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1 Bamboo flowering is a natural phenomenon and should not be considered as a 
threat to the giant panda. 

Adopted from Hu, }. 1987. Being careful of moving the giant panda eastwards. Wild 
Animal, No,6, 11-12. (in Chinese) 

2 Human encroachment into and fragmentation of the panda habitat is the most 
serious factor which threatens this animal's survival. 

3 Mapping panda habitat with its rough and hardly accessible terrain is improved by 
using an integrated expert system and neural network algorithm. 

This thesis 

4 Panda habitat "preference" is statistically proved by analysing radio-tracking data 
and panda habitat types. 

This thesis 

5 It is still not clear what make pandas regularly move from their winter activity 
range to the summer activity range and stay only for two months in Foping Nature 
Reserve. 

This thesis 

6 It is hard for a woman higher educated to put her in a right point between career 
and family. 

7 When planning for a year, plant corn. When planning for a decade, plant trees. 
When planning for life, train and educate people. 

Chinese proverb 

8 Desired changes can be incorporated in future studies, but time spent can never be 
regained. 

Sanderson, G. C. 1966. The study of mammal movements - a review. Journal of 
Wildlife Management. Vol. 30, No.l, 215-235. 
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General Introduction 

CHAPTER 1 General Introduction 

1.1 Giant panda population, habitat and survey 

Literature and public documents show that there are only about 1000 giant pandas 
(Ailuropoda melanoleuca) left and that only some 29,500 km2 of panda habitat remains in 
the west part of China (see Figure 1.1), making it an urgent issue in the world to save 
this endangered animal species and protect its habitat. The actions taken to save the 
giant panda started in the 1960s, including construction of panda nature reserves and 
breeding centres, ground surveys at various levels for estimating panda population 
and distribution as well as collection of basic environmental information. Two national-
level ground surveys were conducted in 1974-1977 and 1985-1988 (MOF and WWF 
1989). Most of the information on panda population and distribution came from these 
two surveys. Panda habitat was also inventoried in Wolong Nature Reserve (NR) in 
1979-1980 (WNR and SNU 1987) and in Qinling Mountains in 1986-1987 (Pan et al. 
1988). MacKinnon et al. (1994) reported that the locations of the occupied panda range 
were obtained from ground surveys and the existing description of bamboo condition 
was also based on ground surveys. The results from these two national-level ground 
surveys showed a big loss of panda habitat by 1987. However, after 10 years, further 
changes have probably occurred within panda habitat, and the extent and condition of 
panda habitat from that time until now is unknown. Current information about panda 
habitat needs to be collected. Therefore, the third national level survey on panda 
population and habitat started in 2000 and will end in 2002. 

Due to the mountainous terrain covered by dense forests, a large amount of money, 
labour and time has been invested in panda population and habitat surveys. For 
instance, 3000 people were involved in the first national-level panda census, and in the 
second panda census, over 30 counties were surveyed (MOF and WWF 1989). Both 
these censuses took about three years, and now the third on-going one is no exception. 
So, the question arises here: Can remote sensing (RS) and geographical information 
system (GIS) play an effective role in supporting wide-range panda census to shorten 
survey time, save man power, and consequently reduce survey costs through accurate 
mapping? 

1.2 GIS, RS and wildlife habitat mapping 

Geographical information systems are computer-based systems that are used to store 
and manipulate geographic information, and ultimately used to produce information 
needed by users (Aronoff 1991). Wildlife depends on the presence of an appropriate 
mix of resources within a geographically defined area. An important component of 
wildlife management is the prediction of the effects of natural events and human 
activities on wildlife populations. GIS techniques can be used to analyse such factors as 
the availability of food and cover, protection from predators, and the suitability of 
areas for nesting and denning sites, and have been used to analyse the habitat of a wide 
range of animal species such as the volcano rabbit (Velazquez and Bocco 1994), the 
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kangaroo (Skidmore et al. 1996a) and various bird species (Miller et al. 1989, Li et al. 
1999). 

IN 

Remaining Panda Habitats and Surrounding Nature Reserves A 

Gansu Province 

Minshan 
Mountains 0 * 

Sichuan Province 

Qinling 
Mountains 

Shaanxi Province 

Sichuan Province 

Existing Nature Reserves 

TaiBai 12 WangLang 
LaoXianCheng 13 HuangLongS 

Liangshan 
Mountains 

ZhouZhi 
Foping 
ChangQing 
J ianShan 
BaiHe 
JiuZhaiGou 
WuJiao 

10 BaiShuiJiang 
11 TangJiaHe 

23 LongQiHongKou 
24 Wolong 
25 AnZiHe 
26 HeiShuiHe 
27 FengTongZhai 
28 LaBaHe 

18 XiaoZhaiZiGou 29 GongGaShan 
19BaoDingGou 30 WaWuShan 
20 QianFoShan 31 YeLe 
21 JiuDingShan 32 MaBian-DaFengDing 
22 BeiShuiHe 3 3 MeiGu-DaFengDing 

14 XiaoHeGou 
15 BaiYang 
16 Sier 
17 PianKuo 

Figure 1.1 The remaining panda habitats (shown by grey patches) and existing associated 
nature reserves (shown by closed line boundary with number) in the west part of China 
(modified from Loucks et al. 2001). 

Remote sensing is the instrumentation, techniques and methods to observe the Earth's 
surface at a distance and to interpret the images or numerical values obtained in order 
to acquire meaningful information of particular objects on Earth (Buiten and Clevers 
1993, Janssen 2000). Due to their continuity in both time and space dimensions, RS data 
have widely been used and the relevant image processing techniques have been 
applied to wildlife habitat research on, for example, caribou (Thompson et al. 1980), 
white-tailed deer (Ormsby and Lunetta 1987), snow leopard (Prasad et al. 1991), 
migratory bird (Sader et al. 1991), and Nemorhaedus goral (Roy et al. 1995). 
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Richards (1993) addressed the real challenge which arises in RS/GIS when data of 
mixed types are to be processed together. The issue is complicated further when much 
of the non-spectral, spatial data available is not in numerical point form but is in 
nominal area or line format. It is pointed out that knowledge-based methods show 
good prospects for coping with data complexity in a GIS. 

Hollander (1994) mentioned that a new integrated approach joined with an artificial 
intelligence system was expected to apply on habitat evaluation due to GIS and RS 
weakness. Expert systems (ES) have been used for mapping forests (Goldberg et al. 
1985, Skidmore 1989), as well as identifying homogeneous training areas for analysis of 
remotely sensed imagery (Goodenough et al. 1987). Neural networks (NN) have been 
used for image processing and have shown great potential in the classification of 
remotely sensed data (Zhuang et al. 1994). According to Skidmore et al. (1997), the 
neural network backpropagation algorithm will not probably become a significant 
classification and analysis tool for GIS and remotely sensed data when implemented as 
a pure neural network. However, it may be very useful when combined with the rule-
based expert system. Short (1991) has developed a pipeline system of a real-time expert 
system and a neural network for the classification of remotely sensed data. 
Nevertheless, examples of integrating the expert system and the neural network system 
in wildlife habitat evaluation and management are still rare. 

1.3 RS/GIS application in panda habitat research and problems 

The underlying issue is to what extent RS/GIS has been applied to panda habitat 
mapping and evaluation. As we know, quite a lot of people are interested in the 
research fields of panda behaviour, reproduction, nutrition and bamboo regeneration. 
Not much attention was paid to panda habitat. Therefore, not much detailed data 
analysis has been done with using many factors, including physical environmental 
factors, biological factors, and human influence factors. How can we obtain information 
of panda habitat in an effective way? From the previous ground surveys, it is clear that 
a ground survey in such a complicated terrain area with dense forests is time 
consuming and labour intensive. In such circumstances, RS is undoubtedly the most 
efficient way to acquire habitat data quickly and at low cost (De Wulf et al. 1988). 
Multi-spectral classification of land cover and land use has been the main approach for 
mapping and defining the distribution of wildlife, and detecting the change in wildlife 
habitat. 

However, panda habitat research based on remote sensing is limited. De Wulf et al. 
(1988 and 1990) and MacKinnon et al. (1994) mapped panda habitat using LANDSAT 
MSS images and LANDSAT TM images. Some work has been done on the evaluation 
of the extent of forest loss for the giant panda in China, the prediction of the corridors 
in Min Mountains, and the mapping of panda habitat in Wolong NR. All this work was 
based on visual interpretation of multi-temporal images from 1975 and 1983. The 
LANDSAT TM images were also visually interpreted and used to make a land cover 
map for the Xinglongling panda area in the Qinling Mountains (Pan et al. 1988, Chui 
and Zhang 1990). So, before 1998, panda habitat analysis based on RS data was still at a 
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level of visual interpretation, not at a level of digital analysis. The main disadvantages 
of visual interpretation are its inconsistency and time-consumption. It is also realised 
that, at a level of digital analysis, conventional image analysis methods do not yield 
satisfactory classification results at the forest type level, and therefore it is difficult to 
get an accurate map using conventional classification methods to map the forest types 
(Skidmore 1989, Skidmore et al. 1997). 

In terms of GIS application to panda habitat, Ouyang et al. (1996) published their work 
on reserve management and design of the panda database in Wolong NR, which 
includes the current physical environment, biodiversity, and social-economic data. Liu 
(1997) and Liu et al. (1997) published their work on human factors influencing the 
panda habitat in Wolong NR and their spatial distribution. Bouwman (1998) assessed 
the impact of human activities on the panda habitat and distribution in Wolong NR 
based on the interview data and GIS analysis. Liu et al. (1998) evaluated the suitability 
of panda habitat in Wolong NR through evaluating suitable elevation range, slope 
range and distribution of bamboo species in GIS. As a useful tool for acquiring, storing, 
extracting, processing, and presenting data, exploration on integrating GIS with new 
expected algorithm of RS to obtain more information of panda habitat is worthwhile. 

Is it possible to develop a new approach, an integrated expert system and neural 
network algorithm, based on RS/GIS in order to achieve a satisfactory level of accuracy 
for mapping panda habitat - a forest environment? And how to further use the 
mapping results to analyse panda habitat use and selection and help to explain regular 
panda movements? 

In summary, the research problems are: 
• information about the current extent and quality of panda habitat is lacking; 
• ground surveys are not only time-consuming and expensive but also inadequate 

for the collection of all kinds of continuous information on panda habitat; 
• conventional image classification methods for mapping a forest environment can 

not achieve a satisfactory accuracy; 
• lack of an integrated approach for mapping panda habitat; 
• lack of thorough study on panda movement; and 
• lack of statistical analysis of panda habitat use and selection as well as panda-

habitat relationship. 

1.4 Objectives of this study 

This study only focuses on Foping NR. The general research objective is to evaluate 
panda habitat through mapping and modelling. It is achieved by the following sub-
objectives: 
• To evaluate the existing mapping techniques; 
• To develop an integrated expert system and neural network classifier (ESNNC) for 

mapping with a high accuracy; 
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• To apply the explored ESNNC approach to map panda habitat patterns and derive 
panda habitat information (types, extents and spatial distribution); 

• To analyse panda movement patterns and their linkage with the environment; 
• To model the relationships between the panda presence and the biotic (such as 

woody plant species richness and spatial structure of tree and bamboo layers) as 
well as abiotic environmental factors (elevation, slope gradient and aspect). 

1.5 Outline of thesis 

This thesis basically presents several research papers that, as a whole, fulfil the 
objectives of the study. Papers have been or are going to be submitted to international 
peer-reviewed journals. Each of these papers has been presented as a thesis chapter. 
The general link between each other is shown in Figure 1.2. Chapter 2 and Chapter 3 
aim at exploring a new approach for mapping, which uses an additional data set from 
Lemelerburg, the Netherlands. The explored and optimised algorithm was then 
applied to map habitats of the giant panda (Chapter 4) and the mapping results were 
further used in later analysis of panda-habitat relationship (Chapter 6). Accurate 
habitat maps are required for analysing wildlife and its habitat relationship. Chapter 5 
is a relatively independent topic which focuses on panda movement analysis. The 
following is an outline of this thesis. 

• Chapter 1 provides a brief research background, clarifies the research problems, 
shows the research objectives, and finally describes the main study area: Foping 
NR. This chapter is to show why, what, where, and how this research was 
undertaken. 

• Chapter 2 looks at several different mapping techniques and focuses on the 
artificial neural network techniques with comparison to the other two traditional 
algorithms (maximum likelihood classification algorithm and parallelepiped 
classification algorithm). This chapter aims to check the discrimination capability 
of the backpropagation neural network algorithm on the ground cover types, and 
to indicate that the neural network algorithm needs to be improved and used for 
mapping panda habitat in this study. 

• Chapter 3 explores two new mapping algorithms by combining the advantages of 
the different classification algorithms in order to optimise the mapping algorithm 
with high mapping accuracy. One is a consensus builder that links three individual 
classifiers (maximum likelihood classifier, expert system classifier and neural 
network classifier) together. The second is an integrated expert system and neural 
network classifier. 

• Chapter 4 applies the optimised mapping approach, the integrated expert system 
and neural network classifier, to map panda habitat in Foping NR. Two categories 
of panda habitat types are introduced and mapped, i.e. ground-cover-based 
potential panda habitat types and suitability-based panda habitat types. 
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Chapter 1 
General introduction (why, what, where, and how) 

Chapter 2 
Evaluation of mapping algorithms and 
Exploration of a backpropagation neural network algorithm 

Chapter 3 
Optimising mapping algorithms and 
Two integrated classifiers for mapping 

Chapter 4 
Mapping the giant panda habitat 
using an integrated expert system 
and neural network classifier Chapter 5 

Giant panda movement analysis 

Chapter 6 
Giant panda habitat selection and 
habitat characteristics in Foping NR 

Chapter 7 
Synthesis: Giant panda habitat and conservation 

Figure 1.2 The thesis structure and linkage between chapters. 

Chapter 5 analyses the movement pattern of pandas in Foping NR by using radio-
tracking data in order to gain an insight into how pandas move in their territory 
and the linkage between their movement pattern and the environment. 

Chapter 6 details the habitat use and selection by pandas, as well as habitat 
characteristics which may direct panda habitat use and selection. The mapped 
ground-cover-based potential panda habitat is used to analyse habitat use and 
selection. The survey plot data are used to analyse the panda habitat characteristics 
in various suitability-based panda habitat types, and to analyse the differences of 
biotic structure between panda-presence and panda-absence habitats. 



General Introduction 

• Chapter 7 summarises all the research results and conclusions of the previous 
chapters and highlights the implications of these results as well as the research 
approach to the future conservation of the giant panda and its habitat not only in 
Foping NR but also in other panda nature reserves in China. 

1.6 Description of Foping Nature Reserve 

The east-west Qinling Mountains (see Figure 1.1) play an important role as the natural 
geographical defences that stop the cold air flow coming from the north and they form the 
most northern refuge of pandas. Foping NR is located on the middle part of the southern 
slope of the Qinling Mountains (33°32'-33°45' N, 107°40'-107°55' E), and in the southern 
part of Shaanxi province (Figure 1.3). The reserve covers about 293 km2 and occupies the 
northern part of Foping County. It extends 24 km from west to east and 22 km from 
north to south. It was established in 1978 to conserve the endangered giant panda and 
its habitat. 

Foping Nature Reserve 
China 

O village: 

1 LongTanZi village 
- " * "age 

vula( 
2 YueBa villa; 
3 DaGuPing village 

village group within 
the nature reserve: 

a SanGuanMiao group 
b XiHe group 
c JieShang group 
d XiaHe group 
e DaChengHao group 

Shaanxi 
Province 

Figure 1.3 Location of Foping Nature Reserve in China. It is located in Foping county, Shaanxi 
province, and covered by four main drainage systems: XiHe, DongHe, JinShuiHe, and LongTanZi. 

Terrain and drainage system 

The terrain of Foping NR drops down from the high north-west to the low south-east. 
The elevation ranges from 980 to 2904 m. The area below 1500 m is the steep-slope and 
narrow valleys of the middle mountains with human activities, between 1500 and 2000 
m the gentle-slope and wide valleys and flat mountain ridges of the middle mountains, 
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and above 2000 m the steep-slope and wide mountaintops of the middle mountains 
(Ren et al. 1998). Four drainage systems cover the whole nature reserve, e.g. XiHe, 
DongHe, JinShuiHe and LongTanZi Rivers (Figure 1.3). They all flow from the north to 
the south. 

Climate 

The climatic data from 1976 to 1995 were analysed and the average monthly rainfall, 
humidity, temperature and sunshine hours were plotted in Figure 1.4. The high rainfall 
(about 200 mm) occurs in July, high temperature (about 23 °C) in July and August, and 
high humidity (83%) in July, August and September. The longer sunshine (over 180 
hours per month) starts from May and ends in August. The total annual rainfall is 
about 920 mm. The average annual temperature is about 13 °C. On average, the extreme 
lowest temperature, about -3 °C, occurs in January and the extreme highest 
temperature, about 28 °C, occurs mostly in July. 

Figure 1.4 The climatic conditions in Foping Nature Reserve, China: average monthly rainfall 
(a), humidity (b), temperature (c), and sunshine hours (d). 

Soil 

The soil types show obvious vertical distribution: yellow-brown soil (below 1500 m) 
developed under deciduous broadleaf forests in the north sub-tropical zone, brown soil 
(1500-2300 m) developed under deciduous broadleaf forests or mixed conifer and 
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broadleaf forest in the temperate zone, and dark brown soil (above 2300 m) developed 
under mixed conifer and broadleaf forest in the temperate zone (Ren et al. 1998). 

Vegetation 

Natural vegetation grows well in Foping NR. There are differences in the description of 
the natural vegetation and its vertical distribution in Foping NR. According to Ren et al. 
(1998), the main natural vegetation types are deciduous broadleaf forests (below 2000 
m), birch forests (2000-2500 m), conifer forests (above 2500 m), as well as shrub and 
meadow. CVCC (1980) defined that the deciduous broadleaf forest is distributed below 
1300 m, mixed conifer and deciduous broadleaf forest between 1300 and 2650 m, and 
conifer forest above 2650 m. There are two main bamboo species for pandas to feed on: 
Bashania fargesii and Fargesia spathacea (Pan et al. 1988, Tian 1989 and 1990, Yong et al. 
1994, Ren et al. 1998). The bamboo of Bashania is distributed in the area below 1900 m, 
in general, and the bamboo of Fargesia in the area above 1900 m. 
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Figure 1.5 The spatial distribution of the giant panda population in Foping Nature Reserve 
according to the survey in 1990 (Yong et al. 1993), and locations of six protection stations as 
well as six monitoring points. 

11 



Chapter I 

Giant panda population 

Panda population surveys have been conducted several times in Foping NR since the 
1970s. The survey in 1983 estimated that the panda population was between 45 and 65. 
According to the survey in 1990 (Yong et al. 1993), the estimated panda population was 
about 65 with an average density of 1 individual per 5 km2. The result of a survey 
conducted in 1998 again confirmed about 65 panda individuals in the reserve. Figure 
1.5, based on the result from the 1990 survey, illustrates differences of the spatial 
distribution of panda population. 

Local human population and activities 

About 300 local people reside inside the nature reserve in 1998 (Table 1.1). They are 
mainly concentrated in five inner-reserve village groups: SanGuanMiao, XiHe, 
JieShang, XiaHe and DaChenHao (see Figure 1.3). The human activities are mainly 
developed in the river valleys and the areas near the southern boundary but 
SanGuanMiao in the centre of the nature reserve is an exception. The main human 
activity is farming. However, mushroom-production (Figure 7.4-right), which provides 
local people with an impressive income (for example in DaGuPing, from 14010 yuan 
RMB in 1996 to 74520 yuan RMB in 1998), developed very fast after 1995 and might 
have had an influence on panda habitat in Foping NR. 

Table 1.1 The local population of three villages inside or around the boundary of Foping NR in 1998 
Village 

DaGuPing 

YueBa 

LongTanZi 

Village group 

SanGuanMiao group 
XiHe group 
JieShang group 
XiaHe group 
DaChengHao group 
MaJiaGou group 
JieShang group 
ShangYueBa group 
BeiMaGou group 
XiaoBeiMaGou group 
ZhuanBa group 
TangJiaGou group 
LuoJiaBa group 
JieShang group 
BaoZi group 
ShiYuan group 

Inside or around the boundary 
of the nature reserve 

inside 
inside 
inside 
inside 
inside 

outside 
outside 
outside 
outside 
outside 
outside 
outside 
outside 
outside 
outside 
outside 

Population 
(persons) 

52 
59 
92 
47 
32 
62 
82 
127 
113 
81 
51 
39 
52 
142 
77 
63 

Total 

282 

889 

Field management in Foping NR 

For conservation purposes, the whole nature reserve is divided into six regions, each of 
which has a "protection station (PS)" with permanent staff. They are LongTanZi PS, 
YueBa PS, DaGuPing PS, XiHe PS, SanGuanMiao PS and CunGou PS (shown in Figure 
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1.5). Some conservation activities are conducted regularly, such as monthly patrols to 
record signs of panda and other animals as well as habitat information. Within these six 
regions, smaller blocks are further delineated in order to further locate the area for 
convenient conservation activities. In the more remote areas, there are six extra 
"monitoring points (MP)" with simple and crude sheds. They are DaChengHao MP, 
CaoPing MP, SanXianFeng MP, DaCongPing MP, LuBanFeng MP and 
HuangTongLiang MP (shown in Figure 1.5). All these management facilities and 
conditions made my research possible. 

13 
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CHAPTER 2 Evaluation of Mapping Algorithms and 
Exploration of Spectral Discrimination Capability of 

a Backpropagation Neural Network Algorithm * 

Abstract 

Data were generated for two classes in a simulated feature space, with the classes 
having a varying amount of spectral overlap. It was hypothesised that the 
backpropagation neural network would be able to distinguish the classes in the 
situation of no overlap. Our results confirmed that two non-overlapping classes can be 
discriminated with 100% overall accuracy by the backpropagation neural network. The 
backpropagation neural network classified the simulated data sets with a significantly 
higher accuracy than the maximum likelihood or the parallelepiped classifier. When 
the experiment was repeated using remotely sensed imagery with more complicated 
spectral overlap among classes (for a land cover classification at Lemeleberg in the 
eastern Netherlands), the neural network yielded again a significantly higher 
classification accuracy than the maximum likelihood classifier or the parallelepiped 
classifier. Differences between the map outputs imply that integrating the different 
classification algorithms may improve the overall mapping accuracy. 

Key Words: backpropagation neural network, degree of overlap in feature space, 
mapping algorithm, maximum likelihood classifier, parallelepiped classifier, spectral 
discrimination capability. 

This chapter is based on Liu, X., A. K. Skidmore, and H. Van Oosten. (in 
press). An experimental study on spectral discrimination capability of a 
backpropagation neural network classifier. International Journal of Remote 
Sensing. 

Part of this work was presented at XIX* Congress of the International 
Society for Photogrammetry and Remote Sensing (ISPRS), 2000, Amsterdam, 
The Netherlands. The presented title: Discrimination Ability of Neural 
Network and Maximum Likelihood Classifiers. 
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2.1 Introduction 

Backpropagation neural networks (BPNNs) have successfully classified remotely 
sensed data (Hepner et al. 1990, Zhuang et al. 1994, Weeks and Gaston 1997). There are 
significant differences between backpropagation neural networks and many 
conventional statistical classifiers such as the maximum likelihood classifier (MLC) 
(Bischof et al. 1992, Chen et al. 1993, Paola and Schowengerdt 1995, Weeks and Gaston 
1997): 
(1) BPNNs make no assumptions about the form and distribution of input data; 
(2) BPNNs form non-linear decision boundaries in the feature space; 
(3) BPNNs are robust when presented with partially incomplete or incorrect input 

patterns; 
(4) BPNNs can generalise input. 

In a comprehensive review, Paola and Schowengerdt (1995) concluded that 
backpropagation neural network classifiers yield similar (or slightly higher) accuracy 
when compared to conventional statistical methods, such as the maximum likelihood 
classifier (see Hepner et al. 1990, Key et al. 1990, Bischof et al. 1992, Kanellopollos et al. 
1992, Paola and Schowengerdt 1994). As a result of the marginal improvement in 
mapping accuracy by neural network classifiers, Skidmore et al. (1997) recommended 
maximum likelihood classifiers, as they are easier to use. Indeed, some authors have 
found that maximum likelihood classifiers give a higher mapping accuracy than neural 
networks (Benediktsson et al. 1990a, Solaiman and Mouchot 1994). 

Fierens et al. (1994) were unable to understand why these classifiers have differences in 
accuracy. One of the reasons may be that the experimental set-ups are not comparable. 
For instance, texture measures have been used with BPNNs, but the same texture 
measures have not been utilised by conventional classifiers (Hepner et al. 1990, Bischof 
et al. 1992, Paola and Schowengerdt 1994, Skidmore et al. 1997). Another reason for 
differences in classification accuracy is that the assumptions of a classifier may be better 
met by a particular image data set. For example, Key et al. (1990) theorised that the 
neural network avoids assumptions of statistical normality, and has greater flexibility 
to classify non-normal classes. Further evidence comes from Benediktsson et al. (1990a) 
who used data from a random number generator with normalised distribution and 
found the accuracy of the maximum likelihood classifier was higher than that of a 
backpropagation neural network. Thus it may be assumed that normalised distribution 
allows the maximum likelihood method to perform well. 

The performance of a backpropagation neural network is affected by many factors. A 
number of researchers have focused on exploring the behaviour of the BPNNs by 
adjusting factors such as the input data types (raw or normalised data), input data 
sequence, number of hidden layers, number of nodes in different layers, as well as 
different training parameters such as momentum, learning rate and number of epochs 
(Benediktsson et al. 1990a, Heermann and Khazenie 1990, Zhuang et al. 1994, Ardo et 
al. 1997, Gong et al. 1997, Skidmore et al. 1997). However, no authors have investigated 
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the effect of the degree of overlap between classes in feature space on the performance 
of a BPNN or conventional classifiers. 

A two-dimensional feature space can be simply visualised by plotting the brightness 
values of one band along the horizontal axis, and the brightness values of a second 
band along the vertical axis. In this space, each pixel of an image plots as a vector with 
co-ordinates given by the brightness value of an image pixel. Feature space may be 
"filled" with simulated data sets. The use of simulated data as a complement to real 
images is very common in remote sensing research; the main advantage is that it is easy 
to control the experiment and to gain insight into the results (Skidmore et al. 1988, 
Benediktsson et al. 1990a, Heermann and Khazenie 1990, Chen et al. 1993). In this 
study, a feature space comprising three bands was simulated. 

In summary, the aims of this paper are, by using different degrees of overlap between 
classes, to compare: (1) the accuracy of the backpropagation neural network classifier 
(BPNNC) in response to different degrees of overlap in the simulated data sets as well 
as remotely sensed imagery; and (2) the performance of the BPNNC, the maximum 
likelihood classifier (MLC) and the parallelepiped classifier (PPC) under different levels 
of overlap in feature space. 

2.2 Background and assumptions of three classifiers 

The parallelepiped classifier (PPC) is a very simple supervised classifier, having a 
decision boundary defined by the range of brightness in each band. The "box" in 
feature space (see Figure 2.1a) may be defined using a measure of central tendency (e.g. 
mean or median) as well as a measure of variation (e.g. standard deviation or inter
quartile distance) of training sample sets (as used in this study), or by using the 
minimum and maximum values of training sample sets. The main drawback of the PPC 
is that the pixels can not be assigned to a class when they fall in more than one box or 
do not belong to any box. 

The maximum likelihood classifier (MLC) is the most commonly used supervised 
classification method. The decision rule is defined by the multidimensional normal 
distribution around a class mean (see Figure 2.1b). Consequently, multi-modal or non-
normally distributed data will lead to an incorrect classification. In addition, 
overlapping decision boundaries in feature space will be problematic, especially if the 
training data do not physically overlap, but the decision boundaries do overlap 
(Skidmore et al. 1988, Fierens et al. 1994). 

The backpropagation neural network classifier (BPNNC) recognises spectral patterns 
by learning from training sets. They contain three or more layers of nodes viz. one 
input layer, one or more hidden layer(s) and one output layer. The error between the 
network output and the target (i.e. training data) is reduced by adjusting all weights of 
the network until the system error falls below a user specified threshold. After training, 
the neural network system fixes all weights and maintains the original learning 
parameters. The classification process calculates the output of each pixel using the 
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parameters learnt from the training phase, and then decides the class of the pixel. 
Richards (1993) hypothesised that a hyperplane decision surface between two different 
classes may also be created for neural network classifiers that can divide the pattern 
space into different regions (see Figure 2.1c). Solaiman and Mouchot (1994) emphasised 
that the multi-layer perceptron is also a decision-surface based classifier. 

a -PPC b -MLC c - BPNNC 

With no overlap 

With overlap 

Figure 2.1 Decision rules for the three different classifiers in a two-dimensional feature 
space (after Skidmore et al. (1988) and Richards (1995)). PPC, MLC and BPNNC represent 
the parallelepiped classifier, the maximum likelihood classifier and the backpropagation 
neural network classifier respectively. 

2.3 Methods 

2.3.1 Data sets 

We simulated two data sets with only two classes varying from a condition of no 
overlap, to a condition of overlap, in order to test the effect of feature separability and 
overlap degree on three classifiers (BPNNC, MLC and PPC). The two classes were 
randomly generated in three bands (e.g. bandl, band2 and band3) with 5000 pixels per 
class. Bandl and band3 have a normal distribution, while band2 has a two-modal 
distribution. Table 2.1 details the experimental data. Figure 2.2 shows the feature space 
of the simulated data sets, in which the red dots represent classl and the blue dots 
represent class2. Areas of visual overlap, but not real overlap in feature space, are 
identified by the green dots. Areas of real overlap in feature space are identified by the 
white dots. 

In addition to the synthetic data sets, the performance of the three classifiers was also 
tested using remotely sensed imagery (i.e. Landsat Thematic Mapper and SPOT-
panchromatic imagery acquired in 1995 and 1997 respectively) over the Lemeleberg 
region of the Netherlands (see details in Chapter 3). The images were geometrically 
rectified and geo-referenced to a common pixel size of 10 m by 10 m. The sub-images 
(435 by 348) contain five ground cover classes, which contain probably more 
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complicated overlap situations among these five classes in their feature space. The five 
ground cover types are forest (F), pasture (P), heath (H), arable land (A), and built-up 
area (B). This data set was chosen to provide a situation with more complicated overlap 
in feature space compared with the two simulated classes with simple overlap. 

Table 2.1 Statistical parameters for the two classes simulated in three bands: bandl to band3. Min., 
Max. and Std. are minimum, maximum and standard deviation respectively. 

With no overlap 
Bandl Band2 Band3 

With overlap 
Bandl Band2 Band3 

Classl 
Min. 
Max. 
Mean 
Std. 

17 
34 

22.3 
+3.8 

10 
30 

20.0 
±4.5 

37 
54 

42.4 
±3.8 

16 
34 

23.9 
±3.4 

10 
30 

20.0 
±4.5 

37 
54 

44.7 
±3.1 

Class2 
Min. 
Max. 
Mean 
Std. 

25 
37 

31.0 
±2.5 

17 
23 

20.0 
±1.3 

45 
57 

51.0 
±2.4 

22 
39 

30.3 
±3.4 

17 
23 

20.0 
±1.3 

42 
59 

53.3 
±3.4 

Variance-
covariance 

Correlation 

Bandl 
Band2 
Band3 
Bandl 
Band2 
Band3 

29.1 

1.00 

0.1 
10.8 

0.00 
1.00 

24.6 
0.2 
29.1 
0.84 
0.01 
1.00 

21.5 

1.00 

0.1 
10.8 

0.01 
1.00 

10.8 
0.1 
18.7 
0.54 
0.01 
1.00 
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Figure 2.2 The feature space of the simulated data sets with two classes. The top three show 
the feature spaces under a no overlap situation. The bottom three show the feature spaces 
under an overlap situation. 
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2.3.2 Defining separability and degree of overlap of the classes 

Accuracy of classification depends on the separability of the classes in feature space. As 
two classes become further apart, they have less overlap and may be classified with 
greater accuracy. Two measures are used in this study: the Jeffries-Matusita (JM) 
distance (ERDAS 1991, Richards 1993) and the simplified Skidmore et al. non-
parametric test of overlap (Skidmore et al. 1988). 

Mathematical separability is normally used to discard classes with little contribution to 
a classification (Richards 1993). The JM Distance is a parametric measure of the average 
distance between the density function of two classes. For normally distributed classes, 
JM Distance may be defined as: 

JM, = 2( l- e-
B) (1) 

where i and j are two classes being compared, B is the Bhattacharyya Distance: 

B = \mp-piiy{^Ly\pi,-^+v7\n^S^} (2) 
2 JO . -

where |J.i and |ij are the mean vectors of the two classes, and G and C, are the 
variance-covariance matrices of the two classes. The JM distance ranges from 
0 where the two classes completely overlap to 2 where the two classes are 
completely separate from each other. 

Skidmore et al. (1988) developed a general algorithm to quantify the degree of overlap 
of classes. It is a non-parametric test of overlap that does not depend on statistical 
parameters such as mean and standard deviation. The Skidmore et al.'s Riff) value 
ranges from 0 to 1, where 0 equates to complete overlap, while 1 means there is no 
overlap between the two classes, that is the two classes are completely separate from 
each other (Skidmore et al. 1988). In this study, a simplified Skidmore et al. non-
parametric test was used (Equation 3). If Ri = 1, this class has no overlap with other 
classes, while if Ri < 1, the class has overlap with other classes. An example of how to 
calculate Ri is shown in Table 2.2. 

Ri = FilNi (3) 

where Fi is defined as the frequency of pixels in the training set purely 
belonging to class i, Ni is the total number of pixels in the training set of 
class i, and Ri is the proportion of Fi and Ni. It is used to indicate the degree 
of overlap between class i and other classes. 

In order to find out how the overlap of two classes in the feature space influences 
classification, different sizes of training samples were studied for the simulated data 
because the JM distance and the simplified Ri depend on sample size. The sample sizes 
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used were 200, 400, 800, 1600 and 2500 samples for both classes. For the remotely 
sensed imagery, only one sample set was used, which includes five ground cover types 
varying in their degree of overlap. 

Table 2.2 Non-parametric test of overlap degree under the overlap situation. In the formula of Ri = 
Fi/Ni, Ri is the proportion of the number of pixels (Fi) in the training set purely belonging to class i to 
the total number of pixels (M) of the training set of class i. 

xels with same 
Ri= Fi/Ni 

Sample 
size in 

training 
set 

Feature pattern 
in training set 
with overlap 

Number of pixels with same 
feature pattern 
but belonging 

to different classes 

200 

400 

[Bandl Band2 Band3] 
[26 21 49] 

[24 21 49] 
[25 19 46] 
[26 20 43] 
[26 21 49] 

Classl 
1 

1 
1 
1 
1 

Class2 

1 

1 
1 
1 
2 

Rj =(200-l)/200=0.9950 
R2 =(200-l)/200=0.9950 

R,=(400-4)/400=0.990 
R2=(400-5)/400=0.9875 

2.3.3 Configuring the backpropagation neural network in this study 

A backpropagation neural network with three layers (1 input layer, 1 hidden layer and 
1 output layer) was constructed with a varying number of nodes. The number of input 
and output nodes was decided by the number of data layers (input) and the classes 
(output) respectively. In order to find a better neural network structure to optimise 
training and obtain higher overall mapping accuracy, the parameters, such as total 
system error level, number of hidden nodes, learning rate and momentum coefficient 
were studied. First of all, we subjectively used 5 hidden nodes and a small momentum 
(0.01) as well as a small learning rate (0.001) to test how the total system error 
influences the classification accuracy and to select a better and practical system error 
level. The number of hidden nodes and the different combinations of momentum 
coefficients and learning rates were then explored. The criterion for selecting these 
parameters is the "highest test accuracy" (Gong et al. 1997). In summary, a number of 
different input conditions for the neural network classifier were tested for both 
simulated data sets and remotely sensed imagery, including: 

• system error levels (0.1, 0.075, 0.05, 0.03, 0.01 and 0.005), 
• number of hidden nodes (IX, 2X, 3X, 6X, 10X) with X=3 which represents the 

number of input nodes, 
• different combinations of momentum coefficients and learning rates (0.7/0.7, 

0.5/0.7, 0.1/0.7, 0.01/0.7; 0.7/0.5, 0.5/0.5, 0.1/0.5, 0.01/0.5; 0.7/0.1, 0.5/0.1, 0.1/0.1, 
0.01/0.1; 0.7/0.01, 0.5/0.01, 0.1/0.01, 0.01/0.01; 0.7/0.001, 0.5/0.001, 0.1/0.001, 
0.01/0.001). 

22 



Spectral Discrimination Capiibiliiy of a Neural Network Algorithm 

2.3.4 Comparing three classifiers using both simulated and remotely sensed data 

Both simulated data and remotely sensed imagery were classified using the optimised 
BPNNC, MLC and PPC in order to test the effect of feature separability and degree of 
overlap on classification accuracy. The same training and test data sets were used for 
the three classifiers. For the simulated data set, we used the whole data set to test final 
classification accuracy. The remotely sensed imagery has an independent test sample 
set. The classifiers were tested for statistical differences in their accuracy of 
classification using the KHAT statistic (Congalton et al. 1983, Foody 1992) calculated 
for each image, and a Z statistic to test whether any two classification results were 
significantly different (Cohen 1960). 

2.4 Results 

2.4.1 Measuring the separability and overlap degree 

The JM distances and the simplified-Ri values from different sizes of training sample 
sets for the simulated data set are detailed in Table 2.3a. The JM distance is 
approximately 1.52 under the no overlap situation and 1.51 under the overlap situation. 
The similarity of these results indicates that the two classes cannot be completely 
separated using this measure of separability. In comparison, the simplified-Ri values 
are all equal to 1 under the no overlap situation; while the Ri values vary from 0.969 to 
0.995 under the overlap situation. Table 2.3a also confirms that in the overlap situation, 
Ri stabilises to an asymptotic condition as the size of the training sample set increases. 

Table 2.3b shows the JM distances of pairs of classes as well as the simplified-Ri values 
based on the sample sets for remotely sensed imagery. The highest separability is 
between pasture and forest, followed by forest and arable land, pasture and heath, 
pasture and built-up area. The Ri values of the forest (Rp =1) and pasture (Rp =1) classes 
similarly indicate that these two classes do not overlap with the other classes in feature 
space of the training sample set, while the other three classes (e.g. built-up area, arable 
land and heath) exhibit more overlap (RH =0.937, RA =0.913, and RB =0.897) than the two 
simulated classes. 

2.4.2 Performance of the BPNNC under various experimental conditions 

The system error has a strong influence on the classification accuracy under all three-
overlap situations (Figure 2.3). For the simulated data set (with or without overlap), the 
large sample size and small system error of the neural network increased the 
classification accuracy (Figure 2.3a and 2.3b). For the image data set (with more 
overlap), it was confirmed that a small system error increased the classification 
accuracy (Figure 2.3c). However, the classification of two "no overlap" classes for the 
simulated data set did not reach an accuracy of 100%. Therefore, the training set with 
2500 samples was selected for further experimentation. The minimal system error levels 
for the different experiments (0.005 for the two simulated classes with "no overlap", 
0.03 for the two simulated classes with simple overlap, and 0.12 for the remotely sensed 
imagery with more complicated overlap) were selected to ascertain the influence of the 
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number of hidden nodes. The reason for selecting 0.03 and 0.12 under situations of 
overlap is that the BPNNC took a very long time for calculation to reach the smaller 
system error levels of 0.029 and 0.11 (see iterations in the parentheses in Figure 2.3b 
and 2.3c). 

Table 2.3 Jeffries-Matusita (]M) distance between two classes and simplified Ri value of each class. Ri is 
the proportion of the number of pixels (Fi) in the training set purely belonging to class i to the total 
number of pixels (Ni) of the training set of class i. 
a: The /M distances and simplified Ri values under different sampling schemes for the simulated data 
sets with only two classes. 

Class Samples per class With no overlap With overlap 
]M distance Simplified Ri JM distance Simplified Ri 

1 200 samples 1.5188 R, =1.0000 1.5092 R, =0.9950 
2 200 samples R2 =1.0000 R2 =0.9950 
1 400 samples 1.5182 R, =1.0000 1.5087 R, =0.9900 
2 400 samples R2 =1.0000 R2 =0.9875 
1 800 samples 1.5173 R, =1.0000 1.5087 R, =0.9738 
2 800 samples R2 =1.0000 R2 =0.9700 
1 1600 samples 1.5176 R, =1.0000 1.5088 R, =0.9750 
2 1600 samples R2 =1.0000 R2 =0.9719 
1 2500 samples 1.5176 R, =1.0000 1.5087 R, =0.9708 
2 2500 samples R, =1.0000 R2 =0.9692 

b: The ]M distances and simplified Ri values for the real image case study. Five ground cover types are 
defined: forest (F), pasture (P), heath (H), arable land (A) and built-up area (B). 

Class Training JM distance between any two classes Simplified Ri 

Forest (F) 
Pasture (P) 
Heath (H) 
Arable land (A) 
Built-up area (B) 

Samples 

285 
473 
300 
480 
312 

F 
0 

P 

1.609 
0 

H 
1.514 
1.569 
0 

A 

1.595 
1.538 
1.545 
0 

B 

1.536 
1.551 
1.506 
1.519 
0 

R F = 1 

R,.=l 
RH =0.937 
RA =0.913 
RB =0.897 

The influence of the number of BPNNC's hidden nodes, based on the conditions 
defined above, is shown in Figure 2.4. No pattern in classification accuracy occurred 
with a changing the number of hidden nodes (Figure 2.4). The optimised BPNNC 
achieved an accuracy of 100% under the "no overlap" situation when the number of 
hidden nodes increased to 6 (Figure 2.4a). In other words, that the neural network can 
discriminate completely two classes with "no overlap" in their feature space. However, 
under the "overlap" situation, the highest overall accuracy of 97.22% for two simulated 
classes and of 83.36% for remotely sensed imagery with five classes was achieved when 
the number of hidden nodes increased to 9 (Figure 2.4b and 2.4c). So, we selected 6, 9 
and 9 hidden nodes together with the previously selected parameters to search for a 
better combination of momentum coefficient and learning rate. 
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Figure 2.3 Backpropagation neural network experimentation with different sizes of sample sets as 
well as system error levels under three varying overlap conditions: a - two simulated classes with 
no overlap; b - two simulated classes with simple overlap; c - five ground cover classes with more 
complicated overlap. Numbers in parentheses are iteration numbers of neural network training. 

(3,029) (3,277) 

(49.308),, 
(34,232) 

14.884) 

I 
Figure 2.4 Backpropagation neural network experimentation with different numbers of hidden nodes 
under three varying overlap conditions: a - two simulated classes with no overlap; b - two simulated classes 
with simple overlap; c - five ground cover classes with more complicated overlap. Numbers in parentheses 
are iteration numbers of neural network training. 

Based on the previous experiments, the influence of the combination of learning rate 
and momentum coefficient is shown in Figure 2.5. For the two simulated classes with 
no overlap, the various combinations of momentum and learning rate did not produce 
any change to the classification accuracy of 100% (Figure 2.5a). For the simulated two 
overlap classes as well as the remotely sensed imagery with five classes, the 
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combination of different momentum and learning rate does influence the classification 
accuracy (Figure 2.5b and 2.5c). However, no obvious pattern emerged. The highest 
classification accuracies, e.g. 97.25% and 82.95%, were produced by the momentum-
learning-rate combination of 0.5/0.7 for two simulated classes and of 0.7/0.1 for the 
remotely sensed imagery. 

Figure 2.5 Backpropagation neural network experimentation with different combinations of 
momentum coefficients and learning rates under three varying overlap conditions: a - two 
simulated classes with no overlap; b - two simulated classes with simple overlap; c - five ground 
cover classes with more complicated overlap. 

2.4.3 Different responses of the BPNNC, MLC and PPC to sample size 

As the size of the training sample set increased, the number of correctly classified pixels 
in both classl and class2 changed slightly for all three classifiers under two overlap 
situations (Figure 2.6). There are slightly more pixels correctly classified by BPNNC 
than MLC, and both much more than PPC. An interesting result is that under an 
overlap situation, the MLC can classify classl with a higher classification accuracy 
(Figure 2.6-2a), while the BPNNC can classify class2 better (Figure 2.6-2b). 

2.4.4 Classification and pairwise comparison of the BPNNC, MLC and PPC 

The optimised BPNNC has the highest classification accuracies, the MLC produces 
intermediate classification accuracies, while the PPC has the lowest accuracies (Table 
2.4). When viewed as classified images, Figure 2.7 highlights the performance of the 
three classifiers on classification of the simulated data sets as well as the remotely 
sensed imagery (Figures 2.7 (la, 2a, and 3a for the BPNNC; lb, 2b, and 3b for the MLC; 
lc, 2c, and 3c for the PPC)). The BPNNC (at the error level of 0.005, with 2500 sample 
sizes and 6 hidden nodes) can separate two no-overlap classes with an accuracy of 
100%. The BPNNC (at the system error level of 0.027, with 2500 samples and 9 hidden 
nodes, and with a combination of momentum and learning rate of 0.5/0.7) produced 
the highest classification accuracy of 97.32% for two simulated classes with overlap. 
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The highest classification accuracy, 83.47%, for the remotely sensed imagery with 5 
ground cover classes was obtained by the BPNNC (at the system error level of 0.1, with 
9 hidden nodes, and with momentum of 0.01 and learning rate of 0.001. The PPC 
produced many unclassified pixels for both simulated data sets and remotely sensed 
imagery. 
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Figure 2.6 Response of the backpropagation neural network classifier (BPNNC), maximum 
likelihood classifier (MLC) and parallelepiped classifier (PPC) to the different sizes of training 
sample sets for the simulated data sets. Note that BPNNC has a system error level of 0.005 for the 
"no overlap" situation and of 0.03 for the "overlap" situation. 

In this study, under all three overlap situations (e.g. two simulated classes with no 
overlap, two simulated classes with simple overlap, and five classes with more 
complicated overlap), Z statistic tests show that both the optimised BPNNC and MLC 
produced significantly higher accuracies than the PPC, and the BPNNC was 
significantly better than the MLC (Table 2.5). 
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Table 2.4 The classification accuracies of the three classifiers: the optimised backpropagation neural 
network classifier (BPNNC), the maximum likelihood classifier (MLC) and the parallelepiped classifier 
(PPC) 

Classifier 

Optimised BPNNC 
MLC 
PPC 

Simulated data sets* 
Two classes Two classes 

with with 
no overlap simple overlap 

100.00 97.32 
99.47 96.55 
81.96 77.64 

Remotelv sensed imagery 
Five classes 

with 
more complicated overlap 

83.47 
81.35 
54.13 

' all results from the training set with 2500 samples per class. 

Table 2.5 Pairwise comparison using Z-statistic between the confusion matrices for the three classifiers: 
the optimised backpropagation neural network classifier (BPNNC), the maximum likelihood classifier 
(MLC) and the parallelepiped classifier (PPC). 

Pairwise 
comparison 

BPNNC-MLC 
BPNNC-PPC 
MLC-PPC 

Z for simulated data sets 
Two classes 

with 
no overlap 

7.3990 * 
46.9158 * 
44.7468 * 

Two classes 
with 

simple overlap 
3.1609 * 

44.0775 * 
41.6100 * 

Z for remotelv sensed imagery 
Five classes 

with 
more complicated overlap 

2.7685 * 
32.3173 * 
29.0271 * 

" with significant difference at 95% C.I. (if Zt >1.96). 

2.5 Discussion 

One important result of this study is that the BPNNC can separate the two "no 
overlapping" classes in feature space, while the MLC and PPC cannot. Since a decision 
hyper plane can be formed by the neural network between two classes (Richards 1993), 
just like the MLC and PPC (see Figure 2.1), theoretically, the neural network should be 
able to classify two non-overlapping classes with an overall accuracy of 100% if the 
neural network is well trained. Our experimental result confirmed this description of 
Richards' (1993). With an increase of the overlap degree in feature space, the 
classification accuracy decreases for all three classifiers (BPNNC, MLC and PPC). But 
the BPNNC can be relatively well-trained and optimised to produce a significantly 
better classification result than the MLC and PPC. 

The simplified Skidmore et al. Ri value can indicate the overlap degree between two 
classes in feature space. According to Richards (1993), a ]M distance of 2.0 implies that 
the classes may be discriminated with an accuracy of 100%. Based on this, the JM 
values in table 3a show that the classes may not be discriminated for the "no overlap" 
situations, which is not the case according to our result discussed previously. However, 
if we look at the simplified Skidmore et al. Ri values, the "no overlap" situation has a Ri 
value equal to 1.0, correctly indicating there is no overlap between two classes. Thus, 
the JM distance informs a user on how well two classes may be classified, but gives no 
information about the degree of overlap. When remotely sensed imagery (Landsat TM 
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and SPOT-panchromatic), with a more complicated overlap situation among five 
classes, was investigated, the highest simplified Skidmore et al.'s Ri values for the 
forest and pasture classes indicated that these two classes, based on the sample set, do 
not overlap with any other classes in feature space. The "built-up area" class has a high 
level of overlap with other classes in feature space due to its lowest Rz-value of 0.897 
and JM-value of 1.506. Since both the simplified Skidmore et al.'s Ri value and the JM 
distance are calculated from the sample set, the sample design (i.e. size of sample set, 
position of samples, representative of samples) will influence the accuracy of the Ri 
value and the JM distance. 
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Figure 2.7 The classified images from the backpropagation neural network classifier 
(BPNNC), maximum likelihood classifier (MLC) and parallelepiped classifier (PPC) for 
both simulated data sets and remotely sensed imagery. The left column is the outputs from 
BPNNC, the middle column from MLC, and the right column from PPC. 
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The parameters of the BPNNC do influence the classification accuracy, especially, the 
total system error level. The system error level represents a distance between the 
network output and the defined target, therefore, a large system error gives a wide 
range of variance for similar feature patterns to be trained and classified. Few studies of 
neural network applications provide clear criteria for defining the system error level. 
Skidmore et al. (1997) found that the total system error is inversely correlated with the 
percentage of correct training data, but is not correlated with the test accuracy. The 
result of this study shows that low system error produces higher classification 
accuracy. The proper number of hidden nodes and the combination of momentum 
coefficient and learning rate requires more experimentation. Gong et al. (1997) 
recommended terminating the neural network training after reaching the best overall 
accuracy. 

Turning now to the response of individual classifiers to the simulated two classes with 
overlap in the feature space, it has been shown that the MLC classifies classl with a 
high accuracy, while the BPNNC yields better accuracy with class2. The MLC is a 
parametric method which utilises the mean and standard deviation of each band. 
Therefore, as classl covers a large spectral range, the MLC can classify classl better 
using the shortest Mahalanobis distance and also decides its lower accuracy in 
classifying class2 due to its decision rule (see Figure 2.1b). A similar result was also 
obtained by Downey et al. (1992), who found that the neural network classifier 
achieved accuracies of 90.59% and 12.49% for woodland and cropland classes 
respectively compared to 34.99% and 66.46% for the same two classes using the MLC. It 
implies that integrating two classifiers together in a hybrid system may produce higher 
classification accuracy because they compensate for each other. 

2.6 Conclusion 

Overlap of training classes in feature space produces misclassification by the BPNNC, 
MLC and PPC for both simulated data and remotely sensed imagery. Experiments 
based on the simulated data sets show that the BPNNC and MLC have different 
accuracies in mapping two classes. A well-trained neural network classifies the 
simulated data sets significantly better than the MLC, and the BPNNC successfully 
discriminates between two spectrally discrete classes when using the simulated data 
set. Classification of remotely sensed imagery (Landsat TM and SPOT-panchromatic) 
shows again that there is a significant difference between the BPNNC and MLC, and 
both are significantly better than the PPC. 
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CHAPTER 3 Optimising Mapping Algorithms and 
Two Integrated Classifiers for Mapping * 

Abstract 

Classifiers, used to recognise patterns in remotely sensed images, have complementary 
capabilities. This study tests whether integrating the individual classifiers or the results 
from individual classifiers improves classification accuracy. Two integrated approaches 
were undertaken. One approach uses a consensus builder to adjust classification output 
in the case of a discrepancy in classification between maximum likelihood, expert 
system and neural network classifiers. When the output classes differed, the producer 
accuracies for each class were compared and the class with the highest producer 
accuracy was selected to represent the pixel. The consensus builder approach did not 
produce a map with statistically significantly higher accuracy when compared with the 
backpropagation neural network classifier, but it did significantly better than the 
maximum likelihood and the expert system classifiers. A second approach integrates 
the output of a rule-based expert system with a neural network classifier (ESNNC); this 
is a new technique in the field of image processing. The ESNNC approach produced 
maps with the highest accuracy. 

Key Words: integrated, neural network, expert system, consensus builder, mapping 
accuracy 
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Two integrated classifiers improve the accuracy of land cover mapping. ISPRS 
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3.1 Introduction 

Different classification algorithms produce different results even with the same training 
sets (Benediktsson et al. 1990b, Benediktsson et al. 1990a, Hepner et al. 1990, Key et al. 
1990, Bischof et al. 1992, Kanellopoulos et al. 1992, Civco 1993, Paola and Schowengerdt 
1994, Solaiman and Mouchot 1994, Skidmore et al. 1997, see also Chapter 2). For some 
application fields, neural network classifiers yield better results, while for other 
applications a statistical classifier (such as the maximum likelihood classifier) performs 
better (Kanellopoulos et al. 1993). For example, Brown et al. (1998) applied the 
backpropagation neural network classifier (BPNNC) and the maximum likelihood 
classifier (MLC) to classify glaciated landscapes. The BPNNC mapped rare classes with 
a high accuracy, whereas the overall pattern (of all classes) was better reproduced with 
the MLC. Brown et al. (1998) analysed the reasons for different results produced by the 
MLC and BPNNC and surmised that because of the statistical nature of the MLC, the 
spatial auto-correlation patterns that were fairly strong in the original variables were 
maintained in the classification. In comparison, the spatial structure of the BPNNC 
output reflects its non-linearity, so the BPNNC is sensitive to slight variations in the 
inputs, resulting in less spatially coherent output patterns. Such conclusions require 
further testing and analysis, as the cause of differences in accuracy between classifiers 
is not completely understood (Fierens et al. 1994). 

It has been shown that no image processing classifier is perfect (Matsuyama 1987). 
However, classifiers may also be assumed to have complementary capabilities 
(Matsuyama 1987). Therefore, a useful and practical approach for optimising 
classification performance is to combine classifiers in order to increase classification 
accuracy (Kanellopoulos et al. 1993, Brown et al. 1998). 

Combined methods can take advantage of two or more lines of evidence based on 
different algorithms. For instance, a combination of the MLC and BPNNC may use the 
ability of the MLC to identify the overall pattern and the ability of the BPNNC to 
discern fine details. Lu (1996) integrated classification results derived from individual 
classifiers using the Dempster-Shafer theory of evidence. In another integrated 
classification method, Kanellopoulos et al. (1993) used a second BPNNC to train only 
those pixels where there was a discrepancy between classes produced by the MLC and 
the first BPNNC. The combined classifier had an improved performance compared 
with the single classifiers. Ho et al. (1994) used class set reduction and reranking 
methods to combine different classifiers. Another approach is to sum the class 
membership values for each class derived from different methods and to assign the 
class to the pixel with the highest combined value (Brown et al. 1998). 

In the field of pattern recognition, multiple classifier systems have proven to be a 
powerful solution for difficult pattern recognition problems involving large class sets 
and noisy input, for example, handwriting recognition (Ho et al. 1994, Brown et al. 
1998). Achieving an optimal organisation is a challenging and open problem (Ho et al. 
1994). Research on integration of classifiers is still at an early stage and much more 
exploration needs to be done (Kanellopoulos et al. 1993). This study tests whether two 
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new integrated approaches (viz. 1. a consensus builder system; 2. a combined expert 
system and neural network system) can improve classification accuracy. 

3.2 Description of classifiers 

3.2.1 Three individual classifiers 

The maximum likelihood classifier (MLC) is a well-known parametric method. It is 
based on the assumption that the data may be modelled by a set of multivariate normal 
distributions (Gaussian). With statistical parameters, a changed "Mahalanobis 
Distances" can be calculated. Details of the MLC can be found in Tou and Gonzalez 
(1974) and Richards (1993). The decision rule of the MLC is that the shortest modified 
"Mahalanobis Distance" to a class mean for a pixel will define the pixel to that class. 
This distance can represent the probability of a given pixel value being a member of a 
particular class. This algorithm looks at the shape, size and orientation of the training 
sample locations. If the assumption of a normal distribution (in feature space) for each 
class training area is correct, then the classification has a minimum overall probability 
of error and the MLC is the optimal choice (Swain 1978, Paola and Schowengerdt 1994). 
However, the distribution of each training set is sometimes not normal. 

The second individual classifier considered in this study is the standard 
backpropagation neural network classifier (BPNNC). The advantages of the BPNNC 
include (Paola and Schowengerdt 1995, Skidmore et al. 1997, Openshaw and Openshaw 
1997): (1) non-parametric nature, (2) arbitrary decision boundary capabilities to manage 
nonlinear modelling tasks, (3) easy adaptation to different types of data and input 
structures, (4) capability of identifying subtle patterns in training data, (5) fuzzy output 
values, (6) good generalisation of the input data, (7) capability to process noisy data. 

There are two stages involved in the BPNNC: the training stage and the classification 
stage. The network system is trained until the targeted system error is achieved 
between the desired and actual outputs of the network. Once training is complete, the 
trained system is used for classification. This algorithm is a popular learning method 
capable of handling very large data sets. The backpropagation algorithm minimises the 
error function in weight space using the method of gradient descent or convergence 
(Rojas 1996). Details of the BPNNC may be found in Richards (1993), Demuth and Beale 
(1994) and Skidmore et al. (1997). Problems with the BPNNC include difficulties that 
the user faces in deciding the input parameters, as well as the output from a BPNNC 
being stochastic, due to the starting network weights being chosen randomly 
(Skidmore et al. 1997). 

The third individual classification system used in this study is the expert system 
classifier (ESC), also known as a knowledge-based system. Both the ESC and BPNNC 
have been used to integrate information from geographical information systems (GIS) 
during the image understanding process (Wilkinson et al. 1992). Expert or knowledge-
based methods differ quite considerably from neural networks although they are often 
grouped together as "artificial intelligence" (Al) techniques (Wilkinson et al. 1992). The 
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expert system structures vary widely. However, they have been characterised by two 
components (Forsyth 1989, Skidmore 1989, Skidmore et al. 1996b): the "knowledge 
base" to store expert knowledge and rules, and the "inference engine" which processes 
the system. Two other components are also important, "a knowledge-acquisition 
module" and "an explanatory interface". The inference engine may be based on the 
Dempster-Shafer model of evidence integration to combine the individual pieces of 
"evidence" (Wilkinson et al. 1992), or a rule-based model through Bayesian probability 
reasoning (Skidmore 1989, Skidmore et al. 1996b). 

The Bayesian method is based on a well-understood technique from probability theory 
and is the most widely used approach in dealing with uncertainty (Lu 1996). The basis 
of the Bayes' algorithm is that the likelihood of a hypothesis occurring given a piece of 
evidence, may be thought of as a conditional probability (Skidmore et al. 1996b). 
Attributes of the raster cell of the data layers are input to the system and matched with 
the information in the knowledge base. An expert system then infers the most likely 
class at a given cell, using Bayes' Theory. It is commonly applied in remote sensing 
where topographic information provides a priori probabilities of a pixel containing a 
given vegetation type, and then spectral information is used to revise these 
probabilities, resulting in improved vegetation cover classification accuracy (Strahler et 
al. 1978, Richards et al. 1982, Pereira and Itami 1991). Details of how the Bayesian 
expert system works may be found in Forsyth (1989) and Skidmore (1989). 

However, the Bayesian approach has been criticised for requiring a user to assign a 
priori probability to every event subjectively (Lu 1996), thereby taking a long time to 
develop the rule base. However, this method of data base creation appears to be best 
for user comprehension and transparency. It is also possible that an expert system 
could be used in combination with a neural network. Such a concept of an integrated 
neural network and expert system has already been suggested outside of the remote 
sensing field (Caudii 1990, Wilkinson et al. 1992). 

3.2.2 Two new integrated classifiers 

The consensus builder (CSB) uses classification results (specifically the producer 
accuracies of classifiers) to improve map accuracy (Figure 3.1a). The producer accuracy 
is the proportion of the correctly classified pixels in a class to the total pixels of that 
class in the reference data (Congalton 1991). The outputs of the three individual 
classifiers (MLC, ESC and BPNNC) are input into the CSB. The first phase of the 
algorithm checks whether the same class is predicted for a given grid cell (conditionl). If 
conditionl is satisfied, the CSB accepts the class for the pixel (decisionl). If the result does 
not satisfy conditionl, then the CSB uses condition! to check whether there is an 
agreement among any two of three classifiers. If the CSB finds such an agreement, 
decisionl is used to accept the class for that pixel. If three classifiers have completely 
different results for a certain pixel {conditions), the producer accuracies are used to 
make a judgement. The class with the highest producer accuracy is taken as the output 
of the CSB for that pixel {decision!). 
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The integrated expert system and neural network classifier (ESNNC) includes two 
parts (Figure 3.1b). The first part of the ESNNC is a cascaded classification system 
(ESNNC1). The output of the rule-based expert system is used as an extra information 
layer for the neural network. Then, the producer accuracies of ESC and ESNNC1, as 
well as some additional expert rules, are used to re-judge the output at the second part 
(ESNNC2). 

MLC 
output 

a. System of a consensus builder (CSB). 
Conditionl - when three classifiers all agree. 
Condition2 - when any two of three agree. 
Decisionl - assign the class with agreement. 
Decision2 - assign the class with the highest 

producer accuracy. 

b. System of an integrated expert system 
and neural network classifier (ESNNC). It 
includes two parts: ESNNC1 and 
ESNNC2. 

Figure 3.1 Two integrated classifiers: a 
system and neural network classifier. 

a consensus builder, and b - an integrated expert 

3.3 Study area 

The study area is situated in the Overijssel Province of the eastern Netherlands (see 
Figure 3.2). Singh et al. (1996) have described the area in detail. It lies between 52°26'30" 
and 52°30' north latitude and 6°21'30" and 6°27'30" east longitude. Temperature ranges 
from 10 °C to 33 °C during summer and from -11 °C to 10 °C during winter. The mean 
annual rainfall varies from 700 to 725 mm in the area. The area has an undulating hilly 
terrain with an altitude of 5 to 80 m above mean sea level. The study area consists of 
two hills mostly covered with forest and heath, which are surrounded by alluvial 
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plains used mainly for intensive agricultural production. Agricultural fields are also 
found along the gently sloping hillsides. Soils in the area are mainly sandy with the 
hills having coarser sands than the plains. Agricultural soils are reclaimed from 
marshland in the lower plains where the water table is high. 

Eleven land cover classes were obtained based on visual interpretation of the aerial 
photographs and field survey: pine forest (PF), mixed forest with other conifer and 
deciduous broadleaf trees (MF), open woodland (OW), heath (H), grass (G), bare soil 
(BS), pasture (P), arable land (A), built-up area (B), road (R), and water (W). 

Figure 3.2 The study area consists of two hills called Lemelerberg and Archemerberg in the 
Netherlands. 

3.4 Methods 

3.4.1 Data preparation 

Remote sensing data including Landsat TM images (1995) and a SPOT panchromatic 
image (1997) were used as input to the classifiers. Ancillary GIS data include elevation, 
slope gradient and aspect, soil type and terrain type, which were georeferenced to the 
same coordinate system (UTM) as the remotely sensed imagery. Both the remotely 
sensed and ancillary data were resampled to a pixel size of 10 m by 10 m. From aerial 
photographs, obtained in 1995 and 1997, sample areas, including training and testing 
sets, were selected and checked in the field with recording the land cover types. 

Highly correlated data layers were excluded from the analysis in order to reduce the 
data, and ease the expert knowledge extraction bottleneck discussed above. Table 3.1 
shows the correlation coefficients between pairs of data layers. The threshold value for 
excluding correlated data layers was subjectively set at r2=0.75 for RS data layers (Table 
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3.1a) and r2=0.65 for GIS data layers (Table 3.1b), resulting in six data layers being 
selected for the study (i.e. SPOT-panchromatic, Landsat TM2 and TM4, elevation, slope 
aspect and soil type). 

Table 3.1 Correlation analysis of data layers. 
a: correlation analysis of remotely sensed data layers 

SPOT-PAN TM1 TM2 TM3 TM4 TM5 TM7 
SPOT-PAN 1.00 
TM1 
TM2 
TM3 
TM4 
TM5 
TM7 

0.68 
1.00 

0.71 
0.88 
1.00 

0.72 
0.90 
0.94 
1.00 

0.31 
0.37 
0.56 
0.42 
1.00 

0.69 
0.68 
0.77 
0.77 
0.55 
1.00 

0.74 
0.84 
0.84 
0.89 
0.36 
0.85 
1.00 

b: correlation analysis of other GIS data layers 

Slope aspect Elevation Slope gradient Soil type Terrain type 
Slope aspect 
Elevation 
Slope gradient 
Soil type 
Terrain type 

1.00 -0.29 
1.00 

-0.34 
0.65 
1.00 

-0.04 
-0.17 
-0.09 
1.00 

0.26 
-0.78 
-0.67 
0.19 
1.00 

Expert knowledge is central to the operation of the ESC (Skidmore 1989). The 
estimation of the a priori probabilities for the expected classes and the initial conditional 
probabilities for all the evidence (i.e. the selected data layers) need to be estimated 
before running the ESC. They were extracted from the expertise and knowledge from 
ground survey (Table 3.2). 

3.4.2 Classification and testing 

Following data preparation, classification by the three individual classifiers and two 
new integrated classifiers were executed using the same input data layers and training 
sample sets. The ESC did not depend on the training sample sets since it is based on the 
expert knowledge and Bayesian probability reasoning. All the experiments of the 
BPNNC are based on the experience obtained from work in Chapter 2. 

The three-layer BPNNC was implemented by using a neural network package in PCI 
software (PCI 1998). It was configured with 6 input nodes, 8 hidden nodes and 11 
output nodes. The parameters of learning rate, momentum and total system error were 
set at 0.001, 0.01 and 0.5 respectively, based on the experimental results suggested by 
Skidmore et al. (1997). The MLC was executed in IMAGINE (ERDAS 1991). The ESC 
and CSB were developed for this study in IDL (Interactive Data Language) (RSI 1997). 

The accuracies of the output maps produced by the different classifiers were estimated 

using the overall accuracy and Kappa or KHAT statistic (Cohen 1960, Congalton 1991). 
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Cohen (1960) described a Z test, based on the Kappa value, to check whether there is a 
statistically significant difference between two error matrices. 

Table 3.2 Expert knowledge extraction from data layers for the expert system classifier. 
a: a priori probabilities estimation for the expected classes 

Classes PF MF OW H BS R 
Probability 0.18 0.14 0.08 0.06 0.03 0.01 0.21 0.16 0.08 

b: Initial conditional probabilities estimation for the selected data layers 

Ele. 
(m) 

Asp. 

Soil 
type 

SPP 

4-7 
7-11 
11-17 
17-31 
31-41 
41-56 
56-82 
NE 
ES 
SW 
WN 
NO 
1 
2 
3 
4 
5 
6 
7 
8 
9 
32-40 
41-50 
51-60 
61-80 
81-122 

0.01 
0.2 
0.2 
0.8 
0.9 
0.8 
0.3 
0.8 
0.8 
0.8 
0.8 
0.3 
0.01 
0.01 
0.01 
0.4 
0.5 
0.01 
0.9 
0.8 
0.4 
0.9 
0.3 
0.01 
0.01 
0.01 

0.01 
0.4 
0.5 
0.6 
0.6 
0.8 
0.6 
0.7 
0.7 
0.7 
0.7 
0.2 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.8 
0.8 
0.3 
0.8 
0.2 
0.01 
0.01 
0.01 

0.01 
0.01 
0.7 
0.7 
0.7 
0.6 
0.6 
0.8 
0.01 
0.01 
0.8 
0.01 
0.01 
0.01 
0.01 
0.01 
0.3 
0.01 
0.8 
0.7 
0.01 
0.05 
0.8 
0.1 
0.01 
0.01 

0.01 
0.01 
0.1 
0.3 
0.5 
0.9 
0.5 
0.8 
0.9 
0.6 
0.1 
0.5 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.9 
0.9 
0.01 
0.1 
0.9 
0.1 
0.01 
0.01 

0.01 
0.01 
0.05 
0.1 
0.5 
0.7 
0.9 
0.7 
0.6 
0.8 
0.8 
0.5 
0.9 
0.01 
0.01 
0.01 
0.01 
0.01 
0.9 
0.01 
0.01 
0.1 
0.9 
0.2 
0.01 
0.01 

0.01 
0.8 
0.01 
0.01 
0.01 
0.8 
0.05 
0.1 
0.1 
0.8 
0.8 
0.1 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.8 
0.8 
0.01 
0.01 
0.01 
0.01 
0.01 
0.9 

0.9 
0.6 
0.2 
0.01 
0.01 
0.01 
0.01 
0.1 
0.3 
0.5 
0.1 
0.9 
0.01 
0.8 
0.7 
0.7 
0.01 
0.8 
0.01 
0.7 
0.5 
0.01 
0.9 
0.3 
0.01 
0.01 

0.2 
0.6 
0.8 
0.7 
0.01 
0.01 
0.01 
0.1 
0.2 
0.9 
0.1 
0.5 
0.01 
0.7 
0.01 
0.01 
0.01 
0.01 
0.5 
0.5 
0.9 
0.01 
0.05 
0.9 
0.9 
0.01 

0.01 
0.9 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.7 
0.4 
0.01 
0.9 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.9 
0.9 
0.01 
0.01 
0.9 
0.4 
0.01 

0.01 
0.9 
0.5 
0.01 
0.01 
0.01 
0.01 
0.01 
0.9 
0.8 
0.01 
0.5 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.9 
0.9 
0.01 
0.01 
0.9 
0.01 
0.01 

0.9 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.9 
0.01 
0.9 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.9 
0.9 
0.01 
0.01 

TM2 

13-17 
18-23 
24-35 
36-39 

0.9 
0.05 
0.01 
0.01 

0.8 
0.05 
0.01 
0.01 

0.3 
0.9 
0.01 
0.01 

0.4 
0.9 
0.01 
0.01 

0.01 
0.9 
0.6 
0.05 

0.01 
0.01 
0.3 
0.9 

0.05 
0.9 
0.05 
0.01 

0.05 
0.9 
0.3 
0.01 

0.01 
0.9 
0.01 
0.01 

0.8 
0.7 
0.01 
0.01 

0.05 
0.9 
0.01 
0.01 

14-25 
26-35 
36-45 
46-55 
56-67 

0.9 
0.1 
0.01 
0.01 
0.01 

0.01 
0.9 
0.1 
0.01 
0.01 

0.03 
0.9 
0.03 
0.01 
0.01 

0.2 
0.8 
0.01 
0.01 
0.01 

0.01 
0.01 
0.8 
0.5 
0.05 

0.01 
0.05 
0.05 
0.3 
0.9 

0.01 
0.01 
0.3 
0.9 
0.5 

0.9 
0.8 
0.4 
0.01 
0.01 

0.2 
0.8 
0.05 
0.01 
0.01 

0.05 
0.9 
0.01 
0.01 
0.01 

0.7 
0.5 
0.01 
0.01 
0.01 

Ele.-elevation, Asp.-aspect, SPP-SPOT-panchromatic, TM-Landsat Thematic Mapper. PF-pine forest, 
MF-mixed forest (other coniferous and deciduous broadleaf species), OW-open woodland, H-heath, G-
grass on hill, BS-bare soil on hill, PL-pasture in the plain area, A-arable land in the plain area, B-built-
up area, R-road, W-water. 

3.5 Results 

Table 3.3 includes all error matrices from the two integrated algorithms (labelled "a" 
and "b" respectively for the error matrices of the ESNNC and CSB) and the three 
individual classifiers (labelled "c", "d" and "e" respectively for the error matrices of the 
BPNNC, ESC, MLC). The classified images are shown in Figure 3.3 with the same label 
sequence from "a" to "e". 
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Chapter 3 

Table 3.3 Error matrices of the integrated expert system and neural network classifier (ESNNC), the consensus 
builder (CSB), the backpropagation neural network classifier (BPNNC), the expert system classifier (ESC) and the 
maximum likelihood classifier (MLC). Note: PF-pine forest, MF-mixed forest with deciduous broadleaf and other 
conifer tree species, H-heath, G-grass, BS-bare soil, P-pasture, A-arable land, B-built-up area, R-road, W-water, OW-
open woodland, PRA-producer accuracy, and OVA-overall accuracy. 

a: 
ESNNC 

PF 
MF 

o H 
c G 
I BS 
S p 
£ A 

S B 
" R 

W 

ow 

PF 
84 
6 
0 
0 
0 
0 
0 
0 
0 
0 
4 

MF 
3 
57 
0 
1 
0 
0 
0 
0 
0 
2 

4 

H 
0 
0 
65 
0 
2 
0 
0 
0 
0 
0 
7 

G 
0 
0 
0 
89 
0 
0 
0 
0 
0 
0 
7 

BS 
0 
0 
0 
0 
81 
0 
0 
0 
0 
0 
0 

P 
0 
0 
0 
0 
0 
63 
0 
7 
6 
0 

0 

From Image 
A 
0 
0 
0 
0 
0 
0 
78 
0 
7 
18 
0 

Classification 

B 
0 
3 
0 
0 
0 
0 
1 
66 
19 
0 
8 

R 
0 
0 
0 
0 
0 
0 
1 
17 
34 
2 
1 

W 
0 
0 
0 
0 
0 
0 
0 
0 
3 
53 
0 

OW 
3 
3 
25 
0 
7 
0 
0 
0 
5 
0 
32 

PRA 
0.93 
0.83 
0.72 
0.99 
0.90 
1.00 
0.97 
0.73 
0.46 
0.71 

0.51 

Average PRA 
=80% 

OVA=80% 

B: 
CSB 

.u c 
£ 

E 
o 
u" 

PF 
MF 
H 
G 
BS 
P 
A 
B 
R 
W 
OW 

PF 
82 
2 
1 
0 
0 
0 
0 
0 
0 
0 
5 

MF 
8 
67 
0 
0 
0 
0 
0 
0 
0 
0 
5 

H 
0 
0 
74 
0 
1 
0 
0 
0 
0 
0 
21 

G 
0 
0 
1 
80 
0 
0 
0 
0 
0 
0 
13 

BS 
0 
0 
7 
0 
87 
0 
0 
0 
0 
0 
1 

P 
0 
0 
0 
10 
0 
63 
0 
10 
16 
4 
0 

From Image 
A 
0 
0 
0 
0 
2 
0 
78 
18 
15 
15 
9 

Class 

B 
0 
0 
0 
0 
0 
0 
0 
26 
6 
0 
5 

fication 

R 
0 
0 
0 
0 
0 
0 
2 
34 
24 
10 
3 

W 
0 
0 
0 
0 
0 
0 
0 
2 
3 
46 
0 

OW 
0 
0 
7 
0 
0 
0 
0 
0 
10 
0 
1 

PRA 
0.91 
0.97 
0.82 
0.89 
0.97 
1.00 
0.97 
0.29 
0.32 
0.61 
0.02 

Average PRA 
=71% 

OVA-72% 

C: 
BPNNC 

PF 
MF 

* H 
c G 
S BS 

£ P 
E A 

S B 
"• R 

W 
OW 

PF 
77 
5 
1 
0 
0 
0 
0 
0 
0 
0 
8 

MF 
6 
64 
0 
3 
0 
0 
0 
0 
0 
0 
2 

H 
0 
0 
72 
0 
0 
0 
0 
0 
0 
0 
17 

G 
0 
0 
1 
80 
0 
0 
0 
0 
0 
0 
12 

BS 
0 
0 
0 
0 
90 
0 
0 
0 
0 
0 
1 

P 
0 
0 
0 
6 
0 
63 
0 
7 
6 
0 
0 

From Image 
A 
0 
0 
0 
0 
0 
0 
60 
2 
8 
0 
0 

Classifica 

B 
0 
0 
0 
0 
0 
0 
2 
39 
7 
0 
17 

ion 
R 
0 
0 
0 
0 
0 
0 
7 
40 
31 
10 
3 

W 
4 
0 
0 
0 
0 
0 
11 
2 
11 
65 
0 

OW 
3 
0 
16 
1 
0 
0 
0 
0 
11 
0 
3 

PRA 
0.86 
0.93 
0.80 
0.89 
1.00 
1.00 
0.75 
0.43 
0.42 
0.87 
0.05 

Average PRA 
=73% 

OVA=74% 

D: 
ESC 

£ 
•3 

• V 

PF 
MF 
H 
C 
BS 
P 
A 
B 
R 
W 
OW 

PF 
66 
0 
26 
0 
0 
0 
0 
0 
3 
(1 
4 

MF 
14 
56 
2 
0 
19 
0 
0 
0 
1 
0 
9 

H 
7 
7 
40 
12 
14 
0 
0 
0 
0 
0 
4 

G 
0 
0 
0 
67 
2 
0 
0 
0 
0 
0 
3 

BS 
0 
0 
0 
0 
15 
0 
0 
0 
0 
0 
0 

P 
0 
0 
0 
8 
0 
63 
0 
4 
10 
4 
0 

From In 
A 
0 
0 
0 
3 
34 
0 
79 
33 
41 
18 
11 

age Classification 
B 
0 
6 
0 
0 
2 
0 
1 
53 
15 
0 
7 

R 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

w 
0 
0 
0 
0 
0 
0 
0 
0 
3 
53 
0 

OW 
3 
0 
22 
0 
4 
0 
0 
0 
1 
0 
25 

PRA 
0.73 
0.81 
0.44 
0.74 
0.17 
1.00 
0.99 
0.59 
0.00 
0.71 
0-40 

Average PRA 
=60% 

OVA=59% 

E: 
MLC 

PF 
MF 

0J H 

c G 
£ BS 
£ P 
£ A 

2 U 
"" R 

W 

ow 

PF 
83 
9 
1 
0 
0 
0 
0 
0 
0 
0 
1 

MF 
7 
54 
0 
0 
0 
0 
0 
0 
0 
6 
1 

H 
0 
0 
67 
0 
1 
0 
0 
0 
0 
0 
35 

G 
0 
6 
1 
83 
0 
0 
0 
1 
2 
0 
16 

BS 
0 
0 
7 
0 
82 
0 
0 
3 
1 
0 
0 

P 
0 
0 
0 
6 
0 
63 
0 
13 
16 
2 
0 

From 
A 
0 
0 
0 
0 
7 
0 
69 
6 
1 
0 
0 

Image Classification 
B 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

R 
0 
0 
1 
0 
0 
0 
11 
67 
42 
63 
9 

W 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

OW 
0 
0 
13 
1 
0 
0 
0 
0 
12 
4 
1 

PRA 
0-92 
0.78 
0.74 
0.92 
0.91 
1.00 
0.86 
0-00 
0-57 
0.00 
0.02 

Average PRA 
=61% 

OVA=62% 
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The integrated ESNNC produces the highest overall accuracy of 80 percent as well as 
the highest producer accuracies (Table 3.3a and Figure 3.3a) when compared to the CSB 
and three individual classifiers. The CSB yielded an overall accuracy of 72 percent 
(Table 3.3b and Figure 3.3b); slightly lower than the BPNNC (Table 3.3c and Figure 
3.3c) but higher than the ESC (Table 3.3d and Figure 3.3d) and the MLC (Table 3.3e and 
Figure 3.3e). The BPNNC incorrectly mapped the "water" class in the south-western 
corner of the study area, but was corrected by the CSB approach. The "built-up area" 
class output from the CSB exhibits an obviously different pattern compared with the 
three individual classifiers. 

Among the individual classifiers, the BPNNC produced the highest overall accuracy of 
74 percent, followed by the MLC with an overall accuracy of 62 percent and the ESC of 
59 percent. The BPNNC classification appears similar to the output of the ESNNC. 
Table 3.4 summarises the overall accuracy, Kappa value and Kappa variance for the 
different classifiers. The ESNNC has the highest Kappa value and the smallest Kappa 

Using the values in Table 3.4, pairwise comparisons (using the Z statistic test) of the 
three individual and the two combined classifiers show that there are significant 
differences between the integrated ESNNC and the other four classifiers (Table 3.5). 
There are also significant differences between the CSB, MLC as well as the ESC. 

In summary, the backpropagation neural network classifier (BPNNC) has a higher 
accuracy than both the traditional maximum likelihood classifier (MLC) and the rule-
based expert system classifier (ESC), whilst the combined ESNNC produces the highest 
mapping accuracy. 

Table 3.4 Overall mapping accuracies, Kappa values and Kappa variances from different 
classifications. 

Integrated expert system and neural 
network classifier (ESNNC) 
Backpropagation neural network classifier 
(BPNNC) 
Consensus builder (CSB) 
Maximum likelihood classifier (MLC) 
Expert system classifier (ESC) 

Overall accuracy 
0.80 

0.74 

0.72 
0.62 
0.59 

Kappa value 
0.78 

0.71 

0.69 
0.58 
0.55 

Kappa variance 
0.00024 

0.00025 

0.00026 
0.00031 
0.00031 

Table 3.5 Z statistics for pairwise comparison between any two of five classifiers: integrated expert 
system and neural network classifier (ESNNC), consensus builder (CSB), backpropagation neural 
network classifier (BPNNC), expert system classifier (ESC) and maximum likelihood classifier (MLC). 

ESNNC BPNNC CSB MLC ESC 

1.26 

ESNNC 
BPNNC 
CSB 
MLC 
ESC 

-
3.33* 
4.27* 
8.80* 

10.17* 

-
0.94 
5.45* 
6.77* 

-
4.49 
5.80 

* Significant difference at 95% C.I. 
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e: from MLC 

Figure 3.3 Classifier images from the integrated expert system and neural network classifier 
(ESNNC), consensus builder (CSB), backpropagation neural network classifier (BPNNC), expert 
system classifier (ESC) and maximum likelihood classifier (MLC). 
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3.6 Discussion 

In this study, two new methods for integrating individual classifiers were developed to 
improve mapping accuracy. For the CSB, the innovation is to take the producer 
accuracy of each classified pattern into account. In the ESNNC approach, the novel 
approach is to use the ESC output as an input layer to the BPNNC (e.g. represented by 
ESNNC1 in Figure 3.1b). Then, the producer accuracies of the classes produced by the 
ESC and ESNNC1, as well as the expert rules, were used to classify the ESNNC1 output 
in order to obtain the final map. 

The integrated ESNNC yielded the highest classification accuracy. The improvement in 
accuracy is attributed to the explicit knowledge of experts. The knowledge assists the 
neural network classifier in recognising "common-sense" relationships between output 
class and environmental variables (such as bare soil, open woodland etc) and these 
relationships form patterns in the final output map. The study also hints that more 
accurate and reasonable expert knowledge may allow the combined ESC and BPNNC 
to achieve an even higher mapping accuracy. This might be applied to mapping at 
Anderson-level-III (e.g. forest types) (Skidmore et al. 1997) and detecting vegetation-
based habitat types. Interestingly, the individual ESC classifier has the lowest overall 
accuracy of 59 percent, perhaps because knowledge remains poor in this study area. 

The information from different layers may be "diluted" in the process of classification 
by multiple classification methods. The classified image with the highest overall 
accuracy from the initial stage (ESNNC1) was improved by a final-stage correction, 
based on the output map of the expert system and some additional expert rules, 
thereby allowing the output patterns and expert rules to be re-emphasised in the final 
classification. Hutchinson (1982) proposed a similar post-classification technique to that 
implemented in this case. 

The combined CSB obtained an intermediate level mapping accuracy, between the 
BPNNC and the MLC. The CSB increases the chance for a certain pixel to belong to a 
certain class when there is an agreement on it between at least two classifiers. Where 
the three classifiers (BPNNC, MLC, ESC) assign different classes to a pixel, the decision 
taken based on the producer accuracy is a crisp decision, which may increase the 
possibility for assigning the correct class to a pixel, but may also cause an error when 
the overall accuracies of different classifiers have a large difference. This is, probably, a 
reason for the CSB obtaining an intermediate accuracy compared with the three 
individual classifiers, indicating that an integrated algorithm may not out-perform an 
individual classifier (Lu 1996). 

The classifiers overestimated the area of the "water" class - for example, it should not 
appear in the south-western corner of Figure 3.3c as well as in many places in the 
eastern side of the classified images (Figure 3.3-a, b, d). One possible explanation could 
be that there is a high water table in the flood plain, reducing the DN values of the 
remotely sensed images. 
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Both the ESC and BPNNC are more "expensive" algorithms than for example the 
classical MLC. The ESC requires time to extract and tune the knowledge in order to 
create rule bases, while the BPNNC requires hefty computer resources to train the 
system with the different configurations. Although both techniques have been criticised 
on this aspect, we explored the advantages of combining these techniques. 

3.7 Conclusions 

The classifiers tested in this study perform differently, and produce different 
classifications. The integrated approach, ESNNC, achieved the highest mapping 
accuracy and is significantly better than the integrated consensus builder classifier and 
the other three individual classifiers. It may be concluded that incorporating expert 
knowledge improves the classification accuracy of the neural network. 
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CHAPTER 4 Mapping the Giant Panda Habitat 
Using an Integrated Expert System and 

Backpropagation Neural Network Classifier * 

Abstract: 

For effective panda conservation, it is important to be aware of the extent and change 
over time of the spatial pattern of panda habitats. Mapping is an effective approach for 
wildlife habitat evaluation and monitoring. Little work has been done to map panda 
habitat with remote sensing and geographic information system (GIS). The application 
of recently developed artificial intelligence tools, including the expert system approach 
and the neural network approach, may have an impact on panda habitat mapping. 
Both allow the integration of qualitative and quantitative information for modelling 
complex systems and can be built into a GIS. This research builds, for the first time, a 
mapping approach for panda habitat assessment which integrates expert system and 
neural network classifiers and uses multi-type data within a GIS environment. Results 
show that both the ground-cover-based potential panda habitat and the suitability-
based panda habitat in Foping Nature Reserve are mapped with higher accuracy 
(above 80%) compared with non-integrated classifiers: expert system, neural network 
as well as maximum likelihood algorithms. Z-statistic test shows that the integrated 
expert system and neural network classifier (ESNNC) is significantly better than those 
non-integrated classifiers. 

Key words: expert system, neural network, remote sensing, GIS, integrated mapping 
algorithm, spatial analysis, panda habitat, Foping Nature Reserve, China. 
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4.1 Introduction 

Habitat is any spatial unit that can be occupied by an individual animal, no matter how 
briefly (Baker 1978). The condition of wildlife habitat types influences the species' 
distribution and performance, therefore, wildlife habitat evaluation has become a part 
of world biodiversity research as reflected by Miller's book (1994). Wildlife habitat 
evaluation requires recognising the environmental factors which relate to the organism 
under consideration, and generally includes four main research fields: habitat 
availability (Scepan et al. 1987, Sader et al. 1991) and utilisation (Johnson 1980, 
Augustine et al. 1995), habitat spatial pattern (Gustafson et al. 1994) and fragmentation 
(Tabarelli et al. 1999), habitat suitability rating (Prasad et al. 1991, Roy et al. 1995, 
Amuyunzu and Bijl 1996), and habitat change detection (Sader et al. 1991, Prasad et al. 
1994). 

Wildlife habitat mapping is an important aspect in these research fields. Mapping 
various wildlife habitat types provides data for inventory and analysis, and so provides 
the habitat manager with information for monitoring (Kerr 1986). There are several 
purposes to map wildlife habitat in wildlife habitat management (Cooperrider et al. 
1986): to show geographic locations and relationships of wildlife habitat types; to show 
community (types of habitat) interspersion; to quantify wildlife habitat types; to 
overlay wildlife habitat types with other resource inventories; and to provide 
geographic locations to record site-specific animal occurrence and use. Wildlife habitat 
mapping is similar to any type of land cover mapping (De Wulf et al. 1988). For 
instance, Thompson et al. (1980) mapped the caribou's habitat through delineating 
broad vegetation cover types, and Ferguson (1991) mapped the most important 
summer foraging habitat for muskoxen including the wet sedge meadow, graminoid 
tundra and graminoid/dwarf shrub tundra cover types. 

The giant panda (Ailuropoda melanoleuca) is an endangered animal species and 
surviving now in only six mountain regions in China. Over time, its forest-environment 
habitat has been reduced and fragmented. Although the shrinking of the panda's range 
is partially the result of climatic changes during the Pleistocene epoch, it has mostly 
been caused by people (Schaller 1993, Schaller et al. 1985, WNR and SNU 1987). The 
economic development and population explosion in China has increased the loss of 
panda habitat. Mapping of forest cover, by MacKinnon and De Wulf (1994), showed 
that the area of potential panda habitat in Sichuan has shrunk from 20,000 km2 in 1974 
to only 10,000 km2 in 1988. The situations in Gansu and Shanxi are similar (MOF and 
WWF 1989). For effective panda conservation, it is important to know the current 
panda habitat and its changes. Restoration of lost panda habitat may be impossible, but 
the remaining panda habitat can be maintained and protected. De Wulf et al. (1988) 
emphasised that, in the long term, the creation of a digital panda habitat database and a 
panda habitat monitoring system would provide useful tools for efficient conservation 
management. 

Remote sensing (RS) and geographical information systems (GIS) are two suitable 
techniques for analysing, monitoring and managing the earth resources (Al-Garni 
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1996). The need for relatively quick and potentially less expensive ways to compile 
habitat information has led to the use of satellite data (Ormsby and Lunetta 1987), and, 
with the aid of a GIS, to reproduce or update surveys and to manipulate the data to 
illustrate relatively complex spatial habitat relationships (Wheeler and Ridd 1984). GIS 
has been applied in panda habitat research (Ren et al. 1993, Ouyang et al. 1996, Liu et 
al. 1997 and 1998, and Chen et al. 1999). The importance of integrating RS and GIS has 
been realised by many scientists who explored and applied this approach to wildlife 
habitat evaluation (Scepan et al. 1987, Tappan et al. 1991, Roy et al. 1995, Amuyunzu 
and Bijl 1996). However, application of remote sensing techniques to wildlife habitat 
mapping is still a developing field (Li 1990). Panda habitat research based on RS is even 
more limited. 

Obtaining information relating to panda habitat in an effective way is a key area of 
research at present. In most cases, the panda habitat information has been acquired 
from ground surveys. During the past two national panda censuses in 1974-1977 and 
1985-1988, mapping panda habitat (such as cover types, extent, panda locations) was 
done mainly based on topographic maps and ground surveys. It is clear that such 
ground surveys in a mountainous terrain covered by dense forests are time consuming 
and labour intensive. In such circumstances, RS is undoubtedly the most efficient way 
to acquire habitat information quickly and at low cost, and the repetitive coverage by 
satellite systems adds a temporal dimension to habitat mapping (De Wulf et al. 1988). 
The multispectral and multitemporal imagery can provide much information about 
land cover and be used for mapping wildlife habitat (Roy et al. 1986, Ferguson 1991, 
Prasad et al. 1991). Although RS data have been applied to panda habitat assessment in 
a few panda nature reserves, the assessments were implemented mostly based on 
visual interpretation (Morain 1986, De Wulf et al. 1988 and 1990, Ren 1989, Chui and 
Zhang 1990, Li 1990, Ren et al. 1993, MacKinnon and De Wulf 1994). The disadvantage 
is that visual interpretation of the remotely sensed images brings subjectivity into 
defining the boundaries between different land cover types, therefore, a different 
interpreter may produce a different land cover classification. 

However, in digital image analysis, conventional methods do not yield satisfactory 
classification results at the forest type level, and it is difficult to get an accurate map 
using conventional classification methods for mapping the forest types (Skidmore 1989, 
Skidmore et al. 1997). Hollander et al. (1994) mentioned that a new integrated approach 
joined with an artificial intelligence (Al) system was expected to be applied to wildlife 
habitat evaluation. The application of Al tools and techniques may have an impact on 
mapping the forest types, since learning procedures could be built into a GIS to help it 
adapt to the imprecise and voluminous nature of geographically-based data as the 
system acquires knowledge about the phenomenon (Peuquet et al. 1993). Such an 
integrated RS/GIS/AI can deal with a large amount of data input, like image data, field 
survey data, and radio-collar data used in this study. In general, Al includes both 
expert systems and neural networks. Expert systems allow integration of qualitative 
and quantitative information for modelling and handling complex systems (Davis 
1993), which have been used for mapping forest types (Skidmore 1989) as well as 
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identifying homogeneous training areas for analysis of remotely sensed imagery 
(Goodenough et al. 1987). Neural networks have been successfully used in image 
processing and classification (Zhuang et al. 1994). According to Skidmore et al. (1997), 
the neural network backpropagation algorithm will probably not become a significant 
classification and analysis tool for GIS and remotely sensed data when implemented as 
a pure neural network. However, it may be very useful when combined with the rule-
based expert system. 

This study maps and assesses the complicated panda habitat by using an integrated 
expert system and neural network classifier (ESNNC). The aim of ESNNC is to 
integrate effectively the remote sensing data (Landsat TM images), the environmental 
data (digital elevation, slope gradient and aspect), the ground data (survey plot data 
and radio-tracking data) and the expert knowledge in order to map panda habitat and 
extract habitat information with a high accuracy. The approach used for mapping 
panda habitat in this study is an empirical method. Two categories of panda habitat 
types will be mapped, namely ground-cover-based panda habitat types and suitability-
based panda habitat types which are described in the Method section. 

4.2 Study area 

Figure 4.1 shows study area: Foping Nature Reserve. It covers about 290 km2. Its 
detail is described in Chapter 1, such as its location in China and terrain (Figure 1.3) 
and its climatic conditions (Figure 1.4). The typical vegetation types are conifer forests, 
mixed conifer and broadleaf forests, deciduous broadleaf forests, shrub and meadow 
(Ren et al. 1998, CVCC 1980). There are two main bamboo species that are important for 
panda forage: Bashania fargesii and Fargesia spathacea (Pan et al. 1988, Tian 1989 and 
1990, Yong et al. 1994, Ren et al. 1998). The Bashania bamboo generally grows in the area 
below 1900 m, and the Fargesia bamboo in the area above 1900 m. The panda 
population is between 60 and 70 with an average density of one panda per 5 km2 

according to the survey in 1990 (Yong et al. 1993), and the spatial distribution of panda 
populations is shown in Figure 1.5. About 300 local people reside inside the nature 
reserve (from data of 1998) and are mainly living in five village groups: SanGuanMiao, 
XiHe, JieShang, XiaHe and DaChenHao (Table 1.1). Some other village groups are 
located just outside the southern boundary of the nature reserve. 

4.3 Methods 

In the study, two categories of panda habitat types were produced: ground-cover-based 
potential panda habitat types and suitability-based panda habitat types. The former is 
defined by the ground cover types including: (1) conifer forest, (2) mixed conifer and 
broadleaf forest, (3) deciduous broadleaf forest, (4) bamboo groves (or mixed with the 
shrub-meadow), (5) shrub-grass-herb land, (6) farm-lands and settlements, (7) rock and 
bare-land, and (8) water area. The suitability-based panda habitat types include: (1) 
very suitable summer habitat, (2) suitable summer habitat, (3) very suitable winter 
habitat, (4) suitable winter habitat, (5) transition habitat, (6) marginal habitat, (7) 
unsuitable habitat, and (8) water area. 
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In the next section, the mapping algorithms, including the ESNNC and several other 
classifiers, are firstly explained. Secondly, it is explained how the ESNNC was applied 
to map the ground-cover-based potential panda habitat types by using Landsat TM 
images and field survey plot data. Lastly, how the same algorithm was used to map the 
suitability-based panda habitat types through combining Landsat TM images, field 
survey plot data, radio-tracking data and social data is described. 

Foping Nature Reserve 

O viJlage: 

1 LongTanZi village 
2 YueB a village 
3 DaGuKng village 

A village group within 
* the nature reserve: 

a SanGuanMiao group 
b XiHe group 
c JieShang group 
d XiaHe group 
e DaChengHao group 

10km 

Figure 4.1 Study area: Foping Nature Reserve, China. The box in the map shows the area 
of radio tracking applied to six pandas. 

4.3.1 Algorithm of the integrated expert system and neural network classifier 

The two types of panda habitat mentioned above were produced by the ESNNC 
described in Chapter 3 and Liu et al. (1999). Different input data layers and training 
sample points were used in two different mapping. For comparison purposes, three 
individual classifiers were applied, which are the expert system classifier (ESC), the 
backpropagation neural network classifier (BPNNC), and the traditional maximum 
likelihood classifier (MLC). The whole mapping approach is shown in Figure 4.2. The 
BPNNC learns from the training sample data and so depends on the accuracy of the 
information the sample data set provides. However, expert knowledge in the ESC was 
extracted from the sample data sets based on the impression of data distributions in 
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different classes and on the field survey experience, but no training sample data were 
used for image processing. Therefore, the ESC is a sample-free method. 

' T M l 

Training sample 
points 

' TM2 

' TM3 

'TM4 

TM5 

'TM7 

Altitude 

Slope 

Aspect 

(Distance). 

Figure 4.2 An integrated expert system and neural network classifier (ESNNC) for mapping both 
the ground-cover-based potential panda habitat types and the suitability-based real panda habitat 
types. "TM1-5 and 7" represents Landsat TM image bands 1-5 and 7. "Distance" represents the 
distance map to the human activity area which is used only in mapping the suitability-based panda 
habitat types. MLC, ESC, BPNNC and ESNNC are four classifiers: maximum likelihood classifier, 
expert system classifier, neural network classifier and integrated expert system and neural network 
classifier. 

The ESNNC approach integrates the ESC and the BPNNC, and trains the whole system 
to reach the targets through learning from known samples. The ESC result contains 
very useful information and is used in the BPNNC before and after running the system. 
The initial stage of the ESNNC (namely inputting the output of the ESC into the 
BPNNC as an additional information layer) is based on the principle that the neural 
network system is very sensitive to subtle changes in the input data. The system was 
then trained by different sample sets (described in the later parts) and resulted in 
several output maps. A frequency-checking program was used to compare all output 
maps in order to obtain the majority class for one certain pixel and assign that pixel 
with the majority class. Thus, the combined habitat map was formed. The second stage 
is to use the output of the ESC through producer accuracy and some new built-in rules 
based on the expert knowledge to correct the output of the initial stage of the ESNNC. 
For example, the winter panda habitat should not occur in the high elevation area and 
the slope steepness of suitable panda habitat should not be greater than 35 degrees 
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based on the definitions of the classes. For three individual classifiers (e.g. BPNNC, 
ESC and MLC), only one-time classification using one of the training sample sets was 
carried out. 

4.3.2 Mapping the ground-cover-based potential panda habitat types 

The mapping approach is shown in Figure 4.2. The assumptions are that the images can 
reflect the ground cover conditions, and that field sample plots with measured habitat 
parameters or observed information, according to Doering III and Armijo (1986), are 
capable of reflecting habitat conditions. 

In this approach the sample point data 
consists of 160 points (Figure 4.3) with 
records of the ground cover types from 
field survey. The field survey was 
carried out in July and August of 1999 
being concurrent with the Landsat TM 
images acquired in July 1997. The line 
transect sampling method was adopted 
in the field survey in order to get as 
many habitat types within the shortest 
route as possible. The eight ground 
cover types were defined based on 
literature information (Ren et al. 1998, 
CVCC 1980), and pre-classification of 
the images. They are conifer forest (cf), 
mixed conifer and broadleaf forest 
(dbfcf), deciduous broadleaf forest 
(dbf), mixed bamboo and meadow (bam), shrub-grass-herb land (shgr), 
settlements (fas), rock and bare-land (rab), and water area (war 

Figure 4.3 Distribution of 160 
Foping Nature Reserve, China. 

sample points in 

, farm-lands and 

For image classification, the stratified random sampling strategy was applied to 160 
sample points in order to get random training and testing samples for each class. 
Therefore, 50 samples were randomly selected from 160 points first as a separate testing 
set and 80 training samples were again randomly selected from the remaining 110 
points (shown in Table 4.1a). The classification of ground-cover-based habitat types 
was carried out 15 times with the 15 different randomly-selected training sets by the 
ESNNC. All the classified outputs were tested by the same 50 testing points to assess 
mapping accuracy. 

The nine initial data layers, including remote sensing data (Landsat TM band 1 to 5 and 
7, acquired in July 1997) and terrain data (elevation, slope steepness, slope aspect), 
were used in mapping by ESC, BPNNC, ESNNC as well as the traditional MLC. Figure 
4.4a gives examples of how the expert knowledge about the eight ground cover types 
was extracted from survey data. 
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Figure 4.4a Boxplots show data distributions in 8 ground-cover-based potential panda habitat 
types in Foping Nature Reserve: conifer forests (cf), mixed conifer and broadleaf forests (dbfcf), 
deciduous broadleaf forests (dbf), bamboo grove (or mixed shrub-meadow) (bam), man-made 
shrub-grass-herb land (shgr), farm-lands and settlements (fas), rock and bare-land (rab), water 
area (war). "N" represents the number of samples. 
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Figure 4.4b Boxplots show data distributions in 8 suitability-based real panda habitat types in 
Foping Nature Reserve: very suitable summer habitat (vss), suitable summer habitat (ss), very 
suitable winter habitat (vsw), suitable winter habitat (sw), transitional habitat (tr), marginal habitat 
(ms), not suitable habitat (us) and water area (war). "N" represents the number of samples. 
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Table 4.1 Stratified random sampling for mapping ground-cover-based (a) and suitability-based (b) 
panda habitat types in Foping Nature Reserve, China. 
a: for mapping ground-cover-based potential panda habitat types through 160 sample points 

Class name 
Total Testing Selected Remaining 

collected samples training samples 
samples samples 

conifer forest 
mixed conifer and broadleaf forest 
deciduous broadleaf forest 
bamboo (or mixed with meadow) 
shrub-grass-herb land 
farm-lands and settlements 
rock and bare-land 
water area 

10 
35 
63 
10 
10 
11 
10 
11 

4 
9 
17 
4 
4 
4 
4 
4 

4 
20 
34 
4 
4 
5 
4 
5 

2 
6 
12 
2 
2 
2 
2 
2 

Total 160 50 80 30 

b: for mapping suitability-based panda habitat types through 1585 sample points 
Total Testing Selected 

Class name collected samples training 
samples samples 

Remaining 
samples 

very suitable summer habitat 
suitable summer habitat 
very suitable winter habitat 
suitable winter habitat 
transitional habitat 
marginal habitat 
unsuitable habitat 
water area 

328 
73 
853 
183 
30 
60 
47 
11 

150 
30 
376 
80 
14 
25 
20 
5 

150 
30 
377 
80 
14 
25 
20 
4 

28 
13 
100 
23 
2 
10 
7 
2 

Total 1585 700 700 185 

4.3.3 Mapping suitability-based panda habitat types 

The same approach was used (Figure 
4.2) for mapping the suitability-based 
panda habitat types. Suitability of 
panda habitat was assessed and 
mapped based on both the field survey 
data and radio tracking data. The 
assumptions are that the sites with a lot 
of feeding signs and droppings are 
suitable habitats with satisfactory 
environmental requirements to pandas, 
and radio tracking data are capable of 
reflecting habitat selection of the giant 
pandas. 

Therefore, mapping the suitability-
based panda habitat types involved a 
total of 1585 sample points including 

Figure 4.5 Distribution of radio tracking data 
in Foping Nature Reserve, China. 
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160 field survey points and 1425 non-overlapping radio tracking points (Figure 4.5). 
When panda signs (feeding, dropping, and nesting) were evident, these were recorded 
for all 160 field-survey points. There were six pandas collared in the SanGguanMiao 
area (illustrated by the box in Figure 4.1) during a five-year period from 1991 to 1995 
(for details see Chapter 5). The triangulation method by using two bearings was used to 
calculate the collected radio-tracking data to establish the panda locations (White and 
Garrott 1990). 

Table 4.2 The criteria to define suitability-basec 
in Foping Nature Reserve, China. 

Criteria for 8 suitability 
classes 

Elevation (m) 

Panda signs 

Slope (°) 
Ground cover-based 
habitat types 

Distance3 to the 
centre of summer 
activity ranges (m) 

Distance0 to 
the centre of 
winter activity 

Distance to the 
centre of 
mating 
activity ranges 
(m) 

005 & 
043 d 

127 & 
065 

045 & 
083 

043 

045 

vswa 

> 

many 

<35 

sw 

2158 

pre
sent 
<35 

panda habitat types to the 

tr vss ss 

1949- <1949 
2158 

many pre
sent 

< 35 < 35 

sample 

ms 

>35 

points for mapping 

us war 

fasb war 
rab 
shgr 

<1000 >1000 

<1500 

<1300 

<1000 

<500 

<1000 

>1500 

>1300 

>1000 

>500 

>1000 

a vss, ss, vsw, sw, tr, ms, us and w represent 8 suitability-based panda habitat types: very suitable 
summer habitat, suitable summer habitat, very suitable winter habitat, suitable winter habitat, 
transitional habitat, marginal habitat, unsuitable habitat and water area. 

b fas, rab, shgr and war represent four ground-cover-based panda habitat types: farm-lands and 
settlement, rock and bare-land, shrub-herb-grass land and water area. 

c "Distance to the centres of panda activity ranges" is described in Chapter 5. 
d 005 to 127 refer to identity codes of individual pandas (see Chapter 5). 

There are no standard methods for defining or quantifying habitat quality because this 
depends very much on species as well as study population and study area. The 
suitability types were defined by several criteria (Table 4.2): the panda signs found at 
field survey points, distance to the centres of the winter, summer and mating activity 
ranges of each panda (see Chapter 5), terrain factors (i.e. elevation and slope), as well as 
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ground cover types. Eight types of suitability-based panda habitat were subjectively 
defined: very suitable summer habitat (vss), suitable summer habitat (ss), very suitable 
winter habitat (vsw), suitable winter habitat (sw), transitional habitat (tr), marginal 
habitat (ms), unsuitable habitat (us), and water area (war). Therefore, all 1585 sample 
points were subjectively assigned to one of the suitability classes based on the criteria. 

Similar to mapping the ground-cover-based panda habitat types, the stratified random 
sampling strategy was applied for a total of 1585 points in order to obtain random 
training and testing samples for each class. Therefore, 700 samples were initially taken 
out as an independent testing set and the remaining 885 points were used to select 700 
training samples randomly (Table 4.1b). The classification was carried out 15 times here 
using 15 different randomly-selected training sets. All outputs were tested by the same 
700 independent testing points to assess mapping accuracy. 

There are ten digital data layers used as the initial information source of the whole 
classification system: remote sensing data (Landsat TM band 1 to 5 and 7), terrain data 
(elevation, slope steepness, slope aspect) and social data (distance to human activity 
area). Figure 4.4b shows examples of how the expert knowledge about these eight 
suitability-based habitat types was extracted from the sample point data. 

4.4 Results 

The map of ground-cover-based potential panda habitat types obtained from the 
ESNNC is shown in Figure 4.6. Foping NR is mainly covered by deciduous broadleaf 
forests and mixed conifer and broadleaf forests. Conifer forests and F. spathacea bamboo 
groves or mixed with meadow occur along the mountain ridges around the boundary 
area in the northern and north-western parts. The rock and bare-lands appear mostly in 
two areas, at the mountaintops or in the river valleys. The shrub-grass-herb land was 
mapped mainly in the lower elevation area along the valleys, which is mainly caused 
by human activity. However, it was also found scattered in the high elevation area, 
especially along the mountain ridges, which is naturally developed. The farm-lands 
mostly appear in YueBa and LongTanZi villages, which are generally located outside 
the southern boundary of the nature reserve. Areas with water are located in the 
valleys. 

Table 4.3a gives the areas of 8 different ground-cover-based potential panda habitat 
types from GIS calculation. The total area of rock and bare-land, shrub-grass-herb land, 
farm-lands and settlements, and water area occupy only a very small part of the whole 
nature reserve (about 3%). The area of F. spathacea bamboo groves mixed with meadow 
located at or near the mountaintops is less than 1% of the size of Foping NR. However, 
the other areas are covered by deciduous broadleaf forests, mixed conifer and broadleaf 
forests, and conifer forests. 

The map of suitability-based panda habitat types obtained from the ESNNC is shown 
in Figure 4.7. The suitable and very suitable summer habitats are found in the area 
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surrounding Foping NR, and they occur mainly in the northern, northwestern and 
northeastern boundaries. The very suitable summer habitat occupies only a small part 
of the total summer habitat in GuangTouShan. The suitable and very suitable winter 
habitats are mainly mapped in the centre and southern areas together with the human 
activity areas. There is a transition zone between the pandas' two seasonal habitats, 
which is very wide in the northeastern area. The marginal habitats with a slope 
gradient steeper than 35 degrees are scattered in the regions of XiHe River, 
DaChengHao and the southern slope of GuangTouShan. Only a small part of the 
nature reserve is not suitable for pandas, including rock and bare-lands (rab), farm
lands and settlements (fas), shrub-herb-grass land (shgr). Unsuitable areas (namely 
"rab", "fas" and "shgr") are located at the mountaintops or in the river valleys. 

' Conifer forests ^—' Shrub-erass-herb 

I Mixed conifer and broadleaf Hi Farm-lands, settlements 

I Deciduous broadleaf forests CD Rock and bare-lands 

I Bamboo (or mixed with meadow) •Wa te r area 

• • 
0 10| km 

Figure 4.6 Ground-cover-based potential panda habitat map from the integrated expert system 
and neural network classifier (ESNNC) in Foping Nature Reserve, China. The white line gives 
the boundary of the Foping Nature Reserve. The area outside the boundary shows the 
surrounding environment. 
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Table 4.3 Availability of different panda habitat types mapped from the integrated expert system and 
neural network classifier (ESNNC) in Foping Nature Reserve, China. 
a: Availability of ground-cover-based potential panda habitat types 

Area (km2) % of the nature reserve 
conifer forest 
mixed conifer and broadleaf forest 
deciduous broadleaf forest 
bamboo (or mixed with meadow) 
shrub-grass-herb land 
farm-lands and settlements 
rock and bare-land 
water area 

16.5 
174.2 
92.0 
1.7 
6.0 
0.4 
1.6 
1.0 

5.6 
59.4 
31.4 
0.6 
2.0 
0.1 
0.5 
0.3 

Foping Nature Reserve 293 100 

b: Availability of suitability-based panda habitat types 
Area (km2) % of the nature reserve 

very suitable summer habitat 
suitable summer habitat 
very suitable winter habitat 
suitable winter habitat 
transitional habitat 
marginal habitat 
unsuitable habitat 
water area 

16.6 
29.3 
64.9 
88.4 
57.4 
31.4 
4.6 
0.7 

5.7 
10.0 
22.1 
30.1 
19.6 
10.7 
1.7 
0.2 

Foping Nature Reserve 293 100 

Table 4.3b details the suitability-based habitat types. More than 50% of the Foping NR 
consists of panda winter habitat, in which almost half of the area is very suitable for 
pandas to stay in the winter season. The panda summer habitat is less than 20% of the 
reserve. The transitional habitat occupies almost one fifth of the nature reserve, and the 
marginal habitat together with the unsuitable habitat is less than 13% of Foping NR. 
The identified "water area" is almost the same as the "war" identified in mapping the 
ground-cover-based panda habitat. 

To assess the four classifiers and their classification results in mapping the two 
different defined panda habitat systems, the number of identified classes, the overall 
mapping accuracy (OVA), the Kappa value and the Kappa variance are shown in Table 
4.4. The traditional maximum likelihood classifier did not yield satisfactory 
classification results for panda habitat mapping. The MLC recognises only three classes 
in mapping the ground-cover-based potential panda habitat types and seven classes in 
mapping the suitability-based panda habitat types. Only the classes with enough 
samples can be identified by the MLC because insufficient samples cannot form the 
statistical parameters for the MLC to run the classification. 

The integrated expert system and neural network classifier (ESNNC) produced panda 
habitat maps with the highest mapping accuracy (viz. 84% in mapping the ground-
cover-based potential panda habitat types and 83% in mapping the suitability-based 
real panda habitat types), and its classification error matrices are shown in Table 4.5. In 
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mapping the ground-cover-based panda habitat types, the ESC created an overall 
accuracy of 76%, higher than that of the BPNNC (70%). In mapping the suitability-
based panda habitat types, the ESC created an overall accuracy of only 48%, lower than 
that of the BPNNC (76%). 

MH£*?TB!H!^B§ V 

H Very suitable summer habitat • Transitional habitat 
• Suitable summer habitat • Marginal habitat 

BB Very suitable winter habitat • Unsuitable habitat 

• Suitable winter habitat • § Water area 

• • • 
0 

N 

mrg 

10km 

Figure 4.7 Suitability-based panda habitat maps from the integrated expert system and 
neural network classifier (ESNNC) in Foping Nature Reserve, China. The white line gives 
the boundary of the Foping Nature Reserve. The area outside the boundary shows the 
surrounding environment. The black arrow line shows the path used by local people and 
tourists move between the SanGuanMiao village group and outside of Foping NR. 

Pairwise comparison between the ESNNC and the BPNNC as well as the ESC, which 
have identified all 8 classes, is also shown in Table 4.4. The values from Z-statistic in the 
table show that the ESNNC does not produce the ground-cover-based habitat map with 
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significantly better accuracy than the ESC but significantly better than the BPNNC at 
90%C.I.. However, in mapping the suitability-based habitat types, the ESNNC created a 
significantly higher accuracy than the ESC and the BPNNC at 95% C.I.. 

Table 4.4 Accuracy assessment and pairwise comparison through Z statistic between the integrated 
expert system and neural network classifier (ESNNC) and the other four classifiers respectively (i.e. the 
neural network classifier (BPNNC), the expert system classifier (ESC) and the maximum likelihood 
classifier (MLC)) in mapping panda habitat types in Foping Nature Reserve, China. 

Mapping Types Classifiers Number of OVA Kappa Kappa Z 
identified classes [%] value variance statistic 

Mapping 
ground-cover-
based panda 
habitat types 

ESNNC 
BPNNC" 
ESC 
MLC 

84 
70 
76 

NM 

83 
76 
48 

NM 

0.801 
0.622 
0.703 
NM 

0.742 
0.640 
0.358 
NM 

0.0041 
0.0066 
0.0055 
NM 

0.0004 
0.0005 
0.0005 
NM 

1.73* 

1.00 
NM 

3.25** 
12.72** 

NM 

Mapping ESNNC 
suitability-based B P N N O 
panda habitat ESC 
types MLC 

a - a single running of BPNNC; * - significant difference at 90%C.I., ** - significant difference at 
95%C.I. "NM" means "not mentioned" because the MLC did not identified all 8 classes in both 
mapping. 

Table 4.5 Classification error matrices for mapping ground-cover-based (a) and suitability-based (b) 
panda habitat types by the integrated expert system and neural network classifier (ESNNC) in Foping 
Nature Reserve, China. 
a: mapping ground-cover-based potential panda habitat types 

From classification 
cf dbfcf dbf bam shSr fas 

conifer forest (cf) 3 1 
mixed conifer and broadleaf forest (dbfcf) 7 
deciduous broadleaf forest (dbf) 1 
bamboo (or mixed with meadow) (bam) 

2 
16 

§ yi shrub-grass-herb land (shgr) 
g "a. farm-lands and settlements (fas) 
£ £ rock and bare-land (rab) 

water area (war) 

1 2 1 
2 2 

4 
4 

Overall accuracy=84.00°/o 

b : mapping suitability-based panda habitat types 

From classification 
vss 

very suitable summer habitat (vss) 132 
suitable summer habitat (ss) 19 
transitional habitat (tr) 

c suitable winter habitat (sw) 
$ t/> very suitable winter habitat (vsw) 
c "5- marginal habitat (ms) 
£ £ unsuitable habitat (us) 

water area (war) 

ss 
18 
10 

1 

tr 

14 

1 

sw 

45 
36 

1 

vsw 

35 
333 

ms 

25 
3 

us war 

1 

2 

14 
5 

Overall accuracy=83.17% 
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4.5 Discussion 

This study mapped and assessed panda habitat in Foping NR using remote sensing 
data combined with radio-tracking data, ground survey data and human influence data 
by GIS. Mapping results objectively show the reserve maintains a good quality habitat 
for pandas. Ground-cover-based mapping shows that 97% of the nature reserve area is 
covered with forest which forms pandas' potential habitat. Suitability-based mapping 
shows that 68% of the reserve area is suitable habitat for pandas in winter or summer 
season and 20% of the reserve area forms the transition habitat for pandas to move 
between two seasonal habitats. It is also shown that the XiHe and DongHe River 
regions are ideal panda habitat with easy landscape connection between the winter and 
summer habitats, in which the transition zone exists but is not as wide as the large 
transition area in the northeastern part. In reality, the 1990's survey showed that the 
panda population in the DongHe and XiHe Rivers consisted of 26 and 23 individuals 
respectively (Yong et al. 1993), which were two larger panda sub-populations in Foping 
NR. The wider transition zone represents the comparatively flat area which takes 
pandas more time to pass through under adverse environmental conditions. Since the 
transition zone lacks well-growing bamboo, the pandas were assumed to select a 
transition zone with a less steep slope and suitable width in order to move between 
their winter and summer habitats. Pandas in the LongTanZi and YueBa areas probably 
need more time to move between two seasonal habitats. 

The total suitable summer habitat within the reserve boundary is limited, about 46 km2 

(16% of the reserve area), which is not sufficient for the requirement of a total of about 
60 to 70 pandas from the panda survey in 1990 (Yong et al. 1993). The neighbouring 
area of Foping summer habitat outside the boundary forms another important part of 
the panda summer habitat. The 6 radio-collared pandas moved along the ridge of the 
GuangTouShan in the summer season and used the summer habitats both inside and 
outside of the reserve boundary, which is shown in Figure 5.2. The average summer 
activity range of each panda was calculated in that paper and is about 2.5 km2. 

Therefore, maintaining the limited summer habitat and keeping its continuity is 
important for pandas. There is a path in the northeastern corner, where the transition 
area crosses the boundary (as shown by arrow in Figure 4.7), for local people and also 
tourists to move between the SanGuanMiao village group and outside of Foping NR. 
The local government plans to construct a tourist site in LianFengYa (near CunGou PS 
as shown in Figure 1.5) in the northeastern corner for tourists to visit SanGuanMiao. 
The path goes through the very suitable winter habitat patch before reaching 
SanGuanMiao. This is highly detrimental for pandas living in this area. Moreover, the 
summer habitat in the northeastern corner appears as a narrow strip along the 
mountain ridge and is used as the limited summer habitat or necessary corridor for 
pandas in LongTanZi and YueBa to move to the larger summer habitat in 
GuangTouShan. 

The explored mapping approach in this study may be applied to detect and monitor 
the change of pandas' forest environment. There has been a natural resource conflict 
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between the local people and the giant pandas in terms of forest environment, 
especially in the low elevation areas. As shown in Figure 4.7, the suitable and very 
suitable winter habitats are mainly mapped in the centre and southern areas which are 
also the human activity areas. For example, pandas use the understory bamboo as their 
staple food and the canopy forest as shelter. However, the local people cut the 
deciduous broadleaf trees in order to produce mushrooms to increase their income, and 
clear away the understory bamboo groves. This may rapidly change forest 
environment to other land cover types and causes panda habitat fragmentation or loss. 
Due to SanGuanMiao's central location surrounded by the suitable and very suitable 
winter habitats, it would be ideal to relocate the local people in SanGuanMiao to other 
parts so as to provide pandas with a large un-fragmented habitat. Mushroom 
production which cuts the understory bamboo and canopy trees in panda winter 
habitat should be forbidden. 

The use of radio tracking data for mapping and assessing panda habitat is a new aspect 
in the field of panda habitat research. Radio tracking data have been used only for 
analysing the pandas' behaviour, such as movement (Hu et al. 1985, Schaller et al. 1985, 
Hu 1990, Yong et al. 1994, Liu et al. in review-c) and daily activity pattern (Hu et al. 
1985). Smith (1986) stated that the classification of habitat must consider both the level 
of habitat resolution and the spatial scale at which habitat patches are considered to be 
homogeneous units. In the past, the habitat requirements of species were based on 
qualitative descriptions relating the presence or absence of species to the general forest 
type or structure of the vegetation. In recent years, however, there has been a growing 
interesting in the use of more quantitative techniques to describe the habitat-selection 
patterns of animals (Capen 1981). Schamberger and O'Neil (1986) emphasised two 
assumptions: (1) a species will select and use areas that are best able to satisfy its life 
requirements; and (2) as a result, greater use will occur in higher quality habitat. These 
views form the basis of using the radio tracking data for mapping the suitability-based 
panda habitat types in this study. Nortan and Poslinghan (1993) stated that the 
reliability of predictions generated by popular habitat simulation models is very 
uncertain and remains to be adequately tested. With a need for greater accuracy in 
mapping wildlife habitat, an increase in the development and use of forest simulation 
models (Shugart and West 1980) has accompanied the development of statistical 
approaches to habitat classification. The mapping approach involving radio tracking 
data and some advanced technologies could produce more accurate results, which have 
been confirmed by this study. 

4.6 Conclusions and recommendations 

This study provides the ESNNC approach for mapping panda habitat based on the 
multi-data layers. We, through applying the ESNNC, obtained the highest accuracies 
on mapping both the ground-cover-based potential panda habitat and the suitability-
based panda habitat, and produced more and clearer information of panda habitat in a 
direct and obvious way for panda conservation and natural management. It is a 
practical mapping approach using limited samples in a very difficult area. Mapping 
results show that Foping NR maintains a good quality habitat for pandas: 97% of the 
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reserve area covered with forests being pandas' potential habitat and 68% of the 
reserve area being pandas' suitable winter and summer habitats. However, it is 
suggested that the SanGuanMiao area should be returned to the giant pandas, and that 
constructing a tourist site in the northeastern corner along the boundary should not 
proceed. 
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CHAPTER 5 Giant Panda Movement Analysis 

Abstract: 

Spotting the giant panda in the remote mountains of Foping Nature Reserve (NR) is 
difficult due to the dense vegetation and steep terrain. Radio tracking is an effective 
way to study this animal and understand its behaviour and habitat use. In this study, 
radio-tracking data for 6 pandas (3 males and 3 females) were used to study the 
movement pattern of pandas between 1991 and 1995 in Foping NR. The use of a 
geographical information system (GIS) combined with statistical tools in the study to 
analyse radio-tracking data is a new aspect in the panda ecological research. Our 
results show that the giant pandas in Foping NR occupied two distinct seasonal ranges 
(specifically winter and summer activity ranges) and had a regular seasonal movement 
between winter range below 1950 m and summer range above 2160 m. The pandas 
climbed from the winter to the summer habitats within a period of 8 days from June 7 
to 15, and descended to the winter habitat between September 1 and October 6. 
Therefore, the pandas spent three quarters of the year (average 243 days) in their 
winter activity range, and an average of 78 days in the summer activity range. This is 
the first thorough quantitative study to show panda movement pattern in Foping NR. 

Key words: China, Foping Nature Reserve, giant panda, GIS, movement pattern, 
quantitative study, radio-tracking. 
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5.1 Introduction 

It was emphasised by White and Garrott (1990) that a gradual shift has taken place 
from descriptive movement studies to quantitative investigations aimed at studying 
animal activity patterns, habitat use, and survival rate. Radio tracking is one of the 
approaches to achieve this. It has been applied to many animal species, including 
locating mule deer (Lee et al. 1995), long distance movements of elephants (Thouless 
1995), seasonal movement of moose (Baker 1978), the home range and activity of brown 
lemming (Banks et al. 1975), as well as survival rates of wild turkey hens (Kurzejeski et 
al. 1987). The track of an individual animal migrating or moving from one place to 
another place has a certain pattern that results partially from the orientation and 
navigation mechanism(s) employed by the individual and partially from 
environmental forces (Baker 1978, Geist 1971). 

The giant panda (Ailuropoda melanoleuca) is an endangered species. It is a solitary 
animal, which makes spotting difficult in remote mountain areas covered with dense 
vegetation. In the forested mountains of China, radio tracking should be an effective 
way to study the giant panda, and understand this animal's behaviour and its 
utilisation of the habitat. 

Some work on the movement of the giant panda has been undertaken in Wolong NR in 
Qionglai Mountains and Changqing NR in Qinling Mountains. Analysis of the radio 
tracking data showed that the pandas in Wolong NR remain at a high elevation for 
most of the year and feed on the arrow bamboo (Bashaniafangiana). They move down to 
the lower elevation during May and June to forage on umbrella bamboo (Fargesia 
robusta) shoots (Hu et al. 1985). The pandas in Changqing NR exhibit a different 
movement pattern compared to the pandas in Wolong NR according to Pan et al. 
(1988). The pandas stay for most of the year at the low elevations feeding on Bashania 
fargesii bamboo, and occupy the high elevation areas to utilise Fargesia spathace bamboo 
from June to August. 

Movement patterns of panda populations in different mountains may not be the same 
and remain unclear (Pan et al. 1988). The pandas in Foping NR remain an enigma even 
though they have been the subject of numerous studies. The first panda population and 
distribution survey was carried out in Foping NR in 1973 (SBRS 1976). Preliminary 
ecological observations were conducted in Foping NR in the 1970s and 1980s (Wu 1981 
and 1986, Yong 1981 and 1989, Ruan 1983). More advanced ecological research has also 
been carried out in Foping NR. Yong et al. (1993 and 1994) analysed the panda 
population and distribution as well as movement habit. Li et al. (1997) reported their 
work on panda population viability analysis in Foping NR. Research on panda habitat 
has just started recently (Yang et al. 1997 and 1998, Yang and Yong 1998, and Ren et al. 
1998). It has been reported that there are two main seasonal habitats in Foping NR 
occupied by pandas as their winter and summer habitats respectively, and the pandas 
move between these two seasonal habitats (Pan et al. 1988 and 1989, Yong et al. 1994). 
However, it is not so clear when, where and how the animals move. In order to study 
the giant panda and its habitat, radio telemetry was introduced to track the giant 
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pandas in Foping NR during a 5-year period from 1991 to 1995. The achievements of 
the radio-tracking program have not been published internationally, with only 
descriptive results in two Chinese reports by Yong et al. (1994) and Pan et al. (1988). 

Geographical information system (GIS) represents a flexible tool for managing 
resources and understanding and predicting complex and changing systems (Peuquet 
et al. 1993). This study aims to use GIS combined with statistics to analyse radio-
tracking data of six pandas, as well as to visualise their movement patterns. In order to 
understand the characteristics of panda movement, aspects such as activity patterns, 
period of moving, areas of activity range, duration of seasonal activities, as well as the 
distance of movement are analysed. 

5.2 Study area 

Foping Nature Reserve (33°32'-33°45'N, 107°40'-107°55'E) is located in the middle part 
of the Qinling Mountains (Figure 1.1) and is the most northern panda refuge (Figure 
5.1). The reserve covers an area of approximately 290 km2, and the elevation ranges 
from about 980 to 2900 m. There are four drainage systems in the reserve, viz. XiHe, 
DongHe, JinShuiHe and LongTanZi Rivers. The detailed description of Foping NR is 
shown in Chapterl, such as its climatic conditions (Figure 1.4), human population and 
activities, and panda conservation and management (Figure 1.5) etc.. 

Beijing 
a SimGaanMiao group 

c JieShang group 

C h - , 
I Historical panda range 
1 Remaining six mountain blocks with pandas 

Foping Nature Reserve 

vl aChucGw Valley 
v2- PfuFaturGoa Valley 

, v3 WaJangGau Valley 
I, *4-ShuLTmtGoo Valley 

Figure 5.1 Study area: Foping Nature Reserve, and its location in China. The left map shows the 
change of the panda range, in which the small black patches are the six mountain blocks with the 
remaining pandas and the middle density shading area plots the historical panda distribution range. 
The right map shows Foping Nature Reserve, in which the box illustrates the range of radio tracking 
in the SanGuanMiao-GuangTouShan region. 

The broad vegetation types include conifer forests, mixed conifer and broadleaf forests, 
deciduous broadleaf forests, shrub and meadow (Ren et al. 1998, CVCC 1980). There 
are two main bamboo species which compose the pandas' staple food, namely Bashania 
fargesii and Fargesia spathacea (Pan et al. 1988, Tian 1989 and 1990, Yong et al. 1994, Ren 
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DongHe 
XiHe 
LongTanZi 
YueBa 
HuangTongLiang 
HeiLongTan 
XiaHe 

54 
71 
15 
59 
38 
33 
23 

et al. 1998). They are mostly the understorey species, and only F. spathacea appears as 
pure bamboo groves at the top of the mountain. The distribution of the two species 
varies with the elevation. B. fargesii occurs mostly below 1900 m, while F. spathacea is 
located in higher altitudes of more than 1900 m. 

There were about 60 to 70 giant pandas within Foping NR, with an average density of 
one panda per 5 km2 according to the survey conducted in 1990 (Table 5.1) (Yong et al. 
1993). DongHe and XiHe Rivers are two areas with more pandas (about 75% of the 
whole panda population in Foping NR) (see Figure 1.5). The results of a survey in 1998 
again confirmed a similar number (about 65) of panda individuals in the reserve. The 
radio tracking was carried out in the SanGuanMiao-GuangTouShan region illustrated 
by the box in Figure 5.1. 

Table 5.1 The sub-populations (individual) as well as density (individual/ km2) of the giant panda in 
different watersheds in Foping Nature Reserve, China in 1990 (Yong et al. 1993) 

Watershed Area Number of pandas Density 
(km2) (individual) (individual/ km2) 

26 0.5 
23 0.3 
3 0.2 
7 0.1 
5 0.1 
0 0 
0 0 

In total about 290 between 60 and 70 On average 0.2 

5.3 Methods 

The study deals with the seasonal movement and activity range of the giant panda. The 
terms movement and migration are used inter-changeably. Baker (1978) standardised 
the terminology and described migration as an activity of moving from one spatial unit 
to another, while movement is just a change in position. Thus movement is defined 
relative to the Earth's surface and includes a vertical component. In this paper, the term 
"movement" is used to describe the giant panda's changing position. Regarding the 
activity range of animals, the concept of "home range" is frequently used. Burt (1943) 
defined home range as "that area traversed by the individual in its normal activities of 
food gathering, mating and caring for young". Baker (1978) described home range as 
the area physically visited by an animal in a given time interval. However, biologists 
have differed widely in their approaches to the determination of home range 
(Sanderson 1966). Due to the existence of two obvious seasonal activity ranges of the 
pandas in Foping NR, the terms of "winter activity range" and "summer activity 
range" have been adopted for this study. 

The radio-tracking equipment (Telonics Company, US) was used only in the 
SanGuanMiao-GuangTouShang region (illustrated by the box in Figure 5.1) and 
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consisted of a MOD-500 telemetry collar, a TR-2 receiver and a RA-2AK hand-held H-
style antenna. A total of 59 receiving towers were used across the radio-tracking region. 
They were distributed along the ridge of the GuangTouShan Mountain (approximately 
an east-west direction) for tracking pandas in the summer and autumn seasons, and 
through the DongHe River valley (approximately a south-north direction) for tracking 
pandas in winter and spring seasons. Six pandas (3 males and 3 females) were fitted 
with telemetry collars and tracked for different periods, the longest lasting from 1991 to 
1995 (detailed in Table 5.2). Tracking started in May 1991, and stopped in December 
1995. The data were collected daily. However, many factors caused missing data. 

Table 5.2 Detailed information of six radio collared pandas in Foping Nature Reserve, China, in which 
"c", "s" and "a" represent panda cub (<1.5 years), sub-adult (1.5 - <5 years), and adult (>=5 years) 
respectively based on the definition of Hu et al. (1985) and Schaller et al. (1985). 

Name with 

tracking Nr 
pandal27 
panda043 
panda065 
panda045 
panda005 
panda083 

Sex 

M 
F 
M 
F 
M 
F 

1991 
10a 
12a 

Age in different 

1992 
11a 
13a 
< lc 
6a 

1993 
12a 

2s 
7a 

year (yea 

1994 
13a 

3s 
8a 

15a 

") 
1995 
14a 

4s 
9a 

16a 
<2s 

Tracking 

duration 
May 91 - May 95 
July 91 - Aug. 92 
Feb. 92 - Dec. 95 
May 92 - Dec. 95 
Apr. 94 - Dec. 95 
Jan. 95 - Aug. 95 

Tracking 

days/months 
465/34 
106/9 

463/34 
400/29 
213/20 
113/9 

There are 1760 raw records in total from the radio-collar latitude-longitude telemetry 
transformed to UTM co-ordinates. The location of the panda was estimated from the 
cross point of two bearings received at two towers by triangulation (White and Garrott 
1990). After careful checking based on expertise, suspicious data were eliminated, and 
the final data set comprises 1639 records. All samples were plotted on a background 
map. The centres of each panda's winter, summer and mating activity ranges were 
obtained by calculating the average of the UTM-x and UTM-y co-ordinates 
respectively. The centres of the activity ranges were displayed to discern their spatial 
separation. The distance between all tracking locations and the centres of each panda's 
winter, summer and mating activity ranges was calculated and plotted to obtain an 
impression of the spread of each individual and its activity centre. 

According to the literature and local expertise, it is known that there are two seasonal 
activity ranges in Foping NR. The time for the giant pandas to move from the winter to 
the summer activity ranges is in May and June, generally, and to descend from the 
summer to the winter activity ranges is in August and September. In order to 
determine the exact period for pandas to move up and down between two seasonal 
activity ranges, the average elevations of six pandas from May to June and August to 
October were calculated for each year and plotted. The periods for pandas to change 
their seasonal activity ranges were subjectively defined. The length of the periods that 
pandas remain in two seasonal activity ranges was then calculated. 
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a panda043 panda045 panda083 

summer d pandal27 
activity 

^range 

JI panda065 

Figure 5.2 Activity patterns of 6 pandas from radio tracking in the SanGuanMiao-
GuangTouShan region in Foping Nature Reserve, China from 1991 to 1995. All six maps show 
two obvious areas with very dense tracking points (as shown in the bottom-left panel). The lower 
cloud of tracking points represents the pandas' winter activity range, while the upper one is the 
summer activity range. The area inbetween can be defined as the transition range. 

These movement periods defined three elevation ranges, viz. winter, summer and 
transition ranges. Because the elevation data were non-normally distributed, the non-
parametric boxplot method (Moore and McCabe 1998, 44-49) was used, and the upper 
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and lower whiskers (SPSS 1997, 40-41) of the boxplots defined the elevation ranges of 
the pandas' winter and summer activity. A hypothesis here is that there is a significant 
difference between the elevations of the pandas' winter and summer activity ranges. 

The area of both the winter activity range and the summer activity range in different 
years for each adult panda (panda005, pandal27, panda043 and panda045) was 
calculated by the minimum convex polygon method (White and Garrott 1990). The 
transition range was excluded from these two seasonal activity ranges because it is 
used only as a temporary movement corridor. Two hypotheses were formulated: 
firstly, the male pandas had larger winter and summer activity ranges respectively 
than female pandas; secondly, the pandas used a larger area for winter activity than for 
summer activity. 

The average monthly distance 
travelled over two consecutive days 
was calculated to overview the 
monthly pattern in a year, and to test 
the hypothesis that adult male 
pandas move farther within two 
consecutive days than adult female 
pandas. All hypotheses in the study 
were tested using the Mann-Whitney 
U test at 95%C.I. significant level. 

5.4 Results 

5.4.1 Panda activity patterns 

Each panda had two well-delineated 
winter and summer activity ranges 
(Figure 5.2). The lower cluster 
represents the panda's winter activity 
range, while the upper one the 
summer activity range. Some 
individuals overlapped in space. 
Pandal27 and panda043 overlapped 
to some degree in the summer 
activity range, while panda045 and 
panda065 overlapped in both the 
summer and winter activity ranges. 
The summer range of panda083 was 
on the northern side of the 
GuangTouShan ridge, far from other 
individuals. In the winter range, 
panda045, panda065 and panda005 
stayed on the west side of the 

Figure 5.3 Centres of pandas' winter and summer 
activity ranges, as well as mating sites in Foping 
Nature Reserve, China. 005 to 127 refer to identity 
codes of individual pandas, while "s" stands for 
"centre of summer range", "w" for "centre of winter 
range" and "m" for "centre of mating site". 
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DongHe River, while panda043, panda083 and pandal27 occupied the east side of the 
DongHe River. 

Figure 5.3 shows the centres of six pandas' winter and summer activity ranges as well 
as mating sites for female panda043 and panda045. The figure shows that, in the 
summer range, panda083 and panda005 stayed away from the other four pandas which 
were living very near each other. These four pandas (i.e. panda043, panda045, 
panda065 and pandal27) overlapped in their summer activity ranges in varying 
degrees. The distances between the centres in the winter range are slightly larger than 
the distances of the centres in the summer range. We found that the mating sites of 
two females (e.g. panda045 and panda043) were situated in the ShuiJingGou Valley, 
located at the southern part of the tracking area. Female panda083 was only 1.5 years 
old in 1995 and had no mating activity. 

Figure 5.4 shows the distances of all panda tracking locations to the centres of the 
individual panda's winter (Figure 5.4a) and summer (Figure 5.4b) activity ranges. The 
different pandas have various distances spreading from their winter and summer 
activity centres. The male panda005 had the largest spread distance and the male 
pandal27 the smallest spread distance in both winter and summer activity ranges. The 
outliers in the figure indicate that the pandas sometimes spread very far from their 
activity centres. 
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Figure 5.4 Boxplots show distribution of distances between tracking locations and activity 
centres of panda individuals in their winter (a) and summer (b) activity ranges in Foping Nature 
Reserve, China. Symbols "o" and "*" represent those extreme values, or outliers. "N" is the 
number of tracking points. 

5.4.2 Periods of movement between and duration in winter and summer ranges 

The giant pandas in Foping NR remained in their winter activity ranges at about 1700 
m from October to May in the following year and occupied the summer activity ranges 
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at an elevation of approximately 2500m in July and August (Figure 5.5a). They 
transferred between the winter and the summer activity ranges in June and September 
(Figure 5.5a). The pandas' transfer between two seasonal activity ranges is associated 
with a large change in elevation (shown by the standard deviations in Figure 5.5a). 
However, once the pandas were in the winter or the summer activity ranges, they 
maintained activities at a relatively constant elevation with a standard deviation of 
about 150-300 m. 

Figure 5.5 Determination of the pandas' moving 
period between two seasonal activity ranges 
based on the elevation change. 
a: average elevation and standard deviation per 
month for six pandas; 
b: sudden elevation change of pandas when 
ascending from the winter to the summer ranges 
from June 7 to 15 (see the average elevation 
curve with symbol of black dot); 
c: gradual elevation change of pandas when 
descending from the summer to the winter 
ranges from September 1 to October 6 (see the 
average elevation curve with symbol of black 
dot). 

The pandas' moving period was subjectively defined according to the curves of 
average elevation in Figure 5.5b-c. It is revealed that the pandas moved up quickly 
from the winter to the summer activity ranges within a range of 8 days from June 7 to 
15 (Figure 5.5b), but took about 36 days from September 1 to October 6 to descend from 
the summer to the winter activity ranges (Figure 5.5c). So, in total, the pandas spent 44 
days transferring between two seasonal activity ranges. Consequently, the giant 
pandas stayed in the winter range for approximately 243 days from October 7 to June 6 
in the second year (e.g. autumn-winter-spring period) and in the summer range for 
only 78 days from June 16 to August 31 (e.g. summer period). 
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A summer elevation range 

...Q... 
o 

5.4.3 Elevation ranges for three activity ranges 

The elevation of the pandas' tracking records in three activity periods (e.g. autumn-
winter-spring period, transfer period, and summer period) defined by Figure 5.5b-c 
was plotted in Figure 5.6. It shows that the elevations of the tracking points in both the 
autumn-winter-spring period and the summer period have smaller ranges than the 
elevation of the tracking points in the transfer period. The upper and lower whiskers of 
the boxplots subjectively 
defined the elevation ranges of 
the pandas' winter and summer 
activity ranges. The winter 
activity range is thus found 
from about 1410 to 1950 m and 
the summer activity range from 
about 2160 to 2800 m. Therefore, 
the pandas remained below 
1950 m in the autumn-winter-
spring period and above 2160 m 
in the summer period. There is a 
significant difference between 
the medians of elevation of 
these two activity ranges (df = 1, 
P < 0.01, Mann-Whitney U). The 
elevation gap between the 
upper whisker of the winter 
elevation range and the lower 
whisker of the summer 
elevation range from 1950 to 
2160 m is defined as the 
transition range. 

winter elevation range 

Strata defined by moving time 

Figure 5.6 Boxplots show the elevation distributions 
defined by the pandas' activity periods: 1: autumn-
winter-spring period (before June 7 and after October 
6); 2: transfer period (between June 7 and June 15, as 
well as between September 1 and October 6); 3: 
summer period (between June 16 and August 31). 

5.4.4 Areas of two seasonal activity ranges 

The areas of each adult panda's winter and summer activity ranges based on the results 
obtained above are detailed in Table 5.3. It can be noted that each panda has a varied 
area of winter and summer activity ranges in different years. However, in general, the 
average winter activity range is larger than the average summer activity range. The 
male pandas, on average, use larger summer activity ranges than the female pandas, 
while male and female pandas use similar areas in the winter activity range. 

The result of the Mann-Whitney U test confirms that there is no significant difference 
between adult male and female pandas' winter activity ranges (d/= 1, P > 0.05, Mann-
Whitney U) as well as their summer activity ranges (df= 1, P > 0.05, Mann-Whitney U). 
Adult male pandas use a similar area for their winter range as they do for their 
summer range (df = 1, P > 0.05, Mann-Whitney U). However, for adult female pandas, 
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the area of the winter activity range used is significantly larger than the area of the 
summer activity range (df= 1, P < 0.05, Mann-Whitney U). 

Table 5.3 Area (km2) of the winter ("w") and the summer ("s") activity ranges from four adult pandas 
(male panda005 and pandal27, female panda043 and panda045) in different years in Foping Nature 
Reserve, China. The comparison was tested using the Mann-Whitney U test. Note: "ns" indicate a not 
significant difference (p > 0.05 ) , and "s" means a significant difference (p < 0.05). 

Winter activity range Summer activity range 

Sex 

Area 

N 
Average 

Male 
3.1 
5.2 
1.1 
2.2 
6.0 
4.2 
6 

3.6 

Female 
2.3 
2.7 
4.2 
2.6 
4.5 

5 
3.3 

Sex 

Area 

N 
Average 

Male 
4.3 
2.1 
1.6 
2.3 

4 
3.3 

Female 
1.4 
0.7 
1.2 
2.4 

4 
1.4 

(ns p > 0.05) 

5.4.5 Distance moved over two consecutive days 

Figure 5.7 shows the pattern of the 
average monthly distance travelled 
over two consecutive days for both 
adult male and female pandas 
(means with 95% C.I.). It can be 
observed that the giant pandas in 
Foping NR travelled shorter 
distances (< 300 m) with small 
distance variation in January and 
February, and travelled a slightly 
larger distance (< 400 m) with also 
small distance variation in two 
summer months (July and August) 
as well as two winter months 
(October and December). In the 
other months, pandas travelled 
further than 400 m within two 
consecutive days with slightly 
larger distance variation. 
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Figure 5.7 The pattern of average monthly distances 
travelled over two consecutive days for 2 adult male and 
2 adult female pandas in Foping Nature Reserve, China. 
The means with 95% C.I. are shown in the figure. 
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Apparently, the pandas increased their moving distance in March and April, which 
may be related to the fact that this is the mating season. In May, the bamboo in the low 
elevation area started shooting and the pandas moved in a wider range and traversed 
greater distances per day to search for new bamboo shoots. In June and September, the 
pandas ascended to and descended from the summer activity ranges and covered 
larger distances. The average monthly moving distances in these 5 months (March, 
April, May, June and September) have very large variations. There is no statistically 
significant difference in two consecutive days' movement distance between adult male 
and female pandas (df = 1, P > 0.05, Mann-Whitney U). Even in April, June and 
September, there is no statistically significant difference in the distance travelled within 
two consecutive days (df= 1, P > 0.05, Mann-Whitney U) although Figure 5.7 shows a 
difference between adult male and female pandas in these three months. 

5.5 Discussion 

Spatial and quantitative analysis of the pandas' activity pattern from 5-year radio-
tracking data from Foping NR has been undertaken for the first time. The 6 pandas' 
activity patterns all show two spatially distinct (e.g. winter and summer) seasonal 
activity ranges. Spatial distribution patterns of these 5-year radio-tracking data for 6 
pandas show some overlap in varying degrees. However, it only shows the overlap of 
activity ranges in a relatively long period, not an individual panda's daily activity 
range. 

The elevation change of the pandas' activity in June (from June 7 to 15) and September 
(from September 1 to October 6) gives the appearance of a regular annual movement 
between the winter and summer activity ranges. This has confirmed Pan et al.'s work 
(1988) in the neighbouring Changqing NR, but with a small difference: the seasonal 
movement in Changqing NR occurs between May and June, and September to October. 
The six pandas in Foping NR take in reality only two or three days for moving 
upwards over one year. The average value of 8 days (from June 7 to 15) represents the 
range for all six pandas for the whole period of five years. Yong et al. (1994) analysed 
12-months' radio tracking data (from April 1991 to April 1992) of only two pandas. Due 
to the limited data used in Yong et al.'s work (1994), their result about the period for 
pandas to move up shows a difference with the result obtained in this study. The 
correctly defined transfer periods of the giant panda can be used not only to determine 
the elevation boundaries of the winter and the summer activity ranges, but also to help 
to estimate the area of the winter and the summer activity ranges separately. 

The existence of separate winter and summer ranges is an important component of the 
concept of migration (Baker 1978). An example of using subjective judgements in order 
to formulate some definitions for a mule deer population was presented by Garrott et 
al. (1987). Our study took a statistical approach to define the vertical seasonal activity 
ranges of the giant panda. The results show that the area above approximately 2160 m 
is the pandas' summer range and the area below about 1950 m is the pandas' winter 
range. These elevation boundaries for the two ranges are different from the ones 
reported by Pan et al. (1988). They found that the winter range in their study area of 

77 



Chapter 5 

Changqing NR, neighbouring to Foping NR, was below 1900 m and the summer range 
above 2300 m. 

The aim to estimate the area of the pandas' winter and summer activity ranges is to 
provide us with an image of how pandas use their territory. In panda research, the 
terms "winter activity range" and "summer activity range" have not often been used. 
The total of winter and summer activity ranges can be used to compare with the 
situation in Wolong NR. The average total activity range of males is 6.2 km2 and of 
females 4.7 km2 in Foping NR. In Wolong NR, a male usually has an activity range of 
about 6-7 km2 and a female has a smaller activity range of about 4-5 km2 (Hu 1990), 
which are markedly similar. However, the measure of home ranges of the pandas in 
Wolong NR included the areas for seasonal movement, i.e. the transition area. 

Limited summer habitat, only about 15% of the nature reserve (see Chapter 4), might 
be a reason for pandas in Foping NR to move into close proximity at the top of the 
GuangTouShan Mountain. The food (e.g. F. spathacea bamboo) in the panda summer 
habitat grows in dense groves, and pandas stay in the summer habitat for just two and 
half months (about 78 days). This may explain why pandas can stay near each other. 
Hu (1990) also concluded that the giant panda is able to survive in a small activity 
range if plenty of bamboo is available. According to the local staff in Foping NR, the 
summer range of female panda083 in 1995 on the northern slope of GuangTouShan 
was assumed to be the dispersion behaviour because she was only two years old in that 
summer and utilised an area far away from other individuals. 

One of the advantages of calculating the sizes of the pandas' winter and summer 
activity ranges is to estimate the panda population in Foping NR. According to the 
mapping work which we are carrying out (see Chapter 4), the available winter habitat 
in Foping NR can be deduced. Based on the average area of pandas' winter activity 
range, the panda population may be estimated by two parameters (e.g. available winter 
habitat and average area of panda winter activity range) with considering degree of 
overlap, which may provide a useful guide for a panda population survey. 

Based on the work in Wolong NR, Hu (1990) concluded that the giant pandas are 
rather inactive for most days of a year and have a movement distance of 500 m or less. 
The result of this study shows the giant pandas have varied distances of movement in 
different time periods. Within two consecutive days, distance of movement can be less 
than 300 m on average in January and February, and between 300 m and 400 m in July, 
August, October and December, or further than 400 m in March, April, May, June, 
September and November. The male and female-pandas have different movement 
distances in different months. On average, male pandas move larger distances than 
females, which is in agreement with the research finding in Wolong NR that "the male 
usually walks farther than the female" (Hu 1990). 

The period for pandas to transfer between two seasonal activity ranges in Foping NR 
generally coincides with that of the giant panda group in the neighbouring nature 
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reserve in the Qinling Mountains: moving up the mountain from middle April to early 
June and moving down from early September to October like in Changqing NR (Pan et 
al. 1988). The pandas in Wolong NR, however, while living in a different mountain 
range, namely the Qionglai Mountains, live in the arrow bamboo (B. fangiana) area 
above 2700 m for most of the year. They move down to the umbrella bamboo (F. 
robusta) area below 2700 m only in late April or early May until the middle of June 
when the umbrella bamboo shoots come out. Some of the pandas even stay in the 
arrow bamboo area all year (Pan et al. 1988). Panda ecology in these two mountain 
ranges is thus not the same, which may have important repercussions for the 
evaluation of terrain characteristics for suitability for panda re-introduction. 

5.6 Management implications 

The results obtained in this research will provide not only the managers, working staff 
and local people in the nature reserve but also the scientific researchers with more 
accurate information about the pandas' movement quantitatively and visually, which 
can contribute to panda conservation on the following aspects: (1) The pandas' moving 
periods found in the study will guide local staff and managers in panda tracking and 
reduce the chance of missing tracking data; (2) The winter and the summer activity 
ranges defined by elevation ranges can be applied in panda habitat management, for 
instance, to calculate how large these two panda activity ranges are respectively and to 
estimate indirectly the panda population; (3) The difference of the panda movement 
pattern found between Foping NR and its neighbouring Changqing NR, as well as far
away Wolong NR, shows the wildlife managers, wildlife ecologists, etc. that various 
strategies need to be taken into account in scientific research and panda population 
surveys in different geographical regions. 
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CHAPTER 6 Panda Habitat Selection and 
Habitat Characteristics in Foping Nature Reserve * 

Abstract 

Analysis of habitat selection has been a common and important aspect of wildlife 
science. However, little is known about habitat selection of the giant panda, especially 
about the relationship between panda presence, and bamboo and tree layers. This 
study presents data on panda habitat use and selection as well as habitat characteristics 
which may direct panda habitat selection in Foping Nature Reserve (NR). A total of 
1066 from 1639 effective radio-tracking records were used for analysing panda habitat 
selection, and 110 quadrates for extracting characteristics of different habitat types and 
their relationships with panda presence. We found that: (i) Pandas in Foping NR select 
mostly three habitat types: conifer forest, deciduous broadleaf forest, and Fargesia 
bamboo groves, (ii) In the winter range, pandas spend more time in deciduous 
broadleaf forest with an elevation range of 1600 to 1800 m, a slope range of 10 to 20 
degrees, and south-facing slopes. In the summer range, pandas use more conifer forest 
with an elevation range of 2400 to 2600 m and a slope range of 20 to 30 degrees, (iii) 
Pandas select the Bashania fargesii bamboo area with short and dense culms from 
different ages in the winter activity range, while they select the Fargesia spathacea 
bamboo area with a high coverage of tall and thick culms from one to two year-old in 
the summer activity range. 

Key Words: giant panda, habitat selection, habitat use, habitat characteristics, radio 
tracking, Foping Nature Reserve, China 
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82 



PiinJa HabiUit Selection and Characteristics in Fopinp. 

6.1 Introduction 

Habitat is any spatial unit that can be occupied by an individual animal, no matter how 
briefly (Baker 1978). Habitat requirements of species were generally based on 
qualitative descriptions relating the presence or absence of species to the general forest 
type or structure of the vegetation. In recent years, however, there has been a growing 
interest in the use of more quantitative techniques to gain an insight into the habitat-
selection patterns of animals (Capen 1981). Schamberger and O'Neil (1986) emphasised 
that habitat-use data were capable of documenting the species' use of particular areas 
within its range based on two assumptions: (1) a species will select and use areas that 
are best able to satisfy its life requirements; and (2) as a result, greater use will occur in 
higher quality habitat. Johnson (1980) stated that ecological research often involves 
comparison of the usage of habitat types or food items to the availability of those 
resources to the animal. Analysis of habitat selection has been a common and important 
aspect of wildlife science (Alldredge and Ratti 1986). 

Habitat preference, habitat use and habitat selection are described and used differently. 
White and Garrott (1990) stated that habitat preference means that the animal 
population selects some habitat types more than others and thus spends more time in 
these habitats than would be expected based on the availability of each habitat type. 
Habitat use means that locations taken for each animal are classified as to the habitat 
types in which they occur, thus the percentage of time each animal spends in a 
particular habitat type can be estimated. If one habitat type is preferred, than more time 
will be spent in this habitat type than expected by chance alone (White and Garrott 
1990). The definition of "habitat selection" is not found in the publications. However, 
the term "habitat selection" has been widely used (Babaasa 2000, Alldredge and Ratti 
1986, Augustine et al. 1995, Reid and Hu 1991, Wei et al. 1996 and 1999). We consider 
that habitat selection mainly emphasises the action of choosing the habitats, and can be 
reflected by analysing habitat use and habitat preference. Svardson (1949) and Hilden 
(1965) pointed out that habitat selection includes two processes: primary selection of 
general environmental features under the different habitats, and then further selection 
of specific habitat based on detailed features. According to Johnson (1980), animals 
follow an order in habitat selection: firstly, selection of geographical region, secondly, 
selection of home range in the geographical region, and lastly, selection of different 
type of habitat components. Wiens (1981) described that habitat selection may occur at 
a number of spatial scales and need not be based on the same criteria at each. 

Schaller et al. (1985) had pointed out that little is known of habitat selection of the giant 
pandas (Ailuropoda melanoleuca), except that they seem to concentrate their activities in 
mountainous areas, live in a bamboo environment and feed almost exclusively on 
bamboo species. However, there is a substantial variation in the growth pattern (e.g. 
culm density, annual shoot production) and morphology (e.g. culm height and basat 
diameter) of bamboo culms when growing under different conditions, and these may 
direct panda habitat selection (Reid and Hu 1991). Wei et al. (1996) again commented 
that some work had been done on panda habitat selection by Reid and Hu (1991) in 
Wolong NR. Based on that, Wei et al. (1996 and 1999) applied the same method to 
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analyse panda habitat selection in Mabian Dafengdin NR and compared the habitat 
selection between the giant panda and the red panda in Yele NR. 

It has been reported that there are two main habitats occupied by pandas in Foping NR: 
the winter habitat with bamboo species B.fargesii and the summer habitat with bamboo 
species F. spathacea (Pan et al. 1988 and 1989, Yong et al. 1994). Tian (1986, 1989, 1990, 
and 1991) published his research work on characteristics of bamboo species and 
flowering within the whole range of the Qingling Mountains. However, no details have 
been reported on analysing the bamboo layer and its relationship with panda presence 
and canopy tree layer. Tian (1990) described, based on the field observation, that 
pandas do not feed in the areas where bamboo stems are very dense or very sparse, 
bamboo closure very high or very low, the understorey environment very dark, as well 
as the slopes very steep. The survey conducted in Foping NR in 1984 showed that 20% 
of the bamboo area has never been used or used very little by pandas. Tian (1990) also 
mentioned that pandas select only the bamboo stems with an age of one or two years 
old to feed. Tian described his findings based only on his field observation and no 
statistical method has been used to test whether there was a significant difference in 
terms of the aspects mentioned above between panda-presence or panda-absence 
habitats. 

Panda research using more advanced methods to analyse panda habitat has just started 
recently in Foping NR. Yang et al. (1997 and 1998) as well as Yang and Yong (1998) 
showed their research results on panda summer and winter habitats. They mainly 
focused on analysing environmental factors, both biophysical and abiotic, in panda 
regions, looking at their impact, and clustering the survey plots based on these factors. 
Ren et al. (1998) focused their research on flora and vegetation, as well as the 
relationship between plant species richness and elevation. Quantitative analysis of 
panda habitat selection and linking panda presence with bamboo as well as tree 
structures has not been done in Foping NR. 

This study reports the relationship between the presence of pandas and their habitat 
factors such as vegetation type, elevation, slope gradient and slope aspect by using 
radio tracking data, survey plot data and mapping results from Chapter 4. 
Furthermore, the study aims to gain an insight into habitat selection of pandas, to look 
at the difference between various panda habitat types, and, therefore, to find the 
specific characteristics of panda-presence habitat. 

6.2 Study area 

Foping NR is located in the south of Shaanxi province (Figure 1.3), on the middle part 
of the southern slope of the Qinling Mountains (Figure 1.1). The reserve covers about 
290 km2, and the elevation ranges from approximately 980 to 2900 m. The description of 
Foping NR is detailed in Chapter 1. The main vegetation types are conifer forests, 
mixed conifer and broadleaf forests, deciduous broadleaf forests, shrub and meadow 
(Ren et al. 1998, CVCC 1980). There are two main bamboo species for pandas to feed 
on: B.fargesii and F. spathacea (Pan et al. 1988, Tian 1989 and 1990, Yong et al. 1994, Ren 
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et al. 1998). B. fargesii is generally distributed in the area below 1900 m, while F. 
spathacea occurs mainly in the area above 1900 m. The estimated panda population is 
about 64 with an average density of one individual per 5 km2 according to the survey 
conducted in 1990 (Yong et al. 1993). 

A 110 field survey plots 

O radio tracking locations 

Figure 6.1 Distribution of radio-tracking locations (the grey circles) and 110 field survey plots 
(the black deltas) in Foping Nature Reserve, China. 

6.3 Methods 

6.3.1 Data 

Radio-tracking data: Radio tracking data were assumed to be able to reflect the 
principles of panda habitat selection. Six pandas (3 female and 3 male) with telemetry 
collars were tracked in different periods (see Table 5.2). The longest period lasted about 
5 years from 1991 to 1995. The earliest tracking started in May 1991 and the latest one 
was in December 1995. A total of 59 receiving towers were used in the nature reserve 
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and mainly distributed along the top ridge of GuangTouShan Mountain with west-east 
direction for tracking in summer and autumn seasons, and the DongHe River Valley 
with south-north direction for tracking in winter and spring seasons. All 1760 raw 
tracking records were carefully checked and finally a total of 1639 effective tracking 
records were kept (see detail in Chapter 5); their distribution is shown in Figure 6.1. 
One tracking record is used as one day for calculating panda habitat use and selection. 

Habitat survey data: A habitat survey was conducted in summer 1999 (July and 
August). Global Position System (GPS) has been used to record the geo-locations of all 
survey plots. In total, 110 quadrats (10 m by 10 m) have been surveyed (shown in 
Figure 6.1) and each of them contains four bamboo plots (1 m by 1 m) for calculating 
average bamboo parameters for the whole plot. Detailed habitat information has been 
collected through measuring and recording of: 

• tree layer (>5 m): species, number or stems, diameter at breast height (DBH) per 
stem, height per stem, and canopy coverage per species, total canopy coverage in 
10 m by 10 m plot; 

• shrub layer (> 1 m and < 5 m) except bamboo species: species, individual height, 
and coverage per species in 10 m by 10 m plot; 

• bamboo layer: species, number of culms, basal diameter (BD) per culm, average 
bamboo height in 1 m by 1 m bamboo plot, and total bamboo coverage in 1 m by 1 
m bamboo plot; 

• main terrain factors: elevation, slope gradient and direction; 
• signs of panda presence: feedings, droppings and nesting sites; 
• ground-cover-based panda habitat types: (1) conifer forest, (2) mixed conifer and 

broadleaf forest, (3) deciduous broadleaf forest, (4) bamboo (or mixed with 
meadow), (5) shrub-grass-herb land, (6) rock and bare-lands, (7) farm-land and 
settlements, (8) water area. 

6.3.2 Categories of panda habitat types 

Two categories of panda habitat types were used in this study. Both categories were 
described and their spatial patterns were mapped by an integrated neural network and 
expert system with a high mapping accuracy in Chapter 4. The first category of habitat 
types is defined based on ground cover types as listed above, and used to analyse 
panda habitat use and selection. The second category of habitat types is defined based 
on habitat suitability for pandas decided by several criteria (thus suitability-based 
panda habitat types). It consists of (1) very suitable summer habitat, (2) suitable 
summer habitat, (3) very suitable winter habitat, (4) suitable winter habitat, (5) 
transition habitat, (6) marginal habitat, (7) unsuitable habitat, and (8) water area. This is 
used to compare the woody species composition. 

6.3.3 Data Analysis 

Parts of the radio-tracking data (1066 tracking records) from several pandas that cover 
more or less one complete year (see Table 5.2 and Table 6.1) were used to estimate the 
percentage of time an animal spends in a particular habitat type so as to ascertain 
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panda habitat use. The habitat type of a radio-tracking location can be obtained 
through recording in the field, plotting the location on an existing hardcopy of a habitat 
map, or extracting directly from a georeferenced digital habitat map. In this study, the 
ground-cover-based panda habitat types for all tracking records were extracted from a 
georeferenced digital habitat map produced in Chapter 4 because between 1991 and 
1995 tracking was carried out without recording the habitat types. To analyse panda 
habitat use, the percentage of time over one year that pandas spend in different habitat 
types was calculated. The study assumes that all pandas have the same choice of 
different ground-cover-based habitat types. 

In order to understand how pandas utilise the habitat types in the winter and summer 
activity ranges, the same data were also used to illustrate the frequency of panda 
occurring in the different habitat types in two seasonal activity ranges. Furthermore, 
other physical environmental factors (namely elevation, slope gradient and aspect) 
were used to overview panda habitat selection determined by different terrain factors. 

A x2 test is performed to test for the goodness-of-fit of utilised habitats to available 
ground-cover-based habitat types in order to gain an insight into panda habitat 
selection (see detail in Neu et al. 1974, Byers et al. 1984, White and Garrot 1990). The 
two null hypotheses are tested by the x2 test. The first null hypothesis is that habitat 
usage occurs in proportion to habitat availability considering all habitats 
simultaneously using Equation (1); and the second null hypothesis is that habitat usage 
occurs in proportion to habitat availability considering each habitat separately using 
Equation (2). 

, _ (observed - expected)2 

expected 
(1) 

j M ^ J ^ ^ ^ z j M ^ ) ] ! (2) 

in which P, is the calculated confidence interval for habitat type i, p„i is the 
proportion of panda observations in habitat type i, n is the number of total 
observations, Zapk is the upper standard normal table value corresponding 
to a probability tail area of a/2k, and k is the number of habitat types tested. 

Equation (1) is used to test whether there is a significant difference between 
observation and expectation. If there is a significant difference, the first null hypothesis 
is rejected which means that panda has "habitat selection". After "habitat selection" in 
general has been confirmed, the expected panda locations are calculated from the 
availability proportion multiplied by total observed panda locations. Equation (2) is 
used to calculate a confidence interval and then to test which habitat type pandas select 
more. To determine whether the animal selects a habitat type "frequently", "in 
proportion to", "less frequently", or "not at all", the confidence interval is checked for 
overlap with the availability proportion of the corresponding habitat type. If the 
confidence interval includes the availability proportion, the hypothesis, i.e. "in 
proportion to" this habitat type, cannot be rejected. However, if the lower boundary of 
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the interval exceeds the availability proportion, the panda has shown its frequent 
selection of this habitat type. If the upper boundary of the interval is less than the 
availability proportion, the panda has shown less frequent selection or avoidance of 
this habitat type. The availability (i.e. area) of each ground-cover-based habitat type 
comes from our habitat mapping results (see Chapter 4). 

The woody species composition of suitability-based panda habitat types were analysed 
based on our 110 field survey plots. The importance value (IV) for each species was 
calculated using a formula modified from Mueller-Dombois and Ellenberg (1974) and 
Acharya (1999), which considers the canopy coverage per species in the plot, the 
individual density per species in the plot, and the chance of occurrence among 110 
plots. All these three parameters range from 0 to 100. Species importance value was 
then calculated using the following equation: 

/V;=(C,.+D,. + 0j)/3OO (3) 

in which IV, is the importance value of species i, C is the canopy coverage of 
species i in a 10 m by 10 m plot, D, is the density of species i in a 10 m by 10 
m plot, and O, is the chance of species i for occurring among 110 plots . 

Species in tree layer (> 5 m) and shrub layer (> 1 m and < 5 m) were treated 
respectively. Then all species were sorted according to the suitability-based habitat 
types as well as the importance value. The top 10 species for different suitability-based 
panda habitat types were selected and used to compare difference of species 
composition. Only 6 suitability-based habitat types which have tree cover and bamboo 
cover were used: very suitable summer habitat, suitable summer habitat, very suitable 
winter habitat, suitable winter habitat, transition habitat, and marginal habitat. 

The structure of habitat components (tree layer and bamboo layer) was analysed in 
detail for two situations: panda presence and panda absence, in order to find whether 
and how the structure of habitat components influences the presence of pandas. 
Checking for any significant difference of the structure parameters of tree and bamboo 
layers has been executed between panda-presence habitat and panda-absence habitat. 
These parameters are total tree canopy coverage, total bamboo coverage, number of 
tree stems, number of bamboo culms, height for both tree and bamboo species, DBH of 
tree stems, and BD of bamboo culms. The Mann-Whitney U test was used to test all the 
hypotheses in the study. The hypotheses were set up based on Tian's (1990) field 
observation and our field survey. In general: 
• There is a significant difference between panda-presence and panda-absence 

habitats on tree canopy coverage, number of tree stems, tree DBH and tree height; 
• There is a significant difference between panda-presence and panda-absence 

habitats on bamboo coverage, number of bamboo culms, bamboo basal diameter 
and bamboo height; number of bamboo culms with different ages (such as < 1,1 -
2, and > 2 year-old) as well as number of dead culms. 
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6.4 Results 

6.4.1 Habitat use and selection by pandas 

Table 6.1 shows panda habitat use based on 6 one-year periods for 4 pandas. 
Consequently the percentage of time, on average, in a year for pandas staying in each 
different habitat type is about 13% in conifer forests, 40% in mixed conifer and 
broadleaf forests, 45% in deciduous broadleaf forests, 2% in bamboo (or mixed with 
meadow), and appearing by chance in shrub-grass-herb land (< 1%) as well as rock and 
bare-lands (< 1%). Pandas have not been located in farm-land and water area by radio 
tracking. It shows that pandas stay in deciduous broadleaf forest and mixed conifer 
and broadleaf forest most of the year. 

Figure 6.2 illustrates panda habitat use of ground-cover-based habitat types as well as 
three physical environmental factors (e.g. elevation, slope gradient and direction) in 
two seasonal activity ranges. In the winter range, pandas stay mostly in deciduous 
broadleaf forests as well as mixed conifer and broadleaf forests with an elevation range 
of 1600 to 1800 m, a slope range of 11 to 20 degrees, and south-facing slopes. In the 
summer range, pandas often use conifer forests and also mixed conifer and broadleaf 
forests with an elevation range of 2400 to 2600 m, a slope range of 21 to 30 degrees, and 
north and west exposed slopes. 9% of the tracking records in the winter activity range 
fall in the "no aspect" class and only 1% in the summer range, which means pandas 
more frequently use flat areas in their winter activity range than in their summer 
activity range. 

Table 6.1 Analysis of panda habitat use by using radio tracking data in Foping Nature Reserve, China -
the percentage of time spent in each different habitat type (cf: conifer forest, dbfcf: mixed conifer and 
broadleaf forest, dbf: deciduous broadleaf forest, bam: bamboo (or mixed with meadow), shgr: shrub-
grass-her 

panda 

045 (F) 
065 (M) 
127 (M) 
045 (F) 
065 (M) 
005 (M) 

b land ,1a s: fan n-lan 
Tracking period 

June 
June 
June 
Jan. 
Jan. 
Jan. 

Total 
% of time 

92 
92 
92 
95 
95 
95 

- May 
-May 
-May 
Dec. 
Dec. 
Dec. 

days 
in a year 

93 
93 
93 
95 
95 
95 

i and se 

cf 

15 
23 
45 
19 
15 
17 
134 

12.6* 

ttlement 

dbfcf 

57 
62 
61 
91 
102 
57 
430 
40.3 

3, rab: n 3ck and b 
Tracking day 

dbf 

77 
78 
76 
94 
67 
82 
474 
44.5 

bam 

0 
1 
12 
3 
1 
2 
19 
1.8 

are-Ian d, war water area 
s in different habitats 
shgr 

1 
0 
0 
0 
0 
5 
6 

0.6 

fas 

0 
0 
0 
0 
0 
0 
0 

0.0 

rab 

0 
0 
0 
0 
0 
3 
3 

0.3 

) • 

war 

0 
0 
0 
0 
0 
0 
0 

0.0 

Total 
days 
150 
164 
194 
207 
185 
166 
1066 
100 

* 12.6=134/1066*100 

Calculation of habitat selection is shown in Table 6.2. Thex2 goodness-of-fit (Table 6.2a) 
shows significant difference between overall habitat availability and usage (p < 0.001, df 
= 7, x2 = 259). It means that pandas show "habitat selection" when considering all 
habitat types together. Checking availability proportion of each habitat type with the 
95% confidence interval reveals that three habitat types are frequently selected by 
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pandas: conifer forest, deciduous broadleaf forest as well as bamboo groves (Table 
6.2b). Pandas use the "rock and bare-land" areas by chance but in proportion to the 
availability of this habitat type. However, the remaining four habitat types (e.g. mixed 
conifer and broadleaf forest, shrub-grass-herb land, farm-land and settlements, as well 
as water area) are less frequently selected or not selected by pandas (see discussion). 

war fas shgr dbf dbfcf cf bam rab 

Cfround-cover-based habitat types 

O winter range 

D summer range 

58 

o : o o o 

* f S # -f f f # f J ^ f f # f f f 
Bevation ranges (meters) 

i 
•S a-
% ~ 
§ 8, 
U C 
*- (0 

If 
« o 
£ a 
Z 9 

D L 

O winter range 

D summer range 

°R 
1-10 11-20 21-30 31-40 >40 

Slope gradient ranges (degree) 

1 
m winter range 

D summer range 

18 

11 
9 

1 

east south west north no 

Slope aspects aspect 

Figure 6.2 Analysis of panda habitat use in two seasonal activity ranges in Foping Nature Reserve, 
China, a - use of eight ground-cover-based habitat types: conifer forest (cf), mixed conifer and 
broadleaf forest (dbfcf), deciduous broadleaf forest (dbf), bamboo (or mixed with meadow) (bam), 
shrub-grass-herb land (shgr), rock and bare-land (rab), farm-land and settlements (fas), as well as 
water area (war), b - use of elevation ranges, c - use of slope gradient ranges, d - use of 5 classes of 
slope aspect: east (E: 46-135 degrees), south (S: 136-225 degrees), west (W: 226-315 degrees), north (N: 
316-360 and 0-45 degrees), and no aspect (No). 
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Table 6.2 Analysis of panda habitat selection in Foping Nature Reserve, China by comparing the 
expected with observed panda occurrence numbers, and calculating x2 and confidence interval. 

a: calculating x2 in order to see panda habitat selection when considering all habitat types together. The 
area of each habitat type comes from our habitat mapping result in Chapter 4, and the observed radio-
tracking locations are from Table 6.1. 

Habitat type 

1 conifer forest 
2 mixed conifer and 
broadleaf forest 
3 deciduous broadleaf 
forest 
4 bamboo (or mixed 
with meadow) 
5 shrub-grass-herb 
land 
6 farm-land and 
settlements 
7 rock and bare-land 
8 water area 
Total 

Habitat availability 

Area Proportion 
(km2) :pj 
16.5 
174.2 

92.0 

1.7 

6.0 

0.4 

1.6 
1.0 

293.4 

b: calculating 95% C.I. and checking 
Habitat type 

1 conifer forest 
2 mixed conifer and 
broadleaf forest 
3 deciduous 
broadleaf forest 
4 bamboo (or mixed 
with meadow) 
5 shrub-grass-herb 
land 
6 farm-land and 
settlements 
7 rock and bare-land 

8 water area 

Proportion 
availability 

0.056 
0.594 

0.314 

0.006 

0.020 

0.001 

0.005 

0.003 

0.056 
0.594 

0.314 

0.006 

0.020 

0.001 

0.005 
0.003 

1 

Location of radio-tracking 

Observed Proportion 

134 
430 

474 

19 

6 

0 

3 
0 

1066 

with availability proport 
of Proportion of 
:p„ observations :p„ 

0.126 
0.403 

0.445 

0.018 

0.006 

0.000 

0.003 

0.000 

0.126 
0.403 

0.445 

0.018 

0.006 

0.000 

0.003 
0.000 

1 

Expected X2 

observations3 test 

60 
633 

334 

6 

22 

1 

6 
4 

1066 

on of each habitat type. 
95% C.I. on proportion 

of occurrence: P, 
0.098<= Pcf <= 

0.362<=PdW<--

0A03<=P„bf<= 

0.007<= ft„„, <--

-0.001<= P^ < 

0 

-0.002<= Pmb <--

0 

0.155 
= 0.446 

0.488 

= 0.029 

= 0.012 

= 0.007 

91.47 
65.06 

58.42 

26.62 

11.45 

1.45 

1.36 
3.63 

259.47 

Habitat 
selection 

Frequent 
Less 
frequent 
Frequent 

Frequent 

Less 
frequent 
Not selected 

In 
proportion 
Not selected 

1. pa is a proportion of the area of each habitat type to the total area, for example, 16.5/293.4=0.056. 
2. pot is a proportion of observed locations in each habitat type to the total observed locations, for 

example, 134/1066=0.126. 
3. Expected locations of animals are calculated by multiplying the availability proportion (p„) and the 

total observed locations, for example, 0.056*1066=60. 
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6.4.2 Comparison of characteristics of panda habitat types 

Woody plant species composition 

The woody plant species composition shows differences among six suitability-based 
panda habitat types. The top ten species with the highest importance values (IV) for 
both tree layer and shrub layer were selected and are shown in Table 6.3 and Table 6.4 
respectively. There is less repetition of species with high IV between "very suitable 
summer habitat" (vss) and "suitable (ss) summer habitat" than between "very suitable 
winter habitat" (vsw) and "suitable (sw) winter habitat". 

Table 6.3 The woody plant species with their importance value (IV) in the tree layer (> 5 m) in six 
different suitability-based panda habitat types in Foping Nature Reserve, China. 

Woody species in tree layer 
(>5m) 
1 Abies fargesii 
2 Crataegus wilsonii 
3 Meliosma cuneifolia 
4 Cornus macmphylla 
5 Sorbus koehneana * 
6 Corylus tibetica 
7 Cerasus tomentosa * 
8 Populus purdomii 
9 Betula albo-sinensis var. septentrionlis 
10 Pinus armandi * 
11 Sorbus tapashana 
12 Acer mono 
13 Sorbus hemsleyi 
14 Betula platyphylla 
15 Tilia amurensis 
16 Carpinus turczaninowii var. stipulata 
17 Populus davidiana 
18 Castanea mollissima 
19 Quercus alierta var. acuteserrata 
20 Dendrobenthamia japonica * 
21 Quercus glandulifera var. brevipetiolata 
22 Juglans cathayensis * 
23 Pinus tabulaeformis 
24 Euptelea pleiospermum 
25 Tsuga chinensis 
26 Quercus spinosa * 
27 Carpinus turczaninowii 
28 Picea wilsonii 
29 Litsea pungens * 
30 Acer ginnala * 
31 Platycarya strobilacea 

Suitable summer 
vss 
0.29 
0.08 
0.07 
0.07 
0.06 
0.21 
0.20 
0.10 
0.40 
0.10 

habitat 
ss 

0.13 
0.07 
0.06 
0.04 

Suitable winter habitat 
vsw 

0.23 

0.19 
0.21 
0.21 
0.30 
0.21 
0.39 
0.33 
0.26 
0.20 

sw 

0.27 

0.32 
0.30 
0.33 
0.21 
0.28 
0.26 
0.24 
0.22 
0.26 

tr 

0.29 
0.12 
0.17 
0.30 

0.11 
0.30 

0.31 

0.24 
0.11 
0.10 

ms 

0.30 
0.09 

0.10 
0.18 
0.15 
0.15 
0.10 

0.09 
0.15 

0.10 

Note: "vss", "ss", "vsw", "sw", "tr" and "ms" represent six suitability-based panda habitat types: very suitable 
summer habitat, suitable summer habitat, very suitable winter habitat, suitable winter habitat, transition habitat and 
marginal habitat. Symbol "*" indicates the species occurring in both the tree and shrub layers. 

The typical tree species (Table 6.3) in "vss" and "ss" are Abies fargesii, Crataegus wilsonii, 
Meliosma cuneifolia, Cornus macrophylla, Sorbus koehneana, Sorbus tapashana, Acer mono, 
Sorbus hemsleyi. However, the specific tree species in "vsw" and "sw" are different and 
consist of Betula platyphylla, Tilia amurensis, Juglans cathayensis, Pinus tabulaeformis, 
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Euptelea pleiospermum. Only Betula albo-sinensis var. septentrionlis occurs in the whole 
elevation range with high IV in the tree layer. The tree species in both transition and 
marginal habitats can appear in both winter and summer habitats. In the transition 
habitat, three tree species are typical: Picea wilsonii, Litsea pungens and Acer ginnala. 

Table 6.4 The woody plant species except bamboo species with high importance value (IV) in the shrub 
layer (> 1 m and < 5 m) in six different suitability-based habitat types in Foping Nature Reserve, China. 

Woody species in shrub layer 
(> 1 m and < 5 m) 

Suitable summer 
habitat 

vss 

Suitable winter 
habitat 

vsw sw 
1 Sorbus koehneana * 
2 Ribes fasciculatum var. chinense 
3 Rosa tsinglingensis 
4 Rosa omeiensis 
5 Philadelphus incanus 
6 Acer cappadocicum 
7 Viburnum betulifolium 
8 Euonymus phellomanus 
9 Litsea pungens * 
10 Cerasus tomentosa * 
11 Spiraea alpina 
12 Lonicera taipeiensis 
13 Maddenia wilsonii 
14 Rhododendron capitatum 
15 Berberis pseudothunbergii 
16 Daphne giraldii 
17 Syringa oblata 
18 Carpinus cordata 
19 Chamaecereus sylvestri 
20 Dendrobenthamia japonka * 
21 Lespedeza dahurica 
22 Smilax scobinicaulis 
23 Smilax stans 
24 Viburnum mangolicum 
25 Juglans cathayensis * 
26 Rubus corchrorifolius 
27 Smilax galbra 
28 Abelia engleriana 
29 Acer ginnala * 
30 Syringa villosa 
31 Abelia blflora 
32 Cotoneaster acutifolius taycz. var. villosulus 
33 Quercus spinosa * 
34 Pinus armandi * 
35 Lonicera hispida 
36 Padus racemosa 

0.08 
0.08 
0.07 
0.11 
0.11 
0.20 
0.38 
0.32 
0.16 
0.08 

0.23 
0.20 
0.07 
0.16 
0.10 
0.08 
0.07 
0.06 
0.04 
0.03 

0.14 
0.24 
0.35 
0.16 

0.19 
0.14 
0.25 
0.19 
0.21 
0.20 

0.26 
0.29 

0.25 
0.26 

0.22 
0.22 
0.27 
0.24 
0.24 
0.20 

0.30 
0.13 

0.25 

0.21 

0.51 

0.17 

0.23 
0.12 
0.12 
0.11 

0.08 

0.23 

0.12 
0.27 

0.13 
0.11 

0.07 
0.07 
0.06 
0.04 

Note: "vss", "ss", "vsw", "sw", "tr" and "ms" represent six suitability-based panda habitat types: very suitable 
summer habitat, suitable summer habitat, very suitable winter habitat, suitable winter habitat, transition habitat and 
marginal habitat. Symbol "*" indicates the species occurring in both the tree and shrub layers. 

The woody species in the shrub layer shows an obviously different composition (Table 
6.4), but some species in the tree layer occur in the shrub layer as well: Sorbus koehneana, 
Litsea pungens, Cerasus tomentosa, Dendrobenthamia japonica, Juglans cathayensis, Acer 
ginnala, Quercus spinosa, and Pinus armandi. It indicates that these woody species 
regenerate well in Foping NR. Euonymus phellomanus, Viburnum betulifolium and Litsea 
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pungens occur at all elevation ranges. There are more species with high IV in the shrub 
layer than in the tree layer in the suitable summer habitat (ss). More species with high 
IV only occur in the transition habitat (such as Acer ginnala, Syringa villosa, Abelia biflora, 
and Cotoneaster acutifolius taycz. var. villosulus) and the marginal habitat (like Quercus 
spinosa, Pinus armandi, Lonicera hispida, and Padus racemosa). 

Structure analysis of tree layer 

Several parameters reflecting the structure of the tree layer (i.e. total tree canopy 
coverage, average height of tree stems, number of tree stems, and average DBH of tree 
stems) were compared between panda-presence and panda-absence habitats. Figure 6.3 
shows that there were no panda signs found in the area where no bamboo grows under 
the tree canopy. Figure 6.3 also shows that the habitats without understorey bamboo 
groves have significantly more tree stems than the habitats with bamboo groves (p = 
0.007 and 0.009), while there is no significant difference for the other three tree 
parameters. Figure 6.4 shows that, when bamboo species (either B. fargesii or F. 
spathacea) exist under the tree canopy, no significant differences of these tree 
parameters were found between panda-presence and panda-absence habitats (p > 0.05). 
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Figure 6.3 Comparison of tree parameters with or without understorey bamboo between panda-
presence and panda-absence habitats. "N" represents the number of plots. "NS" means no significant 
difference and "S" means significant difference at 95% C.I. level, "p" represents the probability at a 
certain significant level, "o" and "*" represent the statistical outliers and extreme outliers. The grey 
boxplots show analysis under no panda and the white boxplots show analysis under panda presence. 
"DBH" represents the tree diameter at breast height. 
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Figure 6.4 Comparison of tree parameters with understorey bamboo between panda-presence and 
panda-absence habitats. "N" represents the number of plots. "NS" means no significant difference and 
"S" means significant difference at 95%C.I. level, "p" represents the probability at a certain significant 
level, "o" and "*" represent the statistical outliers and extreme outliers. The grey boxplots show 
analysis under no panda and the white boxplots show analysis under panda presence. "DBH" 
represents the tree diameter at breast height. " 1 " and "2" mean Bashania fargesii and Fargesia spathacea. 

Structure analysis of bamboo layer 

Figure 6.5 shows comparison of four bamboo structure parameters between panda-
presence and panda-absence habitats. In B. fargesii groves, no significant difference was 
found for the total bamboo coverage and the average basal diameter of bamboo culms 
between panda-presence and panda-absence habitats (p = 0.798 and 0.186). However, 
pandas do select short and dense groves at a significant level of 95% C.I. (p = 0.004 and 
0.001). In F. spathacea groves, only the density of bamboo culms is similar between 
panda-presence and panda-absence habitats (p = 0.221), but the panda-presence habitat 
has significantly higher bamboo coverage, taller and thicker bamboo culms (p = 0.037, 
0.004 and 0.000). 

Figure 6.6 shows the relationship between bamboo-culm ages and habitats with panda 
presence or absence. Pandas significantly select the areas with more one to two year-
old culms as well as dead culms (p = 0.002, 0.004, 0.031 and 0.015) for both bamboo 
species. In the B. fargesii area, pandas also significantly select the habitat with more two 
or over two year-old bamboo culms (p = 0.001). However, in the F. spathacea area, 
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pandas do not show significant difference in selecting the habitat with more two or 
over two year-old bamboo culms (p = 0.438). For the density of less than one year-old 
culms in both bamboo areas, no significant difference was found between the panda-
presence and panda-absence habitats (p = 0.913 and 0.408). 
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Figure 6.5 Comparison of four bamboo structure parameters between panda-presence and panda-
absence habitats. "N" represents the number of plots. "NS" means no significant difference and "S" 
means significant difference at 95% C.I. level, "p" represents the probability at a certain significant 
level, "o" and "*" represent the statistical outliers and extreme outliers. The grey boxplots show 
analysis under no panda and the white boxplots show analysis under panda presence (see legend at 
the right side). "BD" represents the bamboo basal diameter. " 1 " and "2" mean Bashania fargesii and 
Fargesia spathacea. 

6.5 Discussions 

Babaasa (2000) stated that animal habitat selection appears to coincide with seasonal 
changes and correspond to food availability. In Foping NR, the vegetation types have a 
vertical distribution along the elevation. Radio tracking data analysis showed that the 
area below about 1950 m in Foping NR is the panda winter habitat and the area above 
about 2160 m the panda summer habitat (see Chapter 5). In the winter habitat, 
deciduous broadleaf forest and mixed conifer and deciduous broadleaf forest occupy a 
large area with well-growing understorey bamboo B. fargesii, which provides pandas 
with a large food supply in the winter season. The summer habitat is covered by 
conifer forest and mixed conifer and deciduous broadleaf forest as well, which 
provides F. spathacea bamboo as the pandas' summer food. The results in Table 6.1, i.e. 
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pandas spend 45%, 40% and 13% of the year respectively in deciduous broadleaf forest, 
mixed conifer and deciduous broadleaf forest, and conifer forest, reveal that panda 
habitat selection coincides with seasonal changes as the pandas occupy specific 
vegetation types in specific seasons (see Chapter 4 and Chapter 5). 
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Figure 6.6 Comparison of bamboo age between panda-presence and panda-absence habitats. "N" 
represents the number of plots. "NS" means no significant difference and "S" means significant 
difference at 95%C.I. level, "p" represents the probability at a certain significant level, "o" and "*" 
represent the statistical outliers and extreme outliers. The grey boxplots show analysis under no 
panda and the white boxplots show analysis under panda presence. " 1 " and "2" mean Bashania 
fargesii and Fargesia spathacea. 

Pandas do not use the whole elevation range evenly in Foping NR. They mainly stay in 
the areas between 1600 and 1800 m in winter and use mostly the areas between 2400 
and 2600 m in summer. The area from 1950 to 2160 m is only covered by scattered 
bamboo groves, and hardly any signs of long-time residence of pandas have been 
recorded (see Figure 6.2b). This has been proven by our field survey conducted in 
summer 1999 as well as by analysis of five-year radio-tracking data in Chapter 5. It has 
been termed by the local staff and defined in our mapping work in Chapter 4 as a 
transition habitat, which is used by pandas to move between two seasonal activity 
ranges only in June and September. 

It has been reported that pandas occupy the areas with a gentle slope gradient. This has 
been confirmed in this study. In winter, pandas select the areas with a slope range of 10 
to 20 degrees. The summer habitat in Foping NR has mostly steeper slopes than the 
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winter habitat, and consequently pandas use the areas with slopes between 20 to 30 
degrees. The frequency for pandas to appear in the areas with slopes over 30 degrees is 
much higher in summer than in winter activity ranges, occupying 27% of the summer 
tracking-records, while no panda tracking record was found to appear in the areas with 
slopes over 30 degrees in the winter range. This result agrees with Yang and Yong 
(1998). When comparing the situation in Wolong NR, pandas select the flat areas or 
gentle-slope areas between 10 to 20 degrees the whole year (Ouyang et al. 1996). One of 
the reasons could be that the summer habitat in Foping NR is limited and mostly has a 
slope of 20 to 30 degrees. 

Analysis of habitat selection through calculating x2 and confidence interval shows that 
pandas do not frequently select the habitat type "shrub-grass-herb land". This seems 
reasonable because it has no tree and bamboo cover based on the definition of this 
habitat type in Chapter 4, and therefore it is concluded that this habitat type is avoided 
by pandas. However, this is not the case for the habitat type "mixed conifer and 
broadleaf forest" selected less frequently by pandas, as shown in Table 6.2b. The result 
of less frequently selecting "mixed conifer and broadleaf forest" does not mean that 
pandas avoid this habitat type, but might be due to that fact that it covers a large area 
in Foping NR (60% of the nature reserve). Figure 6.2a also shows that pandas often 
occupy this habitat type both in summer and winter seasons. Therefore, it might be 
concluded that mixed conifer and broadleaf forest is less frequently selected but not 
avoided by pandas. Clearly, pandas seem to avoid areas influenced by humans, like 
"farm-lands and settlements". 

Figure 6.7 Photos show the "ZhuYangZi" B. fargesii habitat (a) with short (about 2 m) and 
dense culms with more branches caused by multiple feeding events by pandas, and the 
high mature B. fargesii habitat (b) with tall (about 4 m) and sparse culms with no branches in 
Foping Nature Reserve, China. (Photo : Xuehua Liu) 
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During the winter season, pandas stay in the areas with B. fargesii and frequently select 
the so-called "ZhuYangZi" bamboo groves (called by local people), which means that 
the bamboo culms are short (about 2 m high) and dense with more culms as well as 
branches caused by multiple feeding events by pandas (Figure 6.7a). The statistical 
results in Figure 6.5 confirmed that the structure parameters of "ZhuYangZi" bamboo 
groves are significantly different from those of the normal B. fargesii groves with tall 
(about 4 m) and sparse culms with no branches (Figure 6.7b). It might be necessary to 
separate these two quite different B. fargesii habitats from a conservation point of view. 
These two different habitats can be termed as the "ZhuYangZi" B. fargesii habitat and 
the high mature B, fargesii habitat based on our field observation. Mostly, the high 
mature B. fargesii habitat is thought not to be used by pandas. However, this is not true. 
During our survey in summer 1999, evidence was found of the remains of a few 
droppings and piles of the remaining parts of bamboo shoots. Therefore, that pandas 
still use the high mature B. fargesii habitats in the spring season for foraging thick 
bamboo shoots was confirmed. The shoots consumed by pandas consequently 
disappear from the groves and panda droppings from eating these shoots cannot exist 
for a long time due to easy decomposition. This means that no signs are left in the high 
mature B. fargesii groves, which, in turn, gives people the wrong impression that 
pandas do not use the high mature B. fargesii groves. 

F. spathacea bamboo in summer habitat has shorter and thinner culms, and grows more 
densely. It was found that pandas select F. spathacea bamboo groves with higher 
coverage, taller and thicker culms in the summer activity range. Two reasons may 
explain this phenomenon: (1) the biomass of individual F. spathacea culm is small; and 
(2) the summer habitat is steep. These make pandas select suitable bamboo groves with 
higher bamboo biomass (taller culms, thicker basal diameter, and higher coverage due 
to more culms and leaves) without often climbing the steep slope. No significant 
difference on bamboo density was found between panda-presence and panda-absence 
habitats in the high elevation area, which is similar with pandas in Wolong NR which 
select B. fangiana in high elevations (Reid and Hu 1991). One of the reasons could be 
that, in general, most of the bamboo groves in the high elevation areas grow densely. 
For example, F. spathacea grows densely in the high elevation area in Foping NR and B. 
fangiana grows densely in the high elevation area in Wolong NR. 

There are more one and two-year-old as well as dead culms in panda-presence habitat 
than in panda-absence habitat for both bamboo species. This implies that the bamboo 
groves regenerate well, and so, are frequently used by pandas. However, no significant 
difference was found for culms with age of less than on-year-old between panda-
presence and panda-absence habitats, which agrees with Reid and Hu (1991) that the 
proportion of current-year-old culms alone does not seem to be an important factor to 
explain bamboo patch selection of pandas in Wolong NR. 

6.6 Conclusion 

The radio tracking data and habitat plot data were thoroughly analysed to gain insights 
into panda habitats and usage of these habitats. The results of analysis show that 
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pandas in Foping NR do select their habitat types. In the winter season, pandas 
frequently select the areas with deciduous broadleaf forest and mixed conifer and 
broadleaf forest with an elevation range of 1600 to 1800 m, a slope range of 10 to 20 
degrees and south-facing slopes. In the summer season, pandas mostly select conifer 
forest, mixed conifer and broadleaf forest, and bamboo groves with an elevation range 
of 2400 to 2600 m and a slope range of 20 to 30 degrees. The results also show that the 
characteristics of tree and bamboo layers may direct panda habitat selection. Pandas 
often use the B. fargesii areas with shorter and denser culms from different ages and less 
tree stems in winter, while they select the F. spathacea areas with higher coverage, taller 
and thicker culms from one-two year-old ages in summer. 
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Recovered panda habitat with bamboo and trees 
after relocation of human being 

in Foping Nature Reserve 
(Photo: Xuehua Liu) 
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CHAPTER 7 Synthesis: 
Giant Panda Habitat and Conservation 

7.1 Introduction 

The main objective of this thesis is to evaluate the giant panda habitat in Foping NR 
through effective and accurate mapping and modelling. The whole of the thesis reflects 
this. The thesis was presented by compiling a number of papers with relevant topics 
which link to each other and ultimately relate to the main aim of this study. In this final 
chapter, I firstly want to emphasise the most important results from and the coherence 
between the previously presented chapters, and to see whether the research questions 
addressed before starting this research have been answered adequately. I then discuss 
the applicability of the approach used in this study to other panda nature reserves in 
the Qinling Mountains. Thirdly, the work which has not been included in this PhD 
research due to time limitation are discussed in this chapter in order to have a wider 
field of vision of this study, and highlight the possible topics for future research. Lastly, 
I address the management relevance of this study to pandas and their habitat 
conservation. 

7.2 Panda habitat mapping and modelling 

Nature-reserve-based panda habitat evaluation is important for panda conservation. 
Mapping is no doubt an effective method for panda habitat evaluation. However, 
accurate mapping is required to produce panda habitat maps, which can be further 
used in panda habitat modelling and monitoring and consequently provide the proper 
information for panda habitat conservation and management. 

In digital image processing, different classification algorithms produce different 
classifications. Fierens et al. (1994) mentioned that they did not understand why the 
classifiers have differences in mapping accuracy. Chapter 2 evaluated three different 
mapping techniques: the parallelepiped classifier (PPC), the maximum likelihood 
classifier (MLC) and the backpropagation neural network classifier (BPNNC). The 
spectral discrimination capability of the BPNNC was also explored in Chapter 2. The 
research question for Chapter 2 is to what extent the neural network algorithm can 
separate two classes with no spectral overlap in their feature space. The result shows 
that the BPNNC can separate two non-overlap classes with an overall accuracy of 
100%. However, the traditional MLC cannot do this when using the same data set. This 
provides the BPNNC a potential in land cover and land use mapping as well as wildlife 
habitat mapping. The result also shows that the BPNNC produced the highest mapping 
accuracy compared to the MLC and the PPC. 

Richards (1993) pointed out that knowledge-based methods show good prospects for 
coping with data complexity in a GIS. Skidmore (1997) recommended that the neural 
network backpropagation algorithm might be very useful when combined with the 
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rule-based expert system. Therefore, the research question is: Can the neural network 
system and expert system be combined together as an integrated classification 
algorithm to get higher mapping accuracy than the conventional MLC and other 
techniques? Chapter 3 developed two integrated mapping algorithms: the consensus 
builder classifier (CSB), and the integrated expert system and the neural network 
classifier (ESNNC). Mapping results show that the ESNNC achieved a significantly 
higher overall accuracy (80%) than the consensus builder classifier (72%), the 
backpropagation neural network classifier (74%), the expert system classifier (59%), and 
the maximum likelihood classifier (62%). We found that the classification information 
from different classifiers may be "diluted" by the consensus builder approach which 
made this mapping algorithm produce only a middle-level overall accuracy, i.e. higher 
than the MLC and the ESC but lower than the BPNNC. We also found that the expert 
system classifier (ESC) requires a high level of expertise to construct the rule base and 
has difficulty in achieving high mapping accuracy. 

Chapter 4 applied the developed ESNNC to map panda habitat. There are three 
research questions in chapter 4: (i) How to define panda habitat types for mapping? (ii) 
Can the ESNNC identify the habitat type with a limited number of training samples? 
(iii) Can the developed ESNNC map the giant panda habitat with a high accuracy? 

There are different interpretations of the concept of "habitat" (Moen 1973, Baker 1978, 
Morrison et al. 1992). So, how to define different habitat types of a species or 
population is a common problem in wildlife conservation. In this research, we defined 
habitat types of the giant panda based on the ground cover types and the suitability 
classes, and termed in the thesis the ground-cover-based potential panda habitat types 
and the suitability-based panda habitat types. The former was mapped using a total of 
160 field survey points with records of the ground cover types, while the latter was 
mapped using not only 160 survey points (with recordings of panda "presence" or 
"absence") but also 1425 non-overlapping radio-tracking points. We assume that the 
areas with many panda signs in survey plots or with dense panda tracking records are 
suitable for pandas. The criterion to define the elevation ranges of the panda winter 
and summer habitats was based on the results of Chapter 5. 

The classification results show that the ESNNC mapped both the ground-cover-based 
and suitability-based panda habitat types with the highest accuracy (both over 80%) 
and is significantly better than the BPNNC, ESC as well as MLC. The mapping results 
also show that the ESNNC could discriminate the habitat type with few training 
samples, such as "conifer forest", "bamboo (or mixed with meadow)", "shrub-grass-
herb land", "farm-land and settlements", "rock and bare-land", as well as "water area". 
However, the traditional MLC failed to identify these classes with few training samples 
due to its parametric mechanism. It was confirmed by the mapping results that panda 
habitat in Foping NR is good, and over 95% of the nature reserve is covered by forest. 
The giant pandas can use 16% of the reserve area as their summer habitat, 52% as their 
winter habitat, and 20% as their transition habitat to move between the winter and 
summer habitats. 
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Chapter 5 thoroughly analysed the radio-tracking data, which have been used in 
Chapter 4 for mapping the suitability-based panda habitat types, in order to gain 
insight into panda movement patterns in Foping NR. Spotting pandas in the forest-
covered mountains is very difficult. Therefore, radio-tracking is an effective way to 
study the giant panda and understand its behaviour and habitat use. Through analyses, 
we should answer (i) when, where and how the giant pandas move? and (ii) whether 
there is a significant difference in panda activity range between male and female, and 
between winter and summer? Analysis of a total of 1639 effective radio-tracking data 
recorded in a five-year period (from 1991 to 1995) showed us that pandas climbed from 
the winter to the summer activity ranges within a period of 8 days from June 7 to 15, 
and descended over several weeks between September 1 and October 6 from the 
summer to the winter ranges. So, pandas spent 243 days in the winter range below 1950 
m and 78 days in the summer range above 2160 m. The average distance moved over 
two consecutive days varied in different months. Pandas move longer distances with 
also larger variation in March, April, May, June and September. However, in 
December, January, February, July and August, pandas move a short distance in their 
winter or summer range. It was found that there is no significant difference on distance 
travelled within two consecutive days between male and female pandas. The result of 
the Mann-Whitney U test showed there is no significant difference between adult male 
and female pandas using the winter activity range as well as using the summer activity 
range. Adult male pandas use a similar area for the winter range as for the summer 
range, while adult female pandas use a significantly larger area for the winter range 
than for the summer range. 

As mentioned previously, the panda radio-tracking data can also be used to analyse 
panda habitat use and selection. Chapter 6 tackled this issue. However, the radio-
tracking data were recorded without any habitat information, such as cover types, 
during the tracking period from 1991 to 1995. So, the mapping result from ESNNC in 
Chapter 4 was used to extract the ground-cover-based panda habitat types for radio-
tracking records. The question that needs to be answered is whether the giant pandas 
use/select some habitat types significantly more than other types. We found that 
pandas in Foping NR do exhibit habitat selection behaviour. They select mostly four 
habitat types: deciduous broadleaf forest, mixed conifer and broadleaf forest, 
coniferous forest, and Fargesia bamboo groves. In the winter range, pandas spend more 
time in deciduous broadleaf forest with an elevation range of 1600 to 1800 m, a slope 
range of 10 to 20 degrees, and south-facing slopes. In the summer range, pandas use 
more conifer forest with an elevation range of 2400 to 2600 m and a slope range of 20 to 
30 degrees. 

Chapter 6 also looked at panda habitat characteristics (woody plant species 
composition, structure parameters of tree layer and bamboo layer) by analysing 110 
surveyed plots with detailed measurements in order to find differences in habitat 
characteristics between panda-presence habitat and panda-absence habitat. Analysis 
results showed us that pandas stay in the area where bamboo grows, and they select 

105 



Chapter 

the B.fargesii bamboo area with short and dense culms from different ages in the winter 
activity range, while they select the F. spathacea bamboo area with a high coverage of 
tall and thick culms from one to two years old in the summer activity range. 

7.3 Applicability in Qinling panda refuges 

Figure 7.1 is a Landsat TM image which shows the landscape of the main part of the 
Qinling Mountains. Four neighbouring nature reserves with the main aim of protecting 
the giant pandas and their habitat are illustrated by their boundaries. They are Foping, 
ChangQing, LaoXianCheng and ZhouZhi NRs. The remaining one, TaiBai NR is on the 
northern side of LaoXianCheng NR (see Figure 1.1). As we see, Foping NR is located 
almost at the centre of the neighbouring three nature reserves. I consider it to be a very 
important pilot nature reserve together with LaoXianCheng NR in the Qinling 
Mountains. It plays a role as a "bridge" which links the neighbouring three nature 
reserves, and further through LaoXianCheng NR links with TaiBai NR. Pandas in 
Foping NR share the summer habitat, where the mountaintops are located, with 
pandas from the neighbouring three nature reserves (see Figure 4.5). I think it is 
necessary and also important to apply the same work done in this research to other 
nature reserves in the Qinling Mountains. Detailed panda habitat evaluation by 
mapping and modelling is worth undertaking in each individual panda nature reserve. 
Consequently, in the long-term, modelling panda-habitat relationship and monitoring 
panda habitat condition will be improved by nature-reserve-based panda habitat 
mapping. Due to the adjacency of these nature reserves in the Qinling Mountains, the 
characteristics of panda behaviour and habitat should share more similarities than 
differences, which may make the application of this research approach in the other 
reserves easier. However, slight adjustment in panda habitat evaluation and panda-
habitat relationship modelling in this northern panda refuge needs to be considered. 

Landsat TM images show clearly that the habitat conditions of the giant pandas in 
these four panda nature reserves are different. Some areas were used for commercial 
logging before, such as LongCaoPing (the area below ZhouZhi NR) and TaiBai Forest 
Bureau (the area above ChangQing NR). Detailed habitat evaluation should be carried 
out as well in the surrounding areas outside the existing panda nature reserves. Loucks 
et al. (2001) evaluated the panda habitat in the Qinling Mountains at a geographically 
large scale, which may guide future work from a broad view. Panda habitat mapping 
and evaluation at both levels (i.e. the nature-reserve-based and the Qinling-mountain-
based) are required and need to be integrated. 

Pan et al. (1988) pointed out that movement patterns of panda populations in different 
mountains might not be the same and they remain unclear. I assume that there are also 
differences in panda movement patterns and panda habitat use and selection among 
the panda nature reserves in the Qinling Mountains. More research on panda 
movement is expected to be done in the future using the same methods to analyse the 
available radio-tracking data for comparison purposes. 
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Figure 7.1 Panda nature reserves in the Qinling Mountains as shown on Landsat TM images 
(acquired on September 8 1997, RGB-TM5, TM3, TM2). Note: The unit of scale is meters. NR 
represents nature reserve. 

7.4 Additional research topics 

Two sub-topics in the initial design of this PhD research were omitted because of the 
time limitation and also data unavailability. They are (i) mapping panda habitat in 
Wolong NR using the same approach and modelling panda habitat use and selection, 
and (ii) habitat change detection in both Foping and Wolong NRs. 

As addressed in Chapter 5, pandas in Foping NR show different movement behaviour 
compared to pandas in Wolong NR. We should ask "why?". There are certainly many 
factors that influence panda movement behaviour, such as climatic conditions, terrain 
characteristics, and vegetation distribution. And all these consequently influence panda 
habitat conditions that are related to panda activities. Figure 7.2 shows similarities as 
well as differences in climatic conditions between Foping and Wolong NRs. The two 
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panda homes have similar total annual rainfall and yearly highest temperature, while 
they differ obviously on yearly mean humidity, total annual sunshine, yearly mean 
temperature, and yearly lowest temperature. Compared with Wolong NR, Foping NR 
has more sun shine hours, higher temperature and therefore lower humidity. 
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Figure 7.2 Differences in climatic conditions between Foping and Wolong Nature Reserves: total 
annual rainfall, yearly mean humidity, total annual sunshine, yearly mean temperature, yearly 
highest temperature, and yearly lowest temperature. 

Figure 7.3 illustrates the different terrain factors (i.e. elevation, slope gradient and 
aspect) in these two nature reserves concerning panda winter and summer activity 
ranges. The whole elevation range can be used by pandas in Foping NR (293 km2), 
while only the area below 3600 m can be used by pandas in Wolong NR (1110 km2). The 
boundaries for winter and summer ranges was defined based on panda movement 
analysis for Foping NR (see Chapter 5), and based on expertise and literature 
information for Wolong NR (Hu et al 1985, Liu 1997). They are 1950 and 2160 m in 
Foping NR, and 2500 and 2600 m in Wolong NR. However, pandas in Wolong NR do 
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not use the area below 2200 m because of serious human encroachment. So, Figure 7.3 
shows us that the winter range is larger than the summer range in Foping NR, while 
the summer range is larger than the winter range in Wolong NR. Both in panda winter 
and summer ranges, Foping NR has more flat areas or areas with slope less than 20 
degrees than Wolong NR. The slope aspect is similar in both nature reserves, however, 
Foping NR has more flat area with no slope in the summer range. There are more 
south-facing slopes in Foping NR, while there are more north-facing slopes in Wolong 
NR. The general vegetation types in the two nature reserves are similar, however the 
species composition is different. 
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and Wolong Nature Reserves (NR). FW - winter habitat in Foping NR, FS - summer habitat in 
Foping NR, WW - winter habitat in Wolong NR, and WS - summer habitat in Wolong NR. 
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Chapter 

Therefore, both the similarities and differences between these two panda homes, 
located in the Qinling and Qionglai Mountains respectively, tell us that it is worth 
mapping panda habitat and model panda movement and panda habitat use and 
selection using the same approach for whatever the comparison purpose or 
conservation purpose. 

The aim of detecting panda habitat change is to monitor panda habitat within a certain 
period. Wolong NR was established in 1963 and Foping NR in 1978 respectively. We 
may ask: (i) Does the creation of the nature reserves protect panda habitat? (ii) How do 
the increased human population and human activities influence panda habitat? Based 
on our survey conducted in Foping NR in summer 1999 and several surveys in Wolong 
NR in 1996, 1997 and 1999, I found that mushroom production in Foping NR and 
firewood collection in Wolong NR are the threatening human activities to panda 
habitat (Figure 7.4). Both may have already produced a serious impact on panda 
habitat in these two nature reserves because of tree cutting. Liu (1997) analysed the 
spatial distribution of the identified human activities in Wolong NR and their influence 
on panda habitat. The ecological degradation in Wolong NR was further confirmed by 
Liu et al. (2001). However, the key issue is that the same methods for detection should 
be applied, including similar data, image processing methods, etc. Such proposed 
research tasks have never been carried out in the field of panda habitat research. The 
change detection of panda habitat in Foping NR has never been done before. 

Figure 7.4 Photos show firewood collection in Wolong Nature Reserve (left) and mushroom 
production in Foping Nature Reserve (right). (Photo : Xuehua Liu) 

7.5 Management relevance 

The findings obtained in this research are closely related to the panda and its habitat 
conservation and may be used in conservation management. For instance, mapping 
results showed that the path (as shown in Figure 4.5) used by the local people and 
tourists passes through the suitable and even the very suitable winter habitats where 
panda radio-tracking records are dense (Figure 6.1). This should be brought to public 
attention. The fragmented panda suitable summer habitat in the north-east corner, 
which this path goes through, should be protected carefully in order to link the panda 
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summer habitat as a whole. Otherwise, pandas in LongTanZhi and YueBa will not have 
enough suitable summer habitats. Intense human activities, such as mushroom 
production, should be strongly controlled or even forbidden in SanGuanMiao area, the 
centre of panda suitable habitat. 

The identified movement pattern may guide the panda population survey and radio 
tracking in Foping NR. The tracking data showed that only a few records were 
obtained in June over a 5-year period. That was because pandas climbed up from their 
winter range to the summer range within a range of 8 days from June 7 to 15 (Chapter 
5) and resulted in their disappearance from the range of radio tracking. Now, this has 
been identified and it can be rectified to provide more accurate information in future 
research. The fact that pandas stayed in the areas below 1700 m with the shortest 
movement distance (Figure 5.7) and smallest activity ranges in January and February 
tells us that these two months may be the best time for conducting a panda population 
survey in Foping NR. The movement distances are also short in July and August. 
However, plotting tracking data (Figure 5.2) showed pandas also use the summer 
habitat outside the nature reserve. This can easily give an erroneously low estimation 
when a survey is conducted in the summer season. In addition, surveying pandas 
when they are in the high elevation area may also cost more manpower, more money 
and more time. 

To conserve panda habitat effectively, ecologists, managers and local staff etc. need to 
know how panda habitat types are distributed spatially, their extents, how pandas 
move in these different habitat types and how they make their habitat selection. I think 
that our approach may be applied in various degrees to other panda nature reserves 
with some modification, and eventually provide the managers or policy makers with 
more useful and accurate information. 

I l l 
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Summary 

The fact that only about 1000 giant pandas and 29500 km2 of panda habitat are left in 
the west part of China makes it an urgent issue to save this endangered animal species 
and protect its habitat. For effective conservation of the giant panda and its habitat, a 
thorough evaluation of panda habitat and panda-habitat relationship based on each 
individual panda nature reserve is necessary and important. Mapping has been an 
effective approach for wildlife habitat evaluation and monitoring. Therefore, mapping 
is also an important step in evaluating panda habitat and further being used to analyse 
panda-habitat relationship. Only Foping Nature Reserve is focused in this study. The 
objectives of this research are: (1) to develop a highly accurate mapping method which 
can map panda habitat using multi-type data (remote sensing data, digital terrain data, 
radio tracking data, and plot data from field survey) in GIS; (2) to study panda 
movement patterns; and (3) to analyse panda habitat use and selection. 

A general introduction to the thesis is given in Chapter 1. It describes the research 
background and problems, and formulates the objectives and outlines of the research. 

In order to find a potentially better mapping algorithm, three algorithms (i.e., 
parallelepiped algorithm, maximum likelihood algorithm, and backpropagation neural 
network algorithm) were evaluated using simulated data sets as well as the remotely 
sensed imagery in Chapter 2. The discrimination capability of the backpropagation 
neural network algorithm was also explored in this chapter. The results show that the 
backpropagation neural network classifier has completely discriminated two spectrally 
discrete classes, and obtained a significantly higher mapping accuracy than the other 
two algorithms using both simulated data sets and remotely sensed imagery. 

Since different mapping techniques have complementary capabilities, two integrated 
mapping approaches were developed in Chapter 3 so as to combine the advantages 
from different mapping algorithms. The expert system algorithm based on Bayesian 
probability theory was firstly discussed in this chapter. One integrated mapping 
approach is the consensus builder, which is used to adjust classification outputs in the 
case of a discrepancy in classification between maximum likelihood, expert system and 
neural network classifiers. The second approach is termed the integrated expert system 
and neural network classifier (ESNNC), which integrates the output of the rule-based 
expert system classifier with the backpropagation neural network classifier (BPNNC) 
before and after running the neural network system. The ESNNC produced maps with 
the highest accuracy compared to not only the individual backpropagation neural 
network classifier, expert system classifier and maximum likelihood classifier, but also 
the combined classifier - consensus builder. 

The giant panda habitat in Foping Nature Reserve was mapped using the ESNNC in 
Chapter 4. Two categories of panda habitat types were defined and mapped: ground-
cover-based potential panda habitat types and suitability-based panda habitat types. 
Mapping the ground-cover-based potential panda habitat types used only field survey 
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plot data with records of ground cover types, while mapping the suitability-based 
panda habitat types used not only the field survey plot data but also radio tracking 
data - meaning actual panda occurrence. Results show that both the ground-cover-
based and the suitability-based panda habitat types were mapped with significantly 
higher accuracy compared with non-integrated classifiers: expert system, neural 
network and maximum likelihood classifiers. The classified maps show us that 97% of 
the nature reserve is covered by forest and about 68% of the nature reserve is a suitable 
habitat for pandas. 

With radio tracking data, panda movement patterns were studied in Chapter 5. The 
use of GIS combined with statistical tools to thoroughly analyse radio-tracking data to 
reveal panda movement patterns is a new aspect in panda ecological research. Results 
show that pandas in Foping NR occupied two distinct seasonal activity ranges (i.e., 
winter and summer activity ranges) and had a regular seasonal movement between the 
winter range below 1950 m, and the summer range above 2160 m. Pandas spent about 8 
days (from June 7 to 15) to climb up to the summer habitats, while they took about 36 
days (from September 1 to October 6) to descend to the winter habitats. Consequently, 
they spent about 243 days in their winter activity range and about 78 days in the 
summer activity range. Research also shows that pandas travelled shorter distances 
with small variation in October, December, January, February, July and August, and 
longer distances with larger variation in March, April, May, June and September. 

Analysis of wildlife habitat use and selection has been a common and important aspect 
of wildlife science. Little is known about panda habitat use and selection, especially 
about the relationship between panda presence and structures of the bamboo layer as 
well as the tree layer. In Chapter 6, tracking data were used to analyse panda habitat 
use and selection, and 110 field survey plots with rheasured information were analysed 
to identify differences of characteristics between panda-presence and panda-absence 
habitats. In the winter range, pandas spend more time in deciduous broadleaf forest 
with an elevation range of 1600 to 1800 m, a slope range of 10 to 20 degrees, and south-
facing slopes. In the summer range, they use more conifer forest with an elevation 
range of 2400 to 2600 m, a slope range of 20 to 30 degrees. In Bashania fargesii bamboo 
areas with panda presence, bamboo groves have shorter and denser bamboo culms 
from different ages. In Fargesia Spathacea bamboo areas with panda presence, bamboo 
groves have higher coverage, taller and thicker bamboo culms which are mainly one to 
two years old. 

Conclusions from the whole study are summarised in Chapter 7. It is recommended 
that the whole approach used in this study may or should be applied to the 
neighbouring panda nature reserves in the Qinling Mountains. The uncompleted 
research tasks are discussed in this chapter. Therefore, this chapter has shown some 
possible research topics for future panda conservation studies. 

In summary, the following are the main findings of this research: 
• Backpropagation neural network classifier can discriminate two classes with no 

overlap in their feature space. 
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The integrated expert system and neural network classifier was developed and 
applied in mapping panda habitats, and obtained significantly higher overall 
mapping accuracy than non-integrated classifiers: expert system classifier, 
backpropagation neural network classifier, and maximum likelihood classifier. 
The integrated expert system and neural network classifier can identify a class 
which has only few samples, while the traditional maximum likelihood classifier 
fails because insufficient samples cannot form the statistical parameters to run the 
classification. 
The integrated expert system and neural network classifier successfully classified 
panda habitat types using multi-type input data: remote sensing data (TM1-5 and 
7), terrain data (elevation, slope gradient and slope direction), social data 
(settlement distance), radio-tracking data, as well as field survey plot data. 
Radio-tracking data were involved in mapping panda habitat for the first time. 
They can be a good indicator of suitable habitats for pandas. 
The movement pattern of pandas in Foping Nature Reserve was thoroughly 
studied and revealed using GIS combined with statistical tools. Pandas spent a 
very short period of 8 days in June to move from winter to summer habitats, while 
they used more than one month in September to descend from summer to winter 
habitats. 
The finding that pandas in Foping Nature Reserve have a shorter movement 
distance and a small activity range in January and February indicates these two 
months may be a good time for conducting a panda population survey. 
Panda habitat maps produced by the integrated expert system and neural network 
classifier with higher accuracy have been used for analysing panda habitat use and 
selection. Pandas in Foping Nature Reserve mainly select deciduous broadleaf 
forest in the winter activity range, and select conifer forest and Fargesia bamboo 
groves in the summer activity range. 
The structure parameters of the bamboo layer in panda-presence habitats are 
significantly different from those in panda-absence habitats. 
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Samenvatting (Summary in Dutch) 

Gezien het feit, dat slechts ongeveer 1000 panda's en 29500 km2 panda habitat 
overgebleven zijn in het westelijke deel van China, is van het grootste belang deze 
bedreigde diersoort te redden en zijn habitat te beschermen. Om de panda en zijn 
leefgebied effectief te kunnen beschermen, is een gedegen evaluatie van de panda 
habitat en de relatie tussen de panda en zijn habitat in elk panda reservaat nodig. 
Kartering is een effectieve benadering voor de evaluatie van wild en zijn habitat. 
Daarom is kartering dan ook een belangrijke stap in de evaluatie van de panda habitat 
en voor de analyse van de relatie tussen de panda en zijn habitat. In deze studie is 
alleen onderzoek gedaan in Foping Nationaal Park. De doelstellingen van deze studie 
zijn: 1) het ontwikkelen van een karteringsmethode, die de panda habitat zeer 
nauwkeurig in kaart kan brengen, met gebruik van verschillende typen gegevens 
(afkomstig van: remote sensing, digitale terrein modellen, radio tracking en 
veldmetingen en -observaties) in een GIS; 2) het bestuderen van de bewegingspatronen 
van de panda; en 3) het analyseren van de panda habitat gebruik en habitat keuze. 

In hoofdstuk 1 is een algemene inleiding gegeven van dit proefschrift. Het beschrijft de 
achtergrond en problemen van het onderzoek en formuleert de doelstellingen en 
structuur van het onderzoek. 

Om een potentieel betere karteringsmethode te vinden, zijn er drie algoritmen 
geevalueerd ('parallelepiped' algoritme, 'maximum likelihood' algoritme, en 
'backpropagation neural network' algoritme), waarbij zowel gesimuleerde gegevens als 
'remote sensing' gegevens zijn gebruikt. Het onderscheidingsvermogen van de 
'backpropagation neural network' algoritme is onderzocht in hoofdstuk 2. De 
resultaten geven aan, dat het 'backpropagation neural network' algoritme twee 
spectraal verschillende klassen goed kan onderscheiden en daarbij een significant 
hogere classificatie nauwkeurigheid heeft dan de twee andere algoritmes, wanneer 
zowel gesimuleerde gegevens als gegevens van 'remote sensing' gebruikt worden. 

Aangezien verschillende karteringsalgoritmes complementaire capaciteiten hebben, 
zijn in hoofdstuk 3 twee gei'ntegreerde karteringsbenaderingen ontwikkeld, om 
zodoende de voordelen van de verschillende karteringsalgoritmes te combineren. 
'Expert system' algoritmes, gebaseerd op de 'Bayesian probability' theorie, worden in 
dit hoofdstuk ook bediscussieerd. Een gei'ntegreerde karteringsbenadering is de 
'consensus builder', welke gebruikt wordt om geclassificeerde uitkomsten aan te 
passen in het geval van tegenstrijdigheden in de classificaties tussen 'maximum 
likelihood', 'expert system' en 'neural network' classificeerders. De andere benadering 
is genaamd de gei'ntegreerde 'expert system' en 'neural network' classificeerder 
(ESNNC), die de uitkomst van het op regels gebaseerde 'expert system' integreert voor 
en na het uitvoeren van de 'backpropagation neural network' classificeerder. De door 
de ESNNC geproduceerde kaarten hebben de hoogste nauwkeurigheid. 
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De habitat van de panda in het Foping Nationaal Park is in kaart gebracht 
gebruikmakend van de ESNNC en beschreven in hoofdstuk 4. Twee verschillende 
panda habitattypen zijn in kaart gebracht: de potentiele pandahabitat gebaseerd op 
grond-bedekking en de pandahabitat gebaseerd op geschiktheid. Voor het in kaart 
brengen van op grond-bedekking gebaseerde habitat zijn alleen veld waarnemingen 
gebruikt, waarbij de grond-bedekking werd geregistreerd. Voor het in kaart brengen 
van de op geschiktheid gebaseerde panda habitat zijn zowel veldwaarnemingen als 
'radio tracking' gegevens gebruikt. De resultaten laten zien, dat het in kaart brengen 
van de beide panda habitat typen significant hogere nauwkeurigheid geeft vergeleken 
met resultaten van niet-gei'ntegreerde classificeerders: 'expert systems', 'neural 
network' en 'maximum likelihood' classificeerders. De geclassificeerde kaarten laten 
zien, dat 97 % van het Nationaal Park bestaat uit bos en ongeveer 68 % van het 
Nationaal Park geschikt is als panda habitat. 

In hoofdstuk 5 is, met gebruik van de reeds eerder genoemde 'radio tracking' 
gegevens, het migratie patroon bestudeerd. Het is een nieuw aspect in ecologisch 
onderzoek aan de panda dat een gedegen analyse van 'radio tracking' gegevens met 
behulp van GIS wordt gecombineerd met statistiek. Resultaten geven aan, dat panda's 
in Foping Nationaal Park twee duidelijk verschillende seizoensgebonden leefgebieden 
hebben (nl. winter en zomer leefgebied) en dat ze een regelmatige seizoensgebonden 
migratie vertonen tussen hun winter leefgebied, beneden de 1950 meter, en hun zomer 
leefgebied, boven de 2160 meter. Panda's doen er ongeveer 8 dagen over (van 7 tot 15 
juni) om naar hun zomer leefgebied te klimmen, terwijl ze er ongeveer 36 dagen (van 1 
September tot 6 oktober) over doen om af te dalen naar hun winter leefgebied. 
Daardoor verblijven ze ongeveer 243 dagen in hun winter leefgebied en ongeveer 78 
dagen in hun zomer leefgebied. Onderzoek gaf ook aan, dat panda's in oktober, 
december, januari, februari, juli en augustus (met relatief kleine variaties) over kortere 
afstanden verplaatsen, en in maart, april, mei, juni en September (met relatief grote 
variaties) over langere afstanden. 

Het onderzoeken van selectie en gebruik van hun habitat door wild is al lang een 
belangrijk aspect in wild studies. Er is slechts weinig bekend over de selectie en het 
habitat gebruik van panda's, met name over de relatie tussen de aanwezigheid van 
panda's en de structuur van bamboe en of bomen. In hoofdstuk 6 zijn 'radio tracking ' 
gegevens gebruikt om dit te onderzoeken. Daarnaast zijn 110 locaties met veldopnames 
geanalyseerd om het verschil te zien in de karakteristieken tussen de habitats met en 
zonder de aanwezigheid van panda's. Gedurende de winter verblijven de panda's 
vooral in loofverliezend bos op een hoogte tussen de 1600 en 1800 meter, met hellingen 
van 10 tot 20 graden, die naar het zuiden gericht zijn. Gedurende de zomer verblijven 
ze meer in naald bos op een hoogte tussen de 2400 en 2600 meter, met hellingen van 20 
tot 30 graden. In de Bashania fargesii bamboe gebieden, waar panda's voorkomen, heeft 
het bamboe dicht opeen staande kortere Stengels in diverse groei stadia. In Fargesia 
spathacea bamboe gebieden, waar ook panda's voorkomen, het bamboe heeft een hogere 
bedekking en langere en dikkere Stengels, en zijn ze doorgaans een tot twee jaar oud. 

De conclusies van de hele studie zijn samengevat in hoofdstuk 7. Het is 
aanbevelenswaardig dat de gehele methodologie zoals gebruikt in deze studie zal 
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worden toegepast in the aangrenzende panda Nationale Parken in de Qinling 
Gebergte. De nog uit te voeren onderzoekstaken zijn besproken in dit hoofdstuk. 
Daarom geeft dit hoofdstuk een indicatie voor toekomstig onderzoek ten behoeve van 
de bescherming van de panda. 

De belangrijkste bevindingen van dit onderzoek zijn als volgt samengevat: 
• 'Backpropagation neural network' classificeerder kan twee klassen onderscheiden, 

zonder overlap in hun 'feature space'. 
• Het gei'ntegreerd 'expert system' en 'neural network ' classificeerders zijn 

ontwikkeld en toegepast in het karteren van panda leefgebieden, en hebben een 
significant hogere nauwkeurigheid in het karteren van panda leefgebieden, dan de 
niet-geintegreerde classificeerders; 'expert system' classificeerders, 
'backpropagation neural network' classificeerders en 'maximum likelihood' 
classificeerders. 

• Het gei'ntegreerde 'expert system' en 'neural network' classificeerders kan een 
klasse identificeren, die slechts enkele waarnemingspunten heeft, terwijl de 
traditionele 'maximum likelihood' classificeerder faalt, omdat door te weinig 
waarnemingen, de statistische parameters niet voldoen zijn om de classificatie uit 
te kunnen voeren. 

• Het gei'ntegreerde 'expert system' en 'neural network' classificeerder heeft de 
panda leefgebieden met succes geclassificeerd, met gebruik van meerdere vormen 
van gegevens: 'remote sensing' gegevens (TM1-5 en 7), terrein gegevens (hoogte, 
hellingshoek en hellingsrichting), sociale gegevens (afstand tot nederzettingen), 
'radio tracking' gegevens, en veld waarnemingen. 

• 'Radio tracking' gegevens zijn voor het eerst gebruikt om het panda leefgebied te 
karteren. Deze gegevens kunnen goede indicatoren zijn voor locaties van 
geschikte panda leefgebieden. 

• Migratie patronen van de panda's in Foping Natuur Reservaat zijn in detail 
bestudeerd, gebruikmakend van GIS in combinatie met statistische methodes. 
Panda's migreren in een zeer korte periode van 8 dagen in juni van hun winter 
verblijf gebied naar hun zomer verblijf gebied. Daarentegen gebruiken ze meer dan 
een maand in September om van hun zomer verblijf gebied af te dalen naar hun 
winter verblijf gebied. 

• Gezien de uitkomst van dit onderzoek, dat panda's in het Foping Natuur Reservaat 
in januari en februari zich over kortere afstanden bewegen en een geringe 
leefgebied hebben, is dit een aanwijzing, dat deze twee maanden met name 
geschikt zijn voor het uitvoeren van een panda populatieonderzoek. 

• De panda habitatkaarten, die gemaakt zijn met behulp van het gei'ntegreerde 
'expert system' en 'neural network' classificeerder, zijn gebruikt voor het 
onderzoeken van de panda's gebruik en keuze van habitat. Panda's in Foping 
Natuur Reservaat selecteren hoofdzakelijk loofverliezend bos gedurende de winter 
en selecteren naaldbos en Fargesia bamboe gebieden gedurende de zomer. 

• De parameters met betrekking tot het groeistructuur van bamboe zijn significant 
verschillend in gebieden, waar de panda wel voorkomt, dan wel waar de panda 
niet voorkomt. 
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Digital Elevation Model 
of Foping Nature Reserve 

Digital Slope Gradient Model 
of Foping Nature Reserve 

Digital Slope Aspect Model 
of Foping Nature Reserve 
(Value 400 inside the boundary 
represents no aspect.) 

Digital Distance Model to 
Human Settlements in 
Foping Nature Reserve 

False colour composition of Landsat TM image (see Figure 7.1). 
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