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Abstract

The paper presents a method to derive an optimal paramet-
ric sensitivity controller for optimal estimation of a set of pa-
rameters in an experiment. The method is demonstrated for
a fed batch bio-reactor case study for optimal estimation of
the saturation constant

���
and, albeit intuitively, the parameter

combination �����
	 �� where ������ is the maximum growth rate
[g/min], � is the yield coefficient [g/g], and � is the (constant)
biomass [g].

1 Introduction

A model structure � may essentially be viewed as a mapping of
the input signals ( � ), via the states ( � ) and parameters ( � ), to the
system outputs (y). In parametric models the output sensitivity
with respect to a (set of) parameter(s) � determines whether a
parameter can be estimated from the input/output data. If the
sensitivity of � with respect to � is small or even zero, then the
instruments may not be well chosen or the input sequence �����
�
may not excite the parametric sensitivities sufficiently. Since
our aim is to reconstruct the true parameter values from in-
put/output observations it is intuitively appealing to focus on
what information of the parameter vector � is observable in the
output signal through ‘off-line’ or ‘on-line’ calculation of the
sensitivities  � �! . Dötsch and van den Hof (1996) have shown
that, for a linear system model, identifiability can be interpreted
in terms of controllability and observability of the linear system
model " augmented with the system of associated sensitivities
driven by the state �#���
� and (possible) input �����
� .
It is also known that the gradient  %$ �! provides access to a mea-
sure for the information content of the specific dataset. More
specifically, the gradient appears in the well known Fisher in-
formation matrix (FIM)

& ���
'(�*) +-,. /10 �2��34�0 �65#798�: 0 �2��34�0 �<; 3 (1)

where 7 is a weighting matrix, usually in diagonal form with
each diagonal element inversely proportional to the variance of
the associated measurement noise of sensor i ( =>)@?BADCDCDCDA
E ).
The FIM provides a measure (after some criterion has been
chosen ‘a priori’) of the information content of the data for
the specific experiment conducted. A natural question is then,
of course, how the input sequence �����
� can be chosen in such
a way that the parameters can be optimally estimated. This
is the well known problem of experimental design which is a
classical problem in the identification literature, (Norton, 1986;
Ljung, 1987).

1.1 Definitions

Let the model structure be defined by the dynamical equation

F�����
�G)H�����#���
��A
�����
��A
�(� (2)

where �#���
� is the n-dimensional state vector, �����
� the r-
dimensional input vector, � the q-dimensional vector of model
parameters, and � the, possibly non-linear, model structure that
maps the inputs, via the states and model parameters, to the
outputs of the system model. The question of identifiability of
the parameter set � can be stated more explicitly by the ques-
tion ‘Given a model structure � : Is it possible to distinguish
uniquely the values of the parameter vector � on the basis of
a carefully designed experiment? While this question may be
answered by existing methods, e.g. the Taylor series expan-
sion, (Pohjanpalo, 1978), our concern here is to find a feedback
law that optimally controls the associated system of parametric
sensitivities which can be derived straightforwardly from the
model (2), leading to

F� ! ���
�JI 0 �0 � � ! ���
��K 0 �0 � (3)

Surprisingly enough the idea of finding such a feedback law on
the basis of the model equation (2) augmented with the sensi-
tivity functions (3) has hardly been pursued in the identification
literature.



2 Optimal Sensitivity Control

2.1 A Fed-Batch Experiment

In the following we will derive a singular controller that max-
imally excites the sensitivity of the state with respect to the
parameter � (assuming a directly observable state � ). In other
words, we will maximally excite the sensitivity  %$ �! to a spe-
cific parameter in the model structure � so that the gradient  %$ �!is optimally present in the data set generated by the designed
experimental setup.

The thought experiment taken here as an example is a fed batch
bio-reactor experiment which can be used, for example, to de-
termine the respiration rate of a population of bacteria feeding
on a supplied substrate, (Vanrolleghem et al., 1995; Dochain
et al., 1995). Observation of the substrate concentration can
then be used to determine certain combinations of characteris-
tic bio-kinetic parameters in terms of process yield � in grams
of biomass per gram of substrate, maximum specific growth
rate ������ in grams of biomass per minute, and the satura-
tion constant

���
in grams per litre. Optimal input profiles

(in terms of a Fisher design criterium) for the bio-kinetic pa-
rameters have been obtained for this setup in an ‘ad hoc’ man-
ner Versyck (2000). To avoid a measurement problem of sub-
strate (encountered in wastewater treatment) the study focuses
on directly observable substrates such as sugar and ammonium.
While observation of other substrates is difficult to achieve in
practice this does not form a serious constraint for the method
proposed here since the method can be extended to include, for
example, oxygen and/or oxygen uptake rate (OUR) observa-
tions instead of substrate.

Assume a bio-reactor with biomass ( � ) that grows on the sub-
strate, continuously fed into the reactor dynamically with a dy-
namical feed rate �����
� in grams per litre per minute. Further as-
sume that the growth process does not contribute substantially
to the biomass � over the time-span considered (which is in
the order of magnitude of several minutes) so that the biomass� may be assumed constant over the interval

� �
/
A
�
'�� where �
'

marks the end of the experiment. The growth dynamics include
Monod kinetics so that the dynamical model reads

F� : ���
�J)�� ��������� � : ���
���� K � : ���
� K �����
� (4)

where � : ���
� is the substrate concentration in the bio-reactor.
The reactor is assumed completely mixed and, as said, the sub-
strate � : ���
� is assumed to be directly observable. The param-
eters considered in the following are the combination �����
	 ��
and the parameter

���
which is sufficient.

It is known that the parameter
���

is most difficult to estimate
from a set of observations (Holmberg and Ranta, 1982; Van-
rolleghem et al., 1995) since this parameter is strongly corre-
lated with the parameter ������ . Define ���(���
�
	  ���� +�� ���� and���B���
��	  ����� +�� � �����
	 ��� � � . The sensitivities of the parameter

���

and the parameter combination �����
	 �� are derived asF���B���
�*) ������ �� ��� : ���
��� � � ���B���
�
�� � � K � : ���
�
� � (5)F���B���
�*) ������ �� � �� � � K � : ���
�
� � ���(���
��K
� : ���
�� � K � : ���
� (6)

In the sequel we will focus on finding a singular controller for
optimal excitation of the sensitivity  ��� ���� and we will assume

that the combination �����
	 �� is known for reasons of simplic-
ity. It could be added that this assumption is in tune with the
practical conditions since an obvious strategy to estimate the
combination �����
	 �� is to saturate the reactor completely with
substrate so that the growth model is in the linear regime.

2.2 A Non-Linear Singular Control Problem

In order to optimally excite the sensitivity ���(���
� )  ��� ���� we
maximize � �� ���
� and define the following Hamiltonian� ���#���
��A������
�
��	���� �� ���
��K ��� : ���
��� �(���
� ��! " F� : ���
�F���(���
�$# (7)

where � : ���
� and � �(���
� are the co-states defined asF� : ���
�G)%� 0 �0 � : )
��������� & � � � : ���
�� � � K � : ���
�
� � K� � : ���
��� � � � ? K('����B���
�
�)��� �(���
�� � � K � : ���
�
� � * (8)F� �(���
�G)%� 0 �0 ��� ) ��������� � � � �(���
�� � � K � : ���
�
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� (9)

Since
�

does not explicitly depend on time a first integral of
the problem gives

� ),+.-0/21D�435/2� . Also, since the final time �%'
is assumed unknown and no terminal conditions are specified
(determining the value of the co-states at �%' ) this constant can
be assumed equal to zero. Since the problem is linear in the
control variable �����
� a singular control law that minimizes the
Hamiltonian

�
over all possible input sequences �����
� can be

derived by setting (A. E. Bryson (Jr.), 1999)6 =87:9<; ;5=; � = ;
�
; � )?> (10)

In order to determine �����
� explicitly only two differentiations
are needed. For =G)@> we get � : ���
�9)@> so that � : ���
� is the
switching function for this problem. Consistency between the
condition

� )A> and   +  �B �C )�> also eliminates ���(���
� , so that
from the case = ) ? , the singular arc condition (or interior
boundary condition) can be derived as� : ���
�J) � � � ? K('����B���
�
� (11)

Finally, the case = )<' determines the optimal input ��D ���
� as� D ���
�J) ��������� (12)

This surprisingly simple ‘feedback law’, together with the sin-
gular condition (11), determines a trajectory in state space on



which
� �

can be optimally identified. The condition (11) de-
termines when to switch from a ‘bang’ input to the singular
control law (12).

The optimal control law � D(���
� allows a reduction of the original
set of equations (on a singular arc) givingF� D : ���
�*) ������ �� � �� � K � D : ���
� (13)F� D � ���
�*) ������ �� ��� D : ���
��� � � � D� ���
�
�� � � K � D : ���
�
� � (14)

where � D= denotes the optimal trajectory in state space on a sin-
gular arc, i.e. given  �B �C ) > . It is immediately clear that
the optimal controlled system does not have a point of equi-
librium and, therefore, is never in steady state. From the initial
condition ���(� >(� 	 > it is easily deduced that � : � >(� ) � �
immediately puts the system in singular mode so that the op-
timal control law � D can be applied at the very beginning of
the experiment. One can solve equation (13), given the initial
condition � D : � >(� ) � � , analytically giving

� D : ���
�J)�� � � K � ' � � ������ �� ��K�� � �� (15)

Since the solution

" � D : ���
�� D� ���
�$# ‘lives’ on a singular arc for which

condition (11) holds an analytical solution for � D � ���
� follows
immediately as

� D � ���
�J)�� ?JK � ������ �' � � � ��K ? (16)

Of course, the singular arc condition (11) depends on
� �

meaning that in order to determine the locus of the singular
arc satisfying this condition, knowledge of the parameter

� �
is needed. Violation of constraint (11) will therefore be inves-
tigated in more detail for sensitivity to errors in an estimate of� �

at time �
/
. This, together with some other simulation re-

sults, will be presented in the next section.

3 Results and Discussion

Since the parameter
���

is not ‘a priori’ known it is important
to investigate the sensitivity of (13)–(14) to the initial condi-

tion � D � >(� ) " � �> # . It was found through numerical simu-

lation that an increase or decrease of � : � >(� does not substan-
tially change the trajectory of the sensitivity ���(���
� , (see fig-
ure 1). The figure demonstrates that, indeed, the initial con-
dition � : � >(� ) � �

does not introduce a major difference
for the evolution of the sensitivity  ��� ���� for initial conditions� : � >(� ) ' � � and � : � >(� ) :� � � . In a second numerical
simulation exercise the system (4)–(5) was simulated for three
constant input values, namely �����
� ) :� ��D , �����
� ) ��D , and�����
��) �� ��D . The resulting sensitivities are plotted in figure
2 from which it can clearly be observed that, indeed, the op-
timal input � D ) �����
	 �� excites the information content for
estimation of the parameter

���
best.
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Figure 1: Substrate and sensitivity  ����� +�� ���� for ������*),> C � , �1)?BC > ,
� � )<' C > , and � ),> C ��� .
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Figure 2: Sensitivity � �B���
� for three different constant inputs,
namely �����
� ) :� �����
	 �� , �����
� ) �� �����
	 �� , and ��D(���
� )�����
	 �� .

It could finally be noted that the optimal solution for optimal
identification of

���
may well be used in an identification ex-

periment where both �����
	 �� and
� �

are to be estimated. In-
tuitively (but also through simulation) one can show that an
initial injection of substrate (first ‘bang’) will excite the sen-
sitivity ���B���
� substantially. The experiment could therefore be
organized as follows:

(i) Apply a ‘bang’, i.e. �����
� ) �2����� , at the beginning of the
experiment in order to identify the parameter combination�����
	 �� .

(iii) Apply a second ‘bang’, i.e. �����
� ) > , after a short period
of time � � and observe whether the singularity condition
(11) holds.

(ii) Once the singularity condition (11) is satisfied, switch to
the control ��D ) �����
	 �� and estimate

� �
.

The above algorithm was simulated for a switching time � �
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Figure 3: A simulated identification experiment.

(from the first ‘bang’ to the second ‘bang’) of 15 minutes for
which the results are presented in figure 3. First, a bang-input� ����� ) �������
	 �� was applied and after � � ) ? � min this con-
troller was shut off. The resulting trajectory forms an excellent
starting point for an optimal experiment in which the parameter
combination �����
	 �� and

� �
are to be estimated.

4 Conclusions

A first attempt to include parametric sensitivities in the con-
trol loop has been made for a fed-batch reactor. The study has
lead to a satisfactory controller for estimation of

� �
, assum-

ing Monod kinetics for the substrate consumption. The sim-
ple control law � D ���
� ) �����
	 �� gives satisfactory results in
the sense that it optimally excites the sensitivity of substrate
with respect to the parameter

���
. The simplicity of the con-

troller allows simple implementation in an ‘on-line’ estimation
scheme in which the estimator controls its own input in order
to find the parameter values with maximal sensitivity or min-
imum uncertainty. For the case of a more complicated sensi-
tivity controller for which the analytical solution is not easy to
derive one should consider a numerical scheme that optimizes
the sensitivities on basis of a gradient  �B �C (A. E. Bryson (Jr.),
1999).
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