1 before day 50 when feeding was 

stopped (Table 2). As soon as feeding was stopped, the total amount of material 

collected in the traps started to decrease. Between day 63 and 65, the rate of deposition 

increased to the highest value during the experiment (377.7 ± 21.0 g m"2 d"1), 

coinciding with the decrease in total suspended solids and chlorophyll-a concentration 

in the water column. 

The mean concentrations of organic carbon and total nitrogen, Fe and Al, both in 

soil and material collected are presented in Table 2. In soil samples, organic carbon was 

9-10 times higher than total nitrogen, representing an average C:N ratio of 9.8 ± 1.5 

(mean ± SD) for the whole experiment. A similar C:N ratio was found in the trapped 

material (9.7 ± 1.8). The concentrations of organic carbon and total nitrogen in the 

trapped material were on average 8 times higher than in the top 2-cm sediment layer 

(Table 2, Fig. 2). 
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Table 1. Fish weight and biomass, feed input and related water quality parameters. 

Day Average fish Fish biomass Total feed Water total 
weight input suspended solids 

(gfish-1) (kg ha ') (gm-2d-') (em- ' ) ' 

Chlorophyll-a 
concentration 
(mg m"3)** 

Feeding 51 
stopped 

(day 50) 

63 

93.8 

96.3 

21 112.2 

23 115.0 

35 132.9 

37 136.1 

49 156.0 

159.5 

181.7 

Feeding 65 185.5 
resumed 

77 210.0 

1392 

1424 

1624 

1659 

1875 

1912 

2143 

2183 

2428 

2470 

2729 

3.24 

3.31 

3.76 

3.83 

4.31 

4.39 

4.90 

6.19 

105.8 
±9.9 

116.5 
±8.3 

133.4 
±7.2 

134.6 
±9.9 

148.5 
±8.3 

156.8 
±4.2 

176.5 
±9.2 

175.9 
±6.0 

184.6 
±4.1 

22.6 
±3.2 

97.7 
±9.3 

109.3 
±17.7 

123.8 
±13.7 

121.0 
±3.8 

141.5 
±6.8 

181.6 
±71.7 

141.0 
±84.6 

206.9 
± 144.7 

207.3 
±40.9 

205.2 
±7.7 

18.0 
±2.8 

90.1 
±8.5 

* 1 meter depth; mean ± SD, n = 4 
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Table 2. Mean concentration (+ SD, n=3) of organic carbon, total nitrogen, iron and 

aluminum in soil and collected material (dry basis). 

Feeding 
stopped 
(day 50) 

Feeding 
resumed 

Day 

7 

9 

21 

23 

35 

37 

49 

51 

63 

65 

77 

Collected 
material 

(gm-2d') 

88.5 
±7.1 

104.3 
±1.4 

179.6 
±12.0 

276.0 
±0.9 

298.9 
± 16.1 

297.9 
±14.6 

330.7 
±7.5 

223.2 
±13.0 

163.5 
±3.7 

377.7 
±21.0 

291.9 
±23.4 

Organic 
carbon 

(g 100g-') 

3.99 
±2.06 

7.61 
± 1.82 

10.04 
±0.13 

6.54 
±2.09 

10.99 
±0.80 

4.03 
±1.04 

8.23 
±0.87 

6.78 
±1.23 

5.70 
±0.86 

12.01 
±0.58 

3.23 
±0.17 

SOIL 

Total 
nitrogen 
(g lOOg1) 

0.42 
±0.20 

0.83 
±0.19 

0.98 
±0.01 

0.62 
±0.20 

1.08 
±0.03 

0.45 
±0.08 

0.88 
±0.14 

0.66 
±0.09 

0.62 
±0.24 

1.69 
±0.21 

0.33 
±0.03 

Fe 

(mgg"1) 

23.03 
±1.82 

21.40 
±0.27 

27.13 
±0.21 

30.68 
±0.34 

35.68 
±0.68 

31.24 
±0.42 

33.79 
±0.85 

36.52 
±0.30 

38.76 
± 1.54 

37.67 
± 1.31 

43.41 
±0.78 

Al 

(mgg"') 

13.13 
±0.18 

33.69 
±0.33 

39.18 
±0.18 

39.98 
±0.52 

42.79 
±0.85 

44.34 
±0.59 

Organic 
carbon 

(g lOOg') 

46.77* 

51.49" 

52.95 
±2.68 

52.35 
± 1.12 

52.27 
± 1.12 

51.61 
±7.89 

45.40 
±4.30 

52.63 
±4.36 

55.41 
±6.06 

67.85 
±4.01 

35.50 
±3.08 

TRAP 

Total 
nitrogen 
(g lOOg1) 

6.10 
±0.88 

5.23 
±0.56 

5.81 
±0.56 

4.98 
±0.25 

5.25 
±0.63 

5.58 
±0.82 

5.08 
±0.31 

5.11 
±0.77 

4.12 
±0.14 

9.01 
±0.34 

4.19 
±0.37 

Fe 
(mg g"1) 

9.67 
±1.10 

10.02 
±0.08 

11.59 
±0.19 

14.47 
±0.24 

14.78 
±0.26 

14.73 
±0.07 

15.02 
±0.17 

15.97 
±0.68 

16.34 
±0.20 

15.97 
±0.98 

16.59 
±0.81 

Al 
(mgg"1) 

6.05 
±0.14 

14.98 
±0.19 

16.97 
±0.16 

17.77 
±0.03 

18.63 
±0.11 

20.17 
±0.45 

! No replicates 
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Figure 2. Relation between total nitrogen and organic carbon in soil and collected material. 

The use of either iron or aluminum as traces yielded similar results (P > 0.05). 

Therefore, the obtained values were averaged. The rate of sedimentation for total solids, 

organic carbon and total nitrogen, expressed as g m"2 d"1 (Table 3) and based on the Fe 

and Al concentration differences between trapped material and the top 2-cm sediment 

layer were calculated (equation 3). At the beginning of the experiment, total solids 

sedimentation rate was close to 50 g m"2 d"1 and increased almost by 3 folds over six 

weeks. After day 50, the rate decreased, increasing again when feeding was resumed. 

Organic carbon and total nitrogen presented the same pattern of total solids. The fluxes 

of organic carbon were 25 to 90 g m"2 d"1 and for total nitrogen 3 to 9 g m"2 d*1. Only on 

day 65 the sedimentation rates were higher, due to the algal die-off. The percentage of 

sedimented material in the trapped material ranged between 50 to 60% during the whole 

experiment. The rates of resuspension of total solids, organic carbon and total nitrogen, 

and the percentage of resuspended matter collected in the trapped material are given in 

Table 4. Resuspension was considerably high during the experiment, accounting for 40 

to 50% of the material collected in the traps. When feeding was stopped, both 

sedimentation and resuspension rates decreased. 

121 



Chapter 4 

Table 3. Sedimentation rates, and percentage of total collected material, estimated from 

total solids, organic carbon and total nitrogen. Determination based on iron and aluminum 

concentrations in the soil and the material collected were not different (P > 0.05) and were 

averaged (mean ± SD, n=6). 

Day 

7 

9 

21 

23 

35 

37 

49 

Sedimentation rate (g m" 

Total solids 

49.8 ±3.2 

55.5 + 0.1 

101.4 + 5.8 

146.0 ±0.8 

172.5 ±11.2 

157.6 ±7.2 

183.8 ±2.9 

Organic carbon 

23.2 ±0.6 

28.8* 

53.7 + 1.2 

76.5 + 1.4 

90.2 ±7.0 

81.3 + 8.4 

83.5 ± 6.2 

2d"') 

Total nitrogen 

3.0 + 0.3 

2.9 ± 0.3 

5.9 ±0.2 

7.3 ±0.3 

9.1 ±0.5 

8.8 + 1.5 

9.3 ± 0.4 

Percentage of 
total collected 

56.0 ±2.6 

53.2 ±0.8 

56.4 ± 1.2 

52.8 ±0.4 

57.6 ±1.4 

52.8 ±0.4 

55.6 ±0.6 

Feeding 51 
stopped 
(day 50) 

63 

Feeding 65 
resumed 

77 

125.6 ±4.8 66.1 ±5.7 

93.5 ±1.8 51.8 ±5.7 

218.1 ±17.1 148.0 ±23.9 

170.2 ±20.7 60.4 ±8.6 

6.4 ±1.2 

3.9 ±0.1 

19.7 ±2.2 

7.1 ±0.9 

56.3 ±1.5 

57.6 ±1.4 

57.6 ±1.3 

58.1 ±4.3 

' No replicates 
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Table 4.: Resuspension rates, and percentage of total material collected, estimated from 

total solids, organic carbon, and total nitrogen. Determination based on iron and aluminum 

concentrations in the soil and the material collected were not different (P > 0.05) and were 

averaged (mean ± SD, n=6). 

Feeding 
stopped 
(day 50) 

Feeding 
resumed 

Day 

7 

9 

21 

23 

35 

37 

49 

51 

63 

65 

77 

Resuspension rate (g m"2 d"' 

Total solids 

39.2 ±4.3 

48.9 ±1.5 

78.3 + 5.6 

130.411.5 

126.8 ±5.5 

140.6 + 7.6 

147.1 ±4.4 

97.8 ±8.8 

70.2 + 3.4 

160.0 + 4.2 

122.0 ±12.6 

Organic carbon 

18.1 ±0.6 

25.3* 

41.5 ±1.4 

68.2 ±1.8 

66.2 ± 3.5 

72.6 ±7.1 

66.8 ±3.8 

51.5 ±7.6 

38.9 ±5.3 

108.6 ±16.8 

43.3 ±5.2 

) 

Total nitrogen 

2.4 ± 0.2 

2.6 ±0.2 

4.5 ±0.2 

6.5 ±0.4 

6.7 ± 0.5 

7.8 ±1.4 

7.5 ±0.2 

5.0 ±1.2 

2.9 ±0.2 

14.4 ±0.9 

5.1 ±0.6 

Percentage of 
total collected 

44.0 ±1.3 

46.8 ± 0.6 

43.6 ±1.2 

47.2 ± 0.4 

42.4+1.4 

47.2 ± 0.4 

44.4 ± 0.6 

43.7 ±1.5 

42.4 ± 1.4 

42.4+1.3 

41.9 ±4.3 

* No replicates 

Comparing measured and expected organic carbon sedimentation rates, the 

measured sedimentation rate was on average 10.9 times higher than the theoretical 

(expected) one (Table 5). When comparing measured and expected organic carbon 

resuspension rates, the measured resuspension rate was on average 8 times higher. 
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Organic matter sedimentation and resuspension in fishponds 

Total solids sedimentation and resuspension rate were both highly correlated (P 

< 0.01) to fish weight/biomass, chlorophyll-a, water suspended solids, total feed and 

Secchi disk depth (Table 6). Fish weight and fish biomass were highly correlated to 

total solid sedimentation rates, whereas resuspension was also correlated to other water-

related parameters such as chlorophyll-a, total suspended solids and Secchi disk depth. 

Table 6: Two-tailed Pearson correlation matrix based on seven sampling periods (days 7 to 

49) (significant correlation, P < 0.01) 

Sedimentation rate, total solids (TSSR) 
Resuspension rate, total solids (TSRR) 
Chlorophyll-a concentration (CHL-A) 
Secchi depth (SD) 
Fish weight (FW) 
Fish biomass (FB) 
Total feed (TF) 
Water suspended solids 

TSSR 

1.00 
0.98 
0.86 

-0.79 
0.78 
0.79 
0.80 
0.80 

TSRR 

1.00 
0.84 

-0.77 
0.73 
0.74 
0.75 
0.76 

CHL-A 

1.00 
-0.90 
0.97 
0.97 
0.97 
0.97 

SD 

1.00 
-0.83 
-0.83 
-0.83 
-0.86 

FW 

1.00 
1.00 
1.00 
0.99 

FB 

1.00 
1.00 
0.99 

TF 

1.00 
0.99 

Discussion 

With increasing feed input, the amount of suspended solids (including 

phytoplankton biomass) and the concentration of inorganic dissolved nutrients 

(ammonium, nitrate, nitrate) in the water column increased (data not shown). When 

feeding was stopped, the phytoplankton biomass (expressed as chlorophyll-a 

concentration) stayed constant at 205-208 mg m"3 up to day 63. This was followed by a 

sudden die-off of phytoplankton, and on day 65 the chlorophyll-a concentration dropped 

to 18 mg m"3. Studies on phytoplankton populations have not lead to conclusive results 

to explain the phytoplankton dynamics in fish ponds (Sevrin-Reyssac 1997). In this 

study too, it was not possible to identify the cause(s) of this die-off. A possible 

explanation is that considering that feed was the only nutrient input in the system, when 

feeding was suspended a severe nutrient limitation developed leading to the collapse of 

the phytoplankton population. The fact that, once the feeding was restarted 

phytoplankton biomass increased again, supports this conclusion. 

The C:N ratio of the sediment was comparable to the C:N ratio of the material 

collected. When organic matter is mineralized, nitrogen is used faster than carbon and 
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the resultant material is characterized by a lower carbon to nitrogen ratio (Nixon and 

Pilson 1983). Hamilton and Mitchell (1997) mentioned that particle settling velocities 

could be in the order of 1 mm sec"1. Considering the trap height of 30 cm, the total water 

column residence time would be 300 sec, a limited time for slow chemical reactions 

such as microbial degradation to occur (Avnimelech et al. 1999). The similarity in the 

C:N ratios of both the sediment and the material collected confirms this. Carbon and 

nitrogen concentrations in the trapped material were on average 8 times higher than the 

concentrations found in the top 2-cm sediment cores. Most likely, relatively more 

organic carbon was resuspended than inorganic soil particles. 

The use of aluminum or iron as tracers for estimating resuspension gave similar 

results, and the use of one tracer is sufficient for future studies. The amount of material 

collected in the traps ranged between 90 and 400 g m"2 d"1. Avnimelech et al. (1999) 

reported flux rates of 622 and 1331 g m"2 d" for two ponds stocked with similarly sized 

tilapias at a comparable density. Breukelaar et al. (1994) reported a resuspension rate 

equaling ± 5 times the fish biomass per m2 per day, which is also higher than our values. 

One possible explanation is the characteristic of the pond bottom. When comparing the 

rates at which organic carbon was collected in the traps to the expected sedimentation of 

algae and suspended solids from the water column, 11 times more organic carbon was 

trapped than expected. This suggests that the flux per day of organic carbon through 

resuspension is much higher than the calculated flux of 42-47% (Table 5). This is 

possible if we consider that the difference represents an estimate of the proportion of 

trap contents derived from sediment resuspension. Similarly, when comparing the 

expected and measured resuspension without taking into account the sedimentation of 

fresh material that settles down for the first time, the measured resuspension was 8 

times higher. Resuspended material was most likely organic matter with a low density, 

while the inorganic soil was hardly resuspended, because the size and density was too 

large to be lifted higher than 30 cm into the water column. The fact that the pond soil 

was sandy confirms this result. If all the soil particles would had the same density as the 

organic matter then the amount of trapped material would also have been 8-10 times 

higher. Although the studies by Avnimelech et al. (1999) reported higher resuspension 

rates, the important question is how much organic matter was resuspended, as this 

drives the food web in the pond. In this study, 45-68% of the trapped material was 

carbon. 
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The values for the sedimentation rate for organic carbon and total nitrogen (but 

not for total solids) are comparable to other reports for similar fish size. In Avnimelech 

et al. (1999) increased fish size and increased nutrient input, as time progressed, were 

positively correlated to increased sedimentation rate. Both the fish weight increase and 

the increased feed input led to higher suspended solids in the water column. The 

characteristics of the pond management (e.g. feed input) are important to consider when 

reporting sedimentation rates because the absolute value of the sedimentation found in 

this experiment was 2-3 times higher after 50 days. Another important result is that, 

although fish weight increases over time, the relative resuspension did not change 

significantly during the experiment, being always in the range of 42 to 47% of the total 

collected material and irrespective of the component measured (total solids, organic 

carbon or total nitrogen). The constant relative resuspension can be explained by the 

fact that, during the experiment, the primary productivity (so the phytoplankton 

biomass) and the feed input increased at the same time as the fish increased its weight 

(see Table 5). It should be noticed also that the number of fish did not change 

significantly during the experiment, so this effect was not considered. It is probably 

more convenient to relate the resuspension rate to the fish weight and the number of 

fishes and not the fish biomass only. It is also not convenient to relate fish weight (and 

number) to the percentage of resuspension without giving information on the total 

amount of material collected in the traps. Therefore, the use of absolute values seems to 

be more convenient. 

For the evaluation of sedimentation and resuspension rates, the pause of fish 

feeding could have two important consequences. Firstly, organic matter and nutrients 

were not introduced any longer in the system, and dissolved nutrients in the water 

column decreased to the level that could even limit the phytoplankton growth. 

Moreover, the exhaustion of nutrients could cause phytoplankton populations to 

collapse. Secondly, feeding causes fish to move more actively, so if no feed is' applied 

less turbulence is caused and less resuspension is expected (Havens 1991). Following 

data of Table 4, it seems that fish always searched in the sediments, inducing a little less 

disturbance when no feed was found. Resuspension (absolute and relative values) 

decreased during feed cessation, although not significantly. 

In conclusion, real resuspension rates were 8-11 times higher than expected. The 

dilution analysis to evaluate the magnitude of sedimentation and resuspension based on 

127 



Chapter 4 

Al/Fe as tracers assumes that soil particles and organic particles have similar density 

and are resuspended in the same proportion. This is not always the case, as presented 

here. What is important in estimating sedimentation/resuspension fluxes in fish ponds is 

to evaluate the dynamics of the organic matter that accumulates in the pond bottom, and 

the effect of those processes on the mobilization of inorganic forms such as nitrogen or 

phosphorus. Further research on this respect is recommended. 
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Abstract 

Simulation models of nitrogen dynamics in fish ponds are needed for proper 

pond management. A previous model (Pond Nitrogen Simulator, PNS) for the dynamics 

of nitrogen transformations and fluxes in fish ponds did not simulate the organic 

nitrogen in the sediments well. To improve the understanding of the dynamics of 

nitrogen accumulating in the pond bottom of earthen fish ponds, this work integrates 

information on organic matter accumulation, sedimentation and resuspension into a 

predictive model. The proportion of three principal sources of organic matter which 

accumulate in the pond bottom (senescent phytoplankton, faeces, and uneaten feed) 

were included as parameters of the sedimentation process. A logistic equation relating 

the rate of resuspension and the fish biomass was calculated. Also seepage, as a 

potential loss of nitrogen from the system, was considered. After calibration and 

validation, the model simulated well the concentrations of organic and inorganic 

nitrogen in the sediments. When compared to PNS, model predictions were 5-fold 

improved by including submodules for sedimentation, fish driven resuspension and 

seepage. The model was also used to evaluate the effect of different pond management 

strategies on the dynamics of nitrogen in fish ponds. 

Keywords: nitrogen balance; modelling; organic matter accumulation; sedimentation; 

resuspension. 
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Introduction 

Feed and fertilizers enhance the production of cultivated animals in aquatic 

systems, but they are also a major source of pollutants in aquaculture operations since 

they influence the type and quantity of organic matter and nutrients in pond water and 

effluents (Cowey and Cho 1991). In stagnant water ponds, feeding above 55-60 kg ha'1 

d"1 will lead to an excessive accumulation of ammonia concentrations in the water 

column (Tucker et al. 1979). 

When the oxygen supply to either the whole system or the pond bottom is lower 

than the input rate of organic matter, systems become anoxic. Under these conditions 

the potentially toxic nitrogenous compounds are produced. One solution for this 

problem is to exposed to the air the pond bottom between cropping cycles to mineralize 

the accumulated organic matter. Few reports on sediment management while the pond is 

filled has been published. Mixing of the sediments was evaluated by Beveridge et al. 

(1994) without any significant effects on water and sediment nutrient levels after 

sediment mixing. 

Hargreaves (1998) reviewed the processes of the N- cycle occurring in the pond 

bottom, and the processes related to the interaction between the sediment and the water 

column in aquaculture ponds. Much of the information is derived from research in 

estuarine or lacustrine environments, and few controlled studies on nitrogen cycling 

under the particular conditions prevalent in earthen aquaculture ponds have been 

reported. Our understanding of sedimentation, resuspension and inorganic nitrogen flux 

is still limited. These processes are interrelated; for instance, the flux of inorganic 

nitrogen compounds between the sediment and the water column is influenced by 

sedimentation, and its mobility is accelerated by resuspension. Seepage, another process 

occurring in earthen aquaculture ponds, has not been investigated either. 

One way to study the nitrogen dynamics in fish ponds is through modelling. A 

previous model (Pond Nitrogen Simulator, PNS) for the dynamics of nitrogen 

transformations and fluxes in fish ponds was developed (Chapter 2, this thesis), but the 

amounts of organic nitrogen accumulating in the sediments were not well simulated. In 

Chapter 3 (this thesis) the proportion of the principal sources of organic nitrogen in 

pond bottoms (senescent phytoplankton, faeces and uneaten feed) were quantified 

through model calibration. Organic nitrogen accumulation and the rate of mineralization 
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of organic matter in pond soils were also measured. Further, flux rates between the 

sediments and the water column were measured for TAN, N-NO2" and N-NO3" (Chapter 

3, this thesis). Finally, sedimentation and resuspension in fish ponds, and its relation to 

other parameters such as fish and phytoplankton biomass were measured in Chapter 4 

(this thesis). 

The objective of the present work was to integrate the information on organic 

matter accumulation and mineralization, inorganic nitrogen fluxes between the water 

column and the sediment, organic nitrogen sedimentation, and nitrogen resuspension, 

into a dynamic model for the simulation of nitrogen transformations and fluxes in fish 

ponds. The model was used to quantify the effect of different pond management 

strategies. 

Material and Methods 

Model description 

The present model is based on the model proposed in Chapter 2 of this thesis 

(referred onwards as PNS). It comprises three modules (fish, phytoplankton and 

sediment-water). For details on the principal N-compounds, N-transformations and In­

fluxes included in PNS refer to Tables 1 and 2 of Chapter 2 (this thesis). 

The new additions to PNS are depicted in Figure 1. In PNS it was assumed that 

the principal sources of organic matter accumulating in the sediments were uneaten 

feed, dead phytoplankton and faeces. Only dead phytoplankton was partly decomposed 

in the water column, and the remaining settled on the pond bottom along with the other 

components. It is likely that also the faeces and the uneaten feed are partly decomposed 

in the water column. The amount of organic nitrogen present in the water column 

(sorntosed), expressed in terms of mg N I/1, is the sum of the three sources: 

sorntosed = s_phytom + sunean + segspron (1) 

where s_phytom, s_unean and s_egspron are the amounts of dead phytoplankton, 

uneaten feed and faeces, respectively. After calibration, it was found that the proportion 

of phytoplankton sedimenting (daily basis) was 0.20, and for faeces and uneaten feed 

the proportions were 0.70 and 0.90, respectively. These values were included in the 
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present model. The relative sedimentation rate parameter (prelsed) oscillates between 

0 and 1, and is expressed as: 

p _ relsed = 
s _ phytom 

s orntosed 

s _ egspron 

yS _ orntosed 

x P _ phytomsed 

x P _ egssed 

f \ 
s unean 

v s _ orntosed 
x p unearned 

(2) 

where p_phytomsed, pjuneansed and p_egssed are the proportion of phytoplankton, 

uneaten feed and faeces settling daily to the sediments. 
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Figure 1. Relational diagram showing the new state variables and processes added (gray 

shading) to the Pond Nitrogen Simulator (PNS) model. The detailed diagrams for the 

different modules are presented in Chapter 2. 

The rate of sedimentation of organic nitrogen to the sediments (rsedimon, in 

mg N L"1 h"') is then expressed as: 

r sedimon = 
p _ relsed x s _ orntosed ̂  

24 J (3) 
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Once the organic matter is sedimented, it can be further decomposed. In PNS, 

dissolved oxygen in the sediments was used as a constraint for ammonification to 

proceed. This was not considered in the present model since ammonification can also 

proceed under anaerobic conditions (Reddy and Patrick 1984). The organic nitrogen that 

accumulates in the sediments is now calculated as the difference between the organic 

nitrogen that deposits (equations 1 to 3) minus its ammonification (Table 1). 

Table 1. Differential equations of the principal state variables of the model. Changes to the 

Pond Nitrogen Simulator (PNS) are indicated in italics. 

Sediments 

d(organic nitrogen)/dt = sedimentation - ammonification - resuspension 

d(NH4
+)/dt = ammonification + diffusion from/to sediments - nitrification 

- seepage - resuspension 

d(NH3)/dt = diffusion from/to sediments - resuspension 

d(N03")/dt = nitrification + diffusion from/to sediments - denitrification -
seepage - resuspension 

Water 

d(organic nitrogen)/dt = resuspension - ammonification - sedimentation 

d(NH4
+)/dt = fill + ammonification + resuspension - diffusion from/to 

sediments - phytoplankton uptake 

d(NH3)/dt = fish excretion + resuspension - flux from/to sediments -
volatilisation 

d(N03~)/dt = fill + nitrification + resuspension - diffusion from/to 
sediments - phytoplankton uptake 

Another addition to PNS is the resuspension of nitrogen from the sediments. 

Resuspension is an important process in fish ponds, and resuspension rates of total 

nitrogen in the order of 2 to 14 g N m"2 d"' were reported in Chapter 4 (this thesis). It 

was also found that, from the collected material in sediment traps, between 40 and 50% 

originated from resuspension. An important conclusion was that fish biomass has an 

strong effect on this resuspension. Data on fish biomass and the rate of resuspension of 
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total nitrogen (organic and inorganic forms) from that experiment was fitted to a logistic 

equation (Fig. 2): 

r resuspension = 
31.95 

1 + 71148.53 exp(- 0.0922 xs_ fishbiom) 
(4) 

where r resuspension is the rate of nitrogen resuspension (in mg N L" h"), and 

sjlshbiom is the total fish biomass in the system (in kg of fish per 1000 m2). 

Resuspension of the different nitrogen species is calculated as: 

r resX = 
5 _ Xsed 

s totnsed x r _ resuspension (5) 

where rresX is the resuspension rate (or the accelerated mobility, in the case of 

inorganic nitrogen forms), with X being N-NH3, N-NH4
+, N-NO3" or organic nitrogen. 

SXsed is the respective concentration (mg L"1), and sjotnsed is the sum of all nitrogen 

forms in the sediments (mg N L"1). 
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Figure 2. Logistic relation between Nitrogen resuspension rate and fish biomass. 
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Resuspended organic nitrogen was added to the total organic nitrogen in the 

water column. Its sedimentation rate (rjsedreson) is calculated as: 

r _ sedreson = p _ sedreson xs_ reson (6) 

where p_sedreson is the first order resuspended organic nitrogen sedimentation rate 

parameter and s reson is the concentration of this material (in mg NL'1). P sedreson is 

assumed to be different to prelsed (equation 2) because during deposition the organic 

nitrogen is chemically and physically transformed by processes such as ammonification 

and particle aggregation. 

A final consideration was the seepage. Seepage could have a profound effect on 

the nitrogen budget of fish ponds (Chapter 1 of this thesis). In the model, seepage is 

considered as a loss of dissolved nitrogen in the sediments. Since data for seepage were 

available (see below) this rate was entered in the model as an external variable. 

The state variables both for the water column and for the sediments were 

modified according to the new additions (Table 1). 

Model implementation and parameterization 

The model was implemented in Turbo Pascal (7.0) using the Euler's rectangular 

method for numerical integration, and a fixed time step of one hour. The input data 

included water temperature, pH and dissolved oxygen concentration in both water and 

sediment, and the rates of input of ammonium and nitrate via refill water, the seepage 

rate, and the feeding rate. 

Calibration 

The same data used for the validation of PNS were used to calibrate the present 

model. Two ponds of 800 m2 and 1.2 m depth were stocked with 35.1 g (± 7.0 SD) 

Oreochromis niloticus at a density of 1.2 fish m"2. For further details on experimental 

conditions, feeding, and field measurements, reference is made to Chapter 2. 

Calibration was carried out by adjusting equation coefficients to improve the fit 

between simulated and observed data. Most of the initial values used for the calibrated 

rate coefficients were taken from PNS (Table 2). 
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Table 2: Rate coefficient. Only calibrated coefficients, or coefficients not included in Pond 

Nitrogen Simulator (PNS) model (in bold) are presented* 

Rate coefficient 

Ammonification in sediments 

Ammonification in water 

Volatilisation of NH3 

Diffusion of NH3 

(water-sediment interface) 

Nitrification in water 

Diffusion of NCV 
(water-sediment interface) 

Sedimentation of resuspended 
organic nitrogen 

Proportion of daily faeces that is 
added to sediments 

Proportion of phytoplankton daily 
added to sediments 

Proportion of daily uneaten feed that 
is added to sediments 

Symbol 

pammonifsed 

pammonifwat 

p_diffcoefhh3 

p_nh3dif 

p_nitrifwat 

p_no3dif 

p_sedreson 

pegssed 

p_phytomsed 

p uneansed 

Units 

h1 

h'1 

cm2 h'1 

m2d-' 

h"1 

m2h-' 

h"' 

Otol 

Otol 

Oto 1 

Initial 
value 

2.17 xlO"5 

5.04 x It)-3 

10 

0.1 

4.17 xlO"4 

6.84 xlO -6 

0.70 

0.20 

0.90 

Calibrated 
value 

8.55 x 10-2 

2.10 x 10"3 

0.115 

1.0 

1.00 x 10'3 

1.642 x 10'5 

0.50 

0.70 

0.20 

0.90 

* for a complete list of parameters refer to Tables 1 and 3, Chapter 2 

The degree of agreement between simulated and observed data over the whole 

simulation was determined at every time when field data were available, calculating the 

relative error: 

RE = -
Ssim - Sobs 

- * (Ssim + Sobs) 
.(7) 

in which RE is the relative error, and Ssim and Sobs are the simulated and observed 

values of the state variables at each moment. The coefficients were adjusted until the 

RE was at least equal to or lower than 0.25 for any sampling period. Final simulation 
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was performed when all coefficients were set (Table 2). For each state variable, the 

average relative error (ARE), defined as: 

YRE 
ARE = ̂  (8) 

were calculated, in which RE is the relative error and n is the number of observations 

used to assess the agreement between simulated and observed values for the whole 

experiment. 

Sensitivity analysis 

One by one, the rate coefficients were changed by +/- 10% of the value that gave 

the best fit between simulated and observed data, maintaining the other coefficients 

unchanged. The difference between the value of the state variable at each sampling date 

for the highest rate coefficient (+10%) and the value for the lowest rate coefficient (-

10%) expressed as a percentage of the value for the coefficient obtained after calibration 

was used to quantify the sensitivity of the model to changes of that particular coefficient 

(Piedrahita 1986). 

Validation 

The model was validated using two independent data sets, one from each pond. 

Two stagnant ponds (800 m2, 1.2 m depth) were stocked with 5.0 g Oreochromis 

niloticus at a density of 1.2 fish m"2. The principal differences between the data used for 

the calibration and the validation were the initial conditions of the pond (nitrogen 

concentrations) and the fish size (5 g vrs 35 g). Fish were grown for 210 days, and were 

sampled six times during this period. Fish were fed a 3 mm 30% protein pellet. The 

amount of feed offered was 2.5% of the individual body weight per day, and the daily 

ration was divided into two equal portions and administrated at 0700 and 1500 hours. 

Ponds were sampled every three weeks for nitrogen contents in phytoplankton, 

sediments and water. Methods used were previously described in Chapter 2. 

Seepage losses were calculated using evaporation and precipitation data 

collected in a nearby meteorological station. A marked stick to measure the water level 

was mounted in each pond, water loss was measured daily, and seepage was calculated 
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as the difference between the water loss, the evaporation and the precipitation. It was 

assumed that the nitrogen concentration in the seepage water was the same as the 

concentration of the sediment pore water. 

To test if the added equations improved PNS, the outputs of the PNS model and 

present model, using the same field data were compared. Finally, the effect of different 

pond management (changing the feeding rate or the protein percentage in the feed, the 

dissolved oxygen concentration, or applying water exchange) on the concentrations of 

selected state variables were calculated using the model. 

Results 

Six parameters used in PNS and four new parameters were calibrated (Table 2). 

After calibration, N-NH4+ in the water column presented the higher deviations between 

observed and simulated values, but for the whole simulation period ARE for all state 

variables remained equal or below to 0.11 (Table 3). 

Table 3: Relative errors (RE) and average (ARE) of the principal state variables after 

calibration 

Time 
(days) 

1 
7 
14 
21 
28 
35 
42 
49 
56 
63 
70 
77 
84 
90 

ARE 

N-NH4
+ 

(water) 
0.00 
1.54 
-0.40 
0.08 
-0.15 
-0.10 
0.11 
-0.22 
0.11 
0.06 
0.47 
-0.12 
-0.11 
0.13 
0.11 

N-NH4
+ 

(sediments) 
0.00 
-0.02 
-0.35 
-0.17 
-0.10 
-0.05 
-0.06 
-0.03 
-0.01 
-0.02 
-0.01 
-0.03 
-0.02 
-0.02 
-0.06 

State variable 
N-NOj- Fish 
(water) weight 

0.00 
0.04 
0.42 
0.20 
0.02 
0.02 
-0.07 
0.04 
-0.01 
-0.02 
-0.03 
0.00 
0.11 
0.13 
0.06 

0.00 

-0.03 

-0.01 

-0.02 

0.00 

-0.01 

Phytoplankton 

0.00 
-0.08 
-0.05 
-0.03 
0.00 
-0.07 
-0.14 
0.11 
0.10 
0.04 
0.02 
-0.07 
-0.03 
0.04 
-0.01 

Organic N 
(sediments) 

0.00 
-0.05 
-0.16 
-0.13 
0.16 
-0.02 
0.10 
0.07 
-0.02 
0.04 
-0.06 
0.09 
-0.03 
-0.04 
-0.00 

Sensitivity analysis was conducted for the calibrated parameters. TAN both in 

the sediments and in the water column were strongly affected by several parameters, but 
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in particular the proportion of daily uneaten feed that is added to sediment (puneansed) 

caused a drastic effect on the simulation of these two state variables (Table 4). 

Table 4: Sensitivity analysis. Effect of increasing or decreasing by 10% the indicated 

coefficient 

Coefficient 

pammonifsed 

pegssed 

puneansed 

Process involved 

Ammonification in 
sediments 

Sedimentation 

Sedimentation 

State affected 

TAN in water 

TAN in sediments 

TAN in water 

TAN in sediments 

TAN in water 

TAN in sediments 

±10%* 

40.14 

32.62 

26.59 

32.52 

89.72 

109.50 

* Table includes only coefficients whose change affected by more than 15% the value of any state 
variable. 

Table 5: Initial conditions used in the simulations during validation runs. VI refers to the 

data used for the first validation, and V2 was used during the second validation 

Variable 

Fish species 
Fish number 
Individual fish weight 
Pond area 
N03" in sediments 
NO3" in water 
Organic N in sediments 
Organic N in water 
NH3 in sediments 
NH3 in water 
NH4

+ in sediments 
NH4

+ in water 
Total N in sediments 
Phytoplankton biomass 

Symbol 

a fishnb 
s wf 

p_pondarea 
s no3sed 
s no3wat 
s ornsed 
s ornwat 
s nh3sed 
s nh3wat 
s nh4sed 
s nh4wat 
s totnsed 

s phytobiom 

Dimension 

# 
g (fresh weight) 

m 
mg N L" 
mg N L" 
mg N L' 
mg N L"' 
mgNL"1 

mg N L" 
mg N L'1 

mgN L' 
mgN L' 
mgN L" 

VI V2 

Oreochromis niloticus 

800 
0.100 
0.007 
22.94 
0.140 
0.05 

0 
11.71 
0.006 
34.67 
0.140 

1000 
5.0 

800 
0.100 
0.005 
28.16 
0.125 
0.03 

0 
13.48 
0.009 
41.67 
0.125 

The experimental data collected for the calibration is presented in Table 5 of Chapter 2 

Initial conditions for validation are given in Table 5. For both validations, and 

for every state variable, average relative errors remained within -0.37 and +0.57 (Table 

6). 
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Table 6: Average relative errors (ARE) of the principal state variables after validation. 

Observed range is indicated between brackets. Last column present the ARE and range 

using PNS model. 

N-NH4
+ in water 

N-NH/ in 
sediments 

N-NO3" in water 

Fish weight 

Phytoplankton 

Organic N in 
sediments 

Validation 1 

0.38 
(-0.06<RE<1.37) 

-0.32 
(-1.01<RE<0.27) 

0.57 
(-0.06 < RE < 1.13) 

-0.31 
(-0.82 < RE < 0.00) 

-0.12 
(-0.43 < RE < 0.24) 

-0.23 
(-0.46 < RE < 0.11) 

Validation 2 

0.13 
(-0.11 < RE < 0.42) 

-0.16 
(-0.43 < RE < 0.09) 

0.36 
(-0.08 < RE < 0.73) 

-0.35 
(-0.77 < RE < 0.00) 

-0.12 
(-0.41<RE<0.22) 

-0.37 
(-1.14 < RE < 0.13) 

PNS model 

1.91 
(1.72 < RE < 1.83) 

-1.04 
(-1.32 < RE < -0.53) 

1.50 
(0.07 < RE < 1.82) 

-0.39 
(-0.87 < RE < 0.00) 

0.89 
(0.00 < RE < 1.37) 

-1.22 
(-1.62 < RE < 0.00) 

To get an idea of the magnitude of model improvement, the simulations of PNS 

model and the present model after calibration were compared using the same data set. 

The simulations of all state variables were improved using the present model (Figs. 3 

and 4). Relative errors and their averages are summarized in the last column of Table 6. 

Discussion 

Three important processes not included in previous models of nitrogen dynamics 

in fish ponds (seepage, sedimentation and resuspension) were included here. Seepage is 

important in ponds with sandy soils, having a high hydraulic conductivity. In a previous 

work (Chapter 1, this thesis) nitrogen losses through seepage represented around 30% of 

the nitrogen loss in the system; those ponds were particularly sandy, but taken into 

account that nitrogen concentrations in pond bottom soil solution are normally one to 

two orders of magnitude higher than in water (Ram et al. 1982; Boyd 1995) this loss 

should be considered when constructing nitrogen budgets in fish ponds. On the other 

hand, the concentration of the different nitrogen compounds in the seepage water was 

not determined. The assumption that the concentration of the different inorganic 
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nitrogen forms in the water lost through seepage was equal to the concentration in the 

porewater may have resulted in a small difference between simulated and observed data. 
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Figure 3. Dissolved nitrogen in the water column using PNS model (Chapter 2) and the 

actual model (this chapter). The bisector represents perfect agreement between simulated 

and observed values. 

144 



The role of sedimentation and resuspension in fish ponds 

Phytoplankton biomass TAN in sediments 
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Figure 4. Validation results for phytoplankton biomass, fish weight, TAN and total 

nitrogen in the sediments, using PNS model (Chapter 2) and the actual model (this chapter). 

The bisector represents perfect agreement between simulated and observed values. 

Sedimentation represents an important process when considering nutrient 

balances since organic material and nutrients are removed from the water by this 

process. Several forms of organic matter accumulate in fish ponds: uneaten feed, faeces 

and dead phytoplankton. A quantification of the proportion of offered feed that is not 

eaten has been reported for several aquaculture systems, being in the order of 5 to 30% 

(e.g. Thorpe et al. 1990; Boyd 1995; van der Meer et al. 1997) but conclusive values for 

pond aquaculture are scarce. Another possible source of organic matter accumulating in 

the pond bottom are the faeces produced by fish. Based on energy balance studies, on 

average 40% of the nitrogen ingested by fish is incorporated into fish biomass, 25 up to 

80%o is excreted as ammonia or dissolved organic nitrogen, and 5-15% is excreted as 
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particulate organic matter in the form of faeces (e.g. Kaushik 1980; Krom et al. 1985; 

Porter et al. 1987; Lovell 1988). Finally, phytoplankton that settles down is also an 

important source to consider. According to Schroeder et al. (1991) in ponds as much as 

50% of the algal standing crop settles to the sediment surface each day. Avnimelech et 

al. (1999) used a maximal sedimentation rate as equal to daily primary productivity. 

Resuspension was another addition to PNS. Using the information collected in 

Chapter 4 (this thesis), a correlation between total nitrogen resuspension rate and fish 

biomass was calculated, based upon experimental data (equation 4); the equation shows 

that when fish biomass is higher than 500 kg ha"', bioperturbation will have an effect on 

resuspension. A similar correlation between fish density (kg ha"1) and the percentage of 

total dry matter collected in sediment traps was presented by Avnimelech et al. (1999); 

they reported a steep increase in the percentage of resuspended material when average 

fish weight was increasing towards 200 g, or when fish densities were higher than 1000 

kg ha"'. In this work we found that even at lower fish density (500 kg ha"') resuspension 

is also important to consider. In a shallow lake, Meijer et al. (1989) found an almost 

instantaneous increase in water transparency after the density of benthivorous fish was 

decreased from 600 kg ha"' to 200 kg ha"'. Sondergaard et al. (1990) reported for a 

shallow eutrophic lake, that a reduction of the fish stock from 300 kg ha"' to 150 kg ha"' 

changed the biological structure of the system markedly. For a similar system, van 

Donk et al. (1994) found that reduction from 150 to 57 kg ha"' did not lead to an 

increase in water transparency. A positive linear relation between the total biomass of 

fish in ponds and the amount of material found in sediment traps was also reported by 

Tatrai ef a/. (1997). 

Resuspension is partly responsible to the nutrient enrichment of the water 

column due to the accelerated mobility of inorganic forms. Resuspension caused by fish 

has been identified as a source of nitrogen and phosphorus in the water column by many 

authors in lakes (e.g. Stenson et al. 1978; Henrikson et al. 1980; Smeltzer 1980; Shapiro 

et al. 1982; Shapiro and Wright 1984; Wright and Shapiro 1984; Tatrai et al. 1985; 

Hambright et al. 1986; Tatrai and Istvanovics 1986; Meijer et al. 1990; Benndorf 1995; 

Tatrai et al. 1997). Little information is available for aquacultural ponds. Through our 

model, we evaluated the importance of this process by comparing the simulations when 

resuspension was included and when this process was not included. From our 

estimations, inorganic nitrogen concentrations in the sediments decreased on average by 
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25% due to resuspension/accelerated mobility, and at the same time the concentration of 

inorganic nitrogen forms in the water column, specially in the form of TAN, increase on 

average by 15%. These results are similar to previous reports by Blackburn et al. (1988) 

who attributed 30% of the solute flux from the sediment of a marine fish pond to 

disturbance by fish. This demonstrates the importance of resuspension in aquaculture 

ponds. The estimated TAN flux rate from the sediments to the water column due to 

resuspension was 18.7 mg N m"2 d"1. This value is higher than previously reported (2.6 

to 7.3 mg N m"2 d"', Chapter 3 of this thesis). Considering that TAN is mainly derived 

from the mineralization of settled organic matter at the sediment-water interface 

(Hargreaves 1998), the difference between our previously reported flux and the model 

estimations are probably due to the difference on organic matter concentration between 

the systems. The value is also in the range of-18 to 276 mg NH/ m"2 d"' reported by 

Cerco(1989). 

Another parameter included in the present model is the sedimentation of 

resuspended organic matter (psedreson, Table 2). The range of particle settling 

velocities of different origins have been reported to be in the order of 36 to 1730 m d"1 

(e.g. Vinogradov 1961; Smayda 1969; Fowler and Small 1972; Hamilton and Mitchell 

1997). Sinking rates are calculated using Stock's equation which takes into 

consideration the volume and density of the particles, the density and the viscosity of 

the medium, and the acceleration due to gravity (J0rgensen 1989). The model approach 

does not permit to evaluate the speed at which resuspended material settles back; there 

is no information on the physical characteristics of the resuspended material. However, 

the calibrated first-order value of 0.5 d"' gave good simulation results. Further research 

on the type and forms of the organic matter that accumulate in the pond bottom of fish 

ponds is needed. 

The four new parameters were added to PNS model based upon conventional 

approach (Table 2). Compared to PNS, an increase of four orders of magnitude was 

obtained to the first-order rate coefficient for ammonification of sedimented organic 

matter. Most probably, this is caused by the effect of resuspension. As sediment are 

resuspended, anaerobic prevailing conditions are changed to aerobic conditions, leading 

to accelerated microbial reactions. The calibrated value (8.55 x 10"2 d"') gave the best 

simulations, and the value used is comparable with previous reports for aerobic algae 

decomposition rates of Otsuki and Hanya (1972, 6.8 x 10"2 d"1) and Ulen (1978, 1.0-8.0 
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x 10"2 d"1). Another important change was the value of the coefficient of mobility for 

volatilisation of N-NH3. This process is strongly affected by atmospheric conditions 

such as temperature, wind speed and solar radiation (Jayaweera and Mikkelsen 1991), 

factors not considered in the present model. Contrasting results about the importance of 

volatilisation of N-NH3 in fish ponds have been reported. Following a nitrogen budget 

approach (Chapter 1, this thesis) volatilisation seemed to be not important. According to 

model prediction, the volatilisation rate of N-NH3 was in the order of 0.20 to 13.55 mg 

N-NH3 m"2 d"1. Higher values (8.8 to 71.0 mg N-NH3 m"2 d"') were reported by Gross et 

al. (1999). 

After calibration, the average relative errors (ARE) were below 0.11 (Table 3), 

which is considered good. Sensitivity analysis (Table 4) showed that the concentration 

of TAN both in the water column and in the sediments are the two state variables more 

affected by changes in model parameters. The concentration of those species is difficult 

to predict in fish ponds (Boyd 1990), and the parameters that control its concentration 

need further investigation. Particular attention should be given to the proportion of 

uneaten feed in fish ponds; changing this parameter by 10% resulted in a change on the 

simulation of TAN concentrations in the order of 89.72 to 109.5% (Table 4). 

With the validation data set, the ARE for all parameters were between -0.37 and 

+0.57 (Table 6). PNS was also run with the same data set. Table 6 present the ARE for 

both models, and figures 3 and 4 compare the performance of the two models. When 

comparing the ARE of PNS with the mean of the ARE for the two validations (Table 6), 

it can be concluded that the changes made to PNS improved the simulations by 500%. 

In aquaculture, modelling helps to understand the basic structure and function of 

the system, but can also be used to develop better management practices. Model 

predictions of the relative effect of different pond management on the pond are 

presented in Table 7. Using model estimations we can conclude that when feed protein 

level is increased from 30% to 35%, the final fish weight will be increased from 493 g to 

554 g (individual fish weight). Increasing the feeding rate from 2.5% to 2.8% body weight 

per day the final fish weight will be increased to 541g (individual fish weight). This would 

probably have a profound impact on the profitability of the enterprise. But besides the 

effect on the fish production, these two parameters have also an important effect on the 

water and sediment concentration of TAN (Fig. 5). 
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+ 5% 

-63.6 

-36.0 

-15.7 

+ 10% 

-90.9 

-60.5 

-32.5 

Table 7: Model prediction of the relative effect (% of change) on selected parameters after 

different pond management at the end of the growing cycle. Positive/negative signs are 

used to indicate the increase/decrease of the parameter value. 

Feed protein Feeding rate Dissolved Oxygen Water exchange rate 

(%) (% body weight h"1) (mg L1) (% d ' ) 

- 10% + 10% - 10% + 10% - 10% + 10% 

Water N03" -9.1 +36.4 -27.3 +9.1 -9.1 +9.1 

Water TAN -23.3 +688.4 -47.7 +31.4 +31.4 -22.1 

Phytoplankton -0.6 +1.3 -1.3 +7.4 +0.6 -0.1 
biomass 

Sediments TAN -41.3 +39.0 -12.6 +17.1 +9.7 -9.5 -2.9 -4.0 

Sediments Total N -25.4 +33.0 -10.6 +15.4 +2.2 -7.3 -0.4 -0.9 

Fish weight -28.6 +18.8 -9.5 +9.7 0.0 0.0 0.0 0.0 

Increasing the feeding rate will cause an increase on the accumulated organic 

nitrogen in the sediments from 860 mg N L"1 to more than 1000 mg N L'1. The TAN in the 

water column will also increase from 0.09 to 0.12 mg N L"'. A similar 10% change of the 

protein content (from 30% to 40%) will boost this concentration to 0.68 mg N L"1. 

Considering that TAN is potentially toxic to fish, the model would allow to predict under 

which conditions the concentration of ammonia will be toxic for the cultured organisms. 

Another possible management practice is aeration. According to model predictions 

a decrease of dissolved oxygen from 7 ppm to 5.5 ppm would have an effect on processes 

such as nitrification. This is evident when looking to the decrease of nitrate concentration 

(from 0.011 to 0.009), and the accumulation of TAN in the water column (increased value 

from 0.09 to 0.33 mg N L"', Table 7, Fig. 5). 
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Figure 5. Change in water TAN and Total-N concentration (mg N L"1) with different 

management practices. 

Although water exchange should be optimized to avoid nutrient discharge, a water 

exchange rate of 10% per day would cause a large decrease of inorganic nitrogen forms in 

the water column, and also in the phytoplankton biomass (Table 7). According to model 

predictions, a water exchange rate of 10% per day will cause a decrease of in the 

concentration of N-NO3" from 0.011 to 0.001 mg L"', and also a decrease on the 

concentration of TAN in the water column (from 0.086 to 0.034 mg L"'). Phytoplankton 

biomass is also decreased from 1.06 to 0.71 mg N L"1. For our pond (800 m2, 1 m 
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depth), the total amount of nitrogen that is removed from the system when the 10% of the 

water volume is replaced would be in the order of 27.5 g N d"1 at the end of the growing 

cycle (Fig. 6). 

30 
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50 100 

Time (d) 
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Figure 6. Estimated daily nitrogen discharge when applying 10% water exchange per day. 

Considering that daily nitrogen input by feed at the end on the growing cycle was 

530 g N d~', and assuming that fish retain 30% of that nitrogen in the body, the total daily 

addition of nitrogen in the pond system (water and sediment) will be 371 g N. A 10% daily 

water exchange will then represent a discharge of about 37 g N d"'. The difference between 

the estimated concentration and resultant discharge (37-27.5) is explained considering both 

the organic matter accumulating in the pond bottom, and the volatilisation. In a similar 

way, the model can be used to quantify the discharge of nutrients to the surrounding 

environment under different system conditions. 

In summary, it was demonstrated that sedimentation, and especially the 

enhanced mobility of inorganic nitrogen compounds are important to consider when 

modelling nitrogen dynamics in fish ponds, since the last process increase the nitrogen 

flux from the sediments to the water column by more than 15%. Research on the 

dynamics of TAN in the water-sediment interface is needed, but the results presented 

here suggest that further modelling efforts should also take into consideration the 
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sedimentation of organic nitrogen and the accelerated mobility of inorganic nitrogen 

compounds due to resuspension. 
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Introduction 

As in any aquatic ecosystem, nitrogen is a key element in fish ponds. In natural 

aquatic systems, it forms part of organic molecules, and is converted and used for 

growth by autotrophic organisms. In aquaculture systems, nitrogen is added in the form 

of feeds and/or fertilisers to enhance the production of the cultured organisms that 

utilise it either directly (feeds) or indirectly (fertilisers). However, apart from the 

beneficial effects, nitrogen can also lead to eutrophication of surface waters, and pollute 

the culture system. In fact, nitrogen pollution is one of the principal causes of sub-optimal 

water quality in fish ponds (Jorgensen and Rasmussen 1991). The amount of nitrogen 

discharged from the system is influenced by both the amount of feeds (protein) and the 

efficiency of nutrient utilisation inside the system. Thus, nitrogen in aquaculture is both a 

need and a nuisance. 

The principal end product of protein metabolism in fish is ammonia. After oxygen, 

ammonia is the second most common factor affecting fish stocking density (Knud-Hansen 

et al. 1991). Although the effects of ammonia on growth are unknown for most cultured 

animals, growth reduction may be the most important sub-lethal effect (Burrows 1964; 

Colt and Armstrong 1979; Meade 1985). 

The general objective of this thesis was to investigate the dynamics of nitrogen 

in earthen fish ponds, integrating the available information into a predictive model. 

Some key mechanisms that were not well understood were investigated experimentally, 

especially the mechanisms related to the organic matter dynamics in pond bottoms. The 

results of these studies were used to improve the model. With the improved model, the 

effects of possible management practices on the nitrogen dynamics in fish ponds were 

evaluated. 

In Chapter 2, the model (Pond Nitrogen Simulator or PNS) was used to gain 

insight into the relative importance of the fluxes and the transformation processes 

involved in the nitrogen cycle in earthen fish ponds. The results of simulated N-

concentrations during calibration and validation were compared with the N-

concentrations observed in experimental ponds using the relative error (RE), calculated 

as (SSim-Sobs)/[(Ssim+Sobs)/2], where SSim and S0bs are the simulated and observed N-

concentrations, respectively. All nitrogen concentrations were simulated well (average 
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RE's ranging from -0.19 to +0.01), with the exception of the nitrogen retained in organic 

matter that accumulates in the sediments (average RE's -0.34). 

Consequently, the dynamics of organic nitrogen in the pond bottom were 

investigated in the next two chapters. In Chapter 3, the factors that affect organic matter 

accumulation in the sediments were studied. In Chapter 4, sedimentation and 

resuspension rates of organic carbon, organic nitrogen, and total solids were determined. 

In Chapter 5, the information obtained in the two previous chapters was integrated in 

the PNS model developed in Chapter 2. The model predictions were improved 5-fold 

(average RE's were between -1.22 and +1.91). The model was then used to evaluate the 

effect of different pond management strategies on the dynamics of nitrogen in fish 

ponds. 

In view of the extensive discussion in Chapter 5, this last chapter discusses 

briefly the scope and limitations of the modelling approach followed. It also addresses 

some practical implications for pond management with regard to nitrogen management 

in earthen fish ponds. General conclusions and research needs conclude this chapter. 

Modelling as a tool for the study of nitrogen dynamics 

Frequently, the aquaculturist faces two nitrogen-related problems in his 

production system. High concentrations of total ammonia nitrogen (TAN) in the water 

column have to be prevented because of the deleterious effects on the culture organisms. 

At the same time, the organic nitrogen accumulation in the pond bottom should be 

avoided since mineralization of organic matter and the subsequent regeneration of 

nutrients at the sediment-water interface causes an important emission of ammonia into 

the water column (Hargreaves 1998). 

The model developed in this thesis can be used as a research tool to assess the 

importance of the different processes on the concentration of TAN in the water, column 

and on the accumulation of organic nitrogen in fish ponds. Figure 1 presents the 

relevance of the different processes directly involved in the TAN dynamics in the water 

column. Ammonification in the water column mobilises (converts) nearly 1 g of organic 

nitrogen into ammonia/ammonium (TAN) in a period of 24 hours, increasing steadily 

during the growing cycle. For the decomposition of organic matter in the water column, 

values up to 0.34 g N m"2 d"1 are reported (e.g. Harrison 1978; Barat and Jana 1987). 
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The higher values found are probably related to the high concentration of TAN in our 

system. The TAN is further transformed into nitrate, but at a lower rate when compared 

with the ammonification rate. Another process that increases the concentration of TAN 

in the water column is the flux and mobilisation by fish-induced 

suspension/resuspension. This process becomes very important when organic matter 

accumulates over time in the pond bottom, increasing up to 79 mg m"2 d"1 at the end of 

the growing cycle. 
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Figure 1. Model prediction of nitrogen flux for different processes influencing the 

concentration of TAN in the water column. Data represent seven periods of 24 hours along 

a growing cycle. All values expressed in terms of mg N m"2 were transformed after 

multiplying the actual values by 1000 and taking the logarithm. 

Estimates of ammonia flux for similar systems are reported to be in the range of 

9 to 185 mg N m"2 d"' (e.g. Avnimelech 1984; Blackburn et al. 1988; Hargreaves 1997; 

Riise and Roos 1997). Yet another process that contributes to the potential accumulation 

of TAN in the water column is the ammonia excreted by fish, which increases steadily 

from 8.7 to 149.4 mg N m"2 d"' with increasing fish biomass and feed uptake. All these 

processes result into the final accumulation of TAN in the water column. However, the 

concentration of TAN does not reach very high levels since phytoplankton uses both 
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nitrate and TAN for growth. Uptake of dissolved inorganic nitrogen from the water 

column by phytoplankton is mostly the primary pathway of nitrogen removal 

(Hargreaves 1998). According to model output, phytoplankton removes up to 300 mg N 

m"2 d"1, thereby being in fact the principal source of ammonia removal from the water 

column. Volatilisation of ammonia is another important source of ammonia removal 

(Lorenzen et al. 1997; Fig. 1) with increasing values from 3.7 up to 64.8 mg N m"2 d"1. 

Similar values were found by Gross et al. (1999) in channel catfish ponds. 

8.01 

Figure 2. Model prediction of nitrogen flux for different processes influencing the 

accumulation of organic Nitrogen in the sediments. Data represent seven periods of 24 

hours along a growing cycle. Data in terms of mg N m'2 were transformed by taking the 

logarithm of the actual values. 

Organic nitrogen in the pond bottom increases over time by sedimentation (Fig. 

2), as does the ammonification rate in the sediments. Ammonification rate in the 

sediment is on average 50% lower than in the water column (about 0.5 g N m"2 is 

mineralized daily), leading to the accumulation of organic nitrogen in the pond 

sediments. Fish excretion by faeces increases up to 70.9 mg N m"2 d"' while uneaten 

nitrogen in feed reach a value of up to 1.7 g N m"2 d'1 at the end of the growing cycle. 

Both the fish excretion and the uneaten feed contribute to this accumulation, increasing 
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slowly but steadily along the growing cycle. Daily organic N sedimentation is close to 9 

g N m"2 d"' at the end of the culture period. 

In Chapter 5, the model was used to evaluate the effect of different pond 

management strategies on the dynamics of nitrogen in fish ponds. It was demonstrated 

that feed protein level has a profound effect on the concentration of TAN, and that the 

model predicts under which conditions the concentration of ammonia would reach toxic 

levels for the cultivated organisms. Using aeration as a management strategy would 

promote the nitrification and consequently would decrease TAN concentrations in the 

water column. 

Finally, an important management strategy is water exchange, which will cause 

a large decrease of inorganic nitrogen forms as well as of phytoplankton biomass. The 

model could be used to quantify the discharge of nutrients to the surrounding 

environment under different system conditions. For instance, under the conditions 

studied in Chapter 5, a 10% daily exchange of water will cause a total nitrogen 

discharge of 340 g N per hectare of pond area at the end of the growing cycle. The 

primary environmental concern with fish pond effluents is the possibility of 

eutrophication of receiving stream waters by feed-derived nutrients. However, it is only 

a small percentage of the total nutrient input that is eventually discharged into the 

environment. This low level of waste discharged from fish ponds is due to two factors: 

(1) natural processes within the ponds remove wastes from the water resulting in a very 

diluted discharge of nutrients relative to the total amount of feed added to ponds and (2) 

ponds are managed to minimize water discharge. 

Although these practical applications clearly indicate the efficacy of the model, 

it should be mentioned that the model was not validated with data from a wide range of 

environments. Therefore, more work is needed to assess whether the model also works 

well outside the range tested originally. 

Practical implications for pond management 

Without effective control of nitrogen transformation processes in the fish pond 

and optimal feed utilisation, nitrogen accumulates in the pond system. This 

accumulation occurs both in the water column and in the pond bottom. The nitrogen that 

accumulates in the water column is principally in inorganic forms. Inorganic nitrogen is 
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used by phytoplankton for growth, and, therefore, stimulation of phytoplankton growth 

could be a way to reduce TAN concentrations in the water. However, the development 

of phytoplankton populations is not always desired, especially when nuisance species, 

such as blue-green algae, develop. In practice, the control of nuisance phytoplankton 

species is difficult, and aquaculturists prefer to avoid excessive phytoplankton 

development by management strategies such as water exchange. Yet, this is not 

environmentally desirable since the pollution problem is conveyed to adjacent water 

bodies, and may lead to eutrophication problems there. 

Most of the nitrogen not used by the cultivated organism settles onto the pond 

bottom, where it accumulates. Senescent phytoplankton, uneaten feed, and faeces are 

the principal sources of organic nitrogen in pond bottoms. This organic nitrogen is 

transformed into ammonia by bacteria. Under aerobic conditions, ammonia can be 

further transformed into nitrate, which is toxic to organisms, but only under high 

concentrations (Boyd 1990). However, pond bottoms frequently become anoxic, and 

then ammonia accumulates in the reduced sediment since the biochemical pathway of 

ammonia transformation requires oxygen. Furthermore, sediments become a source of 

ammonia emission into the water column (Riise and Roos 1997). One way to prevent or 

reduce nitrogen accumulation is optimising feeds and feeding practices (Cole and Boyd 

1986; Li and Lovell 1992). The most obvious management measure in this area is 

preventing the feed from settling onto the pond bottom in uneaten form. The model 

suggestss that the amount of uneaten feed has a strong effect on TAN concentration of 

both the water and the sediment. Increasing the feeding rate from 2.5% to 2.8% of the 

body weight per day will cause an increase of the accumulated organic nitrogen in the 

sediments of nearly 20% (Chapter 5). Together with the fact that feeding costs represent 

a major part of the operational cost of feed-based aquaculture operations, this should be 

a strong incentive for good feeding management. 

Another strategy is to aerate the pond and increase circulation within the system. 

Aeration will positively affect TAN removal by nitrification in the water column. 

Increased circulation will cause resuspension of settled organic matter and stimulate its 

mineralization (Thomforde and Boyd 1991). Avnimelech et al. (1986) proposed a 

system in which water is circulated continuously by paddlewheel aeration, so that 

settled organic matter is concentrated and removed continuously, but for semi-intensive 

earthen ponds this technique has not been applied frequently. 
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General conclusions and suggestions for further research 

The approach followed in this thesis resulted in a better understanding of the 

nitrogen dynamics in fish ponds. The available information on nitrogen processes in fish 

ponds was integrated in the dynamic simulation model (PNS - Pond Nitrogen 

Simulator). This model can be used as a research tool for earthen ponds stocked with 

tilapia or tambaqui. The model was used to identify and study processes on which 

information is scarce. Newly obtained knowledge about organic nitrogen accumulation 

in fish pond bottoms and on sedimentation and resuspension of organic and inorganic 

nitrogen in fish ponds were incorporated in the model and improved the simulations 

considerably. With the model, several conclusions about pond management could be 

made in reference to the dynamics of nitrogen in fish ponds. 

An important addition that should be incorporated in future versions of the 

model is the dynamics of the microbial biomass as a source of feed for the cultivated 

organisms. Research is needed to study how bacteria can incorporate ammonia and how 

bacterial biomass can be utilised by fish. Avnimelech et al. (1989) and Avnimelech 

(1999) proposed the manipulation of the C:N ratio to promote the formation of 

microbial biomass. Manipulation of the C:N ratio of sediments can be done by changing 

the composition of the feed, thus preventing the decomposition process from slowing 

down as the culture cycle progresses. If quantitative data on the production of bacterial 

protein were available, these mechanisms could be incorporated in the model to 

improve it further. 

Application of the model is still limited by its rather high data requirements. 

Data sets of experiments that include all the necessary measurements along a growing 

cycle are not available, but badly needed for further improvement of the model. Also, 

data sets from other pond environments are needed to make the model applicable to a 

wider range of culture environments. The fish growth compartment can be calibrated for 

different fish species but could also be adapted for the simulation of shrimp growth. The 

model may then also be applied to shrimp culture systems, where water quality 

deterioration and negative environmental impacts are still widespread problems. 
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Summary 

SUMMARY 

Nitrogen transformations and fluxes in fish ponds: 

a modelling approach 

Aquaculture is one of the fastest growing food producing sectors, with an 

average annual growth of almost 10%. By 1990, the total production of cultured animal 

and plants was close to 14 million tons while in 1996 the total production was 34 

million tons. Since oceanic fisheries are not increasing substantially, in the future fish 

protein supply will have to come from aquaculture. 

Aquaculture in ponds was established originally in regions where water 

resources were readily available but in some areas supplies are becoming limiting due to 

increased demand from households, industry and agriculture. Methods must be 

developed to use water more efficiently. 

Intensification of aquaculture should lead to systems with a high resource use 

efficiency that are socio-economicly feasible. Environmental impact should be low, for 

continuous, sustainable production within any particular system as well as to avoid any 

impacts downstream of the culture system. Development of techniques for intensive, 

low- impact use of water requires considerable research for improved management of 

individual aquatic systems. 

One prerequisite for improving the efficiency of water use, decreasing/ minimising 

the potential pollution, and optimising the utilisation of resources is a better understanding 

of the nutrient dynamics within the production unit. In this thesis the dynamics of nitrogen 

in earthen aquaculture ponds were investigated, aiming to increase our understanding of 

nitrogen transformations and fluxes with the goal to optimise the overall nitrogen 

utilisation. 

Nitrogen is an essential element in aquaculture since it forms parts of proteins, 

which are essential for growth. However, nitrogen is also an important pollutant, not only 

for the surrounding environment but also because some forms are toxic to the cultured 

animals. Management strategies to control the deleterious effects of nitrogen 

accumulation in the system and to minimise the discharge to the surrounding 

environment have been proposed. However, their effectiveness is limited by the 

knowledge of the nitrogen cycle in aquaculture ponds. 
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In Chapter 1, nitrogen balances in four earthen fish ponds stocked with 

Colossoma macropomum were elaborated for a complete growing cycle. In contrast 

with previous nitrogen balances elaborated for fish ponds, in which only initial and final 

concentrations of nitrogen were considered, the temporal approach followed here 

allowed tracing the allocation of nitrogen during the growing cycle. Nitrogen was 

quantified in the water column, in the fish and in the sediments. Nitrogen loss via 

seepage was estimated. The information collected was also used to estimate the rate of 

decomposition of organic nitrogen in the pond. Nitrogen recovery during the first two 

periods of 20 and 14 days respectively was about 65%, while in the rest of the periods 

nitrogen recovery was nearly 100%. An important conclusion was that in these 

particular systems the relevance of nitrogen volatilisation in the form of ammonia or N2 

was limited. Feed was irregularly applied, with excessive feeding at the beginning of the 

experiment. This led to the accumulation of organic nitrogen in the sediments. Three to 

four weeks later, an intensive microbial degradation process had developed, leading to a 

release of inorganic nitrogen. Despite the irregularity in feeding, fish growth followed a 

smooth line, showing that the fish utilised detrital or planktonic feed during periods of 

low feeding. The first order rate constant for decomposition (0.237 ± 0.019 d"1) was 

comparable to other studies, and represents the decomposition rate of organic nitrogen 

in the pond as a whole. 

In Chapter 2, knowledge of the nitrogen transformations in fish ponds was used 

to construct, calibrate and validate a dynamic simulation model for nitrogen 

transformations and fluxes in earthen fish ponds. The Pond Nitrogen Simulator (PNS) 

model calculates the concentrations of the different nitrogen forms in the water column, 

in the fish and in the sediments. The model includes three modules: fish, phytoplankton 

and sediment-water. The fish module is based on bio-energetic and physiological 

principles, and is used to calculate the nitrogen excreted by the fish in the form of 

ammonia and faeces, along with the nitrogen incorporated in fish biomass. The potential 

feed that is not eaten was also considered. The phytoplankton module is based on 

physico-chemical principles of algae growth. It is also used to estimate the utilization of 

inorganic nitrogen species by phytoplankton, and the deposition of senescent 

phytoplankton to the pond bottom. The water-sediment module takes into consideration 

the passive flux of nitrogen between the water column and the sediments, and the 
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microbiological transformations of organic and inorganic nitrogen forms both in the 

water column and in the sediments. Most of the relationships and parameters were 

obtained from previously reported data, and some parameters were estimated through 

model calibration. PNS was implemented in Turbo Pascal using a fixed time-step of one 

hour. An earthen pond stocked with Colossoma macropomum was monitored during a 

production cycle, nitrogen allocations were monitored, and the data collected were used 

to calibrate the model. Further, the model was validated using an independent set of 

data from ponds stocked with Oreochromis niloticus. All concentrations of the different 

N-species were well simulated with the exception of the nitrogen accumulated in the 

pond bottom. The model was also used to gain insight into the relative importance of 

transformation processes between the various N-compounds. 

In order to improve the simulations of the PNS model, in Chapter 3 the 

dynamics of nitrogen in the pond bottom were investigated. The rate of mineralization 

of organic nitrogen in the sediments was calculated measuring both the increase of 

ammonium concentration and the decrease of organic matter in laboratory incubation 

experiments. The values for the mineralization rate constants were 5.2 x 10"4 d"1 and 

3.83 x 10"5 d"1, respectively. The flux of inorganic nitrogen forms was also determined 

to be in the range of 1.15 to 7.42 mg N m"2 d"', 0.02 to 0.46 mg N m"2 d"1 and 0.07 to 

0.39 mg N m"2 d"' for TAN, NO2" and NO3", respectively. In another experiment, 

organic matter accumulation in fish ponds was quantified, and the data were used to 

construct, calibrate and validate a dynamic simulation model of organic matter 

deposition/decomposition in fish ponds. Through model calibration, the proportion of 

the principal accumulating materials in fish ponds (dead phytoplankton, fish faeces and 

uneaten feed) was determined. In the model, gross photosynthetic rate was estimated 

from an empirical relationship with feed input. After calibration, the model was 

validated using an independent data set. The model simulated well the concentrations of 

organic carbon and nitrogen in the sediments, with average relative errors of+0.10 for 

sediment organic carbon and +0.06 for sediment organic nitrogen. 

Although not considered before, the sedimentation and suspension/ resuspension 

of nitrogen forms induced by fish may play an important role in the transfer of chemical 

components between the water column and the sediment. Thus, in Chapter 4 two 

methods to measure sedimentation and resuspension rates in fish ponds were compared. 

The influence of nutrient input, water parameters and fish size/number was followed 
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during a production cycle in tilapia ponds. Using a dilution analysis, sedimented 

particles were differentiated from resuspended ones, and the rates of sedimentation and 

resuspension were calculated. The rate of material collected in sediment traps increased 

from 88.5 g m"2 d"1 to 330 g m"2 d"'. Despite the growth of the fish during the 

experiment, the relative resuspension did not change significantly and remained in the 

range of 42 to 47% of the total collected material. Comparing measured and expected 

organic carbon sedimentation rates, the measured sedimentation rate was on average 11 

times higher. The difference represents an estimate of the proportion of trap contents 

that comes from sediment resuspension. When comparing measured and expected 

organic carbon resuspension rates, the measured resuspension rate was on average 8 

times higher. Resuspended material was most likely organic matter, with lower density 

than inorganic soil. Total solids sedimentation and resuspension rates were both highly 

correlated (P < 0.01) to fish weight/biomass, chlorophyll-a, water suspended solids, 

total feed input, and Secchi depth. 

With the information gathered in the previous chapters, in Chapter 5 the PNS 

model was expanded with the addition of seepage, sedimentation and resuspension 

rates. A logistic equation relating the rate of resuspension and the fish biomass was 

calculated and included in the model. The model was calibrated and validated using 

independent sets of data, and the model predictions improved 5-fold. The model was 

also used to evaluate the effect of different pond management strategies on the 

dynamics of nitrogen in fish ponds. It was demonstrated that feed protein level, pond 

aeration and water exchange have a strong effect on the concentration of different 

nitrogen forms in the system. In the final part of the thesis the convenience of modelling 

as a research and management tool is discussed, and the limitation of the model and 

further research needs are suggested. 
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SAMENVATTING 

Stikstofstromen en -omzettingen in visvijvers: 

een modelbenadering 

Aquacultuur is een van de snelst groeiende sectoren van voedselproductie, met 

een gemiddelde jaarlijkse groei van bijna 10%. In 1998 was de totale productie van 

gekweekte dieren en planten bijna 40 miljoen ton, tegen 14 miljoen ton in 1990. Omdat 

de oceaanvisserijen niet noemenswaardig groeien zal de toekomstige aanvoer van 

viseiwitten uit de aquacultuur moeten komen. 

Aquacultuur in vijvers werd oorspronkelijk bedreven in gebieden waar water in 

ruime hoeveelheden beschikbaar was. In een aantal gebieden wordt de wateraanvoer nu 

beperkt door een toenemend gebruik in huishoudens, industrie en landbouw. Er is 

behoefte aan methoden om water efficienter te gebruiken. 

De intensificatie van aquacultuur moet leiden tot systemen met een hoge 

gebruiksefficientie van de hulpbronnen, die ook in sociaal-economisch opzicht 

acceptabel zijn. De effecten op het milieu moeten minimaal zijn om een continue, 

duurzame productie in het systeem te garanderen en om negatieve effecten 

stroomafwaarts van het kweeksysteem te voorkomen. Voor de ontwikkeling van 

technieken voor verbeterd management van aquacultuursystemen met intensief gebruik 

van water maar geringe effecten op het milieu is een flinke onderzoeksinspanning 

nodig. 

Een voorwaarde om de efficientie van het watergebruik te verbeteren, de 

vervuiling te minimaliseren en de benutting van de hulpbronnen the optimaliseren is een 

beter begrip van de dynamiek van de nutrienten in het systeem. In dit proefschrift werd 

de dynamiek van stikstof in aarden visvijvers onderzocht met de bedoeling om het 

begrip van de processen van stikstofomzetting en stikstofstromen te verhogen en om de 

algehele stikstofbenutting te optimaliseren. 

Stikstof is een essentieel element in de aquacultuur omdat het een onderdeel is 

van de eiwitten die onmisbaar zijn voor groei. Daar staat tegenover dat stikstof ook een 

belangrijke vervuilende werking heeft, niet alleen voor het milieu rond het 

aquacultuursysteem maar ook omdat sommige stikstofverbindingen toxisch zijn voor de 

gekweekte dieren. Beheersstrategieen om de nadelige effecten van stikstofophoping in 

het systeem te beheersen en om lozing in het milieu te minimaliseren zijn voorgesteld, 
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maar de effectiviteit ervan is beperkt door de geringe kennis over de stikstofcyclus in 

visvijvers. 

In Hoofdstuk 1 werden stikstofbalanzen opgesteld voor de complete groeicyclus 

van vier visvijvers met Colossoma macropomum. In tegenstelling tot eerder voor 

visvijvers opgestelde stikstofbalanzen, waar slechts de begin- en eindconcentraties van 

stikstof in de berekening werden opgenomen, kon hier met deze temporele benadering 

de allocatie van stikstof gedurende de hele groeicyclus gevolgd worden. De 

hoeveelheden stikstof in de waterkolom, in de vis en in de vijverbodem werden bepaald. 

De hoeveelheid stikstof die via het kwelwater verloren gaat werd geschat. De 

verzamelde gegevens werden ook gebruikt om de afbraaksnelheid van organische 

stikstof in de vijver te schatten. Gedurende de eerste twee perioden van 20 en 14 dagen 

werd ongeveer 65% van de toegediende stikstof teruggevonden, terwijl dat in de overige 

perioden 100% was. Een belangrijke gevolgtrekking daarvan is dat de volatilisatie van 

stikstof in de vorm van ammoniak of stikstofgas onbelangrijk is in deze systemen. 

Voeder werd onregelmatig toegediend, waarbij in het begin van het experiment teveel 

werd gegeven. Dit leidde tot ophoping van stikstof in de vijverbodem. Na drie to vier 

weken was een intensieve microbiele afbraak op gang gekomen, resulterend in het 

vrijkomen van anoganische stikstof. Ondanks het gebrek aan regelmaat in de voedering 

vertoonde de visgroei een regelmatig patroon, waaruit bleek dat de vis de detritus en het 

plankton benutte gedurende perioden met weinig kunstmatige voedering. De eerste-orde 

snelheidsconstante for afbraak (0.237 ± 0.019d"') was vergelijkbaar met waarden 

gevonden in andere studies en is representief voor de afbraaksnelheid van organische 

stikstof in de gehele vijver. 

In Hoofdstuk 2 werd kennis over de omzettingsprocessen van stikstof in 

visvijvers gebruikt voor de constructie, calibratie en validatie van een dynamisch 

simulatiemodel for stikstofomzettingen en stikstofstromen in aarden visvijvers. Deze 

Pond Nitrogen Simulator (PNS) berekent de concentraties van de verschillende vormen 

van stikstof in de waterkolom, de vis en de vijverbodem. Het model bestaat uit drie 

modulen: vis, fytoplankton en bodem-water. De vismodule is gebaseerd op 

bioenergetische en fysiologische principes, en wordt gebruikt om te berekenen enerzijds 

hoeveel stikstof in de vorm van ammonium en faeces door de vis wordt uitgescheiden, 

en anderzijds hoeveel stikstof wordt vastgelegd in visbiomassa. De hoeveelheid voer die 
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niet wordt opgegeten wordt ook in overweging genomen. De fytoplanktonmodule is 

gebaseerd op de fysisch-chemische principes van algengroei en wordt gebruikt om de 

benutting van anorganische stikstofvormen door het fytoplankton en de afzetting van 

dood fytoplankton op de vijverbodem te berekenen. De water-bodemmodule berekent 

de passieve stikstofflux tussen de waterkolom en de vijverbodem. De meeste 

vergelijkingen en parameterwaarden werden verkregen uit eerder gepubliceerd 

onderzoek. Sommige waarden werden geschat tijdens de calibratie van het model. PNS 

werd uitgevoerd in Turbo Pascal met een vaste tijdstap van 1 uur. Een vijver werd bezet 

met Colossoma macropomum en gedurende een volledige productiecyclus werd de 

allocatie van stikstof gevolgd. De gegevens werden gebruikt voor calibratie van het 

model. Daarna werd het model gevalideerd met een onafhankelijke set gegevens van 

vijvers met Oreochromis niloticus. Alle concentraties van de verschillende 

stikstofvormen werden goed gesimuleerd, behalve de stikstofophoping in de 

vijverbodem. Het model werd ook gebruikt om inzicht te verkrijgen in het onderlinge 

belang van de omzettingsprocessen van de verschillende stikstofvormen. 

Om de simulaties met het PNS-model te verbeteren, werd in Hoofdstuk 3 de 

dynamiek van stikstof in de vijverbodem nader onderzocht. De mineralisatiesnelheid 

van organische stikstof in de bodem werd berekend op basis van de gemeten toename 

van de ammoniumconcentratie en de afhame van het organische stofgehalte in de 

bodem in een incubatie-experiment in het laboratorium. De waarden voor de 

snelheidsconstante voor mineralisatie waren respectievelijk 5.2 x 10"4 d~' and 3.83 x 

10"5 d"1. De flux van anorganische stikstofvormen werd bepaald op 1.15 to 7.42 mg N 

m"2 d"', 0.02 to 0.46 mg N m"2 d"1 and 0.07 to 0.39 mg N m"2 d"' voor respectievelijk 

totaal ammoniumstikstof, nitrietstikstof en nitraatstikstof. In een volgend experiment 

werd de ophoping van organische stof in vijvers gemeten, en de resultaten werden 

gebruikt voor de constructie, calibratie en validatie van een dynamisch model voor de 

afzetting en afbraak van organische stof in visvijvers. Door middel van calibratie van 

het model werd de bijdrage van de verschillende soorten organisch materiaal (dood 

fytoplankton, faeces van de vis en niet-opgegeten voer) bepaald. De bruto 

fotosynthesesnelheid werd in het model geschat uit een empirische relatie met de 

voederhoeveelheid. Na de calibratie werd het model gevalideerd met een onafhankelijke 

set gegevens. Het model simuleerde de concentraties van organische koolstof en stikstof 
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in de bodem goed, met gemiddelde "relative errors" van +0.10 for organische koolstof 

en +0.06 voor organische stikstof in de bodem. 

Hoewel de sedimentatie en resuspensie onder invloed van vis tot op dit punt nog 

niet in overweging werden genomen, spelen deze processen een belangrijke rol bij de 

overdracht van stikstofvormen tussen de waterkolom en de vijverbodem. In Hoofdstuk 

4 werden daarom twee methoden voor het meten van de sedimentatie- en 

resuspensiesnelheden in visvijvers vergeleken. De effecten van nutriententoevoer, 

waterkwaliteit en visgrootte en -aantallen werden geobserveerd gedurende een 

productiecyclus in tilapiavijvers. Met behulp van een verdunningsmethode werden 

gesedimenteerde deeltjes onderscheiden van geresuspendeerde deeltjes, en werden de 

snelheden van sedimentatie en resuspensie berekend. De snelheid waarmee materiaal 

zich verzamelde in sedimentcollectors ging omhoog van 88.5 g m' d" naar 330 g m" 

d"'. Ondanks de groei van de vis gedurende het experiment veranderde de relatieve 

resuspensie niet significant en bleef tussen 42 en 47 % van de totale hoeveelheid 

verzameld materiaal. Vergelijking van de gemeten en berekende sedimentatiesnelheden 

van organische koolstof liet zien dat de gemeten sedimentatiesnelheid gemiddeld 11 

maal zo hoog was. Dit verschil geeft aan hoeveel van de inhoud van de 

sedimentcollectoren afkomstig was van geresuspendeerd materiaal. Vergelijking van de 

gemeten en berekende resuspensie van organische koolstof liet zien dat de gemeten 

resuspensiesnelheid ongeveer 8 maal zo hoog was. Het geresuspendeerde materiaal was 

waarschijnlijk organische stof, met een lagere dichtheid dan anorganische 

bodemdeeltjes. De totale sedimentatie- en resuspensiesnelheden van de vaste deeltjes 

waren sterk gecorrelleerd (P < 0.01) met visgewicht en -biomassa, chlorofyl-a, 

gesuspendeerde deeltjes in het water, totale voederhoeveelheid en Secchi-diepte. 

Met de in de vorige twee hoofdstukken verzamelde informatie werd het PNS-model in 

Hoofdstuk 5 uitgebreid met modules voor de effecten van kwelverliezen, sedimentatie 

en resuspensie. Een logistische vergelijking die de resuspensiesnelheid berekent op 

grond van de visbiomassa werd geschat en opgenomen in het model. Het model werd 

gecalibreerd en gevalideerd met een onafhankelijke set gegevens, en de voorspellingen 

van het model verbeterden met een factor vijf. Het model werd ook gebruikt om het 

effect van verschillende strategieen voor vijverbeheer op de stikstofdynamiek in 

visvijvers te voorspellen. Het eiwitgehalte van het voer, de mate van aeratie en de 
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hoeveelheid waterverversing hadden een sterk effect op de concentratie van 

verschillende stikstofvormen in het systeem. In het laatste gedeelte van het proefschrift 

worden de toepasbaarheid van modellen als hulpmiddel bij onderzoek en beheer en de 

beperkingen van het model besproken en worden suggesties gedaan voor 

vervolgonderzoek. 
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Resumen 

RESUMEN 

Flujos e intercambios de nitrogeno en estanques de peces: 

un modelo matematico. 

La acuicultura es uno de los sectores productores de alimento de mayor crecimiento, 

con un promedio anual de casi 10%. Mientras que en 1990 la produccion de animales y 

plantas cultivados fue de 14 millones de toneladas metricas, en 1996 la produccion total fue 

de 34 millones de toneladas. Debido a que las pesquerias oceanicas no estan aumentando 

sustancialmente sus desembarques, en el futuro, la fuente de proteinas de origen acuatico 

tendra que provenir de la acuicultura. 

La acuicultura en estanques se establecio originalmente en regiones en donde los 

recursos acuaticos eran abundantes. Sin embargo, en la actualidad este recurso empieza a ser 

limitante debido a la creciente demanda para uso domestico, industrial y agricola. Se deben 

por lo tanto desarrollar metodos que permitan utilizar el agua de manera mas eficiente.. 

La intensification de la acuicultura debe llevar a sistemas eficientes y que sean ademas 

factibles socioeconomicamente. El impacto ambiental debe ser bajo, de tal modo que permita 

una produccion sostenible y continua. Para mejorar el manejo de sistemas de produccion 

acuaticos se requiere de considerable investigation para desarrollar tecnicas de uso intensivo 

de agua con bajo impacto. 

Una de las maneras de mejorar la eficiencia del uso del agua, disminuir/minimizar la 

contaminacion potencial, y optimizar la utilizacion de recursos es entendiendo mejor la 

dinamica de los nutrientes dentro de la unidad productiva. En esta tesis se investigaron los 

intercambios y flujos del nitrogeno en los estanques de acuicultura con el fin de optimizar su 

utilizacion. 

El nitrogeno es un elemento esencial en acuicultura ya que forma parte de las proteinas 

de los organismos cultivados. Sin embargo, tambien es una importante forma de contaminacion, 

no solo para el ambiente circundante sino que tambien porque algunas formas son toxicas para 

los animales en cultivo. Se han propuesto estrategias de manejo para controlar los efectos 

perjudiciales de la acumulacion de nitrogeno en los sistemas, y para minimizar su descarga hacia 

el ambiente circundante. Sin embargo, su efectividad esta limitada por el escaso conocimiento 

que se tiene hasta el momento sobre el ciclo de nitrogeno en estanques acuicolas. 
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En el capitulo 1 se elaboraron balances de nitrogeno en cuatro estanques de tierra 

sembrados con Colossoma macropomum durante un ciclo de crecimiento complete En contraste 

con previos balances de nitrogeno elaborados en estanques de peces y en los que se consideraron 

solo las concentraciones iniciales y finales de nitrogeno, el enfoque temporal seguido en ese 

trabajo permitio determinar la ubicacion de nitrogeno durante todo el ciclo de cultivo. Se 

cuantifico el nitrogeno en la columna de agua, en los peces y en los sedimentos y se estimo su 

perdida a traves de la percolation en el fondo del estanque. Con esta information se pudo 

estimar ademas la tasa de descomposicion de nitrogeno organico en los estanques. La 

recuperacion de nitrogeno durante los dos primeros periodos de 20 y 14 dias respectivamente rue 

cercana al 65%, mientras que posteriormente la recuperacion de nitrogeno fiie cercana al 100%. 

Una importante conclusion rue que en esos sistemas en particular, la importancia de la 

volatilization de nitrogeno en forma de amoniaco o N2 era limitada. Como se aplico el alimento 

de forma irregular, con un exceso de alimentation al initio del experimento, el nitrogeno 

organico se acumulo en los sedimentos. Tres a cuatro semanas despues se desarrollo una intensa 

degradation microbial que libera nitrogeno inorganico. A pesar de la irregularidad en la 

alimentation, los peces crecieron de forma continua, lo que indica que utilizaron alimento 

planctonico o detrital durante los periodos de baja alimentation. La constante de primer orden de 

la tasa de descomposicion (0.237 ± 0.019/d) es comparable a las de otros estudios y representa 

la tasa de descomposicion de nitrogeno organico en todo el sistema. 

En el capitulo 2, se utilizaron los datos sobre los intercambios del nitrogeno en 

estanques de peces para construir, calibrar y validar un modelo matematico de simulation 

dinamica. El modelo (Simulador de Nitrogeno en Estanques SNE o PNS) calcula las 

concentraciones de los diferentes compuestos nitrogenados en la columna de agua, en los 

peces y en los sedimentos. El modelo incluye tres modulos: peces, fitoplancton, y sedimentos 

- agua. El modulo de peces esta basado en principios bio - energeticos y fisiologicos, y se 

utiliza para calcular el nitrogeno excretado por los peces en forma de amoniaco y heces, asi 

como el nitrogeno incorporado a la biomasa de los organismos. Se considera tambien la 

fraction de alimento no consumida por los peces. El modulo de fitoplancton esta basado en 

principios fisico-quimicos del crecimiento algal. Se utiliza tambien para estimar la utilization 

de las diversas formas de nitrogeno inorganico por parte del fitoplancton, asi como la 

deposition de fitoplancton muerto en el fondo del estanque. El modulo sedimento - agua toma 

en consideration el flujo pasivo de nitrogeno entre la columna de agua y los sedimentos, asi 
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como las transformaciones microbiologicas de las diferentes formas organicas e inorganicas 

tanto en la columna de agua como en los sedimentos. La mayoria de las relaciones y 

parametros fueron obtenidos de datos previamente reportados en la literatura, y algunos 

parametros fueron estimados a traves de la calibracion del modelo. SNE fue implementado en 

Turbo Pascal utilizando un tiempo de integration fijo de una hora. Para calibrar el modelo se 

utilizo un estanque de tierra sembrado con Colossoma macropomum durante un ciclo de 

production, determinando y cuantificando las ubicaciones del nitrogeno. Ademas, el modelo 

fue validado usando un conjunto independiente de datos colectados en estanques de tierra 

sembrados con Oreochromis niloticus. Todas las concentraciones de las diferentes formas de 

nitrogeno fueron bien simuladas, con la unica exception del nitrogeno acumulado en el fondo 

del estanque. El modelo tambien fue utilizado para entender mejor la importancia relativa de 

los procesos de transformation entre los diferentes compuestos de nitrogeno. 

Con el fin de mejorar las simulaciones del modelo SNE, en el capitulo 3 se investigo 

la dinamica de nitrogeno en el fondo del estanque. Se determino la tasa de mineralizacion de 

nitrogeno organico en el sedimento en incubaciones realizadas en el laboratorio, midiendo 

tanto el incremento en la concentration de amonio/amoniaco, como la disminucion de la 

materia organica. Los valores para la constante de la tasa de mineralizacion fueron 5.2 x 10"4 

d"' y 3.83 x 10"5 d"1, respectivamente. El flujo de las diferentes formas de nitrogeno inorganico 

oscilo entre valores de 1.15 y 7.42 mg N m"2 d"1 para amonio/amoniaco (TAN), 0.02 y 0.46 

mg N m"2 d"' para nitritos (NO2"), y entre 0.07 y 0.39 mg N m"2 d"' para nitratos (NO3"). En 

otro experimento, se cuantifico la acumulacion de materia organica en estanques de peces y se 

uso esta information para elaborar, calibrar y validar un modelo de simulation dinamica para 

la deposicion/descomposicion de materia organica en estanques de peces. A traves de la 

calibracion del modelo, se determino la proportion de los principales materiales que se 

acumulan en los estanques (fitoplancton muerto, heces de peces y alimento no consumido). 

En el modelo, se estimo la tasa bruta de fotosintesis a partir de una relation empirica con la 

cantidad de alimento ofrecido, validandolo despues de la calibracion, con un conjunto de 

datos independiente. El modelo simulo bien las concentraciones de carbon organico y 

nitrogeno en los sedimentos con errores relativos de +0.10 para el carbon organico y +0.06 

para el nitrogeno organico. 

Aunque no habia sido considerado antes, la sedimentation y suspension/resuspension 

de formas de nitrogeno, inducida por los peces, puede jugar un papel importante en la 
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transferencia de componentes quimicos entre la columna de agua y los sedimentos. De este 

modo, en el capitulo 4 se compararon dos metodos para la medicion de las tasas de 

sedimentation y resuspension en estanques de peces. Durante un ciclo de production en 

estanques con Tilapia se registraron las variables entrada de nutrientes en forma de alimento, 

los parametros del agua, y el numero/tamano de los peces. Utilizando un analisis de dilution, 

las particulas sedimentadas fueron diferenciadas de las resuspendidas, y se calcularon las tasas 

de sedimentation y resuspension. La tasa del material colectado en las trampas para 

sedimentos aumento de 88.5 g m"2 d"' hasta 330 g m"2 d"1. Pese al crecimiento de los peces 

durante el experimento, la resuspension relativa no cambio apreciablemente y permanecio en 

el rango de 42 a 47% de todo el material colectado. La tasa de sedimentation de carbono 

organico medida fue en promedio 11 veces mayor que la esperada, posible si se considera que 

la diferencia proviene de la resuspension de sedimentos. Cuando se comparan las tasas de 

resuspension de carbono organico esperado y medido, la tasa de resuspension medida fue en 

promedio 8 veces mayor. El material resuspendido era fundamentalmente materia organica, 

con una menor densidad que el suelo inorganico. La sedimentation y resuspension de los 

solidos totales estuvieron altamente correlacionados (P < 0.01) con el peso/biomasa de los 

peces, con la concentration de clorofila-a en el agua, con los solidos suspendidos en el agua, 

con la cantidad de alimento ofrecida, y con la profundidad Secchi. 

Con la information obtenida en los capitulos anteriores, en el Capitulo 5 se amplio el 

modelo SNE con la adicion de las tasas de percolation de agua en el fondo del estanque, de 

sedimentation y de resuspension. Se elaboro una ecuacion logistica relacionando la tasa de 

resuspension y la biomasa de peces y se incluyo tambien en el modelo. El modelo fue 

calibrado y validado utilizando conjuntos independientes de datos, lograndose que sus 

predicciones mejoraran 5 veces. El modelo tambien fue utilizado para evaluar el efecto de 

diferentes estrategias de manejo de estanques sobre la dinamica del nitrogeno en estanques de 

peces. Se demostro que el nivel de proteina en el alimento, la aireacion artificial, y el 

recambio de agua pueden afectar de forma significativa las diferentes formas de nitrogeno en 

el sistema. En la parte final de la tesis se discute la conveniencia del modelaje como una 

herramienta de investigation y manejo, asi como las limitaciones del modelo desarrollado, y 

se sugieren investigaciones adicionales. 
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Abstract 
Jimenez-Montealegre, R. 2001. Nitrogen transformations and fluxes in fish ponds: a modelling 
approach. 

Nitrogen is a key element in aquatic environments, and in Aquaculture it is an important pond 
management variable. In current aquaculture research two important goals are to maintain the water 
quality within the system, and to improve the retention of nutrients applied to the system in order to 
minimize the discharge. The principal objectives of this study were to integrate the information available of 
nitrogen processes in fish ponds into a predictive model, and to investigate further the nitrogen dynamics 
between the water, the sediments and the biota present in this systems. First, a nitrogen balance in fish 
ponds was followed along a growing cycle; by combining estimates of the deposition rates of uneaten 
feed, faeces and dead phytoplankton with measurements of nitrogen accumulation in the sediment, the 
rate of decomposition of organic matter in the sediment was evaluated. The cumulative recovery at the 
end of the experiment was almost 100%, meaning that the nitrogen budget in the system studied can be 
fully explained without any consideration of nitrogen volatilisation, due to either denitrification or 
ammonia volatilisation. The interactions between various N-species are complex and difficult to 
integrate. A model that calculates the amounts of various N-compounds in the water column and in the 
sediment was constructed, and used to gain insight into the relative importance of transformation 
processes between the various N-compounds. The model was divided into three modules: fish, 
phytoplankton and sediment-water. All concentrations of the various N-species present were simulated 
well except the N retained in organic matter in the sediment. To improve our understanding of the 
bottom organic matter dynamics, and make the model a more comprehensive predictive tool, an 
estimation of the principal sources of organic matter that accumulate in fish pond bottoms was 
assessed. Organic matter accumulation in fish ponds was quantified, and the data was used to construct, 
to calibrate and to validate a dynamic simulation model of organic matter deposition/decomposition in 
fish ponds. Besides, the rates of sedimentation and resuspension were measured along a growing cycle, 
following the influence of nutrient input, water parameters, fish biomass and fish size on these 
processes. Using a dilution analysis method to differentiate between sedimented and resuspended 
particles, sedimentation and resuspension rates were calculated. The rate of material collected in 
sediment traps increased from 88.5 to 330 g/m2 per day along the growing cycle, but the relative 
resuspension did not change significantly, being always in the range of 42 to 47% of the total collected 
material. The processes of sedimentation of organic matter and resuspension were included in the 
original model. The proportion of three principal sources of organic matter that accumulate in the pond 
bottom were also included as parameters of the sedimentation process. A logistic equation relating the 
rate of resuspension and the fish biomass was calculated; and seepage, as a potential loss of nitrogen 
from the system, was also considered. The additions to the model represented a substantial 
improvement to model simulations. 
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