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Abstract

Genetic disposition and response of blood lipids to diet.

Studies on gene-diet interaction in humans.

Ph.D. thesis by Rianne M. Weggemans, Division of Human Nutrition and Epidemiology,
Wageningen University, The Netherlands. January 17, 2001.

Even though a cholesterol-lowering diet is effective for most people, it is not for all.
Identification of genetic determinants of the serum lipid response to diet may be of help in the
identification of subjects who will not benefit from a cholesterol-lowering diet. It may also
clarify the role of certain proteins in cholesterol metabolism. The objective of our research
was to determine whether genetic polymorphisms affect the response of serum lipids to diet in
humans.

We first assessed sex differences in the response of serum lipids to changes in the diet,
Men had larger responses of total and low-density lipoprotein cholesterol to saturated fat and
cafestol than women. There were no sex differences in the responses to frans fat and dietary
cholesterol. We also used these data to study the effect of 11 genetic polymorphisms on
responses of serum lipids to the various dietary treatments. Apoprotein E, A4 347 and 360,
and cholesteryl-ester transfer protein Taglb polymorphisms affected the lipid response to diet
slightly.

We further studied the effect of the apoprotein A4 360-1/2 polymorphism on response
of serum lipids to dietary cholesterol in a controlled trial specially designed for this purpose.
The apoprotein A4 360-1/2 polymorphism did not affect the response of serum lipids to a
change in the intake of cholesterol in a group of healthy Dutch subjects who consumed a
background diet high in saturated fat.

Although it is not directly related to genetic polymorphisms and lipid response, we
finally reviewed the effect of dietary cholesterol on the ratio of total to high-density
lipoprotein cholesterol, which is a more specific predictor of coronary heart disease than
either lipid value alone. Dietary cholesterol raised the ratio of total to high-density lipoprotein
cholesterol.

In conclusion, the effect of genetic polymorphisms on serum lipid response to diet is
small. It is therefore not possible to identify individuals who will not benefit' from a
cholesterol-lowering diet on the basis of a specific genetic polymorphism.
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General introduction



Chapter 1

Background

World wide, cardiovascular diseases are a substantial source of chronic disability and
health costs (1). In the Netherlands, coronary heart discase is the most prevalent
cardiovascular disease. During the past 20 years, death as a result of cardiovascular disease
has decreased. This decrease is caused by a reduced incidence of cardiovascular disease and
by improved care of patients with cardiovascular disease. However, one of the side effects is
that the number of patients with cardiovascular disease has increased. In addition, the
improved prognosis of coronary heart disease has increased the probability of another
cardiovascular event (2). Prevention of cardiovascular disease should be targeted to the
general population to postpone time of onset of disease. In addition, people with
cardiovascular disease should be targeted for secondary prevention to improve quality of life.

The pathological condition that underlies coronary heart disease is atherosclerosis,
which involves lesions in the arterial vessel wall. These lesions contain large amounts of
lipids, a large proportion of which is cholesterol that comes from the blood. In blood, most of
the cholesterol is transported in low-density lipoprotein (LDDL) and a small proportion is
transported in high-density lipoprotein (HDL). High concentrations of serum LDL-cholesterol
are a risk factor of coronary heart disease. However, on the contrary, high concentrations of
HDUL-cholesterof protect against coronary heart disease (3).

Subjects who suffer from overt cardiovascular disease or who are at high risk of
cardiovascular disease should be targeted for lifestyle intervention and, where appropriate,
drug therapies. One of the recommended changes in lifestyle is a lipid-lowering diet. In this
diet, total energy intake should comprise less than 30 % fat, total fat intake should comprise
less than one third as saturated fat, and intake of dietary cholesterol should be less than 300
mg per day. The prevention goals for blood lipids are concentrations of total cholesterol less
than 5.0 mmol/L and of LDL-cholesterol less than 3.0 mmol/L (4).

However, even though a lipid-lowering diet is effective for most people, it is not for
all. The effect of a lipid-lowering diet is to some extent reproducible in a subject, which
indicates that it may be in part an innate characteristic of a subject (5,6). Identification of
genetic factors that are related to the lipid response to diet may be of help in the identification
of subjects who will not benefit from a cholesterol-lowering diet. It may also clarify the role
of certain proteins in cholesterol metabolism.

This introduction gives a concise overview of cholesterol metabolism and the effect of
diet on serum lipids. It then discusses the role of genetic polymorphisms in determining the
response of serum lipids to diet and presents a number of candidate genes that are studied in
this thesis, The general objective and outline of the thesis are given at the end of this chapter.
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General introduction

Cholesterol metabolism

The steroid cholesterol is an essential component of the cell membrane and is a
precursor in the synthesis of bile acids and steroid hormones (7). In addition to cholesterol
obtained from diet, there is also de nova synthesis of cholesterol from acetate in the liver and
in peripheral tissues.

As reviewed in (8), cholestero! metabolism consists of two pathways, the exogenous
pathway and the endogenous pathway (Figure 1.1). The exogenous pathway concerns the
transport of dietary cholesterol and triglycerides from the intestine to the liver. Dietary
cholesterol and triglycerides are processed in the intestine and packaged into chylomicrons.
Intestinal fatty acid binding protein (FABP2) is essential for the uptake, metabolism and/or
transport of long-chain fatty acids. Microsomal triglyceride transfer protein (MTP) is essential
for the assembly and secretion of chylomicrons from intestinal cells into lymph. These
chylomicrons subsequently enter the circulation. The capillary vessel wall of peripheral
tissues contains lipoprotein lipase (LPL). Apolipoprotein (apo) C-I, which is part of the
chylomicron, activates LPL. Activated LPL hydrolyzes the triglycerides in the core of
chylomicrons into free fatty acids, which subsequently enter fat and muscle ceils. In this way,
chylomicrons are converted into chylomicron remnants, which then pick up cholesteryl-esters
from HDL (this is part of endogenous pathway). These cholesterol-enriched chylomicron
remnants are efficiently cleared by LI)L-receptor and LDL-receptor related protein (LRP) (9),
which involves apoB48 and apoE on the surface of remnants. Cholesterol is used in a number
of ways in the liver. It may be esterified and stored in liver cells or used for synthesis of cell
membranes. It may also be converted into bile acids and subsequently excreted from the body.

The endogenous pathway consists of two interrelated processes. One co-ordinates
movement of cholesterol and triglycerides from the liver to peripheral tissues and the other
concerns their transport from peripheral tissues back to the liver. This is called the reverse
cholesterol transport. As part of the former process, liver cells secrete cholesterol and
triglycerides into blood in the form of very low-density lipoproteins (VLDL). MTP is
essential for the assembly and secretion of VLDL. Triglycerides in VLDL are hydrolyzed by
LPL, similarly to those in chylomicrons. This results in the formation of smaller intermediate
density lipoproteins (IDL), which can be cleared from plasma by the liver through LDL-
receptors and LRP or is converted to LDL by LPL or hepatic lipase. LDL is then either
directly removed by peripheral cells or liver cells through the interaction of apoB-100 with
LDL-receptors.

As part of the other process of the endogenous pathway, the reverse cholesterol
transport, nascent high-density lipoprotein (HDL), which is synthesized in liver and intestinal
cells, changes into HDL; by taking up free cholesterol from extrahepatic cells. This

11
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Stellingen wolr0!,2926

. Een cholesterolverlagend dieet is effectiever bij mannen dan bij vrouwen, Dit
proefschrift.

. De conclusie van McCombs et al (N Eng J Med 1994, 331:706-10) dat het
apoproteine A4 360-2 allel de cholesterolrespons op voedingscholesterol
vermindert, is waarschijnlijk gebaseerd op ecn toevalsbevinding. Dit proefschrifi.

. Voor de primaire preventie van hart- en vaatziekten is het niet van belang of je
regeimatig een lange duurloop doet of korte sprints, zolang het energieverbruik
maar gelijk is. Sesso et al. Circulation 2000; 102:981-6.

. De behandeling van essentiéle hypertensie kan effectiever worden door medicatie
af te stemmen op het 24-uurs ritme van de bloeddruk. Smolanski & Portaluppi.
Am Heart J 1999; 137:814-24.

. Slechts 5 tot 10 % van alle vrouwen in de overgang heeft baat bij
hormoonsuppletie. Barrett-Connor. De Anatomische Les, 2000,

. Voor de preventie van hart- en vaatziekten zijn de meeste mensen meer gebaat bij
een verandering in leefstij! (lichaamsbeweging, niet roken, goede voeding) dan bij
het gebruik van vitamine - en mineralensupplementen.

. Voor de behandeling van RSI (repetitive strain injuries, muisarm) is de
verandering in fysieke werkhouding net zo belangrijk als de verandering in
mentale werkhouding.

. Het succes van vernieuwingen is afhankelijk van de mate waarin ze aansluiten bij
de bestaande situatie.

Stellingen bij het proefschrift
Genetic disposition and response of blood lipids to diet.
Studies on gene-diet interaction in humans

Rianne M. Weggemans. Wageningen, 17 januari 2001




General introduction

cholesterol is esterified by lecithin:cholesterol acyltransferase (LCAT), which uses apoA-1
and apoA-IV as co-factors. The cholesteryl esters migrate to the core of the HDL;. Further
uptake of cholesterol and action of LCAT results in larger-sized and cholesteryl-rich HD1,.
As HDL,, becomes more enriched with cholesteryl esters, apoproteins C-II and C-IH are
picked up from other lipoproteins. Subsequently, cholesteryl esters are transferred to
chylomicrons, VLDL, IDL, and LDL in exchange for triglycerides by the action of cholesteryl
ester transfer protein (CETP). This process results in triglycerides-rich HDL;;, and enables the
hepatic uptake of cholesteryl esters from VLDL, IDL, and LDL.. HDLy, can be removed from
circulation by the HDV.-receptor, also known as scavenger receptor B1. HDLyy, can also be
converted into the form of HDLs by hepatic lipase, which hydrolyzes the triglycerides in
HDLy, (8,10).

Effect of diet on lipid concentrations

Diet affects lipid concentrations in the blood. At a population level, replacement of
carbohydrates by saturated fat and the addition of dietary cholesterol increase concentrations
of LDL- and HDL-cholesterol, whereas replacement of carbohydrates by cis-unsaturated fat
decreases LDL-cholesterol and increases HDL-cholesterol concentrations (11-14). Trans fat
increases LDL-cholesterol concentrations in the same way as saturated fat, whereas it
decreases HDL-cholesterol concentrations as compared to saturated fat (15). In a similar way,
addition of cafestol to diet increases LDL-cholesterol and slightly decreases HDL-cholesterol
concentrations {16).

The precise mechanisms determining the response of serum lipids to diet are not
known. The response of LDL-cholesterol to saturated fat and dictary cholesterol may be
mediated in part by the number of hepatic LDL-receptors that affect the clearance of LDL-
cholesterol from the blood. Down-regulation of the cholesterol synthesis in liver, increased
CETP-activity, and enhanced synthesis of bile acids may also play a role in the mechanism
that determines this lipid response {17,18). The most plausible mechanism by which cafestol
affects LDL-cholesterol concentrations is through the sterol regulatory element binding
protein (SREBP) pathway (19).

The response of serum lipids to diet varies considerably among subjects. A large part
of this heterogeneity in responses is not reproducible and is due to random fluctuations within
subjects. Another part of the heterogeneity in response is reproducible and may partly be an
innate characteristic of a subject (5,6).

The mechanism underlying the differences in response between subjects is still
obscure. Tt is probably heterogeneous, because various stages in cholesterol metabolism, such

13
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General introduction

as absorption of cholesterol, inhibition of cholesterol synthesis, excretion of steroids,
receptor-mediated clearance of LDL, LDL production, and accumulation of cholesterol in the
body, may all contribute to response (20).

Possible role of genetic variation

Genes are parts of DNA that encode an enzyme or structural protein. Within a gene,
coding sequences are interrupted by intervening sequences that are no part of the final gene
product. Small flanking regions of DNA at both ends of the gene are important in the
initiation and control of transcription, and mutations in these regions can affect the
functioning of the gene. Many different forms of a gene may exist as a result of individual
mutations. These are called alieles. Genes are called polymorphic when at least two aileles
occur at a frequency of more than 1 % in a population (21).

Variation in DNA or genetic polymorphisms may affect the response of serum lipids
to diet by influencing the production, composition and/or function of proteins in the
cholesterol metabolism. There are many proteins (and thus genes) that play a role in various
pathways of cholesterol metabolism. This thesis describes the effect of 11 polymorphisms of
9 genes on the lipid response to diet (Figure 1.1, Table 1.1}.

As reviewed in detail by others (22-24), evidence that polymorphisms affect lipid
responses is growing in the case of the APOE polymorphism, which has been most
extensively studied, and for polymorphisms in the APOA1, APOA4, APOB, CETP, and LPL
genes. However, results of studies of the effects of genetic pelymorphisms on response are
often inconsistent. There are several explanations for these inconsistencies. One possible
explanation is that most of the studies lacked statistical power to detect existing effects of
polymorphisms on lipid response due to small numbers of subjects. Another explanation is
that polymorphisms only affect lipid responses to specific dietary changes, such as a change
in dietary cholesterol, a change in dietary fat, or a combination of a change in dietary
cholesterol and fat. Yet another explanation is that polymorphisms have sex-specific effects,
they may affect the response only in men or only in women,

Objective and outline of the thesis

The objective of this research was to determine whether genetic polymorphisms affect
the response of serum lipids to diet in humans.

In Chapter 2 we assess sex differences in the response of serum lipids to changes in

the diet. For this purpose, we pooled data on the serum lipid response to diet from 26 former
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Chapter 1

dictary trials involving 248 men and 243 women. These data were also used to study the
effect of genetic polymorphisms on response of serum lipids to diet. Chapter 3 considers the
effect of the APOE2/3/4 polymorphism on serum lipid response and reviews the effect of this
polymorphism as determined in other studies. Chapter 4 describes the effects of 10 other
candidate polymorphisms on serum lipid response. In Chapter 5, we describe the results of a
controlled dietary trial of the effect of APOA4 360-1/2 polymorphism on response of serum
lipids to dietary cholesterol. Although it is not directly related to genetic polymorphisms and
lipid responses, the data of this trial were also used in a meta-analysis of the effect of dietary
cholesterol on the ratio of total cholesterol to HDL-cholesterol {Chapter 6). Finally, the main
outcomes of the studies of the effects of genetic polymorphisms on serum lipid response are
discussed in Chapter 7. This chapter also focuses on methodological issues of studies on
gene-diet interaction and issues in comparing such studies. In addition, it discusses the
feasibility of genetic tests to detect diet-sensitivity and possible directions for future research
with regard to gene-diet interactions in lipid metabolism.
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Differences between men and women in the
response of serum cholesterol to dietary changes

Rianne M. Weggemans, Peter L. Zock, Rob Urgert, Martijn B, Katan

Abstract- Mild hypercholesterolemia is initially treated by diet. However, most studies of diet
and cholesterol response were done in men, and it is unknown whether women react to diet to
the same extent as men. We therefore studied sex differences in the response of serum
cholesterol and lipoproteins to diet.

We measured responses of serum cholesterol to a decrease in dietary saturated fat in
seven trials involving 126 men and 147 women, to a decrease in dietary #rans fat in two trials
{48 men and 57 women), and to a decrease in dietary cholesterol in eight trials (74 men and 70
women). We also measured responses to the coffee diterpene cafestol, which occurs in
unfiltered coffee, in nine trials (72 men and 61 women). All subjects were lean and healthy.

The response of total cholesterol (+ standard deviation) to a decrease in the intake of
saturated fat was larger in men (-0.62 + 0.39 mmol/L) than in women (-0.48 + 0.39 mmol/L;
95% confidence interval (CI), 0.04 to 0.23 mmol/L). The response of total cholesterol to a
decrease in the intake of cafestol was also larger in men (-1.01 £ 0.49 mmol/L ) than in
women (-0.80 = 0.49 mmol/L; 95% CI, 0.04 to 0.39 mmol/L). Responses to trans fat and to
dietary cholesterol did not differ between men and women.

In conclusion, men have larger responses of total cholesterel and LDL-cholesterol to
saturated fat and cafestol than women.

Eur J Clin Invest 1999; 29:827-834



Chapter 2

Introduction

Mild hypercholesterolemia, which is defined as a total cholesterol level over 5.2
mmol/L, is initially treated by a diet low in saturated fat and cholesterol, regardless of the sex
of the patient (1-4). However, this dietary approach is based on evidence from trials most of
which only comprised men (5-8). It is therefore not known whether dietary treatments to
lower cholesterol should differ between men and women.

Some studies showed that the sex of a subject affects responses of total, low-density
lipoprotein (LDL-), and high-density lipoprotein (HDL-) cholesterel to diets low in fat and
cholesterol or with a high content of polyunsaturated fat (9-13), but others failed to confirm
this (14-16).

We therefore compared diet-induced responses of serum total cholesterol and LDL-
and HDL-cholesterol in 248 women and 243 men who participated in 26 controlled trials
performed at our department between 1976 and 1996.

Materials and methods
Subjects, diets and experimental design

We pooled data of 26 controlled trials on diet and response, which had all been
performed at our department between 1976 and 1996. In seven trials saturated fatty acids
were exchanged for cis-unsaturated fatty acids or carbohydrates (referred to below as
saturated fat trials) (17-23), in two trials #rans fatty acids were exchanged for cis-unsaturated
fatty acids (trans fat trialsy (21-22), in eight trials the amount of dietary cholesterol was
modified (dietary cholesterol trials) (24-28), and in nine trials the coffee diterpenes cafestol
and kahweol were given (cafestol trials) (29-34) (Figure 2.1, Table 2.1). These diterpenes are
responsible for the cholesterol-raising effect of unfiltered coffee. The amounts which were
consumed by the subjects of these trials were within the normal range of consumpticn (35),
Results of individual trials have been published elsewhere (17-34). Seven trials had a cross-
over design (18, 21-23, 33), 14 a parallel design with a control group (17, 19, 20, 24, 26, 27,
28, 31, 32, 34), and five a before-and-after or linear design without a control group (25, 29-
32).

Subjects received all their foods in 12 trials with saturated fat, frans fat, or dietary
cholesterol (17-24, 26-28). In four trials of dietary cholesterol subjects received eggs as a
supplement during the treatment period and guidelines for a diet low in cholesterol during the
control period (24-27). In one other trial of dietary cholesterol, subjects received all foods
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Sex differences in cholesterol response

All 26 Trials
924 responses
243 men / 248 women
249 participated in more than one trial

7 Saturated Fat Trials
376 responses
126 men / 147 women
78 participated in more than one saturated fat trial

2 Trans Fat Trdals
115 responses
48 men / 57 women
10 participated in more than one trans fat trial

8 Dietary Cholesterol Trials
282 responses
74 men / 70 wemen
77 participated in more than one cholesterol frial

9 Cafestof Trials
151 responses
72 men/ 61 women
18 participated in more than one cafestol trial

Figure 2.1 Overview of the trials indicating the number of responses measured, the number of
participating men and women, and the nature of the dietary intervention. Saturated fat trial,
exchange of saturated fatty acids for cis-unsaturated fatty acids or carbohydrates; trans fat trial,
exchange of monounsaturated #ans-fatty acids for cis-unsaturated fatty acids; dietary cholesterol
trial, addition of dietary cholesterol to the diet; and cafestol trial, supplementation with the coffee
diterpenes cafestol and kahweol.

during the treatment period and received dietary guidelines during the control period (28). In
the nine cafestol trials subjects received coffee, coffee prounds, coffee oil, or cafestol and
kahweol as a supplement and consumed their habitual diet throughout the trial (29-34).
Participants were asked to maintain their usual patterns of activity, their smoking habits, and
their use of oral contraceptives during the trials. They recorded in diaries any signs of iliness,
medications used, or other factors that might have affected the outcome of the study. The
number of participants per trial ranged from 3 to 94 (median of the number of participants was
23), and the duration of the treatment ranged from 1.5 to 14 weeks (median duration was 3
weeks).

In the cross-over frials, subjects were randomized 1o the sequence of the various
treatments (18, 21-23, 33) and in the parallel trials, subjects were randomized to one
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Chapter 2

of the various treatments (17, 19, 20, 24, 26-28, 31, 32, 34). In five of the nine cafestol trials
participants and investigators were blinded to the nature of the treatment (30-33). Lab
personnel were never aware of the subject’s treatment. Cholesterol levels were determined in
at least two serum samples per treatment which were obtained on separate days. All sera from
one subject were analyzed within the same run. The coefficient of variation within one run for
control samples ranged from 0.7 to 2.9 %. In all trials the accuracy was checked by the
analysis of three serum pools of known value provided by the Centers for Disease Control
{Atlanta, GA). The mean bias with regard to the target values of the Centers for Discase
Control pools ranged from -2 % to 1.1 % for total cholesterol, from -3.2 % to 3.3 % for HDL-
cholesterol, and from -1.5 % to 10 % for triglycerides (17-34).

The subjects were healthy as indicated by a medical questionnaire, and by the absence
of anemia, glucosuria, and proteinuria. The protocols, which were approved by the appropriate
Ethical Committee, were explained to the subjects and informed consent was obtained from
all subjects.

In order to protect the privacy of subjects and assure blinding we assigned new
identification numbers to all subjects. To check for errors introduced during the coding and
during the amalgamation of the data from the 26 trials, we determined the presence of DNA
sequences unique to the X and Y chromosome (36). Out of 512 subjects for whom data were
available one woman had been erroneously coded as a man; the sex of the other 511 subjects
agreed with that in the pooled data files.

For the present analyses we pooled serum cholesterol responses to saturated fat of 126
men and 147 women, responses to frans fatty acids of 48 men and 57 women, responses to
dietary cholesterol of 74 men and 70 women, and responses to cafestol of 72 men and 61
women {Table 2.2). We excluded data from subjects who received a control diet or a placebo
treatment throughout a trial. We did not analyze responses of LDL-cholesterol to dietary
cholesterol, because these were available for only 47 of the 144 subjects. Age was recorded
and body mass index, weight change, and serum cholesterol levels were measured as
described (17-34). Baseline cholesterol levels were measured before the start of the study,
when subjects consumed their habitual diets.

Statistical analysis

The way we calculated individual responses of cholesterol depended on the design of
each trial, which was either a cross-over, a parallel, or a before-and-after design. In the trials
with a cross-over or parallel design we defined individual responses of cholesterol as the level
of serum cholesterol at the end of the treatment that lowered cholesterol minus the level at the
end of treatment that increased cholesterol. In the trials with a before-and-after
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Sex differences in cholesterol response

Table 2.2 Baseline characteristics (mean t standard deviation) of

men and women in the various trials.

Men Women
Saturated far trials
N 126 147
Total cholesterol level (mmaol/L) 4.88 £0.93 5.12 £ 0.89
Rody mass index (kg/m?) 22,5427 224+2.8
Age (vears) 28+ 12 28+ 12
Trans fat trials
N 48 57
Total cholesterol level (mmol/L) 488+ 0.77 491 +0.72
Body mass index (lg/m?) 218419 21.7+2.4
Age (years) 24+ 8 25+8
Dietary cholesterol trials
N 74 70
Total cholesterol level {mmol/L) 5051081 542 +£143
Body mass index (kg/m’) 23.5+3.2 232£33
Age (years) 37+16 3917
Cafestol trials
N T2 61
Total cholesterol level (mmol/L) 4.54 + (.66 4.58 + 0.60
Body mass index (kg/m?) 22.1£20 22,025
Age (years) 26+ 8 24x5

To convert values for total cholesterol level from mmol per liter to mg per deciliter,

divide mmol per liter by 0.02586.

design in which the treatment lowered cholesterol, we defined individual responses as the

level of cholesterol at the end of the treatment minus the level of cholesterol before the
treatment. In the trials with a before-and-after design in which the treatment increased
cholesterol, we defined individual responses as the level of cholesterol before the treatment

minus the level at the end of the treatment. In one dietary cholesterol trial {25) and seven
cafestol trials (29, 31,32, 33, 34), we used the level of baseline cholesterol to calculate the

response.
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We used different methods to estimate the differences between men and women in
their responses of cholesterol. To adjust for potentially confounding factors, we used the
average individual response as independent variable in a two-factor and multiple regression
model. We calculated the average response of each subject over trials with a similar dietary
treatment, as well as their average body mass index and age, because 28 per cent of the
subjects participated in two or more trials with a similar dietary treatment; 51 per cent of all
subjects participated in more than one trial.

Two-factor regression model

The two-factor regression model included as independent factors the sex of the subject
and additional factors indicating in which trial the individual's cholesterol response had been
measured. If a trial consisted of more than one treatment, we created factors indicating each
treatment within a trial. Inclusion of these trial factors allowed us to correct for difterences
between trials in e.g. characteristics of the background diet, whether the diet was controlled or
uncontrolled, or time of the vear during which the trial had been performed. If subjects
participated in more than one trial with a similar dietary treatment the factors of these trials
were set to a value reciprocal to the number of times a subject had participated. For instance,
if a subject participated in two trials, the factor for each trial was set to %. In this way, we
could adjust the individual’s mean response for the effect of various trials. In the two-factor
regression model, the mean cholesterol response of men and women was calculated by a least

squares method after correction for the trial in which the response was measured.
Multiple regression models

In a multiple regression model, differences in responses between sexes were estimated
after adjustment for trial and for the subjects’ age, body mass index, and change in weight
during the trial. We lacked information about the age of 21 subjects, body mass index of 65
subjects, and change in weight during the trial of 48 subjects. For these subjects we sct age to
25 years, body mass index to 25 kg/m’, and change in weight to 0.0 kg. For all subjects we
created dummy variables that indicated whether the information about a characteristic was
avallable or not. In this way data on the response of cholesterol of all subjects could be
included in the multiple regression model.

We did not adjust for baseline cholesterol level in our primary analyses because
baseline cholesterol level was part of the response in one dietary cholestero] trial and seven
cafestol trials. We excluded these eight trials to smdy the effect of baseline cholesterol on
response of cholesterol. In a regression analysis we estimated the difference in response
between men and women after adjustment for trial, age, body mass index, change in weight
during the trial, and baseline cholesterol level.
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We also analyzed the data using various other models. For a crude analysis, the mean
responses of the men and women were calculated for each treatment within a trial. For each
type of treatment - saturated fat, frams fat, cholesterol, and cafestol - these means were
averaged weighting for the reciprocal of their standard error. In this way differences between
trials in the precision of the observed mean responses were taken into account. A mixed-
model regression analysis was applied to the trials with dietary cholesterol and we analyzed all
trials without taking into account that some subjects had participated more than once, thus
treating all responses of the same subjects as independent observations. We also used
predicted responses as independent factors in a regression model. These predicted responses
were calculated by coefficients from published meta-analyses on changes in serum cholesterol
and lipoproteins to changes in the amount of dietary fatty acids and cholesterol (3, 6, 35, 37,
38). In yet other models, we expressed the cholesterol response as percentage change from the
serum cholesterol level at the end of the control or baseline period and also as Z-scores
relative to the average response of the group on the same treatment. All these models vielded
similar differences in responses between men and women, which confirmed the robustness of
the models presented here (39).

To check that differences in the design of trials did not bias our results, we also
performed the analyses without data from trials with a before-and-after design, one involving
dietary cholesterol and four involving cafestol, and without data from three saturated fat trials
with a parallel design. Again results were similar to the estimated differences when all trials
were included. All analyses were performed with SAS statistical software (40).

Results

The baseline cholestero! levels (mean * standard deviation) in the saturated fat trials
were significantly smaller in men (4.88 + 0.93 mmol/L) than in women (5.12 + 0.89; P=0.03)
(Table 2.2).
Two-factor regression model

Nevertheless, the adjusted responses of serumn total cholesterol and LDL-cholesterol

o saturated fat were larger in men than in women; the difference was 0.14 + 0.05 mmol/L
(mean + standard error) for total cholesterol (95% confidence interval (CI), 0.04 to 0.23
mmol/ L) and §.08 + 0.04 mmol/L for LDL-cholesterol (95% CI, 0 to 0.17 mmol/L) (Figure
2.2, Table 2.3).
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Figure 2.2 Adjusted responses of serum total, low-density lipoprotein (LIDL-), and high-density
lipoprotein (HDL-) cholesterol in men (N=126) and women (N=147) when nine energy percent
dietary saturated fat was replaced by mono- or polyunsaturated fat, or carbohydrates. Responses
were adjusted differences between trials in a two-factor model. Error bars indicate one standard
error. * P < 0.05; ** P <0.01 for differences between men and women.

The adjusted response of total cholesterol to frans faf did not differ significantly
between men and women, although both the decrease in LDL-cholesterol and the increase in
HD1 -cholesterol tended to be smaller in men than in women. The difference in response
between men and women was -0.02 £ 0.06 mmol/L for LDL-cholesterol (95% CI, -0.13 to
0.10 mmol/L), and 0.03 £ 0.02 mmol/L for HDL-cholesterol (95% CI, -0.02 to 0.07 mmol/L).

The adjusted response to dietary cholesterol was not significantly different for men
and women. The difference in response between men and women was 0.01 + 0.05 mmol/L for
total cholesterol (95% CI, -0.08 to 0.11 mmol/L) and -0.01 + (.02 mmol/L. for HDL-
cholesterol (95% CI, -0.05 to 0.02 mmol/L).

The adjusted response of total cholesterol to cafestol was 0.22 + 0.09 mmol/L larger in
men than in women (95% CI, 0.04 to 0.39 mmol/L) and responses of LDL-cholesterol to
cafestol were 0.22 + 0.08 mmol/L larger in men than in women (95% CI, 0.06 to .37
mmol/L) (Figure 2.3).
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Chapter 2

Total LDL HDL
Cholesterol Response

Figure 2.3 Adjusted responses of serum total, low-density lipoprotein (LDL-), and high-density
lipoprotein (HDL-) cholesterol in men (N=72) and women (N=61} to a decrease in the intake of the
coffee diterpene cafestol. All responses were adjusted for differences between trials in a two-factor
model. Error bars indicate one standard error. * P < 0.05; ** P < 0.01 for differences between men
and women.

Multiple regression models

In a multiple regression model we adjusted for trial, age, body mass index, and change
in weight during the trial. This yielded differences between the sexes in response of
cholesterol similar to those found with the two-factor model. One of the largest differences in
results between the two models was the difference between men and women in response of
total cholesterol to cafestol, which was 0.19 mmol/L in the multiple regression model as
opposed to 0.22 mmol/L in the two-factor model.

We excluded the eight trials in which baseline cholesterol was part of the response to
estimate the difference in response between men and women after adjustment for trial, age,
body mass index, change in weight during the trial, and baseline cholesterol level. This model
yielded differences in response between men and women similar to those found with the two-
factor model. The largest difference in results between the two models was the difference
between men and women in the response of LDL-cholesterol to saturated fat, which was 0.12
mmeol/L in the multiple regression model as opposed to 0.08 mmol/L in the two-factor model.
Thus, different models of statistical analysis yielded similar results.
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Discussion

We found that healthy men have larger responses of total cholesterol and LDL-
cholesterol to dietary saturated fat and to the coffee diterpene cafestol than healthy women,
Adjustment for age, body mass index, change in weight during the trial, and baseline
cholesterol levels did not affect the difference in response of cholesterol between men and
women. However, it may not be suitable to adjust sex differences in cholesterol response for
baseline cholesterol level. Baseline cholesterol level may not be a confounder of the
relationship between sex differences and cholesterol response as the cholesterol response may
affect the cholesterol level instead of being affected by the level (39). Other factors that might
affect the cholesterol response to diet are smoking, menstrual cycle, and use of oral
contraceptives (41,42,43). The exclusion of all smokers from our analyses (19 % of all
subjects} did not affect the results. Thus, smoking does not appear to be responsible for the
sex difference in cholesterol response. Because most of the women were pre-menopausal,
both the menstrual cycle and use of oral contraceptives might have affected the response of
cholesterol. However, the women entered the trials at different points of their menstrual cycle.
In this way, cyclic effects on response of cholesterol were averaged out and could not have
affected the mean response observed in women as an aggregate. Also, sex differences in
response of cholesterol were not affected when we excluded the 33 % of women who used
oral contraceptives.

Reports about sex differences in cholesterol response 1o diet have been contradictory.
The saturated fat trials which we pooled comprised a much larger number of subjects (126
men and 147 women) than previous siudies (22 to 82 men and 22 to 57 women) (9-15). Also,
our estimation of individual responses was improved because 78 subjects participated in
several trials with saturated fat. This may explain why we were able to show a clear-cut effect
of sex on cholesterol responses to saturated fat where others were not.

The difference in response to frans fat between men and women was not significant
and the responses of LDL- and HDL-cholesterol tended to be smaller in men than in women
rather than larger as they were for saturated fat. This agrees with earlier observations that
metabolic pathways for trans fat are different from those for saturated fat (44, 45). However,
the results for frans fat must be interpreted with caution, because the mean cholesterol
response in the #rans fat trials was smaller and the number of participants was smaller than in
the saturated fat trials.

Some studies reported that subjects who have a large response to dietary fat also have
a large response to dietary cholesterol (18, 46). However, we found no difference between
men and women in cholesterol response to dietary cholesterol. Although both the response to
dietary cholesterol and the number of participants in the dietary cholesterol trials were smaller
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than in the saturated fat trials, the estimation of the response was improved by 77 subjects
who participated in at least two trials with dietary cholesterol. Our results may suggest that
saturated fat and dietary cholesterol affect cholesterol metabolism through different
mechanisms. This is in line with observations that different genes seem to be involved in
determining the responses to dietary fat and cholesterol, the apoprotein E genotype seems to
affect the response to dietary fat but not to dietary cholesterol (47) and the apoprotein A4 360
genotype seems to affect the response to dietary cholesterol (48,49).

Responses of total cholesterol and LDL-cholesterol to cafestol were larger in men than
in women, which is similar to the effects of saturated fat. Qur observations agree with
epidemiological observations that the effect on cholesterol levels of drinking more than nine
cups of boiled coffee per day tends to be larger in men than in women (50).

One possible explanation for the observed differences between men and women in
response of cholesterol to the fat composition of the diet is that men had a larger energy intake
and thus consumed more saturated fat when expressed in absolute amounts (grams) than
women, To investigate this, we adjusted our analysis for the level of energy intake during the
last four weeks of each trial in a subset of the saturated fat trials for which data on energy
intake were available (19-23). The response of LDL-cholesterol to saturated fat was 0.08
mmol/L larger in men than in women both without and after adjustment for energy intake.
Thus the larger response in men was not due to their larger overall food intake. In the cafestol
trials men and women received the same absolute amount of cafestol, irrespective of their
energy intake., However, if the amount of cafestol was adjusted for the energy intake,
differences in cholesterol response between men and women would become even larger.

It could be argued that women complied less with the diets than men, and as a result
showed a smaller change in serum cholesterol, However, all subjects were highly motivaied
and conscious of the aim of the trial. In the controlled dietary trials, subjects received 90
percent of all foods, and women as well as men consumed the hot meals under supervision.
Also, adherence to the diets according to anonymous questionnaires was similarly high for
women and men (19-23). Thus, we do not have any reason to believe that women were less
compliant than men. Nevertheless changes in fatty acid composition of cholesterol esters
following changes in the intake of saturated and ¢rans fat were smaller in women than in men
{unpublished observations). This might at first sight suggest that women were less compliant
than men. However, it is also possible that differences between men and women in changes in
fatty acid composition of cholesterol esters were caused by the same metabolic processes that
caused differences in the responses of serum cholesterol.

Animal studies support the notion that sex hormones affect the response of serum
cholesterol to diet. Thus diets high in saturated fat and dietary cholesterol raised serum
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cholesterol levels in male, but not in female hamsters, When the females were sterilized, their
serum cholesterol became as responsive to diet as that of the male hamsters (51).

The present findings are based on lean and healthy subjects with normal cholesterol
levels. It is unknown whether they also apply to elderly, more obese, or hypercholesterclemic
subjects.

Our results imply that men will benefit more from a reduction in the intake of
saturated fat than women. Nevertheless, the responses of women to reductions in the intake of
saturated fat are still considerable. Therefore, dietary treatment should still be recommended
for both men and women with hypercholesterolemia.
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Apoprotein E genotype and the response of
serum cholesterol to dietary fat, cholesterol,
and cafestol

Rianne M. Weggemans, Peter L. Zock, Jose M. Ordovas, Juan Pedro-Botet, Martijn B. Katan

Abstract- Previous studies on the effect of the apoprotein (APO) E polymorphism on the
response of serum lipids to diet showed inconsistent results.

We therefore studied the effect of the APOE polymorphism on responses of serum
cholesterol and lipoproteins to various dietary treatments. To this end, we combined data on
responses of serum cholesterol and lipoproteins to saturated fat, to srans fat, to dietary
cholesterol, and to the coffee diterpene cafestol with newly obtained data on the APOE
polymorphism in 395 mostly normolipidemic subjects.

The responses of low-density lipoprotein (L.DL-) cholesterol to saturated fat were 0.08
mmol/L larger in subjects with the APOE3/4 or E4/4 genotype than in those with the
APQOE3/3 genotype (95% confidence interval —0.01 to 0.18 mmol/L). In contrast, responses of
LDL-cholesterol to cafestol were 0.11 mmol/L smaller in subjects with the APOE3/4 or E4/4
genotype than in those with the APOE3/3 genotype (95% confidence interval —0.29 to 0.07
mmol/L). Responses to dietary cholesterol and trans fat did not differ between subjects with
the various APOE genotypes.

In conclusion, the APOE genotype may affect the response of serum cholesterol to
dietary saturated fat and cafestol in opposite directions. However, the effects are small.
Therefore, knowledge of the APOE genotype by itself may be of little use in the identification
of subjects who respond to diet.

Atherosclerasis, In press



Chapter 3

Introduction

The response of serum cholesterol to changes in the diet varies considerably between
subjects. Within subjects, this response to diet is to some extent reproducible (1) and may in
part be an innate characteristic. Identification of genetic factors that affect the response may
help to select an effective therapeutic approach for individual patients with an atherogenic
lipid profile.

Variation in one candidate genetic factor, the apoprotein E (APOE) gene, is known as
the APOE polymorphism (2). The common allele of the APOE gene is the £3-allele, which
encodes for cysteine at amino acid residue 112 and for arginine at residue 158, The c4-allele
encodes for arginine at both residues and the £2-allele encodes for cysteine at both residues.
The various ApoE isoforms differ in binding affinity for the LDL-receptor and the LDL-
receptor related protein, for high-density lipoprotein (HDL-) cholesterol, and for triglyceride-
rich particles (3-6). In industrialized societies, carriers of the g4-allele have the highest levels
of serum total cholesterol and low-density lipoprotein (LDL-) cholesterol, carriers of the £3-
allele have intermediate, and carriers of the £2-allele have the lowest levels (3). In addition,
subjects with the various APOE genotypes differ in the absorption efficiency of cholesterol
from the intestine, in the synthesis rates of cholesterol and bile acids, and in the production of
LDL apoprotein B (7-9). This suggests that also the response of serum cholesterol to diet may
be affected by the APOE polymorphism.

Some studies show that subjects with an =4-allele are more responsive to changes in
the amount of dietary cholesterol {10-13), the fat composition (13-16), or the amount of
dietary cholestero!l and fat (8,17-22) than those without an c4-allele. However, other studies
did not find a difference in responsiveness betwegen subjects with an e4-allele and those
without {23-36).

There are several explanations for these contradictory results. One is that most of the
studies lacked sufficient power to detect an eftect of the APOE polymorphism on the response
of cholesterol due to a small number of subjects. Some other explanations are that the APOE
polymorphism affects the response of cholesterol in men only and not in women, or only in
populations, in which baseline levels of serum total cholesterol and LDL-cholesterol ditfer
between the various APOE genotypes. Yet, another explanation is that the APOE
polymiorphism may only affect the responses of serum cholesterol to specific changes in
dietary cholesterol, dietary fat, or both.

We therefore studied the effect of the APOE polymorphism on the response of serum
cholesterol to the exchange of saturated fat for cis-unsaturated fat or carbohydrates, to the
exchange of trans fat for cis-unsaturated fat, to supplementation with dietary cholesterol, and
to supplementation with the coffee diterpene cafestol in 201 men and 194 women,
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Chapter 3

Materials and methods
Subjects

Qur department has performed 26 controlled trials on diet and blood lipids with a total
of 670 subjects between 1976 and 1996. Details about the design and methods of these trials
are described elsewhere (37). The data of these trials have been carefully maintained.
Therefore, we were able to pool the data and 1o calculate individual responses as well as mean
responses of treatment groups. These mean responses agreed with those published at the time
trials were done, showing that our data retrieval and cleanup had been successful. At the time
of the trials, no DNA samples were collected. In order to obtain DNA samples, we traced the
former participants in 1996 and 1997 and managed to find 609 of them. The protocol of the
present study, which was approved of by the Ethical Committee of Wageningen Agricultural
University, was explained 1o thern. We obtained informed consent and collected DNA of 549
subjects. We sampled blood from 486 subjects and collected mouth swabs from the other 63
In the present study, we used data on 395 subjects, 113 of whom had participated in two trials
with a different treatment {e.g. saturated fat and cafestol) and 8 of whom had participated in
three trials with a different treatment. Thus, our data consisted of 775 responses to the various
treatments in a total of 201 men and 194 women (Figure 3.1). At the time of the trials the
subjects were healthy as indicated by a medical questionnaire, and by the absence of anemia,
glucosuria, and proteinuria.

Characteristics of trials

All trials were designed to study responses of serum cholesterol to changes in the diet
and had been approved by the appropriate medical ethical committees. We pooled data on
response of serum cholesterol to saturated fat of seven trials, to frans fat of two trials, to
dietary cholesterol of eight trials, and to the coffee diterpenes cafestol and kahweol of nine
trials. These diterpenes are the substances that are responsible for the cholesterol-raising effect
of unfiltered coffee, such as Scandinavian-style boiled coffee, Turkish coffee, and cafetiere
coffee (38). Seven trials had a crossover design, 14 a parallel design with a control group, and
five a before-and-after or linear design without a control group. The number of participants
per trial ranged from 3 to 94 (median was 23) and the duration of the treatment ranged from
1.5 to 14 weeks (median was 3 weeks).

Diets and supplements
All food was supplied in the seven trials with saturated fat, in the two trials with rrans
fat, and in three of the trials with dietary cholesterol. In the saturated fat and srans fat trials,

the saturated or rrans fat was exchanged for an equal energy amount of mono- or
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polyunsaturated fat, or, in one saturated fat trial, for carbohydrates. In the four trials of dietary
cholesterol without complete food supply, subjects received eggs as a supplement during the
treatment period and guidelines for a diet low in cholesterol during the control period. In one
other trial of dietary cholesterol, subjects received all foods during the treatment period and
received dietary guidelines during the control period. In the nine cafestol trials subjects
received coffee, coffee grounds, coffee oil, or cafestol and kahweol as a supplement and
consumed their habitual diet throughout the trial. The observed responses in the various trials
agreed with those expected on the basis of the change in diet. This indicates that compliance
was excellent in the trials.

Available data

Information on APOE genotype and responses of total cholesterol and HDL- and
LDL-cholesterol to saturated fat was available for 214 subjects, to trans fat for 82 subjects, to
dietary cholesterol for 108 subjects, and to cafestol for 120 subjects. We did not analyze
responses of LDL-cholesterol to dietary cholesterol because data on LDL-cholesterol and
APOE genotype were available for only 40 of the 108 subjects.

For the present study we also used data on sex, age, body mass index, and change in
weight during the trial, which we considered to be potential confounders of the relationship
between response of cholesterol and APOE genotype (17,28,39-45). In addition, we used data
on serum cholesterol levels, which were measured when subjects consumed their habitual
diets (Table 3.1). '

Laboratory analyses

Lab personnel were never aware of the subject’s treatment. Serum cholesterol levels
were determined in at least two serum samples per treatment, which were obtained on separate
days. All sera from one subject were analyzed within the same run. The coefficient of
variation within one run for control samples ranged from (0.7 to 2.9 %. In all trials accuracy
was checked by the analysis of three serum pools of known value provided by the U.S.
Centers for Disease Control {Atlanta, AG). The mean bias with regard to the target vaiues of
the Centers for Disease Control pools ranged from -2 % to 1.1 % for total cholesterol and
from -3.2 % to 3.3 % for HDL-cholesterol. LDI,-cholesterol was calculated by means of
Friedewald’s equation (46).
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Table 3.1 Characteristics of the subjects with various apoprotein (APO)E genotypes in the trials

with saturated and trans fat, dietary cholesterol, and cafestol.

Saturated fat

Men/Women

Age (years)

Cholesterol level on habitual diet (mmol/1)

Trans fat

Men/Women

Age {years)

Cholesterol level on habitual diet (mmol/)

Dietary cholesterol

Men/Women

Age (years)

Cholesterol level on habitual diet (mmal/1)

Cafestol

Men/Women

Age (years)

Cholesterol level on habitual diet (mmaol/1}

APOE2/2 and 2/3 APQOE3/3 APOE3/4 and 4/4°
15/16 60/70 2425
29+ 12 28 +12 27+ 11
4.54 £ 0.68 5.09 £+ 0.96 5131094
5/8 18/28 12/11
24 +7 26+ 10 22+3
4.51 £ 0.58 4.99 + 0.69 5.05 +0.81
12/6 29/33 15/8
321 3514 3412
4,59 £ 0.94 5301087 554 + 1.36
711 39/31 15/14
28+12 246 2516
4.40 + 0.60 4.36 = 1.06 439+ 1.07

“Subjects with the APOEZ/d genotype, four with a response to saturated fat, five with a response to dietary

cholesterol, and three with a response to cafestol, were excluded.

We isolated DNA from fresh blood and from mouth swabs by “salting-out” procedures
(47-49). We used the method described by Hixson and Vernier (50) for assessment of the
APOE genotype in 500 samples. Forty-nine other samples could not be amplified by the

method of Hixson and Vernier (50). We succeeded in genotyping 30 of these 49 samples by
another method, a mutagenically separated PCR as described by Rust et al (51). Two

independent investigators interpreted all gels and, in case the interpretation differed, the
APOE genotype was reanalyzed. We analyzed 35 DNA samples in duplicate to check the

accuracy of beth procedures for the analysis of the APOE genotype. The investigators who

interpreted the gels did not know which samples were the duplicates. The APOE genotypes of

all duplicate samples agreed.
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Staristical methods

In all trials we defined individual responses of cholesterol as the level of serum
cholesterol at the end of the treatment that increased cholesterol minus the level either at the
end of the treatment that lowered cholesterol, the placebo treatment, or the diet without the
cafestol or cholesterol supplement. In crossover trials with three treatments, for instance a
saturated, mono-unsaturated, and poly-unsaturated fat diet, we calculated one response to the
substitution of mono-unsaturated for saturated fat and one response to the substitution of poly-
unsaturated for saturated fat. Because the cholesterol level on the saturated fat diet is used in
the calculation of the two responses, these are dependent. This does not affect the validity of
the estimate, but it may slightly affect the standard error and thus the P-value.

In the crude analysis, we studied the effect of APOE genotype on response to each of
the four treatments, irrespective of whether a subject participated in more than one trial with a
similar treatment. We calculated the sum of the APOE-subscript and its correlation (Pearson
product-moment correlation coefficient) with the response of cholesterol.

[n the adjusted analyses, we adjusted the response for subject and trial. We adjusted
for subject because 41 % of the subjects in the saturated fat trials and 56% of the subjects in
the dietary chelesterol trials participated in more than one trial with a similar treatment or in a
crossover trial with three treatments (37) (Figure 3.1). We adjusted for trial because there
were background differences between the trials in background diet, duration of treatment, and
time of the year the trial was performed. If a trial consisted of more than one treatment, we
created faclors indicating each treatment within a trial, In additional analyses we also adjusted
for the subject characteristics sex, age, body mass index, and change in weight, because these
were potential confounders of the relationship between the APOE genotype and serum
cholesterol response (17,28,39-44). Subjects with the APOE2/4 (N=13) genotype were
excluded from the analyses. We tested the adjusted differcnces in response of cholesterol
between subjects with the APOE2/2 or E2/3, E3/3, and E3/4 or E4/4 penotype by analysis of
variance. In case of significant differences, group means were compared by Fisher’s Least
Significant Difference test for multiple comparisons.

We also analyzed the data using various other regression models. We calculated the
mean response of each individual over trials with a similar treatment and estimated
differences in this mean response between subjects with the various APOE genotypes. In yet
other models, we expressed the cholesterol response as the percentage change from the serum
cholesterol level at the end of the control or baseline period. All these models yielded similar
differences in response between the APOE genotype groups, which confirmed the robustness
of the models presented here {52).
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Results

In our subjects the frequency of the £2 allele was 0.09, of the £3 allele 0.79, and of the
&4 allele .13, The frequency distribution was similar to those observed in Dutch and other
Caucasian populations (3,53). Baseline characteristics were sintilar for subjects with the
APOE2/2 or E2/3, E3/3, and E3/4 or E4/4 genotype, except for levels of total cholesterol
while subjects consumed their habitual diet, which was lowest in subjects with the APOE2/2
or E2/3 and highest in those with APOE3/4 or E4/4 genotype (Table 3.1). The level of total
cholesterol on the habitual diet was 4.54 £ 0.07 mmol/L (mean + standard error) in subjects
with the APOE2/2 or E2/3 genotype, 5.03 + 0.04 mmol/L in subjects with the APOE3/3
genotype, and 5.08 £ (.07 mmel/L in those with APOE3/4 or E4/4 genotype. Mean body mass
index was 22 kg/m® and mean age was 25 years. The body weight of the subjects did not
change significantly during the trials.

The responses of LDL-cholesterol to saturated fat tended to be smallest in subjects
with the APOE2/3 genotype and largest in those with the APOE3/4 or E4/4 genotype (Figure
3.2). The.correlation between the sum of APOE-subscripts and the response of LDL-
cholesterol was 0.06 (P=0.29). Afler adjustment for subject and trial the response of LDL-
cholesterol to saturated fat was 0.08 mmol/L larger in subjects with the APOE3/4 or 4/4
genotype than in those with the APOE3/3 genotype (95% confidence interval (CI) —0.01 to
0.18 mmol/L) and 0.1Q larger than in those with the APOE2/3 genotype (95% CI -0.04 to
0.24).

In contrast, responses of LDL-cholesterol to cafestol tended to be largest in subjects
with the E3/3 genotype and smallest in those with the APOE2/3 and those with the APOE3/4
genotype (Figure 3.3). The trial-adjusted response of LDL-cholesterol to cafestol was 0.11
mmo)/] smaller in subjects with the APOE2/3 genotype (95% CI -0.35 to 0.13 mmol/L) and in
subjects with the APOE3/4 or 4/4 genotype (95% CI —0.29 to 0.07 mmol/L) than in those with
the APOE3/3 genotype. Responses of HDL-cholesterol to cafestol were —0.07 mmol/L smaller
in subjects with the APOE3/4 or 4/4 genotype than in those with the APOE3/3 genotype (95%
CI -0.14 to 0 mmol/L) and the responses of HDL-cholesterol in subjects with the APOE2/3
genotype were —0.05 mmol/L. smaller than in those with the APOE3/3 genotype (95% CI -
0.14 to 0.04 mmol/L). Responses of HDL-cholesterol to saturated fat did not clearly differ
between subjects with the various APOE genotypes, as was the case for responses of LDL-
and HDL-cholesterol to trans far and to dietary cholesterol (Table 3.2).

The differences in response of serum cholesterol between subjects with the various
APOE genotypes remained similar after adjustment for each of the following factors sex, age,
body mass index, and change in weight.
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Figure 3.2 The mean response of low-density lipoprotein (LDL-)cholesterol to saturated fat in
subjects with various apoprotein {APO)E-genotypes. Error bars indicate one standard error.
Values of N indicate the number of subjects per genotype group.
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Figure 3.3 The mean response of low-density lipoprotein (LDL-)}cholesterol to cafestol in

subjects with various apoprotein (APQ)E-genotypes. Error bars indicate one standard error.
Values of N indicate the number of subjects per genotype group.
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APOE polymorphism and cholesterol response

Some authors, however, suggest that the effect of the APOE polymorphism on
response differs between men and women. We therefore also analyzed men and women
separately. The effect of the APOE polymorphism on the response of LDL-cholesterol to
saturated fat was similar in men and wortnen. Responses of HDL-cholesterol to trans fat were
-0.07 mmol/L smaller in men with the APOE3/4 or 4/4 genotype than in men with the
APOE3/3 genotype (95% confidence interval -0.01 to -0.14 mmol/L}. Responses of HDL to
dietary cholesterol were -0.07 mmol/L smaller in men with the APOE3/4 or 4/4 genotype than
in men with the APOE2/3 genotype (95% confidence interval -0.01 to -0.13 mmol/L).
Responses of HDL-cholesterol to cafestol were 0.16 mmol/L larger in women with the
APOE3/3 genotype than in women with the APOE3/4 or 4/4 genotype (95% confidence
interval 0.04 to 0.28 mmol/L) (Table 3.2).

Discussion

The present study showed that normolipidemic subjects with the APOE3/4 or E4/4
genotype tended to have a larger response of LDL-cholesterol to saturated fat than those with
the APOE3/3 genotype. In contrast, they had similar responses to frams fat and dietary
cholesterol and they tended to have a smaller response to cafestol.

We pooled data of 26 trials in order to obtain a large number of subjects fo study the
relation between APOE genotype and response of cholesterol to specific dietary changes. We
used rigorously standardized laboratory procedures and multiple measurements per subjects.
The precision of the estimation of serum cholesterol response to saturated fat and dietary
cholesterol was further improved in the subjects who participated in more than one trial with a
similar treatment, The precision of the responses reported here is therefore higher than in
many other trials. The total number of subjects in our study vastly exceeded that in other
studies of the relation between APOE polymorphism and cholesterol response, and even the
number of subjects per treatment, i.e. saturated fat or dietary cholesterol, was higher than in
any other previous study.

Factors such as a subject’s sex and body tmass index may affect the association
between APOE genotype and response (17,28,39-43). However, results remained similar after
adjustment for the subject’s sex, age, body mass index, or change in weight. When we
analyzed men and women separately, the effect of the APOFE polymorphism on the response
of HDL-cholesterol to various dietary treatments differed between men and women. However,
the differences between men and women may be due to chance, because the examination of

several subgroups will increase the risk of chance associations.

47



Chapter 3

Table 3.3 The mean baseline level” (+ standard error) of serum total cholesterol by apoprotein
{APO)E genotype.

APOE2/2 or 2/3 APOE3/3 APQE3/4 or 4/4
mmol/L
Saturated fat 406+0.15a 463 10.07b 478+ 0.11b
Trans fat 422+021a 4841 0.15b 492 +0.18b
Dietary cholesterol 4.57+£0.19a 53310.1b 543 +0.18b
Cafestol 4431 0.16a 462 +0.09a 496+ 0.14b

Values with different fonts differ significantly (P<0.05).
" The baseline level was measured during the treattnent that lowered serum cholesterol, the placebo treatment or
the diet without the cafestol or cholesterol supplement.

Some authors suggested that effects of the APOE polymorphism on response may be
more pronounced when levels of baseline cholesterol differ between subjects with the various
APOE genotypes. In the present study, levels of total cholesterol measured while subjects
consumed their habitual diet (Table 3.1) and baseline levels of total cholesterol (Table 3.3)
were lower in subjects with the APOE2/2 or E2/3 genotype and somewhat higher in subjects
with the APOE3/4 or E4/4 genotype than in those with the APOE3/3 genotype. These
differences between subjects with various APOE genotypes in levels of cholesterol mirrored
the differences in responses of cholesterol to saturated fat, but not to frans fat, dietary
cholesterol, or cafestol. It is possible that the differences in levels mainly reflect differences in
response to the amount of saturated fat, because saturated fat has a larger effect on the level of
serum cholesterol than the amount of dietary cholesterol, trans fat, or cafestol in the habitual
or baseline diet,

In other studies in which the amount of sarurared fat was changed, subjects with the
ed-allele had either larger (13-16), similar or lower (24,25,34,54) responses of serum
cholesterol than those with the APOE3/3, E3/2, or E2/2 genotype. Only two of these studies
had at least 10 subjects with an £2-allele (16,24). In one of these two studies, subjects with the
£2-allele had a smaller response to changes in dietary fat than those with the APOE3/3
genotype (16), whereas responses were similar or larger in the other (24) (Figure 3.4). Only
four studies had at least 10 subjects with an £4-allele (13,16,24,34). Subjects with an £4-allele
had a larger response than those with the APOE3/3 genotype in one study with
normolipidemic men (16} and in one out of two studies with hyperlipidemic men and women
(13), but they had a similar response in one study with normolipidemic men and women (24).
it may be that the effect of the APOE polymorphism is easier to detect in men than in women,
because men are more responsive to saturated fat than women (37). Results of the study of
Sarkkinen et al (13) suggest that the response is larger in subjects with the APOE4/4 genotype
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Dietary fat (nymper of subjects APOE2 / E3/3)
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Figure 3.4 The difference in response of low-density lipoprotein (LDL-)cholestercl to an increase
in dictary fat and dietary cholesterol between subjects with the apoprotein (APO)E2/2 or 2/3
genotype and those with the APOE3/3 genotype and 95% confidence intervals of the difference in
response.

* We used data on the response of total cholesterol to dietary cholesterol insiead of LDL-
cholesterol, because of the small number of subjects with an LDL~cholesterol response.

than in those with the APOE3/4 genotype (Figure 3.5). Thus, the data from the present study
and those from previous studies indicate that the APOE2/3 genotype may not affect the
response of LDL-cholesterol to a change in saturated fat, the APOE3/4 genotype slightly
enhances the response, whereas the APOE4/4 genotype strongly enhances the response.

In the present study, the response to a decrease in the amount of dietary cholesterol
was not related to APOE genotype. One problem in studying dietary cholesterol is that its
effect on serum cholesterol level is smalier than that of saturated fat (55). Therefore, one may
need more subjects to show a possible effect of the APOE genotype on response of serum
cholesterol to dietary cholesterol. Other studies either found subjects with the g4 allele to be
more responsive to dietary cholesterc] than subjects without the g4 allele (10,12,13,56), or that
there were no differences (23,25,29,57). Only one study had at least 10 subjects with the £2-
allele and showed that subjects with the APOE2/3 genotype had a somewhat smaller response
to dietary cholesterol than those with the APOE3/3 genotype (29)(Figure 3.4). Only three of
these studies had at least 10 subjects with an g4-allele (13,23,29). None of the three studies
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Figure 3.5 The difference in response of low-density lipoprotein (LDL-)cholesterol to an increase
in dietary fat and dietary cholesterol between subjects with the apoprotein (APO)E3/4 or 4/4
genotype and those with the APOE3/3 genotype and 95% confidence intervals of the difference in

response.

" We used data on the response of total cholesterol to dietary cholesterol instead of LDL-
cholesterol, because of the small number of subjects with an LDL-cholesterol response.
T Martin et al did not report sufficient data to calculate a 95% confidence interval.

found a significant difference in response between normo- and hyperlipidemic men and

women with the APOE3/3 and 3/4 genotype. The study of Sarkkinen et al (13) also included

subjects with the APOE4/4 genotype. These subjects had a significantly larger response than
those with the APOE3/3 or 3/4 genotype (Figure 3.5). Because all studies that found an effect
of the APOE polymorphism on response to dietary cholesterol were Finnish, the high
prevalence of the e4-allele in Finland might be an explanation for the seemingly inconsistent
results. Therefore, the small number of subjects with the APOE4/4 genotype (N=2) in the
present study might explain the absence of any effect in the present study. Thus, despite the
fact that we did not find any significant difference in response between the various APOE
genotypes, the e4-allele may still enhance the response of LDIL-cholesterol to a change in

dietary cholesterol but only in subjects with the APOE4/4 genotype.
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We did not find a ciear effect of the APOE genotype on the response of serum
cholesterol to trans fat. However, the relatively small effect of trans fat on serum total
cholesterol and LDL-cholesterol might have obscured such an effect.

The response of LDL-cholesterol to cqfesto! tended to be lower in subjects with the g4
allele than in subjects with the APOE3/3 genotype. The response of LDL-cholesterol to a
change in the intake of oat or wheat bran or to lipid-lowering drugs pravastatin and lovastatin
was also smaller in subjects with the ¢4 allele than in those without the €4 allele (58-60).
These findings confirm that cafestol raises LDL via pathways different from those for dietary
cholesterol or fat (61).

In the present study, we investigated the effect of the APOE polymorphism on the
response of serum cholesterol by itself and not in combination with other genetic
polymorphisms. It is possible that knowledge of the APOE polymorphism in combination
with knowledge of other polymorphisms may be of use in the identification of subjects who
respond to diet. At this regard, one study showed that the APOC3 Sstl polymorphism affected
the expression of hyperlipidemia in subjects with the APOE2/2 genotype (62).

In conclusion, the APOE effects were small. In view of these results, knowledge of the
APOE genotype by itself in individual patients with high cholesterol levels may be of little use
in the selection of an effective therapeutic approach.
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Associations between 10 genetic polymorphisms
and the serum lipid response to dietary fat,
cholesterol, and cafestol in humans

Rianne M. Weggemans, Peter 1. Zock, Jose M. Ordovas,
Jennifer Ramos-Galluzzi, Martijn B. Katan

Abstract- The response of serum cholesterol to diet may in part be an innate characteristic.
However, previous studies on the effects of polymorphisms in candidate genes on response to
dietary treatments were not always consistent and often involved a small number of subjects.

We now studied the effect of 10 genetic polymorphisms on responses of serum
cholesterol and lipoproteins to diet. To this end, we used data on responses of serum
cholesterol to dietary saturated and trans fat, cholesterol, and the coffee diterpene cafestol as
measured in 26 previous dietary trials. We combined these responses with newly obtained
data on 10 genetic polymorphisms from 405 mostly normolipidemic former participants in
these trials.

The response of serum low density lipoprotein (LLDL-) cholesterol to diet was
somewhat smaller in subjects with the apoprotein (APO)A4 347-1/1 genotype than in those
with the APQOA4 347-2 allele and in subjects with the APQA4 360-2/2 genotype than in those
with the APOA4 360-1 allele. Subjects with the cholesteryl ester transfer protein (CETP)
Taqlb-1 allele had smaller responses of high-density lipoprotein (HDL-)choiesterol to diet
than those with the CETP TaqIbh-2/2 genotype. The effects of the other seven candidate
polymorphisms were either inconsistent with results in previous studies or need to be
replicated in other studies.

In conclusion, the APOA4 347 and 360 and CETP Taglb polymorphisms may affect
the response of serum cholesterol to diet. The effects, however, are small. Therefore,
knowledge of these genotypes by themselves is of little use in the identification of subjects
who do not benefit from dietary treatment.
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Introduction

The response of serum cholesterol to dietary changes is to some extent reproducible
within a subject and varies considerably between subjects (1). Theoretically the response may
be affected by polymorphisms in genes which encode proteins that play a role in the
cholesterol metabolism. Identification of these genetic polymorphisms may be of help in the
identification of hypercholesterolemic subjects who will or will not benefit from dietary
treatment. It may also clarify the role of certain proteins in the cholesterol metabolism.

Evidence is growing that variation at several loci affects lipid responses. The APOE
polytmorphism, which has been most extensively studied, may explain some of the variation in
response. In addition, polymorphisms in the APOA1, APOA4, APOB, CETP and LPL genes
may affect the response (as reviewed in (2-4)). However, in most instances the evidence for
these relations is limited to few studies that vary in kind and duration of dietary treatment and
in subject characteristics. Furthermore, the strength of these studies is often limited by the
small number of subjects.

We now studied in 405 subjects the relation between 10 genetic polymorphisms and
the response of serum cholesteroi and lipoproteins to dietary factors known to affect plasma
lipoprotein levels.

Methods
Subjects

Our department has performed 26 controlled trials on diet and blood lipids with a total
of 670 subjects between 1976 and 1996 (1,5-21). The data of these trials have been carefully
archived. Therefore, we were able to pool the data and to calculate individual responses as
well as mean responses of treatment groups. These mean responses agreed with those
published at the time trials were done, showing that our data retrieval and cleanup had been
successful. At the time of the trials, no DNA samples were collected. In order to obtain DNA
samples, we traced the former participants in 1996 and 1997 and managed 1o find 609 of
them. Nineteen former participants were seriously ill or had died. We could not trace another
42 subjects. The protocol of the present study, which was approved of by the Ethical
Committee of Wageningen Agricultural University, was explained to the other 609 subjects.
Sixty of the 609 subjects refused to participate. Of those 60, 16 did not want to participate
because of the genetic aspect of the study, the other 44 because of various other reasons. We
obtained informed consent and collected DNA of the remaining 549 subjects. We sampled
blood from 486 subjects and collected mouth swabs from the other 63, because these 63
subjects did not live in the Netherlands anymore or could not give blood for other reasons. We

58




Chapter 4

excluded 144 subjects, who had only received a control diet or a placebo treatment. Of the
remaining 405 subjects, 117 had participated in two trials with a different treatment (e.g.
saturated fat and cafestol), and 8 had participated in three trials with a different treatment. In
addition, 40 % of the subjects in the saturated fat trials participated in more than one saturated
fat trial or in a cross-over trial with three treatments, from which two responses were
calculated. This also held for 10 % of the subjects in the ¢rans fat trials, 55 % of those in the
dietary cholesterol trials, and 15 % of those in the cafestol trials. Thus, our data consisted of
903 responses to the various treatments from a total of 206 men and 199 women. The mean
age of the subjects was 29 £ 12 years (mean * standard deviation), mean cholesterol level
while subjects consumed their habitual diet was 4.95 £ 0.88 mmol/L, mean body mass index
22 + 3 kg/m?, and 19 % of the subjects were smokers. At the time of the trials the subjects
were healthy as indicated by a medical questionnaire, and by the absence of anemia,
glucosuria, and proteinuria.

Characteristics of trials

All trials were designed to study responses of serum cholesterol to changes in the diet
and had been approved by the appropriate medical ethical committees. We pooled data on
response of serum cholesterol to saturated fat of seven trials (5-11), to frans fat of two trials
{9,10), to dietary cholesterol of eight trials {1,12-15}, and to the coffee diterpenes cafestol and
kahweol of nine trials (16-21). Seven trials had a cross-over design (6,9-11,20), 14 a parallel
design with a control group (1,5,7,8,12,14,15,18,19,21), and five a before-and-after or linear
design without a control group (13,16,17,19}. The number of participants per trial ranged from
3 to 94 (median was 23) and the duration of the treatment ranged from 1.5 to 14 weeks
(median was 3 weeks). All trials are described in more detail elsewhere (22).

Diets and supplements

All food was supplied in the seven trials with saturated fat {5-11), in the two trials with
trans fat (9,10), and in three of the eight trials with dietary cholesterol (1,12,14,15). In the
saturated fat and trans fat trials, the saturated or frans fat was exchanged for an equal amount
of energy as mono- or polyunsaturated fat, or, in one saturated fat trial, for carbohydrates. In
the four trials on dietary cholesterol without complete food supply, subjects received eggs as a
supplement during the treatment period and guidelines for a diet low in cholesterol during the
contro! period {1,12-14). In one other trial on dietary cholesterol, subjects received all foods
during the treatment period and received dietary guidelines during the control period (15). In
the nine cafestol trials subjects received coffee, coffee grounds, coffee oil, or cafestol and
kahweol as a supplement and consumed their habitual diet throughout the trial (16-21).
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Available data

Information on genotype and responses of total cholesterol and HDL- and LDL-
cholesterol to saturated fat was available for 221 subjects, to trans fat for 86 subjects, to
dietary cholesterol for 110 subjects, and to cafestol for 121 subjects.

For the present analysis we also used data on sex, age, body mass index, and change in
weight during the trial, which might affect the relation between response of cholesterol and
genetic polymorphisms (23-32). In addition, we used data on serum cholesterol levels, which
were measured when subjects consumed their habitual diets.

Laboratory analyses

Laboratory personnel were never aware of the subject’s treatment. Serum cholesterol
levels were determined in at least two serum samples per treatment, which were obtained on
separate days. Ail sera from one subject were analyzed within the same run. The coefficient of
variation within one run for control samples ranged from 0.7 to 2.9 %. In all trials accuracy
was checked by the analysis of three serum pools of known value provided by the U.S.
Centers for Disease Control (Atlanta, GA). The mean bias with regard to the target values of
the Centers for Disease Control pools ranged from -2,0 % to 1.1 % for total cholesterol and
from -3.2 % to 3.3 % for HDL cholesterol (1,5-21). LDL cholesterol was calculated using the
Friedewald’s equation (33).

We isolated DNA from fresh blood and from mouth swabs by “salting-out” procedures
(34-36). We used various methods for the assessment of the genotypes (Table 4.1) (37-48).
Results of analyses on the effect of the APOE polymorphism on response have been published
previously (49). Two investigators independently interpreted all gels and, in case the
interpretation differed, the genotype was reanalyzed. We analyzed 35 DNA samples in
duplicate 1o check accuracy of analytical procedures. The investigators who interpreted the
gels did not know which samples were duplicates. The genotypes of all duplicate samples

“1!!

agreed. We labeled the most frequent allele of each polymorphism with and the least

frequent allele with “2".

Statistical methods

in all trials we defined individual responses of cholesterol as the level of serum
cholesterol at the end of the treatment that increased cholesterol minus the level either at the
end of the treatment that lowered cholesterol, the placebo treatment, or the diet without the
cafestol or cholesterol supplement. In cross-over trials with three treatments, for instance a
saturated, mono-unsaturated, and poly-unsaturated fat diet, we calculated one response to the

substitution of mono-unsaturated for saturated fat and one response to the substitution of
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Genetic polymorphisms and cholesterol response

poly-unsaturated for saturated fat. Because the cholesterol level on the saturated fat diet in this
instance was used in the calculation of the two responses, these are dependent. This does not
affect the validity of the estimate, but it may slightly affect the standard error and thus the P-
value.

In the crude analysis, we studied the effect of each genotype on response to each of the
four treatments, irrespective of whether a subject participated in more than one trial with a
similar treatment.

In the adjusted analyses, we adjusted the relation between genetic polymorphisms and
responses to saturated fat and dietary cholesterol for potential confounders subject, trial, and
APOE genotype and we adjusted the response to trans fat and cafestol for trial and APOE
genotype. We adjusted for subject because 40 % of the subjects in the saturated fat trials and
55 % of the subjects in the dietary cholesterol trials participated in more than one trial with a
similar treatment or in a cross-over trial with three treatments (7,8,11). We adjusted for trial
because there were background differences between the trials in background diet, duration of
treatment and time of the year the trial was performed. If a trial consisted of more than one
treatment, we created factors indicating each treatment within a trial. We also adjusted for
APOE genotype, because the APOE genotype may affect the response to diet (50). In
additional analyses we further adjusted for the subject characteristics age, body mass index,
and change in weight, because these are potential confounders of the relation between the
various genotypes and serum cholesterol response (27-32). We also analyzed interactions
between the various genotypes and sex in relation 1o response, because some previous studies
reported sex-specific effects of some of the genotypes on response (24-27). In case of
significant interaction we performed the analyses for men and women separately. We tested
differences in the response of serum cholesterol between subjects with various genotypes by
analysis of variance. In case of significant differences, group means were compared by
Fisher’s Least Significant Difference test for multiple comparisons (51).

Results

Overall, serum LDL-cholesterol increased upon replacement of unsaturated fat for
saturated fat by 0.46 £ 0.39 mmol/L (mean * standard deviation), upon replacement of cis-
unsaturated fat for frans fat by 0.30 £ 0.32 mmol/L, upon addition of dietary cholesterol by
0.31 + (.55 mmoVL, and upon suppletion of cafestol by .68 + 0.50 mmol/L. The level of
serum HDL-cholesterol increased in response to saturated fat by 0.04 + 0.16 mmol/L and to
dietary cholesterol by 0.08 £ 0.12 mmol/L, it decreased in response to frans fat by —0.13 +
0.11 mmol/L and to cafestol by —0.04 = 0.16 mmol/L.
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For all polymorphisms, the genotype distributions were in accordance with Hardy-
Weinberg equilibrium and the rare allele frequencies were similar to those reported in other

European Caucasian populations (Table 4.1).

Saturated fat

The response of total cholesterol to safurated fat was significantly affected by the
APOA4 360 polymorphism, being the lowest in the three subjects with the 2/2 genotype
{crude P and P after adjustment for subject, trial and APOE-genotype = 0.05). The small
number of subjects with the APOA4 360-2/2 genotype, however, limit these results (Table
4.2). In addition, the response of LDL-cholesterol was significantly influenced by the APOB
EcoRI polymorphism, being lower in those with the APOB EcoRI-1/2 genotype than in those
with the 1/1 genotype (crude P=0.03; adjusted P=0.05) and by the MTP —493 polymorphism,
being larger in those with the 2/2 genotype than those with the 1 allele (crude P=0.08,
adjusted P=0.04) (Table 4.3).

The response of HDL-cholesterol to saturated faot was associated with three
polymorphisms, the APOC3 Sstl (crude P=0.11; adjusted P=0.04), CETP Taglb (crude and
adjusted P=0.04) and LPL447 {crude P=0.08; adjusted P=0.03). Subjects with APOC3 Sstl-
1/1, CETP Taqlb-2/2 and LPL 447-1/1 genotype were more responsive than those with the
respective other genotypes (Table 4.4),

Trans fat

The effect of the APOB polymorphism on the response of LDL-cholesterol to frans fat
was similar to that on its response to saturated fai, with those with the APOB EcoRI-1/1
genotype tending to be more responsive than those with the 2 allele (crude P=0.12; adjusted
P=0.05) (Table 4.3).

Dietary cholesterol

Determinants of the response of total cholesterol and LDL-cholesterol to dietary
cholesterol were the CETP Taqlb and the FABP2 54 polymorphisms. Those with the CETP
Taglb-1/1 and 1/2 genotypes had smaller responses than those with the 2/2 genotype (total
cholesterol response crude P=0.02; adjusted P=0.01; LDL-cholesterol response 1/I vs 2/2
crude P=0.03; adjusted P=0.03; 1/2 vs 2/2, crude P=0.06; adjusted P=0,01), whereas the
response of total cholesterol was smaller in subjects with the FABP2 54-1/1 genotype than in
those with the 1/2 genotype (crude P=0.03; adjusted P=0.01) but somewhat larger than in
those with the 2/2 genotype (Tables 4.2 and 4.3).
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Genetic polymorphisms and cholesterol response

The response of HDL-cholesterol to dietary cholesterol was, like its response to
saturated fat, somewhat larger in subjects with the APOC3 Sstl-1/1 genotype than in those
with the 2 allele {(crude P=0.07; adjusted P=0.06)(Table 4.4).

Cafestol

The only polymorphism that affected the response of total cholesterol and LDL-
cholesterol to cafestol was the APOA1 83 polymorphism, subjects with the APOA1 83-1/1
genotype had larger responses than those with the APOA1 83-1/2 genotype (crude P=0.01;
adjusted P=0.01) (Tables 4.2 and 4.3).

Confounding and effect modification

The differences in response were not materially affected by adjustment for subject,
trial, and APOE genotype. In addition, previous studies suggested that the effect of some
genetic polymorphisms on the response to diet are sex-specific (24-27). However, most of the
effects of the genetic polymorphisms on response were in the same direction in men and
women, with the exception of the APOA4 347 and 360 and CETP Taqlb polymorphisms: The
effect of the APOA4 347 polymorphism on response was larger in women than in men. In
women with the 1/1 genotype the response of serum LDL-cholesterol to trans fat was —0.22
mmol/L smaller than that in women with the 1/2 genotype (95% confidence interval (CI),
-(.44 to 0 mmol/L}), whereas in men, the difference in response to trans fat was 0.02 mmol/L
(95% CI, -0.21 to 0.25 mmol/L) (P for interaction = 0.07). The difference in response of LDL-
cholesterol to cafestol was —0.38 mmol/LL in women (95 % Cl, -0.72 to -0.03 mmol/L) and
0.09 mmol/L in men (95% CI, -0.14 to 0.32) (P for interaction = 0.008).

The effect of the APOA4 360 polymorphism was opposite in men and women (P for
interaction = 0.07), men with the APOA4 360-1/1 genotype had a 0.28 mmol/L larger
response of total cholesterol to dietary cholesterol than men with the 1/2 polymorphism (95%
CL 0.03 to 0.53 mmol/L), whereas women with the 1/1 polymorphism had —0.14 smaller
responses than women with the 1/2 polymorphism (95% CI, -0.43 to 0.14 mmol/L).

The effect of the CETP Taglb polymorphism on the response of total cholesterol and
LDL-cholesterol to frans far was limited to women (P for interaction = 0.05), the response of
LDL-cholesterol was (.39 mmol/L larger in women with the 1/1 genotype than in those with
the 2/2 genotype (93% CI, 0.06 to (.72}, whereas in men the difference was —-0.07 (95% CI,
-0.34 to 0.20 mmol/L).
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Discussion

The present study shows that genetic polymorphisms may affect responses of serum
lipids to various dietary changes in healthy humans. However, there was not one single
genotype that largely determined a subject’s lipid response to diet.

Quality of the data

We pooled data of 26 trials in order to obtain a large number of subjects to study the
relation between genetic polymorphisms and response of cholesterol to specific dietary
changes. We used rigorously standardized laboratory procedures and multiple measurements
of cholesterol level per subject. The precision of the estimation of serum cholesterol response
to saturated fat and dietary cholesterol was further improved in the subjects who participated
in more than one trial with a similar treatment. The precision of the responses reported here is
therefore higher than in many other trials. The total number of subjects in our study vastly
exceeded that in other studies of the relation between genetic polymorphisms and cholesterol
response, and even the number of subjects per treatment, i.e. saturated fat or dietary
choiesterol, was higher than in any other previous study.

Confounding and effect modification

Subject characteristics such as body mass index, APOE genotype, and sex may affect
the association between genetic polymorphisms and response (23,27-32). However, the
present results were not materially affected by adjustment for age, body mass index, or change
in weight. This might have been due to the narrow range in the distribution of these subject
characteristics and does not rule out the possibility that these factors affect the relationship
between genetic polymorphisms and response. Adjustment for APOE genotype did not affect
the results. However, it may be that the APOE genotype, like possibly sex, does not act as a
confounder but rather as an effect modifier of the relation between genetic polymorphisms and
lipid response (52). If so, it is not appropriate to adjust for APOE genotype. However, analysis
of effect modification by APOE genotype was not attainable, because of the small number of
subjects within various sub-groups. When we analyzed men and women separately, the effect
of the APOA4 347 and 360 and CETP polymorphisms were either opposite in men and
women or limited to one of the two sexes. The differences between men and women,
however, might have been due to chance, because the examination of several subgroups will
increase the risk of chance associations.
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Risk of chance findings

Overall, the risk of chance findings is 5 % in the present study that involved four
dietary treatments, ten polymorphisms and three serum lipid values. This means that six out of
120 hypotheses tested might be false positive. To check that present results are not chance
findings, we took into account the results of previous studies on response and on possible
mechanisms by which the polymorphism affects the response. In addition, promising relations
should be checked in dietary trials, which are designed to study the effect of a genetic
polymorphism on the response of serum cholesterol to diet.

APOAT polymorphisms

In the present study, there were no differences in response of serum LDL- and DL-
cholesterol between subjects with the various APOA1 -75 genotypes, which is in line with
three previous studies (53-35), but not with all (56,57). The APOAL —75 polymorphism is
sitnated in the promoter region of the APOAI gene. Studies on its effect on the cholesterol
metabolism are also inconsistent (38-63). Therefore, it may be that the APOALl -75
polymorphism does not directly affect the cholesterol response, but is in linkage
disequilibrium with a functional mutation in the APOAL1 or a nearby gene.

One of the polymorphisms that is related to the APOA1 -75 polymorphism is the
APOAI1 83 polymorphism (64,65). We found that the response of total and LDL-cholesterol
to cafestol was smaller in subjects with the APOA] 83 1/2 genotype than in those with the 1/1
genotype. We do not know of any other study that related this polymorphism to the response
to diet. The APOA]1 83 polymorphism is located in the first intron. Therefore we cannot
exclude the possibility that the APOA]1 83 polymorphism is a marker of another functional
mutation that possibly affects the LDL-cholesterol response.

APOA4 polymorphisms

In the present study, the response of LDL-cholesterol in subjects with the APOA4 347-
2 allele was somewhat larger than in those with the 1/1 genotype. This effect was larger in
women than in men. The overall effects are in the same direction as those in some other
studies (66,67). In contrast, two other studies did not find any effect (68,69). The substitution
of serine for threonine at position 347 of the apo-AIV produces changes in the secondary
structure of the protein and a slight increase in hydrophilic profile in this position (70).
However, the precise mechanism by which the APOA4 347 polymorphism may affect the
response 1o diet is unknown. Thus, the APOA4 347-2 allele may, if anything, slightly enhance
the response of LDL-cholesterol to diet.
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In the present study, subjects with the APOA4 360-1/2 genotype had only slightly
smaller responses of LDL-cholesterol to saturated and ¢rans fat and cafestol than those with
the 1/1 genotype, whereas subjects with the 2/2 genotype, who were all women, had
considerably smaller responses of LDL-cholesterol. However, the number of subjects with the
2/2 genotype was very small. Furthermore, in our previous study the response to increased
cholesterol intake of one man with the 2/2 genotype was similar to that of those with the other
genotypes (71). The present differences in response between subjects with the 1/1 and 172
genotype are in line with those observed in some of the previous studies (71,72), albeit that
other studies found a larger effect (26,27,73), whereas again other studies found a small
opposite effect (66,08). In the present study, men with the 1/2-genotype were less responsive
to dietary cholesterol than men with the 1/1-genotype. This sex-specific effect was also found
in several other studies (26,27) and may be an explanation for the inconsistent results between
the study of MoCombs et al (73) and our previous study (71). The apoA-IV-2 isoform has
more ot-helical structure, is more stable in solutions and is more hydrofobic than the apoA-IV-
1 isoform (70). Nevertheless, the mechanism by which the APOA4 360 polymorphism may
affect the response in men is not known (39). In conclusion, the attenuating effect of the
APOA4 A360-1/2 genotype on the cholesterol response to dietary cholesterol may be limited
to men.

APOB EcoRl polymorphism

The response of LDL-cholesterol to diet was somewhat smaller in those with the
APOB EcoRI1-1/2 genotype than in those with the 1/1 and 2/2 genotype. In contrast with these
findings, one extensive meta-analysis (74) showed that there were no differences between
subjects with the APOB EcoRI-1/2 and 1/1 genotype, whereas subjects with the 2/2 genotype
tended to have larper responses than those with the 1/1 genotype. One explanation for the
opposite findings on the effect of the 2/2 genotype may be the small number of subjects with
the APOB EcoRI-2/2 genotype in all studies. The APOB EcoRI polymorphism in exon 29
changes the amino acid sequence, but its functional role is unclear (74-76). We conclude for
the present that the APOB EcoRI polymorphism may not affect the lipid response to diet.

APOC3 Sstl polymorphism

In the present study, the response of HDL-cholesterol to saturated fat and dietary
cholesterol was smaller in those with the APOC3 Sstl-1/2 genotype than in those with the 1/1
genotype. In contrast, one previous study found no effect of the APOC3 polymorphism on
response of serum lipids (54). In addition, another showed that there were no differences
between the genotypes in response of HDL-cholesterol whereas the LDL-cholestero] response
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of subjects with the 1/2 genotype was smaller than that of subjects with the 1/1 genotype (77).
The APOC3 Sstl polymorphism is situated in the 3’ non-coding region of the APOC3 gene
and may be functional, but may also be neutral or act as a genetic marker for another
functional polymorphism (78). Thus studies so far are inconsistent and provide no convincing
evidence that the APOC3 Sstl polymorphism affects the response.

CETP Taqib polymorphism

The present study showed that the response of LDI-cholesterol is smaller in those
with the CETP Taqlb-1/2 than in those with the 1/1 genotype. In one other study, the response
of LDL-cholesterol to fat was also somewhat smaller in those with the 1/2 than in those with
the 1/1 genotype (660). In the present study, subjects with the 2/2 genotype had a somewhat
larger response of HDL-cholesterol than those with the 1/1 and 1/2 genotype. In contrast, one
previous study found that the response of HDL-cholesterol in patients with Type I diabetes
was larger in those with the 1/1 genotype than in those with the 1/2 genotype upon
consumption of a lipid-lowering diet (79), whereas another did not find any difference (66). If
we assume that a larger lipid response leads to a higher lipid level, then the present effect of
the CETF Taglb polymorphism on HDL-cholesterol response will be in line with its effect on
HDIL-cholesterol levels in previous studies (25,45,80-83). These studies, however, are
inconsistent with regard to whether the effect of the polymorphism on the cholesterol
metabolism is sex-specific (25,80,82,84). Because the CETP TagIB mutation is situated in
intron 1, it is unlikely that this mutation is functional. Thus, the CETP genotype may be a
marker for a mutation that affects the responses of serum HDL-cholesterol and LDL-
cholesterol to dietary changes. One mutation that is in linkage disequilibrium with the CETP
Taglb polymorphism is a functional mutation in the promoter region of the CETP gene,
CETP/-629 (85).

FABP2 54 polymorphism

The present study showed that subjects with the FABP2 54-1/2 genotype were more
responsive and those with the 2/2 genotype less responsive than those with the 1/]1 genotype.
In contrast with the present findings, one study on the response of serum lipids to dietary fiber
found that subjects with the 1/2 genotype were less responsive than those with the 1/1
genotype (86). However, another study found no effect of the FABP2 54 polymorphism on the
levels of serum lipids (87). The FABP2 54 polymorphism gives rise to a structural change in
the protein and may be functional, because the binding affinity for long-chain fatty acids in
vitro is larger for the 2-isoform than for the 1-isoform (46). Nevertheless, the mechanism by
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which this difference may affect the response is still unclear. Thus, the present findings should
first be confirmed in another study.

LPL 447 polymorphism

In the present study, subjects with the LPL 447-2 allele had smatller responses of HDL-
cholesterol to saturated fat than those with the 1/1 genotype. In contrast, one other study did
not find any effect on the HDL-cholesterol response to dietary fat, whereas the response of
LDL-cholestero! was significantly larger in subjects with the 1/2 genotype than in those with
the 1/1 genotype (66). Furthermore, other studies showed that subjects with the LPL 447-2
allele had higher HDL-levels (88,89) than those with the 1/1 genotype. The polymorphism
gives rise 1o a structural change in the protein and may be functional as the production of the 2
isoform is greater than that of the | isoform, leading to higher levels of LPL activity (90).
However, the present effect of the LPL 447 polymorphism on response of HDL-cholesterol
may have been a chance finding.

MTP —493 polymorphism

We found that subjects with the MTP —493-2/2 genotype had a larger LDL-response to
saturated fat than those with the 1 allele. However, the number of subjects with the 2/2
genotype is small. We do not know of any other studies on the effect of this polymorphism on
the response. Results of studies on the effect of the MTP polymorphism on the level of LDL-
cholesterol are inconsistent (48,91). Although the MTP —493 polymorphism, which is situated
in the promoter region of the MTP gene, may be of functional importance because it regulates
the transcriptional activity by influencing allele-specific binding of nuclear proteins (48),
evidence of any effect of the MTP polymeorphism on response is weak.

Gene-gene inferaction

In the present study, we investigated the effect of 10 polymorphisms by themselves.
Overall, the individual polymorphisms explained up to 8 % of the variation in response of
LDL-cholesterol and up to 4 % of the variation in response of HDL-cholesterol. We did not
assess interactions between genetic polymorphisms, except for the interaction with sex, It is
likely that knowledge of gene-gene interaction is of additional use in the identification of
subjects who do not respond to diet.
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Extrapolation

The subjects in the present study were mostly young and had normal or moderately
elevated chelesterol levels. Therefore, we do not know whether the gene-diet interactions are
similar in an older, hyperlipidemic population.

In conclusion, the APOA4 347 and 360 and CETP Taglb polymorphism may affect the
response of serum cholesterol to diet in healthy humans, However, the effects were small.
Therefore, information on each of these genotypes alone is not sufficient to predict an
individual’s response to dietary treatment.
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The apoproteinA4 360-1/2 polymorphism and
response of serum lipids to dietary cholesterol
in humans

Rianne M. Weggemans, Peter L. Zock, Saskia Meyboom, Harald Funke, Martijn B. Katan

Abstract- The response of serum lipids to dietary changes is to some extent an innate
characteristic. One candidate genetic factor that may affect the response of serum lipids to 2
change in cholesterol intake is variation in the apoproteinA4 gene, known as the APOA4 360-
1/2 or apoA-IVGIn360His polymorphism. However, previous studies showed inconsistent
results.

We therefore fed 10 men and 23 women with the APOA4 360-1/1 genotype and 4 men
and 13 women with the APOA4 360-1/2 or 2/2 genotype (carriers of the APOA4 360-2 allele)
two diets high in saturated fat, one containing cholesterol at 12.4 mg/MJ, 136.4 mg/day, and
one containing cholesterol at 86.2 mg/MJ, 948.2 mg/day. Each diet was supplied for 29 days
in cross-over design.

The mean response of serum low-density lipoprotein cholesterol was 0.44 mmol/L (17
mg/dL) in both subjects with the APOA4 360-1/1 genotype and in subjects with the APOA4
360-2 allele (85 % confidence interval {CI) of difference in response, -0.20 to .19 mmol/L (-
8 to 7 mg/dL)). The mean response of high-density lipoprotein cholesterol was also similar,
0.10 mmol/L {4 mg/dL), in the two APOA4 360 genotype groups (95 % CI of difference in
response, -0.07 to 0.08 mmol/L (-3 to 3 mg/dL)).

Thus, the APOA4 360-1/2 polymorphism did not affect the response of serum lipids to
a change in the intake of cholesterol in this group of healthy Dutch subjects who consumed a
background diet high in saturated fat. Knowledge of the APOA4 360-1/2 polymorphism is
probably not a generally applicable tool for the identification of subjects who respond to a
change in cholesterol intake.

J Lipid Res 2000; 41:1623-1628



Chapter 5

Introduction

The response of serum lipids to dietary cholesterol varies between subjects. In some
subjects, the response of serum lipids to an increased cholesterol intake is considerable,
whereas in others the response is small. The response to dietary cholesterol is to some extent
reproducible within a subject and may be in part an innate characteristic of a subject (1). There
are a large number of candidate genetic factors that may affect the response (2). Identification
of these genetic factors may contribute to the development of new tests to predict whether a
subject with high serum lipid levels will benefit from a diet low in cholesterol. This may
contribute to a more efficient treatment of subjects with high serumn lipid levels. In addition,
knowledge of genetic factors that determine the response of serum lipids to diet will help to
gain insight into the mechanisms by which diet affects serum lipid levels.

One of the candidate genetic factors which may affect the response of serum lipids is
the apoprotein (APO)A4 gene, which encodes the apoA-IV protein. ApoA-IV is synthesized
in the intestine (3). While the precise function of apoA-IV is still unknown, some studies
suggest that it plays a role in the absorption of dietary fat (4) and in the metabolism of high
density lipoprotein (HDL-) cholesterol and triglyceride-rich particles. In vitro studies showed
that apoA-IV activates lecithine:cholesterol acyltransferase (5) and regulates the activity of
cholesteryl ester transfer protein (6) and lipoprotein lipase (7). One polymorphism in the
APOA4 360 gene, the APOA4 360-1/2 polymorphism, is caused by a G to T substitution in
exon 3 of the gene, which causes the glutamine-to-histidine substitution at position 360 in the
apoA-IV protein (8). The apoA-IV-2 isoform has more a-helical structure, is mote stable in
solutions and is more hydrophobic than the apoA-IV-1 isoform. These distinctive features are
associated with a higher affinity for phospholipid surfaces and increased catalytic efficiency of
the lecithine:cholesterol acyltransferase activation in vitro (9,10). In addition, carriers of the
apoA-IV-2 isoform have lower activity of plasma cholesteryl ester transport protein, higher
apoA-1V concentrations {11), and slower apoA-IV catabolic rate in vivo (12).

Studies on the effect of the APOA4 360-1/2 polymorphism on the response of serum
lipids to diet are not consistent. Some studies showed that the APOA4 360-2 allele attenuates
the response of low density lipoprotein (LDL-) cholesterol to dietary cholesterol {13) or
dietary cholesterol plus fat (14), whereas other studies did not show a difference between
subjects with the APOA4 360-1/1 genotype and those with the APOA4 360-2 allele in terms
of response of LDL-cholesterol to dietary cholesterol plus fat (15,16} or to dietary fat (17).
These results may indicate that the APQOA4 360-1/2 polymorphism affects the response of
serum LDL-cholesterol to dietary cholesterol, but not to dietary fat.

We therefore tested the effect of the APOA4 360-1/2 polymorphism on the response of
serum LDL-cholesterol to dietary cholesterol in a controlled experiment,
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Methods
Subjects

The Ethics Committee of the Division of Human Nutrition and Epidemiology
{(Wageningen University, Wageningen, The Netherlands) approved of the study protocol. We
recruited 200 subjects through advertisements in local newspapers and university and public
buildings. We explained the aims and protocol of the study to the subjects. All subjects gave
their written informed consent. We screened the subjects, mostly students living in or near the
city of Wageningen, for the APOA4 360-1/2 polymorphism and identified 24 carriers of the
APOA4 360-2 allele. We selected these 24 carriers and 47 subjects with the APOA4 360-1/1
genotype for a medical screening. The medical screening consisted of a medical questionnaire,
hemocytometry, and the assessment of triglycerides and total cholesterol in serum and of
protein and glucose in urine after a 12-hours fast. We excluded one subject with serum
triglyceride levels over 3.0 mmol/L, two subjects with disease of the gastro-instestinal tract,
one subject with glucosuria and two subjects with proteinuria. All other subjects were
apparently healthy, as indicated by the medical questionnaire. None of them had anemia,
glucosuria, or proteinuria and none were taking medications known to affect blood lipids.
During the period between the medical screening and the beginning of the dictary trial, 13
subjects withdrew. Nineteen carriers of the APOA4 360-2 allele and 33 subjects with the
APOA4 360-1/1 genotype started the dietary trial. Two carriers of the APOA4 360-2 allele
dropped out during the dietary trial, one for personal reasons and one because of appendicitis.
Seventeen carriers of the APOA4 360-2 allele, 16 Caucasians and one Hispanic, and 33
subjects homozygous for the APOA4 360-1 allele, 32 Caucasians and one Hispanic,
completed the dietary trial (Table 5.1).

The two genotype groups had similar baseline characteristics, except that the APOE4-
allele and APOA4 347-T allele were more common in subjects with the APOA4 360-1/1
genotype than in those with the APOA4 360-2 allele (Table 5.2). All subjects who completed

the dietary trial received a financial reward.
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Table 5.1 Selection of subjects with the apoprotein (APO) A4 360-1/1 genotype
and carriers of the APOA4 360-2 allele.

APOA4 360-1/1 APOA4 360-1/2 or 2/2

Subjects recruited 176 24

Excluded after genetic screening 129

Excluded after medical screening’ 4 2

Withdrawal before the trial 10 3
Subjects entering the trial 33 19

Drop out during the trial 0 2
Subjects finishing the trial 33 17

* The medical screening consisted of a medical questionnaire, hemocytometry, and the
assessment of triglycerides and total cholesterol in serum and of protein and glucose
in urine after a 12-hours fast.

Design

The dietary trial was designed to detect a significant difference (P<0.05) in response of
LDL-cholesterol between subjects with the APOA4 360-1/1 genotype and subjects with the
APOA4 360-2 allele with a power of 80 % if the real population effect exceeded 0.27 mmol/L
{10 mg/dL). This power calculation was based on a within-subject standard deviation of 0.27
mmol/L (1¢ mg/dL). In other studies at our laboratory, within-subject standard deviation was
0.35 mmol/L (13 mg/dL) (18). We expected that the four blood collections per period, instead
of two, would decrease the within-subject standard deviation by about 0.08 mmol/L (3 mg/dL)
(19).

The dietary trial consisted of two periods of 29 days, during which each subject
consumed the diet low in cholesterol and the diet high in cholesterol in cross-over design (20).
We included a 6-day wash-out period between the two periods (Figure 5.1).

One group of 26 subjects (18 APOA4 360-1/1, § APOA4 3601/2 or 2/2; 7 men,19
women) first received a diet low in cholesterol and then a diet high in cholesterol, the other
group of 24 subjects (15 APOA4 360-1/1, 9 APOA4 3601/2 or 2/2; 7 men, 17 women)
received the diets in reverse order. All subjects participated simultaneously. None the subjects
and staff, except for one investigator (RMW), were aware of the APOA4 360 and 347 and
APOE genotypes.
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Table 5.2 Baseline characteristics of the subjects with the APOA4 360-1/1 genotype and carriers
of the APOA4 360-2 allele.

APCA4 360-1/1 APOA4 360-1/2 or 2/2°
Men/Women (N) 10/23 4/13
Age (years) 2419 24113
Body mass index (kg/m”) 232 2+3
Total cholesterol ( mmolL)* 48+09 46+0.8
Triglycerides { mmol/L)? 1.1+04 1.1+04
Smokers (N) 2 3
Users of oral contraceptives (N of women) 9 6
APOQE genotype (N)
E2/2 1
E3/2 3
E3/3 22 12
E4/2
E4/3 6 0
APQA4 347 genotype (N)
A/A 18 13
AT 12
T/T 3 0

* The subject with the APOA4 360-2/2 genotype was a man with the APOA4 347-A/T genotype and the
APOE2/4 genotype . T To convert serum lipid values from mmol/L to mg/dL multiply mmol/L by 38.67. ¥ To
convert serum triglyceride values from mmoi/L to mg/dL multiply mmol/L by 88.54.

Week o 1 2 3 4 5 6 7 8 9

High cholesterol diet Low cholesterol diet
Wash

Screening
Low cholesterol diet -out High cholesterol diet

Blood callection A 'YYY! M

Figure 5.1 Design of the controlled dietary trial.
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Diets

Before the trial, the habitual energy intake of the subjects was estimated by a food-
frequency questionnaire (21,22). The study diets were formulated at 18 levels of energy
intake, ranging from 7 to 24 MJ/day, so that each subject received a diet that met his or her
energy needs. Body weights were recorded twice per week and, if necessary, energy intake
was adjusted to maintain a stable weight.

The diets consisted of conventional foods and 29 different menus were provided over
the course of each period. The nutrient composition of the low and high cholesterol diet was
similar, except for dietary cholesterol (Table 5.3).

Table 5.3 Composition of the low-cholesterol diet and of the high-cholesterol diet.

Low cholesterol diet High cholesterol diet

Energy (MJ per day) 1 11
Protein (% of energy) 14.9 154
Fat (% of energy) 178 39.6
Samurated fat 16.7 17.5
Monounsaturated fat 1.1 1.7
Polyunsaturated fat 7.7 82
Ca.rb;.)hydrates {% of energy) 46.2 438
Alcohol (% of energy) 1.3 1.3
Cholesterol (mg/MI) 12.4 86.2
Cholesterol (mg/day) 136.4 948.2
Fiber (g/MJ) 3.0 34
Fiber (g/day) 33.0 34.1

Dietary cholesterol was added in the form of eggs and egg yolk powder. The egg yolk
powder was used for baking bread and preparing salad dressings and deserts. Egg white
powder and groundnut oil were used in the diet low in cholesterol to adjust for the added fat
and protein from eggs and egg yolk powder in the high-cholesterol diet. Because the response
of serum lipids to dietary cholesterol may be enhanced by a background diet high in saturated
fat (23-25), both diets were high in saturated fat.

All food items were weighed or counted out for each subject. On weekdays at noon,
hot meals were served and consumed in the dining room for metabolic studies of the Division.
All other food was supplied daily as a package. Food for the weekend and guidelines for its
preparation were provided on Fridays. Approximately 90 % of the energy intake was from
supplied foods, the remaining 10 % was from foods chosen by the subjects from a list of “free-
choice’ food items without cholesterol or fat,
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Subjects were urged not to change their selection of the ‘free-choice’ food items
throughout the study and not to change their smoking habits or physical activities. The
participants kept diaries in which they recorded their daily selection of ‘free-choice’ food
items, any sign of iliness, medication used, phase of the menstrual cycle, and any deviations
from their diets and the protocol. According to these diaries, adherence to the diets and
protocol was excellent.

Duplicate portions of each study diet were collected every day for an imaginary
participant with a daily energy intake of 11 MJ, stored at -20 °C, and pooled and analyzed
after the study. The energy and nutrient content of each subject’s selection of the ‘free-choice’
food items were calculated and combined with the analyzed values of the duplicate portions.

Blood collection and biochemical analyses

All participants were assigned a random number that was used for labeling blood and
serumn tubes. In this way, the laboratory technicians did not know the subject’s diet sequence
or genotype. Blood samples were taken after a 12-hours fast on days 22, 24, 27 and 29 of each
dietary period. We took a number of measures to reduce within-subject variation in serum
cholesterol. Subjects remained standing while waiting for the blood collection, During the two
dietary periods, venipunctures were performed by the same technicians, in the same location,
at the same time of the same days of the week and with each subject always in the same
position, which was either sitting or lying. Serum was obtained by low speed centrifugation
between 0.5 to 1 hour after venipuncture, stored at -80 °C, and analyzed enzymatically for
total cholesterol, high-density lipoprotein {(HDL-) cholesterol, and triglycerides (26). All
samples from one subject were analyzed within the same run. The coefficient of variation
within runs was 0.5 % for total cholesterol, 1.2 % for HDL-cholesterol, and 0.7 % for
triglvcerides. The mean bias with regard to target values of serum pools (Cholesterol
Reference Method Laboratory Network) was -0.07 mmol/L. (-3 mg/dL) for total cholesterol
and -0.02 mmol/L (-1 mg/dL) for HDL-cholesterol. LDL-cholesterol was calculated (27).

Genotyping

DNA was isclated from fresh blood by a *salting-out” procedure (28). The DNA was
amplified for the assessment of the APOA4 360-1/2, APOA4 347-A/T and APOE2/3/4
polymorphisms by mutagenically separated polymerase chain reactions (MS-PCR) (29). In
each MS-PCR, the normal and mutant alleles were amplified in the same reaction tube, using
allele-specitic primers that differ in length. The MS-PCR-products were made visible by UV
light on an agarose gel. We used 17 duplicate samples as a quality control measure for the
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assessment of the penotypes. The investigators who assessed the genotypes did not know
which samples were the duplicates. The genotypes of all 17 duplicate samples agreed.

Statistical analyses

The four values of serum lipids obtained for each subject at the end of each dietary
period were averaged and then used for the calculation of the individual differences in serum
lipid levels between the diets. Differences in response of serum lipids to dietary cholesterol
between the subjects with the APOA4 360-1/1 genotype and subjects with the APOA4 360-2
allele were analyzed by a two-tailed Student’s t-test. We used the General Linear Models
(GLM) procedure of the SAS program to check the effect of potential confounders, such as
sex, body mass index, age, APOE2/3/4 polymorphism and APOA4 347-A/T polymorphism on
differences in response between subjects with the various APOA4 360 genotypes (30).

Results

Overall, the switch from a diet low in cholesterol to a diet high in cholesterol increased
levels of serum total cholesterol by 0.55 £ 0.32 mmol/L. (21 + 12 mg/dl) (mean + standard
deviation) or 12 %, levels of LDL-cholesterol by 0.44 + 0.32 mmol/L (15 £ 12 mg/dL) or 17
%, and levels of HDL-cholesterol by (.10 £ 0.13 mmol/L (4 £ 5 mg/dL) or 6 %.

The mean difference in response between subjects with the APOA4 360-1/1 genotype
and subjects with the APOA4 360-2 allele was 0.01 mmol/L (0 mg/dL) for total cholesterol
and HDL-cholesterol and 0 mmol/L (0 mg/dL) for LDL-cholesterol (Table 5.4).

Adjustment for either sex, body mass index, age, baseline cholesterol level, change in
body weight during the trial, APOE2/3/4 polymorphism, or APOA4 347-A/T polymorphism
did not materially affect the difference in response of serum lipids between the APOA4 360
genotype groups. The largest effect of adjustment was that for the APOE2/3/4 polymorphism;
the adjusted response of LDL-choiesterol was §.02 £ 0.09 mmol/L (1 + 3 mg/ dL) (estimated
mean * standard error) larger in subjects with the APOA4 360-1/1 genotype than in subjects
with the APOA4 360-2 allele.
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Table 5.4 Mear levels of serum total, low-density (LDL-) and high-density (HDL-) cholesterol
(* standard deviation} during the low cholesterol and high cholesterol diets, difference in
response, and its 95 % confidence interval (CI) in subjects with the apoprotein{APQ)A4-1/1
genotype (N=33) and carriers of the APOA4 360-2 allele (N=17),

APOAA4 360 Low cholesterol diet ~ High cholesterol diet Difference in response

genotype (95% CI)
mmol/L*
Total cholesterol
11 453+0.84 5081097 0.0]1 {-0.19 10 0.20)
1/2 or 2/2 4.46 £ 0.57 5.00 + 0.64
LDL-cholesterol
11 2.62+072 3.06 £0.85 0.00 (-0.20 t0 0.19)
1/2 or 2/2 254 +047 2.98 +0.63
HDL-cholesterol
11 1.52+£0.32 1.63 +0.33 0.01 (-0.67 to 0.08)
172 or2/2 1.52+0.20 1.62 £ 0.19

* To convert serum lipid values from mmol/L to mg/dL multiply values in mmol/L by 38.67.

Discussion

We found that the APOA4 360-1/2 polymorphism did not affect the response of serum
lipids to an increased intake of cholesterol against a background diet high in saturated fat in
Dutch subjects with normal cholesterol levels, The average response of serum total cholesterol
to dietary cholesterol, 0.55 mmol/L {21 mg/dL), was in line with responses estimated from
prediction equations (25,31,32). There were no significant differences between subjects with
the APOA4 360-1/1 genotype and subjects with the APOA4 360-2 allele in the potentially
confounding factors sex, body mass index, age, and baseline level of total cholesterol. In
addition, the intake of total fat, fatty acids, and cholesterol during the trial was the same in the
two groups, as was the average change in body weight. In the present study, however, the
APOA4 347.T allele and APOE4-allele, which may enhance the response of serum lipids to
diet (33-35), were more prevalent in subjects with the APOA4 360-1/1 genotype than in
subjects with the APOA4 360-2 allele. However, this did not lead to a larger response in
subjects with the APOA4 360-1/1 genotype than in those with the APOA4 360-2 allele.

We did not assess other genetic polymorphisms than the APOA4 360-1/2 and 347-A/T
and APOE-polymorphisms, Therefore, we cannot exclude the possibility that one of these
other genetic polymorphisms biases our results. However, because most of these other
candidate polymorphisms are not closely linked to the APOA4 360-1/2 polymorphism (2), the
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various genotypes of these polymorphisms are likely to be randomly distributed over the
subjects with the various APOA4 360 genotypes and may thus not bias the results of the
present study. In addition, the APOA4 347-A/T polymorphism, which is linked to the APOA4
360-1/2 polymorphism (36), did not bias the present results.

In contrast with the present study, other studies found that the APOA4 360-2 allele
attenuated the response of serum LDL-cholesterol significantly (13,14) or not significantly
{15,17), whereas one other study found that the APOA4 360-2 allele enhanced the response
(16) (Figure 5.2) (data for the calculation of 95 % confidence intervals: personal
communication with dr R.B. Weinberg and dr J.M. Ordovas, 1999).

Reference Dietary treatment
McCombs ot al 1994 » Chol ol
Mata et al 1994 | S — Cholesterol and fat
Schaefer et al 1997 —t—— Chalesterol and fat
Jansen et al 1997 —ra— Saturated fat
Jansen et al 1997 - Mono-unsaturated fat
Carmenp-Ramon et 1 1998 = Cholesterol and fat
Present study —— Cholesterol

} ' ' )

, t t !

-1 0.5 0 0.5 1 (mmol/L)

A LDL-cholesterol response of AFOA4 1/1 - 172 0r 212

Figure 5.2 Differences in response of serum low density lipoprotein (LDL-} cholesterol to dietary
cholesterol and/or fat between subjects with the apoprotein (APO) Ad-1/1 genotype or ApoA-IV-
1/1 phenotype and subjects with the APOA4 360-2 allele or ApoA-IV-2 isoform and 95 %
confidence intervals of the difference in LDL-cholesterol response in six studies.

In the study of Mata et al (14) men with the apoA-IV-2 isoform had smaller responses
of LDL-cholesterol to a decrease in the intake of cholesterol plus saturated fat than men with
the apoA-TIV-1/1 phenotype. In another study (15), which used in part some of the data of
Mata et al (14), the differences between men with the various apoA-IV phenotypes were
somewhat smaller. One explanation for the different findings in the study of Mata et al and the
present study is that in the study of Mata et al not only the intake of cholesterol, but also the
intake of fat was changed (14). This may indicate that the APOA4 360-1/2 polymorphism
affects the response of L.DL-cholesterol to a change in the intake of fat. However, people who

94




APOA4 360-172 polymarphism and serum lipid response

overrespond to dietary cholesterol also tend to overrespond to dietary fat (37). In addition, in a
study of Jansen et al (17} responses of LDL-cholesterol were slightly smaller in men with the
APOA4 360-2 allele than in men with the APOA4 360-1/1 genotype when carbohydrates were
replaced by saturated fat or mono-unsaturated fat. Nonetheless, it remains possible that the
APOA4 360-1/2 polymorphism affects the response of LDL-cholesterol to a change in the
intake of both cholesterol and fat.

Another explanation for the different findings are differences in subjects’
characteristics. The subjects in the study of Mata et al (14) were middle-aged and moderately
hyperlipemic, whereas the subjects in the present study were young and had normal
cholesterol levels at baseline, However, responsiveness to dietary cholesterol does not differ
between older and younger people (38), it is if anything more marked in people with higher
cholesterol levels (39). In addition, in one study with subjects with familial
hypercholesterolemia the response of serum LDIL-cholesterol to an increased intake of
cholesterol plus fat was not attenuated but somewhat enhanced by the APOA4 360-2 allele
{16). It might be that the effect of mutations in the LDL-receptor on the response of
cholesterol overshadowed the effects of the APOA4 360-1/2 polymorphism in these subjects.

McCombs et al {13) showed that 11 young and normolipemic subjects with the apoA-
[V-2 isoform had a smaller response of LDL-cholestercl than 12 subjects with the apoA-IV1/1
phenotype to an increased cholesterol intake. These results differed significantly from those in
the present study (95% CI for difference in response 0.03 to 0.46 mmol/L (1 to 18 mg/dL)).

A possible explanation for the difference in results between the studies of McCombs et
al {13) and Mata et al (14) and the present study is that the APOA4 360-1/2 polymorphism
affects the response of LDL-cholesterol in men only and not in women. In the study of
McCombs et al (13), 74% of the subjects were men, whereas in the study of Mata et al (14)
the APOA4 360-1/2 polymorphism affected the response in men, but not in women. In the
present study, 28 % of the subjects were men and only four of them had the APO4-1/2 or 2/2
genotype. Because of this small number we did not have sufficient power to analyze the
effects of the APOA4 360-1/2 polymorphism in men only. The response of LDL-cholesterol
was —0.04 £ 0.11 mmol/L (2 £ 4 mg/dL} (mean + standard error) (P = 0.73) smaller in women
with the APOA4 360-2 allele than in those with the APOA4 360-1/1 genotype, whereas it was
0.17 £ 0,19 mmol/L (7 = 7 mg/dL) (P = 0.39) larger in men with the APOA4 360-2 allele than
in those with the APOA4 360-1/1 genotype.

Another explanation for the difference in results is that we used a background diet
high in saturated fat to enhance the response of serum cholesterol to dietary cholesterol. It is
possible that the effect of the high saturated fat diet overwhelmed the effect of the APOA4

360-1/2 polymorphism on cholesterol metabolism and response. However, we do not think
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this is likely, because levels of total cholesterol on the low cholesterol, high saturated fat diet
were still fairly low (mean 5.06 mmol/L. (196 mg/dL)) and increased by 11% on addition of
cholesterol to the high saturated fat diet.

In the present controlled dietary trial the lipid response to dietary cholesterol was not
affected by the APOA4 360-1/2 polymorphism in 37 women and 13 men with normal
cholesterol levels, who were on a background diet high in saturated fat. This suggests that the
APOA4 360-1/2 polymorphism may not be a generally applicable tool for the identification of
subjects who respond to dietary cholesterol.
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Dietary cholesterol from eggs increases the ratio
of total cholesterol to high-density lipoprotein
cholesterol in humans. A meta-analysis.

Rianne M. Weggemans, Peter L. Zock, Martijn B, Katan

Abstract- Several epidemiological studies did not find an effect of egg consumption on risk of
coronary heart disease. It is possible that the adverse effect of dietary cholesterol from eggs on
total and low-density lipoprotein cholesterol is offset by its favorable effect on high-density
lipoprotein cholesterol.

We reviewed the effect of dietary cholesterol on the ratio of total cholesterol to high-
density lipoprotein cholesterol, which is a more specific predictor of coronary heart disease
than either lipid value alone. Studies were identified by MEDLINE and Biological Abstracts
searches (1974~ June 1999) and by reviewing reference lists. We added data from a study,
which we recently published ourselves. Studies were included if they had a cross-over or
parallel design with a control group, the experimental diets only differed in the amount of
dietary cholesterol or eggs and were each fed for at least 14 days, and concentrations of high-
density lipoprotein cholesterol were reported. Of the 222 studies identified, 17 studies met
these criteria. Extraction of data on design of the study, subject characteristics, composition
and duration of the diets, and concentrations of serum lipids was done by the same
investigator.

The addition of 100 mg dietary cholesterol daily increased the ratio of total to high-
density lipoprotein cholestercl by (.020 units (95% confidence interval (CI), 0.010 to (1.030),
and the concentrations of total cholesterol by 0.056 mmol/L (2.2 mg/dL) (95% CI, 0.046 to
0.065 mmol/L. (1.8 to 2.5 mg/dL)) and of high-density lipoprotein cholesterol by 0.008
mmol/L (0.3 mg/dL)(95% CJ, 0.005 to 0.010 mmol/L (0.2 to 0.4 mg/dL)).

In conclusion, dietary cholesterol raises the ratio of total cholesterol to high-density
lipoprotein cholesterol and therefore adversely affects the cholesterol profile. The advice to
limit the intake of cholesterol by reducing the consumption of eggs and other cholesterol-rich
foods may therefore still be valid.

Conditionally accepted



Dietary cholesterol and blood lipids

Introduction

One of the dietary recommendations in the prevention of coronary heart disease is to
limit the intake of eggs (1). The rationale behind this recommendation is that eggs are a major
source of dietary cholesterol {2). Dietary cholesterol increases serum low-density lipoprotein
{LDL-) cholesterol (3-5), an established risk factor for coronary heart disease (6). However,
several epidemiological studies did not find a relation between egg consumption and the risk
of coronary heart disease (7,8). The absence of a relationship may imply that the
recommendation to lower egg consumption is only of little use in the prevention of coronary
heart disease. One egg contains approximately 200 mg of cholesterol. Although it is obvious
that dietary cholesterol increases concentrations of total cholesterol (3-5), several studies
showed that dietary cholestero] increases not only concentrations of LDL-cholesterol but also
concentrations of high-density lipoprotein (HDL-) cholesterol (3,4). As HDL-cholesterol may
be protective against coronary heart disease, the adverse effects of dietary cholesterol on total
cholesterol and LDL-cholesterol might be attenuated by the favorable effects on HDL-
cholesterol.

The ratio of total cholesterol to HDL-cholesterol integrates the opposing effects on
coronary heart disease risk of LDL- and HDE-cholesterol. As a result, it is a better predictor of
the risk of coronary heart disease than the individual lipoprotein concentrations (6,9,10).
Therefore, it may be more appropriate to study the effect of dietary cholesterol on the ratio of
total cholesterol to HDL-cholesterol than on the individual lipoprotein concentrations.

We now selected well-controlled studies to review the effect of dietary cholesterol
from eggs on the ratio of total cholesterol to HDL-cholesterol in humans. We added data from
a hitherto unpublished study of our own.

Subjects and methods
Selection of studies

We screened MEDLINE (1974-June 1999) and Biological Abstracts (1989-June 1999)
for experimental studies on the effects of dietary cholesterol and eggs on total cholesterol and
lipoproteins. We did not screen MEDLINE before 1974 as measurements of HDL-cholesterol,
which is part of our main outcome’s measure, were not available at the time. For the literature
searches, the key words egg, eggs, and dietary cholesterol were each intersected with the
words serum (plasma) lipoprotein, serum (piasma) cholesterol, HDL, and LDL. We found
1190 citations in MEDLINE and 883 in Biological Abstracts (Figure 6.1). In addition, we
checked the reference lists of several meta-analyses (3-5,11,12) and selected studies. A scan of
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Medline Biological abstracts Reference lists
1190 articles N=883

| Title scan |-
| 221 articles ]

r Abstract scan l—
I 56 articles l

Full-paper check
| |
16 selected articles 19 articles for additional analysi: 21 articles not selected

1 additional abstract not in
literature search

Figure 6.1 The selection of the articles for the meta-analysis and for the additional analysis.

the titles led to the selection of 221 citations. The abstracts of these citations were examined
for compliance with the following inclusion criteria. The studies had to be published in
English. Within a study, the composition of the experimental diets should differ only in the
amount of cholesterol or in the amount of eggs. The subjects should be weight stable
throughout the study. The design had to eliminate the effect of nonspecific drifts of the
outcome variable with time. This is accomplished by either feeding different groups of
volunteers different diets side by side (parallel design) or feeding each volunteer several diets
in random order (cross-over or Latin-square design). Studies with before-and-after designs or
linear designs without a control group were excluded. The feeding periods had to last at least
14 days, in order to attain equilibrium in concentrations of total cholesterol and lipoproteins.
Further, studies had to report fasting concentrations of total cholesterol and lipoproteins. Of
the 221 articles passing the title scan, 56 passed the abstract scan. Because most of the 56
abstracts did not provide sufficient information on the selection criteria, we checked the full-
text of these articles. Sixteen of the 56 articles (28 %) met the inclusion criteria (13-28). Most
other studies were not selected because they did not provide information on concentrations of
HDL-cholesterol or had a linear design without a control group. In addition to the data of
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the 16 studies, we used data of our own study on the response to egg yolk cholesterol as a
function of the apoprotein A-4 1/2 polymorphism, which was recently published (29} (Table
6.1).

The 17 studies vielded 24 dietary comparisons and 3 control treatments. The studies
included 422 men and 134 women. Ten trials were carried out in men only, six included both
men and women, and one study included women only. None of the studies reported the race of
the subjects. The age of the volunteers ranged from 18 to 75 years, mean body mass index
ranged from 20.8 to 28 kg/m®, and mean baseline cholesterol concentration ranged from 4.06
to 5.92 mmol/L {157 to 229 mg/dL}. Not all studies reported mean body mass index (13,15-
17,20,26) or baseline cholesterol concentration (20,21,25,28). Eleven were metabolic ward
studies, in which all food was provided and five employed free-living subjects who were
provided with eggs, high cholesterol products, or egg-free substitutes. The change in
cholesterol intake ranged from 137 to 897 mg per day. Values for the concentrations of total
cholesterol, LDL- and HDL-cholestero! in plasma were multiplied by 1.029 to convert them to
serum values (30).

Statistical analysis

We subtracted the mean concentration of serum cholesterol at the end of the low-
cholesterol diet from that at the end of the high-cholesterol diet to calculate the change in
serum cholesterol. Only six studies reported the means of individual ratios of total cholesterol
to HDL-cholesterol (15,18,20,24,29,31) and only four studies reported the means of the
individual ratios of HDL- to LDL-cholesterol (15,20,27,29). Therefore, we used mean
concentrations in total, LDL- and HDL-cholesterol concentrations at the end of each diet to
‘gstimate the mean ratios of total cholesterol to HDL-cholesterol and HDL- to LDL-
cholesterol. According to the Taylor-approximation, this procedure to calculate the ratios
caused an underestimation of the true ratio. The size of the underestimation is dependent on
the total variation in the numerator and denominator and the correlation between the
numerator {x) and denominator (y), E(x/y) = Ex/Ey * [1+CVy * {CVy — corr (x,y) * CVx}]
{32). From an independent and large set of data (33), we calculated the coefficients of
variation (CV) of total cholesterol, 0.21, HDL-cholesterol, 0.22, and LDL-cholesterol, 0.25,
and the correlation coefficients of HDL-cholesterol with total cholesterol, 0.194, and with
LDL-cholesterol, 0.195. Therefore, the ratio of mean total cholesterol to mean HDI-
cholesterol as used by us was approximately 4 % lower than the mean of the individual ratios,
similarly the ratio of mean HDL- to mean LDL-cholesterol was approximately 7 % lower, We
assumed that the underestimation varied at random by treatment and study, This implies that
the changes in ratios in the present study are marginally smaller than those obtained when the
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mean change in individual ratios would be used. We did not adjust the ratios and their changes
for this minute underestimation.

For studies with a cross-over or latin-square design, the observed changes could be
fully attributed to the change in dietary cholesterol or egg consumption, because the study
design eliminates drift of variables over time. For studies with a parallel design, we adjusted
for drift of variables over time by subtracting the changes in total cholesterol and lipoproteins
in the control group from those in the treatment group. For instance in the study of Buzzard et
al (14), total cholesterol concentrations increased by 0.27 mmol/L. (10.4 mpg/dL) in the
treatment group and by 0.15 mmol/L (5.8 mg/dL) in the control group. We subtracted the (.15
mmol/L (5.8 mg/dL) from the 6.27 mmol/L (10.4 mg/dL) to obtain the actval increase in the
treatment group, 0.12 mmol/L. (4.6 mg/dL).

Regression analysis
We used linear regression models (General Linear Models procedure) (34) to study the

effect of dietary cholesterol on total cholesterol and lipoproteins. We did not use any non-
linear regression models, because the number of studies in our data set was limited. Moreover,
the present analysis comprised only three studies (15,20,21) with a cholesterol intake just over
1000 mg per day, whereas the relation between cholesterol intake and cholesterol
concentrations appears linear up to a cholesterol intake of 1000 mg per day (5). We applied
several linear models. In one, the change in total cholesterol and lipoproteins (mmol/L) was
expressed as a function of the absolute change in dietary cholesterol in mg per day. Regression
lines were forced through the origin, because a zero change in cholesterol intake will by
definition produce no change in lipoprotein cholesterol attributable to dietary cholesterol.
Thus, we applied the following model

Change in serum cholesterol = 8 x (Change in dietary cholesterol)
The change in serum cholestero] is expressed in mmol/L for concentrations and in dimensionless
units for ratios. The change in dietary cholesterol is expressed in units of 100 mg per day.

We also expressed dietary cholesterol in miiligram per megajoule (1 megajoule equals
238 kilocalories). For these analyses, we excluded four studies, which did not provide data on
energy intake (14,18,20,27). There were no large differences in the average energy intake
between the various studies and the resulis did not materially alter when we expressed the
dietary cholesterol in milligram per megajoule instead of milligram per day. Thercfore, we
only report the effects of a change in dietary cholesterol in milligram per day.

Although studies were selected on the basis of the design and duration of the
treatments, there were still considerable differences between the studies. The number of
subjects per study ranged from 9 to 131, To take this into account, it is usual in meta-analyses
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to weight each study by the reciprocal of the squared standard error. However, the standard
errors of the changes in cholesterol and lipoprotein concentrations were not reported in some
of the studies. We therefore weighted each study by the number of subjects, which is inversely
proportional to the squared standard error. Further, the ratio of poly-unsaturated to saturated
fat of the background diet varied between studies. A high ratio of poly-unsaturated to
saturated fat, which is an indicator of a background diet relatively low in saturated fat, may
attenuate the change in total cholesterol upon an increase in dietary cholesterol (5,35,36). In
additional analyses we checked whether the ratio of poly-unsaturated to saturated fat affected
the relation of dietary cholesterol with total cholesterol and lipoproteins. Analysis of the
residuals was performed to check the appropriateness of each model.

To detect publication bias, we explored heterogeneity in funnel plots visually. To this
end, we plotted the response of serum lipids to 100 mg dietary cholesterol against the sample
size by study. In the absence of bias, the plots will resemble a symmetrical inverted funnel, as
results of small studies will scatter at the left side of the plot with the spread narrowing among
larger studies on the right side of the plot (37).

Results

All 17 studies reported values for total cholesterol and HDL-cholesterol, but two
studies did not report values for LDL-cholesterol (14,19) (Table 6.1). Most studies presented
comparisons of two diets, but four studies presented comparisons of three or four diets
(13,19,22.23). In two studies, various groups of subjects were studied side by side. In one
study diabetics were compared with healthy subjects (27), whereas in another study
hyperlipemic subjects were compared with combined-hyperlipemic subjects (28).

The ratio of total cholesterol to HDL-cholesterol and the concentrations of total and
LDL-cholestero! increased relative to control groups or treatments upon an increase in dietary
cholesterol in all but one of the studies, whereas the concentrations of HDL-cholesterol
increased in 19 of the 24 dietary comparisons. The ratio of HDL- to LDL-chelesterol
decreased in all but one of the studies.

If we assume that one egg contains 200 mg of cholesterol (2), consurnption of one
additional egg daily will increase the ratio of total chelesterol to HDL-cholesterol by 0.041 &
0.011 units (mean * standard error of the estimate), the concentrations of total cholesterol by
0.111 = 0.010 mmol/L (4.3 + 0.4 mg/dL.), LDL-cholesterol by 0.100 + 0.008 mmol/L (3.9 +
0.3 mg/dL), and HDL-cholesterol by 0.016 + 0.003 mmol/L (0.6 + 0.1 mg/dL) (Figure 6.2).
One additional egp daily will decrease the ratio of HDL- to LDL-cholesterol by 0.011 + 0.002
units (Table 6.2).
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Figure 6.2 Changes in serum LDL-cholesterol (O0) and HDL-cholesterol (&) upon cholesterol
feeding in 17 studies providing 24 dietary comparisons.
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Table 6.2 The predicted changes (+ standard error of the estimate) in serum total cholesterol
and lipoproteins induced by a 100 mg increase in dietary cholesterol and the 95 % confidence
interval of the predicted change.

Predicted change in serum cholesterol 100 mg/day increase in ~ 95% confidence interval
dietary cholesterol

Total cholesterol (mmol/L}) 0.056 = 0.005 0.046 to 0.065

HDL-cholesterol (mmol/L) 0.008 + 0.001 0.005t0 0.010

LDL-cholesterol (mmol/L) 0.050 + 0.004 0.042 to 0.058

Total/HDL-~chelesterol 0.020 £ 0.005 0.010 to 0.030

HDL-/.DL-cholesterol -0.006 + 0.001 -0.008 to —0.004

HDL, high-density lipoprotein; LDL, low-density lipoprotein.
To convert serum lipid values from mmol per liter to mg per deciliter, divide mmol per liter by 0.02586.
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Figure 6.3 The effect of a change in cholesterol intake on serum LDL-cholesterol in studies with
a ratio of poly-unsaturated to saturated fat less than or equal to 0.7 (A} and more than 0.7 (0).

We divided the studies into those with a ratio of poly-unsaturated to saturated fat less
than or equal to the median, 0.7, indicative of a background diet relatively high in saturated fat
and those more than 0.7, indicative of a background diet relatively low in saturated fat. The
response of LDL-cholesterol to a change in dietary cholesterol was somewhat weaker in the
studies with a background diet low in saturated fat than in those with a background diet high
in saturated fat (Figure 6.3). We estimated that each additional 100 mg of dietary cholesterol
will increase serum LDL-cholesterol by 0.036 + 0.004 in the studies low in saturated fat and
by 0.061 + 0.006 in the studies high in saturated fat (P = 0.03). The fatty acid composition of
the background diet did not affect the response to dietary choiesterol of HDL-cholesterol or of
the ratio of total cholesterol to HDL-cholesterol or HDL- to LDL-cholesterol.

We did not detect publication bias as indicated by the absence of heterogeneity in
funnel plots (results not shown).

We checked whether our results also applied to other studies. For this purpose, we
selected 19 articles that did report concentrations of HDL-cholesterol but had failed to meet
other inclusion criteria, such as the design (Figure 6.1). These 19 studies provided 33 dietary
comparisons (36,38-55). In 20 out of these 33 dietary comparisons, the ratio of total
cholesterol to HDL-cholesterol increased, whereas in the other 13 the ratio decreased when
cholesterol intake increased. Regression analysis showed that a 100 mg per day increase in
dietary cholesterol increased the ratio of total cholesterol to HDL-cholesterol by 0.014 + 0.003
units in these studies, whereas the increase was 0.020 units in the studies that fulfilled our
selection criteria (Figure 6.4).
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Figure 6.4 The effect of an increase in dictary cholesterol on the ratio of total cholesterol to
HDL-cholesterol in 17 studies that fulfilled the selection criteria (&) and 19 studies that did not
fulfill our selection criteria (7).

Discussion

QOur meta-analyses of 17 trials showed that dietary cholesterol increased the ratio of
total cholesterol to HDL-cholesterol. The effect was highly significant (P < 0.0009) and the
95% confidence interval was narrow. This suggests that the favorable rise in HDL-cholesterol
upon increased cholesterol intake fails to compensate for the adverse rise in total cholesterol
and LDL-cholesterol and that therefore increased intake of dietary cholesterol may raise the
risk of coronary heart disease. Our meta-analysis covered men and women from North
America (13-18,20-23,26,28), Europe (24,25,27,29), and South Africa (19) with a wide range
of ages. The consistency of the findings between studies suggests that our conclusions are
valid for much of the white populations of affluent countries. However, the absence of data on
the race of the subjects does not allow confident extrapolation to other populations,

In the present study, we used a regression model without an intercept, because a zero
change in cholesterol intake will by definition produce no change in serum cholesterol
attributable to dietary cholesterol. However, in studies that change the intake of eggs, not only
the intake of dietary cholesterol, but also the intake of other egg components such as fat and
lecithin is changed. These factors may also affect concentrations of serum cholesterol and for
such studies, it may therefore not be valid to force the regression line through the origin. To
check this, we performed an analysis excluding studies that changed the intake of eggs
(14,16,19,26) or that did not report whether the change in the intake of fat was adjusted for in
the control diet (20,24). This did not materially alter the results and we therefore included
these studies in our analysis.
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Stratification of the studies for study design (cross-over or latin-square versus parallel)
or for setting (metabolic ward versus free-living) or adjustment of the change in dietary
cholesterol for energy intake did not materially alter the results. A high ratio of poly-
unsaturated to saturated fat, indicating a background diet relatively low in saturated fat,
attenuated the change in LDL-cholesterol induced by an increase in dietary cholesterol. Some
other studies also found that a background diet low in saturated fat attenuated the effect of
dietary cholesterol on serum total cholesterol and LDL-cholesterol (35,36,56), whereas others
did not (13,31,42,50,57-59). In some of the latter studies the change in dietary cholesterol
might have been too small to show an effect of the fat-composition of the background diet on
the change in serum cholesterol, The ratio of poly-unsaturated to saturated fat, however, does
not take into account the absolute amount of fat in a diet. Thus, a diet with 5 energy percent
poly-unsaturated fat and 10 energy percent saturated fat has the same ratio as a diet with 10
energy percent poly-unsaturated fat and 20 energy percent saturated fat. Differences between
studies in the absolute amount of fat may therefore be also be an explanation for some of the
inconsistent results.

We did not identify publication bias in our meta-analysis by use of funnel plots. In the
studies that failed to fulfill our selection criteria the effect of dietary cholesterol on the ratio of
total cholesterol to HDL-cholesterol was somewhat smaller than in those included in our
meta-analysis. This might be due to lack of dietary control resulting in a larger error in the
amount of dietary cholesterol that was changed. This attenuates the estimated effect of dietary
cholesterol on serum cholesterol towards the null (60). However, it may also be due to the
lack of adjustment for the change in fat intake that is induced by the change in egg
consumption. Only three (40,46,49) of these 19 studies adjusted for the change in fat intake,
whereas 11 of the 17 studies included in our meta-analysis did. Nevertheless, the effect of
dietary cholesterol on the ratio of total cholesterol to HDL-cholesterol in the studies that failed
to fulfill our selection criteria was in the same direction as the effect in our meta-analysis.

This indicates that the present results are not due to a biased selection of the studies.

Effects in hyperlipemic subjects

Cholesterol-lowering diets are usually prescribed to hyperlipemic subjects, with
concentrations of total cholesterol over 5.0 mmol/L (193 mg/dL) (61). However, the mean
baseline cholesterol concentrations of subjects in the studies that fulfilled our selection criteria
were below 5.0 mmol/L (193 mg/dL), except for two studies (13,28). The moderately
hyperlipemic subjects in the study of Chenoweth et al (13) showed an 0.20 units increase in
the ratio of total cholesterol to HDL-cholesterol upon an increase in dietary cholesterol of 554
mg per day, whereas the hyperlipemic subjects in the study of Knopp et al {28) showed an
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0.22 units decrease and the combined hyperlipemic subjects an 0.21 uvnits decrease upon an
increase in dietary cholesterol of 437 mg per day. The additional analysis with studies that
failed to fulfill our selection criteria included five studies with mostly moderately
hyperlipemic subjects (39,50,51,53,54). Due to the limited number of studies, we could not
analyze these studies separately. Nevertheless, the results of these studies did not clearly differ
from those in subjects with normal cholesterol concentrations. Therefore, the results of the
present meta-analysis appear also applicable to hyperlipemic subjects.

Effects on total cholesterol and on LDL-cholesterol

The estimated change in total cholesterol of 0.056 mmol/I. (2.2 mg/dL) for each 100
mg per day increase in dietary cholesterol agrees well with changes estimated from other
meta-analyses (3-5,12). Figure 6.2 suggests that a simple linear model may predict group
mean changes in L.DL-cholesterol concentrations rather well over the normal range of dietary
cholesterol intakes. Because diet-induced changes in total cholesterol and lipoproteins vary
considerably between individuals (40,62,63), our results cannot reliably predict changes in

total cholesterol and lipoproteins in individual subjects or patients.

Dietary cholesterol and risk of coronary hear! disease

We showed that consumption one additional egg daily, will increase the ratio of total
cholesterol to HDL-cholesterot by 0.040 units, which would imply an increase in the risk of
myocardial infarction by 2.1 % (9). The calculated increase in risk may be small in an
individual patient, but in view of the widespread consumption of diets high in cholesterol it
may still be substantial at the population level.

Of course, these calculations do not take into account the effects of other nutrients in
eggs that may be beneficial in preventing coronary heart disease, such as vitamin E, folate and
other B vitamins, and unsaturated fatty acids (2). Hu et al (8) calculated that in the USA eggs
contribute to the intake of many nutrients, such as retinol (4 %), alpha-tocopherol (3 %), folate
(4 %), other B vitamins (3 % or less), mono-unsaturated fat (3 %), and linoleic acid (2 %).
However, eggs contributed to 32 % of total dietary cholesterol. Thus, in view of the relatively
small contribution of eggs to the intake of nutrients that may be beneficial in preventing
coronary heart disease, the recommendation to limit consumption of eggs may still be valid
for the prevention of coronary heart disease. Other major sources of dietary cholesterol are
dairy fats and meat, but these are already considered less favorable for heart disease risk
because of their saturated fat content.

In conclusion, the consumption of cholesterol increases the ratio of totat cholesterol to
HDL-cholesterol, which would predict increased risk of coronary heart disease. Therefore, the
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advice to limit consumption of eggs and other foods rich in dietary cholesterol may still be of
impertance for the prevention of coronary heart disease.
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Chapter 7

Introduction

The main objective of our research was to determine whether genetic polymorphisms
affect the response of serum lipids to diet in humans. We found that the effect of genetic
polymorphisms on lipid response to diet is small.

The first part of this chapter summarizes the main findings of the studies. The second
part concerns methodological aspects of studies of the effect of genetic polymorphisms on
serum lipid response, such as statistical power, multiple testing, effect modification and
confounding, and extrapolation to other populations. The discussion further focuses on issues
in comparing these studies, such as the use of different diets and different study populations
and the possibility of chance findings, using apoprotein (APO)A4 360-1/2 polymorphism as
an example. And finally, the feasibility of genetic tests to detect diet sensitivity is discussed.
Recommendations for further research, conclusion, and implications are presented at the end
of this chapter,

Main findings

The pooled analysis of 26 dietary trials showed differences in serum lipid response to
diet between men and women, and between subjects with various APOE, APOA4, and
cholesteryl ester transfer protein (CETP) genotypes. Men had larger responses of serum lipids
to saturated fat and the coffee diterpene cafestol than women, There were no sex differences
in response to frans fat or dietary cholesterol (Chapter 2). Subjects with the APOE3/4 or 4/4
genotype tended to have a larger response of low-density lipoprotein (LLDL-) cholesterol to
saturated fat than those with the APOE3/3 genotype. On the contrary, they had similar
responses to frans fat and dietary cholesterol and they tended to have a smaller response to
cafestol (Chapter 3). Furthermore, subjects with the APOA4 347-1/1 genotype had smaller
responses of LDL-cholesterol to diet than those with the APOA4 347-1/2 or 2/2 genotype and
subjects with the APOA4 360-2/2 genotype had smaller responses than those with the APOA4
360-1 allele. Subjects with the CETP Taglb-1 allele had smaller responses of HDL-
cholesterol to diet than those with the CETP Tagqlb-2/2 genotype. The effects of seven other
candidate polymorphisms were either inconsistent with results in previous studies or need to
be replicated in other studies {Chapter 4). Thus, none of the studied polymorphisms had a
major effect on the response of serum lipids to diet.

The controlled dietary trial showed that, unlike in some of the previous studies (1,2),
AP0OA4 360-1/2 polymorphism did not affect the lipid response to dietary cholesterol in
healthy women and men (Chapter 5).
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The meta-analysis that involved 17 studies showed that dietary cholesterol increases
the ratio of total cholesterol to HDL-cholesterol, which may be a better marker of coronary
heart disease risk than individual lipid concentrations (3,4)(Chapter 6).

Methodological issues in studies of genetic polymorphisms and lipid response

There are several methodological aspects that are important when studying effects of
genetic polymorphisms on serum lipid response. Below, issues on statistical power, multiple
testing, confounding and effect modification, and the extrapolation into other populations are

discussed.

Number of subjects

The number of subjects with the rare allele is often a limiting factor in studies of gene-
diet interaction. The smallest group determines the statistical power to detect significant
effects of a genetic polymorphism on the lipid response to diet (5).

Especially when the frequency of the rare allele is low, it is hard to find sufficient
subjects with the rare allele. One way to find sufficient subjects with the rare allele is to poot
data of various dietary trials, Another way is to screen large numbers of subjects with
reference to their genotype before the start of a study and select all available subjects with the
rare genotype. It is also possible to pool subjects heterozygous for the rare allele with those
homozygous for the rare allele. However, this may not always be appropriate because the
allele effect may differ between heterozygous and homozygous subjects.

Multiple testing

Using the pooled data, we tested differences in response of total cholesterol, HDL-,
and LDL-cholesterol to saturated fat, trans fat, dietary cholesterol, and cafestol between men
and women and between genotype groups of 11 polymorphisms. Thus, we performed 144
statistical tests. The probability of a spurious finding (&) was 0.05. This means that at least 7
associations may have been chance findings. If we assume that any relation in the data is
attributable o chance, the probability of at least one statistically significant spurious finding
will be near 100 %. However, we did not adjust o for multiple testing to reduce the
probability of chance findings, because the pooled analysis was exploratory rather than
hypothesis testing, and adjustment for multiple testing would reduce the power to detect
existing associations (5).

We knew beforehand that we could not rule out the possibility that some of the
findings in the pooled analysis might have been due to chance. These findings should
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therefore be compared to those in previous studies and/or replicated in new dietary trials that
are especially designed to test the relation between serum lipid response and a candidate gene,
In addition, the mechanism by which a polymorphism may affect the response, should be
clarified.

Effect modification and confounding

Effect modification and confounding, though different concepts, both involve the
effect of one extraneous variable on the association between two or more other variables, for
instance between genetic polymorphism and lipid response. Effect medification will occur if
the association between genotype and response differs between subjects in various categories
of the extraneous variable. Confounding will occur if the association is similar between
subjects in the various categories and the extrancous variable is not evenly distributed
between subjects with various genotypes (6). Potential effect modifiers and confounders of
the relationship between genetic polymorphisms and lipid response are body mass index, sex,
age, and smoking (7-13). Whether an extraneous variable acts as a confounder or as an effect
modifier can be determined by comparing the association between genotype and response in
various categories of the extraneous variable. However, this requires a group of subjects that
is even larger than the one used when studying the main effect of a genetic polymorphism on
lipid response. Sub-group analyses were not feasible in this study, due to the fact that the
large numbers of subjects that are needed were not even attained in the pooled analyses.
Effect modification of the relationship between a genetic polymorphism and response should
be described. By including confounders as co-variables in a regression model, the
independent effect of a genotype on response can be estimated.

Several authors suggest that baseline cholesterol concentration may confound the
association between genotype and serum lipid response (14,15). One way to adjust for the
effect of baseline cholesterol concentration is to analyze relative responses, e.g. the
percentage change from baseline, rather than absolute responses. However, by definition, the
variance of the relative response is larger than that of the absolute response. This reduces the
power to detect significant effects of a polymorphism on response. Another way to adjust for
baseline cholesterol concentration is to use it as a co-variable in a regression model. However,
if one assumes that differences in response to diet cause differences in concentrations of
baseline cholesterol, it is, by definition, inappropriate to adjust for baseline cholesterol
concentration (6).
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Extrapolation into different populations

Subiects in the pooled analysis (Chapters 2 to 4} and the controlled dietary trial
{Chapter 5) were mostly young, lean, and had normal cholesterol concentrations. It is not sure
whether the results also apply to older subjects, obese subjects, or subjects with moderate
hypercholesterolemia. However, responsiveness to diet does not differ between older and
younger people {16). If anything, it is less marked in people with a higher body mass index
{17) and more marked in those with higher cholesterol concentrations (18). Thus, differences
in lipid response between subjects with various genotypes may be smaller in obese subjects
than in lean subjects and larger in those with high cholesterol concentrations than in those
with low cholesterol concentrations. However, several studies found that subject
characteristics such as age and body mass index, act as effect modifiers on the relationship
between genotype and serum lipid concentration (10,12). If this is true, the results of the
studies in this thesis cannot be extrapolated into older subjects with higher body mass index

and cholesterol concentrations.

Issues in comparing studies of the effect of a genetic polymorphism on lipid response

There are several issues to consider when comparing various studies of the effect of a
genetic polymorphism on lipid response, such as differences in type of dietary treatments
between studies, differences between men and women, and the possibility of chance findings.
These issues are also briefly discussed in Chgpters 3 to 5. Since the publication of our paper
on the APOA4 360-1/2 polymorphism from the dietary trial (Chapter 3), several other studies
have been published. In addition, data regarding our pooled analysis of APOA4 360-1/2
polymorphism and lipid response (Chapter 4) have become available. Using all data now
available, we will examine some of the issues in comparing studies on genetic disposition and
serum lipid response to diet.

The APOA4 360-1/2 polymorphism and lipid response to diet

Two independent studies published in 1994 showed that subjects with the APOA4
360-2 allele had smaller lipid response to diet than those with the APOA4 360-1/1 genotype
{1.2). However, in several later studies, the difference in lipid response between subjects with
the various APOA4 360 genotypes was less {19-21), not present (22), or in the opposite
direction (21,23-25) (Figure 7.1) (95% confidence intervals: personal communications with dr
R.B. Weinberg and dr J.M. Ordovas, 1999, and Ms L. Heilbronn, 2000).
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Reference Diet
MeCombs et al 1994 —_———— Cholesterol
Mata et 2l 1994 | M — Cholesterol and fat
Schaefer et al 1997 [ S — Cholesterol and fat
Jansen et al 1997 —— Saturated fat
Jansen ot al 1997 ——— Mono-unsaturated fat
Carmena-Ramon et al 1998 - Cholesterol and fat
Heilbronn &t al 2000 ——— Low energy
Wallace et al 2000 - Saturated fat
Chapter 4 —t— Saturated fat
Chapter 4 ——— Trans fat
Chapter 4 —_—— Chalestecol
Chapter 4 ————— Cafestol
Chapter 5, Weggemans et al 2000 —— Cholesterel

-1.00 -0.50 0.00 0.50 L0O

ADifference in LDL-cholesterol response APOA4 360-1/1 - 1/2 (mmol/L)

Figure 7.1 Mean difference (with 95% confidence interval) in response of LDL-cholesterol to diet
between subjects with the apoprotein (APO) A4 360-1/1 and 1/2 genotype in various studies.

Dierary treatment

One explanation for these inconsistent findings is that the APOA4 360-1/2
polymorphism only affects the response of LDI-cholesterol to specific changes in diet. There
are considerable differences in dietary treatments between studies. The studies of McCombs
et al (1) and Mata et al (2) showed that the APOA4 360-2 allele atienuates the response of
LDL.-cholesterol to diet. In the study of McCombs et al (1), subjects received additional eggs
in the high cholesterol period, which might have unintentionally changed fat intake as well. In
the study of Mata et al {2) the intake of dietary cholesterol and fat was changed, similar to two
(19,23} of the later siudies. Schaefer et al (19) combined some of the data from Mata et al {2)
with data from other controlled dietary trials and found somewhat less effects than Matz et al
(2), but in the same direction. On the comtrary, Carmena-Ramon et al {23) found that the
APOA4 360-2 allele, if anything, increases the response of LDL-cholesterol to diet. However,
the subjects in this study had familial hypercholesterolemia and it is possible that the effects
of mutations in the LDL-receptor overshadowed the effects of the APOA4 360-1/2
polymorphism on lipid response.

Later studies, in which only the intake of cholesterol was changed showed no
differences between subjects with various APOA4 360 genotypes (21,22). Furthermore, in
later studies that changed the intake of fat, cafestol, or energy, there were no consistent
differences between subjects (21,24,25).
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Thus, effects of the APOA4 360-1/2 polymorphism on the lipid response to dietary
cholesterol alone, or to fat alone, are small and probably absent. However, it remains possible
that the APOA4 360-1/2 polymorphism affects the response of serum LDL-cholesterol to a
change in both saturated fat and dietary cholesterol.

Sex differences

Another explanation for discrepancies between studies is that the APOA4 360-1/2
polymorphism affects the response of LDL-cholesterol in men but not in women. In the study
of McCombs et al (1), there were 17 men, and only 6 women. In the studies of Mata et al (2)
and Schaefer et al (19), the effect of the APOA4 360-1/2 polymorphism was limited to men.
However, in the study of Schaefer et al (19), there were only 5 women with the APOA4 360-
1/2 genotype. The limited number of men and women in most of the other studies does not
allow for any conclusions to be drawn as to possible sex differences in the effect of APOA4
360-1/2 polymotphism on lipid response (9,20,21,23,24). Few studies (21,25) comprised
more than 5 men and 5 women with the APOA4 360-2 allele. Opposite to previous findings
{1,2,19), men with the APQA4 360-1/2 genotype were slightly more responsive to a low
energy diet than those with the 1/1 genotype, whereas women with APQA4 360-1/2 genotype
were slightly less responsive (25). This was also the case with the response of LDL-
cholesterol to tfrans fat in the pooled analysis (21). There were no differences in the effect of
the APOA4 360-1/2 polymorphism on the response to cafestol between men and women.,
Similar to the studies of McCombs et al (1) and Mata et al (2), the APOA4 360-2 allele
attenuated responses of LDL-cholesterol to saturated fat by -0.10 mmol/L. in men, whereas the
2 allele increased it by 0.03 mmol/L in women (21). However, all these findings were the
result of subgroup analyses that are limited by a small number of subjects with the least-
frequent allele.

Hence, it is possible that the effect of the APOA4 360-1/2 polymorphism on the
response to saturated fat and dietary chelesterol is present in men, but not in women. It is also
possible that the effect of the APOA4 360-1/2 polymorphism may be easier to detect in men
than in women, because men are more responsive to saturated fat than women (9).

Chance findings

The effect of the APOA4 360-1/2 on response of LDL-cholesterol becomes less as
time goes by (Figure 7.1). This may be an indication that the first studies vielded chance
findings that could not be replicated in later studies. Such a trend also occurred in other
studies that were designed to replicate the results of previous studies, as was the case with the
supposed cholesterol-lowering effect of Lactobacillus Acidophilus (26). This issue stresses
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the need for multiple studies to assess an effect. An effective way to combine data from prior
studies with new evidence is the use of Bayesian methods, such as the Bayes Factor (27,28).

Conclusion

APOA4 360-1/2 polymorphism probably does not affect the lipid response to diet, at
least not in every population. It possibly affects the response of LDL-cholesterol to a change
in saturated fat and dictary cholesterol, and such an effect may be limited to men. However,
there is no known mechanism that could explain the association between APOA4 360-1/2
polymorphism and lipid response, and thereby support its possible existence. Therefore, the
effect of APOA4 360-1/2 polymorphism on lipid response observed in previous studies may

well have been due to chance.

Use in clinical practice: prediction of serum lipid response to diet by a genetic test

One of the rationales for the studies in this thesis was that identification of genetic
polymorphisms affecting lipid response to diet might help to identify patients with high
cholesterol concentrations who do not benefit from dietary treatment. A genetic test to predict
an individual’s response to diet would thus allow for a targeted treatment of high cholesterol
concentrations.

Before developing such a test, several criteria must be met in establishing medically
useful links between genetic polymorphisms and serum lipid response (29). The first criterion,
that the polymorphism causes a relevant functional and/or structural change in the protein,
does not hold for all polymorphisms studied in this thesis (Table 1.1). The second criterion,
that the number of subjects with the rare allele is sufficient, is met in most, but not all cases.
The third criterion, that there should be clear-cut differences in lipid response between
subjects with various genotypes, is not met either, as there were no major gene effects. The
last criterion, that there must be a plausible underlying mechanism, does not hold either,
because the mechanism by which each of the studied polymorphisms may affect the response
is still unclear.

All in all, a genetic test on the basis of a single genetic polymorphism to predict an
individual’s response to diet is not feasible in the general population. Patients with familial
hypercholesterolemia are an exception, due to the fact that testing for the known genetic
defect in the LDL-receptor meets all the above criteria.

The question remains whether it will eventually be possible to accuratety predict an
individual’s response 1o diet on the basis of genetic testing. The response to diet depends on a

combination of genetic and environmental factors. The correlation of lipid response to diet
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with genetic polymorphisms is weak and different combinations of genetic and environmental
factors may lead to a similar response. Nevertheless, we cannot rule out the possibility that in
the future there will be a test that predicts an individual’s response to diet on the basis of a
combination of genetic and environmental factors. This test may be useful in clinical practice,
because screening subgroups that are prone to high cholesterol concentrations will help to
select the most suitable preventive measures or therapy. However, there is no basis for
population-wide screening. It is highly unlikely that the costs will counterbalance the benefits.
Besides, one should be aware that genetic testing is a sensitive issue that will encounter many
ethical barriers. Therefore it should be used with caution (30).

Recommendations for future research

We suggest several directions for future research,

In general, studies of genetic polymorphisms and lipid response to diet may provide
new data with regard to the role of proteins involved in cholesterol metabolism and may thus
contribute to additional insight in the cholesterol metabolism.

Our studies have been performed in healthy and lean subjects. Dietary studies using
different populations, such as diabetic subjects, would also be of interest, because these
conditions may modify the association between genetic polymorphisms and lipid response to
diet.

The APOA4 360-1/2 polymorphism may affect the response of LDL-cholesterol to a
change in saturated fat and dietary cholesterol, and such an effect may be limited to men. A
new controlled dietary trial with sufficient numbers of men and women per genotype group,
should be performed to test these hypotheses.

Several candidate genes were not studied in this thesis, such as the genes encoding
scavenger receptor Bl, 7-a-hydroxylase, ATP-binding cassette 1, and peroxisome proliferator
activated receptor-c.. Polymorphisms of these genes should be studied further in relation to
lipid metabolism and lipid response to diet (31,32,33,34).

Cholesterol metabolism involves a large number of proteins, and thus, genes. There
are several methods available in animal studies to identify which genes play a role in the
response to a specific dietary component, Serial analysis of gene expression and micro-array
analyses are methods for obtaining a compiete inventory of expressed genes in a particular
organ or cell type. Human genes, that are homologous to the genes identified with these tools
in animals, are candidate-genes for studies on gene-diet interaction. The first step is to
identify single-nucleotide polymerphisms of a candidate gene. The next step is to define
haplotypes of the candidate gene, which are series of alleles found at linked loci on a single
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genotype, possibly by using parental DNA of each participant. The last step consists of testing
genetic polymorphisms and lipid response to diet in randomized trials under carefully
controlled dietary conditions.

The mechanism by which dietary components increase serum lipids is still not
understood. Evaluation of specific molecular processes underlying dietary responsivencss
remains a major challenge.

The long-term goals of the studies described above should be to determine the diet-
gene interaction affecting atherosclerosis in humans.

Main cenclusion and implication

The effect of genetic polymorphisms on serum lipid response to diet is small, It is
therefore not possible to identify individuals who will not benefit from a cholesterol-lowering
diet on the basis of a specific genetic polymorphism,
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Summary



World wide, cardiovascular diseases are a substantial source of chronic disability and
health costs. Subjects at high risk of cardiovascular disease or who suffer from overt
cardiovascular disease should be targeted for lifestyle intervention and, where appropriate,
drug therapies. One of the changes in lifestyle is a lipid-lowering diet, which is low in dietary
cholesterol and saturated fat. However, even though a lipid-lowering diet is effective for most
people, it is not for all. Identification of genetic factors that are related to the dietary-induced
change in cholesterol concentrations, the lipid response, may be of help in the identification of
subjects who will not benefit from a cholesterol-lowering diet. It may also clarify the role of
certain proteins in cholesterol metabolism.

The objective of our research was to determine whether genetic polymorphisms affect
the response of serum lipids to diet in humnans.

We first assessed sex differences in the response of serum lipids to changes in the diet
{Chapter 2). For this purpose, we pooled data on the serum lipid response to diet from 26
former dietary trials. We used lipid responses to dietary saturated fat in seven trials involving
126 men and 147 women, o dietary frans fat in two trials {48 men and 57 women), and to
dictary cholesterol in eight trials (74 men and 70 women). We also measured responses to the
coffee diterpene cafestol, which occurs in unfiltered coffee, in nine trials (72 men and 61
wormen). All subjects were lean and healthy. The response of total cholesterol to saturated fat
was 0.14 mmol/L (mean) larger in men than in women (95% confidence interval (CI), 0.04 to
0.23 mmol/L). The response of total cholesterol to cafestol was 0.22 mmol/L larger in men
than in women (95% CI, 0.04 to 0.39 mmol/L). Responses to trans fat and to dietary
chelesterol did not differ significantly between men and women. In conclusion, men have
larger responses of total cholesterol to saturated fat and cafestol than women.

We also used these data to study the effect of apoprotein (APQ) E (Chapter 3) and 10
other genetic polymorphisms (Chapter 4) on responses of serum lipids to various dietary
treatments. For this purpose, we combined data on lipid responses to saturated fat, to trans fat,
to dietary cholesterol, and to cafestol with newly obtained data on 11 genetic polymorphisms
in 405 mostly normolipidemic subjects. The responses of low-density lipoprotein (LDL-)
cholesterol to saturated fat were 0.08 mmol/L larger in subjects with the APOE3/4 or E4/4
genotype than in those with the APOE3/3 genotype (95% CI, —0.01 to 0.18 mmol/L). In
contrast, responses of LDL-cholesterol to cafestol were 0.11 mmol/L smaller in subjects with
APOE3/4 or E4/4 genotype than in those with APOE3/3 genotype (95% CI, —0.29 to 0.07
mmol/L). Responses to dietary cholesterol and trans fat did not differ significantly between
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subjects with various APOE genotypes. The response of serum LDL-cholesterol to diet was
somewhat smaller in subjects with the APOA4 347-1/1 genotype than in those with APOA4
347-2 aliele and it was smaller in subjects with APOA4 360-2/2 genotype than in those with
APOA4 360-1 allele. Subjects with cholesteryl ester transfer protein (CETP) Taqlb-1 allele
had smaller responses of high-density lipoprotein (FHIDL-) cholesterol to diet than those with
CETP TaqlIb-2/2 genotype. The effects of the other seven candidate polymorphisms were
either inconsistent with results in previous studies or need to be replicated in other studies. In
conclusion, polymorphisms in APOE, APOA4, and CETP genes may affect the lipid response
to diet.

We further studied the effect of the APOA4 360-1/2 polymorphism on response of
serum lipids to dietary cholesterol in a controlled dietary trial specially designed for this
purpose {Chapter 5). To this end, 10 men and 23 women with the APOA4 360-1/1 genotype
and 4 men and 13 women with the APOA4 360-1/2 or 2/2 genotype {carriers of the APOA4
360-2 allele) were fed two diets high in saturated fat, one containing cholesterol at 136
mg/day, and one containing cholesterol at 948 mg/day. Each diet was supplied for 29 days in
a crossover design, The mean response of serum LDL-cholesterol was 0.44 mmol/L in both
subjects with the APOA4 360-1/1 genotype and in those with the APQOA4 360-2 allele (95 %
CI of difference in response, -0.20 to 0.19 mmol/L). The mean response of HDL-cholesterol
was also similar, 0.10 mmol/L, in the two APOA4 360 genotype groups (95 % CI of
difference in response -0.07 to 0.08 mmol/L). In conclusion, the APOA4 360-1/2
polymorphism did not affect the response of serum lipids to a change in cholesterol intake in
this group of healthy Dutch subjects who consumed a background diet high in saturated fat.

Although it is not directly related to the relation between genetic factors and serum
lipid response, we also used the data of this trial to review the effect of dietary cholesterol on
the ratio of total cholesterol to HDL-cholesterol, which is a more specific predictor of
coronary heart disease than either lipid value alone (Chapter 6). The other studies were
identified by MEDLINE and Biological Abstracts searches (1974 - June 1999) and by
reviewing reference lists, Studies were included if they had a crossover or parallel design with
a control group, if the experimental diets only differed in the amount of dietary cholesterol or
eggs and were each fed for at least 14 days, and if concentrations of HDXL-cholesterol were
reported. Of the 222 studies identified, 17 studies met all of these criteria. Extraction of data
on design of the study, subject characteristics, composition and duration of the diets, and
concentrations of serum lipids was done by the same investigator, Addition of 100 mg dietary
cholesterol to daily intake increased the ratio of total cholesterol to HDL-cholesterol by 0.020
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units (95% CI, 0.010 to 0.030), the concentration of total cholesterol by 0.056 mmol/L (95%
CI, 0.046 to 0.065 mmol/L), and the concentration of HDL-cholesterol by 0.008 mmol/L
(95% CI, 0.005 to 0.010 mmol/L). In conclusion, dietary cholesterol raises the ratio of total
cholesterol to HDL-cholesterol, which would predict increased risk of coronary heart disease.
Therefore, the advice to limit consumption of eggs and other foods rich in cholesterol may
still be of importance for the prevention of coronary heart disease.

In conclusion, the effect of genetic polymorphisms on serum lipid response to diet is

small. Tt is therefore not possible to identify individuals who will not benefit from a
cholesterol-lowering diet on the basis of a specific genetic polymorphism.
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Samenvatting



Wereldwijd zijn hart- en vaatziekten de meest voorkomende chronische ziekte.
Mensen die een hoog risico op hart- en vaatziekten hebben of die aan hart- en vaatziekten
lijden, krijgen het advies hun leefstijl te veranderen. Verder ontvangen zij, indien nodig,
medicatie. Eén van de veranderingen in leefstijl is een cholesterolverlagend dieet, dat weinig
voedingscholesterol en verzadigd vet bevat. Een cholesterolverlagend dieet is effectief voor
de meeste mensen maar niet voor iedereen. Wanneer erfelijke factoren die gerelateerd zijn aan
de effectiviteit van een dieet bekend zijn, zal dit het identificeren van mensen die niet gebaat
zijn bij een cholesterolverlagend dieet vergemakkelijken. Het kan verder bijdragen aan kennis
over de rol van verschillende eiwitten in het cholesterolmetabolisme.

Het doel van ons onderzoek was om te bepalen of genetische polymorfismen
veranderingen in het serum cholesterolgehalte, de cholesterolrespons, die het gevolg zijn van
veranderingen in de voeding beinvloeden.

Als eerste onderzochten we of mannen en vrouwen verschillend reageren op
veranderingen in de voeding (Hoofdstuk 2). Hiervoor combineerden we gegevens over de
cholesteroirespons op voeding uit 26 vroegere dicetstudics. We beschikten over gegevens
over de cholesterolrespons op verzadigd vet uit zeven studies met 126 mannen en 147
vrouwen, op frans vet vit twee studies (48 mannen en 57 vrouwen) en op voedingscholesterol
uit acht studies {74 mannen en 70 vrouwen). Verder beschikten we over gegevens over de
respons op het koffiediterpeen cafestol, dat voorkom1 in ongefilterde koffie, nit negen studies
(72 mannen en 61 vrouwen).

De respons van totaalcholesterol op verzadigd vet was 0,14 mmol/L (gemiddelde)
groter in mannen dan in vrouwen (95% betrouwbaarheidsinterval (bti), 0,04 tot 0,23 mmol/L).
De respons van totaalcholesterol op cafestol was 0,22 mmol/L groter in mannen dan in
vrouwen (95% bii, 0,04 tot 0,39 mmol/L). De responsen op frans vet en voedingscholesterol
verschilden niet tussen mannen en vrouwen. Hieruit concluderen we dat mannen een grotere
respons van totaalcholesterol op verzadigd vet en cafestol hebben dan vrouwen,

We gebruikien deze gegevens ook om het effect te bestuderen van het apoproteine
(APO) E (Hoofdstuk 3) en tien andere genetische polymorfismen (Hoofdstuk 4) op de
cholesterolrespons op verschillende dieetbehandelingen. Hiervoor combineerden we de
gegevens over de cholesterolrespons op verzadigd vet, trans vet, voedingscholesterol en de
koffiediterpeen cafestol met nieuw verkregen gegevens over 11 genetische polymorfismen in
405 personen van wie het merendeel normale cholesterolwaardes had.
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Samenvatting

De respons van lage-dichtheid liproteine (LDL-) cholesterol op verzadigd vet was 0,08
mmol/L groter in personen met het APOE3/4 of 4/4 genotype dan in degenen met het
APOE3/3 genotype (95% bti, -0,01 tot 0,18 mmol/L). Daarentegen was de respons van LDL-
cholesterol op cafestol 0,11 mmol/L kleiner in personen met het APOE3/4 of 4/4 genotype
dan in degenen met het APOE3/3 genotype (95% bti, -0,29 tot 0,07 mmol/L). De responsen
op voedingscholesterol en trans vet verschilden niet tussen personen met de verschillende
APOE genotypen. De respons van LDL-cholesterol was enigszins kleiner in personen met het
APOA4 347-1/1 genotype dan in degenen met het APOA4 347-2 allel en het was kleiner in
personen met het APOA4 360-2/2 genotype dan in degenen met het APOA4 360-1 allel.
Personen met het cholesterylestertransfer-ciwit (CETP) Tagqlb-1 allel hadden kleinere
responsen van hoge-dichtheid lipoproteine (HDL-) cholesterol op voeding dan degenen met
het CETP Taqlb-2/2 genotype. De effecten van de andere zeven kandidaat polymorfismen
kwamen niet overeen met die uit vorige studies of moeten eerst nog worden bevestigd in
nieuwe studies. Hieruit concluderen we dat het APOE, het APOA4 347, het APOA4 360 en
het CETP Taglb polymorfisme de cholesterolrespons op voeding mogelijk beinvloeden.

We bestudeerden het effect van het APOA4 360-1/2 polymorfisme op de
cholesterolrespons op voedingscholesterol verder in een gecontroleerde dicetstudie die
hiervoor speciaal was opgezet (Hoofdstuk 5). Hiervoor aten 10 mannen en 23 vrouwen met
het APOA4 360-1/1 en 4 mannen en 13 vrouwen met het 1/2 of 2/2 genotype {(dragers van
het 2 allel) twee di¢ten hoog in verzadig vet, één met 136 mg/dag aan cholesterol en één met
948 mg/dag aan cholesterol. Elk diect werd verstrekt gedurende 29 dagen in cross-over vorm.
De gemiddelde respons van LDL-cholesterol was 0,44 mmol/L. in zowel personen met het
APOA4 360-1/1 genotype als personen met het APOA4 360-2 allel (95% bti van het verschil
in respons, -0,20 tot 0,19 mmol/L). De gemiddelde respons van HDL-cholesterol was
eveneens gelijk, 0,10 mmol/L, in de twee APOA4 360 genotypengroepen (95% bti van het
verschil in respons, -0,07 tot 0,08 mmol/L). Hieruit concluderen we dat het APOA4
polymorfisme de cholesteroirespons niet beinvlioedt in gezonde Nederlanders die een

achtergrondvoeding aten met veel verzadigd vet.

Hoewel het niet direct gerelateerd is aan de relatie tussen erfelijke factoren en de
cholesterolrespons, gebruikten we de gegevens van deze studie verder voor een meta-analyse
naar het effect van voedingscholesterol op de ratio totaal- ten opzichte van HDL-cholesterol
(Hoofdstuk 6). Deze ratio is een specifiekere maat voor het risico op hart- en vaatziekte dan de
afzonderlijke lipideniveaus. We verzamelden de andere studies met behulp van MEDLINE en
Biological Abstracts (1974 - juni 1999) en met het bekijken van referentielijsten. De
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insluitingeriteria waren dat de studies een cross-over of paralleile opzet met een controlegroep
hadden, dat de di&ten in de studies alleen verschilden in de hoeveelheid voedingscholesterol
of eieren en dat ze minstens 14 dagen verstrekt werden, en dat de HDIL.-cholesterol
concentraties werden vermeld. Van de 222 geidentificeerde studies voldeden er 17 aan deze
criteria. Het verzamelen van de gegevens over studieopzet, persoonskenmerken,
samenstelling en dour van de voedingen en de serum cholesterol concentratie is uitgevoerd
door één onderzocker.

Een dagelijkse consumptie van 100 mg cholesterol per dag extra verhoogde de ratio
van totaal- ten opzichte van HDL-cholesterol met 0,020 eenheden (95% bti, 0,010 tot 0,030),
de totaalcholesterol concentratie met 0,056 mmol/L (95% bti, 0,046 tot 0,065 mmol/L) en de
HDL-cholesterol concentratie met 0,008 mmol/L (95% bti, 0,005 tot 0,010 mmol/L). We
concluderen dat voedingscholesterol de ratio van totaal- ten opzichte van HDI.-cholesterol
verhoogt, wat samenhangt met een verhoogd risico op coronaire hartziekte. Dus, het advies
om matig te zijn met het eten van eieren is zeker van belang voor de preventie van coronaire
hartziekte.

De conciusie van dit proefschrift is, dat de invloed van genetische polymorfismen op
de cholesterolrespons klein is. Het is dan ook niet mogelijk om op basis van informatie over
een specifiek genetisch polymorfisme mensen te identificeren die niet gebaat zijn bij een
cholesterolverlagend dieet,
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