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STELLINGEN 

1 De effecten van sediment-gebonden contaminanten op in situ benthische 
levensgemeenschappen zijn met behulp van statistische technieken te kwantificeren. 
Dit proefschrift. 

2 Verandering van de energiehuishouding van een organisme is een goede maat voor 
de stress ondervonden door het organisme, ongeacht de aard van de stressor. 

Dit proefschrift. 

3 In het ecotoxicologisch onderzoek zijn de ecologische factoren vaak het 
ondergeschoven kindje. 
Dit proefschrift. 

4 Een stressfactor komt nooit alleen. 
Dit proefschrift. 

5 Wetmatigheden vormen de basis voor een goed ecosysteembeheer hoewel 

uitzonderingen de regel lijken. 

6 Door internet en de globalisering vervagen de grenzen tussen oost en west, maar het 
blijft thuis best. 

7 Een variabele is geen parameter. 

8 Ook binnen de waterkwaliteitsbeoordeling bestaan succes en falen alleen bij de gratie 
van gedefinieerde doelen. 

9 Modellen zijn als Plato's ideeen: goed voor het begrip, gevaarlijk om een wereld op te 

bouwen. 

10 Het studiehuis in het voortgezet onderwijs noopt universiteiten meer dan voorheen 

studenten een kritische, wetenschappelijke houding aan te leren. 

11 Natuur in Nederland is wat mensen ervan maken. 

12 Een leven zonder stress is geen leven. 

Stellingen behorende bij het proefschrift: 
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CHAPTER 1 

GENERAL INTRODUCTION 

There are three kinds of intelligence: 

one kind understands things for itself, 

the other appreciates what others can understand, 

the third understands neither for itself nor through others. 

The first kind is excellent, the second good, 

and the third kind useless. 

Machiavelli 

The Prince, 1513 



CHAPTER 1 

Aim of thesis 

The structure and the functioning of ecosystems depend on responses to natural and 

anthropogenic stressors that influence the physiology and behavior of organisms, ecological 

interactions within assemblages, and ecosystem processes (BREITBURG ET AL. 1998). Natural 

fluctuations in the environmental conditions have altered and regulated ecosystems 

throughout their evolutionary history. However, nowadays, the impact of human activities 

overrules natural fluctuations and has caused major environmental changes (BIJLSMA AND 

LOESCHCKE 1997), such as climatic shifts, chemical pollution, destruction and loss of habitats, 

and eutrophication. One of the major negative effects of these impacts is the rapid decline in 

the world's biodiversity, impairing ecosystem functions such as primary production, carbon 

and nutrient conservation and cycling, decomposition, and food webs and resilience of 

ecosystems (e.g. PERRINGS ET AL. 1995, SCHWARTZ ET AL. 2000). Also, as a result of increased 

stress an ecosystem may shift in a difficult to reverse way from one alternative stable state 

to another (SCHEFFER ET AL. 1993). 

The impact on ecosystems can be caused by a variety of mechanisms and the list of 

potentially dangerous chemical, physical, and biological stressors is still growing (FOLT ET AL. 

1999). Usually, the effects and risks of stressors are studied individually (VOUK ET AL. 1987) 

by means of field and laboratory studies and models. In nature, however, organisms are 

always exposed to several simultaneously operating stressors (SCHINDLER ET AL. 1996, YAN ET 

AL. 1996) that may be natural or anthropogenic. Several studies addressing the assessment 

of risks associated with contaminated aquatic sediments indicate that the structure of the 

biotic community depends on the impact of both contaminants and other environmental 

variables (e.g. DEN BESTEN ET AL. 1995, CHAPMAN ET AL. 1997). However, the magnitude of the 

effects of contaminants in relation to the contribution of other stressors such as habitat 

variables remains usually unclear. Laboratory studies also demonstrated that the impact of a 

certain stressor depends on the intensity of other stressors (e.g. FOLT ET AL. 1999). 

Therefore, the combined effects of multiple stressors cannot be understood as a simple 

product of the individual effects. To understand how multiple stressors affect the 

composition and functioning of ecosystems it is necessary to know their quantitative 

contributions but also to explore their interactions. 

The central theme of this thesis is the quantification of the combined effects of multiple 

stressors on benthic aquatic macroinvertebrates and their communities. Although stress can 

come to expression at different levels of biological organization, this thesis focuses on the 

community and organismal level. The following specific scientific questions are addressed: 1) 

Is it possible to quantify the impact of multiple stressors on in situ macroinvertebrate 

communities? 2) How do multiple stressors affect the growth of a single species under 

laboratory conditions? 3) Is it possible to explain the effect of multiple stressors on individual 

animals from their effects on the energy budget? 
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Definition of stress 

There is no consensus about the definition of stress, as shown by reviews of LUGO 

(1978), SELYE (1973), IVANOVICI AND WIEBE (1981), and GRIME (1989). According to HOFFMANN 

AND PARSONS (1991) one of the difficulties in defining stress is that two components are 

involved: on the one hand, the factors that affect organisms, and on the other hand the 

responses in biota that occur as a consequence of these factors. The term "stress" is often 

used to designate either the environmental factor(s) or the biological response(s). 

Furthermore, "stress" is often associated with the intensity of stress. In this view, a factor is 

considered to be stressful only if the response it causes exceeds an arbitrary threshold, e.g. 

when more than a certain fraction of the population is affected. Others, however, consider 

the intensity of stress to be continuous, including zero (BIJLSMA AND LOESCHCKE 1997). 

Due to these problems, it is not surprising that many different definitions of stress have 

been formulated. According to BIJLSMA AND LOESCHCKE (1997) biological definitions of stress 

fall into two classes. The first class of definitions considers stress in a physiological context. 

These definitions only focus on the physiological effects in the organism. SELYE (1973) for 

example defines stress as a series of physiological responses that affect the well being of 

individuals. In this view, a similar physiological response can be caused by various non

specific, stress causing factors. The second class of definitions focuses on the relationship 

between the environmental factors and their specific biological responses. For example, SIBLY 

AND CALOW (1989) define stress as "an environmental condition that impairs Darwinian 

fitness". KOEHN AND BAYNE (1989) define it as "any environmental change that acts to reduce 

the fitness of an organism" and GRIME (1989) as "external constraints limiting the rates of 

resource acquisition, growth or reproduction of organisms". These definitions have in 

common that they emphasize that the reduction in fitness is caused by an environmental 

factor and that there is no implication with respect to the intensity of the biological response. 

The effect may vary from zero to complete inhibition and depends on the characteristics of 

the subject and the nature, severity and periodicity of the stressor (GRIME 1989). In this 

thesis the definition of GRIME (1989) for stress is followed and stressors are all kinds of 

factors (natural and anthropogenic, abiotic and biotic) inducing a response. 

Type of stressors 

Stressors can be classified in several ways. For the purpose of this thesis, stressors will 

be classified into three main groups: 1) regular environmental variables; 2) food quantity 

and quality; and 3) contaminants. The first type includes all regular environmental factors 

such as habitat factors (e.g. current flow, dimensions), and water and sediment variables 

(e.g. oxygen concentration). The second type covers factors that determine the food 

resources of the macroinvertebrates (e.g. biochemical composition of organic matter). The 
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third type covers all agents that are in general foreign to the ecosystem (e.g. pesticides, 

organic micropollutants) although some of them may also be natural to the system in low 

concentrations (e.g. trace metals). 

Multiple stressors 

Analyses of the response of organisms to stressors typically address a single species in 

relation to a single stressor (VOUK ET AL. 1989). Much literature is available that deals with 

the effect of a single contaminant on a single species (e.g. CAIRNS ET AL. 1994). Recently, 

attempts have been made in laboratory studies to relate whole communities changes to the 

impact of a contaminant (BROCK AND BUDDE 1994, BROCK ET AL. 1992a, 1992b, 1993, GIDDINGS 

ET AL. 1996, MAXON ET AL. 1997). A single stressor can induce a wide range of responses 

(FROST ET AL. 1999) and stressors can vary in the consistency and magnitude of their effects 

(BREITBURG ET AL. 1999). Susceptibility to stressors can vary among species (DIAZ AND 

ROSENBERG 1995, WILLIAMSON ET AL. 1999) and may be influenced by the presence or 

intensity of other stressors in the environment (e.g. FOLT ET AL. 1999, LENIHAN ET AL. 1999). 

Also, as ODUM (1981) noted, the response of biotic communities to perturbations varies with 

the stage in their development, i.e. the stage in their ecological succession. 

The combined effect of two simultaneously operating stressors can be quite different 

from what would be expected on the basis of effects of the individual stressors. Various 

studies, not focussing on macroinvertebrates but on other biological groups, show that the 

combined effect of two contaminants may exceed the summed effects of the individual 

contaminants (e.g. HANAZATO AND DOBSON 1995) and that the impact of a contaminant 

depends on other non-contaminant factors (e.g. LEMLY 1993, ADAMS ET AL. 1998, PRESTON ET 

AL. 1999). Comparable results have been obtained in studies that focus on the effect of 

combined environmental stressors (e.g. GUZMAN-URIOSTEGUI AND ROBLEDO 1999, PORTER ET AL. 

1999, RALPH 1999), on the effect of food in combination with environmental stressors 

(PILDICHT AND GRANT 1999), on the effect of parasites and environmental stressors (LAFFERTY 

AND KURIS 1999), and on the effect of biological and environmental stressors (DUDGEON 

1993). The interaction between stressors can be classified in distinct categories. The effect 

of multiple stressors is called "comparative" when the effect in combination is equal to the 

effect of the single worst or dominant stressor (BRULAND ET AL. 1991). Additive effects are 

called "synergistic" or "antagonistic" when the combined effect of multiple stressors is 

greater or less than the sum of effects elicited by individual stressors (HAY ET AL. 1994). 

To date, the combined effects of multiple stressors on freshwater macroinvertebrates 

have been explored only in a limited number of studies. Table 1 provides an overview of 

studies addressing this research area. 

10 
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Table 1: Studies addressing combined effects of multiple stressors on macroinvertebrates. 

Stressors Organisms Reference 
Flow, substratum 
Copper, anoxia, temperature, salinity 
Leaf litter, flow 
Predation, substratum, flow 
PAH, UV 

Density, predation, metals 
Substrate, competition 
Diet, temperature 

Discharge, predation 
Salinity, temperature 
Two predators 
Oxygen, parasites 
Flow, substratum 

Hypo-osmotic stress, Cd 
Organic matter, toxicants 

Paragnetina media 
Mytilus edulis 
Assemblages 
Assemblages 
Lumbriculus 
variegates 
Assemblages 
Isopods 
Pseudochironomus 
richardsoni 
Assemblages 
Hydroides elegans 
Assemblages 
Cerastoderma edule 
Gammarus pulex 
Oreodytes sanmarkii 
Baetis rhodani 
Arenicola marina 
Chironomus riparius 

FELTMATE ET AL. 1986 

WEBER ETAL. 1992 

LANCASTER AND HILDREW 1993 

DUDGEON 1993 

ANKLEY ET AL. 1995 

KIFFNEY 1996 

DEFEOETAL. 1997 

GRESENS 1997 

RAKOCINSKI 1997 

QIUANDQIAN 1998 

STELZER AND LAMBERTI 1999 

WEGEBERG ET AL. 1999 

LANCASTER AND MOLE 1999 

RASMUSSEN 2000 

STUIJFZAND ET AL. 2000 

Stress and Scope for Growth 

Stress can come to expression at different biological levels, e.g. at the molecular, 

physiological, organismal, population and community level (RYKIEL 1985). Cells in organisms 

exposed to stressing agents, usually have a rapidly expressed set of metabolic changes, 

referred to as the "stress response". These changes include the activation and elevated 

expression of a small set of genes, resulting in the increased synthesis and accumulation of 

stress proteins, and a concomitant reduction in the translation of most species of pre

existing m-RNAs, and thus a reduction of the normal protein synthesis (SCHLESINGER 1986, 

SANDERS 1990). This "stress response" has been reported in a variety of organisms under 

different stressors such as temperature (e.g. ASHBURNER AND BONNER 1979), chlorinated 

effluent (LAWRENCE AND NICHOLSON 1998), petroleum (NASCIMENTO ET AL. 1998), trace metals 

(SANDERS ET AL. 1991, BAUMANETAL. 1993, WILLIAMS ETAL. 1996), organic pollutants (SANDERS 

1990), and exposure to ultraviolet radiation (NEPPLE AND BACHHOFEN 1997). 

The abundance of most organisms shows a unimodal response in relation to 

environmental gradients. SHELFORD (1913) already recognized this in his Law of Tolerance. 

He stated that the occurrence of an organism is bounded by a minimum and a maximum 

value for any environmental variable, representing the limits of its tolerance. Normal 

metabolic processes occur within these environmental limits. Scope for growth (SfG), the 

11 
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difference between energy intake and energy metabolized by an organism, gives an 

indication of its metabolic condition, i.e. how much energy is available for growth and 

reproduction (WARREN AND DAVIES 1967). A positive SfG indicates that energy is available for 

production, while a negative SfG indicates that reserves have to be used to maintain the 

individual (MALTBY 1999). Beyond the limits of an organism's tolerance, metabolism fails 

although conditions are not immediately lethal, but they will limit distribution (CALOW AND 

SIBLY 1990). 

Several studies show that stressors affect elements of the energy budget of organisms 

(e.g. KOOIJMAN AND BEDAUX 1996, KOOIJMAN 2000). Ecotoxicological studies show that 

organisms make direct energy costs to resist contaminants due to the costs of defense and 

repair processes. Thus, exposure to chemicals may result in a decrease in feeding and hence 

in energy acquisition (MALTBY 1999). If the concentration of a contaminant exceeds a certain 

value, organisms need energy for repair mechanisms and consequently pathological effects 

and exhaustion can occur (CALOW 1989). Energy spent to resist effects of contaminants may 

thus reduce the energy left for regular processes like growth and reproduction. Although it 

may be difficult to construct complete energy budgets (DAVIES AND HATCHER 1998), SfG has 

been used as an indicator of stress in a number of marine invertebrates and appears to be 

sensitive to a wide range of factors (MALTBY ET AL. 1990). 

The reproductive capacity of a species depends on the available assimilation energy 

(KOOIJMAN AND METZ, 1983). A shift in the energy allocation as a result of exposure to a 

stressor, may thus affect a species' population fitness, eventually leading to the extinction of 

a species. HALL ET AL. (1992) argue that observed distribution and abundance patterns of 

organisms within space and time are related directly to species-specific energy costs and 

gains in response to the multiple environmental gradients. Thus, a direct relationship is 

assumed between stressors and the scope for growth and the distribution and abundance of 

a species (Figure 1). Models are proposed to relate physiological responses at the organismal 

level to population dynamics responses through functional relationships between those 

physiological responses and survivorship, fecundity, and developmental rates (CALOW AND 

SIBLY 1990). In the dynamic energy budget (DEB) approach (KOOIJMAN 2000) quantitative 

rules are used which describe how organisms acquire and utilize energy and nutrients 

together with constraints on metabolic organization and rules for interaction between 

individuals. 

The field studies in this thesis deal with the biological reponse of macroinvertebrates 

and their communities to multiple environmental gradients. Therefore, the distribution and 

abundance of macroinvertebrates are related to the occurrence threshold and range (Figure 

1) but in multiple gradients. The laboratory experiments mainly focus on sublethal effects of 

stressors and thus can be related to both the occurrence and survival threshold and ranges. 

The model in this thesis will address mainly the reproductive threshold and range. 

12 
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Abu SfG 

Environmental 
gradient 

Figure 1: The relationship between abundance (Abu) and scope for growth (SfG) of a 
species along an environmental gradient. The horizontal line at zero abundance is 
the occurrence threshold (Ot) and the corresponding range is the occurrence 
range (Or). The dotted horizontal line represents zero scope for growth (St = 
survival threshold) and the corresponding range is the survival range (Sr). In this 
situation energy gain is sufficient to compensate for maintenance plus energy to 
overcome stress. Below the survival threshold, organisms can exist only by 
consuming energy reserves. The broken dotted line indicates the energy intake 
necessary to reproduce (Rt = reproductive threshold) and the corresponding range 
is reproductive range (Rr). The area above the reproductive threshold is the only 
part of the range in which the species can exist in the long term. Modified after 
HALLETAL. (1992). 

Outline of thesis 

The effects of multiple stressors are explored in this thesis with field data, laboratory 

experiments, and an energy budget model (Table 2). 

Table 2: Overview of the chapters of the thesis showing the research method and biological 
organization level. 

Organization level Research method 
Field Laboratory Modeling 
observations experiments 

Community level 
Organismal level 

2, 3,4 
5 6, 7 8 

13 
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The thesis can roughly be divided into two parts. The fist part focuses on the community 

level and aims at quantifying the effect of multiple stressors in structuring in situ benthic 

macroinvertebrate communities. To achieve this, multivariate statistical techniques are 

applied to data sets containing information on macroinvertebrates and different types of 

stressors. The second part focuses on the organismal level and deals with the effects of 

multiple stressors on the performance of single species. Laboratory experiments and a model 

focus on the effects of multiple stressors on the energy budget and scope for growth of the 

waterlouse Asellus aquaticus, a well studied species, which is widely distributed throughout 

Western Europe. 

In chapters 2-4, the effect of different types of stressors on the macroinvertebrate 

community composition is quantified, using the method of variance partitioning which was 

introduced by BORCARD ET AL. (1992) to distinguish between environmental and geographical 

variation. In chapter 2 field observations on macroinvertebrates mainly from shallow lakes 

are related to environmental variables and food. In chapter 3, the benthic macroinvertebrate 

community structure patterns in the North Sea Canal are related to ecological factors and 

trace metal concentrations. Chapter 4 deals with the distribution patterns of 

macroinvertebrates in the Rhine-Meuse Delta in relation to environmental factors and 

different types of contaminants (trace metals, PCBs, PAHs). This chapter also addresses the 

question whether the results of laboratory bioassays better correlate with the in situ 

macroinvertebrates than the measurements of concentrations of contaminants. In chapter 5, 

the distribution of two common gammarids in the Netherlands is related to environmental 

conditions by means of univariate and multiple logistic regressions. Chapters 6 and 7 

describe laboratory experiments with the waterlouse Asellus aquaticus. In chapter 6 the 

response of Asellus aquaticus to size of organic matter and the PAH benzo(a)pyrene 

concentration is analyzed, whereas in chapter 7 the response to two physical factors (current 

velocity and size of mineral substratum) is treated. Chapter 8 gives a simple energy budget 

model for A. aquaticus, which is used for further analysis of the results of the experiments 

described in chapters 6 and 7. 
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CHAPTER 2 

Abstract 

The relative contribution of sediment food (e.g. organic matter, carbohydrates, proteins, 

C, N, polyunsaturated fatty acids) and environmental variables (e.g. oxygen, pH, depth, 

sediment grain size, conductivity) in explaining the observed variation in benthic 

macroinvertebrate species composition is investigated. Soft bottom sediments, water and 

benthic macroinvertebrates were sampled in several water systems in The Netherlands. The 

method of variance partitioning is used to quantify the relative contribution of food and 

environmental variables in structuring the benthic macroinvertebrate community structure. 

Approximately 60% of the total variation in the macroinvertebrate community structure 

could be explained by the variables included in the analyses. The variation in the 

macroinvertebrate species composition between different water types is primarily related to 

differences in main environmental variables (e.g. current velocity, dimensions, pH). However, 

the variance partitioning method shows that food variables also contributed significantly and 

that the effect of food depends on the intensity of other factors. 

The results of the study indicate that the method of variance partitioning is an 

appropriate tool for analyzing the impact of different groups of variables and thus, 

contributes to the understanding of the functioning of complex aquatic ecosystems. 

The impact of food variables differed between the macroinvertebrate functional feeding 

groups. Detritivores showed significant correlations with food quantity (organic matter 

content) and quality (polyunsaturated fatty acids, P, and C/N ratio). Higher contents of 

organic matter usually go along with lower oxygen concentrations. Therefore, the observed 

lower species diversity and not changing macroinvertebrate densities with higher organic 

matter contents may be due to changes in either food quantity or oxygen concentration. 

Higher amounts of polyunsaturated fatty acids have a positive effect on the total 

macroinvertebrate density but not on the total number of taxa. It seems, therefore, that the 

productivity of benthic macroinvertebrates depends more on food quality than on food 

quantity. 

Introduction 

The distribution of aquatic macroinvertebrate species and communities is controlled by a 

variety of environmental factors such as habitat characteristics (e.g. HYNES 1970, TOLKAMP 

1980, PEETERS AND GARDENIERS 1998), water quality (e.g. HELLAWELL 1986), sediment quality 

(e.g. REYNOLDSON ETAL. 1995, Chapman et al. 1997), contaminants (e.g. CLEMENTS AND 

KIFFNEY 1993, PHIPPS ETAL. 1995), and biological factors such as competition and predation 

(e.g. KOHLER 1992, MACKAY 1992, MACNEILETAL. 1999). Food quantity (organic matter 

content) and quality (biochemical composition) are also considered to be important factors 

determining aquatic invertebrate population dynamics (SWEENEY 1984). In field studies, 
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however, it is difficult to separate the effects of food quality from food quantity, because 

they are interrelated. 

Recent studies on the pelagic ecosystems of standing waters showed that the 

biochemical food composition is responsible for the impact of food on zooplankton (GULATI 

AND DEMOTT 1997) and invertebrates (AHLGREN ET AL. 1997). Among these biochemical 

compounds polyunsaturated fatty acids (PUFAs) have been found to be critical for 

maintaining high growth, survival, and reproductive rates of a wide variety of marine and 

freshwater organisms and thus play a key role in aquatic food webs (BRETT AND MULLER-

NAVARRA 1997). Specific benthic macroinvertebrate species also showed strong correlations 

with biochemical food variables under laboratory conditions (e.g. MARSH ET AL. 1989, 

D'ABRAMO AND SHEEN 1993, Vos ET AL. 2000). Although some studies on the impact of 

biochemical food compounds on in situ benthic macroinvertebrate communities have been 

performed (e.g. GOEDKOOP ET AL. 1998) the magnitude of the impact is not quantified and 

thus remains largely unknown. Data on the impact of biochemical food compounds on 

freshwater benthic invertebrates are mainly available from lakes. Comparisons of the impact 

of biochemical food compounds across and among different water types have not been 

made yet. 

The objective of the present study is to quantify the contribution of food variables in 

structuring the in situ benthic macroinvertebrate community. Soft bottom sediments and the 

inhabiting macroinvertebrates were collected from clean sediments in a number of lakes and 

some streams across The Netherlands. Simultaneously, environmental variables such as 

oxygen, conductivity, and depth were measured. In the laboratory, physical and biochemical 

sediment characteristics of the sediment were analyzed and macroinvertebrates were 

identified and enumerated. The relative importance of food and environmental variables on 

the total macroinvertebrate community as well as on different functional feeding groups was 

assessed using the variance partitioning method presented by BORCARD ET AL. (1992). This 

method attributes the biological variation in multivariate field data into different sources 

using canonical correspondence analysis (CCA). The method has been successfully applied in 

partitioning the variation in distribution patterns of subarctic plant species in a spatial and an 

environmental component (HEIKKINEN AND BIRKS 1996) and to partition macroinvertebrate 

variation into an ecological and an ecotoxicological component (PINEL-ALLOUL ET AL. 1996, 

PEETERS ET AL. 2000). Therefore, this method was considered to be a potentially effective 

method to compare the impact of food variables on benthic macroinvertebrate communities 

with that of environmental variables. 

Materials and methods 

Data collection 

Between April 1998 and October 1998 a set of sediments was sampled across The 
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Netherlands. From this data set a number of 28 clean sediments (25 lakes, 3 small streams) 

were selected for further analysis because these sediments were classified as clean 

according to the Dutch standards. More information on the locations can be found in Vos 

(2001). 

At each site water and sediment characteristics were determined as well as some 

general characteristics (Table 1). Temperature, oxygen, pH, and conductivity were measured 

in the field. Water samples (0.5 L) were taken and brought into the laboratory for further 

analyses on other water quality variables. The upper 4 cm of the sediments were sampled 

with an adjusted Ekman Bridge grab. Five sediment samples were taken, mixed, and stored 

at -20°C within 6 hours after sampling for physical and chemical analyses. Environmental 

variables were distinguished from food variables to calculate the relative contribution of both 

groups of variables in explaining the observed variation in the macroinvertebrate community 

data (Table 1). Vos (2001) showed that normalizing biochemical food variables on organic 

matter content correlated well with laboratory growth tests with the detritivores species 

Chironomus riparius and with the distribution and abundance of in situ benthic detritivores. 

Therefore, food variables were normalized on organic matter content. 

Three replicate bottom samples of macroinvertebrates were also collected with the 

Ekman grab. The samples were rinsed using a sieve of 500 ^m mesh size (ISO testing sieve, 

brass, NEN 2560 standard, 0 35 cm). The material retained in the sieve was preserved in 

80% ethanol. In the laboratory macroinvertebrates were picked by using a 

stereomicroscope, sorted out, counted, and identified. The three replicates were combined 

and abundance was expressed as numbers/m2. 

Statistical analyses 

The relative contribution of environmental and food variables in explaining the observed 

biological variation was determined by using the method of partial CCA as proposed by 

BORCARD ET AL. (1992). Detrended correspondence analysis assesses the length of the 

gradient and hence whether a linear or unimodal method should be used. A preliminary 

detrended correspondence analysis (HILL 1979) with logarithmic transformed abundance 

data and invoking the option 'downweighting of rare species', showed moderate to long 

gradient lengths. Therefore, the unimodal response model (TER BRAAK AND SMILAUER 1998) 

was considered appropriate. 

The maximum number of variables that can be analyzed with CANOCO should be one 

less than the number of sites included in the analyses. Because the number of variables in 

the present study exceeds the number of samples the following selection procedure was 

followed to obtain a reduction in the number of variables. Prior to the analyses the 

importance of each variable was assessed using the forward selection procedure together 

with the Monte Carlo Permutation test. Only those variables were included in further 

analyses that had a significant (P<0.05) contribution. In a next step the Variance Inflation 

Factors (VIFs) were inspected. High VIF values (>20) indicate multicollinearity between 
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Table 1: Mean, standard deviation, minimum and maximum values for the continuous 
variables. 

Variable 

General variables 
Season1 

Watertype1 

standing/running 
Dimension2 

Depth 
Water 

Temperature 
Oxygen 

pH 
Conductivity 
Total inorganic carbon 
Total organic carbon 
NH4 

N023 

Ortho P 
Total P 
Total N 

Sediment 
Organic matter 
Carbohydrates 
P 
Pigments 
Proteins 
C 
Kjeldahl-N 
C/N ratio 
C02 production 
PUFAs5 

Bacterial FAs 
Total FA 
GS4 <63um 
GS <210um 
Dry weight 

Unit 

cm 

°C 
mg/L 

-
uS/cm 
mg/L 
mg/L 
mg/L 
mg/L 
mg/L 
mg/L 
mg/L 

mg/g 
mg/g 
mg/g 

Mg/g 
mg/g 
mg/g 
mg/g 

-
mmol/g 

ug/g 
pg/g 
Mg/g 

% 
% 
% 

Variable 
type3 

E 
E 

E 
E 

E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 

E 
E 
E 

Mean 

46 

16.3 
9.77 

7.9 
789 

11.9 
14.9 
0.18 
0.92 

0.034 
0.072 

2.16 

2.9 
0.35 
0.03 

12.31 
0.21 
2.51 
0.19 
21.9 
10.1 
2.16 
4.59 

289.7 
23.1 
68.3 
63.9 

Stdev 

25.5 

2.9 
1.91 
1.1 
396 
4.9 

10.5 
0.23 
1.54 

0.037 
0.072 

1.58 

4.8 
1.51 
0.04 

14.79 
0.36 
5.11 
0.49 
15.0 
12.5 
2.40 
5.08 

287.9 
28.0 
26.9 
20.0 

Min 

10 

9.7 
6.46 

5.2 
44 

1.2 
5.4 

0.01 
0.02 

0.000 
0.005 
0.65 

0.3 
0.01 
0.00 
0.32 
0.00 
0.15 
0.01 
5.9 
0.0 

0.00 
0.00 
85.5 
0.7 

12.0 
3.9 

Max 

100 

21.4 
16.70 

9.6 
1491 
23.0 
48.6 
1.18 
5.93 

0.146 
0.301 

6.23 

23.1 
8.02 
0.14 

62.54 
1.81 

27.06 
2.58 
69.3 
66.8 
7.39 

20.26 
1615.5 

79.0 
96.0 
79.4 

nominal variable 
2 ordinal variable with 5 classes ranging from small (1) to large (5) 
3 E=environmental variable; F=food variable 
4 GS=grain size fraction 
5 PUFA=polyunsaturated fatty acid 
6 FA=fatty acid 

variables and this should be avoided (TER BRAAK 1986). Hence, the variable with the highest 
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VIF was removed in the next analysis and this procedure was repeated until all VI Fs had a 

value lower than 20. 

Five different CCA runs were performed to calculate the contribution of the two groups 

of variables in explaining the variation in the species data (Figure 1): run 1) CCA of species 

data and both environmental and food variables as explanatory variables, run 2) CCA of 

species data constrained by environmental variables, run 3) CCA of species data constrained 

by food variables, run 4) the same as run 2 after removing the effect of food variables, and 

run 5) the same as run 3 after removing the effect of environmental variables. The effect of 

a set of variables can be removed by defining them as covariables within the program (TER 

BRAAK AND SMILAUER 1998). 

Biological variation 
(Total inertia) 

Environmental 
factors 

+ E+FI (CCA1 Food 

Shared 

+ E 

+ E 

(CCA 2)minus(CCA A) 

(---- 0 r '-:-"=~-N. 

(CCA 3)minus(CCA 5) 

Total inertia minus (CCA l ) Unexplained 

Figure 1 : Diagram showing all partial canonical correspondence analyses (CCA) with the data 

set included in the analyses and the calculation of the partitioning of the variance. 

D : macroinvertebrates, • : explanatory variables, 0 : covariables, E : 

environmental variables, F : food variables. The number behind the abbreviation 

CCA refers to the numbers explained in the text. 

The total variation present in the species data is called total inertia and is given by the 

sum of all unconstrained eigenvalues (TER BRAAK AND SMILAUER 1998). The proportion of 

variance explained by a set of variables is calculated as the sum of all canonical eigenvalues 

of a CCA divided by the total inertia. Hence, run 1 provides the overall amount of explained 

variation. The variation in the species matrix can further be partitioned as follows: a) 

variation explained solely by environmental variables (run 4); b) variation explained solely by 

food variables (run 5); c) variation shared by food and environmental variables (run 2 minus 

run 4 and run 3 minus run 5 respectively); and d) unexplained variation: total variation 

minus run 1 (see Figure 1). This approach was applied to different combinations of selected 

sites and to data sets containing different functional feeding groups (detritivores, herbivores, 
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and carnivores). Table 2 gives an overview of the analyses performed together with the data 

sets included in relation to the purpose of the analyses. 

Table 2: Overview of the data sets included in the canonical correspondence analyses in 
relation to the research question. 

Purpose Data set 
Impact of food and environmental factors on Total data set: 
benthic communities across water types macroinvertebrates and abiotic data 

Impact of food and environmental factors on Lake data set: 
benthic communities within in lakes macroinvertebrates and abiotic data 

Impact of food and environmental factors on Lake data set: 
different functional feeding groups in lakes macroinvertebrates and abiotic data 

The statistical significance of the effect of each set of variables was tested by a Monte 

Carlo Permutation test with 199 permutations (TER BRAAK AND SMILAUER 1998). All CCAs were 

performed using the CANOCO program (TER BRAAK AND SMILAUER 1998). 

Table 3: Number of taxa per taxonomic group, the number of samples and abundance data. 

Main group 
Oligochaeta 
Hirudinea 
Mollusca 
Hydracarina 
Mysidacea 
Amphipoda 
Isopoda 
Ephemeroptera 
Odonata 
Heteroptera 
Megaloptera 
Coleoptera 
Trichoptera 
Diptera 

Chironomini 
Orthocladiinae 
Tanypodinae 
Tanytarsini 
other 

Total 

No of taxa 
1 
3 

15 
1 
1 
3 
3 
2 
3 
3 
2 
7 

14 

22 
11 
7 
7 

10 

115 

Occurrence 
27 

4 
22 
14 
2 

15 
4 

10 
4 
6 
2 

10 
12 

26 
17 
21 
19 
21 

28 

Abundance 
Min 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

42 

Mean 
3435 

5 
88 
35 

1 
246 

6 
124 

1 
3 
2 

10 
37 

1540 
53 
89 

2107 
76 

7857 

Max 
15292 

75 
700 
450 

8 
2883 

92 
1517 

17 
50 
44 
58 

342 

8908 
692 
983 

25725 
700 

36117 
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Results 

Macroinvertebrates 

A total of 115 taxa were collected in 28 samples with an average of 14.9 ± 7.4 taxa per 

sample. Total number of individuals varied between 42 and 36117 per m2. Table 3 shows the 

number of taxa per taxonomic order. The diversity was highest in diptera (especially 

chironomini and orthocladiinae) followed by mollusca and trichoptera. In general, 

oligochaeta, tanytarsini and chironomini were the most dominant taxonomic groups. 

Table 4 shows the contribution of different taxonomic groups to the biological variation 

in the correspondence analysis. Approximately 80% of the variation is due to insects among 

which chironomidae contributed most (48%). Amphipoda and mollusca had the highest 

contributions among non-insects. 

Table 4: Proportion of the variation (%) in the total data set (n=28) that is due to a certain 
taxonomic group. 

Taxonomic group 

Oligochaeta 
Mollusca 
Amphipoda 
Isopoda 
Ephemeroptera 
Heteroptera 
Coleoptera 
Trichoptera 
Chironomini 
Orthocladiinae 
Tanypodinae 
Tanytarsini 
Other Diptera 
Other Taxa 

Proportion 
of variation 

2.2 
8.1 
8.6 
2.2 
3.9 
2.4 
5.7 
6.1 

22.8 
8.0 
7.1 

11.0 
7.4 
4.4 

CCA with the total data set 

The forward selection procedure resulted in 15 variables that had a significant 

contribution. Inspection of the VIF showed that the value was high for bacterial FAs and this 

variable was also left out. Finally, 14 variables were included of which 6 were food variables. 

Figure 2 shows the distribution patterns for the samples and the variables for the first two 

axes of the ordination with the macroinvertebrates and all variables as explanatory. The 

constructed axes are linear combinations of the included variables; hence, the sequences of 

the samples on the axes are directly related to the variables. Three samples were separated 

from the others and positioned in the right hand side of the diagram (Figure 2). These 

samples 
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2.5 

Axis 2 0.5 

-1.5 

Axis 1 

Figure 2: The position of samples and variables in the ordination diagram performed on the 
total data set. The diagram shows the positions for the first two axes of a partial 
CCA in which the species data were constrained by food and environmental 
variables. Samples are represented by blocks, variables by an arrow and their 
abbreviation: rw= water type: running water, o7m=dimensions, cfep=depth, 
con=conductivity water, N023=N023 water, tot W=total nitrogen water, 
0/W=organic matter, 6S<63/J=grain size fraction <63um, C=sediment carbon, 
P=sediment phosphorus, /W/'=sediment Kjeldahl nitrogen, PL/F/l=sediment 
polyunsaturated fatty acid, C02= sediment C02 production, DtV=sediment dry 
weight. The length of the arrow is a measure of the importance of the variable and 
the arrowhead points at the direction of increasing influence. 

originate from small streams as is reflected by the position of the variables 'stream' and 

'dimension'. These two variables had the highest absolute value for the first axis. Dimension 

is pointing to the left, indicating that dimension is increasing from right to the left. Sediment 

dry weight had the highest absolute value for the second axis. The food variables were 

placed close to each other and do not have an important impact on the sequence of the 

samples along the first axis although their contribution in the explanation of the total 

variation was significant. Approximately 65% of the variation in the species data was 

significantly (P<0.05 Monte Carlo Permutation test) explained by all variables (both 

environmental and food variables) included in the CCA (Table 5). Both environmental and 

food variables, each as a group, contributed significantly to the explanation of the observed 

variation in the species data. The contribution of environmental variables in explaining the 

biological variation was a factor 1.5-2 higher than the contribution of the food variables. 
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Table 5: Partitioning of the macroinvertebrate variance. All analyses were significant (P< 

0.05, Monte Carlo permutation test). 

Source of variation Total data seta Lake data setb 

n=28 n=24c 

total inertia = 2.900 total inertia = 1.929 
All factors 65.7 58.8 
Food variables 21.5 20.9 
Environmental variables 33.8 18.2 
Shared 104 19J 

a: included variables: General variables water type, dimension, depth; Sediment 
variables organic matter, P, C, Kjeldahl N, PUFAs, C02 production; grain size 
fraction<63um, dry weight; Water variables conductivity, NO23, total N. 

b: included variables: General variables dimension, depth; Sediment variables 
organic matter, P, C/N ratio, PUFA, C02 production, dry weight; Water variables 
conductivity, total N. 

c: Lake data set is total set minus samples from 3 streams and 1 fen. 

CCA with the lake data set 
An initial analysis of the lake data set showed that one sample from a small acid fen 

dominated the results of the ordination (not shown) and this sample was left out in further 

analyses. The forward selection procedure resulted in 13 variables that had a significant 

contribution. Due to high VIFs the following variables were additionally excluded: sediment 

grain size fraction < 63 urn, bacterial FAs, and sediment carbon content and thus 10 

variables remained in the analyses. Figure 3 shows the position of the samples and variables 

for the first two axes of a partial CCA in which the species data were constrained by food 

variables after removing the effect of the environmental variables. The sequence of the 

samples along the first axis is mainly related to PUFAs, P, and C/N-ratio. C/N-ratio also 

contributed to the second axis. The impact of organic matter content is rather low, as can be 

derived from the close position of this variable to the center of the diagram. 

The partitioning of the variance for the lake data set is given in Table 5. The 

environmental and food variables contributed significantly (Monte Carlo Permutation test, 

P<0.05) and had a similar contribution in explaining the observed variation. In comparison to 

the results of the total data set, the explained variation by all variables dropped 7%. The 

contribution of the environmental variables dropped with 15% whereas the contribution of 

food variables remained the same and thus the importance of food variables increased. 

CCA with functional feeding groups in the lake data set 

The variance partitioning for the three main functional feeding groups (carnivores, 

detritivores, herbivores) is presented in Table 6. A large proportion of the variation in the 

carnivores could be explained by all variables included in the analyses, whereas for 

herbivores the explained fraction was rather low. The contribution of the environmental 

variables for both carnivores and herbivores was significant, but the proportion of the 
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Figure 3: The position of samples and variables in the ordination diagram of the lake data 
set. The diagram shows the positions for the first two axes of a CCA in which the 
species data were constrained by food variables after removing the effect of the 
environmental variables (dimension, depth, conductivity, and total-N). Samples are 
represented by blocks, variables by arrows and their abbreviation: 0/W=organic 
matter, C/Vr=sediment C/N ratio, P=sediment phosphorus, PUF/l=polyunsaturated 
fatty acid, CO?=sediment C02 production. The length of the arrow is a measure of 
the importance of the variable contaminant and the arrowhead points at the 
direction of increasing influence. 

Table 6: Partitioning of the macroinvertebrate variance for the functional feeding groups. 

Source of variation 

All factors 
Food variables 
Environmental variables 
Shared 
Unexplained 

Carnivores* 
(n=18D) 
71.8 
15.1ns 

34.0 
22.9 
28.2 

Trophic group 
Detritivores8 

(n=40) 
51.3 
29.3 
14.9 
7.1 
48.7 

Herbivores0 

(n=19) 
27.9 
2.8ns 

18.4 
6.7 
72.1 

ns= not significant (Monte Carlo test p>0.05) 
A: included variables: General variables dimension; Sediment variables pigments, C, 

Kjeldahl N, C02 production, PUFA, grain size fraction <63um and <210um, dry 
weight; Water variables pH, conductivity. 

B: included variables: General variables dimension; Sediment variables organic 
matter, P, C/N ratio, PUFA; Water variables conductivity 

c: included variables: General variables season, dimension; Sediment variable P; 
Water variables conductivity. 

D: number of taxa 
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Figure 4: Position of samples and variables (A) and taxa and variables (B) in the ordination 
diagram of the lake data set with detritivore taxa only. The diagram shows the 
positions for the first two axes of a CCA in which the species data were 
constrained by food variables after removing the effect of the environmental 
variables (dimensions and conductivity). Samples are represented by blocks; 
variables by arrows and their abbreviation: OM = organic matter, PUFA = 
polyunsaturated fatty acid, CNr = sediment C/N ratio; taxa by their abbreviations: 
Olchaeta=Oligochaeta, Gammtigr=Gammarus tigrinus, Caenhora=Caenis horaria, 
Mystacsp=Mystacides sp., Chironsp=Chironomus sp., Ditenerv= Dicrotendipes gr. 
nervosus, Einffleu=Einfeldia/Fleuria, Endoalbi=Endochironomus albipennis, 
Gltotesp=Glyptotendipes sp., Michirsp=Microtendipes sp., Popebicr=Polypedilum 
gr. bicrenatum, Popenube=Polypedilum gr. nubeculosum, 
Sttospec=Stictochironomus sp., Conescut= Corynoneura scutellata agg., 
Cricsylv= Cricotopus sylvestris agg., Cladotsp=Cladotanytarsus sp., 
Mipsecsp=/W/cropsectra sp., Patanysp=Paratanytarus sp., Tatarssp=Tanytarsus sp. 
The length of the arrow is a measure of the importance of the variable 
contaminant and the arrowhead points at the direction of increasing influence. 

variance explained by food variables was not. Both food and environmental variables had a 

significant contribution in explaining the observed variation in detritivores. The contribution 

of food variables was two times higher than environmental variables. Figure 4A and B shows 

the first two axes of a partial CCA in which the species data were constrained by food 

variables after removing the effect of the environmental variables. 

Because CA is susceptible to taxa that occurred in low numbers in only one sample, 

these were omitted from the analysis. The sequence of the samples and species along the 

first axis is mainly related to organic matter content. The ordering along the second axis, 

however, is due to differences in food quality. PUFA had a higher score on the second axis 

than P and C/N ratio, indicating the greater importance of PUFAs. Oligochaeta spp. and 

Chironomus sp. are mainly associated with high organic matter content. Einfeldia/Fleuria sp., 

Glyptotendipes sp., Stictochironomus sp., Cladotanytarsus sp., and Polypedilum bicrenatum 

show a relationship with elevated food quality. 

In Figure 4A, three different groups of samples are distinguished. Group I consists of 

samples with higher organic matter content, and group 11 and 111 differed in food quality. 

Non-parametric ANOVA (Mann Whitney U test) showed that there were significant 

differences in total number of taxa between group I and group II (P=0.007), and between 

group I and group III (P=0.001). No significant differences were observed between group II 

and group III. With respect to the total number of individuals, only group II and group III 

were significantly different (P=0.043). Elevated organic matter content is accompanied with 

lower number of taxa but did not affect the total number of individuals whereas increase in 

food quality seems to affect the total macroinvertebrate density but not the total number of 

taxa. 
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Discussion 

The communities in the present study were dominated by oligochaeta, chironomini, and 

tanytarsini although taxonomical diversity was highest in mollusca, trichoptera, and 

chironomidae. The total variation in the species data set was mainly due to chironomidae 

larvae. These results are in line with other observations on benthic communities in lakes 

(e.g. DOUGHERTY AND MORGAN 1991, PRUSETAL. 1999). Approximately 60% of the variation in 

the macroinvertebrate species composition could be explained by the variables included in 

the analyses. This percentage is rather high in comparison to other studies (e.g. 

VERDONSCHOT AND TER BRAAK 1994, RODRIGUEZ AND MAGNAN 1995, PINEL-ALLOUL ET AL. 1996, 

PEETERS ETAL. 2000). Although a large proportion of the variation was explained in the 

present study, another part remains unexplained due to e.g. natural fluctuations and certain 

factors or aspects not considered such as predation and competition. 

The variance partition method has been applied successfully to partition the variation of 

subarctic plant species in a spatial and an environmental component (HEIKINNEN AND BIRKS 

1996) and to allocate variation in macroinvertebrates into an ecological and an 

ecotoxicological component (PINEL-ALLOUL ET AL. 1996, PEETERS ETAL. 2000). The method as 

applied in the present study showed that the impact of food variables differed between the 

functional feeding groups (carnivores, detritivores, herbivores). The results of the analyses 

with the functional feeding groups showed that significant correlations with food variables 

were only obtained for detritivores and not for herbivores and carnivores. This may be 

expected because in the present study food quality is determined from the sediment and it is 

well known that detritivores use sediments as a food source whereas carnivores and 

herbivores use other resources. Therefore, the observed significant correlation between food 

variables and detritivores indicates that this method may be useful tool for analyzing the 

impact of different groups of variables in natural ecosystems. 

This study clearly showed that main environmental variables (e.g. current velocity, 

dimension, pH) contributed more to the explanation of the macroinvertebrate variation 

between different water types then food variables. This is in line with many publications 

concerning the distribution patterns of benthic macroinvertebrates over a wide range of 

water types (e.g. VERDONSCHOT 1990). The results also showed that a substantial proportion 

of the variation in the macroinvertebrate species composition could not be explained without 

including food variables. Analyses of the macroinvertebrate community variation in a more 

homogeneous subset of shallow lakes, as in the present study, showed that food and 

environmental variables had a similar contribution in explaining the observed variation and 

thus food variables became relatively more important. The relative effect of food seems, 

therefore, to depend on the variation of other factors. This is in line with the concept that 

abiotic factors are determining patterns in the distribution and abundance of species over 

broad scales whereas the relative importance of biotic factors is greater over local scales. For 

example, according to JACKSON ETAL. (2001) abiotic factors control fish communities at the 
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large scale, whereas competition is of greater importance at small scale. Furthermore, the 

model study of PINEL-ALLOUL ET AL. (1995) on zooplankton showed that abiotic variables 

explained most of the variability in zooplankton community on the large scale, whereas 

biological bottom-up and top-down control occur at small scales. 

Analyses of the lake dataset with only detrivores showed that food quantity (organic 

matter content) was of greater importance than food quality (e.g. PUFAs). Especially 

oligochaeta and Chironomus sp. were positively related to organic matter content. Both taxa 

were collected in all locations, sometimes in high numbers. Organic matter may influence 

oxygen levels in sediments through oxygen consumption and by increasing the packing of 

the sediment, usually resulting in lower oxygen concentrations in sediments with high 

organic matter contents (WATLING 1991). The present study showed that increased organic 

matter content resulted in a decrease in biodiversity, but hardly affected total abundance of 

macroinvertebrates. It is well known that many oligochaetes and chironomid species are 

resistant to low oxygen levels. Therefore, it is unclear whether the observed response is due 

to food quantity or oxygen concentrations. 

Taxa like Einfeldia/Fleuria, Glyptotendipes sp., Stictochironomus sp., Cladotanytarsus 

sp., and Polypedilum bicrenatum were positively related with PUFAs and thus with food 

quality. Increase in food quality hardly affected the total number of taxa and had a positive 

effect on the total macroinvertebrate densities. Therefore, food quality can be considered as 

an important factor determining the production capacity of macroinvertebrates in shallow 

lakes. This finding is in line with studies in the marine environment, which showed that biotic 

communities were constrained more by changes in the food quality rather than food quantity 

(e.g. ALBERTELLI ETAL. 1999, DANOVARO ET AL. 2000). 

The present study showed that sediment PUFA was the second most important food 

variable. Studies on pelagic invertebrates in relation to food quality showed that PUFAs can 

be considered as the main factor determining food quality (BRETT AND MULLER-NAVARRA 1997, 

GULATI AND DEMOTT 1997, GOULDEN ET AL. 1999). PUFAs are essential components for animals 

but animals cannot generate PUFAs or at most to a limited extent (NAPOLITANO 1999). Hence, 

they should assimilate PUFAs from their diet. In deep lakes, PUFAs are mainly produced in 

the pelagic part of the ecosystem and therefore the composition and functioning of the 

benthic macroinvertebrate communities is often linked with the production in the pelagic part 

(MOORE 1987, MARSH AND TENORE 1990, GOEDKOOP AND JOHNSON 1996; GOEDKOOP ET AL. 1998). 

Such a pelagic-benthic linkage might also be expected in shallow lakes although 

macrophytes, periphyton, and benthic diatoms may also contribute to the production of 

PUFAs. 

In conclusion, the variance partitioning method enables to quantify the contribution of 

food and environmental variables in explaining the observed variation in the benthic 

macroinvertebrate community structure. The relative effect of food variables depends on the 

intensity of other factors. Differences in macroinvertebrate composition between 

communities of different water types are mainly related to environmental variables although 
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the impact of food variables is certainly not neglectable. Detritivores showed a significant 

relationship with food variables: higher organic matter contents hardly affected their 

abundance but gave a decrease in biodiversity, whereas increase in food quality (e.g. higher 

content of PUFAs) did not affect biodiversity but resulted in higher densities. 
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Abstract 

Macroinvertebrates were studied along a salinity gradient in the Northsea Canal, The 

Netherlands, to quantify the effect of trace metals (cadmium, copper, lead, zinc) on 

community composition. In addition, two methods for assessing metal bioavailability 

(normalizing metal concentrations on organic carbon and on the smallest sediment fraction) 

were compared. Factor analyses showed that normalizing trace metals resulted in an 

improved separation of trace metals from ecological factors (depth, organic carbon, 

granulometry, and chloride). The variation in the macroinvertebrate data was partitioned into 

four sources using partial canonical correspondence analysis, with the partitions being purely 

ecological factors, purely trace metals, mutual ecological factors and trace metals, and 

unexplained. Partial canonical correspondence analysis applied to total and normalized trace 

metal concentrations gave similar results in terms of unexplained variances. However, 

normalization on organic carbon resulted in the highest percentage of variation explained by 

purely ecological factors and purely trace metals. Accounting for bioavailability thus improves 

the identification of factors affecting the in situ community structure. Ecological factors 

explained 45.4% and trace metals 8.6% of the variation in the macroinvertebrate community 

composition in the ecosystem of the Northsea Canal. These contributions were significant, 

and it is concluded that trace metals significantly affected the community composition in 

environment with multiple stressors. Variance partitioning is recommended for incorporation 

in further risk assessment studies. 

Keywords: Bioavailability, Ecotoxicology, Macroinvertebrates, Sediment, Trace metals, 

Variance partitioning 

Introduction 

Macroinvertebrate field surveys are frequently used in studies assessing water and/or 

sediment quality, e.g., as part of the sediment quality triad approach (e.g. CHAPMAN ET AL. 

1997). Macroinvertebrates are directly associated with contaminants in sediments through 

their feeding and behavioral activities (REYNOLDSON ET AL. 1995). They take up trace metals 

from the ambient water and from their food (TIMMERMANS 1993) and therefore play a key 

role in bioaccumulation and transfer of contaminants to higher trophic levels in aquatic and 

terrestrial food webs. Natural macroinvertebrate communities are strongly influenced by a 

variety of environmental factors other than contaminants, such as salinity, bottom 

substratum, and pH (e.g. HYNES 1970). To date, the knowledge of the relative importance of 

trace metals in structuring aquatic communities in comparison to the impact of other 

variables is very limited. 

Multivariate statistical tools such as principal component analysis, multiple regression, 
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discriminant analysis, and multidimensional scaling, can contribute to the assessment of the 

relative importance of different environmental stressors. In many studies relating abiotic and 

biotic data, abiotic data are analyzed with multivariate techniques followed by an 

interpretation of the results with biotic community measures. A disadvantage of such an 

indirect multivariate approach is that biological information is afterwards related to the 

results of an analysis of the abiotic data. This means that the final results are constrained by 

abiotic rather than by biota data. Furthermore, overall community measures such as diversity 

or species richness are frequently used in the indirect approach and not data on community 

composition. Studies of CLEMENTS AND KIFFNEY (1994) and JOHNSON ET AL. (1992) showed that, 

indeed, benthic community composition was a better indicator of metal impact than species 

richness. Canonical Correspondence Analysis (CCA) is a direct multivariate ordination 

technique. This technique has the advantage that species composition is directly and 

immediately related to measured environmental variables (TER BRAAK 1986, 1990). 

Techniques like CCA are becoming more important in data handling in ecotoxicological field 

and laboratory studies (VERDONSCHOT AND TER BRAAK 1994, GOWERS ET AL. 1994, VAN 

WlJNGAARDEN ET AL. 1995). 

BORCARD ET AL. (1992) presented a method for partitioning the variation of species 

abundance data into a spatial and an environmental component using CCA. The total 

variation in the species data was successfully partitioned into four independent components, 

with the components being purely spatial, purely environmental, a spatial component of 

environmental influence, and an undetermined component. The usefulness of this method 

was demonstrated in a study concerning the distribution patterns of subarctic plant species 

(HEIKKINEN AND BIRKS 1996). The method also seemed promising in partitioning the biological 

variation into ecological and ecotoxicological factors (PINEL-ALLOUL ET AL. 1996), but its 

potential has not been explored in assessing the relative contribution of trace metals in an 

environment with a dominant salinity gradient. 

Total metal concentrations are used in most sediment risk assessment procedures to 

evaluate the effects of trace metals on, e.g., macroinvertebrates (VAN DER GUCHTE ET AL. 

1991, CHAPMAN ET AL. 1997, MAXON ET AL. 1997). However, it is well accepted that it is not 

total but rather bioavailable concentrations that cause the effects on the biota (LANDRUM AND 

ROBBINS 1990, ALLEN 1993, WRIGHT 1995, BERRY ET AL. 1996) and thus on the community. 

Therefore, it may be assumed that total metal content is an inappropriate variable for 

characterizing metal exposure or habitat quality. Normalizing metal concentrations may 

approach bioavailable concentrations. Different methods, such as normalizing on organic 

carbon, small sediment fractions, conservative elements such as aluminum, and acid volatile 

sulfide, have been proposed that better approach bioavailability than does total 

concentrations. Two common methods in sediment risk assessment procedures in The 

Netherlands are normalizing on organic carbon or on clay. Both methods are simple and 

convenient for large sample numbers. These two methods are selected in the present study 

for investigating their effects on the variance partitioning because only from these 
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normalization phases data are available. Normalizing trace metals might also reduce the 

covariation between metals and the variable used for normalization, resulting in a lower 

correlation between the variables. The more independent variables are, the more precise 

they can explain observed variation in biological data sets using CCA. A translation of total 

metal concentration to an approximate available or normalized concentration thus might 

improve the identification of sources of toxic stress among common ecological sources of 

stress in the field. 

The objective of this paper is to quantify the effect of trace metals (Cd, Cu, Pb, and Zn) 

in structuring macroinvertebrate communities in the Northsea Canal in The Netherlands, an 

environment with multiple stressors. The impact of trace metals is compared with the 

contribution of the ecological factors chloride, depth, granulometry, and organic carbon. A 

secondary objective is to demonstrate that approaching bioavailability of trace metals by 

normalizing metal concentrations gives a better quantification of the effects of trace metals 

then total sediment concentrations. Two normalization procedures, normalizing trace metal 

concentrations on organic carbon and on sediment fraction < 63 urn, are tested in the 

present study. 

Materials and methods 

Study sites and sampling design 

The Northsea Canal in The Netherlands (Figure 1) is 27 km long, 170 m wide, and 15 m 

deep and is the main shipping route from the North Sea to the harbors of Amsterdam. 

N 
A 
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Sea 

'Sampling 
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Canal G,— 

KM 19 

AmerikaharljpSr A Sap S^X 1 

Riebeeckhatbour 
< KM 25 

MPX 
\ city of 
\ Amsterdam 

.Hake 
]Usselmeer 

Figure 1: Map of the Northsea Canal showing the position of the sampling stations. 
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The eastern part of the canal is connected with Lake Usselmeer, and from there, the canal 

receives freshwater from the River Vecht and some other canals. A sluice in the west end 

prevents the free flow of seawater entering the canal. However, opening the sluice gate for 

ship passage results in salt water entering the canal. Salinity decreases from west to east 

due to both water flows. Differences in density between salt and freshwater also create a 

vertical salinity gradient where salinity increases with depth. Both gradients are stable within 

and between years. Sediments in different parts of the Northsea Canal are polluted with a 

variety of substances, like oil, polyaromatic hydrocarbons, and trace metals (VAN KLAVEREN 

1989). 

Across the Northsea Canal ecosystem, 11 stations were selected that differed in salinity. 

At each station, three to four sampling sites were chosen across the canal. These sampled 

sites differed in depth and thus in salinity. In total, 39 sites were sampled. 

Five replicate Ekman grab (Hydro-Bios, Kiel, Germany) samples were taken per sampling 

site and mixed for sediment analyses of the upper 10 cm bottom sediment. Sediment 

samples were stored in plastic bags for granulometric analyses and in acid rinsed glass jars 

for analyses of trace metals. Three replicate bottom samples of macroinvertebrates were 

collected with an Ekman grab. The samples were rinsed using a sieve of 210 urn mesh size. 

All material retained in the sieve was preserved in 5% (v/v) buffered formalin solution 

(Merck, Amsterdam, The Netherlands). All macroinvertebrates were picked in the laboratory, 

sorted, counted, and identified as far as possible with available keys. The three replicates 

were combined and abundance was expressed as numbers/m2. 

Analyses 

The variables measured are given in Table 1. Ecological variables (organic carbon, 

granulometry, depth, chloride) are distinguished from trace metals (Cd, Cu, Pb, Zn) to 

facilitate the interpretation of the results and to be able to calculate the relative contribution 

of trace metals. Depth was measured in the field. Chloride data were obtained from 

published data (ANONYMOUS 1987). All sediment samples were dried and weighted for 

granulometric analyses. Each sample was sieved thoroughly through successive sieves of 0, 

63, 125, 250, 500, 1000, and 2000 urn mesh size. Each fraction was weighted and expressed 

as percentage of the total weight. 

Organic carbon content was determined by wet oxidation according to Kurmies as 

described by HOUBA ET AL. (1995). Sediment samples were digested on a hot plate (170 °C) 

by successive additions of small quantities of concentrated nitric acid (Merck) followed by 

additions of concentrated hydrofluoric acid (Merck). Trace metals were then dissolved in an 

hydrochloric acid solution and, from the filtrates, concentrations of Cd, Cu, Pb, and Zn were 

measured by flame atomic absorption spectrometer (HOUBA ET AL. 1995). 
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Table 1: Frequency, minimum, maximum, average and standard deviation of measured 
environmental variables. 

Variable 

Ecological variables 
Depth 
Organic carbon 
Granulometry 

Fraction <63um 
Fraction >63um 

Fraction >125um 
Fraction >250um 
Fraction >500um 

Fraction >1000um 
Fraction >2000um 

Chloride 
< 500 mg/l 

500- 1500 mg/l 
1500-2000 mg/l 
2000 - 3000 mg/l 
3000 - 5000 mg/l 

5000 -10000 mg/l 
> 10000 mg/l 

Trace metals 
Cd 
Cu 
Pb 
Zn 

Unit 

m 
% 

% 
% 
% 
% 
% 
% 
% 

mg/kg 
mg/kg 
mg/kg 
mg/kg 

Frequency 

39 
39 

39 
39 
39 
39 
39 
39 
39 

2 
7 
6 
9 
6 
5 
4 

39 
39 
39 
39 

Minimum 

1.63 
0.26 

0.1 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.05 
3.30 
10.00 
13.20 

Maximum 

24.14 
12.62 

100.0 
47.5 
71.4 
44.7 
16.1 
9.9 
50.0 

6.70 
167.70 
632.10 
1142.70 

Average 

8.42 
4.26 

50.4 
7.1 
19.4 
9.8 
3.3 
2.1 
7.9 

1.46 
66.75 
135.47 
325.74 

Standard 
Deviation 

4.85 
3.75 

48.7 
11.6 
23.3 
11.7 
4.6 
2.7 
14.2 

\ 

1.84 
57.76 
125.86 
294.32 

Statistical analysis 

Pearson correlation coefficients were calculated between the environmental variables. 

Factor analysis with Varimax rotation (HAIR ET AL. 1995) was used in order to verify the 

association of metals with the bulk sediment composition. Factor analyses were carried out 

with three different data sets. Data set 1 included the ecological variables (organic carbon, 

granulometry, depth, and chloride) and the total trace metal concentrations; data set 2 

included the ecological variables and metal concentrations normalized on organic carbon; 

and data set 3 included the ecological variables and metal concentrations normalized on the 

sediment fraction <63 urn. 

The relative contribution of trace metals in explaining the total variation in the 

macroinvertebrate taxonomic composition was determined by using the method of partial 

CCA as proposed by BORCARD ET AL. (1992). Detrended correspondence analysis assesses the 

length of the gradient and hence whether a linear or unimodal method should be used. A 

preliminary detrended correspondence analysis with logarithmic transformed abundance data 
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and downweighting of rare species showed moderate to long gradient lengths. Therefore, 

the unimodal model (TER BRAAK 1986) was considered appropriate for these data sets. A 

preliminary CCA with ecological variables and trace metals (Table 1) as independent 

variables was performed in order to select an appropriate subset of independent variables. 

An analysis with all these variables resulted in a few high variance inflation factors (>20), 

indicating multicollinearity between some variables (TER BRAAK 1990). High inflation factors 

were obtained for the two coarsest sediment fractions. A subsequent analysis without these 

two fractions resulted in inflation factors lower than the maximum acceptable value. Both 

sediment fractions were left out in all subsequent analyses. 

Five different CCAs were performed to calculate the contribution of the ecological 

variables and of the trace metals in explaining the variation in the species data: (1) CCA of 

species data and ecological variables (granulometry, organic carbon, depth, chloride) and 

trace metals (Cd, Cu, Pb, Zn) as independent variables, (2) CCA of species data constrained 

by the ecological variables, (3) CCA of species data constrained by trace metals, (4) the 

same as (2) after removing the effect of trace metals, and (5) the same as (3) after 

removing the effect of ecological variables 

The total variation present in the species data is given by the sum of all unconstrained 

eigenvalues and is called total inertia (TER BRAAK 1990). Total inertia is equal for all five 

analyses. The proportion of variance explained by a set of variables is calculated as the sum 

of all canonical eigenvalues of a CCA divided by the total inertia. Step 1 provides the overall 

amount of explained variation. The total variation of the species matrix can be partitioned as 

follows: variation explained solely by common ecological variables (step 4), variation 

explained solely by trace metals (step 5), variation shared by ecological variables and trace 

metals (step 2 minus step 4 or step 3 minus step 5), and unexplained variation: total 

variation minus step 1. 

The above procedure was applied to all three data sets. The contributions of the four 

sources were then compared for the three data sets. The data set that had the lowest 

percentage for shared plus unexplained variation was regarded as the best. The contribution 

of each single variable was assessed by a CCA of species data constrained by each single 

variable after removing the effect of all other variables. All (partial) CCAs were performed 

using the CANOCO program (TER BRAAK 1990). The statistical significance of the effect of 

each set of environmental variables was tested by a Monte Carlo permutation test (TER BRAAK 

1990). 

Results 

Macroinvertebrate composition 

A total of 42 different macroinvertebrate taxa were sampled in the Northsea Canal and 

its adjacent harbors and side canals (Table 2). The number of taxa per site ranged from 0 to 
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19, the number of individuals from 0 to 164133 individuals/m2, and the shannon-wiener 

diversity (WASHINGTON 1984) ranged from 0 to 1.73. Tubificidae, Corophium multisetosum, 

Gammaridae, and Streblospio shrubsolii occurred in more than 50% of the samples. Taxa 

with high abundance values (more than 15% of total individuals) were Potamopyrgus 

antipodarum, Streblospio shrubsolii, and Tubificidae. Among the taxa found, typical 

freshwater taxa like Glossiphonia heteroclita, Helobdella stagnalis, and Ophidonais serpentina 

were present, as well as taxa typical for brackish waters, like Polychaeta, Cyathura carinata, 

Congeria cochleata, and Corophium. 

Table 2: Frequency and abundance of taxa collected in the Northsea Canal. 

Species name 

Tricladidae 
Tricladida sp 

Polychaeta sedentaria 
Ampharete sp. 
Manayunkia aestuarina 
Poly dor a sp. 
Pygospio elegans 
Spionidae sp. 
Streblospio shrubsolii 
Tharyx marioni 

Polychaeta errantia 
Nereis sp. 

Oligochaeta 
Enchytraeidae 
Lumbriculidae 
Nais sp. 
Ophidonais serpentina 
Paranais litoralis 
Stylaria lacustris 
Tubificidae 

Hirudinea 
Glossiphonia heteroclita 
Helobdella stagnalis 

Bivalvia 
Cerastoderma edule 
Congeria cochleata 
Dreissena polymorpha 
Pisidiidae 
Bivalvia sp. 1 

Abbreviation 

TRCLADSP 

AMPHARET 
MANAAEST 
POLYDOSP 
PYGOELEG 
SPIONISP 
STRESHRU 
THARMARI 

NEREISSP 

ENEIDAE 
LUCULIAE 
NAISSPEC 
OPHISERP 
PARNLITO 
STLALACU 
TUFICIAE 

GLSIHETE 
HEBDSTAG 

CERAELUD 
CONGCOCH 
DREIPOLY 
PISIDIAE 
BIVALSP1 

Frequency 

Abs 

3 

9 
2 

18 
2 
2 

20 
5 

17 

3 
6 

10 
2 
6 
3 

32 

1 
1 

1 
14 
4 
1 
3 

Rel 

7.7 

23.1 
5.1 

46.2 
5.1 
5.1 

51.3 
12.8 

43.6 

7.7 
15.4 
25.6 
5.1 

15.4 
7.7 

82.1 

2.6 
2.6 

2.6 
35.9 
10.3 
2.6 
7.7 

Total 
abundance 

Abs 

12 

252 
444 
527 

5 
18 

10149 
891 

197 

13 
32 

530 
24 
76 
20 

6818 

1 
1 

1 
301 
55 
4 
4 

Rel 

0.0 

0.7 
1.2 
1.4 
0.0 
0.0 

27.9 
2.5 

0.5 

0.0 
0.1 
1.5 
0.1 
0.2 
0.1 

18.7 

0.0 
0.0 

0.0 
0.8 
0.2 
0.0 
0.0 
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Table 2: continued 
Species name 

Gastropoda 
Bithynia tentaculata 
Peringia ulvae 
Potamopyrgus antipodarum 
Valvata piscinalis 

Crustacea 
Cirripedia sp. 
Rhitropanopeus harrissi ssp. 

tridentatus 
Neomysis integer 
Cyathura carinata 
Asellidae 
Gammaridae 
Corophium lacustre 
Corophium multisetosum 
Ecnomus tenellus 

Chironomidae 
Chironomus plumosus i.w.s. 
Dicrotendipes gr nervosus 
Glyptotendipes sp. 
Polypedilum sp. 
Procladius s.l. 
Stempellina sp. 

Abbreviation 

BITHTENT 
PERIULVA 
POTAANTI 
VALVPISC 

CIRRPDSP 
RHITTRID 

NEOMINTE 
CYATCARI 
ASELLIAE 
GAMMARAE 
COROLACU 
COROMULT 
ECNOTENE 

CHIRPLUM 
DITEGNER 
GLTOTESP 
POPESPEC 
PRDIUSSP 
STEMPELL 

Frequency 

Abs 

1 
2 

18 
4 

2 
5 

11 
2 
2 

20 
10 
23 

1 

4 
5 
4 
2 
3 
1 

Rel 

2.6 
5.1 

46.2 
10.3 

5.1 
12.8 

28.2 
5.1 
5.1 

51.3 
25.6 
59.0 
2.6 

10.3 
12.8 
10.3 
5.1 
7.7 
2.6 

Tota 
abundance 

Abs 

1 
4 

13402 
46 

4 
12 

46 
83 

3 
694 
295 

1269 
1 

15 
24 
81 
2 
5 
1 

Rel 

0.0 
0.0 

36.9 
0.1 

0.0 
0.0 

1.9 
0.2 
0.0 
1.9 
0.8 
3.5 
0.0 

0.0 
0.1 
0.2 
0.0 
0.0 
0.0 

Correlation coefficients between variables 

Table 3 shows the Pearsons correlation coefficients for all variables included in the 

analysis. It appeared that 68 out of 91 correlation coefficients were significant. High 

correlations were found among trace metals, among certain sediment fractions, between 

trace metals and organic carbon, and between depth and chloride. Trace metals had 

stronger correlations with organic carbon content than with sediment fraction <63 um. 

Factor analyses 

Factor analysis with data set 1 (total trace metal concentrations) produced two 

components explaining 74.8% of the total variation; with data set 2 (normalized 

concentrations on organic carbon), three components explaining 72.0% of the total 

variation; and with data set 3 (normalized on sediment fraction <63 um), three components 

explaining 78.9% of the total variation (Table 4). To which factor a variable contributed most 

per data set can be derived from the italicized loadings in Table 4. For example, the first 

factor of data set 1 was comprised primarily by sediment trace metal concentrations, organic 
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Table 5: Partitioning of the variance in the species data; note that the sum of variances 
explained by the individual ecological factors (or individual trace metals) does not 
necessarily equals the variance explained by the ecological factors (or trace metals) 
as a group. 

Source of variance 

Ecological factors 
Depth 
Organic carbon 
Granulometry 
Chloride 

Trace metals 
Cd 
Cu 
Pb 
Zn 

Shared by ecological 
factors and trace metals 
Unexplained 
Total 

Total 
(data 

37.5 

10.3 

10.2 

42.0 
100.0 

set 1) 

1.5 
2.2 

13.0 
1.8 

2.2 
2.9 
2.5 
1.9 

Metal concentration 
Normalized on 
organic 

(data 
45.4 

8.6 

2.5 

43.5 
100.0 

matter 
set 2) 

3.7 
3.6 

17.3 
4.3 

2.8 
2.7 
1.0 
2.0 

Normalized on 
fraction < 63pm 

(data set 3) 
38.4 

11.4 

9.4 

40.8 
100.0 

1.6 
2.7 

14.6 
2.2 

2.7 
3.2 
2.8 
2.3 

Although the overall contribution of trace metals is 8.6 % only, the partial CCA in which 

the taxa data were constrained by trace metals normalized on organic carbon after removing 

the effect of the other variables was significant (P< 0.01; Monte Carlo test). Figure 2 shows 

the positions of taxa from selected taxonomic groups in the ordination diagram of this 

analysis. The constructed axes are a linear combination of the variables included in the 

analysis (TER BRAAK 1986, 1990); hence, the metals determine the sequence of the taxa. 

Both Cd and Zn are pointing to the left-hand side and are closely related to the first 

canonical axis. The sequence of the taxa along the first axis was therefore mainly 

determined by these two metals. Cu is closely related to the second canonical axis, and 

therefore the sequence of the taxa along this second axis was mainly determined by this 

metal. The length of the arrow of Pb is short, indicating that the impact of Pb on the 

community was low. 

Projection of the Chironomidae taxa (Figure 2a) shows that they were all associated with 

lower lead concentrations. Procladius sp., Chironomus plumosus, and Polypedilum sp. were 

associated with higher concentrations of Cu, Zn, and Cd, whereas Dicrotendipes gr nervosus, 

Glyptotendipes sp., and Stempellina sp. were not found at elevated metal concentrations. 

Bivalve taxa (Figure 2b) had different positions on all four metal axes. Cerastoderma edule 

and Pisidiidae were associated with higher Cd and Zn concentrations, whereas Dreissena 
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Figure 2: The positions of taxa from selected taxonomic groups in the ordination diagram of 
a partial canonical correspondence analysis in which the species data were 
constrained by trace metals normalized on organic carbon after removing the 
effects of other variables, (a) Chironomidae, (b) Bivalvia, (c) Gastropoda, (d) 
Crustacea, (e) Oligochaeta, and (f) Polychaeta sedentaria. Trace metals are 
represented by arrows, taxa from the selected taxonomic groups by squares and 
their abbreviations (see Table 2), and other species by open circles. The length of 
the arrow is a measure for the importance of the trace metal, and the arrowhead 
points at the direction of increasing influence. Projection of the taxa on the metal 
axes indicates the impact of the metal on the taxa such that taxa near the 
arrowhead are more affected by the trace metal than taxa present at the arrow 
tail. 
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polymorpha and Bivalvia species 1 were associated with higher Cu concentrations. From the 

gastropods (Figure 2c), only Bithynia tentaculata showed association with elevated Cu 

concentrations. Peringia ulvae seemed to avoid elevated metal concentrations. Crustacea 

(Figure 2d) were mainly positioned in the center of the diagram. Especially Asellidae and 

Cyathura carinata were not found at elevated trace metal concentrations. Projection of 

Oligochaeta (Figure 2e) showed that the different taxa had different tolerances for the trace 

metals. Especially Stylaria lacustris and Ophidonais serpentina were not found at elevated 

metal concentrations. Tubificidae are placed in the center of the ordination diagram, and this 

might be due to the level of identification (family and not species level). It is well known that 

some members of this family are very pollutant tolerant whereas others pollutant intolerant. 

The taxa of the Polychaeta sedentaria (Figure 2f) showed differences in tolerance especially 

for Cu and hardly for Zn, Cd, and Pb. 

Discussion 

The macroinvertebrate communities from the Northsea Canal and its adjacent harbors 

and side canals are relatively poor in species richness. REMANE AND SCHLIEPER (1958) already 

demonstrated that brackish water communities have a low diversity in comparison to salt or 

freshwater communities, and most (brackish water) communities consist of a subset of 

tolerant species. Although salinity was thought to be the most important factor in structuring 

macroinvertebrate communities, this is not supported by the results of the present study. 

Sediment granulometry rather than salinity was the most important factor explaining the 

biological variance. In part, this might be due to the use of chloride classes instead of 

measured chloride concentrations. Small differences in concentrations are disregarded when 

using classes. However, the results are consistent with other studies in which sediment 

granulometry is an important factor in structuring macroinvertebrate communities (TOLKAMP 

1980, WATLING 1991). 

Total trace metal sediment concentrations found in this study in the Northsea Canal are 

of the same order of magnitude as those in the deltas of other Western European rivers 

(BRYAN AND LANGSTON 1992, ZWOLSMAN ET AL. 1996). Trace metal concentrations exceeded 

Dutch standards (MINISTRY OF TRANSPORT AND WATER MANAGEMENT 1998) only at a few sites. 

Normalization of sediment trace metal concentrations on organic carbon or on <63 urn 

particle size fraction are well-established procedures to correct for differences in sorption 

affinity among sediments. In comparison to total metal concentrations, the normalized 

concentrations are supposed to better resemble the concentrations in the food of the benthic 

organisms (assuming that organic carbon is the dominant food) and have a closer 

relationship with pore-water metal concentrations to which benthic organisms are exposed. 

In the current study, the metal concentrations were correlated significantly with both organic 

carbon and with the small grain size fraction, which agrees with earlier reports (TAYLOR 1986, 
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FORSTNER 1990, SANTSCHI ETAL. 1997). 

Factor analyses with normalized trace metal concentrations on either organic carbon or 

on smallest sediment fraction resulted in this study in a better separation of the trace metals 

from the other variables than with total concentrations. This agrees with the results provided 

by ZWOLSMAN ET AL. (1996), who found for the Scheldt estuary that metal contents 

normalized on organic carbon were comparable to the contents normalized on the fraction 

<16 urn. This may be explained from the fact that organic carbon and the clay fraction are 

often correlated with each other and may have similar magnitude. However, this study 

showed much better correlation of metals with organic carbon than with clay/silt. This 

suggests a dominant role of organic carbon in metal binding in the Northsea Canal as 

compared with the role of metal-binding phases, associated with the clay/silt particles. The 

method of variance partitioning applied in this study also showed that normalization on 

organic carbon gave a much better discrimination of the sources of variance in the biological 

data. Hence, it is suggested that organic carbon normalized concentrations better approach 

the bioavailable concentrations than total metal concentrations or clay/silt normalized 

concentrations. 

In this study, the partial canonical correspondence analyses showed that about 56% of 

the total variation in the taxa could be explained by the variables used in the analyses. 

Compared with other studies (CATTANEO ETAL. 1995, PINEL-ALLOULETAL. 1996), this 

percentage is quite high. A considerable amount of the biological variance was explained in 

this study by common ecological variables (45%) such as granulometry and chloride, a 

smaller part by trace metals (8.6%), and a very small part by variance shared by ecological 

variables and trace metals (2.5%). The relatively small contribution of trace metals is, 

however, significant. The metal contribution in this study is comparable to that found in 

other studies (CATTANEO ET AL. 1995, PINEL-ALLOUL ET AL. 1996). 

This study also suggested specific sensitivity of taxa to different metals. For instance, 

judging from their distribution in the Northsea Canal, Chironomidae, Gastropoda, and 

Polychaeta sedentaria seem to have low tolerances to Cd and Zn whereas Oligochaeta and 

Crustacea seem to have a low tolerance to Cu. These patterns are not all in accordance with 

various results reported in the literature such as the supposed higher tolerance to Zn of 

chironomids due to their capacity to regulate Zn compared with other arthropods (PHIPPS ET 

AL. 1995). Also, the present results are not in line with those of HALL ET AL. (1998), who 

found that gastropods followed by amphipods were the most sensitive species to acute Cu 

exposure. This study showed that some, but not all, gastropods were less abundant at sites 

with elevated Cu concentration, but so were some taxa among Chironomidae, Polychaeta 

sedentaria, Oligochaeta, and Crustacea. Although many authors have reported that some 

Oligochaeta and Chironomidae are tolerant to high metal contamination (ROSENBERG AND RESH 

1993), this study showed that, in these taxonomic groups, several species were confined to 

the cleaner sites. Note that, in case of Tubificidae, a course level of identification was used 

and that it is well known that there are pollution-tolerant and pollution-intolerant tubificids. 
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Although a large part of the total biological variance was explained, another part 

remains unexplained due to, e.g., stochastic events, natural fluctuations, random error, and 

certain factors or aspects not considered in this study. For example, concentrations of 

mineral oil and PAH in some of the Northsea Canal sediments were considerable (VAN 

KLAVEREN 1989). However, the available data were insufficient to incorporate them into this 

study. Also, biological factors controlling macroinvertebrate community composition and 

species abundance, like predation by fish and birds on macroinvertebrates and competition 

for food or for habitat, might contribute to the unexplained variance. 

The contribution of trace metals in structuring macroinvertebrate composition and 

abundance in the Northsea Canal was about 8% according to this study. Whether this 

percentage is considered severe or not depends on the targets set in the risk assessment 

procedure (CALOW 1998) in which assessment endpoints are the actual environmental values 

to be protected (US ENVIRONMENTAL PROTECTION AGENCY 1992). The observed communities in 

the Northsea Canal consisted mainly of tolerant species due to the occurrence of the salinity 

gradient, which constitutes a stressful environment. Truly sensitive species were almost 

absent. Therefore, the impact of trace metals in the Northsea Canal was probably more 

related to the loss of sensitive specimens of tolerant species than to a loss of sensitive 

species. 

An attempt was made in this study to link the composition of in situ benthic 

macroinvertebrate community to simultaneously acting multiple stressors. Partitioning of the 

observed variance in the biological data by partial CCA showed that both common ecological 

factors and trace metals affected the macroinvertebrate community composition. The impact 

of sediment-bound trace metals could be quantified and could also be related to shifts in 

some taxonomic groups. Normalization on organic carbon improved the discrimination of 

sources of variance, which was attributed to an improved estimate of exposure. Applying the 

method of variance partitioning in an environment with multiple stressors provided very 

useful information on the magnitude of anthropogenic impact and is therefore recommended 

for incorporating in further risk assessment studies. 
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CHAPTER 4 

Abstract 

It is often assumed that bioassays are better descriptors of sediment toxicity than 

toxicant concentrations and that ecological factors are more important than toxicants in 

structuring macroinvertebrate communities. In the period 1992 to 1995, data were collected 

in the enclosed Rhine-Meuse delta. The Netherlands, on macroinvertebrates, sediment 

toxicity, sediment contaminant concentrations, and ecological factors. The effects of various 

groups of pollutants (polycyclic aromatic hydrocarbons, trace metals, oil, polychlorinated 

biphenyls) and of ecological variables on the structure of the macroinvertebrate community 

were quantified. Ecological factors explained 17.3% of the macroinvertebrate variation, while 

contaminants explained 13.8%. Another 14.7% was explained by the covariation between 

ecological variables and contaminants. Polycyclic aromatic hydrocarbons explained a larger 

part of the variation than trace metals. The contributions of oil and polychlorinated biphenyls 

were small but significant. Elevated contaminant concentrations were significantly associated 

with differences in the macroinvertebrate food web structure. 

The response in bioassays (Vibrio fischeri, Daphnia magna, Chironomus riparius) was 

susceptible to certain contaminants but also to certain ecological factors. There was a weak 

correlation between in situ species composition and bioassays; 1.9% of in situ 

macroinvertebrate variation was explained by the bioassay responses. This seems to 

contradict the validity of using bioassays for a system-oriented risk assessment. Possible 

reasons for this discrepancy might be the manipulations of the sediment before the test and 

a higher pollutant tolerance of the in situ macroinvertebrates. Thus, macroinvertebrate field 

surveys and laboratory bioassays yield different types of information on ecotoxicological 

effects, and both are recommended in sediment risk assessment procedures. 

Key words: Benthic, Community structure. Correspondence analysis. Pollution, Variance 

partitioning 

Introduction 

In sedimentation areas, aquatic sediments form a sink for toxic contaminants due to the 

adsorption capacity of clay minerals and organic matter and thus pose a potential threat to 

benthic aquatic biota. In The Netherlands, the southern delta of the rivers Rhine and Meuse 

has been isolated from the tidal movement of the North Sea since the construction of two 

dams in 1969 and 1970. This has resulted in increased sedimentation of contaminated solids. 

During the period 1992 to 1995, data were collected in various parts of the enclosed 

Rhine-Meuse delta on benthic macroinvertebrates, contaminant concentrations, sediment 

toxicity, and bulk sediment characteristics. Assessment of the sediment quality by the triad 

approach (CHAPMAN ET AL. 1997) showed that the sediment contamination presented risks to 
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the biota (DEN BESTEN ET AL. 1995). Further, multivariate analyses showed that sediment 

toxicity could indeed explain part of the variation in species composition but also revealed 

that the species composition was determined more by habitat and sediment characteristics 

than by sediment toxicity (REINHOLD-DUDOK VAN HEEL AND DEN BESTEN 1999). Although effects 

of contaminants were indeed observed in these studies, the magnitude of the effects of 

these substances in relation to each other and to the contribution of other stressors such as 

habitat variables remained unclear. 

Multivariate statistical tools such as principal component analysis, multiple regression, 

discriminant analysis, and multidimensional scaling can be used to assess the relative 

importance of different environmental stressors (TER BRAAK 1986, 1990, HAIR ET AL. 1995). 

Among multivariate techniques, canonical correspondence analysis (CCA) is a direct 

ordination technique, which can be used to relate species composition directly to measured 

environmental variables (TER BRAAK 1986, 1990). Techniques like CCA are becoming more 

important for data handling in ecotoxicological field and laboratory studies (e.g. GOWER ET AL. 

1994, VERDONSCHOT AND TER BRAAK 1994, VAN WIJNGAARDEN ET AL. 1995, PEETERS ET AL. 2000). 

BORCARD ET AL. (1992) presented a method for partitioning the variation in species 

abundance data into a spatial and an environmental component using canonical 

correspondence analysis. This method of variance partitioning was successfully applied to 

distinguish between variation explained by ecological factors, variation explained by 

contaminants, variation shared by ecological factors and contaminants, and unexplained 

variation (PINEL-ALLOUL ET AL. 1996, PEETERS ET AL. 2000). The present study addresses some 

new aspects in that it includes data from multiple water systems, analyzes macroinvertebrate 

communities in relation to ecological factors and different groups of contaminants, and 

analyzes macroinvertebrate communities in relation to the results of laboratory bioassays. 

It is generally accepted that it is not the total but the bioavailable concentrations of 

contaminants that should be related to the effects on biota (e.g. LANDRUM AND ROBBINS 1990, 

ALLEN 1993, WRIGHT 1995, BERRY ET AL. 1996). Bioassays are assumed to detect the effects of 

combinations of known and unknown contaminants (REINHOLD-DUDOK VAN HEEL AND DEN 

BESTEN 1999), which is why they are frequently used in sediment risk assessment, usually as 

part of the sediment quality triad approach (CHAPMAN ET AL. 1997). However, the relationship 

between the results of bioassays and in situ macroinvertebrate community structure has 

hardly been studied (e.g. CRANE ET AL. 1995, DAY ET AL. 1995a), nor has its explanatory 

potential been assessed with direct multivariate methods. 

The objectives of the present study were to investigate the relationship between the 

results of laboratory toxicity tests and in situ macroinvertebrate community composition and 

to quantify the effect of different groups of contaminants on the structure of the 

macroinvertebrate communities in the enclosed Rhine-Meuse delta. Various statistical 

analyses were performed on a large database containing information on the distribution and 

abundance of macroinvertebrates in the enclosed Rhine-Meuse delta as well as on abiotic 
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circumstances and on the results of three different bioassays. 

Materials and methods 

Sampling, chemical analyses, and bioassays 

From 1992 to 1995, field studies were performed in the Rhine-Meuse delta. Sites were 

chosen to cover the wide range of environmental conditions and provide representative 

samples of the Meuse-Rhine delta ecosystem. The distances between the samples were such 

that they could be regarded as independent. This was confirmed by preliminary geostatistical 

analyses showing that there was no spatial autocorrelation for the main environmental 

variables and indicating weak correlations for only a few contaminants. In the present study, 

only those sites were selected for which data were available on in situ macroinvertebrates, 

all chemical analyses, and all three bioassays. Data were available for the Nieuwe Merwede 

(n=24), Hollandsch Diep (n=46), Dordtsche Biesbosch (n=10), Brabantsche Biesbosch 

(n=58), and Haringvliet (n=57) water systems (Figure 1). Each site was sampled once in the 

period 1992 through 1995. At all sites, macroinvertebrates were collected from the top layer 

of the sediment. Variables measured in the top layer of the sediment at each sampling site 

included grain-size composition, organic matter content, sediment dry weight, and 

concentrations of trace metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, 

zinc), polychlorinated biphenyls (PCBs), oil, and polycyclic aromatic hydrocarbons (PAHs: 

acenaphtene, anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[o]fluoranthene, 

benzo[fc]fluoranthene, benzoin/]perylene, benzo[a]pyrene, chysene, 
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Figure 1: Map of study area. 
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dibenzo[a/7]anthracene, fluorene, fluoranthene, indeno(7,2,3-cd)pyrene, naphtalene, 

phenanthrene, pyrene). Additionally, a number of descriptive ecological variables were 

measured that are considered important for the distribution of macroinvertebrates including 

current velocity, depth, pH, erosion by shipping, wind erosion, and degree of consolidation of 

the sediment. Sediment toxicity was assessed by means of three laboratory bioassays. 

Whole-sediment bioassays were performed with Chironomus riparius (chironomid larvae) and 

pore-water bioassays with Daphnia magna (water flea) and the bacterium Vibrio fischeri. The 

results of the bioassays were classified according to DEN BESTEN ET AL. (1995) and the criteria 

are given in Table 1. A detailed description of the sampling methods, identification of 

macroinvertebrates, chemical analyses, and bioassays has been published elsewhere (DEN 

BESTEN ET AL. 1995, REINHOLD-DUDOK VAN HEEL AND DEN BESTEN 1999). 

Table 1: Classification of the effects observed in the whole-sediment bioassay with 
Chironomus riparius and in the pore-water bioassays with Daphnia magna and 
Vibrio fischeri into three effect classes. NOEC=no observed effect concentration; 
EC=effective concentration. 

Bioassay Effect Effect class Criteria 
Chironomus 
riparius 

Daphnia magna 

Vibrio fischeri 

no effect 

moderate 
effect 

strong 
effect 

no effect 
moderate 

effect 
strong 
effect 

no effect 
moderate 

effect 
strong 
effect 

0 

1 

2 

0 
1 

2 

0 
1 

2 

>75% hatched larvae 
and mortality/developmental retardation <10% 
and effect on dry weight <10% 
50-75% hatched larvae 
or mortality/developmental retardation 10-50% 
or effects on dry weight 10-25% 
<50% hatched larvae 
or mortality/developmental retardation >50% 
or effect on dry weight >25% 
NOECmorta|ity/repr„duction = 100% pore water/elutriate 
10% < NOECmorta|ity/reproduction <100% pore 

water/elutriate 
NOECmortaiity/reproduction ̂  10% pore water/elutriate 
or >50% mortality in 100% pore water/elutriate 

within 48 h 
EC20 >50% pore water/elutriate 
10%< EC2o <50% pore water/elutriate 

EC20 £10% pore water/elutriate 

Statistical analyses 

Multinomial logistic regressions were performed to investigate which variables and which 

species were significantly correlated (likelihood ratio test, P<0.05) with the observed results 

of the three bioassays. The analyses were performed using SPSS for Windows (Chicago, IL, 
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USA). 

Prior to the multivariate analyses, abundance data were logarithmically transformed 

[ln(x+1)]. The option downweighting of rare species in (detrended) correspondence analysis 

offers the opportunity to give less weight in the calculation to species that are rare in the 

database. This option was used in all analyses. A preliminary detrended correspondence 

analysis was performed to assess the length of the gradient. Since this length was found to 

be moderate to long, a unimodal response model was considered appropriate for this data 

set (TER BRAAK 1986). A preliminary canonical correspondence analysis (CCA) using all 

variables as explanatory variables was performed in order to select an appropriate subset of 

variables. This analysis resulted in a few high variation inflation factors (>20), indicating 

multicollinearity among some variables (TER BRAAK 1990). The variable with the highest 

variation inflation factor was omitted from the subsequent analysis. This procedure was 

repeated until all variation inflation factors were lower than the maximum acceptable value 

of 20. The rejected variables (latitude, longitude, benzo[a]anthracene, benzo[a]pyrene, and 

pyrene) were excluded from all further analyses. 

The contribution of the different variables was quantified using partial CCA as proposed 

by BORCARD ET AL. (1992). Calculating the relative contribution of a subset of variables to the 

explanation of the observed biological variation is rather complex. Simply calculating the 

relative contribution through a direct analysis with the subset variables as explanatory 

variables is not sufficient because this overestimates the contribution due to possible 

covariance with other variables. This problem can be overcome by means of another analysis 

in which the effect of the other variables is removed and the remaining variation is related to 

the subset. To do so, it is necessary to divide the explanatory variables into two subsets. 

Subset I includes the data with the variables of interest (e.g. PAHs), while subset II includes 

the data of all other variables. Five different CCA runs were performed to calculate the 

contributions of the two subsets in explaining the variation in the species data. The five CCA 

runs were CCA of species data and subset I and subset II as explanatory variables (run 1), 

CCA of species data constrained by subset I (run 2), CCA of species data constrained by 

subset II (run 3), the same as run 2 after removal of the effect of subset II (run 4), and the 

same as run 3 after removal of the effect of subset I (run 5). 

The total variation in the species data is called total inertia and is given by the sum of all 

unconstrained eigenvalues (TER BRAAK 1990). The proportion of variance explained by a set 

of variables is calculated as the sum of all canonical eigenvalues of a CCA divided by the 

total inertia. Hence, run 1 provides the overall amount of explained variation. The total 

variation of the species matrix can be further partitioned as variation explained solely by 

subset I (run 4), variation explained solely by subset II (run 5), variation shared by subset I 

and subset II (run 2 minus run 4 or run 3 minus run 5), and unexplained variation (total 

variation minus run 1). 

The above procedure was used to calculate the contribution of all contaminants together 

as well as the contribution of each individual group of contaminants (PAHs, trace metals, oil, 
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PCBs). This was done for the data set with all data from the study area as well as for the 

individual river branches. In all analyses, contaminant concentrations and depths were 

logarithmically transformed. Prior to transformation, contaminant concentrations were 

normalized to organic matter content to better approximate available concentrations. 

In order to test the hypothesis that bioassays provide a better description of the effects 

of multiple stressors, the above procedure was also used to calculate the proportion of the 

total variation in the species data that could be explained by the three bioassays together 

with the ecological factors. The results of the analyses with the bioassays could then be 

properly compared with those of the analyses performed with the contaminant 

concentrations. 

All (partial) CCAs were performed using the CANOCO program (TER BRAAK AND SMILAUER 

1998). The statistical significance of the effect of each set of environmental variables was 

tested by a Monte Carlo permutation test (TER BRAAK 1990). CANOCO extracts four axes and 

calculates sample, species, and variable scores for these four axes. The order of the 

extracted axes is determined by the amount of information they contain. Ordination 

diagrams (see Figures 2 through 4) visualize the main structure of the multivariate data, 

usually in two dimensions (the first and second axes). The diagrams are prepared using the 

calculated sample, species, and variable scores. Sites and species are positioned as points in 

the diagram, while the variables are represented by arrows. The length of the arrow is a 

measure of the importance of the contaminant, while the arrowhead points in the direction 

of increasing influence. Variables can be interpreted in conjunction with the species points in 

a biplot. The species points can be projected onto a specific arrow to determine the ranking 

of the taxa according to this variable. 

Results 

Macroinvertebrate composition 

A total of 115 different macroinvertebrate taxa were collected from the soft substrates 

of the Rhine-Meuse delta, mostly belonging to the taxonomic groups of Oligochaeta, 

Hirudinea, Bivalvia, Gastropoda, Crustacea, and Diptera. The number of taxa per site ranged 

from 6 to 54, the number of individuals from 250 to 55,480/m2. Taxa that occurred in large 

numbers in all river branches were Gammarus sp., Pisidium sp., Potamopyrgus antipodarum, 

Procladius sp., Tubificidae with hair setae, Tubificidae without hair setae, and Valvata 

piscinalis. 

The majority of the taxa collected, including Asellus aquaticus, Chironomus sp, Cyrnus 

sp, Erpobdella octoculata, and Nais sp, are not restricted to running waters. Typical standing 

water taxa (e.g. Anisus vortex, Endochironomus albipennis) were present as well as a limited 

number of species characteristic for large rivers e.g. Corophium curvispinum, Hydropsyche 

contubernalis, Kloosia pusilla, and Limnesia undulata. A number of exotic species were also 
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present in the delta, including Branchiura sowerbyi, Corbicula fluminea, Corbicula fluminalis, 

Corophium curvispinum, Dreissena polymorpha, Dugesia tigrina, and Gammarus tigrinus. 

Bioassays 

The three bioassays gave different results with regard to the number of sediments that 

showed an effect (Table 2). Pore-water bioassays with Vibrio fischen'revealed effects for 

only 18% of the sediments and pore-water bioassays with Daphnia magna for 48% whereas 

whole-sediment bioassays with Chironomus riparius showed effects for 69% of the 

sediments. More than 50% of the sediments located in the Hollandsch Diep and Nieuwe 

Merwede water systems showed an effect in the pore-water test with Daphnia magna, while 

>50% of the sediments from the Brabantsche Biesbosch, Haringvliet, and Nieuwe Merwede 

systems had an effect in the whole-sediment bioassay with Chironomus riparius. 

Table 2: Number of sediments in bioassay effect class for the enclosed delta and each 
individual river branch. See Table 1 for explanation of effect classes. 
BB=Brabantsche Biesbosch, DB=Dordtsche Biesbosch, HD=Hollandsch Diep, 
HV=Haringvliet, NM=Nieuwe Merwede. 

Bioassay Effect 
class 

BB DB HD HV NM Study 
area 

Whole-sediment assay 
with Chironomus riparius 

Pore-water assay with 
Daphnia magna 

Pore-water assay with 
Vibrio fischeri 

58 10 46 57 24 195 

0 
1 
2 

0 
1 
2 

0 
1 
2 

24 
21 
13 

41 
13 
4 

55 
3 
0 

6 
2 
2 

7 
2 
1 

5 
5 
0 

26 
16 
4 

14 
16 
16 

25 
19 
2 

0 
48 
9 

35 
19 
3 

54 
3 
0 

5 
11 
8 

5 
7 

12 

20 
0 
4 

61 
98 
36 

102 
57 
36 

159 
30 
6 

Table 3 shows that the effect classes of all three bioassays were significantly related to a 

few toxicants and non-contaminants. Oil, which represents a mixture of compounds, was 

related to all three bioassays. The Chironomus riparius and Daphnia magna bioassays were 

not significantly related to trace metals or polyaromatic hydrocarbons. The results of the 

Vibrio fischeri bioassays were significantly related to the trace metals cadmium and mercury 

and to acenaphtene. 
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Table 3: Variables with significant contributions (likelihood ratio test: P<0.05) in a 
multinomial logistic regression with the effect classes of the bioassay as dependent 
variable and all others as explanatory variables. 

Whole-sediment assay 
Chironomus riparius 
Ecological variables 

GS1 fraction < 63um 
Erosion by wind 
River branch 

Contaminants 
Oil 

Pore-water assay 
Daphnia magna 

Longitude 
River branch 

Oil 

Vibrio fischeri 

Organic carbon 
Sediment dry weight 
GS fraction <63nm 
GS fraction >210um 
Erosion by shipping 
River branch 

Oil 
Cadmium 
Mercury 
Acenaphtene 

1 GS = grain-size 

A limited number of taxa were significantly correlated with the results of the bioassays 

(Table 4). The number of taxa showing a significant correlation with the pore-water 

bioassays was lower than the number of taxa showing a significant correlation with the 

whole-sediment assay. The pore-water bioassay with Vibrio Hscheri was related to only one 

species, whereas the Daphnia magna bioassay was related to eight species. Some mollusks 

and some chironomidae had a significant correlation with the whole-sediment Chironomus 

riparius bioassay. Although the bioassay was performed with a species of the genus 

Chironomus, none of the in situ Chironomus species showed a significant relationship with 

the results of the bioassay. 

Partitioning of the variance 

Approximately 45% of the variation in the species data for the Rhine-Meuse delta was 

explained by all variables (both ecological variables and contaminants) included in the 

canonical ordination analyses (Table 5). The ecological factors as a group explained more of 

the variation in the species data (17.3%) than the contaminants as a group (13.8%). A 

considerable part of the explained variation was covariation between the combination of 

ecological variables and contaminants (14.7%). Among the ecological factors, river branch 

contributed most to the explanation of the biological variation (6.4%) followed by grain size 

(1.6%) and depth (1.1%). The importance of the factor river branch is in line with the 

results of the indirect ordination of the species data. Although the contribution of most 

variables was small (Table 5), the partial CCAs were significant (P<0.05; Monte Carlo test) 

except for current velocity and pH. The contribution of each group of contaminants (PAHs, 
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trace metals, oil, and PCBs) for the whole delta was significant (P<0.05; Monte Carlo test). 

The relative importance of oil and PCBs was rather small, whereas the contributions of PAHs 

and trace metals were higher. 

Table 4: Species with significant contributions (likelihood ratio test, P<0.05) in a multinomial 

logistic regression with the effect classes of the bioassay as dependent variable and 

the species as explanatory variables. 

Whole-sediment assay 
Chironomus riparius 

Pore-water assay 
Daphnia magna Vibrio fischeri 

Class Bivalvia 
Musculium lacustre 

Class Gastropoda 
Corbicula fluminea 
Valvata cristata 
Valvata piscinalis 
Litoglyphus naticoides 

Class Arachnida 
Fiona alpicola 
Fiona pusilla 

Class Malacostraca 
Corophium curvispinum 

Class Insecta 
Cryptotendipes sp 
Dicrotendipes sp 
Lipiniella arenicola 
Stictochironomus sp 

Class Oligochaeta 
Psammoryctides barbatus 
Dero digitata 
Uncinais uncinata 

Class Bivalvia 
Unio tumidus 

Class Arachnida 
Fiona rotundoides 

Class Insecta 
Caenis horaria 
Lipiniella arenicola 
Polypedilum bicrenatum 

Class Arachnida 
Limnesia maculata 

A partial canonical correlation analysis was performed with macroinvertebrates 

constrained by contaminants after the effect of the ecological variables had been removed. 

The resulting species and contaminants distribution pattern for the first two axes is given in 

Figure 2. The axes constructed are linear combinations of the variables included; hence, the 

sequence of the taxa is determined by the contaminants. Most contaminant arrows point to 

the left-hand side, indicating that concentrations increase from the center to the left. The 

arrows of all trace metals are shorter than those of most PAHs and oil. This indicates that 

the sequence of the taxa is determined more by PAHs than by trace metals, as was also 

concluded from Table 5. 
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Table 5: Partitioning of the variance in the species data in percentages obtained from partial 
canonical correspondence analyses with contaminant concentrations and ecological 
factors as explanatory variables. Note that the sum of the variances explained by 
the individual ecological variables or contaminants does not equal the variance 
explained by the ecological variables or the contaminants as a group. See Table 2 
for explanation of river branch abbreviations. Not significant contributions (Monte 
Carlo test, P>0.05) are italicized. 

Source of variation Delta River branch 

Ecological factors 
River branch 
Current velocity 
Organic carbon 

content 
Sediment dry weight 
Grain size 
Consolidation 
Depth 
PH 
Erosion by shipping 
Erosion by wind 

Contaminants 
PAHs 
Trace metals 
Oil 
PCBs 

Shared by ecological 
factors and 
contaminants 
Unexplained 

17.3 

13.8 

14.7 

54.2 

6.4 
0.4 
0.6 
0.6 
1.6 
0.6 
1.1 
0.3 
0.6 
0.9 

6.7 
4.8 
0.8 
0.6 

BB1 

16.8 

32.5 

11.9 

38.8 

1.7 
1.4 
0.9 
3.5 
1.5 
1.9 
1.4 
1.5 
0.9 

14.9 
13.8 

1.6 
1.4 

HD2 

15.7 

31.9 

24.8 

27.6 

HV3 

15.6 

2.5 
4 

-
3.7 
2.4 
3.3 
1.8 
2.0 
1.0 

27.6 
12.6 
13.1 

-
2.4 

13.5 

43.3 

0.9 
-

1.2 
3.0 
1.6 
1.8 
1.7 
0.0 
1.5 

12.0 
15.4 

-
-

Total 100.0 100.0 100.0 100.0 
^ additional variables omitted due to high VIF: chrysene, nickel 
2: additional variables omitted due to high VIF: chrysene, fluoranthene, 
indeno(1,2,3-cd)pyrene 

3: additional variables omitted due to high VIF: zinc, anthracene, 
benzo[b]fluoranthene, benzo[g/7/]perylene, phenanthrene 
": - indicates variables omitted due to high VIF 
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Figure 2: Positions of taxa and contaminants in the ordination diagram for the first two axes 
of a partial canonical correspondence analysis in which the species data were 
constrained by the contaminants after the effects of other variables had been 
removed. Taxa are represented by boxes, contaminants by arrows and their 
abbreviations: AcN = acenaphtene, ANT = anthracene, BbF = 
benzo[ft]fluoranthene, BgP = benzo[gh/]perylene, BkF = benzo[/c]fluoranthene, 
Chr = chysene, DBA = dibenzo[ar)]anthracene. Fen = phenanthrene, Fie = 
fluorene. Flu = fluoranthene, Inp = indeno(7,2,J-cd)pyrene, Naf= naphtalene. As 
= arsenic, Cd = cadmium, Cr = chromium, Cu = copper, Pb = lead, Hg = mercury, 
Ni = nickel, Zn = zinc, PCB = polychlorinated biphenyls. The length of the arrow is 
a measure of the importance of the contaminant, while the arrowhead points in 
the direction of increasing influence. 

The positions of the taxa of different taxonomic groups in the ordination diagram are 

presented in Figure 3. Most bivalve and gastropod taxa are located in the center and the left-

hand side of the diagram (Figures 3a, 3b) and are thus associated with elevated contaminant 

concentrations. Oligochaete and chironomid taxa occurred mainly in the central and right-

hand parts of the diagram (Figure 3c, 3d) and are associated with lower contaminant 

concentrations. 

In Figure 4, the positions of the taxa in the ordination diagram are labeled with their 

trophic relationships as derived from the literature (VERDONSCHOT 1990, MERRITT AND CUMMINS 

1996). Carnivores (Figure 4a) and detriti-herbivores (Figure 4b) are positioned throughout 

the diagram, showing no correlation with contaminant concentrations. Herbivores (Figure 4c) 

aggregate together in the left-hand part of the diagram and are associated with elevated 
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Figure 3: Positions of taxa from selected taxonomic groups in the ordination diagram of a 
partial canonical correspondence analysis in which the species data were 
constrained by contaminants after the effects of other variables had been 
removed. (A) Bivalvia, (B) Gastropoda, (C) Oligochaeta, and (D) Chironomidae. 
H = taxa belonging to the specific taxonomic group, open squares = other taxa. 

contaminant concentrations. Detritivores (Figure 4d) are located more to the right and are 

therefore associated with lower contaminant concentrations. 

Calculating the contributions of the different groups of contaminants was impossible for 

the Dordtsche Biesbosch and the Nieuwe Merwede because there were too few observations. 

Compared to the results of the whole delta, the three river branches Brabantsche Biesbosch, 

Haringvliet and Hollandsch Diep showed a lower percentage of unexplained variance and a 

similar percentage of variance explained by the ecological factors as a group (Table 5). The 

contribution of contaminants as a group for these branches was at least double that of the 

whole delta and much larger than the percentage explained by ecological variables. In all 

three branches, the contributions of PAHs and trace metals were of the same order of 

magnitude. These percentages were much higher than those observed for the delta as a 

whole, but the CCAs were not significant except for trace metals in the Brabantsche 

Biesbosch. Although the contribution of trace metals and PAHs were in the same order of 

magnitude for the Brabantsche Biesbosch, only trace metals had a significant contribution. 

This is due to the lower number of metal than PAH variables included in the analysis. 
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Figure 4: Positions of taxa from selected trophic groups in the ordination diagram of a 
partial canonical correspondence analysis in which the species data were 
constrained by contaminants after the effects of other variables had been 
removed. (A) carnivores, (B) detriti-herbivores, (C) herbivores, and (D) 
detritivores. L J = taxa belonging to the specific functional feeding group, open 
squares = other taxa. 

The variance partitioning from the analyses with the ecological factors (Table 5) and the 

three bioassays (Table 6) gave different results. The contributions of the bioassays in 

explaining the variation in the in situ macroinvertebrates ranged from 0 to 10%, however, 

the contribution (1.9%) was only significant for the whole delta. The analyses with the 

bioassays as explanatory variables resulted in a lower percentage of explained variance than 

the analyses with measured contaminants concentrations. The contribution of the ecological 

variables, however, was higher for the analyses with bioassays (Table 6) than for those with 

measured contaminants concentrations (Table 5). The proportion shared variance on the 

other hand was higher for the analysis with contaminant concentrations. The results thus 

indicate that the effect classes of the bioassays correlate less closely with the in situ 

macroinvertebrate variation than the measured contaminant concentrations. 
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Table 6: Partitioning of the variance in the species data in percentages obtained from partial 
canonical correspondence analyses with the results of the three bioassays and 
ecological factors as explanatory variables. Note that the sum of the variances 
explained by the individual bioassays does not equal the variance explained by the 
bioassays as a group. See table 2 for explanation of river branch abbreviations. Not 
significant contributions (Monte Carlo test, P>0.05) are italicized. 

Source of variation 

Ecological factors 
Bioassays 
Daphnia magna 
Chironomus riparius 
Vibrio fischeri 

Shared by ecological 
factors and bioassays 
Unexplained 
Total 

Delta 

30.4 
1.9 
0.5 
0.7 
0.4 

1.5 
66.2 

100.0 

River branch 
BB DB1 HD2 

27.2 
5.5 
1.7 
2.1 
1.3 

1.4 
65.9 

100.0 

42.2 
5.6 
2.2 
1.3 
1.5 

5.1 
47.1 

100.0 

HV2 

26.3 
4.5 
1.4 
2.1 
0.1 

3.1 
66.1 

100.0 

NM3 

53.9 
10.1 
3.6 
3.0 
2.3 

1.1 
34.9 

100.0 
1: too few observations to calculate variance partitioning 
2: organic carbon content omitted from analyses due to high VIF 
3: sediment dry weight omitted from analyses due to high VIF 

Discussion 

Macroinvertebrate community 

Although the water quality of the river Rhine has improved significantly in the last two 

decades (ADMIRAAL ET AL. 1993), the development of benthic macroinvertebrate communities 

in this delta is limited by chemical and non-chemical stressors (SMIT AND VAN DER VELDEN 

1993). The macroinvertebrate communities from a wide range of environmental conditions in 

the Rhine-Meuse delta are relatively poor in species composition, and the majority of the 

taxa collected in the present study are not typical of the downstream parts of large rivers. 

Despite the severe human impact on these water systems, limited numbers of taxa typical of 

large rivers are still present. Their presence may be an indication that restoration of these 

systems may result in communities that are characteristic of lowland rivers. 

Main factors 

Studies on the littoral macroinvertebrate community in the enclosed Rhine-Meuse delta 

have shown that geographical zones and grain-size composition were the most important 

factors influencing species composition (SMIT ET AL. 1994). Although the present study 

confirms these two variables were the most important among the ecological variables, both 
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made minor contributions to the explanation of the observed variation. The results of the 

present study also show significant impacts of contaminants, especially PAHs and trace 

metals. This contrasts with the results of an earlier study based on the same data set, which 

concluded that ecological factors overruled the minimal impact of the contaminants 

(REINHOLD-DUDOK VAN HEEL AND DEN BESTEN 1999). In the earlier data analysis, the 

contribution of the different variables was not quantified but rather was estimated from 

direct ordinations in which ecological factors and contaminants were used as explanatory 

variables. Furthermore, the earlier study distinguished four sediment types, and multivariate 

analyses were performed per sediment type. The present study also differs from the earlier 

study with respect to contaminant concentrations. Prior to multivariate analysis, contaminant 

concentrations were normalized to organic matter content to better approximate the 

bioavailable contaminant concentrations more closely (PEETERS ET AL. 2000). Normalizing 

contaminant concentrations to organic carbon content yielded a better relationship between 

the contaminants and the in situ macroinvertebrate community structure in the Rhine-Meuse 

delta. 

Bioassays 

The present study showed that all three bioassay responses had significant relationships 

with certain common ecological variables. The effect classes of all three bioassays showed 

significant relations with oil, but only the pore-water bioassay with Vibrio fischeri was 

significantly related to two trace metals and one PAH. Thus, the three bioassay responses 

are not only susceptible to pollutants but also correlate with non-pollutant factors. Bioassays 

are affected by a variety of factors, such as experimental design (NAYLOR AND HOWCROFT 

1997), sample storage time (SAE ET AL. 1998), sediment manipulations (DAY ET AL. 1995b), 

and food addition (HARKEY ET AL. 1994a). The present study clearly shows that the responses 

in the bioassays are affected by toxicants but also by other field circumstances. 

This study showed that the responses in the bioassays with Daphnia magna and Vibrio 

fischeri were related to only a few distribution and abundance patterns of in situ 

macroinvertebrate species in the Rhine-Meuse delta. A larger, but still limited, number of in 

situ macroinvertebrate species showed a significant relationship with the responses in the 

Chironomus riparius bioassay. This indicates that whole-sediment bioassays give better 

results than bioassays with pore-water, which is in line with previously published data 

(RISTOLA ET AL. 1996, COTE ET AL. 1998). According to HARKEY ETAL. (1994b), the 

bioavailability of contaminants can be more accurately predicted in bioassays that expose 

organisms to whole sediments than in those that expose organisms to aqueous 

representations of whole sediments. 

Various species of Chironomus were present in the Rhine-Meuse delta and their 

distribution patterns might be expected to show a significant relationship with the results of 

the Chironomus riparius bioassay. This was not the case, however, and this discrepancy 

could be explained by the fact that bioassays use specimens from cultured populations. 
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Furthermore, it is known that in situ species can have higher tolerances to contaminants as a 

result of competition and selection (BLANCK AND WANGBERG 1988, CAIRNS ET AL. 1994, POSTMA 

ETAL. 1995). 

Only a small proportion of the total variation in the macroinvertebrate data could be 

related to effect classes of bioassays in the present study (1.9% for the Rhine-Meuse delta). 

This was much lower than the proportion explained using the contaminant concentrations as 

explanatory variables. This finding contrasts with those by BESSER ET AL. (1996) who found 

that laboratory sediment bioassays with Hyalella azteca and Chironomus tentans 

discriminated more accurately between sites with various degrees of contamination than did 

characterization of benthic communities. In their study, however, all sites were dominated by 

oligochaetes, whereas the species variety in the Rhine-Meuse delta was much higher. 

The contribution of the ecological variables was higher for the analyses with bioassays 

than for those with measured contaminant concentrations as explanatory variables. The 

proportion of the shared variance, however, was higher for the analysis with contaminant 

concentrations. It seems, therefore, that, in the analyses with bioassay responses as 

explanatory variables, the effect of the ecological variables are overestimated due to 

covariation with the contaminant concentrations. 

In conclusion, the present study showed that laboratory bioassay responses are weakly 

correlated with the in situ macroinvertebrate community structure. This might be due to the 

manipulation of the test or to the higher tolerances to pollutants of the in situ species. 

Hence, extrapolating the observed laboratory effects at the species level to the complexity of 

the field situation at the community level is problematic. 

Variance partitioning 

The partial canonical correspondence analysis for the whole Rhine-Meuse delta showed 

that 45.8% of the total variation in the species data could be explained by the variables used 

in the analysis. Although a large part of the total biological variance was explained, another 

part remains unexplained that may be due to, e.g., stochastic events, natural fluctuations, 

and contaminants or stress factors not considered in this study. Biological factors, like 

predation by fish and birds on macroinvertebrates and competition for food or habitat, might 

contribute to the unexplained variance. Another reason for the lower explained variance 

might be that the Rhine-Meuse delta is a complex environment with simultaneously acting 

multiple stressors, resulting in a community of more tolerant species. 

The common ecological variables explained a somewhat larger proportion of the 

biological variation in the delta than contaminants. The variance shared by the ecological 

factors and the contaminants was larger than in some other studies (PINEL-ALLOUL ET AL. 

1996, PEETERS ET AL. 2000). This means that a substantial part of the explained variation 

cannot be allocated to a specific source. For the Rhine-Meuse delta, PAHs as a group 

accounted for 6%, trace metals as a group for 4.1%, and oil for only 0.7% of the observed 

biological variation. Although these contributions were not very large, they were highly 

75 



CHAPTER 4 

significant. The findings of the present study show that carnivores and detriti-herbivores are 

hardly affected by sediment contaminants. Detritivores, like oligochaete and certain 

chironomid taxa, seem to avoid elevated sediment contaminant concentrations, whereas 

herbivores such as bivalve and gastropod taxa seem to be more tolerant. It seems therefore 

that sediment-feeding taxa are more affected by sediment contaminants than taxa with 

other feeding modes. The results clearly indicate that sediment contamination affects the 

macroinvertebrate food web structure. 

The present study found nearly all ecological factors to be significant in explaining some 

of the observed biological variation in the Rhine-Meuse delta. However, analyses of the 

individual river branches showed that the contributions of individual variables were mostly 

not significant, although the contribution of the ecological factors as a group or the 

contaminants as a group was significant. This might be partially due to the smaller number 

of samples in the individual analyses. However, the results clearly indicate that the aquatic 

communities are affected by the combination of all environmental stressors. 

The method of variance partitioning could not be applied to all individual river branches 

because the number of observations was too small. Relatively large numbers of observations 

are required to calculate the partitioning, which is a disadvantage of the method. The 

present study showed that the method allows quantification of the impact of different groups 

of contaminants and may thus be a useful tool for priority setting. 

In conclusion, the contribution of different groups of contaminants (trace metals, PAHs, 

oil) to the structuring of the in situ macroinvertebrate community in the Rhine-Meuse delta 

was quantified using the method of variance partitioning. The results also indicate that 

sediment contamination significantly affected the macroinvertebrate food web structure. 

Laboratory bioassays were weaklier correlated with the in situ macroinvertebrate 

composition than chemical measurements. Because field surveys and bioassays reveal 

different information on ecotoxicological effects, it is recommended both be incorporated in 

future sediment risk assessment procedures. 
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CHAPTER 5 

Summary 

Logistic regression predicts the probability of occurrence of a species as a function of 

environmental variables. This technique was applied to a large data set describing the 

distribution of two common gammarid species, Gammarus fossarum and Gammarus pulex, in 

streams in the Netherlands, to evaluate its usefulness in defining habitat requirements. 

A method is presented that derives optimum habitat ranges for environmental variables 

from logistic regression equations. The calculated optimum habitat ranges, which are related to 

the maximum likelihood of presence in the field, agreed with habitat requirements and 

ecological tolerances in the literature. 

Single logistic regressions provide good descriptions of the optimum habitat requirements 

and multiple logistic regressions give insight into the relative importance of each environmental 

variable. It is the combination that makes logistic regression a valuable tool for constructing 

habitat suitability indices. 

Current velocity, pH, Kjeldahl nitrogen, total phosphorus, ammonium nitrogen, 

conductivity, width and depth are, in this sequence, the most important environmental variables 

in predicting the probability of occurrence of G. fossarum, whereas current velocity, Kjeldahl 

nitrogen, pH and depth are the most important variables for the prediction of the probability of 

occurrence of G. pulex. 

Introduction 

The Law of Tolerance (SHELFORD 1913) states that the occurrence of an organism is 

bounded by a minimum and a maximum value for any environmental variable, representing the 

limits of its tolerance. Knowledge of the habitat requirements of organisms expressed as 

minimum, optimum and maximum values provides very useful information for both water 

quality management (STATZNER AND SPERLING 1993) and restoration projects (OSBORNE ET AL. 

1993). 

The Habitat Evaluation Procedure (HEP) is commonly used to define the suitability of 

habitats (U.S. FISH AND WILDLIFE SERVICE 1980). HEP uses Habitat Suitability Index (HSI) models, 

which are often derived from qualitative data from the literature. A more quantitative definition 

of habitats may be obtained by using multivariate statistical methods, but there is a general lack 

of data quantifying the relationships between species and their habitats (SCHAMBERG AND KROHN 

1982). 

Regression methods are useful in the analysis of relationships between a response variable 

and one or more explanatory variables (HOSMER AND LEMESHOW 1989). The advantage of logistic 

regression is that the probability of occurrence of an event can be predicted as a function of 

one or more independent variables (JONGMAN ET AL. 1987, HOSMER AND LEMESHOW 1989, TREXLER 

AND TRAVIS 1993). This has made logistic regression a popular technique in clinical biostatistics 
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(e.g. VAN HOUWELINGEN AND LE CESSIE 1990). Logistic regression is preferred over simple 

weighted averaging as a practical method for summarizing species' distributions along 

environmental gradients (TER BRAAK AND LOOMAN 1986). Stochastic habitat models that combine 

both biota (species) and their relation with relevant environmental data can be constructed 

from large data sets by logistic regression (AUSTIN ETAL. 1984, HUISMAN ET AL. 1993). This 

technique enables prediction of the probability of occurrence of a species as a function of an 

environmental variable. 

Logistic regression has been applied in environmental studies of macrophytes (e.g. TER 

BRAAK AND GREMMEN 1987, DE SWART ETAL. 1994, ODLANDETAL. 1995), birds (e.g. RAMSEY ETAL. 

1994), and freshwater diatoms (TER BRAAK AND VAN DAM 1989, BIRKS ET AL. 1990). In the field of 

freshwater animal ecology this technique has hardly been used. UDEVITZ ETAL. (1987) applied 

logistic regression to mosquito larvae and EYRE ET AL. (1992,1993) to water beetles. The aim of 

the present study, therefore, was to evaluate logistic regression in defining habitat 

requirements of aquatic macroinvertebrates. The results of logistic regression were compared 

with data from the literature on the ecology of two species, Cammarus fossarum Koch, 1835 

and Gammarus pulex Linnaeus, 1758. 

Materials and methods 

Data from 4084 macroinvertebrate samples from running waters in the Netherlands were 

provided by several regional waterboards. Gammarus fossarum and Gammarus pulex were 

selected because they occurred frequently (G. pulex in 1425 samples, G. fossarum in 397 

samples), they were easy to identify and, according to the literature, had different habitat 

preferences. Information on abiotic circumstances at the sampled sites was incomplete, but 

fourteen variables had been measured in most of the cases (Table 1). 

Logistic regression 

Logistic regression falls within the general framework of Generalized Linear Models (GLM) 

and can be used to analyze the relationship between a binary response variable and one or 

more explanatory variables (HOSMER AND LEMESHOW 1989). The 'presence-absence response 

curve' of a species (TER BRAAK AND LOOMAN 1986) describes the probability of the species being 

present, p(x), as a function of a measured environmental variable x. The general expression for 

this probability is: 

p(x) = - ^ r (1) 
l + exp*^"** 

The parameters Bo, B, and B2 of equation 1 are regression coefficients with B0 as intercept or 

constant term. The resulting response curve, the 'Gaussian logit curve' (JONGMAN ETAL. 1987), is 

symmetrical and bell-shaped. When the parameter B2 becomes zero, the model produces a 

83 



CHAPTER 5 

Table 1: Environmental variables with numbers of observations, median, minimum and 
maximum values. 

Variable 

Current velocity 
Width 
Depth 
BOD* 
Chloride 
Conductivity 
Ammonium nitrogen 
Kjeldahl nitrogen 
Oxygen 
Oxygen saturation 
Total phosphorus 

PH 
Sulphate 
Water temperature 

cm s"1 

m 
m 

mgl"1 

mgl 1 

uS cm"1 

mgl"1 

mgl 1 

mgl 1 

% 
mgl'1 

-
mgl-1 

°C 

Number of 
observations 

2438 
3140 
3739 
1376 
2042 
1733 
2042 
1286 
2025 
2025 
1737 
2087 
1089 
2758 

median 

25 
4.00 
0.40 
3.0 
42 
547 
0.62 
2.50 
8.40 
78 

0.44 
7.3 
60 
13 

Value 
minimum 

0 
0.10 
0.01 
0.1 
6 

88 
0.01 
0.10 
0.10 

1 
0.01 
3.9 
9 
0 

maximum 

200 
40.00 
5.00 
64.0 
498 
7942 
57.00 
68.00 
27.00 
307 

18.00 
9.7 
445 
30 

: biological oxygen demand 

sigmoidal increase or decrease in the probability of occurrence. Equation 1 can be transformed 

to the logit function (2). 

p(x) 
g(x) = log 

l-p(x) 
= P0+/3lx + l32x

2 (2) 

Equations 1 and 2 can be extended to include more than one variable. The transformation of 

p(x) to g(x) results in a linear regression model in which the logit, g(x), is linear in its 

parameters, may be continuous, and may range from -°° to +~, depending on the range of x 

(HOSMER AND LEMESHOW 1989). The maximum likelihood principle is used to estimate the values 

for the parameters B0, Bi and B2. Estimates of the optimum (u) and the tolerance (r) can be 

obtained from the estimates of the parameters Bi and B2 (JONGMAN ETAL. 1987): 

202 
(3) 

V 7 ^ 
(4) 

The likelihood ratio test is applied to assess the significance of the estimated parameters B, 

and B2 (HOSMER AND LEMESHOW 1989). This is carried out by comparing the predictive value of 
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models including the estimated parameters with those not including them. If the removal of a 

parameter does not lead to a decrease in the predictive power of the model, the parameter is 

excluded (TREXLER AND TRAVIS 1993). 

The deviance of a model with only a constant term (= null model) is equivalent to 

apportioning all of the variation to the random (error) component and is analogous to the total 

sum of squares in normal linear regression. The deviance of each fitted model is analogous to 

the residual sum of squares in linear regression. The reduction in deviance (R) is used to assess 

the contribution of a model to the explanation of the variance in the data points: 

R = —— *100 (5) 
Do 

where R = reduction in deviance, D0 = deviance of the model without explaining variables and 

Di = deviance of the model with explaining variables. The deviance from the model with 

explaining variables (D,) is always lower than the deviance from the model without those 

variables (D0). If D, is high, approaching the value of D0, the reduction in deviance is small. Low 

values for D, will result in high values for the reduction in deviance, which indicate that the 

logistic regression model fits the data well. If the reduction in deviance is larger than the critical 

value of chi-square at the 95% level of significance for n degrees of freedom (n being the 

number of additional parameters), then the inclusion of that parameter is considered significant. 

Data analysis 

Logistic regression was applied to the presence/absence data for both gammarid species, 

using the SPSS-PC software package (NORUSIS 1992). Separate single analyses were performed 

for each environmental variable, using logarithmically transformed data when these gave 

greater deviance reduction. Cases with missing data were left out. Tests were carried out to 

establish whether the parameters B1f B2 from equation 2 differed significantly from zero 

(P<0.01). Probability functions were plotted against the environmental variables. From these 

plots the values were ascertained at which both species reached the maximum probability (pmax) 

and at which the species no longer occurred (px <1%). The value where pmax is reached is 

equivalent to the optimum u from equation 3 for Gaussian response curves. 

Logistic regression analysis results in an equation describing the probability of species 

occurrence as a function of an environmental variable, whereas existing autecological 

information is usually expressed as ranges of environmental variables. Optimum habitat 

requirements were calculated from the regression equations to allow a comparison of the 

results with data from the literature. The optimum habitat requirement was defined as that 

range of the environmental variable for which the probability divided by the maximum 

probability was 0.75 or higher. This range was compared with that which can be obtained from 

the optimum (u in equation 3) and tolerance (t in equation 4), for B2 < 0 (JONGMAN ET AL, 

1987). 
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Multiple stepwise logistic regressions were applied in order to determine the minimal 

adequate set of variables for predicting the probability of occurrence of both species. The 

relevant terms from the single regressions were used as independent variables. The same 

procedures and statistical tests were used as within single regressions. Cases with missing data 

were omitted. Final analyses were undertaken with the minimal adequate set, leaving out one 

variable per analysis, to assess the relative contribution of the individual variables. 

Results 

Tables 2 and 3 show the estimated values for the parameters Bo, I3i and B2 from equation 

2, the maximum probability and the percentage reduction in deviance for C. fossarum and G. 

pulex, respectively. In the case of sulphate, the estimated parameters were not significant, so 

the variance in the data could not be explained by this variable. 

Table 2: Estimated values for the parameters B0, Blr B2 from equation (2), maximum probability 
(Pmax). and percentage deviance reduction (R) for Gammarus fossarum. See Table 1 
for units of the variables. 

Variable 
Current velocity 
Width1 

Depth1 

BOD 
Chloride1 

Conductivity1 

Ammonium nitrogen1 

Kjeldahl nitrogen1 

Oxygen 
Oxygen saturation 
Total phosphorus1 

PH 
Sulphate 
Water temperature 
1 LOG-transformed; 2 

Bo 
-4.3482 
-1.3676 
-4.4045 
-1.7324 
-2.7200 

-115.618 
-3.2175 
-1.8721 

-25.6799 
-33.6092 

-2.3570 
-149.256 

n.s.2 

-3.2996 
not significant 

Bi 

0.0778 
-2.5184 
-3.4893 
-0.1433 
7.4004 

85.4017 
-3.7586 
-2.7098 
4.3305 
0.6390 

-1.7586 
35.36360 

n.s.2 

0.4806 

B2 

-0.0004 
n.s.2 

-0.3195 
n.s.2 

-4.7918 
-16.0342 
-2.2208 
-1.7151 
-0.1922 
-0.0031 
-2.2420 
-2.1070 

n.s.2 

-0.0291 

Pmax 

0.36 
0.76 
0.78 
0.15 
0.53 
0.13 
0.16 
0.31 
0.21 
0.34 
0.12 
0.29 

0.21 

R 
14.3 
16.6 
19.8 
2.0 

22.6 
4.1 

11.7 
13.7 
17.6 
20.0 
4.0 

18.8 

7.5 

The estimated parameter B2 was not significantly different from zero for the variables width 

and biological oxygen demand (BOD) for both species and for chloride and ammonium nitrogen 

for G. pulex. The resulting response curve was therefore sigmoidal. For the other variables the 

response curve was symmetrical and bell-shaped. 

For G. fossarum, physical factors like current velocity, width and depth, and the chemical 

water quality variables chloride, oxygen, pH and nitrogen produced a greater reduction in 
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deviance than conductivity, BOD and total phosphorus (Table 2). For G. pulex, the greatest 

reductions in deviance were obtained for BOD, Kjeldahl nitrogen and current velocity (Table 3), 

but compared to the results of G. fossarum, these reductions were much smaller. The reduction 

in deviance was greater for G. fossarum than for G. pulex for all variables (except BOD). 

The maximum probability varied from 0.12 to 0.78 for G. fossarum (Table 2) and from 0.35 

to 0.63 for G. pulex (Table 3). It was nearly identical for both species as regards oxygen 

saturation and chloride but probabilities were higher for G. pulex than for G. fossarum for all 

other variables except width and depth. 

Table 3: Estimated values for the parameters B0, Bi, B2 from equation (2), maximum probability 
(Pmaxi, and percentage deviance reduction (R) for Gammarus pulex. See Table 1 for 
units of the variables. 

Variable 
Current velocity 
Width1 

Depth1 

BOD 
Chloride1 

Conductivity1 

Ammonium nitrogen1 

Kjeldahl nitrogen1 

Oxygen 
Oxygen saturation 
Total phosphorus1 

pH 
Sulphate 
Water temperature 
1 LOG-transformed; 2 

Bo 
-1.3422 
-0.3763 
-0.8965 
0.0924 
0.0932 

-8.9822 
-0.6708 
0.1149 

-2.4206 
-2.6058 
-0.5253 

-28.7082 
n.s.2 

-1.0700 
not significant 

B, 
0.0427 

-0.3180 
-1.1721 
-0.1472 
-0.3939 
6.4846 

-0.5988 
-0.7898 
0.3376 
0.0404 

-0.5813 
7.0268 

n.s.2 

0.1399 

B2 

-0.0003 
n.s.2 

-0.5837 
n.s.2 

n.s.2 

-1.2347 
n.s.2 

-0.5493 
-0.0124 
-0.0002 
-0.3289 
-0.4328 

n.s.2 

-0.0072 

pmax 

0.54 
0.48 
0.42 
0.52 
0.52 
0.39 
0.63 
0.60 
0.47 
0.35 
0.43 
0.45 

0.40 

R 
3.5 
0.4 
1.1 
3.5 
0.2 
0.3 
2.3 
3.6 
2.4 
2.5 
1.1 
2.6 

0.9 

Figure 1 shows the probabilities for both species for current velocity and Figure 2 for pH. 

Although the current velocity ranges in which the species occurred were comparable, the 

maximum probability was reached at different values (Figure 1). There were similar differences 

in maximum probability values for current velocity, conductivity, depth, ammonium and Kjeldahl 

nitrogen, oxygen saturation, water temperature, and total phosphorus (Table 4). Maximum 

probability values for pH (Figure 2) were similar for both species, but the range of occurrence 

was much wider for G. pulex than for G. fossarum. G. pulex occurred over a wider range than 

G. fossarum for all variables, except for current velocity (Table 4). 

The predicted range of occurrence of G. fossarum (Table 4) fell within the observed 

minimum and maximum values (Table 1), but beyond the maximum value for pH and the 

minimum values for chloride and water temperature. The predicted ranges of G. pulex (Table 4) 

fell within the observed ranges for current velocity, BOD and oxygen saturation (Table 1). For 

all other variables, the predicted range was wider than observed. 
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Figure 1: Probability of occurrence of Gammarus fossarum and Gammarus pulex as a 
function of current velocity. The squares represent actual frequency of occurrence 
of species along the gradient. 
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Figure 2: Probability of occurrence of Gammarus fossarum and Gammarus pulex as a function 
of pH. The squares represent actual frequency of occurrence of species along the 
gradient. 

The optimum habitat ranges for both species (Table 5) fell within the minimum and 

maximum observed values, except for the minimum values for width, BOD, chloride and 

Kjeldahl nitrogen. For BOD and Kjeldahl nitrogen, the minimum values were beneath the 

detection limit. 

The optimum ranges, defined as the intervals in which the probability divided by the 

maximum probability exceeded 0.75, gave results comparable to the ranges calculated from the 

optimum u (equation 3) and the tolerance r (equation 4) for those cases in which the estimated 

parameter I32 < 0. This coincidence in values indicates that the method used in the present 

study is valid for Gaussian response curves and therefore might be applied to sigmoidal 

response curves. 

G. pulex occurred over a wider pH range than G. fossarum (Figure 2), and this was also 

reflected in the derived optimum range (Table 5). The optimal habitat of G. fossarum consists 

of small, shallow streams with high current velocity, high oxygen content and alkaline water 

with low concentrations of nutrients (Table 5). The optimal habitat of G. pulex is found in small, 
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Table 4: Values for the variables at which the maximum probability (pmax) was reached and the 
total range of occurrence (probability > 1%). See table 1 for units of the variables. 

Variable 

Current velocity 
Width 
Depth 
BOD 
Chloride 
Conductivity 
Ammonium nitrogen 
Kjeldahl nitrogen 
Oxygen 
Oxygen saturation 
Total phosphorus 

pH 
Water temperature 

G. 

Pmax 

97 
0.1 
0.01 
1.0 
7 

501 
0.15 
0.16 
11.3 
103 
0.40 
8.4 
8.3 

fossarum 
range 
0-197 

0.1-24.0 
0.01-1.33 
0.1-33.0 
<62-69 

170-1620 
0.01-4.00 
0.10-8.20 
6.2-16.3 
55-143 

0.01-11.75 
6.9->9.91 

<02-21.2 

pmax 

71 
0.1 
0.10 
0.1 
6 

398 
0.01 
0.20 
14.0 
90 

0.13 
8.1 
9.8 

G. pulex 
range 
0-198 

0.1->40.001 

0.01->5.001 

0.1-37.0 
<62->4981 

<882->79421 

0.01-57.00 
0.10->68.001 

<02->27.01 

1-220 
0.01->18.001 

4.7->11.61 

<02->301 

: value higher than observed 
2: value lower than observed 

Table 5: Optimum ranges derived from the logistic regression equations. See Table 1 for units 
of the variables. 

Variable 

Current velocity 
Width 
Depth 
BOD 
Chloride 
Conductivity 
Ammonium nitrogen 
Kjeldahl nitrogen 
Oxygen 
Oxygen saturation 
Total phosphorus 
PH 
Water temperature 

G. fossarum 

I1 

65-130 
0.01-0.22 
0.01-0.04 
0.1-2.4 

3-14 
328-645 

0.05-0.35 
0.05-0.50 

9.88-12.65 
92-115 

0.10-0.98 
7.96-8.82 
4.8-11.7 

II2 

62-133 
3 

0.00-0.00 
3 

3-13 
307-691 

0.05-0.42 
0.05-0.56 
9.65-12.88 

90-116 
0.14-1.20 
7.90-8.88 
4.1-12.4 

G. 
I1 

28-114 
0.01-3.75 
0.02-0.76 
0.1-3.65 

6-95 
106-1667 
0.01-0.12 
0.05-2.14 
7.34-19.85 

53-127 
0.01-2.00 
7.07-9.16 
1.9-17.6 

pulex 

II2 

30-112 
3 

0.07-0.83 
_3 

3 

96-1832 
3 

0.05-1.72 
7.26-19.96 

51-151 
0.01-2.23 
7.04-9.18 
1.4-18.0 

^ Interval for which p,Jpm3X exceeds 0.75 
2: interval covered by (u-t) - (u+t) in case B2 < 0 (see equations 3 and 4) 
3: 62=0 

relatively shallow streams with moderate current velocity, high oxygen content and alkaline 

water with relatively low concentrations of nutrients. G. fossarum inhabits even smaller and 

shallower streams with higher current velocity than G. pulex. 
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Only 569 cases were included in the multiple regression analyses as a result of the missing 

data in the environmental variables. The variables incorporated in the minimal adequate model 

are given in Table 6 for G. fossarum and in Table 7 for G. pulex. The full model with all relevant 

terms gave greater reduction in deviance than the minimal adequate model for both species. 

The deviance reduction was greater for G. fossarum than for G. pulex. The model of G. pulex 

had four variables, two of them related to the physical habitat and two to water quality. In the 

model of G. fossarum the same variables were included plus four additional variables. Current 

velocity was the most important variable for both species, followed by pH for G. fossarum and 

Kjeldahl nitrogen for G. pulex. Depth was the less important variable included in the model for 

both species. 

Table 6: Results of the multiple logistic regression for Gammarus fossarum. Variables are 
ordered in increasing deviance reduction (R). See Table 1 for units of the variable. 

Model 
Full model 
Minimal adequat model 

Without 

Current velocity 

pH 
Kjeldahl nitrogen 
Total phosphorus 
Ammonium nitrogen 
Conductivity 
Width 
Depth 

R 
72.5 
62.3 
53.2 
53.3 
56.1 
57.8 
57.9 
58.9 
59.4 
60.5 

Table 7: Results of the multiple logistic regression for Gammarus pulex. Variables are ordered in 

increasing deviance reduction (R). See Table 1 for units of the variable. 

Model 
Full model 
Minimal adequat model 

Without 

Current velocity 
Kjeldahl nitrogen 

pH 
Depth 

R 
17.2 
13.6 
7.9 
9.9 
12.4 
12.6 

Current velocity, Kjeldahl nitrogen, pH, and depth were important for predicting the 

occurrence of G. pulex according to the results of the multiple regression analysis (Table 7). 

Although BOD gave a similar percentage in deviance reduction in the single regression analysis 

(Table 3), it was not included in the minimal adequate model. On the other hand, depth was 

included in the model although the single regression gave a moderate deviance reduction 

compared to the other variables. Current velocity, pH, Kjeldahl nitrogen, total phosphorus, 

ammonium nitrogen, conductivity, width and depth were included in the minimal adequate 
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model for G. fossarum. Chloride and oxygen saturation gave the greatest reduction in deviance 

in the single analysis for G. fossarum (Table 2) but were not included in the minimal adequate 

model. Total phosphorus and conductivity were included in the model, although they had a 

relatively low percentage deviance reduction in the single regression analysis (Table 2). 

Discussion 

Results of the present study found that current velocity was the most important factor for 

the distribution of both gammarid species. HOLTHUIS (1956), AMBOHL (1959), NIJSSEN (1963), 

MEIJERING (1971) and ADAMS ET AL. (1987) also found stream velocity to be one of the limiting 

factors for the distribution of either G. fossarum or G. pulex. The present study also found that 

G. fossarum preferred higher current velocities than G. pulex and that G. pulex could tolerate 

low flow rates but preferred moderate flow rates. These findings are in accordance with those 

of MEIJERING (1971) who studied the distribution of both species in the Schlitz area in Germany. 

In general, the data in the literature confirm the results obtained in the present study with 

respect to current velocity. 

G. fossarum preferred smaller, shallower streams than G. pulex; a finding that parallels 

studies showing that G. fossarum usually inhabits the smaller upper reaches of streams, 

whereas G. pulex occurs further downstream (HOLTHUIS 1956, NIJSSEN 1963, MEIJERING 1971, 

GOEDMAKERS 1972, JANETZKY 1994). 

This study showed that G. pulex tolerated low pH better than G. fossarum, but both 

species avoided acid conditions. Species of the genus Gammarus are regarded as among the 

most acid-sensitive organisms (SUTCLIFFE 1983, 0KLAND AND OKLAND 1986), and G. pulex does 

not occur where the pH drops below 5.7 (SUTCLIFFE AND CARRICK 1973, OTTO AND SVENSSON 

1983). However, MEIJERING (1971) found G. pulex could tolerate pH values down to 4.8, 

whereas G. fossarum was absent from streams where pH dropped below 5.4. In laboratory 

studies, a pH of 4.7 caused mortality in G. fossarum and of 4.5 in G. pulex (BREHM AND 

MEIJERING 1982). The 24-h LC50 range for G. fossarum was found to be between pH 4.0 and 4.5 

(MEINEL ET AL. 1985) and that for G. pulexXo be between 3.8 and 4.0 (NAYLOR ET AL. 1990). All 

studies confirm the greater tolerance of G. pulex for low pH. 

The optimum pH for gammarids is between 7.2 and 7.8 according to SCHUMANN (1928) and 

between 7.5 and 8.8 according to SCHRIMPFF AND FOECKLER (1985). These accord with the 

optimum habitat requirements derived from the present study. 

Logistic regression showed that G. pulex had a greater tolerance for low oxygen 

concentrations than G. fossarum, but that both species inhabited well oxygenated reaches of 

streams. These results confirm studies showing that G. pulex is the more resistant to lower 

oxygen concentrations (MEIJERING ET AL. 1974, JAHRETAL. 1980, MEIJERING 1991, JANETZKY 

1994). 

Optimum ranges obtained in the study reported here for other variables like BOD, 
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ammonium nitrogen, chloride and phosphorus cannot be evaluated because no relevant 

literature data are available. Ranges presented in the literature are restricted to minimum and 

maximum values and do not include optima. The optimum ranges for the variables reported 

here fall within these minimum and maximum values. 

Most studies reported in literature were, like this one, based on assessment of distribution 

data, and some degree of confirmation of present results could therefore be expected. It 

appeared that under laboratory conditions both gammarid species tolerated pH values where 

they were never found in field situations. Although some phenomena are confirmed by 

laboratory studies, for example the greater tolerance of G. pulex for low pH, the data on optima 

and tolerances might be quite different from field studies. These differences can be due to 

disregarding the effects of other environmental variables and biological phenomena like 

predation and competition in laboratory studies. This makes validation of the present results 

with laboratory data less useful. It also is a plea for deriving habitat requirements from field 

instead of laboratory studies. 

The reduction in deviance was greater for G. fossarum than for G. pulex. Greater 

reductions in deviance usually indicate a better fit and, since the reduction in deviance was 

rather low for G. pulex, it might be concluded that the logistic regression model was not 

appropriate for this species. A regression model results in greater reduction of the deviance if 

the occurrence of a species is restricted to a small part of an environmental gradient, as was 

the case with G. fossarum. However, ecologically tolerant species occur over a wide range of 

environmental conditions, which automatically results in a smaller reduction of the deviance. 

Thus, smaller reductions in deviance may indicate that the model is inappropriate. Alternatively, 

they may indicate that the species has a wide ecological tolerance. 

The optimum range for a species was defined as the interval in which the probability 

divided by the maximum probability exceeds 0.75. Optimum ranges were also calculated from 

the optimum (u in equation 3) and the tolerance (t in equation 4), provided the resulting 

response curve is bell-shaped with an optimum (parameter B2 from equation 2 < 0) (JONGMAN 

ET AL. 1987). Comparison of the method used in the present study with the latter one showed 

that the resulting ranges were comparable. This coincidence in values indicates that the method 

used here is valid for Gaussian response curves and probably also for sigmoidal response 

curves. The advantage of the method presented here is that it can also be applied in situations 

where 62=0 or B^O. 

The present study has shown that, for common aquatic macroinvertebrates, optimum 

ranges for each variable can be derived from large data sets with missing data using logistic 

regression. These optima are related to the maximum likelihood of presence in the field. The 

significance of the estimated parameters in the regression model, the reduction in deviance and 

the maximum probability reflect the importance of an environmental variable in accounting for 

the occurrence of a species, but do not determine which variables were the most important. In 

statistical modeling, the principle of parsimony means that models should have as few variables 

as possible (CRAWLEY 1993). The minimal adequate model in the present study for G. fossarum 
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included eight variables and four for G. pulex. The variables included in the models are not 

necessarily variables that gave greater reduction in deviance in the single regressions. Variables 

that gave small reduction in deviance in the single analysis were also included. Therefore, no 

conclusions concerning the relative importance of variables can be drawn from single 

regressions. 

Responses of organisms in space and/or time may be the result of physiological limitations, 

interactions with other organisms, human interference or other factors (HUISMAN ET AL. 1993). 

Simple mathematical models describing the observed relationships between a species and an 

environmental variable are needed and the bell-shaped Gaussian response model is one of the 

classical and frequently used models (WHITTAKER 1956, GAUCH ANDWHITTAKER 1972, ELLENBERG 

1983, TER BRAAK AND LOOMAN 1986). Logistic regression, as applied in the present study with 

linear and quadratic terms, yields results confirmed by literature. However, there are examples 

from vegetation sciences showing that response curves may be skewed or asymmetrical 

(AUSTIN 1987, DE SWART ET AL. 1994). The shape of the curve depends on the scale and type of 

the environmental gradient (AUSTIN 1980) and non-parametric Generalized Additive Models 

(GAM) might be more appropriate to model such responses. GAMs are useful in an exploratory 

sense and when the data are too complex for GLMs (YEE AND MITCHELL 1991). However, GLM 

models are regarded as parsimonious relative to GAM models if there is an equality in the 

number of terms and degree of freedom (CRAWLEY 1993). An example of the combined use of 

GLM and GAM is given by HEEGAARD (1997). Investigation is needed to discover whether these 

GAMs result in a better description of the habitat requirements of aquatic macroinvertebrates 

than those obtained by logistic regression. 

The optima for current velocity, habitat dimensions, pH, and oxygen obtained from the 

single logistic regressions corresponded with those described in the literature. Differences in 

tolerance between the two species were also detected. For common aquatic 

macroinvertebrates, habitat requirements can be derived from large data sets using logistic 

regression for main factors like current, oxygen, pH, and dimensions that are ecologically 

meaningful. Multiple logistic regressions provide stochastic models with the minimal set of 

environmental variables necessary for predicting the probability of occurrence. The relative 

importance of each variable can also be derived. It is the combination of optimum habitat 

ranges and the relative importance of the environmental variables that makes logistic regression 

valuable in constructing habitat suitability indices. 
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CHAPTER 6 

Abstract 

Experiments were performed to study the effects of current flow and substratum 

composition on survival, growth and food consumption of the waterlouse Asellus aquaticus 

(L). Short-term effects of increasing current flow depended on the size of the animal and 

the type of substratum. Critical current flow for detachment was almost the same on sand as 

on a polished surface whereas on gravel A. aquaticus could withstand higher flow velocities 

by hiding in interstitial spaces. Long-term experiments with different combinations of current 

flow and substratum composition showed that flow had a greater effect than substratum on 

survival and growth. Substratum, however, had a greater influence on the distribution of 

individuals in the experimental unit. Since growth was reduced at high current flow and no 

changes in levels of food intake were observed it is concluded that a substantial amount of 

energy is required for withstanding current at higher flow rates. Furthermore, mortality 

showed a strong inverse correlation to growth. The interaction of effects of natural habitat 

characteristics and those of human-induced stressors such as trace metals and pesticides 

may be better understood using an experimental and modeling approach focusing on energy 

budgets. 

Keywords: energy budgets, interactive, isopoda, multiple stress, scope for growth 

Introduction 

Aquatic ecosystems are complex systems that are controlled and regulated by various 

physical, chemical, and biological processes. Therefore, aquatic organisms are exposed to a 

wide range of stressors that vary spatially and temporally. Frequently, these stressors are 

interrelated and act simultaneously. For example, current velocity and substratum 

composition in streams are strongly correlated (e.g. STATZNER 1981; MINSHALL 1984). These 

two physical factors have a major impact on the distribution of macroinvertebrates (e.g. 

HYNES 1970; MERRITT AND CUMMINS 1996; PEETERS AND GARDENIERS 1998). Individual effects of 

current velocity or substratum composition on aquatic macroinvertebrates have been studied 

intensively (e.g. STATZNER 1981; TOLKAMP 1982; ERMAN AND ERMAN 1984; LOVE AND BAILEY 

1992; LAYZER AND MADISON 1995). Substratum acts directly on an organism as a medium for 

their existence, and indirectly as a major modifier of their environment and thus determines 

to a large extend the environmental conditions to which organisms are exposed (MINSHALL 

1984). Current velocity usually interacts with other ecological variables and induces a direct 

physical force that determines habitat conditions for benthic invertebrates (WARD 1992). 

Recent studies showed that the combined effect of two simultaneously operating 

stressors may be different from the individual effects. For example, HANAZATO AND DOBSON 

(1995) and RASMUSSEN (2000) observed that the combined effect of two contaminants 
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exceeds the summed effects of the individual contaminants. Other studies showed that the 

impact of a contaminant depends on other non-contaminant factors (e.g. WEBER ET AL. 1992; 

LEMLY 1993; PRESTON ET AL. 1999). Similar results have been obtained in studies that focus 

on the combined effect different environmental factors (e.g. PORTER ET AL. 1999; RALPH 

1999). Susceptibility to stressors seems to be species dependent (e.g. DIAZ ET AL. 1995; 

WILLIAMSON ET AL. 1999) and may be influenced by the presence or intensity of other 

stressors in the environment (e.g. FOLT ET AL. 1999; LENIHAN ET AL. 1999). To date, there is 

still a limited understanding of the complex effect interactions of multiple stressors and the 

ecological science is still in the first stages of evaluating the effects of multiple stressors on 

natural communities. 

Due to the strong interrelationship between current velocity and substratum 

composition, it is difficult to disentangle causal links from analyses of field distribution 

patterns. This can only be reached by performing laboratory experiments in which the two 

factors are varied systematically in order to determine the strength of their interactions 

(MINSHALL 1984) and to assess the relative contribution of each factor. However, only a 

limited number of publications is available nowadays that address the effects of interrelated 

physical factors on macroinvertebrates (e.g. FELTMATE ET AL. 1986; BARMUTA 1990; LANCASTER 

AND MOLE 1999). 

The objective of this study was to investigate the individual and interactive effects of 

current flow and substratum composition on survival, growth, and behavior of the 

waterlouse Asellus aquaticus (L.) in laboratory experiments. This species was selected 

because it is widely distributed throughout Europe, is common in Dutch streams, and its 

abundance is higher in regulated than in natural, pristine streams. In a pre-experiment, the 

critical current flow at which the specimens were swept away was investigated with different 

types of substratum. In one experiment the long-term effects of substratum type were 

investigated without flow. Long-term individual and interactive effects of current flow and 

substratum type were investigated in another experiment. Energy budgets were calculated 

to demonstrate that such an approach could be an interesting tool for interpreting results 

from laboratory growth experiments. 

Materials and methods 

Animals 

Specimens of A. aquaticus were collected in October 1997 from a nearby spring fed 

pond and brought to the laboratory. They were sorted into three length classes: 4-5 mm 

(small), 7-9 mm (medium), and 11-12 mm (large). Specimens of these three size classes 

were used in the pre-experiment. In the main experiments only small specimens were used. 

1200 small Asellus were divided into lots of 25 specimens for random allocation to 
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experimental compartments. Individuals from 8 lots were preserved immediately in 4% 

formaldehyde to determine the average length (measured as the length from the top of the 

head to the end of the pleotelson, thus excluding the antennae and uropods) and pleotelson 

width. Average length and pleotelson width were not significantly different (P>0.05) 

between the 8 lots and therefore only the length data are presented. The average length at 

the beginning of the experiment was 4.67 mm (n=200, s.e.=0.04 mm) and the average 

pleotelson width 1.38 mm (n=200, s.e.=0.02 mm). 

Food 

Food consisted of discs (0 30 mm) punched from autumn-shed poplar leaves (Populus 

nigra L ) . Leaves were first kept in a basket under water for 7 days, air dried, and then discs 

were punched. Discs were dried (80 °C, 24h), weighed, and conditioned by placing them for 

3 days in water inoculated with natural water from a pond. Measurements showed that 1 mg 

dry weight was equivalent to 0.874 mg (n=10, s.e. =0.010 mg) ash free dry weight (550 CC, 

2h) and contained 0.503 mg C. 

In the main experiments, five discs were placed in each compartment in an upright 

position using plastic paper clips in order to avoid the creation of a new benthic habitat. 

Leaves were replaced as they were eaten, with the dry weight of the eaten leaf recorded to 

provide a total weight of leaf matter consumed in a compartment over the experiment. 

Pre-experiment: Short-term effect of current velocity 

The short-term effect of current velocity on A. aquaticus was studied in an artificial 

stream (200 x 15 x 15 cm) filled with local groundwater at 18 °C (pH=8.1, conductivity=210 

uS cm"1, total N=0.52 mg I"1, total P=0.07 mg 11). Three types of substratum were tested: a 

smooth, polished surface, sand (0 0.25-0.50 mm), and coarse gravel (0 8.0-16.0 mm). The 

water depth was 2.5 cm. Velocity was measured approximately 5 mm above the substratum 

with an electromagnetic induction velocity meter at the end of the stream. Velocity was 

increased in steps of 5 cm s'1 every 20 seconds and a maximum current velocity of 

approximately 40 cm s"1 could be generated. Each specimen of A. aquaticus was placed on 

the substratum in the middle of the experimental area, with its head towards the current. 

After 10 seconds, current velocity was increased and the velocity was recorded when the 

specimen lost its grip and was swept away. If a specimen was dislodged, but regained a 

foothold within 5 cm downstream, measurement was continued until it was swept away (at 

least 50 cm). 25 specimens of each size class were tested individually. 

Main experiment A: Long-term effect of substratum without flow 

Four aquaria (40 x 40 x 20 cm) were used to investigate the long-term effects of two 

types of substratum on A. aquaticus in the absence of current. Two types of substratum 

(fine sand 0 0.25-0.50 mm; coarse gravel 0 8.0-16.0 mm) were assigned at random to the 

aquaria. Aquaria were filled with groundwater and the water temperature was kept constant 
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at 18 °C. Oxygen levels were constantly monitored and were kept constant. The daily 

photoperiod was 12 h, simulating spring/early summer conditions in The Netherlands. The 

experiment lasted for 8 weeks, a period that would allow a measurable growth during the 

experiment at the selected temperature (MARCUS AND WILLOUGHBY 1978). The experiment 

was performed in the period December 1997 - January 1998. 

The number of individuals seen on the substratum, and on the leaf discs was recorded 

daily for each aquarium. Dead animals were removed and counted. At the end of the 

experiment all survivors were collected per aquarium and preserved in 4% formaldehyde. 

Total length and the width of the pleotelson were measured for each individual. 

Main experiment B: Long-term effect of combinations of flow and substratum 

In the laboratory, water from one reservoir (400 L) was continually recirculated in eight 

artificial streams. The reservoir was filled with groundwater, aerated, and kept at a constant 

temperature of 18 °C. Two different current velocities (3±1 and 9±1 cm s1) were assigned at 

random to the streams. Metal grids (5 mm diameter) covered on the upstream side by 0.5 

mm nylon mesh, sown onto the sides of the grids were used to create four compartments in 

each stream. Two types of mineral substratum (fine sand: 0 0.25-0.50 mm; coarse gravel: 

0 8.0-16.0 mm) were randomly distributed between the streams with similar current flow. 

The daily photoperiod was 12 h. The experiment lasted for 8 weeks and was performed in 

the period December 1997 - January 1998. Four different regimes with 8 replicates each 

were tested: sand 3 cm s"\ sand 9 cm s"\ gravel 3 cm s"\ and gravel 9 cm s'1. 

The number of individuals found at the front (on the upstream grid), in the back (on the 

downstream grid), on the substratum, and on leaf discs was recorded daily for each 

compartment. Dead animals were removed and recorded. At the end of the experiment all 

survivors were preserved in 4% formaldehyde. Total length and the width of the pleotelson 

were measured for each specimen. 

Calculation of the energy budget 

An estimation of the energy budget in terms of ash-free dry weights (AFDW) was made 

using data from different literature sources. Growth, measured as increase in total length, 

was translated to mg AFDW using the formulae given by BASSET (1993). Basic respiration by 

A. aquaticus, expressed as oxygen consumption, depends mainly on body dry weight and 

water temperature (ADCOCK 1982). Temperature and size of A. aquaticus used in the present 

experiments fell within the ranges used by ADCOCK (1982) and therefore his formulae were 

used to calculate oxygen consumption during the experiment per specimen from length 

measurements by assuming linear growth in length. Oxygen consumption was then 

expressed as mg AFDW of food supplied by using conversion factors given by LAMPERT 

(1984) and under the assumption that carbohydrate was metabolized (LAMPERT 1984). Total 

leaf consumption per specimen was calculated from the feeding rates. Feeding rates (mg dry 

weight day"1) were calculated by dividing total leaf consumption by the estimated average 
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number of specimens. Net leaf consumption was estimated using assimilation efficiencies. No 

published data were available on efficiency coefficients of A. aquaticus for poplar leaves. 

ADCOCK (1982) found an efficiency of 23% for A. aquaticus when fed on alder leaves (Alnus 

glutinosa Gertn). This percentage was used to provide a rough estimate the net leaf 

consumption. 

Statistical analysis 

Analysis of variance (ANOVA) was performed using SPSS for Windows. GLM Generalized 

Factorial Procedure was applied to perform Two-way ANOVA with the variables current 

velocity and type of mineral substratum as independent variables were performed in order to 

assess the contribution of these variables in explaining the observed variation in the 

dependent variable. The relative contribution of the factors was assessed following the 

method described in UNDERWOOD (1997). 

Results 

Pre-experiment: Short-term effect of current velocity 

The average current velocity at which A. aquaticus was swept away differed between 

size classes and between types of substratum (Table 1). A aquaticus could withstand the 

maximum current flow (40 cm s"1) only on gravel. The maximum velocity at which specimens 

were swept away for gravel could not be determined because it is higher than the maximum 

velocity that could be reached with the equipment used. The average velocity at which A 

aquaticus was swept away on the polished surface and sand was much lower. Although the 

difference in average velocity between sand and the polished surface was small, it was 

significant for the smallest (F-value=26.451, df=1, P=0.000) and largest size class (F-

value=19.107, df=1, P=0.000), but not for the medium size class (F-value=1.177, df=1, 

P=0.282). 

Table 1: Mean (+ 1 s.e.) current velocity (cm s1) at which three size classes of Asellus 
aquaticus were swept away on three types of substratum. 

Size class 
4.5 - 5.5 mm 
7.5 - 8.5 mm 

11.0- 12.0 mm 

Type of substratum 
Polished Sand 

11.6 + 0.2 13.2 + 0.1 
12.5 + 0.2 12.1+0.2 
12.0 ±0.2 13.4±0.2 

Gravel 
> 40.0* 
> 40.0 
>40.0 

Note that the maximum current velocity that could be 
reached was 40 cm/s. 
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Main experiment A: Long-term effect of substratum without flow 

A. aquaticus grew on both types of substratum (Figure 1a). The increase in length was 

much more than the standard error of the mean of all specimens collected at the start of the 

experiment. Total length was significantly higher in aquaria with sand than in aquaria with 

gravel (Table 2). Specific growth rates (calculated after MARCUS ET AL. 1978) were 1.37% for 

aquaria with sand and 0.86% fresh weight day_1 for aquaria with gravel. 

Table 2: Results of the various ANOVAs applied to the data of experiment A. Type of 
substratum was the explanatory variable. 

ANOVA 
Dependent variable 

Mortality 
Total length 

Total leaf consumption 

F-value 
21.125 
6.102 
5.240 

df 
1 
1 
1 

P 
0.044 
0.017 
0.149 

The results show that mortality of A. aquaticus, calculated as initial number of 

specimens minus survived specimens, differed between the two types of substratum (Figure 

1b). It appeared that the number of dead animals collected during the experiment was lower 

than the calculated mortality from the survived specimens. Mortality was significantly lower 

on sand (40%) than on gravel (90%) (Table 2). Although total consumption was higher in 

aquaria with sand than in aquaria with gravel (Figure 1c), this difference was not significant 

(Table 2). 

Feeding rates were not calculated for aquaria with gravel because reliable estimates 

of the number of A. aquaticus present could not be obtained from the daily observations as 

specimens could not always be seen. Feeding rates were 0.564 mg dry weight day'1 

(s.e. =0.059) for aquaria with sand. 

Based on the daily observations, the average number of A. aquaticus on leaf discs and 

on substratum was significantly higher in aquaria with sand than in aquaria with gravel. 

However, this difference was only small when expressed as a percentage of total observed 

specimens. Approximately 75% of the visible specimens were found on leaf discs and 25% 

on substratum in both types of substrata (Figure 1d). 

A calculation of the energy budget could only be made for aquaria with sand. The 

majority of the available energy can be allocated to active respiration, approximately 15% to 

growth, and 42% to body maintenance (Figure 2). 
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Figure 1: Mean (± 1 s.e.) for A) mortality, B) growth, C) total leaf consumption, and D) 

positioning of specimen in experiments A and B. 
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Figure 2: Estimated percentage of efficiently consumed material (AFDW) allocated to body 
maintenance, growth or active respiration, on sandy substratum. 

Experiment B: Long-term effect of combinations of flow and substratum 

The various combinations of flow and substratum resulted in differences in growth 

(Figure 1a). Total length at the end of the experiment increased for all combinations except 

for gravel with a flow of 9 cm s"1 that resulted in a decrease in mean length. Two-way 

ANOVA showed that both current and substratum were significant but not their statistical 

interaction term (Table 3). The ANOVA model explained only 11 percent of the observed 

variation. The relative contribution of current velocity (7%) was somewhat higher than the 

contribution of substratum (4%). 

Table 3: Results of the various ANOVAs applied to the data of experiment B. 

Dependent 
variable 
Mortality 

Total length 

Total leaf 
consumption 

Feeding rate 
(on sand) 

Explanatory 
variable(s) 

Flow 
Substratum 

Flow* Substratum 
Flow 

Substratum 
Flow* Substratum 

Flow 
Substratum 

Flow* Substratum 
Flow 

ANOVA 
F-value df P 

87.120 
8.000 
1.280 

12.586 
7.246 
1.710 

87.038 
34.825 
8.390 
0.340 

0.000 
0.009 
0.267 
0.001 
0.001 
0.202 
0.000 
0.000 
0.007 
0.569 

Fraction 
explained (%) 

69 
5 

0.8 
7 
4 

0.7 
53 
21 
5 
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Specific growth rates were calculated from total length and were 0.67% fresh weight 

day"1 for sand at 3 cm s"1, 0.10% for sand at 9 cm s'1, 0.38% for gravel at 3 cm s"\ and -

0.47% for gravel at 9 cm s\ 

Mortality, calculated as initial number of specimens minus survived specimens, was on 

both substrate types (sand, gravel) higher in the regimes with a current flow of 9 cm s"1 than 

with flow of 3 cm s"1 (Figure 1b). The number of dead animals collected during the 

experiment was lower than the calculated mortality from the surviving specimens, especially 

in the regimes with gravel as substratum. Two-way ANOVA showed that both flow and 

substratum were significant but not their statistical interaction term (Table 3). The ANOVA 

model explained 75 percent of the observed variation. Current flow contributed more (69%) 

than substratum (5%). 

Total leaf consumption differed between the various combinations (Figure 1c). Two-way 

ANOVA showed that flow and substratum, as well as their statistical interaction term were 

significant (Table 3) in explaining the observed variation in leaf consumption. The relative 

contribution of current (53%) was much higher than the contribution of substratum (21 %) 

and the interaction term (5%). 

Feeding rates were not calculated for compartments with gravel because the number of 

A. aquaticus present could not be assessed from the daily observations. Feeding rates for 

the regime sand 3 cm s"1 was 0.694 mg dry weight day"1 (s.e.=0.022) and for sand 9 cm s_1 

0.649 mg dry weight day_1 (s.e.=0.074). This difference was not significant (Table 3). 

The variation in the number of specimens observed at different positions of the 

compartments was significantly explained by both flow and substratum as well as by their 

interaction term (Table 4). The relative contribution of substratum was higher than current 

and the interaction term. In the regimes with current flow of 3 cm s1 most specimens were 

found on the leaf discs, followed by substratum (Figure 1d). In contrast, in the regimes with 

current flow of 9 cm s'1 most specimens were found at the back of the compartment, 

followed by leaf discs and then substratum. An increase in current velocity thus resulted in a 

decrease in the number of specimens on leaf discs in favour of the back of the compartment. 

Table 4: Explained variation (%) and relative contribution of the independent factors (%) of 
Two-way ANOVA with average number of specimens as dependent variable. 

Position 

On leaf discs 
On substratum 
Front 
Back 

Explained 
variation 

87 
81 
62 
78 

Relative contribution of 

Current 
velocity 

33 
23 
19 
21 

Substratum 

39 
39 
25 
44 

Interaction 
term 
15 
18 
17 
13 
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Energy budgets were obtained only for both regimes with sandy substratum because 

feeding rates could not be calculated for regimes with gravel. The majority of the available 

energy was allocated to active respiration (Figure 2). Energy allocated to body maintenance 

was similar for both regimes (approx. 28%) but higher current flow resulted in less energy 

available for growth (6% for experiments at 3 cm s"1 and 2% with flow of 9 cm s'1). In 

addition, there was a weak but significant correlation between growth and mortality (Figure 

3). Increased respiration costs thus resulted in decreased growth and also in higher 

mortality. 

100-

90 * 

y = -16.39x + 74.36 
R2 = 0.4595 

p<0.01 

0.5 1 

Growth (mm) 

Figure 3: Relationship between growth rates and arcsine transformed mortality. Data were 
obtained from experiments 2 and 3. 

Discussion 

The present study clearly shows that the response of Asellus aquaticus differed between 

the various combinations of current flow and type of substratum. Both factors affected 

growth, mortality, and behavior of A. aquaticus. The importance of these two physical 

factors for benthic macroinvertebrates has already been indicated by many authors (e.g. 

Minshall 1984, Barmuta 1990, Lancaster and Mole 1999). 

The observed specific growth rates in this study ranged from -0.47% (gravel, 9 cm s"1) 

to 1.37% fresh weight day"1 (sand, aquaria). MARCUS ET AL. (1978) and GRACA ET AL. (1993) 

found a strong relationship between growth of A. aquaticus and type and quality of food, 

whereas MURPHY AND LEARNER (1982) showed that growth differed between cohorts of A. 

aquaticus. In the present study, all specimens came from the same overwintering cohort. 

Food quality was apparently good, as the observed specific growth rate in the regime sand 

without flow (experiment A) is consistent with other published data for well growing animals 

(MURPHY AND LEARNER 1982). Since of the same food source was supplied in all regimes, it 
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Abstract 

The effects of sediment-bound toxicants to aquatic invertebrates may vary due to 

differences in bioavailability, food quality or food structure. The equilibrium partitioning 

theory (EPT) assumes that organic matter content of sediments and not structure of organic 

matter is relevant for biological effects of polycyclic aromatic hydrocarbons. 

To test this hypothesis effects of benzo(a)pyrene (B(a)P) and size of sediment organic 

matter particles on the bioaccumulation and growth of the waterlouse Asellus aquaticus were 

studied in laboratory microcosms. Sediments and A. aquaticus were both sampled in an 

unpolluted, spring fed pond. The sampled sediment was divided into two portions. From one 

portion the size of the organic matter particles was mechanically reduced. One set of each 

sediment fraction (fine and coarse) was spiked with B(a)P and incubated for 3 weeks 

resulting in a concentration of 70 mg B(a)P per kg sediment. Bioassays of 32 days were 

performed in a 2 x 2 factorial design with four replicas of each treatment. 

The results showed that the growth of A. aquaticus was mainly influenced by the size of 

organic matter particles. Growth was significantly less (27%) on finer sediments than on 

coarser sediments. The increase in length was 9-14% lower in the spiked sediments, but this 

difference was not significant. The reduced growth of A. aquaticus on finer sediments may 

be due to a change in the availability and/or quality of food together with a change in 

feeding behavior. 

The coarse and fine spiked sediment types did not differ significantly with respect to the 

sediment water partition coefficient, the organic carbon water partition coefficient, and the 

bioconcentration factor. In contrast, the biota to sediment accumulation factors were 

significantly 15% higher in the cosms with coarse sediments than in cosms with fine 

sediments. However, this difference is too small to conflict with EPT. 

Introduction 

Polycyclic aromatic hydrocarbons (PAHs) readily adsorb to inorganic and organic 

particles in soils and sediments or suspended in water (MULLER 1987, KOELMANS ET AL. 1997). 

The risk of PAH-contaminated sediments for sediment-feeding macroinvertebrates largely 

depends on PAH bioavailability. Abiotic partitioning between water and sediment and 

transformation reactions, such as biodegradation and photolysis, determine the actual 

concentrations of PAHs to which organisms are exposed (VAN BRUMMELEN ET AL. 1998). The 

partitioning behavior is thus a major factor controlling the abiotic component of 

bioavailability. Accumulation of PAH in sediments largely depends on the content of organic 

matter (MULLER 1987, VAN HATTUM 1995). The equilibrium partitioning theory (EPT) (Di TORO 

ET AL. 1991) assumes that the extent of bioaccumulation and biological effects of PAH occur 

at similar concentrations when normalized to organic carbon content. Therefore, according 
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to the EPT, differences in sizes of organic matter particles do not affect PAH uptake and 

biological responses, such as mortality and growth rate. 

In aquatic environments, uptake of PAHs by organisms may take place via gills or the 

skin and from dietary sources via the gastrointestinal tract (VAN BRUMMELEN ET AL. 1998). 

Sediment inhabiting invertebrates may have additional uptake from ingested sediments or 

from pore-water. Bioaccumulation varies among species and is determined by various 

characteristics of the organisms, such as size, age and sex, nutritional state, lipid content, 

metabolism, and feeding behavior (NEFF 1979). Although EPT assumes that exposure route 

is not significant, LANDRUM AND ROBBINS (1990) observed that for hydrophobic compounds, 

such as B(a)P, uptake from dietary sources can explain 100% of total residue. It has been 

observed that selective ingestion of sediment particles of specific size and composition 

affects contaminant exposure for oligochaetes (MCMURTHY ET AL. 1983) and the amphipod 

Diporeia (LYDY AND LANDRUM 1993). Therefore, it is plausible that the type of ingested food 

and feeding ecology of species play important roles in bioaccumulation of PAH. 

The objective of the present study was to test the EPT-based hypothesis that the size of 

organic matter particles does not affect the degree of bioaccumulation and biological 

responses (survival and growth) to contamination with PAH. Therefore, a 2 x 2 factorial 

laboratory experiment was performed to investigate the effects of two different 

concentrations of benzo(a)pyrene (0 and 70 mg/kg sediment) and two types of sediments 

(differing only in the size of organic matter particles) on the growth of the freshwater isopod 

Asellus aquaticus (L) and on the bioaccumulation in this species. 

Materials and methods 

Selection of test compound and test species 

B(a)P was chosen as test compound because (a) its hydrophobicity implies that uptake 

via food would be an important route and (b) many sediments in The Netherlands are 

contaminated with this PAH. Concentrations up to 100 mg B(a)P/kg dry sediment have been 

observed in suspended solids and sediments of surface waters in the Rhine-Meuse delta 

(VAN KLAVEREN 1989, VAN HATTUM 1995). 

A. aquaticus was chosen as test organism because (a) it is a common species, (b) it 

accumulates PAHs (CURTO ET AL. 1993), (c) PAH residue levels are preferably measured in 

species with low metabolic activity (VAN BRUMMELEN ET AL. 1998), and (d) this species showed 

negligible biotransformation (VAN HATTUM 1995). Furthermore, this deposit-feeding species is 

an important food source for predatory invertebrates, fish and waterfowl (VAN HATTUM ET AL. 

1989) and thus plays an important role in the benthic-pelagic coupling of the food chain 

transfer of PAH. 
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Animals 

A. aquaticus was collected from a spring-fed pond in January 1998 and brought to the 

laboratory. For the experiment 400 specimens were collected that had a total length of 5-7 

mm each. Total length was measured as the length from the top of the head to the end of 

the pleotelson, thus excluding antennae and uropods. The collected animals were divided 

into lots of 20 specimens for later allocation into the experimental set-up. Individuals from 

three lots (60 in total) were measured immediately to determine the mean total length and 

wet weight at the beginning of the experiment. Dry weight per lot (70 °C, 24h) was also 

measured. 

Preparation of sediments 

Sediments (upper 10 cm) were collected from the same location as A. aquaticus. Initial 

analyses showed that the sediments of this pond were not contaminated with organic 

contaminants. Different steps were taken in the preparation of the sediments (Figure 1). The 

sample was sieved through successive sieves of 10 mm and 1 mm mesh size. All material 

larger than 10 mm, mainly twigs and leaves, was not used in the experiment. The fraction 

<1 mm was divided in 16 equal parts using a sample divider (Retsch, Dassel, Germany, 

Type x577). The fraction 1-10 mm was divided in two equal parts on wet weight basis. One 

part was further divided into eight equal parts, and the other part was mechanically 

Sediment sample 

Sieving 

•I Fraction >10mm - Disregarded 

—*• Fraction 1-10mm 

Dividing (n=2) 

Fractionating 

Dividing (n=8) 

i , 
Dividing (n=8) 

Fine 

(n=4) 

Fine | 1 Coarse I I Coarse 
BaP 

(n-4) f (n=4) f~ (n-4) 

T 

BaP 

Dividing (n= 16) and adding 

-*! Fraction <1 mm { ' 

Figure 1. Diagram showing the preparation of the sediments. 
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fractionated (Heidolph, Type Diax 900) for 5 min to obtain fine material <1 mm. 

Afterwards, this part was also divided in eight equal parts using the sample divider. The 

original fraction <1 mm was combined with the original fraction 1-10 mm or with the 

fractionated fraction 1-10 mm resulting in eight replicates for both 'coarse' and 'fine' 

sediment type (Figure 1). The >1 mm grain size fraction was nearly absent in the 

fractionated samples and the organic matter fraction in the different grain size classes 

increased due to the fractionation, except for the largest grain size (Figure 2). Thus, the 

sediments differed in the size of organic matter particles but not in the nature and the 

quality of the organic matter fraction. 
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Figure 2: Characterization of the two sediments used in the experiment by (A) average grain 
size distribution and (B) average fraction of organic matter at the end of the 
experiment. Error bars indicate standard deviations (n=4). 
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Spiking sediments 

From each sediment type (fine and coarse) four replicates were spiked with a solution of 

B(a)P (Aldrich, Zwjjndrecht, The Netherlands) in acetone while the sediments were 

thoroughly mixed (Figure 1). All sediments were shaken for 48 h to homogenize B(a)P over 

the sediment. The spiked sediments were incubated 19 days and shaken manually three 

times per day, followed by a period of 7 days without shaking. The resultant total contact 

time of 28 days is supposedly long enough to reach steady-state conditions with respect to 

PAH partitioning (CORNELISSEN ET AL. 1997). The final B(a)P concentration was 70 mg B(a)P 

per kg sediment. 

Bioassays 

The effects of B(a)P and size of organic matter were studied in a 2 x 2 factorial design 

with four replicas of each treatment (Figure 1). Sixteen glass aquaria (25.5 x 14.5 x 15 cm) 

were placed in a water bath to maintain a constant temperature of 12 + 1 °C. Each aquarium 

was filled with prepared 0.6 L sediment, resulting in a sediment layer of approximately 1 cm. 

An amount of 3 L well water was slowly added to each aquarium. A daily photoperiod of 

8:16 h (light:dark) was maintained with an intensity of 100 uE/m2/s. Both temperature and 

photoperiod simulate late winter/early spring situations in The Netherlands. One week after 

filling the aquaria with sediment and water, 20 specimens of A. aquaticus were released in 

each aquarium. The experiment finished 32 days later. 

Water quality measurements 

Temperature, oxygen concentration, pH, and conductivity were measured weekly during 

the bioassay. Also, weekly samples of 6 ml overlying water were taken to analyze total 

organic carbon content (OIC, College Station, TX, USA, Model 700 TOC Analyzer). 

Sediment analyses 

For B(a)P and organic carbon analyses, 20% of the sediment was randomly sampled in 

each aquarium at the end of the experiment. These samples were freeze-dried for 7 days. 

The other 80% was used for the determination of grain size distribution and organic matter 

content. Each sediment sample was sieved through successive sieves of 1 mm, 250, 125, 50, 

0 urn mesh size. Each fraction was dried (105 °C, 3 h) and weighted. Ash-free dry weights 

were determined by heating at a temperature of 600 °C for 3h. 

Analysis of B(a)P in water, sediment and A. aquaticus 

Tenax (Chrompack, Bergen op Zoom, The Netherlands) was washed three times with 

acetone and three times with hexane and dried at 105 °C prior to use. Water samples (2 L) 

were extracted with 0.3 g Tenax in the dark. Tenax was removed from the water, and B(a)P 

was removed from the Tenax by multiple extraction with hexane. The hexane was reduced 

to 2 ml under a gentle flow of nitrogen. Samples were stored at -20 °C before analyzing 
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B(a)P concentrations. 

Freeze-dried sediment samples were grinded with a mortar. At least 0.5 g dried 

sediment, 1 ml demineralized water, and 20 ml NMP (1 -methyl-2-pyrrolidinone) were added 

to a glass beaker. Extraction and destruction were performed in a microwave (CEM, type 

MDS 2100) at a temperature of 130 °C for 1 h followed by a cooling period of 0.5 h. 2 ml of 

the extraction liquid was placed in a centrifuge for 3 minutes (10,000 rpm). One ml 

supernatant was used for B(a)P analysis using a HPLC column (Vydac 5, CI 8 rev. phase, 

250x4.6 mm) followed by combined photo diode array (UV) and fluorescence detection. 

NOORDKAMP ET AL. (1997) provide a detailed description of the analytical method, including 

extraction recoveries (97-102%). 

At the end of the experiment, isopods were kept in water-only systems without food for 

1 day. This period is long enough to defecate (VAN HATTUM 1995). Subsequently, they were 

freeze-dried and grinded with a mortar. B(a)P extraction was performed as described above 

with 0.2 ml demineralized water and 6 ml NMP. 

Measurements on A. aquaticus 

The position of all specimens of A. aquaticus in each aquarium was determined each 

day. The number of specimens in or on the substratum was recorded in each aquarium for 5 

minutes. Visibly dead animals were removed from the aquaria. At the end of the experiment 

total length and wet weight were measured for each specimen. Dry weights were 

determined per replica. 

Statistical analyses 

Paired t tests were performed to analyze significant differences between treatments 

over time. The Kruskal-Wallis H test was used as a nonparametric analyses of variance to 

test for significant differences between the treatments. The null hypothesis (no difference 

between groups) was rejected when significance was lower than 0.05. All analyses were 

performed with SPSS for Windows 7.5. 

Results 

General water quality variables 

Temperature (12.4 ± 0.2 °C), oxygen concentrations (9.1 + 0.9 mg/L), conductivity (179 

+ 3 uS/cm), and pH (7.3 + 0.1) did not show significant differences among the treatments 

nor over time. Total organic carbon content in the overlying water during the experiment 

(Figure 3) obviously relates to carbon originating from the sediment. TOC showed significant 

difference between the treatments and a clear trend in time (ANCOVA: F=1355.4, df=96, 

P<0.001). The carbon loss rate was higher in the course sediments; this can be explained by 

mineralization or flocculation and subsequent settling to the sediment. 
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Figure 3: Water TOC concentrations for the four treatments during the experiment (n=4). 

B(a)P concentrations and partitioning 

Figure 4 shows the B(a)P concentrations in the five grain size fractions for the two 

spiked sediments. B(a)P concentrations in the smallest grain size class were below detection 

limits (2 mg/kg sediment on dry weight basis) for both sediment types. 

For the coarse sediment type, B(a)P concentrations among the grain size classes 

(excluding the smallest fraction) was not significantly different (Kruskal-Wallis: H=5.934, 

df=3, P=0.115). This was also the case for B(a)P concentration normalized on organic 

matter (Kruskal-Wallis: H=4.831, df=3, P=0.185). However, B(a)P concentrations among 

the grain size classes (excluding the smallest fraction) for the fine sediment were 

significantly different (mg B(a)P/kg sediment: Kruskal-Wallis: H=10.257, df=3, P=0.017; 

mg B(a)P/kg organic matter: Kruskal-Wallis: 1-1=13.059, df=3, P=0.005) due to the low 

concentrations in the largest fraction. Figure 4B shows that normalizing to organic matter 

content yields a higher variability of B(a)P concentrations. Organic matter normalization 

obviously does not lead to constant concentrations in the size fractions, as might be 

expected from EPT. 

B(a)P concentrations in the sediment at the start and at the end of the experiment were 

not significantly different (paired t-test: coarse sediment T=0.91, df=3, P=0.432; fine 

sediment T=2.19, df=3, P=0.116). This illustrates that no significant transformation or 

degradation took place during the experiment. 

B(a)P concentrations in the water phase were low (Table 1) and the difference between 

the sediment types was not significant (Kruskal-Wallis: H=0.527, df=1, P=0.468). Although 

average B(a)P concentrations in the isopods were different between the two sediment types 

(Table 1), this differences was not significant (Kruskal-Wallis: H=2.000, df=1, P=0.157). The 

calculated partition coefficients are presented in Table 1. The two spiked sediment types 

were not significantly different with respect to the sediment water partitioncoefficient (Kp: 
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Kruskal-Wallis: H=0.083, df=1, P=0.773), the organic carbon water partitioncoefficient (Koc: 

Kruskal-Wallis: H=0.333, df=1, P=0.564), and the bioconcentration factor (BCF: Kruskal-

Wallis: H=0.500, df=1, P=0.480). However, biota to sediment accumulation factor (BSAF) 

was 15% higher in cosms with coarse sediment and this difference was significant (Kruskal-

Wallis: H=4.5, df=1, P=0.033). 
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Figure 4: Average B(a)P concentrations per grain size fraction (A) and average B(a)P 
concentrations normalized to organic matter content (B). Error bars indicate 
standard deviations (n=4). 
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"f-
Table 1: Summary ofrexperimental conditions and results (all standard deviations 

relate to quadruplicate measurements, except length and growth of A. 

aquaticus). 

Variable 

Organic matter (%) 

B(a)P concentrations 

in water (ug/l) 

in sediment (mg/kg DW) 

start 

end 

B(a)P in Asellus 

ug/g wet weight 

ug/g dry weight 

Partition coefficients 
Log Kp 

Log Koc
a 

Log BCFd 

BSAFb 

BSAFC 

Performance Asellus 

survival (specimen) 

% specimen on sediment 

length (mm) 

growth 

(% fresh weight / day) 

Coarse 

sediment 

without 

B(a)P 

59 + 9 

17.0±1.0 

54 + 11 

7.16 ±0.18 

1.33 ±0.85 

Fine 

sediment 

without 

B(a)P 

55 ± 4 

14.3 ±2.8 

47 ±16 

6.87 ±0.19 

0.97 ± 0.81 

Coarse sediment 

with B(a)P 

59 ±4 

0.0035 ±0.0013 

75.03 ± 5.97 

70.87 ±10.12 

13.20 ±2.06 

47.16 ±7.35 

7.33 ±0.17 

7.85 ±0.17 

6.60 ±0.19 

0.66 ± 0.03 

7.87 ± 0.68 

16.5 ±0.5 

53 ±14 

7.06 ±0.17 

1.22 ±0.61 

Fine 

sediment 

with B(a)P 

59 ± 8 

0.0038 ± 0.0007 

74.93 ±3.10 

67.91 ±7.12 

10.52 ± 0.66 

37.55 ±2.37 

7.25 ± 0.06 

7.78 ±0.06 

6.42 ±0.11 

0.56 ±0.10 

6.89 ±1.80 

17.0 ±0.7 

50 ±13 

6.76 ±0.13 

0.86 ±0.74 
a: assuming 50 % of organic matter is organic carbon 
b: calculated as concentration A. aquaticus (mg/kg DW)/concentration sediment (mg/kg DW) 
c: normalized to organisms' lipids (assuming lipid is 2.5 % DW) and sediment organic carbon 
d: bioconcentration factor 

Performance of A. aquaticus 

Small differences were observed in survival of A. aquaticus (Table 1), but these 

differences were not significant (Kruskal-Wallis: H=2.52, df=3, P=0.472). In general, less 

than 20% of the specimen died during the experiment. A. aquaticus grew in all four 

treatments and all specimens were much larger than the initial length of 6.07 ± 0.13 mm 

(Table 1). Isopods held on coarse sediment without B(a)P grew approximately 1.1 mm in 32 

days, and the increase in length was 27% less when held on fine sediment. The spiked 

sediments showed a further 10% reduction in growth. Specific growth rates (Table 1) 

ranged from 0.86 ± 0.74 (fine sediment with B(a)P), to 1.33 ± 0.85% fresh weight/day 

(coarse sediment without B(a)P). A Two-way ANOVA showed that length and thus growth 
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was significantly affected by sediment type but not by B(a)P (Table 2). Also the interaction 

term (B(a)P * sediment type) was not significant, indicating that there were no interactive 

effects. 

Table 2: Results of a two-way ANOVA performed on length data of A. aquaticus. 

Source 

Corrected Model 
Intercept 
B(a)P 
Sediment type 
B(a)P* Sediment type 
Error 
Total 
Corrected Total 

Sum of 
Squares 

6.569 
12169.136 

.673 
5.753 
0.005 

101.589 
12335.369 

108.158 

df 

3 
1 
1 
1 
1 

248 
252 
251 

Mean 
Squares 

2.190 
12169.136 

.673 
5.753 
0.005 
0.410 

F 

5.346 
29707.511 

1.644 
14.045 
0.013 

Sig 

0.001 
0.000 
0.201 
0.000 
0.909 

Daily observations on A. aquaticus showed that approximately 50% of the specimens 

were visible on the substratum (Table 1), and there were no differences between the 

treatments (Kruskal-Wallis: H=7.051, df=3, P=0.07). At the end of the experiment it was 

observed that specimens from the contaminated sediments reacted slower. When placed on 

their back it took more time to turn back on their feet than specimen from the clean 

sediments. Because the effect was not quantified, no statistics are presented. 

Discussion 

B(a)P recovery 

The B(a)P concentrations in the spiked sediments were approximately 70 mg/kg and 

remained constant during the course of the experiment (Table 1). So, during the experiment 

losses due to degradation, volatilization, photolysis or biotransformation were negligible. 

However, as these concentrations account for only 67% of the spiked amount, significant 

losses must have occurred during the spiking and the 28-day B(a)P equilibration phase. 

These losses occurred prior to the start of the actual experiment, so they do not interfere 

with the data interpretation. 

Abiotic partitioning 

The results of this study show that B(a)P concentrations in the size fractions did not 

converge to similar values when normalized to organic matter (Figure 4). Obviously, the 

basic premise of EPT that PAHs are rapidly and primarily associated with organic matter 

fractions does not hold for the present experimental conditions. This may be explained from 

(a) nonequilibrium in the larger size fractions (CORNELISSEN ET AL. 1997), or (b) B(a)P surface 
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particle size on mediating the effects of B(a)P on growth and survival of A. aquaticus could 

not be addressed because no significant effects of B(a)P on Asellus were detected. 
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CHAPTER 8 

Abstract 

A bio-energetic model for the waterlouse Asellus aquaticus is presented based on 

published consumption and respiration functions. The model is used to investigate whether 

effects of multiple stressors on individual organisms can be explained through their effects 

on energy budgets. 

Analyses of data from two laboratory growth experiments with the model indicate that 

sub-lethal effects of combined stressors such as current velocity, substratum composition, 

structure of food, and exposure to a toxicant can be understood from the effects of the 

separate stressors on consumption and respiration. 

The energy budget model assumes that food and exposure to benzo(a)pyrene have 

additive effects on the growth of A. aquaticus. The model simulation is in line with the 

laboratory observations and thus the combined effects are well predicted by the energy 

budget model. The model also assumes that the combined effects of current flow and 

substratum type are multiplicative. The model simulation does not fit the experimental 

observations and in this case the assumption of multiplicative effects seems therefore not 

valid. 

It is also argued that stressors impairing the growth of A. aquaticus through a reduction 

in consumption or through an increase in respiration will tend to have a negative effect on 

the decomposition rate of organic matter in aquatic systems in which this species is 

important. 

Introduction 

Aquatic organisms are exposed to a variety of stressors that may be abiotic (physical 

and chemical stress) or biotic (competition, predation). Studying multiple stress at different 

levels of biological organization can give insight into the effects of stressors, their 

mechanistic bases, and their ecological consequences (MALTBY 1999). Although studies on 

population and community level may provide a description of the effects of stressors they 

hardly reveal mechanisms involved. By contrast, studies at the molecular and cellular level 

may provide detailed information on how chemicals interact with target sites but hardly give 

any information on the consequences of these effects for higher levels of organization. 

According to MALTBY (1999) an integrated approach is required in which the understanding 

of the mechanistic bases of stress responses in individuals is used to predict or interpret their 

ecological consequences. 

Energy budgets and the closely related Scope for Growth (SfG) seem a promising 

approach for studying the effect of multiple stressors on individual organisms. Scope for 

Growth is defined as the difference between energy adsorbed from food and that lost via 

excretion and metabolism (WARREN AND DAVIS 1967). It is usually determined by measuring 
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energy ingested, egested, respired, and excreted. A positive SfG indicates that energy is 

available for production, while a negative SfG indicates that reserves must be used to 

maintain the individual (MALTBY 1999). 

Several studies showed that various stressors may affect elements of the energy budget 

of organisms (e.g. KOOUMAN 2000). For example, ecotoxicological studies have demonstrated 

that organisms make direct energy costs to resist contaminants by avoidance, exclusion, 

removal or complexation of the contaminant (CALOW 1989) but also that chemical stressors 

may impact consumption rate (BASSET 1993, LE BRAS 1987). For other stressors, such as 

shear stress, competition for food, and predator avoidance it is even more obvious that they 

have an impact on the energy budget. 

The waterlouse Asellus aquaticus is a frequently used species in laboratory studies. 

Many data are available on ecological and ecotoxicological aspects of the species and various 

publications address the energy budget of this species explicitly (ADCOCK 1982, PRUS 1971, 

1972, 1976a, 1976b, 1977). However, so far no attempt has been made to model the 

response of A. aquaticus to multiple stressors. 

The aim of this study is to investigate whether effects of multiple stressors can be 

plausibly explained through their effect on the energy budget. An energy budget model for 

the waterlouse Asellus aquaticus is presented and applied to data from two growth 

experiments (see chapters 6 and 7) to quantify the relative contribution of the stressors and 

to analyze the nature of the interaction between the stressors. 

Model 

The dynamics of body weight, W (J), is described as a function of maximum 

consumption, C (J d"1); the impact of stressors reducing food consumption, d (-); efficiency 

for converting food to body weight, e (J J"1); "normal" respiration, R (J d"1); and the impact 

of stressors affecting respiration, a (-): 

dW/dt = e*d*C - a*R (1) 

In general, consumption and respiration tend to be proportional to l/l/* with k < 1 (e.g. 

STRASKRABA AND GNAUCK 1985). However, the present model uses the linear relationship 

found by ADCOCK (1982) between consumption (J d"1) and body weight (mg AFDW) for A. 

aquaticus leaving the brood pouch (>1mm) and feeding on alder leaves with a certain 

energy content, FE (J mg"1): 

C=(0.1078+0.1030*W) *FE (2) 
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It is assumed that the reduction in food intake (d) consists of multiplicative effects of 

toxicants (dT), and of other aspects not considered explicitly in the model (o»: 

d=dT*dF (3) 

The value of d is limited to be in the range from 0 (complete reduction) to 1 (no reduction). 

Respiration is usually measured through 02 consumption (ul mg"1 h"1) and converted for use 

in the model to J mg_1 d"1 (Table 1). It is formulated as a function of weight following Adcock 

(1982): 

R=0.4844*a* W (4) 

The parameters a and B are temperature dependent and for a temperature of 12 °C 

a=1.3017 and B =0.6903, for 18 °C a=1.9715 and B =0.7151 (ADCOCK 1982). The effect of 

stressors on respiration is formulated as multiplicative effects of change in maintenance 

respiration (aM) and effects of physical stress (aP) and toxicological stress (aT): 

a - aM aP aT (5) 

The parameters aP and aT account for relative increase or decrease in respiration due to 

physical and toxicological stress respectively. 

The complete model can be written as: 

dW/dt = edrdT FE (0.1078 + 0.1030 W) - 0.4844 a aM aP aT W
8 (6) 

Animal body weight is converted to body length (Table 1) and growth rates, Gr (mg d_1), are 

calculated to be able to check the model against data on growth measurements. 

Table 1: Conversions used for the model. 

Conversion Conversion factor Source 
DW Alnus to Joules 1 mg DW Alnus = 22.0259 J PRUS 1971 
02 uptake to Joules 1 ul_/mg DW/h = 0.4844 J/mg DW/d 
Animal DW to Joules 1 mg DW = 12.3838 J mixed sexes ADCOCK 1982 
Animal DW to length Ln(DW)=2.71 *Ln(length)-4.58 GRACAETAL. 1993 

132 



MULTIPLE STRESSORS AND A. AQUATICUS: A MODEL 

Results 

Experiment 1 

The model is used to analyze data from a growth experiment with A. aquaticus exposed 

to different combinations of current velocity and mineral substratum (PEETERS ET AL. chapter 

6) (Table 2). 

Table 2: Measured final length and calculated growth rate of A. aquaticus exposed to 
different combinations of current velocity and mineral substratum. Poplar leave 
disks were used as a food source. The experiment was performed at 18 °C and 
lasted for 54 days. Initial length was 4.67 mm. 

Type of Current flow Length Growth rate 
substratum (cm s"1) (mm) (mg d"1) 
Sand 
Sand 
Sand 
Gravel 
Gravel 
Gravel 

0 
3 
9 
0 
3 
9 

6.63 
5.77 
5.14 
5.94 
5.44 
4.56 

0.020 
0.008 
0.004 
0.011 
0.006 
-0.001 

The initial values of the parameters are given in Table 3. 

Table 3: Value of the parameters for the least stressful situation in the first experiment. 

Parameter 
e 
FE 

a 
B 

Initial value 
0.236 
24.25 J mg n 

1.3017 
0.7151 

Source 
ADCOCK 1982 

Own measurements 
ADCOCK 1982 

ADCOCK 1982 

The least stressful combination (sand, 0 cm s_1) is used to calibrate the consumption 

parameter (dF) in such a way that the modeled growth rate equals the observed rate. 

Assuming that both flow and substratum type affect respiration (aP) and not consumption, 

the respiration parameter (aP) was subsequently adjusted for each experimental treatment in 

such a way that the modeled and observed growth rates were equal. 

The total amount of energy (J) over the experimental period of 54 days is calculated for 

consumption (7"c), assimilation (TA) calculated as total consumption multiplied by 

consumption efficiency, maintenance (TM), physical stress (7», and growth (7"6) for each 

experimental situation. 

To explore the nature of the interaction between the two variables, the effect of the 
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combination 'gravel with 3 cm s"1' is modeled from the single effects and compared with the 

laboratory results. 

The modeled growth rate with the initial parameters was similar to the observed growth 

rate for the combination sand, 0 cm s"1 and therefore the value of the parameter dF remains 

1. Figure 1 shows the calibrated values for the relative increase in respiration due to physical 

stress (aP) and in Table 4 the cumulative amounts of energy during the experimental period 

for the different processes in the model are given. 

Type of substratum 
Current flow (cm s"1) 

Figure 1: The calibrated relative respiration costs (aP) for the different treatments in 
experiment 1. 

Table 4: Total amount of energy (in joules) over the experimental period of 54 days 
consumption (Tc), assimilation (TA), maintenance (TM), extra respiration (7", 
arowth (7V>. 

for 
>) and 

growth (7"6) 

Combination 
Sand 0 cm s"1 

Sand 3 cm s"1 

Sand 9 cm s"1 

Gravel 0 cm s1 

Gravel 3 cm s"1 

Gravel 9 cm s"1 

Tc 

311.59 
276.38 
252.53 
283.01 
263.80 
231.80 

TA 

73.54 
65.22 
59.60 
66.79 
62.58 
54.71 

TM 

60.19 
51.08 
44.42 
52.86 
47.63 
38.21 

TP 

0.00 
7.66 
12.70 
6.24 
10.34 
17.00 

TG 

13.34 
6.48 
2.48 
7.69 
4.30 
-0.50 

The tuned parameter aP ranges between 1.118 and 1.445. For both substratum types, 

physical stress due to higher current velocity resulted in a higher value for the parameter aP 

and as a consequence a higher predicted amount of energy spent to overcome the stress 

(RP). At a given current velocity aP is higher for gravel than for sand (Figure 1). Simulations 

also show that higher values for the physical stress related respiration (aP) result in reduced 

growth accompanied by a lower amount of energy consumed and a lower amount of energy 

spent for maintenance summed over the 54 day experimental periods (Table 4). 
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Increasing current velocity from 0 to 3 cm s"1 on a sandy bottom resulted in aP = 1.150 

whereas changing the type of substratum with no flow resulted in aP = 1.118. Thus changing 

current velocity from 0 to 3 cm s"1 had a greater effect than changing the type of 

substratum. The combined effect should equal aP = 1.150*1.118 = 1.2857 in case the 

effects of both stressors are multiplicative. Applying this value in the model resulted in a 

predicted growth rate of 0.004 mg d1 , which is significantly lower than the observed growth 

rate of 0.008 mg d_1 (Table 2). Thus, the combined effect of both stressors observed in the 

experiment is smaller than the modeled multiplicative effect. 

Experiment 2 

The results from a growth experiment with A. aquaticus exposed to different 

combinations of size of organic matter and benzo(a)pyrene are also analyzed (PEETERS ET AL. 

2000, chapter 7) (Table 5). 

Table 5: Measured final length and calculated growth rate of A. aquaticus exposed to 
different combinations of size of organic matter and benzo(a)pyrene. The 
experiment was performed at 12 °C and lasted for 32 days. 
Initial length was 6.07 mm. 

Type of 
matter 
Coarse 
Fine 
Coarse 
Fine 

organic Benzo(a)pyrene 

Without 
Without 
With 
With 

Length 
(mm) 
7.16 
6.87 
7.06 
6.76 

Growth rate 
(mg d1) 
0.024 
0.017 
0.022 
0.014 

The initial values of the parameters used in the model are given in Table 6. 

Table 6: Values of the parameters for the least stressful situation in the second experiment. 

Parameter 
e 
FE 

a 
B 

Initial value 
0.236 
24.25 J mg-1 

1.9715 
0.6903 

Source 
ADCOCK 1982 

ADCOCK1982 

ADCOCK 1982 

The least stressful combination (coarse organic matter without B(a)P) was used to 

calibrate the parameter that describes the energy content of the food (FE) so that the 

modeled and observed growth rates were equal. It is assumed that the energy content did 

not differ between coarse and fine organic matter and that differences in the size of organic 

matter affects consumption through the parameter dF. Therefore, the combination fine 

organic matter without B(a)P was used to calibrate the parameter dF. 

Exposure to contaminants may result in a lower value for the parameters dT (reduction 
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in food consumption) or a change in aT (respiration). Which element of the energy budget is 

affected by exposure to benzo(a)pyrene is not clear and therefore the two possibilities were 

checked as alternative explanations. 

The total amount of energy (J) over the experimental period of 54 days is calculated for 

consumption (7"c), assimilation (TA) calculated as total consumption multiplied by 

consumption efficiency, maintenance (TM), toxic stress (TT), and growth (TG) for each 

experimental situation. 

To explore the nature of the interaction between the two stressors, the effect of the 

combination 'fine organic matter with benzo(a)pyrene' is modeled from the individual effects 

and then compared with the laboratory results. 

The calibration for this set of experiments resulted in an energy content of the food (Ff) 

of 18.02 J mg"1 for the course organic matter and a reduction in consumption of 6.8% for 

the fine sediment. Table 7 shows the inferred effects of exposure to benzo(a)pyrene on the 

elements of the energy budget. 

A small relative decrease in the consumption (through dj) or a small increase in the 

respiration (aT) were sufficient to explain the observed decrease in growth rates when A. 

aquaticus was exposed to benzo(a)pyrene. 

Table 7 shows that for the fine sediments the value for aT is slightly higher and for dT 

slightly lower than for the coarse sediment. Simulating the combined effects of organic 

matter type and exposure to benzo(a)pyrene by applying the parameter values from Table 7 

resulted in a predicted growth rate of 0.0014 mg d"1 for the experimental period of 32 days. 

Because this value is equal to the observed growth rate (Table 5) the combined effects of 

food structure and exposure to B(a)P seem simply to be additive. 

Table 7: Values for the parameters d>and aTto obtain the growth as observed in the 
experiment for the combinations with benzo(a)pyrene. Cumulative amount of 
energy (in joules) during 32 days for consumption (Tc), assimilation (TA), 
maintenance (TM), extra respiration due to exposure to B(a)P (7Y), and growth (7"6) 
are also given. 

Combination 
No effect of B(a)P 

Coarse OM 
Fine OM 

Effect of B(a)P 
on consumption 

Coarse OM 
Fine OM 

Effect of B(a)P 
on respiration 
Coarse OM 
Fine OM 

dT 

1 
1 

0.9766 
0.9720 

1 
1 

aT 

0 
0 

0 
0 

0.0310 
0.0348 

Tc 

170.18 
152.60 

163.99 
146.20 

167.94 
150.41 

TA 

40.16 
36.02 

38.70 
34.50 

39.63 
35.50 

TM 

30.34 
29.08 

29.91 
28.61 

29.91 
28.61 

TT 

0.00 
0.00 

0.00 
0.00 

0.93 
1.00 

TG 

9.82 
6.93 

8.80 
5.89 

8.80 
5.89 
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Discussion 

Although, the behavior of a model may always be an artefact from the mathematical 

formulation (ROUGHGARDEN 1983), the present results indicate that an energy budget model 

can be useful to help interpreting the combined effects of multiple stressors on the growth. 

Simulations give an indication of cumulative effects on growth and consumption over time. A 

check of the results of predicted effects of multiple stressors against experimental results 

indicates whether interactions of stressors are simply additive or multiplicative. For example, 

the energy budget model assumes that food and exposure to benzo(a)pyrene have additive 

effects on the growth of A. aquaticus. The model simulation is in line with the laboratory 

observations and thus the combined effects are well predicted by the energy budget model. 

The model also assumes that the combined effects of current flow and substratum type are 

multiplicative. The model simulation does not fit the experimental observations and in this 

case the assumption of multiplicative effects seems therefore not valid. 

The present model of individual growth does not provide information on the severity of 

the long-term impact on the population level. For a vital population it is necessary to 

reproduce within a certain period of time. For a mixed (males and females) population, the 

mean weight at which reproduction takes place is approximately 2.0 mg DW (WILLIAMS 

1960). Furthermore, for a vital population A. aquaticus has to reproduce within a period of 

2000 degree-days (OKLAND 1978). These two criteria can be used to calculate the minimal 

growth rate for A. aquaticus to reproduce (experiment 1: 0.015 mg d"1; experiment 2: 0.012 

mg d"1). On the basis of the energy budget, all combinations in experiment 2 allow a vital 

population of A. aquaticus whereas in nearly all combinations in experiment 1, the stress 

offered to A. aquaticus is too high for long-term survival of the population. In practice, the 

species may be able to withstand higher amounts of stress, for example, by increasing its 

efficiency for converting food to body weight or by a more selective feeding. ADCOCK (1982), 

for example, found that specimens in a population have higher food conversion efficiencies 

then individually living specimens. 

Although A. aquaticus can use different food sources (MARCUS ET AL. 1978) its primary 

food is decaying organic matter (WILLIAMS 1960). The species, therefore, plays an important 

role in the decomposition process. The two laboratory experiments show that exposure to 

stressors may impair growth. The simulations of the experiment with different combinations 

of current flow and mineral substratum illustrate how stressors affecting respiration have a 

long-term effect on consumption. Increased stress resulted in a lower amount of energy 

consumed during the experiment. The energy spent to resist the physical stress cannot be 

invested in growth and the reduced growth results in a lower food intake because food 

uptake depends on body weight. The simulations of the experiment in which A. aquaticus 

was exposed to different types of organic sediments and to the chemical stressor 

benzo(a)pyrene also illustrate that the reduction in the amount of energy consumed, does 

not depend upon the mode of action of the stressors. Since exposure to stressors affecting 
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elements of the energy budget leads to a decrease in the amount of food consumed in a 

certain period of time it may well have a negative effect on the decomposition process in the 

ecosystem. 

The results presented in this study illustrate that effects of various types of stressors 

measured in the laboratory can be well interpreted with an energy budget model. 

Measurements of energy budgets in short-term experiments correlate well with long-term 

measures of growth and reproduction (e.g. BAYNE ET AL. 1985, MALTBY AND NAYLOR 1990, 

MALTBY 1994). A better knowledge of how specific stressors affect elements of the energy 

budget may therefore enhance the mechanistic understanding of factors that determine 

animal abundance in the field. Obviously, this requires consideration of more aspects such as 

predator avoidance behavior and competition for resources, which may be included in an 

expanded model. 
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EPILOGUE 

The primary focus of this thesis is the analysis and quantification of the impact of 

multiple stressors on aquatic macroinvertebrate species and their communities. The variance 

partitioning method attributes the biological variation in multivariate field data into different 

sources. This thesis demonstrates, among others, that the method has been successfully 

used to distinguish between the effects of food and environmental factors (chapter 2) and to 

distinguish between the effects of contaminants and other stressors (chapters 3 and 4). 

Although the method is very useful in quantifying effects of multiple stressors on 

communities, it does not in its present form indicate which sites are affected most by the 

combined effects of simultaneously operating contaminants. Such a procedure could be 

useful for prioritizing sites for sanitation. 

One of the major problems facing ecotoxicology is assessing the ecological relevance of 

the effects of multiple contaminants. A frequently used endpoint is the protection of a certain 

fraction of the number of species. Based on such criteria laboratory results from single 

species experiments have been translated into standards to protect natural communities. It 

would be a challenge for future research to investigate whether this approach in setting 

standards could be linked to the variance partitioning method. This could provide a powerful 

check whether the extrapolation from laboratory to field makes sense. 

In contrast to the multivariate analyses of the field data, the laboratory experiments and 

the energy budget model give insight into the nature of the interaction between stressors. 

For example, the effects of size of organic matter and exposure to benzo(a)pyrene appeared 

additive with respect to the growth of Asellus aquaticus (chapters 6 and 8). Furthermore, 

laboratory and model studies also offer better possibilities to analyze non-lethal effects of 

stressors than studies dealing with multivariate analyses of field observations. The link 

between the individual and the population is essential for the assessment of the effects of 

multiple stressors on the population level by the energy budgets of individuals. Especially the 

combination of experiments and energy budget models seems to offer a valuable tool to 

analyze and understand non-lethal effects of stressors on individuals and their consequences 

for the whole population. To increase the value of such an approach, future laboratory 

studies should focus on the development of response models to stressors whereas future 

model studies should focus on the link between individuals and populations and between 

populations and communities. 

All studies presented in this thesis indicate that the biological response to a specific 

(group of) stressor(s) depends at least on the status of all other stressors. For example, the 

response of the in situ macroinvertebrate communities to food quality differs between water 

types (chapter 2). The effect of contaminants on in situ macroinvertebrates depends on the 

amount of organic carbon of the sediment (chapters 3, 4). The analyses of the distribution 

patterns of two gammarids showed that various stressors are involved in explaining these 

patterns (chapter 5). Furthermore, the growth of the waterlouse on different types of 
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substratum is affected by the intensity of current velocity (chapter 6) and growth of A. 

aquaticus in laboratory conditions exposed to benzo(a)pyrene differed per sediment type 

(chapter 7). The modeling results described in chapter 8 indicate that energy budgets may 

be used to integrate the effects of multiple stressors. 

In summary, this thesis demonstrates that effects of multiple stressors can be quantified 

in laboratory studies as well as in field situations and that energy budgets and scope for 

growth are powerful tools for improving our understanding of the distribution and abundance 

of organisms. 
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SUMMARY 

The structure and the functioning of ecosystems depend on responses to natural and 

anthropogenic stressors that influence the physiology and behavior of organisms, ecological 

interactions within assemblages, and ecosystem processes. Nowadays, the impact of human 

activities has caused major environmental changes, such as climatic shifts, chemical 

pollution, destruction and loss of habitats, and eutrophication. One of the major negative 

effects of these impacts is the rapid decline in the world's biodiversity, impairing ecosystem 

functions such as primary production, carbon and nutrient conservation and cycling, 

decomposition, and food webs and resilience of ecosystems. A variety of mechanisms can 

impair ecosystem functioning and in nature organisms are always exposed to several 

simultaneously operating stressors. Several studies demonstrated that the combined effects 

of multiple stressors cannot be understood as a simple product of the individual effects. To 

understand how multiple stressors affect the composition and functioning of ecosystems it is 

necessary to know their quantitative contributions but also to explore their interactions. 

The central theme of this thesis is the quantification of the combined effects of multiple 

stressors on benthic aquatic macroinvertebrates and communities. This is explored by 

analyzing databases with field observations, laboratory experiments, and an energy budget 

model. 

The relative contribution of sediment food (e.g. organic matter, carbohydrates, proteins, 

C, N, polyunsaturated fatty acids) and environmental variables (e.g. oxygen, pH, depth, 

sediment grain size, conductivity) in explaining the observed variation in benthic 

macroinvertebrate species composition is investigated (Chapter 2). Soft bottom sediments, 

water and benthic macroinvertebrates were sampled in several water systems in The 

Netherlands. The method of variance partitioning is used to quantify the relative contribution 

of food and environmental variables in structuring the benthic macroinvertebrate community 

structure. 

Approximately 60% of the total variation in the macroinvertebrate community structure 

could be explained by the variables included in the analyses. The variation in the 

macroinvertebrate species composition between different water types is primarily related to 

differences in main environmental variables (e.g. current velocity, dimensions, pH). However, 

the variance partitioning method shows that food variables also contributed significantly and 

that the effect of food depends on the intensity of other factors. 

The results of the study indicate that the method of variance partitioning is an 

appropriate tool for analyzing the impact of different groups of variables and thus, 

contributes to the understanding of the functioning of complex aquatic ecosystems. 

The impact of food variables differed between the macroinvertebrate functional feeding 

groups. Detritivores showed significant correlations with food quantity (organic matter 

content) and quality (polyunsaturated fatty acids, P, and C/N ratio). A higher content of 

organic matter usually goes along with lower oxygen concentrations. Therefore, the 
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observed lower species diversity and not changing macroinvertebrate densities with higher 

organic matter contents may be due to changes in either food quantity or oxygen 

concentration. Higher amounts of polyunsaturated fatty acids have a positive effect on the 

total macroinvertebrate density but not on the total number of taxa. It seems, therefore, 

that the productivity of benthic macroinvertebrates depends more on food quality than on 

food quantity. 

Macroinvertebrates were also studied along a salinity gradient in the Northsea Canal, 

The Netherlands, to quantify the effect of trace metals (cadmium, copper, lead, zinc) on 

community composition (Chapter 3). In addition, two methods for assessing metal 

bioavailability (normalizing metal concentrations on organic carbon and on the smallest 

sediment fraction) were compared. Factor analyses showed that normalizing trace metals 

resulted in an improved separation of trace metals from ecological factors (depth, organic 

carbon, granulometry, and chloride). The variation in the macroinvertebrate data was 

partitioned into four sources using partial canonical correspondence analysis: 1. purely 

ecological factors, 2. purely trace metals, 3. mutual ecological factors and trace metals, and 

4. unexplained. Partial CCA applied to total and normalized trace metal concentrations gave 

similar results in terms of unexplained variances. However, normalization on organic carbon 

resulted in the highest percentage of variation explained by purely ecological factors and 

purely trace metals. Accounting for bioavailability thus improves the identification of factors 

affecting the in situ community structure. Ecological factors explained 45.4% and trace 

metals 8.6% of the variation in the macroinvertebrate community composition in the 

ecosystem of the Northsea Canal. These contributions were significant and it is concluded 

that trace metals significantly affected the community composition in environment with 

multiple stressors. Variance partitioning is recommended for incorporation in further risk 

assessment studies. 

Data from a study in the enclosed Rhine-Meuse delta were used to test whether 

bioassays are better descriptors of sediment toxicity than toxicant concentrations and 

whether ecological factors are more important than toxicants in structuring 

macroinvertebrate communities (Chapter 4). In the period 1992-1995, data were collected in 

the study area on macroinvertebrates, sediment toxicity, sediment contaminant 

concentrations, and ecological factors. The effects of various groups of pollutants (polycyclic 

aromatic hydrocarbons, trace metals, oil, polychlorinated biphenyls) and of ecological 

variables on the structure of the macroinvertebrate community in the Rhine-Meuse delta 

were quantified. Ecological factors explained 17.3% of the macroinvertebrate variation, while 

contaminants explained 13.8%. Another 14.7% was explained by the covariation between 

ecological variables and contaminants. Polycyclic aromatic hydrocarbons explained a larger 

part of the variation than trace metals. The contributions of oil and polychlorinated biphenyls 

were small, but significant. Elevated contaminant concentrations were significantly 
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associated with differences in the macroinvertebrate food web structure. The response in 

laboratory bioassays (Vibrio fischeri, Daphnia magna, Chironomus riparius) was susceptible 

to certain contaminants but also to certain ecological factors. There was a weak correlation 

between in situ species composition and bioassays; 1.9% of in situ macroinvertebrate 

variation was explained by the bioassay responses. This seems to contradict the validity of 

using bioassays for a system-oriented risk assessment. Possible reasons for this discrepancy 

might be the manipulations of the sediment before the test and a higher pollutant tolerance 

of the in situ macroinvertebrates. Thus, macroinvertebrate field surveys and laboratory 

bioassays yield different types of information on ecotoxicological effects and both are 

recommended in sediment risk assessment procedures. 

A large data set describing the distribution of two common gammarid species 

(Gammarus fossarum and Gammarus pulex) in streams in The Netherlands, was analyzed by 

logistic regression to evaluate the usefulness of this regression technique in defining habitat 

requirements (Chapter 5). A method is presented that derives optimum habitat ranges for 

environmental variables from logistic regression equations. The calculated optimum habitat 

ranges, which are related to the maximum likelihood of presence in the field, agreed with 

habitat requirements and ecological tolerances in the literature. Single logistic regressions 

provide good descriptions of the optimum habitat requirements and multiple logistic 

regressions give insight in the relative importance of each environmental variable. It is the 

combination that makes logistic regression a valuable tool for constructing habitat suitability 

indices. Current velocity, pH, Kjeldahl nitrogen, total phosphorus, ammonium nitrogen, 

conductivity, width, and depth are in this sequence the most important environmental 

variables in predicting the probability of occurrence of Gammarus fossarum, whereas current 

velocity, Kjeldahl nitrogen, pH, and depth are the most important variables for the prediction 

of the probability of occurrence of Gammarus pulex. 

Experiments were performed to study the effects of near-bed flow and substratum 

composition on survival, growth and food consumption of the waterlouse Asellus aquaticus 

(L.) (Chapter 6). Short-term effects of increasing near-bed flow depended on the size of the 

animal and the type of substratum. Critical near-bed flow for detachment was almost the 

same on sand as on a polished surface whereas on gravel A. aquaticus could withstand 

higher flow velocities because specimens hid in interstitial spaces. Long-term experiments 

with different combinations of near-bed flow and substratum composition showed that flow 

had a greater effect than substratum on survival and growth. Substratum, however, had a 

greater influence on the distribution of individuals in the experimental unit. Since growth was 

reduced at high near-bed flow and no changes in levels of food intake were observed it is 

concluded that a substantial amount of energy is required for withstanding shear stress at 

higher flow rates. Furthermore, mortality showed a strong inverse correlation to growth. The 

interaction of effects of natural habitat characteristics and those of human-induced stressors 
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such as trace metals and pesticides may be better understood using an experimental and 

modeling approach focusing on energy budgets. 

The effects of benzo(a)pyrene (B(a)P) and size of sediment organic matter particles on 

the bioaccumulation and growth of the waterlouse Asellus aquaticus were studied in 

laboratory microcosms (Chapter 7). The effects of sediment-bound toxicants to aquatic 

invertebrates may vary due to differences in bioavailability, food quality or food structure. 

The equilibrium partitioning theory (EPT) assumes that organic matter content of sediments 

and not structure of organic matter is relevant for biological effects of polycyclic aromatic 

hydrocarbons and this was tested in the experiments. Sediments and A. aquaticus were both 

sampled in an unpolluted, spring fed pond. The sampled sediment was divided into two 

portions. From one portion the size of the organic matter particles was mechanically 

reduced. One set of each sediment fraction (fine and coarse) was spiked with B(a)P and 

incubated for three weeks resulting in a concentration of 70 mg B(a)P per kg sediment. 

Bioassays of 32 days were performed in a 2x2 factorial design with four replicas of each 

treatment. The results showed that the growth of A. aquaticus was mainly influenced by the 

size of organic matter particles. Growth was significantly less (27%) on finer sediments than 

on coarser sediments. The increase in length was 9 -14% lower in the spiked sediments but 

this difference was not significant. The reduced growth of A. aquaticus on finer sediments 

may be due to a change in the availability and/or quality of food together with a change in 

feeding behavior. The coarse and fine spiked sediment types did not differ significantly with 

respect to the sediment water partition coefficient, the organic carbon water partition 

coefficient, and the bioconcentration factor. In contrast, the biota to sediment accumulation 

factors were significantly 15% higher in the cosms with coarse sediments than in cosms with 

fine sediments. However, this difference is too small to conflict with the equilibrium 

partitioning theory. 

A bio-energetic model for the waterlouse Asellus aquaticus is presented based on 

published consumption and respiration functions (Chapter 8). The model is used to 

investigate whether effects of multiple stressors on individual organisms can be explained 

through their effects on energy budgets. 

Analyses of data from two laboratory growth experiments with the model indicate that 

sub-lethal effects of combined stressors such as current velocity, substratum composition, 

structure of food and exposure to a toxicant can be understood from the effects of the 

separate stressors on consumption and respiration. 

The energy budget model assumes that food and exposure to benzo(a)pyrene have 

additive effects on the growth of A. aquaticus. The model simulation is in line with the 

laboratory observations and thus the combined effects are well predicted by the energy 

budget model. The model also assumes that the combined effects of current flow and 

substratum type are multiplicative. The model simulation does not fit the experimental 
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observations and in this case the assumption of multiplicative effects seems therefore not 

valid. 

It is also argued that stressors impairing the growth of A. aquaticus through a reduction 

in consumption or through an increase in respiration will tend to have a negative effect on 

the decomposition rate of organic matter in aquatic systems in which this species is 

important. 

In summary, this thesis demonstrates that effects of multiple stressors can be quantified 

in laboratory studies as well as in field situations and that energy budgets and scope for 

growth are powerful tools for improving our understanding of the distribution and abundance 

of organisms. 
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He who knows does not speak 

He who speaks does not know. 

Lao Tzu 

Tao Te Ching, 6th century BC 



SAMENVATTING 

BENTHISCHE MACRO-EVERTEBRATEN EN MEERVOUDIGE STRESSFACTOREN 

DE KWANTIFICERING VAN EFFECTEN VAN MEERVOUDIGE STRESSFACTOREN 

IN VELD-, LABORATORIUM- EN MODELSTUDIES 

De samenstelling en het functioneren van ecosystemen zjjn afhankeljjk van de reactie op 

natuurljjke en door de mens veroorzaakte stressfactoren. Al deze factoren beinvloeden de 

fysiologie en het gedrag van organismen, de ecologische interacties in gemeenschappen en 

de processen die in ecosystemen spelen. De van nature aanwezige fluctuaties in abiotische 

omstandigheden hebben ecosystemen altijd al beinvloed. De effecten van menseljjk 

handelen op ecosystemen overschrijden tegenwoordig de effecten van de natuurljjke 

fluctuaties. Dit leidt tot grote veranderingen in het milieu, zoals klimaatsveranderingen, 

verontreiniging met tal van chemische stoffen en verstoring en vernietiging van de 

leefomgeving van organismen. E6n van de grootste gevolgen van al deze invloeden is de 

snelle achteruitgang in de verscheidenheid van organismen ofwel biodiversiteit in de wereld. 

Het verlies aan biodiversiteit heeft negatieve gevolgen voor het functioneren van 

ecosystemen zoals bijvoorbeeld voor de primaire productie, de kringlopen van nutrienten en 

organisch materiaal, de afbraak van organisch materiaal en de samenstelling van het 

voedselweb. Al die veranderingen kunnen ertoe leiden dat een ecosysteem verschuift van 

het ene stabiele evenwicht naar het andere. 

Ecosystemen staan onder invloed van een grote diversiteit aan stressfactoren en de Ijjst 

met potentieel bedreigende fysische, chemische en biologische factoren groeit nog steeds. 

De effecten en risico's van stressfactoren worden doorgaans per factor onderzocht via veld-, 

laboratorium- en modelstudies. Echter, in de natuur staan organismen bloot aan vele, 

tegeljjk werkende stressfactoren. Uit onderzoek is gebleken dat het gecombineerde effect 

van meerdere stressfactoren niet begrepen kan worden als een eenvoudig product van de 

individuele effecten. Daarom is het noodzakeljjk kennis op te bouwen over de kwantitatieve 

bjjdrage van meerdere, tegelijkertjjd werkende stressfactoren maar ook over het onderlinge 

verband tussen die factoren. 

Het centrale thema van dit proefschrift is het kwantificeren van de gecombineerde 

effecten van meerdere, tegeljjkertjjd werkende stressfactoren op de in de waterbodem 

levende macro-evertebraten (= ongewervelde, met het blote oog waarneembare 

waterdieren) en hun gemeenschappen. Daarbjj is onderzocht in hoeverre het aantal soorten 

macro-evertebraten verandert alsmede hun abundantie (= het aantal individuen). De 

bjjdragen van verschillende, simultaan opererende, stressfactoren op de macro-evertebraten 

zijn onderzocht in veldsituaties (hoofdstukken 2 tot en met 5), onder laboratorium-

omstandigheden (hoofdstukken 6 en 7) en met een rekenkundig model (hoofdstuk 8). 

Voor het kwantificeren van de bjjdrage van verschillende groepen van stressfactoren op 

de samenstelling en abundantie van de macro-evertebraten in veldsituaties is gebruik 
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gemaakt van een speciale statistische verwerkingsmethode (hoofdstukken 2, 3 en 4). Deze 

methode, aangeduid als de variantie partitiemethode, maakt het mogeljjk om de variatie in 

de macro-evertebraten gemeenschappen op te splitsen en toe te wjjzen aan verschillende 

stressfactoren. In dit proefschrift is deze methode toegepast om te onderzoeken in hoeverre 

die bruikbare resultaten oplevert. De uitkomsten van de onderzoeken beschreven in de 

hoofdstukken 2, 3 en 4 laten zien dat het inderdaad mogeljjk is om de effecten van 

verschillende stressfactoren te kwantificeren. 

De variantie partitiemethode is geschikt gebleken om de effecten van de hoeveelheid en 

de kwaliteit van het voedsel af te zetten tegenover de effecten van andere factoren 

(hoofdstuk 2). De samenstelling van de macro-evertebraten gemeenschappen uit 

verschillende watersystemen in Nederland wordt primair in verband gebracht met verschillen 

in algemene omstandigheden zoals de aanwezigheid van stroming, de dimensies van de 

watersystemen en de zuurgraad van het water. Dit zjjn factoren die samenhangen met het 

type water. De kwantiteit en de kwaliteit van het voedsel spelen in eerste instantie een 

minder belangrjjke rol. De rol van voedsel bljjkt mede af te hangen van de intensiteit van de 

andere factoren. Analyses van de gegevens uit alleen ondiepe plassen geven aan dat een 

groter voedselaanbod (meer organisch materiaal) samengaat met een lagere diversiteit aan 

soorten en een gel jjkbljj vend aantal organismen. Echter, een grotere hoeveelheid organisch 

materiaal op de bodem leidt meestal tot een grotere zuurstofvraag van de bodem. De 

geconstateerde veranderingen in de macro-evertebraten gemeenschappen kunnen dan ook 

niet eenduidig toegewezen worden aan de hoeveelheid organisch materiaal als bron van 

voedsel want ook lage zuurstofconcentraties kunnen dergeljjke veranderingen 

teweegbrengen. 

Een betere voedselkwaliteit (groter aanbod van meervoudige onverzadigde vetzuren) 

Ijjkt geen effect te hebben op het aantal soorten maar wel te leiden tot een groter aantal 

individuen. De productiviteit van de waterbodemdieren in ondiepe meren Ijjkt dan ook meer 

bepaald te worden door voedselkwaliteit dan door voedselkwantiteit. Daar verschillende 

soorten vissen en vogels macro-evertebraten als bron van voedsel gebruiken, Ijjkt de 

draagkracht van ondiepe meren voor deze organismen af te hangen van de voedselkwaliteit 

voor de macro-evertebraten. 

De uitkomsten van de onderzoeken beschreven in de hoofdstukken 3 en 4 geven aan 

dat met deze methodiek ook de effecten van verontreinigende stoffen op de macro-

evertebraten te kwantificeren zjjn. 

De variatie in de samenstelling van de levensgemeenschappen in het Noordzeekanaal 

(hoofdstuk 3) bljjkt vooral bepaald te worden door reguliere ecologische factoren zoals 

chloride, diepte en korrelgrootte van het sediment maar zeker ook door zware metalen 

(cadmium, koper, lood en zink). Zo'n 45 % van de biologische variatie wordt verklaard door 

de ecologische factoren en zo'n 8 % door zware metalen. De levensgemeenschappen uit het 

Noordzeekanaal bestaan voornameljjk uit algemene en tolerante soorten. Tolerante soorten 

zjjn organismen die bestand zjjn tegen tal van beinvloedingen. De aanwezigheid van veel 
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tolerante soorten in het Noordzeekanaal wordt voornameljjk veroorzaakt door het verloop in 

chloride: zout water by Umuiden en zoet water nabjj het Usselmeer. Soorten die gevoelig 

zjjn voor allerlei verontreinigingen ontbreken nagenoeg. Het Ijjkt er dan ook op dat de 

effecten van de zware metalen in het Noordzeekanaal eerder gerelateerd kunnen worden 

aan het verdwijnen van de zwakkere exemplaren van de tolerante soorten dan aan het 

verdwjjnen van soorten die gevoelig zjjn voor verontreiniging. 

Net als in het Noordzeekanaal bljjkt de variatie in de samenstelling van de 

macroevertebraten in de Rjjn-Maas delta (hoofdstuk 4) eveneens mede bepaald te worden 

door de aanwezigheid van verontreinigende stoffen. De aanwezige polyaromatische 

koolwaterstoffen, polychloorbifenylen, zware metalen en olie bepalen een kleine 14% van 

de variatie tegenover zo'n 17% door de ecologische factoren als korrelgrootteverdeling van 

het sediment, stroomsnelheid, diepte en zuurgraad. De invloed van de ecologische factoren 

is in de Rjjn-Maas delta veel kleiner dan in het Noordzeekanaal. Dat komt doordat in de Rjjn-

Maas delta niet sprake is van 6en dominante factor, zoals het chloride in het Noordzee

kanaal. Het onderzoek toont daarnaast dat organismen die de waterbodem als voedselbron 

gebruiken negatief beinvloed worden door de verontreinigende stoffen terwjjl macro

evertebraten met een andere voedingswjjze niet of nauweljjks beinvloed worden. Dit Ijjkt 

erop te wjjzen dat de opname van verontreinigende stoffen vooral via het voedsel verloopt. 

De analyses van de veldgegevens laten duideljjk zien dat de effecten van meerdere 

stressfactoren weerspiegeld worden in de samenstelling van de macro-evertebraten 

gemeenschappen. Verschuivingen in zowel de samenstelling van de soorten als in het aantal 

individuen van soorten kunnen optreden als gevolg van de gecombineerde effecten van 

stressfactoren. Om meer inzicht te krjjgen in de effecten van meerdere stressfactoren op 

individuele soorten zjjn veldgegevens van twee vlokreeftsoorten geanalyseerd (hoofdstuk 5), 

zjjn twee laboratorium experimenten uitgevoerd (hoofdstuk 6 en 7) en is een bio-energetisch 

model ontwikkeld (hoofdstuk 8). 

Uit de analyses van de verspreidingsgegevens van twee soorten vlokreeften in de 

Nederlandse beken blijkt dat de statistische verwerkingsmethode logistische regressie zeer 

bruikbaar is voor het definieren van de eisen die deze organismen stellen aan hun 

leefomgeving (hoofdstuk 5). Ook geeft de methode inzicht in het relatieve belang van de 

diverse factoren. De studie toont voorts dat Gammarus fossarum voorkomt in kleinere, 

ondiepere en sneller stromende beken dan Gammarus pulex. Dit houdt waarschijnljjk 

verband met de kleinere tolerante van Gammarus fossarum voor lagere stroomsnelheden, 

zuurstofconcentraties en zuurgraad. 

De waterpissebed (Asellus aquaticus) is in laboratoriumexperimenten gebruikt om te 

achterhalen wat de effecten van meerdere, simultaan werkende stressfactoren zjjn de 

overleving en de groei (hoofdstukken 6 en 7). Experimenten met verschillende combinaties 

van stroomsnelheid en substraatsamenstelling (hoofdstuk 6) tonen dat stroomsnelheid een 

groter effect heeft op het overleven en de groei dan de substraatsamenstelling. Deze laatste 

factor heeft aan de andere kant een grotere invloed op de ruimteljjke verdeling van de 
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waterpissebedden in de proefopstelling. De proeven laten zien dat de pissebed slechter 

groeit bjj hogere stroomsnelheden en dat er geen verschil is waargenomen in de 

hoeveelheden voedsel die de waterpissebedden tot zich nemen. Hieruit kan de conclusie 

getrokken worden dat een substantieel deel van de opgenomen energie gebruikt is voor het 

weerstaan van de stress veroorzaakt door de stroming. 

In een andere proef is de waterpissebed blootgesteld aan benzo(a)pyreen in combinatie 

met grof of fjjn voedsel (hoofdstuk 7). Het experiment toont dat de groei van de pissebed 

vooral wordt belnvloed door de grootte van het voedsel. Normaliter eet de waterpissebed 

grover organisch materiaal. Het aanbieden van fjjn voedsel geeft een aanzienljjke reductie in 

de groei van de pissebed. Hieruit kan geconcludeerd dat aan het eten van een minder 

geschikte voedselbron energetische kosten verbonden zjjn. Voor de waterpissebed heeft fjjn 

organisch materiaal bljjkbaar een lage voedselkwaliteit. De blootstelling aan benzo(a)pyreen 

leidt eveneens tot verminderde groei, maar de geconstateerde verschillen zjjn niet 

significant. 

Voor de waterpissebed is een bio-energetisch model ontwikkeld gebaseerd op bestaande 

consumptie- en respiratiefuncties (hoofdstuk 8). Toepassen van het model op de gegevens 

van de eerder genoemde groei experimenten laat zien dat effecten van meerdere 

stressfactoren via de energiehuishouding geanalyseerd kunnen worden. Het model geeft 

aanwijzingen dat stressfactoren die de groei van de waterpissebed belemmeren een negatief 

effect kunnen hebben op de snelheid waarmee het organisch materiaal wordt omgezet. Het 

maakt daarbij niet uit of de stressfactoren werken via een vermindering in de 

voedselopname of een verhoging van de respiratie. 

Concluderend kan gesteld worden dat de verschillende studies uit dit proefschrift laten 

zien dat de biologische respons op een specifieke (groep van) stressfactor(en) afhangt van 

de intensiteit van de stressfactor en van de status van alle andere stressfactoren. 

Bjjvoorbeeld, de respons van de macroevertebraten op voedsel is sterk afhankeljjk van het 

watertype (hoofdstuk 2) en de effecten van verontreinigende stoffen op macroevertebraten 

zjjn onder meer afhankeljjk van de hoeveelheid organisch stof in het sediment (hoofdstukken 

3, 4). Maar ook de analyse van de verspreiding van twee algemene vlokreeften in 

Nederlandse beken laat zien dat verschillende stressfactoren betrokken zjjn bjj het verklaren 

van deze patronen (hoofdstuk 5). De groei van de waterpissebed in het laboratorium op 

verschillende substraten bljjkt af te hangen van de stroomsnelheid (hoofdstuk 6) en de groei 

van de waterpissebed blootgesteld aan benzo(a)pyreen hangt mede af de grootte van het 

organisch materiaal dat als voedsel dient (hoofdstuk 7). Het resultaat van de modelstudie 

laat zien dat in de energiehuishouding de effecten van meerdere stressfactoren geintegreerd 

worden. Tenslotte bljjkt uit dit proefschrift dat effecten van simultaan opererende 

stressfactoren te kwantificeren zjjn in laboratorium- en veldsituaties en dat modellen 

gebaseerd op de energiehuishouding een krachtig instrument kunnen vormen voor het beter 

begrjjpen van de verspreiding en abundanties van soorten. 
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Aan alles komt een eind en gelukkig dus ook aan het schrjjven van een proefschrift. Een 

mooi moment om even stil te staan. De fascinatie voor water is mjj als klein jochie al 

aangereikt door mjjn pa en ma. Eerst door de onmeteljjkheid van de Noordzee, later door 

het fenomenale schouwspel van watervallen en stroomversnellingen in het buitenland. 

De eerste kennismaking met de wondere wereld onder water was tjjdens het practicum 

hydrobiologie aan de toenmalige Landbouwhogeschool. Wat later in mijn studie werd dat 

gevolgd door een afstudeervak bjj Jan Cuppen en een stage in Lyon bjj dr Henri Tachet. Zjj 

lieten mjj zien dat aquatische ecologie een interessant wetenschap kan zijn. Dat ik in de 

beroepspraktjjk van de aquatische ecologie terecht ben gekomen heb ik te danken aan Henk 

Smit. Alsjonge enthousiasteling bjj het RIZA wilde hij graag een onderzoek laten verrichten 

naar de Maas. Dat zou dan moeten gebeuren onder begeleiding van ene Jean Gardeniers. 

Jean, als ik zo terugkjjk besef ik pas wat ik allemaal van j e geleerd heb en daar ben ikje 

dankbaar voor. Onze vele wetenschappeljjke discussies over ecologie, chaos, tjjd en ruimte 

en biologische waterbeoordeling hebben mjj inhoudeljjk verder gebracht. Maar ik heb veel 

meer van j e geleerd: de omgang met begeleidingscommissies, het verzorgen van onderwjjs 

en het strategisch vergaderen. Waar ik vooral veel bewondering voor heb is jouw creativiteit 

en eeuwige kritische houding ten opzichte van alles en iedereen. Zonder jou was mjjn 

proefschrift er echt nooit gekomen. 

Door toedoen van mjjn copromotor Bart Koelmans werden mjjn vage plannen om te 

promoveren razendsnel verwoord in een gedegen promotievoorstel. Het samen met jou 

begeleiden van afstudeervakkers was prettig en heeft mjjn kennis van de aquatische chemie 

sterk vergroot. Ook jouw inzet als co-auteur heeft mjjn grote waardering: de discussies over 

de opzet van de verhalen heb ik als zeer constructief ervaren en binnen een mum van tjjd 

kwamen de concepten terug met waardevolle suggesties voor verbeteringen. Jouw 

inspanningen hebben mede geleid tot dit proefschrift en daar ben ikje dan ook zeer 

dankbaar voor. 

Mjjn promotor prof Marten Scheffer kwam pas in beeld toen het promotieplan er al lag. 

Desondanks ligt er toch een duideljjke signatuur van je in het proefschrift. Marten, veel dank 

voor de ruimte die je me gegeven hebt om mjjn proefschrift te schrjjven en voor jouw inzet 

tjjdens de finale van het schrjjven van mjjn proefschrift. 

Ook dank voor de medewerkers en oud-medewerkers van de leerstoelgroep Aquatische 

Ecologie en Waterkwaliteitsbeheer. Zonder iemand te kort te willen doen wil ik in het 

bjjzonder voor hun inzet bedanken John, Rob, Marjjke en Rudi. leder van jullie heeft op z'n 

eigen wjjze bjjgedragen aan mjjn promotie. Verder hoop ik nu weer meer tjjd te hebben voor 

de koffie, thee en lunchpauzes. 

Ook minder direct betrokkenen bjj mjjn promotietraject hebben hun inbreng gehad. Veel 

studenten hebben een afstudeervak bjj mjj gedaan. De Ijjst is veel te lang om op te noemen, 

maar in het bjjzonder wil ik Tabe, Steve, Anouk en Annemarieke bedanken. Ook de 

discussies binnen de begeleidingscommissies van de verschillende onderzoeken en niet te 

vergeten binnen de Werkgroep Ecologisch Waterbeheer hebben mede richting gegeven aan 
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mjjn promotie. Die discussies met het 'werkveld' heb ik altjjd als leerzaam en uitdagend 

ervaren. 

Werken zonder ontspanning gaat niet. Vooral de maandagavond sportclub met Fred, 

Irma, Anne en de oud-leden Ap, Niek-Jan en Barbara heeft mjj menig zweetdruppel gekost. 

Wei lekker om eens te babbelen over hardlopen, ouder worden, kinderen, fietsen, eten, 

vakanties enzovoort en eens te mopperen over j e werk. Dat we nog maar lang mogen 

doorgaan. 

Mjjn paranimfen Anne en John weerspiegelen dan ook de zaken die voor mjj belangrjjk 

zjjn naast mjjn gezin en familie. Jullie beiden wil ik bedanken voor de lol en de inzet van de 

afgelopen tjjd. 

Ook de drie meiden thuis hebben nun steentje bjjgedragen. De kleintjes door hun guile 

lach, de grote door me de ruimte te geven en de nodige hulp. Dankbaar ben ik met jullie 

zoalsjullie zjjn. 
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