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STELLINGEN 

1. Dynamiek in de buitenduinen, vooral door zandoverstuiving, bevordert de 
instandhouding van populaties van de cystennematode Heterodera arenaria (dit 
proefschrift). 

2. De populatiegrootte van Heterodera arenaria wordt in belangrijke mate 
gereguleerd door de hoeveelheid helmwortels (dit proefschrift). 

3. Voor het begrijpen van de rol van nematoden in successie in de vegetatie 
van de buitenduinen dienen meer soorten, evenals hun samenhang met 
andere bodemorganismen, bestudeerd te worden dan zijn onderzocht in het 
onderzoek beschreven in dit proefschrift. 

4. De seizoensmobiliteit van plantenparasitaire nematoden is in duinen groter 
dan die in landbouwgronden. 

5. Onderzoek naar interacties tussen planten, bodempathogenen en hun 
antagonisten in natuurlijke ecosystemen kan bijdragen aan het vaststellen 
van de mogelijkheden en beperkingen van biologische bestrijding in 
landbouwsystemen. 

6. De doorvoering van een andere puntentelling in sporten zoals volleybal en 
badminton met het doel de sport aantrekkelijker te maken, maakt het alleen 
aantrekkelijker voor de zappende sportkijker die geen verstand heeft van de 
betreffende sport. 

7. Onnodig links blijven rijden op de snelweg tijdens spitsuren is een 
belangrijke veroorzaker van files. 

8. De bestrijding van bacterien en ongedierte in en om het huis neemt 
ongezonde vormen aan. 

Stellingen behorende bij het proefschrift 'Specificity, pathogenicity and population dynamics of 
the endoparasitic nematode Heterodera arenaria in coastal foredunes' 
Ineke van der Stoel 
Wageningen, 25 September 2001 



ABSTRACT 

Van der Stoel, CD . , 2001. Specificity, pathogenicity and population dynamics of 

the endoparasitic nematode Heterodera arenaria in coastal foredunes. PhD thesis, 

Wageningen University and Research-centre, Wageningen, The Netherlands, 

135pp. 

In natural ecosystems hardly any attention has been given to the population 
dynamics of plant-parasitic nematodes. In coastal foredunes, plant-parasitic 
nematodes are supposed to be involved in the degeneration and succession of the 
dominant sand-fixing grass Ammophila arenaria (Marram grass). The specificity, 
pathogenicity and population dynamics of the sedentary endoparasitic nematode 
Heterodera arenaria have been studied to determine if this species might be a key 
component of the soil pathogen complex of ^4. arenaria. 

H. arenaria was found to be specific to Elymus farctus and A. arenaria in the 
mobile area of the coastal foredunes. Colonisation of the newly deposited sand 
layer by H. arenaria corresponded well with the development of pathogenicity in a 
series of bioassays. However, direct addition of the nematode to A. arenaria did not 
result in growth reduction of the plant. So, H. arenaria behaves like a biotrophic 
parasite, which has a high specificity but is not aggressive. Therefore, H. arenaria 

did not seem to be direcdy involved in the degeneration of A. arenaria. 

Each year, the majority of the population of new H. arenaria cysts develops in 
the newly deposited sand layers. These layers are colonised by A. arenaria roots 
throughout the growing season. Migration to the new root layer may offer an 
individual nematode the benefit of early development and a larger potential 
offspring. The continuous release of juveniles in the field and their development in 
experiments indicate that release of juveniles from cysts is an ultimately determined 
process. Juveniles were found to emerge in November and many eggs or juveniles 
did not survive the winter period. The strategy of release, however, seems effective; 
the distance of migration could be too large to detect specific cues from the plant 
and the start of root formation in the field is highly variable. The emergence of 
juveniles late in the growing season could result in a second generation within the 
same year. The constant number of cysts per gram of roots suggests that the 
population density of H. arenaria is most likely a bottom-up directed process. 

Key words: Heterodera, plant-parasitic nematodes, soil pathogens, Ammophila arenaria, 

occurrence, abundance, specificity, population dynamics, life history, pathogenicity, 
PCR-SSCP, molecular method, escape, sand burial, dispersal, migration, fitness, 
development time, survival, reproductive success, bottom-up, top-down. 
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CHAPTER 1 

GENERAL INTRODUCTION 

Soil pathogens in natural ecosystems 

Soil-borne pathogens in natural vegetation have already briefly been 

mentioned in a book by Clements (1928), but one of the first reports presenting 

experimental evidence on the role of soil pathogens in natural vegetation originates 

from Oremus and Otten (1981). They suggested that plant-parasitic nematodes are 

involved in the natural decline of the dune shrub Hippophae rhamnoides (Sea 

Buckthorn). Since then this topic is getting more and more attention, although the 

actual mechanisms are still poorly understood, and there is uncertainty about the 

actual species involved (Troelstra eta/., 2001). 

Most studies in recent years have focused on the influence of pathogenic 

soil fungi on plant communities. Pythium spp. and Phytophthora spp. are fungal 

species known to negatively affect plant growth. In temperate and tropical trees 

and also in annual plants soil-borne fungi cause seedling mortality, which affects 

the spatial and temporal distribution of plant species in the vegetation 

(Augspurger, 1983, 1990; Mihail eta/., 1998; Packer and Clay, 2000; Alexander and 

Mihail, 2000). In later stages of plant growth examples are known from the whole 

range of vegetation types from grasslands up to forests in which the soil 

community may negatively affect the growth of specific plant individuals or 

species, thereby contributing to the spatio-temporal processes in natural vegetation 

(Bever, 1994; Bever etal, 1997; Holah etal, 1997; Mills and Bever, 1998). 

As regards plant-parasitic nematodes in natural vegetation, most is known 

from grasslands. The role of nematodes in spatio-temporal processes has been 

studied in coastal dune grasses, meadows, and prairie grasses (Stanton, 1988; Van 

der Putten et a/., 1990; De Rooij-Van der Goes, 1995; Van der Veen, 2000; 

Blomqvist et a/., 2000; Olff et a/., 2000; Verschoor, thesis in prep.). For the rest, 

studies on nematodes in natural vegetation mainly concentrate on two aspects. 

Some studies examine the taxonomy of species and focus on the morphological 

description of plant-parasitic nematodes {e.g. Sturhan, 1996; Robinson eta/., 1996; 

Karssen et a/., 1998a,b, 2000). Others investigate the species composition of whole 

nematode assemblages and their distribution in space or time, mostly dividing the 

nematodes in different feeding groups, such as fungal feeders, bacterial feeders or 
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plant feeders (Wasilewska, 1970, 1971; Magnusson, 1983; Freckman and Virginia, 

1989; Bussau, 1991; De Goede */ al, 1993; Hodda and Wanless, 1994; Yeates, 

1996; De Goede and Bongers, 1998). 

To our knowledge very little is known of the population dynamics of plant-

parasitic nematodes in natural vegetation, which is the subject of the present thesis. 

Plant-parasitic nematodes 

Organisms that belong to the phylum of the Nematoda are in general 

transparent worm-shape invertebrates. Within the Nematoda, the ubiquitous plant-

parasitic nematodes are generally too small to be seen with the naked eye. They 

have a specialised mouth-part (stylet or spear) to penetrate plant roots and are 

mosdy known from diseases in crop plants (e.g. Bongers, 1988). The plant-parasitic 

nematodes exhibit different feeding habits (Yeates et al., 1993), which is generally 

indicative of their host range and the complexity of their relationship with the 

plant. Ectoparasites feed on the plant by only penetrating their stylet into the root 

tissue, whereas endoparasites actually invade the root with their entire body. 

Some endoparasitic nematode species are migratory throughout their entire 

life and can invade and leave the root at any developmental stage. Others invade 

the root and induce specific feeding structures inside the root as a permanent 

source of nutrients for further development and reproduction. The endoparasites 

that induce feeding structures are sedentary for part of their life cycle and have 

evolved the most complex relationship with their hosts among all other plant-

parasitic nematodes (Sijmons et al., 1994; Koenning and Sipes, 1998). Among 

sedentary endoparasites, quite a number of species are specific, which implies a 

rather to very narrow host range (Ferris and Ferris, 1998). 

The genus Heterodera belongs to the sedentary endoparasitic nematodes and 

is one of the genera that are also mentioned as cyst nematodes. Cyst nematodes are 

major agronomic pests (Lamberti and Taylor, 1986) and may reduce yields of a 

wide variety of arable crops including cereals, root crops and many legumes (Stone, 

1977; Baldwin and Mundo-Ocampo, 1991). Many of the cyst nematode species 

have a worldwide distribution. As the cyst is a protective structure in the life cycle 

of the nematode, it can survive for a number of years in the absence of a suitable 

host, and only a wide crop rotation may be effective in controlling population 

densities (Baldwin and Mundo-Ocampo, 1991). 
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Basic life history ofHeterodera species 

The general developmental life cycle of Heterodera involves various stages, 

including the egg-stage, four juvenile stages, and the adult nematode (Fig. 1). The 

second-stage juvenile hatches from the egg in the soil-bound mother cyst. The 

juvenile, free in the soil, has to move to the roots of a suitable host (Baldwin and 

Mundo-Ocampo, 1991). After probing with the stylet, the juvenile penetrates into 

the host root near the growing tip (Seinhorst, 1986a; Von Mende et a/., 1998). 

Within the root the juvenile moves intracellularly in the cortex towards the vascular 

cylinder where it establishes a feeding site (Baldwin and Mundo-Ocampo, 1991). 

The so-called syncytium is composed of cells that are fused after cell-wall 

dissolution. When the juveniles no longer need to move they lose their body 

musculature and become immobile. For further development they are completely 

dependent on their host. Soon after feeding begins, the body volume starts to 

increase (Sijmons et ai, 1994). From the second-stage juvenile, the nematode goes 

through three moults before reaching the adult stage (Seinhorst, 1986a). 

Figure 1. Stages of development of Heterodera. A) egg with first-stage juvenile; B) second-stage juvenile 

(which will penetrate the root); C) third-stage juvenile (female); D) fourth-stage female juvenile; E) 

immature female; F) cyst filled with eggs; G) third-stage juvenile (male); H) fourth-stage male juvenile; I) 

immature male inside fourth-stage juvenile; J) mature male. After: Decker (1989). 

In a sexually reproducing species, the sexes differentiate mosdy after the 

third juvenile stage. The adult males become vermiform, and leave the root 

(Seinhorst, 1986a; Sijmons et ai, 1994). The female juvenile swells over time and is 
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flask-shaped in the fourth juvenile stage and splits the cortex of the roots. From 

that moment onwards the nematode is visible on the roots as a small white or 

yellow sphere of about 0.5 mm diameter (Seinhorst, 1986a), and may be fertilised 

by a male that is present in the soil. 

In sexually reproducing species, the adult female becomes filled with eggs 

only after mating. After all eggs have been formed the female dies and becomes a 

cyst, detached from the root (Seinhorst, 1986a). At the moment the female dies, 

the cuticle turns brown and is transformed into a thick protective cyst wall (Ferris 

and Ferris, 1998). In most species the eggs are retained inside the cyst. However, in 

some species, part of the eggs is placed in a gelatinous egg sac at the posterior end 

of the cyst, whereas another part remains inside the cyst. The embryos in the eggs 

develop into first stage juveniles, which moult into second stage juveniles, thus 

completing the life cycle (Seinhorst, 1986a). 

The outer coastal dunes 

Ammophila arenaria (L.) Link (Marram grass), a clonal perennial grass species, 

is the most important natural sand-fixing plant species in the outer coastal dunes of 

north-western Europe. During autumn and winter, heavy storms deposit freshly 

windblown sand between the shoots of Ammophila (Fig. 2). The plants may be 

buried by more than a meter of sand, but as long as the leaf tips remain visible new 

shoots will emerge. Emergence after being buried by sand is an important factor in 

the vigour of Ammophila species. Buried plants show enhanced physiological 

activity (Yuan et al, 1993), form new nodes and increase the length of the 

internodes (Disraeli, 1984; Maun and Lapierre, 1984; Baye, 1990; Voesenek et a/., 

1998). In spring, new roots are produced in the newly deposited sand layer, 

followed by an increased shoot production during summer. As roots mainly grow 

horizontally and node-staples mark growth seasons, year-layers of roots can be 

distinguished, each layer representing one growing season. 

As soon as sand accretion ceases, A. arenaria starts to degenerate, and other 

plant species establish. Previous studies have related this degeneration either to 

ageing of the plant (Marshall, 1965), competition for space with other plant species 

(Huiskes and Harper, 1979; Huiskes, 1979) and the changing nutritional status of 

the soil (Willis, 1963, 1965; Maun, 1998). The growth and development of A. 

arenaria, however, was also found to be negatively affected by biotic soil 

components when the plants had not been buried (Van der Putten et ai, 1989). A 

complex of soil pathogens is thought to contribute to the degeneration of A. 

arenaria (Van der Putten and Troelstra, 1990; De Rooij-Van der Goes, 1995). As 
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the addition of nematicides reduced the numbers of plant-parasitic nematodes in 

the soil and subsequendy increased the biomass production of A. arenaria in 

greenhouse trials, it has been suggested that plant-parasitic nematodes may 

contribute to the degeneration process (Van der Putten etal., 1990). 

autumn winter 

burial by sand 
stem elongation 

spring summer 

node formation 
root growth shoot growth 

autumn 

burial by sand 

growth stops 

r-v ^c^ 

low activity 
colonisation of soil by fungi 

migration of nematodes 
infection of roots by nematodes and fungi 

low activity 

Figure 2. A time axis including the yearly sand deposition, growth of A, arenaria, and the migration and 

development of soil organisms. After: De Rooij - Van der Goes (1996b). 

Plant degeneration and vegetation succession in coastal'fore dunes 

In freshly wind-blown beach sand, hardly any harmful soil organisms were 

found to occur (Van der Putten and Troelstra, 1990). It was, therefore, suggested 

that enhanced root formation may offer Ammophila the possibility to retain its 

vigour by temporary escape from the soil-borne pathogens that are present in the 

root layers of previous years (Van der Putten et al, 1988). Experimental burial of 

A. arenaria with sterilised sand resulted in more shoots and biomass than burial 

with sand from an existing root zone (De Rooij-Van der Goes et al, 1995a). Such 

burial experiments suggest that A. arenaria may benefit from colonisation of freshly 

deposited windblown sand because of the temporary absence of root pathogens. 
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Soil pathogens are also supposed to contribute to vegetation succession in 

the coastal foredunes (Van der Putten et al., 1993). A. arenaria is generally preceded 

by Elymus farctus, and succeeded by Festuca rubra spp. arenaria, Carex arenaria, Eljmus 

athericus and Calamagrostis epigejos, respectively. Locally, each of these plant species 

reaches dominance before being replaced. In a study by Van der Putten and Peters 

(1997) the replacement of successional plant species was demonstrated to be 

enhanced by soil pathogens, especially when nutrients were limiting, which 

indicates that specificity of the soil pathogens causes apparent competition. In 

addition to A. arenaria, soil pathogens were also supposed to be involved in the 

degeneration of its North-American co-generic species, Ammophila breviligulata 

(Seliskar and Huettel, 1993), although effects of nematodes were found to be 

counteracted by arbuscular mycorrhizal fungi (Little and Maun, 1996, 1997). The 

natural degeneration of another dominant coastal dune plant, the shrub species 

Hippophae rhamnoides, also seems to be affected by soil pathogens (Oremus and 

Otten, 1981; Maas et al., 1983; Zoon etal, 1993). 

Nematodes in the coastal foredunes 

So far, studies on the degeneration of A. arenaria by plant-parasitic 

nematodes have been focused on the effects of the ectoparasite Telotylencbus ventralis 

(now Tylenchorhynchus ventralis) (De Rooij-Van der Goes, 1995). Furthermore, 

particular combinations of nematodes and soil-borne fungi that may be harmful to 

A. arenaria were elucidated (De Rooij-Van der Goes et al., 1995b). Telotylencbus 

ventralis was found to reduce plant growth of A. arenaria to the same level as growth 

in non-sterile soil, but only at densities that were 80 times higher than the density 

observed in non-sterile field soil. In the combinations of organisms that were 

regularly found to occur together in the field, the nematodes of Heterodera spp. 

were generally present. As a specific complex of soil pathogens and parasites was 

thought to be present in the rhizosphere of A. arenaria, it was hypothesised that 

species with a high specificity towards the plant would contribute most to the 

degeneration of A. arenaria (Van der Putten and Van der Stoel, 1998). In 

agricultural crops, many species of the genus Heterodera are known to have a 

narrow host range (Ferris and Ferris, 1998), and cause losses due to deformed 

roots, necrosis and plant death in major crop species, such as sugar beet and 

cereals such as oat and wheat (Baldwin and Mundo-Ocampo, 1991). However, 

natural biotrophic parasites are often characterised by relatively mild aggressiveness 

towards their host (Lenski and May, 1994), which would predict that specific 

nematodes do not, or only moderately, negatively affect their host. Therefore, as a 
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follow-up of the study of De Rooij-Van der Goes (1996a), it was decided to focus 

the present study on the population dynamics, specificity and pathogenicity of the 

Heterodera species that was most likely involved in the ecology of the grass A. 

arenaria in the outer coastal dunes. 

Aim of this study 

The main aim of the study presented in this thesis was to study the 

population dynamics of specialist plant-parasitic nematodes in a natural ecosystem. 

For that purpose, Heterodera arenaria in the coastal foredunes was used as a model. 

The study considered three detailed objectives. First, molecular techniques were 

used to identify the different species of Heterodera present in the system. Secondly, 

as specific plant-parasites were thought to be involved in vegetation processes, the 

abundance, host-specificity and pathogenicity of H. arenaria, were determined. The 

third objective was to study the distribution of H. arenaria over the various root 

layers and the migration to new plant roots that were formed after sand burial. 

Outline of the thesis 

In Chapter 2 the occurrence of nematodes in different root layers was 

studied in monthly samplings during the growing season. The presence of 

nematodes was linked to the development of pathogenicity towards A. arenaria in a 

series of bioassays carried out on root zone samples collected from the field. The 

period during which A. arenaria may grow vigorously and escape from the 

pathogenic effect of soil organisms is discussed in relation to sand burial. 

In Chapter 3 the suitability of the molecular method PCR-SSCP (PCR-

Single-Strand Conformational Polymorphism) was established in order to 

distinguish known species of endoparasitic nematodes on the basis of the ITS2 

ribosomal RNA. Heterodera species that occur in the coastal foredunes on different 

plant species were compared with known Heterodera species in order to enable 

identification of the dune cysts to the species level. 

In Chapter 4 the host specificity of Heterodera and its potential to reduce the 

growth of A. arenaria were addressed. Along the Dutch coast, root zone samples 

from different plant species were collected to establish the occurrence of 

Heterodera. In addition, an inoculation experiment was carried out to test the host 

status of the various plant species. In a dose-response experiment, effects of a 

range of inoculation densities of H. arenaria juveniles to A. areneria was tested in 

order to determine pathogenicity. 
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In Chapter 5 the population dynamics of H. arenaria in vigorous stands of A. 

arenaria are described. During two growing seasons, soil and root samples have 

been collected at monthly intervals from root layers of A. arenaria at various depth 

layers. The consequences of migration to the newly deposited sand layer for the 

individual juvenile are discussed. 

In Chapter 6 two greenhouse experiments are described. The performance 

of H. arenaria cysts formed in the newly deposited sand layer and of cysts from a 

one-year-old layer was compared. The hypothesis was tested that individuals 

benefit from migration, e.g. resulting in a larger success of reproduction and an 

earlier start of development of the next generation. 

In Chapter 7 the results of the study are discussed. Special attention is paid 

to the question whether, based on the results on the specificity and pathogenicity, 

H. arenaria may be a key species in the degeneration of A. arenaria. Furthermore, 

the life history strategy of H. arenaria is discussed in relation to the dispersal and 

the possible mechanisms that may control the population density of H. arenaria in a 

natural ecosystem. 



CHAPTER 2 

COLONISATION OF THE ROOT ZONE OF THE CLONAL GRASS 

AMMOPHILA ARENARIA BY NEMATODES AND THE DEVELOPMENT 

OF PATHOGENICITY 

with W.H. van der Putten and H. Duyts 

submitted to journal of Ecology 

ABSTRACT 

In studies on the role of soil pathogens on spatio-temporal dynamics in 

natural vegetation, the colonisation process of the soil organisms has received litde 

attention. In mobile outer coastal dunes, the ability to escape from soil pathogens 

has been suggested to be one of the factors explaining the vigour of A. arenaria. 

Each spring, roots of A. arenaria are growing into the newly deposited sand layer 

whereas the soil pathogens are lagging behind. However, based on the appearance 

rates, enemy-free space is short as some soil organisms colonise the layer within 

one month after the first root formation. This would indicate a very narrow 

window of escape for the plant. In previous studies, however, the colonisation by 

soil organisms has not been linked to the development of any pathogenic effect to 

the plant, so that the actual window for escape has not yet been determined. 

In the present study, we tested the hypothesis that pathogenicity in the 

newly colonised sand layer occurs later than the colonisation by the first plant-

parasitic nematodes, offering A. arenaria a wider window for escape to remain 

vigorous than the short period during which no nematodes are present in the 

newly formed root layer. To relate the nematode development in the field to the 

development of pathogenicity, we collected soil samples from the root zone of A. 

arenaria at monthly intervals and quantified the amount of roots and the number of 

plant-parasitic nematodes. The same soil samples were also used in a series of 

bioassays to examine the biomass production of A. arenaria seedlings in the natural 

soil and in soil where the original soil community completely has been eliminated 

by soil sterilisation or partially by nematicide addition. 

Within a month after the first root formation of A. arenaria, colonisation of 

the newly deposited sand layer by soil organisms already resulted in the 

development of pathogenicity according to the bioassays. Initially, nematicide 
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addition counteracted growth reduction significandy, suggesting that plant-parasitic 

nematodes were involved in the observed growth reduction of A. arenaria in the 

bioassays. The nematicide effect coincided with the presence of the plant-parasitic 

nematodes Heterodera arenaria and Pratylenchus spp. in the field samples. Later, 

however, the effectiveness of the nematicide decreased, suggesting that an 

additional biotic soil component became involved in the growth reduction of A. 

arenaria in the bioassays. In older root layers, where nematodes were present from 

the start of the sampling period, growth reduction was observed in all bioassays, 

but nematicide addition did not effectively counteract growth reduction in non-

sterilised soil. 

Although pathogenicity in the bioassay developed within a month after the 

first roots were formed in the new sand layer, root biomass of A. arenaria in the 

field increased throughout the growing season, so that the effects of the bioassay 

do not seem to accurately estimate the window for escape for A. arenaria. Our 

results suggest that plant-parasitic nematodes are involved in the growth reduction 

of A. arenaria in the bioassay, but in the field, escape from pathogens indicates that 

more complex interactions between various groups of soil organisms are involved, 

which need further studies. 

INTRODUCTION 

In recent years, the interest in the role of plant pathogens in natural 

vegetation has increased considerably. Most of the research has focused on 

aboveground pathogens {e.g., Burdon, 1987, 1993; Alexander, 1991; Clay et a/., 

1993; Clay, 1997), but also soil pathogens have been found to influence plant 

communities (Van der Putten et a/., 1993; Bever, 1994; Blomqvist et al, 2000). In 

the seedling stage of plants, most studies on soil-borne pathogens concentrated on 

the influence of soil-borne fungi on plant growth. In temperate forests, Pjthium 

spp. caused patterns of seedling mortality oiPrunus serotina (Packer and Clay, 2000). 

Both Rhi^octonia solani and Pythium irregulare were found to influence the population 

dynamics of the host plant Yaimmerowia stipulacea, an annual legume, by reducing 

seedling survival (Mihail et al., 1998). Seedling mortality of tropical trees was found 

to be caused by damping-off fungi that may influence spatial distribution patterns 

and species diversity (Augspurger, 1983, 1990; Augspurger and Kelly, 1984). Also, 

in later stages of plant development the soil community may influence plant 

species diversity (Bever et a!., 1997; Mills and Bever, 1998; Olff et al., 2000) and 

10 
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interspecific competition (Turkington and Klein, 1991; Van der Putten and Peters, 

1997; Holah and Alexander, 1999). Negative feedback between plant species and 

their soil communities may lead to either unidirectional or cyclic succession (Van 

der Putten et al, 1993; Bever, 1994; Holah et al, 1997; D'Hertefeldt and Van der 

Putten, 1998). 

In coastal foredunes, the natural system that has been used in the present 

study, soil pathogens are supposed to contribute to vegetation succession (Van der 

Putten et al., 1993). As soon as sand accretion ceases, Ammophila arenaria (L.) Link, 

one of the most important sand-fixing plant species in the outer coastal dunes of 

north-western Europe, degenerates, to which a specific complex of plant-parasitic 

nematodes and soil-borne plant-pathogenic fungi is thought to contribute (Van der 

Putten and Troelstra, 1990; De Rooij-Van der Goes, 1995). In pot trials, the 

addition of nematicides as well as fungicides caused a reduction in the numbers of 

plant-parasitic nematodes, and subsequently the biomass production of A. arenaria 

seedlings increased (Van der Putten et al., 1990). As it is expected that nematodes 

with a narrow host range contribute most to the specificity of the complex of 

pathogens, it has been suggested, that specific endoparasitic nematodes may be the 

key species in the soil pathogen complex of A. arenaria (Van der Putten and Van 

der Stoel, 1998). 

Burial by fresh windblown sand is an important factor in the vigour of 

Ammophila species. Buried plants show enhanced physiological activity (Yuan et al, 

1993), and show an increase in the length of the internodes (Disraeli, 1984; Maun 

and Lapierre, 1984; Baye, 1990; Voesenek et al, 1998). In spring new roots are 

produced in the accreted sand layer, followed by increased shoot production 

during summer. As roots mainly grow horizontally and node-staples mark years of 

development, distinct layers of roots are produced each new growing season. In 

fresh wind-blown beach sand, containing few harmful soil organisms, enhanced 

root formation is supposed to offer Ammophila the possibility to retain its vigour by 

temporary escape from the soil-borne pathogens that are present in the root layers 

of previous years (Van der Putten et al, 1988). Indeed, A. arenaria was more 

vigorous when buried with sterilised sand than when buried with sand from an 

existing root zone in which the natural root pathogens are present (De Rooij-Van 

der Goes et al, 1995a). Such burial experiments support the suggestion that A. 

arenaria may benefit from the absence of root pathogens. 

Clonal growth as a strategy to escape from pathogens has already been 

observed in plants attacked by systemic pathogens. In e.g. Lactuca sibirica, Trientalis 

europaea and Cirsium arvense, vigorous growth or the production of rhizomes allowed 
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at least part of the clone to escape from systemic fungal pathogens (Wennstrom 

and Ericson, 1992; Wennstrom, 1994, 1999; Frantzen, 1994). However, in the case 

of A. arenaria, the window for escape {i.e. the time during which the plant roots 

could grow without negatively being affected by the soil pathogens) appeared to be 

rather short as the first soil pathogens migrated upwards soon after root formation 

took place (De Rooij-Van der Goes et al., 1998). In this latter study, however, the 

migration data had not been linked to the actual development of pathogenicity {i.e. 

the capacity of pathogens to negatively affect plant growth) towards A. arenaria. 

Once the pathogens have migrated upwards, pathogenicity may develop in 

the root zone in various ways. One view is that there is an instantaneous 

relationship between the migration of nematodes and the development of 

pathogenicity. If the window for escape is indeed narrow, A. arenaria will be forced 

to benefit maximally from a short period of root growth to remain vigorous. 

Alternatively, pathogenicity may develop later in time when pathogenic 

species/individuals migrate gradually or occur later than non-pathogenic species, 

leading to expression of disease incidence when a certain threshold level is 

exceeded, e.g. after reproduction of the nematodes. In that case the window for 

escape is wider allowing A. arenaria to develop freely for almost the full growing 

season. 

In the present study, the hypothesis is tested that pathogenicity in the newly 

colonised sand layer occurs later than the first migration of plant-parasitic 

nematodes, so that the window for escape for A. arenaria to remain vigorous is 

wider than the short period during which no nematodes are present in the newly 

formed root layer. We determined the colonisation of a new sand layer by roots of 

A. arenaria and by nematodes at monthly intervals in the field. In combination with 

this field study, the soil collected at monthly intervals was used in bioassays to 

relate the colonisation by nematodes to the development of pathogenicity. A one-

year-old root layer of vigorous A. arenaria as well as the upper root layer of 

degenerating A. arenaria was included for comparison. Soil sterilisation and 

nematicide addition were included as treatments in order to study effects of 

complete and partial elimination of the natural soil organisms. The results of the 

field data and the bioassays are used to discuss the role of plant-parasitic 

nematodes and the development of pathogenicity in relation to the ability of A. 

arenaria to retain its vigour and the role of plant-parasitic nematodes therein. 

12 



COLONISATION AND DEVELOPMENT OF PATHOGENICITY 

MATERIALS A N D METHODS 

Collecting soil samples from the field 

Samples were collected from the coastal foredunes of Voorne, the 

Netherlands, at a site north of Haringvlietdam (51°52' N 4°04' E). This location 

has been used in preceding studies by De Rooij-Van der Goes et al. (1995a) and 

Van der Putten et al. (1989). At monthly intervals from April 1997 up to November 

1997, samples were collected from the root zone of both vigorous and 

degenerating Ammophila arenaria (Fig. 1). In April 1998, one additional 

measurement was carried out. 

sea vigorous degenerating 

A. arenaria A. arenaria 

Figure 1. A schematic cross-section of the seaward and landward slope of the outer coastal foredune 

ridge with vigorous and degenerating A. arenaria, respectively. 

Vigorous A. arenaria occurred on the seaward slope of the first dune ridge. 

In our study, at the vigorous site, roots and sand from the root zone were collected 

from a layer colonised in summer 1996 (indicated as 1996 layer), and from a layer 

with sand deposited in autumn/winter 1996/1997(indicated as 1997 layer). In the 

1997 layer, at the start of the sampling period, roots still had to be formed (Fig. 2). 

Degenerated A. arenaria occurred on the landward slope and in the slack behind 

the first dune ridge (indicated as degenerated). At this site, roots and sand were 

collected from the top 20 cm layer. 

At both the vigorous and the degenerated site, the sampling areas were 100 

m long and 10 m wide, parallel to the coastline. At each sampling date in 1997, five 

random samples of 20x20x20 cm3 were collected from each soil origin (1997 layer, 

1996 layer, and degenerated). In April 1998, additionally, five random samples were 

collected from the 1998 layer, i.e. the layer with sand deposited during 
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autumn/winter 1997/1998. Replicate samples of the subsequent layers were 

collected independently by collecting them from different plants. 

1997 layer 

1996 layer 

summer 1996 

Time 

autumn/winter summer 1997 

Figure 2. The development of vigorous A. arenaria in time with distinct root layers that each have been 

formed in a different year. 

Sample processing 

Each sample was sieved (mesh size 0.5 cm) to remove coarse material, and 

to separate the roots from the soil. The total fresh weight of each rootsample was 

measured before the roots were divided into three subsamples, each subsample 

used for a different purpose. From one subsample of roots the free-living 

nematodes were extracted by the funnel-spray method (Oostenbrink, 1960). From 

a second subsample, Heterodera cysts and Meloidogyne root-knots were collected and 

counted, using a binocular microscope (10-15x magnification). The third 

subsample was again mixed through the soil that was used for the bioassay. After 

the nematodes had been extracted from the roots, the subsamples that had been 

used for nematode extraction and visual counting were dried at 70°C for 48 hours, 

and weighed. 

After sieving, the soil was homogenised gendy, and the soil of each sample 

was used for four purposes. Free-living nematodes were extracted from the first 

subsample of 250 ml using the Oostenbrink elutriator (Oostenbrink, 1960). 

Second, Heterodera spp. cysts were extracted from another subsample of 1 1 of soil, 

after weighing, by adding 4 1 water, stirring the suspension and decanting the water 

with the floating cysts on a 180 [xm mesh sieve. This procedure of adding and 

decanting was repeated five times. To determine the soil moisture content of each 
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sample, a third subsample of about 50 g of soil was weighed, dried at 70°C for 48 

hours, and weighed again. Finally, about 6 kg of the homogenised soil was used for 

the bioassay after the remaining root material had been added (as described earlier). 

Monthly bioassay with three soil origins 
Experimental design 

Every month, a bioassay was carried out according to a 3x2x2 factorial 

design with the factors 'soil origin' (SO) (1997 layer, 1996 layer, and degenerated), 

'soil sterilisation' (s, ns), and 'nematicide addition' (+, -). There were five replicates 

of each treatment corresponding to the samples collected from the field. 

Each month, five extra pots were included with a control soil in order to 

enable an additional analysis of variance with time (month) as factor to check 

monthly variation in growth conditions. The control soil, about 100 kg, was 

collected prior to the start of the first bioassay from vigorous and degenerated A. 

arenaria and from C. epigejos in the outer coastal foredunes. The soil was sieved 

(mesh size 0.5 cm) to remove coarse material and roots. Subsequentiy the soil was 

thoroughly mixed, placed in 10 plastic bags and sterilised by means of gamma-

irradiation (25 kgray). After sterilisation these bags were stored in the dark at 4°C. 

Each month the five additional pots were filled with this sterilised soil and set at 

10% soil moisture content (ww1). 

Soil treatment 

Each month, 6 kg of the homogenised soil remaining from the total amount 

collected was used for the bioassay. Half of each replicate sample was sterilised by 

autoclaving the soil at 120°C twice for one hour with a 48-hours interval. After 

sterilisation the soil was stored at 4°C for four days until use. The unsterilised soil 

was stored at 4°C until use. As a nematicide, oxamyl (lOOmg/kg Vydate 10% based 

on dry soil according to Van der Putten et al., 1990) was mixed through the soil, 

before the pots were filled. 

Per replicate four 1.5 1 pots were filled with soil (10% soil moisture (ww"1). 

They received the following treatments: sterilised soil with nematicide (s+), 

sterilised soil without nematicide (s-), unsterilised soil with nematicide (ns+), and 

unsterilised soil without nematicide (ns-). 

Growing of plants 

During the summer of 1995, A. arenaria seeds were collected at the earlier 

described studysite. Prior to the start of each monthly trial, seeds were germinated 
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for 3 weeks on glass beads at a 16/8 hour light/dark regime with corresponding 

temperatures of 25/15°C. After germination, four seedlings were planted in each 

1.5 1 pot. The soil surface was covered with aluminium foil to prevent desiccation 

of the soil and the pots were randomly placed in a climatised room at a 16/8 hour 

light/dark regime of 21/18°C. Twice a week, the soil moisture content was reset at 

10% (ww1) with demineralised water. Once every week, a full strength Hoagland 

nutrient solution was added to all pots. During the first six weeks, 12.5 ml, and in 

the final two weeks, 25.0 ml were added per week, respectively. 

Harvest 

Eight weeks after the start of each trial, all pots were harvested. The soil was 

carefully washed from the roots, and organic matter was removed. Both shoot and 

root biomass were dried at 70°C for 48 hours and weighed. 

April 1998 

In April 1998, in addition to the other samples, five samples were collected 

from the sand layer that had been deposited in autumn/winter 1997/1998. In this 

particular month, the bioassay was carried out with four soil origins. After 

collection, the samples were treated similarly as described before. 

Data analysis 
Nematode development 

Numbers of extracted nematodes were expressed as N per 100 g dry soil. 

For each sample the total number of plant-parasitic nematodes was calculated. 

Nematode genera that occurred in less than 10% of the soil samples collected per 

sampling layer in 1997 were discarded from the analysis. Among the genera that 

had been found rarely were ectoparasites such as Boleodorus, Ecphyadophora, 

Telotylenchus, Helicotylenchus, Rotylenchus, Hemicycliophora, and Criconema. According to 

the classification based on feeding types by Yeates et al. (1993) Tylenchus, Filenchus 

and Ditylenchus were considered as potential plant-parasites. Data of non-plant 

feeders are not presented. The nematode data were analysed in a one-way analysis 

of variance with factors 'month'. To achieve homogeneity in the data, the number 

of nematodes per 100 g dry soil were log(x+l)-transformed. For each soil origin, it 

was tested whether the total number of plant-parasitic nematodes showed any 

differences between months. Treatment means were compared using Tukey's HSD 

test (P<0.05). To test for differences between the layers, Wilcoxon's matched pairs 
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tests have been carried out, comparing the monthly average values of two soil 

origins. 

Furthermore, for each soil origin, one-way ANOVA's were carried out with 

'month' as independent variable, and a particular nematode or nematode life stage 

as the dependent variable. Also for these analyses, the log(x+l)-transformed 

numbers per 100 g dry soil have been used. Monthly means were compared using 

the LSD-test (P<0.05). 

Bioassay 

As variation between months in the control soil was significant, it was 

decided not to perform any ANOVA's including the sampling date, as possible 

differences may have been due to other, external conditions such as e.g. the initial 

size of the seedlings. In a 3-way analysis of variance the main effects of the factors 

'soil origin', 'soil sterilisation' and 'nematicide addition' were determined. In 2-way 

analyses of variance with the factors 'soil sterilisation' and 'nematicide addition' 

data were analysed separately for each layer and month. The data have been tested 

for normality and homogeneity of variances. If necessary the data were log-

transformed to obtain homogeneity. When no homogeneity was obtained, data 

were analysed in a non-parametric Kruskal-Wallis test. Treatment means were 

compared using Tukey's HSD test (P<0.05). 

Root biomass in the field and in the bioassay 

In a one-way analysis of variance for each soil origin, the effect of 'month' 

on the amount of root (g) per kg dry soil was determined. Treatment means were 

compared using the LSD-test (P<0.05). 

To check whether plant biomass in the bioassays in the unsterilised soil 

without nematicide was related to the amount of roots in the field, a regression 

analysis was carried out for each soil origin. For each sample, the collected root 

biomass expressed per kilogram of dry soil was used as the first variable. The 

second variable was the ratio between the biomass of A., arenaria in unsterilised soil 

without nematicide and the biomass in sterilised soil without nematicide. 
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RESULTS 

Nematode development: comparison of genera within sampling layers 

In the 1997 layer, significant differences were found between months 

(P=0.0011), which is due to higher nematode numbers in October and November 

than in May (Fig. 3). The numbers observed in April and from June until 

September differed significantly from the numbers in November only. Until 

November, 100 gram dry soil contained on average about 13 plant-parasitic 

nematodes. In the 1997 layer, individuals of Heterodera arenaria were first observed 

in July (Fig. 4). The females increased to a maximum of 2.5 per 100 gram dry soil 

in November. Significantly highest numbers of Heterodera juveniles were found in 

November (P<0.001). Numbers of Meloidogyne females were low throughout the 

year. Juveniles of Meloidogyne were present in April and from August onwards, but 

were not detected from May until July. Pratylenchus only occurred in very low 

numbers. 

-1997 layer —a—1996 layer —A—degenerated site 
T a_ a a a 
5 * ^ X _ a 

o 
10 
>» 
•o 
CD 
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1.5 

1,0 

0,5 

0,0 

M N 

Month 
Figure 3. The mean log(x+l)-transformed (+SE) number of obligate plant-parasitic nematodes per 

month for three soil origins with x being the number per 100 g dry soil. From the site with vigorous A. 

arenaria, soil was collected from a newly colonised layer (1997 layer) and from a one-year-old layer (1996 

layer). For each layer, different letters indicate statistically significant differences at P<0.05. 

In the 1996 layer, plant-parasitic nematodes were present throughout the 

whole year, and their total number did not significandy differ between months 

(Fig. 3). Heterodera females were present throughout the whole year. However, only 

in August newly produced cysts were found (data not shown). Significantly higher 

numbers of Heterodera males were collected in August than in other months. Similar 

to the 1997 layer also in the 1996 layer Meloidogyne juveniles were present already in 
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April. In August, in the 1996 layer, Meloidogyne juveniles had a second peak. Both 

Pratylenchus and Paratylenchus were present early in the growing season. For both 

genera a trend was found with the highest numbers occurring during the summer 

although the population density of Pratylenchus lagged behind that of Paratylenchus. 

From the root zone of A. arenaria growing at a degenerated site significandy 

more plant-parasitic nematodes were collected than from the upper two root layers 

originating from vigorous A. arenaria (Fig. 3) (P=0.017 in the comparison with the 

1997 layer; P=0.012 in the comparison with the 1996 layer). The difference was 

mainly due to the relatively high numbers of individuals that belong to the genera 

Tylenchus and Filenchus (Fig. 4). Of the genus Heterodera only cysts were found, but 

these hardly contained any viable eggs. From Meloidogyne only juveniles were 

collected but these did not develop into adult females, as no root-knots were 

found. Pratylenchus numbers tended to be similar to those in the other soils. 

Nematode development: comparison of development of genera between layers 

In the 1996 layer, Heterodera cysts were present throughout the whole year, 

whereas in the 1997 layer cysts only occurred from July onwards (Fig. 4). As in 

earlier months no juveniles were extracted from the 1997 layer, the newly formed 

cysts most likely had developed from juveniles that had migrated vertically from 

the 1996 to the 1997 layer. Contrary to the site with vigorous A. arenaria, there 

were no Heterodera juveniles and males present in the degenerated stand. 

Meloidogyne root-knots were found in low numbers in both root layers of 

vigorous A. arenaria, and they were not present in the degenerated stand (Fig. 4). 

Although in April Meloidogyne juveniles were present in both root layers of the 

vigorous stand, they did not contribute to an increase in adult root-knots. Also a 

second peak of juveniles in August in the 1996 layer did not lead to a significant 

increase in the number of root-knots. In the 1996 layer, the number of Meloidogyne 

juveniles was significandy lower from September onwards than the number of 

juveniles in August, whereas in the 1997 layer, juvenile numbers tended to increase 

from September onwards (Fig. 4). 

In both root layers the numbers of Pratylenchus varied largely between 

months, occasionally leading to significant differences between months, but not 

between root layers (Fig. 4). Paratylenchus and Tylenchus were present in the vigorous 

stand, but only in the one-year-old root layer. In the root layer of the degenerated 

stand, the numbers of Filenchus and Tylenchus tended to be higher than in the root 

layers of the vigorous stand. 
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Monthly bioassay 

Although abiotic conditions were not supposed to vary over time, the 

biomass of the A. arenaria plants grown in the control soil varied significantly 

between months (data not shown). Apparendy not all growth factors could be 

controlled between the monthly trials. For that reason, the factor time has not 

been included in the analyses. In a 3-way analysis with the factors soil origin, soil 

sterilisation and nematicide addition, each factor had a significant effect on the 

biomass. Due to the lack of homogeneity of variance in the data, it was not 

possible to test interaction effects. Therefore, a more detailed two-way ANOVA 

was carried out for every individual month and soil origin, using soil sterilisation 

and nematicide addition as factors (Table 1). 

In the 1997 layer no significant differences in the total biomass between the 

treatments were found when soil was used collected in April, May, and June (Table 

1; Fig. 5A). In the remaining months the biomass of A. arenaria was significantly 

lower in unsterilised soil than in sterilised soil. Until October, addition of 

nematicide to unsterilised soil counteracted growth reduction such that biomasses 

were not different from those in sterilised soil with nematicide. From October 

onwards, addition of nematicide to unsterilised soil did no longer yield biomasses 

of A. arenaria as high as in nematicide-treated sterilised soil. 

In the 1996 layer, for each month biomass of A. arenaria was higher in 

sterilised than in unsterilised soils, irrespective of nematicide addition (Table 1; Fig. 

5B). Although not significant for each month, addition of nematicide to 

unsterilised soil resulted in a higher biomass as compared to the biomass in 

unsterilised soil without nematicide. However, there was no month in which 

nematicide addition to unsterilised soil resulted in biomasses as high as in the 

sterilised soils. The results of nematicide addition to soil from the 1996 layer 

resemble those of the last few months of the 1997 layer. 

In the soil collected from the root zone of degenerating A. arenaria, biomass 

in the unsterilised soil was also reduced as compared to that in the sterilised soil 

(Table 1; Fig. 5C). Addition of nematicide to unsterilised soil enhanced 

productivity in three months (June, August and September) as compared to 

productivity in unsterilised soil without nematicide. Only in April, July and August 

nematicide addition to unsterilised soil did enhance productivity up to the level of 

sterilised soil with nematicide. 
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Table 1. The results of a two-way analysis of variance with the factors soil sterilisation (S) and nematicide 

addition (N) and the mean values of the total biomass (g/ pot) per treatment for the 1997 and 1996 layers 

of vigorous A., arenaria and for the degenerated (deg.) stage of A. armaria. For each soil origin and each 

month the F-, and P-value, and the results of Tukey's HSD test are presented. * P<0.05; ** P<0.01; *** 

P<0.001; — no significant difference. Different letters indicate significant differences. 

Soil Factor 
origin 

S 

1997 N 
layer 

SxN 

F 
P 
F 
P 
F 
P 

Sterile + nematicide 
Sterile — nematicide 
Non-sterile + nematicide 
Non-sterile -

S 

1996 N 
layer 

SxN 

nematicide 

F 
P 
F 
P 
F 
P 

Sterile + nematicide 
Sterile - nematicide 
Non-sterile + nematicide 
Non-sterile -

S 

deg. N 
stage 

SxN 

nematicide 

F 
P 
F 
P 
F 
P 

Sterile + nematicide 
Sterile - nematicide 
Non-sterile + nematicide 
Non-sterile — nematicide 

A 

1.77 
— 

0.09 
-
2.25 

-

1.63a 

1.75" 
1.65* 
1.46a 

35.7 
*** 

3.34 
-
7.00 
* 

1.83ab 

1.97a 

1.26b 

0.49c 

7.36 
* 

2.86 

-
4.33 

1.79* 
1.87a 

1.67ab 

0.96b 

M 

3.79 
— 

0.90 
-
0.26 

-

2.00a 

1.87a 

1.79a 

1.75a 

21.0 
*** 

3.71 
-
0.18 

-

2.38a 

2.09ab 

1.51* 
i .n c 

47.2 
*** 

7.02 
* 

1.13 

3.51a 

3.19a 

2.32b 

1.55b 

Month 

J 

2.13 
— 

30.5 
— 
1.49 

-

1.88a 

1.81a 

1.85* 
1.47a 

103.5 
*** 

5.97 
* 

2.25 

-

2.38a 

2.26a 

1.26b 

0.75b 

52.1 
*** 

7.32 
* 

6.05 
* 

3.10* 
3.06a 

2.21b 

1.24c 

J 

20.9 
*** 

10.6 
** 

4.88 
* 

1.33* 
1.20a 

1.04" 
0.35b 

18.9 
*#* 

9.32 
** 

2.05 

-

1.68* 
1.47a 

1.30a 

0.72b 

17.0 
*** 

5.84 
* 

2.25 

2.49a 

2.18* 
1.61*b 

0.29b 

A 

15.6 
** 

9.10 
** 

5.12 
* 

1.03' 
0.95' 
0.85* 
0.29b 

98.9 
*** 

14.9 
** 

12.5 
** 

1.08a 

1.06a 

0.69b 

0.24c 

19.0 
*** 

7.69 
* 

2.12 

1.19' 
0.95a 

0.88a 

0.32b 

S 

21.1 
*** 

20.0 
*** 

11.2 
** 

0.58a 

0.53* 
0.53' 
0.17b 

11.0 
** 

1.48 
-
0.70 

-

0.83a 

0.78a 

0.53*b 

0.29b 

56.4 
*** 

9.11 
** 

1.34 

1.49' 
1.30* 
0.84b 

0.42c 

O 

85.8 
*** 

6.14 
* 

3.53 

-

1.11' 
1.14* 
0.66b 

0.39° 

86.5 
*** 

2.20 

-
3.55 

-

1.91* 
1.96* 
0.98b 

0.56b 

33.7 
**# 

4.59 
* 

1.78 

2.88" 
2.72"b 

1.99bc 

1.30c 

N 

50.5 
*** 

20.0 
*** 

8.23 
* 

2.69' 
2.44ab 

2.02b 

0.85c 

97.9 
*** 

6.80 
* 

0.05 

-

3.03" 
2.59* 
1.25b 

0.72b 

41.0 
*** 

1.33 
-
2.89 

4.05* 
4.25* 
2.39b 

1.38b 
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Figure 5. The total biomass of A. arenaria as a percentage of the total biomass in sterilised soil without 

nematicide (s-). As each replicate sample from the field was divided over the four treatments in the 

bioassay, for each replicate the total biomass of each of the treatments s+ (sterilised soil with nematicide), 

ns+ (unsterilised soil with nematicide) and ns- (unsterilised soil without nematicide), was divided by the 

total biomass of that particular replicate in the treatment s-, and multiplied by 100. The mean was 

calculated based on 5 replicates. A'98 indicates April 1998. 

In April 1998, for all soil origins, the productivity of A., arenaria was 

significantly lower in unsterilised soil than in sterilised soil (Table 2). However, in 

the 1998 layer, the sterilisation effect was relatively small and there were no further 

significant differences between the biomass in the unsterilised soil with nematicide 
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and the sterilised treatments. Addition of nematicide to the unsterilised soil did 

only result in a significandy higher biomass in soil collected from the degenerated 

stand (Table 2). 

Table 2. The results of a two-way analysis of variance with the factors soil sterilisation (S) and nematicide 

addition (N) and the mean values of the total biomass (g/pot) per treatment for the April 1998 sampling. 

The data of the 1997 layer and the 1996 layer were analysed by a Kruskal-Wallis non-parametric test, 

which does not allow to test more than one factor at a time. For each soil origin the F-, and P-value, and 

the results of Tukey's HSD test are presented. * P<0.05; ** P<0.01; *** P<0.001; - no significant 

difference. Different letters indicate significant differences. 

Factor 

S 

N 

SxN 

F 

P 

F 

P 

F 

P 

Sterile + nematicide 

Sterile - nematicide 

Non-sterile + nematicide 

Non-sterile - nematicide 

1998 

layer 

12.6 
* 

3.96 

— 
0.52 

2.10" 

2.02a 

1.86ab 

1.55b 

1997 

layer 

14.3 
*** 

1.37 

— 

2.18" 

1.99" 

0.84b 

0.30b 

April 1998 

1996 

layer 

14.3 
*** 

0.97 

— 

2.34" 

2.16* 

0.63b 

0.13b 

degenerated 

layer 

133.1 
*#* 

13.7 
** 

1.12 

2.92* 

2.47" 

1.17b 

0.37c 

In the field samples collected in April 1998, a small amount of roots had 

been found in the 1998 layer (Fig. 6), whereas in 1997, the first roots in the 1997 

layer had not been found yet at the sampling date in early May. Therefore, 

considerable variability may exist between years in the moment A. arenaria starts to 

produce new roots in the newly deposited sand layer. Furthermore, in the 1997 

layer the quantity of roots per kg of soil gradually increased during the growing 

season with significantly most roots in November (Fig. 6). In a regression analysis 

it was determined whether the reduction in growth in unsterilised soil as compared 

to sterilised soil in the bioassay correlated with the presence of roots in the field. 

For none of the soil origins, however, a significant correlation was found. 
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Figure 6. The amount of roots of A, arenaria per kg of soil in the layers 1998, 1997, 1996, and 

degenerated in various months. The mean was calculated based on 5 replicates. Different letters indicate 

statistically significant differences at P<0.05. A'98 indicates April 1998. 

DISCUSSION 

In 1997, within a month after the formation of the first roots of A. arenaria 

in the newly deposited sand layer, colonisation by soil organisms had already 

resulted in the development of pathogenicity in bioassay conditions. Initially, 

nematicide addition enhanced biomass production in unsterilised soil, suggesting 

that plant-parasitic nematodes were responsible for the observed growth reduction 

in the bioassays. Numbers of plant-parasitic nematodes in the field in this study 

were of the same order of magnitude as those in other studies on nematodes in 

dunes, although in previous studies numbers have been expressed per square metre 
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(Yeates, 1968; De Rooij-Van der Goes eta/., 1995b). The abundance of the cyst 

nematode Heterodera arenaria, and less strongly of the root-lesion nematode 

Pratylenchus spp., increased between June and July when the growth reduction was 

observed for the first time. Later in the growing season, however, the effectiveness 

of the nematicide diminished, suggesting that another biotic factor became 

involved in growth reduction of A. arenaria in the bioassay. Such reduced effects of 

nematicides in the late season were also observed in the one-year-old root layer, as 

well as in the soil from degenerating^! arenaria. 

As nematicide effects correlated well with the root colonisation by H. 

arenaria and Pratylenchus, the results suggest that these nematode species contribute 

to the growth reduction of A. arenaria. Based on the numbers of nematodes in the 

field soil, we calculated about 180 plant parasites to be present in each pot in the 

bioassays (about 13 plant-parasitic nematodes were extracted per lOOg dry soil; 

each pot in the bioassay contained about 1350 g dry soil). However, inoculation 

experiments with H. arenaria and Pratylenchus sp., including densities up to 23 and 8 

times higher, respectively, than in the field, did not result in any growth reduction 

of A. arenaria (Van der Stoel and Van der Putten, see Chapter 4; E.P. Brinkman, 

unpubl. results). In contrast, inoculation experiments with ectoparasites, although 

with densities as high as eighty times the field density, did result in growth 

reduction of A. arenaria (De Rooij-Van der Goes, 1995). Therefore, it is not likely 

that the observed growth reduction in the bioassay is due to direct effects of H. 

arenaria and Pratylenchus, in spite of the correlation between their colonisation of the 

new root layer and the growth compensating effect of nematicide addition. 

Alternatively, Little and Maun (1996) observed direct growth reducing effects of 

species of the same genera on the North-American Ammophila breviligulata, so that 

findings for these related species concerning plant-endoparasitic nematode 

interactions may not be consistent. 

Since the nematicide effects varied in time, and proper controls were 

included, consistent side effects may be excluded. There are two possible 

explanations of the nematicide effects as observed in the series of bioassays. 

Nematodes may enhance the sensitivity of the plant to other soil organisms, or 

they may serve as a vector of pathogenic organisms such as viruses or bacteria 

(Khan, 1993; Barker and McGawley, 1998). Pathogenic fungi were already known 

to occur in the rhizosphere soil of A. arenaria (Van der Putten et a/., 1990; 

Kowalchuk et a/., 1997), although synergism with nematodes has not been proven. 

When plant-parasitic nematodes are being kept away from the roots due to 

nematicide addition, their transmission of other soil pathogens is prevented, which 
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could explain the positive effects of the nematicide addition even though plant-

parasitic nematodes have no direct negative effect on plant growth. Later in the 

growing season, addition of nematicide no longer compensated for the entire 

growth reduction in unsterilised soil. As in unsterilised soil growth was reduced 

even stronger in the presence of nematodes, there is circumstantial evidence for 

some synergistic interaction between nematodes and other pathogenic soil 

organisms in this experiment. Soil pathogens may have accumulated and reduce 

growth of A. arenaria, irrespective of the reduction due to possible transmitted soil 

pathogens by nematodes. In such a synergistic interaction, fairly low numbers of 

nematodes interacting with other micro-organisms, could still be important for the 

activity of the complex of pathogens (Van der Putten and Van der Stoel, 1998). 

Further study is required, however, to unravel the direct and indirect pathogenic 

effects of soil-borne fungi in combination with plant-parasitic nematodes. 

In the field, in the newly colonised layer, root biomass continued to increase 

throughout the growth season in spite of pathogen activity measured in the 

bioassays. Results from the bioassays may not be directly extrapolated to the field 

situation (Troelstra et al, 2001). The poor correlation between the start of 

pathogenicity development in the newly colonised sand layer according to 

bioassays and the pattern of root development has important consequences for our 

view on the length of the period during which plants may escape from their soil 

pathogens. According to the bioassay, pathogenicity had developed within a month 

after the first roots had been formed, so that in the field other factors may be 

involved that can explain vigorous growth oiAmmophila. 

Arbuscular mycorrhizal fungi (AMF) are known to protect plants from 

pathogenic fungi (Carey et al, 1992; Newsham et al, 1994, 1995a,b), as well as to 

protect the roots from nematode attack (Francl, 1993). These fungi may be 

involved in the vigorous growth of A. arenaria in the field. In a study on Ammophila 

breviligulata, the presence of AMF in combination with sand burial was related to 

enhanced vigour in plants after exposure to the endoparasitic nematode genera 

Heterodera and Pratylenchus (Little and Maun, 1996; Maun, 1998). Our bioassays may 

have discouraged plant-mycorrhizal associations as we supplied nutrient solution, 

although soil sterilisation effects in dune sand are consistent along a gradient of 

nutrient supply rates (Van der Putten and Peters, 1997). Furthermore, the 

homogenisation of the soil that disrupts the hyphal networks, and the relatively 

short duration of the bioassay (8 weeks) may have limited plant-mycorrhizal 

associations. Also the natural suppressiveness of dune soils to soil pathogens (De 

Boer et al., 1998) may be involved in the more complex situation in the field, which 
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may explain the vigorous growth of A. arenaria in the field in spite of the observed 

pathogenicity in the bioassays. 

Another possibility why A. arenaria may grow vigorously following sand 

deposition, is that the plants may use the short period of low pathogenic activity or 

the incompleteness of the soil pathogen complex to acquire sufficient additional 

resources to remain vigorous throughout the growing season. In spite of the many 

studies on A. arenaria in relation to sand burial, its physiology in relation to 

resource acquisition is still poorly understood. 

In conclusion, after sand burial and colonisation of the new root layer, 

according to a bioassay pathogenicity may develop within a month after the first 

roots are formed. However, in the field the window for escape for A. arenaria 

seems to be wide enough to remain producing new roots, thereby developing 

vigorously. Our results suggest that nematodes are involved in the development of 

pathogenicity, but the mechanism remains unclarified. Heterodera arenaria and 

Pratylenchus spp. are not able to reduce growth of A. arenaria directly (Van der Stoel 

and Van der Putten, see Chapter 4). However, the nematodes may act as a vector 

for another soil pathogen (fungal or bacterial). Possibly, in the field AMF may 

protect the plants from pathogenic activity (Little and Maun, 1996). The escape of 

clonal plants from soil pathogens, therefore, seems the result of a more complex 

set of interactions than in case of the escape from systemic fungal pathogens 

(Wennstrom and Ericson, 1992; Wennstrom, 1994, 1999). Future studies need a 

wider approach focusing on various trophic groups of organisms that may 

influence the growth of A. arenaria. 
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RAPID IDENTIFICATION OF CYST (HETERODERA SPP., GLOBODERA 

SPP.) AND ROOT-KNOT (MELOIDOGYNESPP.) NEMATODES ON THE 

BASIS OF I T S 2 SEQUENCE VARIATION DETECTED BY P C R - S S C P 

(PCR-SINGLE-STRAND CONFORMATIONAL POLYMORPHISM) IN 

CULTURES AND FIELD SAMPLES 

Based on J.P. Clapp, CD . van der Stoel and W.H. van der Putten, 2000. 

Molecular Ecology 9, 1223-1232. 

ABSTRACT 

Cyst and root-knot nematodes show high levels of gross morphological 

similarity. This presents difficulties for the study of their ecology in natural 

ecosystems. In the present study, cyst and root-knot nematode species as well as 

some ectoparasitic nematode species were identified using ITS2 sequence variation 

detected by PCR-SSCP. The ITS2 region was sufficiently variable within the taxa 

investigated to allow species to be separated on the basis of minor sequence 

variation. The PCR primers used in this study were effective for 12 species with 

three genera within the Heteroderinae (Globodera pallida, G. rostochiensis, Helerodera 

arenaria/avenae, H. ciceri, H. daverti, H. hordecalis, H. mani, H. schachtii, H. frifolii, 

Meloidogyne ardenensis, M. duytsi, and M. maritimd). However, pathotypes of Globodera 

pallida and G. rostochiensis could not be distinguished. The method was tested at two 

coastal dune locations in the Netherlands (one in the lime-poor dunes of the north 

and one in calcareous dunes of the south) to determine the population structure of 

cyst nematodes. At each site, cyst nematodes were associated with three plant 

species: two plant species on the foredune {Elymus farctus and Ammophila arenaria) 

and one plant species occurring further inland [Calamagrostis epigejos). The PCR-

SSCP results showed that two species of cyst nematodes were found: H. arenaria 

and H. hordecalis. H. arenaria associated with vigorous A. arenaria, and H. hordecalis 

in association with degenerating A. arenaria and C. epigejos. The field survey 

demonstrated that in coastal dunes abiotic factors may be important in affecting 

the distribution of cyst nematodes. 
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INTRODUCTION 

Nematodes are an important biotic component of the rhizosphere (Nickle, 

1991). Plant-parasitic nematodes are well known pests in agroecosystems and are 

also thought to exert an important influence on the structure and stability of 

natural plant communities (Stanton, 1988; Van der Putten and Van der Stoel, 

1998). Precise identification of the components of natural plant-parasitic 

nematode communities is a prerequisite for these studies. 

Several classical techniques have been used for nematode identification 

including host range tests and the use of morphological characters. Despite having 

specialised ecological functions, the overall morphology of many nematode taxa is 

conservative, especially as variation in juveniles frequendy ranges across species 

divisions. This is particularly true for closely related species with high 

morphological similarity such as Globodera rostochiensis and G. pallida (Morgan 

Golden, 1986). The use of morphology has therefore been augmented by 

techniques based on molecular characters, which generally result in simple band 

patterns that are easy to interpret by non-specialists. 

PCR-SSCP (PCR-Single-Strand Conformational Polymorphism) (Orita et ai, 

1989) has considerable advantages over many other molecular techniques used for 

taxonomic characterisation. A major advantage is that taxonomic differentiation 

utilises the sum of all nucleotide sequence variation between PCR primers sites 

rather than the taxon-specific annealing of primers or differences in restriction 

sites (often revealing no differences unless a suite of several enzymes are tested). 

The design of PCR primers can therefore be based on conserved regions and 

allows a single primer pair to differentiate species across more than one genus 

combining the advantages of PCR with a sensitivity (over defined regions) on a 

par with DNA sequencing (Hayashi and Yandell, 1993). The technique relies on 

differences in the mobility of single stranded PCR amplicons in non-denaturing 

polyacrylamide gels. The length, position, and extent of self-complimentary base 

pairing affect the conformation taken up by the molecules and thus their 

electrophoretic mobility. Single base differences between amplicons can affect the 

tertiary conformation of the molecules and allow differentiation. This effect is 

enhanced by minor length polymorphisms and increasing amounts of sequence 

variation. SSCP patterns are highly reproducible between gels and generate two 

markers from each DNA sequence present, enabling identification to take place on 

the basis of minor nucleotide differences across several hundred bases of sequence, 
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but without recourse to sequencing (Lessa and Applebaum, 1993). The target region 

in this study has been the second internal transcribed spacer (ITS2) of the ribosomal 

RNA (rRNA) gene clusters. The ribosomal genes are most frequently used for 

taxonomic work as they are present in all organisms and sequence data are available 

which enable phylogenetic affiliations to be rooted in a background of related taxa. 

The ITS2 was chosen over the small sub-unit rRNA genes because it was likely to 

show less sequence conservation and thus enable the discrimination of closely 

related species on this basis. 

PCR-SSCP has been exploited for the identification of fungi (Simon et al., 

1993; Clapp, 1999), bacteria (Lee et al, 1996; Schwieger and Tebbe, 1998) and 

carabid ground beetles (Boge etal., 1994). Gasser (1997), Gasser and Monti (1997), 

and Gasser et al. (1997) have applied PCR-SSCP to distinguish veterinary parasites 

but its potential for application to free-living and plant-parasitic nematode 

communities has not been investigated. Cyst and root-knot nematodes are major 

agronomic pests (Lamberti and Taylor, 1986) and may also be involved in natural 

soil pathogen complexes such as those occurring in coastal foredunes (De Rooij-

Van der Goes et al, 1995b). The aims of the present study were to determine the 

suitability of PCR-SSCP for identification of cyst and root-knot nematodes and to 

establish the identity of Heterodera spp. that occurred on plant species in a field 

investigation in the coastal foredunes, carried out by Van der Stoel and Van der 

Putten (see Chapter 4). 

MATERIALS AND METHODS 

Nematodes: identified species 

Three Globodera and eight Heterodera species from cultures together with 

three species of Meloidogyne from the Haringvliet (51°52' N 4°04' E) field locality 

were investigated in this study (Table 1). Twenty individual cysts were analysed 

from each pathotype of G. pallida and G. rostochiensis in addition to extractions 

from multiple cysts and individual juveniles. Five cysts of G. tabacum were also 

analysed. Similarly, five to fifteen individual cysts were analysed for each cultured 

Heterodera species (total 58). DNA was extracted from egg masses (total n=6) and 

juveniles (total n=106) of the Meloidogyne species from maritime dune locations. M. 

maritima, M. duytsi and M. ardenensis were associated with Ammophila arenaria, Elymus 

farctus and a Salix sp. respectively and identified microscopically by Henk Duyts. 
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Table 1. List of nematode isolates and samples used in this study. — indicates no culture available or no 

known host. PD refers to the Plantenziektenkundige Dienst, Wageningen, The Netherlands. H. avenae 

and H. mani were isolated from sites at Grafenreuth and Hamminkeln, Germany respectively and 

provided by Dr. D. Sturhan, Biologische Bundesanstalt, Institut fur Nematologie und Wierbeltierkunde, 

Toppheideweg 80, D-48161, Miinster, Germany. H. arenaria was provided by J.A. Rowe, Department of 

Entomology and Nematology, Institute of Arable Crops Research, Rothamsted Experimental Station, 

Harpenden, Hertfordshire, UK. H. hordecalis was provided by Dr. S. Andersson, National Swedish 

Institute for Plant Protection, S-230 47, Akarp, Sweden. G. rostochiensis A-50 was collected from 

Mierenbos and provided by J. van Bezooijen, Department of Nematology, Wageningen Agricultural 

University, Wageningen, The Netherlands. 

Nematode species 

Globodera pallida 

Globodera pallida 

Globodera pallida 

Globodera rostochiensis 

Globodera rostochiensis 

Globodera rostochiensis 

Globodera rostochiensis 

Globodera rostochiensis 

Globodera tabacum 

Heterodera trifolii 

Heterodera ciceri 

Heterodera avenae 

Heterodera arenaria 

Heterodera mani 

Heterodera daverti 

Heterodera schachtii 

Heterodera hordecalis 

Meloidogyne ardenensis 

Meloidogyne maritima 

Meloidogyne duytsi 

Heterodera sp. 

Heterodera sp. 

Heterodera sp. 

Heterodera sp. 

Heterodera sp. 

Heterodera sp. 

Heterodera sp. 

Pathotype 

Pa2 

Pa2 

Pa3 

Rol 

Rol 

Ro3 

Ro4 

Ro5 

Culture code 

D-381 

D-475 

E-412 

A-50 

A-56 

B-140 

F-539 

G-1526 

C-6876 

Al-1 

Pot 30 

Field 

Field 

Field 

LU68 

Pot 7 

-

Field 

Field 

Field 

Field 

Field 

Field 

Field 

Field 

Field 

Field 

Host plant 

Solanum tuberosum 

Solanum tuberosum 

Solanum tuberosum 

Solanum tuberosum 

Solanum tuberosum 

Solanum tuberosum 

Solanum tuberosum 

Solanum tuberosum 

Nicotiana sp. 

Trifolium repens 

Phaseolus vulgaris 

-

Ammophila arenaria 

-

Trifolium repens 

Brassica sp. 

Hordeum vulgare 

Salix sp. 

Ammophila arenaria 

Elymusfarctus 

Calamagrostis epigejos 

vigorous A. arenaria 

degenerated^! arenaria 

Calamagrostis epigejos 

degenerated A. arenaria 

vigorous A. arenaria 

degenerated A. arenaria 

Origin 

PD 

PD 

PD 

J. v. Bezooijen 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

D. Sturhan 

J.A. Rowe 

D. Sturhan 

PD 

PD 

S. Andersson 

Haringvliet 

Haringvliet 

Haringvliet 

Haringvliet 

Haringvliet 

Haringvliet 

Texel 

Texel 

Texel 

Texel 
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Nematodes: field samples 

Comparisons were made between nematode populations occurring at three 

locations along the coast of the Netherlands in this pilot study using one way 

analysis of variance. Based on an earlier field study at six locations along the 

Dutch coast, two field sites were chosen, one at Texel (53°07' N 4°45' E; lime-

poor), and one at Haringvliet (51°52' N 4°04' E; calcareous). A third site, 

Walcheren (51°35' N 3°32' E; calcareous) was included to obtain additional 

information on the population density of cysts and juveniles. Eight soil samples (1 

kg each), subsequently combined, were collected from the rhizosphere of a series 

of dominant plant species: Elymus farctus, Ammophila arenaria, Festuca rubra ssp. 

arenaria, Carex arenaria, Elymus athericus and Calamagrostis epigejos. Soil was sampled 

from both vigorous and degenerating stands of A., arenaria. Cysts were extracted by 

flotation and decantation over a 180 (J.m mesh size sieve, quantified to establish 

the specificity of the host-plant association (Van der Stoel and Van der Putten, see 

Chapter 4), and subsequently used for molecular analysis. 

DNA extraction 

The DNA-extraction protocol for individual cysts was based on that of 

Caswell-Chen et al, (1992). However, the volumes were doubled since more 

diluted DNA was acceptable for the PCR. Nematode juveniles were picked 

individually and placed into 10|JL1 sterile water on glass slides and disrupted 

manually with a needle. The juvenile fragments were then diluted in 45^1 sterilised 

water of which 5jj.l was used in the subsequent PCR. Extractions of both cysts and 

juveniles were flash frozen in liquid nitrogen and stored at -20°C until required. 

PCR 

Forward and reverse primers were designed for the second ITS ribosomal 

RNA spacer region (ITS2) based upon all available Heteroderinae sequences: 

CysNFwdl (5 'GATCGATGAAGAACGCAGC),Cj.fNRM fTCCTCCGCTAAATG 

ATATG) respectively. The ITS2 was chosen as it was expected to show 

interspecific variation, and as sequence data were available for several species in 

the literature and sequence databases. The expected amplicon sizes based on 

available sequence information were in the following ranges and varied according 

to genus: Globodera - 394bp, Meloidogyne - 292-298bp, Heterodera - 392-401 bp. All 

amplifications were carried out in a volume of 20[xl using 5^1 DNA extraction, 

20txM dNTP's, 0.4U DNA polymerase (DynaZyme™, Finnzymes) and 20pmol of 
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each primer. The amplifications were carried out in a PTC-200 thermocycler (MJ-

Research) with heated lid and did not require an oil overlay. Product quality was 

checked by agarose gel electrophoresis in 2% gels, stained with ethidium bromide. 

The PCR parameters used were as follows: 96°C for 55 seconds, 53°C for 55 

seconds, 72°C for 45 seconds-10 cycles; next 20 cycles - anneal temperature 

reduced to 51 °C and extension time increased to 2 minutes; final 15 cycles - anneal 

temperature reduced to 50°C and extension time increased to 3 minutes. 

SSCP 

Optimisation (maximising band separation) of PCR-SSCP is empirical 

(Orita et ai, 1989) since the conformations adopted by PCR amplicons cannot be 

predicted in advance, even if sequence data are available. Therefore although 

different conditions were tried (such as altered gel concentration and running 

temperature), no significant benefit could be gained across all species tested. It 

should be stressed that in this application the technique is designed to profile 

unknown samples where the optimal conditions for a particular sequence are 

unknown and cannot be met in a single gel. Therefore, we advocate that a 

compromise set of conditions is used. This may not be optimal for an individual 

sequence but worked well generally. The conditions described for this study 

enabled the differentiation of all species investigated with different ITS2 sequence. 

MDE (0.5x, FMC BioProducts, Biozym) non-denaturing polyacrylamide gels were 

poured on a wide H03 system (Pharmacia) as recommended by the manufacturer. 

The TBE running buffer was cooled to 4°C before sample application. Two 

microlitres of PCR product was combined with 8(xl of denaturing loading buffer 

(95% formamide, lOmM NaOH, 0.25% bromophenol blue, 0.25% xylene cyanol) 

followed by a 3 minute denaturation at 94°C. The samples were snap cooled on 

ice before loading and running at 6W for 20,000 Volt.hours (Vhrs). The 

electrophoresis was carried out at 4°C. Bands were detected by silver staining or 

by incorporation of 32P labelled dATP following established procedures. PCR-

SSCP gels were highly reproducible under the condition described. 

Sequencing 

To address the possibility that additional bands of equal intensity seen in 

some species arose from the presence of multiple ITS2 sequences, silver stained 

bands were excised from a dried polyacrylamide gel, resuspended in water and 

reamplified by PCR. Four bands were excised from the profile of a H. arenaria cyst 
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and 3 from a cyst of H. hordecalis (Fig. 4). The double-stranded products were 

cloned into pGem-T and two recombinants sequenced in both directions using an 

ALF sequencer (Pharmacia). Sequences, excluding the primer sites, were aligned 

with published sequences using ClustalW (http://www2.ebi.ac.uk/clustalw/) 

(Thompson et al, 1994, 1997) with some manual adjustment using JalView. A 

distance matrix with Kimura's two-parameter correction for multiple substitutions 

(Kimura, 1980) was used to construct a Neighbour-Joining tree (Saitou and Nei, 

1987). The ClustalW.dnd file was displayed using TreeView (Page, 1996). The tree 

was rooted using Meloidogyne spp. sequences as an outgroup. 

RESULTS AND DISCUSSION 

Globodera 

Figure 1A shows representative SSCP profiles obtained from individual 

cysts of the three Globodera species in this study. SSCP profiles were identical 

between different populations within each species. The lack of ITS2 variation 

(Thiery and Mugniery, 1996) did not allow pathotypes to be distinguished, 

presumably reflecting sequence identity in this region. Both G. tabacum (lanes 1-5) 

and G. pallida (lanes 11-15) profiles were composed of two bands, however the G. 

rostochiensis (lanes 6-10) profile was consistently comprised of multiple bands. 

These could be due to the formation of metastable (secondary) conformations by 

this strand (see below) but could also be due to the presence of multiple sequences 

in the ITS2 region. Identical profiles were obtained from single juveniles for all 

three species (results not shown). The profiles obtained from Globodera were 

distinct and easily distinguished from those of the Heterodera species (Fig. 1C). This 

allowed the relative mobilities of Globodera and Heterodera to be direcdy compared, 

and demonstrates pattern reproducibility between gels and samples. 

Meloidogyne 

PCR-SSCP profiles of the ITS2 allowed the three Meloidogjine spp. in this 

study to be distinguished (Fig. IB). The sympatrically occurring dune species (M 

maritima and M. duytsi) were easily separated (Fig.lB, lanes 1, 2 and 7; lanes 5 and 

6). The PCR products from these two species stained to a similar intensity with 

ethidium bromide after agarose gel electrophoresis, but M. ardenensis showed a 

much stronger SSCP signal after radiolabelling (Fig. IB, lanes 3 and 4). This may 
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be due to the higher AT-richness of the M. ardenensis ITS2 as compared to the 

ITS2 of the other species. 

7 1 .i ID 15 

i 

2cm Z cnrt 

* * 4 
2cm 

A B C 

Figure 1. PCR-SSCP profiles of ITS2 regions from a selection of nematode species included in this 

study. A). Globodera spp.. Lanes 1-5: G. tabacum (C-6876); Lanes 6-10: G. rostochiensis, (A-50, A-56, B-140, 

F-539 and G-1526); Lanes 11-15: G. pallida, (D-381, D-475, E-412, J2 juveniles D-381, single J2 juvenile 

D-381). B) Meloidogfne spp.. Lanes 1, 2 and 7: M. maritima; Lanes 3 and 4: M. ardenensis; Lanes 5 and 6: M. 

duytsi. C) Heterodera spp.. Lanes 1 and 7: H. ciceri (Pot 30); Lanes 2 and 3: H. ft7/£>&' (Al-1); Lanes 4 and 5: 

H. daverti (LU68); Lanes 6, 8 and 9: H. avenae (D.Sturhan); Lanes 10 and 11: H. arenaria (J. Rowe); Lanes 

12 and 13: H. mani (D. Sturhan); Lanes 14 and 15: Globodera tabacum (C-6876); Lane 16: G. rostochiensis (A-

50). 

Heterodera 

The identity of PCR-SSCP profiles within species reflected sequence 

conservation of the ITS2 region which has been noted in sequencing studies 

(Ferris etai, 1993, 1994, 1995; Thiery and Mugniery, 1996; Bekal eta/., 1997). The 

sequence of the ITS2 is more conserved than the ITS1 (Ferris et a/., 1993, 1994, 

1995) but there is sufficient inter-specific variation to make it a prime target for 

species differentiation. All the Heterodera species investigated (Figures 1C, 2 and 4) 

could be differentiated on the basis of ITS2 PCR-SSCP with the exception of H. 

avenae (Fig. 1C, lanes 6, 8-9) and H. arenaria (Fig. 1C, lanes 10-11). The inability to 

separate these species reflects their close taxonomic relationship and almost 

certain sequence identity in the ITS2 spacer region. This supports restriction 

enzyme data showing that there are no enzymes capable of separating European 
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populations of H. armaria and H. avenae in this region (Subbotin et a/., 1999). H. 

arenaria-was originally described as H. major var. arenaria (Cooper, 1955), although 

'avenae' was later preferred to 'major' (Cooper, 1968) before being raised to a full 

species by Kirjanova and Krall (1971). Due to its larger size, H. arenaria may be a 

polyploid of H. avenae, however no difference in ploidy level has yet been detected 

(Karssen and Van der Beek, pers. comm.). A single cyst of H. arenaria (Fig. 1C, 

lane 10) showed two strong additional bands in its SSCP profile. The origin of 

these additional bands is unknown but they possibly come from a parasitising 

nematode within the cyst. The SSCP profile of H. avenae is consistently different 

from that of H. mani (Fig. 1C, lanes 12 and 13) and does not support the 

synonymy of H. maniwith H. avenae proposed by Ebsary (1991). 

The SSCP profiles of H. ciceri (Fig. 1C, lanes 1 and 7) and H. trifolii (Fig. 1C, 

lanes 2 and 3, Fig. 2, lanes 6, 7 and 9) tended to be less intense than those of other 

species, although a diagnostic pattern could be identified for each. The single 

stranded bands from H. ciceri may be superimposed under the conditions used. 

This could be determined by end labelling of single primers and comparing the 

relative mobilities of the individual bands. The SSCP profiles of H. trifolii cysts 

were less intense particularly when visualised by radiolabelling as opposed to 

silver-staining (not shown). In the latter case two bands of equal intensity were 

obtained. It is probable that the method of labelling is responsible and the high 

signal generated by the lower band due to it being proportionally richer in labelled 

bases. H. daverti cysts (Fig. 2, lanes 1-5) consistendy showed four bands, two being 

shared with H. trifolii (Fig. 2, lanes 6, 7 and 9). There were however exceptions 

where individual H. daverti cysts did not have the two bands diagnostic of H. trifolii 

(Fig. 2, lane 2). It would appear that many cysts of this H. daverti isolate contained 

eggs/juveniles with two distinct sequences or a mixture of juveniles. Hybridisation 

between nematode species is not an uncommon event and frequendy results in the 

production of viable inter-specific hybrids (Mulvey, 1958; Mugniery, 1979; Ferris 

and Ferris, 1992; Thiery etal, 1996). H. daverti and H. trifolii me closely related with 

most members of the H. trifolii complex being described as non-sexual species or 

members of a parthenogenic species complex (Mulvey, 1958; Triantaphyllou and 

Hirschmann, 1978; Sikora and Maas, 1986). H. daverti has also been described as a 

sexual form of H. trifolii (Wouts and Sturhan, 1978) and could be expected to 

produce viable offspring with H. trifolii. Cysts containing hybrid progeny 

containing sequences from both species may have been observed in this study. 
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SSCP, as well as allowing identification to species level, may also allow the 

parentage and frequency of inter-specific hybridisation to be studied in nematodes. 

Cysts obtained from a culture of H. schachtii showed two distinct SSCP 

profiles, which represented both H. schachtii and H. avenae (result not shown). On 

further investigation it emerged that the culture had been isolated from an area 

where H. schachtii was abundant, rather than initiated with pure identified material. 

1 

km 2cm 

Figure 2. PCR-SSCP profiles of ITS2 regions from cysts of H. daverti and H. trifolii. Lanes 1-5: H. daverti 

(LU68); Lanes 6, 7 and 9: H. trifolii (Al-1). Lane 2 shows a H. daverti cyst without the "trifoli?' bands. 

Field samples 

There was no overall effect of collection site on the distribution of cysts 

and juveniles. Variations in the host plant associations of Heterodera species were 

seen between the sites but no consistent pattern was observed. At all locations, 

Heterodera cysts and juveniles were found mainly associated with E. farctus, A. 

arenaria and C. epigejos (Fig. 3). 

Although not statistically significant (P=0.173), there tended to be more 

cysts/gram root associated with E. farctus and A. arenaria than any other plant. 

Similarly, cysts/litre soil showed a tendency to be greatest in rhizosphere soil of E. 

farctus, A. arenaria and C. epigejos (P=0.113). The number of juveniles/litre of soil 

was however significantly (P=0.039) greater from the rhizosphere of E. farctus and 

A. arenaria than in that of other plants. Based on this survey, it was decided to 
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omit the second calcareous dune site (Walcheren) from the SSCP-analysis because 

it was similar to that of Haringvliet. 

<y <s* <JP <>F < ^ 

Plant species 

Figure 3. Numbers and distribution of cysts and juveniles of Hetervdera spp. associated with coastal sand 

dune plants. Plant species occurring earliest in the dune succession, left to right. Bars represent the 

standard error of each sample mean. Data were obtained from Van der Stoel and Van der Putten (see 

Chapter 4). 

H. arenaria/avenae and H. hordecalis cysts, identified by PCR-SSCP, occurred 

at both sites investigated in this study. The identification of field cysts by PCR-

SSCP demonstrated differences in cyst nematode population structure between 

field sites and between host plant species (Fig. 4). At Haringvliet, distinct 

nematode populations were associated with vigorous and degenerating stands of 

Ammopbila arenaria. Degenerating stands of A., arenaria were favoured by H. 

hordecalis whereas vigorous stands were populated by H. arenaria/H. avenae, the 

former considered the most likely (Cook, 1982; Robinson et a/., 1996). This 
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differentiation was not marked at Texel where A. arenaria was parasitised by H. 

arenaria alone, although H. hordecalis was still present associated with Calamagrostis 

epigejos further back in the dune succession. This is most likely to reflect the 

different abiotic environments at these sites. At Texel, the trajectory of 

degeneration of A. arenaria occurs over a much larger distance and the transition 

of vigour is therefore not as abrupt as at Haringvliet (Van der Putten eta/., 1989). 

The extended vegetation succession at Texel also allows the spatial separation of 

C. epigejos from different stages of the A. arenaria degeneration sequence. The 

distribution of H. arenaria/avenae and H. hordecalis seems therefore to be correlated 

with abiotic environmental dynamics. This initial study shows that H. arenaria may 

be better adapted to mobile dunes with regular influxes of wind-transported beach 

sand but is succeeded by H. hordecalis in more stable areas, where sand deposition 

is lower. A single cyst originating from degenerating A. arenaria at Haringvliet (Fig. 

4, lane 17) had a PCR-SSCP profile identical to H. mani. 

25 

5 • 

6 • 

Figure 4. An example of the PCR-SSCP profiles obtained from the ITS2 of field cysts collected from 

Texel and Haringvliet. Lanes 1-9, Texel field sites. Lane 1: cyst from vigorous A. arenaria:, Lanes 2-5 cysts 

from degenerating stands of A. arenaria; Lanes 6-9: cysts obtained from the root zone of Calamagrostis 

epigejos; Lanes 10-19, Haringvliet field sites. Lanes 10-13: cysts obtained from the root zone of vigorous 

A. arenaria; Lanes 14-19: cysts obtained from the root zone of degenerating A. arenaria. Lanes 20-28, 

Control profiles. Lanes 20-22: H. avenae (D. Sturhan); Lanes 23-25: H. trifolii (Al-1); Lanes 26-28: H. 

hordecalis (S. Andersson). Arrowheads indicate bands excised and sequenced. 
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Presence of extra bands 

SSCP analysis of a PCR product, originating from a single cyst, was expected 

to give rise to two single bands, however this seldom occurred. The majority of 

SSCP bands showed the presence of additional less intense bands. There are a 

number of possible reasons for their presence: samples may have been incompletely 

denatured or partially renatured prior to loading, there may be multiple sequences 

present (the result of hybridisation, polymorphic PCR target sequences or 

heterozygous loci) or the single strands may have formed metastable conformers. 

Incomplete denaturation/partial renaturation were considered to be unlikely for 

several reasons. The foremost being that the presence of extra bands was 

reproducible between PCRs, different samples of the same species and between gels. 

Since the denaturing conditions used in the PCR to obtain the samples for 

SSCP were 55 seconds at 96°C, the time used to denature the samples (in a high 

percentage of formamide) for SSCP was considered adequate for complete 

denaturation and undenatured samples were found to migrate much faster through 

the gels in control experiments and were usually electrophoresed off the bottom. In 

addition, the denaturing and loading conditions were rigorously reproduced from gel 

to gel, with samples being immediately cooled after heat denaturation in wet ice and 

loaded rapidly through cold (4°C) buffer. Faint additional bands were attributed to 

the presence of metastable conformers (Zehbe et a/., Pharmacia Application Note 

384). These are identical in sequence to those of the primary bands but have an 

alternative conformation, which affects their mobility relative to the primary 

conformer. Metastable conformers were therefore considered to be the most likely 

explanation for fainter bands but stronger bands merited further investigation. 

The presence of multiple sequences was a distinct possibility, particularly 

where bands of equal intensity were observed. An analysis of ITS2 regions of H. 

avenae (Subbotin et al, 1999) revealed the presence of two ITS2 types (A and B). 

Type A being European and B from an Indian population. However, both types 

were detected in three French populations. To address the possibility of multiple 

ITS2 sequences indicated by additional PCR-SSCP bands, seven were excised from 

H. arenaria and H. hordecalis SSCP patterns (indicated by arrows, Fig. 4), re-amplified 

and sequenced. A phylogenetic tree showing the relationship of these sequences in 

relation to ITS2 sequences of related nematodes, are shown in Fig. 5. The 

sequencing data indicated that two ITS2 sequences were present in both H. arenaria 

and H. hordecalis cysts. The difference was minor, a single base but considering the 

overall conservation of ITS sequences in these nematodes reported previously, is 
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nevertheless significant. The presence of multiple sequences has been inferred from 

the RFLP patterns of other nematodes (Zijlstra et al., 1995). The presence of 

additional bands did not, however, affect the ability of SSCP to effect an 

identification. 
Caenorhabdites elegans (X03680) 

Meloidogyne hapla (U96303) 

Meloidogyne chitwoodi (U96302) 

Meloidogyne fallax (Ziljlstra etal. 1997) 

Meloidogyne arenaria (U96301) 

Meloidogyne javanica (U96305) 

Meloidogyne incognita (U96304) 

0.1 

Globodera rostochiensis (Ferris et al. 1995) 

Globodera pallida (Ferris et al. 1995) 

Heterodera schachtii (Ferris et al. 1994) 

Heterodera hordecalis (Band5/7) 

Heterodera /roreteca//s-(Band 6) 

Heterodera avenae (Ferris ef al. 1994) 

Field cyst (Band2/4) 

Field cyst (Band1/3) 

Figure 5. Phylogeneric tree showing the relationships of the excised bands with sequences of related 

species. Accession numbers for the bands are: field collected H. arenaria, bands 1/3 (AF239233), bands 

2/4 (AF239234). H. hordecalis, bands (5/7 AF239235) and band 6 (AF239236). 
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CONCLUSIONS 

This work was initiated to develop a method that would enable the 

identification of adult cysts and root-knot nematodes for ecological studies in 

natural ecosystems. It is clear from the success of the field investigation, that a 

single PCR primer pair used in conjunction with SSCP across a variable region has 

major diagnostic potential for nematodes. SSCP profiles were reproduced from 

different cysts and juveniles of the same species, different PCR amplifications and 

on different gels. The primers were found to amplify well from all species tested 

within the three genera in this investigation in addition to Rotylenchus and Filenchus 

spp. (data not shown). This suggests that the primers may be suitable for several 

genera allowing the application to be widened. Since the technique can utilise broad 

specificity primers it is likely that cryptic species could be detected if encountered. 

Band position alone allowed identification when nematodes of known identity were 

available for comparison. However, where profile could not be matched to controls, 

bands could be excised and sequenced. PCR-SSCP is simpler to perform, broader in 

application and more economic in terms of time and resources than many other 

techniques. From the viewpoint of ecological investigation and plant protection, 

the use of this sensitive and highly discriminatory PCR based technique allows 

rapid and routine identifications of a broad range of species with minimal 

resources and development time. 
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HOST STATUS OF SUCCESSIONAL COASTAL FOREDUNE PLANT 

SPECIES AND PATHOGENICITY OF THE ENDOPARASITIC 

NEMATODE HETERODERA AKENARIA 

with W. H. Van der Putten 

submitted to Proceedings of The Royal Society, Biological Sciences 

ABSTRACT 

Several studies have demonstrated effects of soil-borne pathogens on the 

species composition of natural vegetation. Most of these studies have focused on 

pathogenic soil fungi and some on complexes of plant-parasitic nematodes and 

pathogenic soil fungi. In coastal foredunes, plant-parasitic nematodes are supposed 

to play a role in plant competition and plant succession. As specificity of soil 

pathogens is assumed to be a prerequisite in vegetation processes, endoparasitic 

nematodes may be the key species in soil pathogen complexes. 

In previous studies on coastal foredunes, the endoparasitic nematode 

Heterodera arenaria was found to be ubiquitous on Ammophila arenaria (L.) Link, one 

of the pioneer grass species dominating coastal foredune vegetation. In the present 

study, H. arenaria was used as a model organism of the obligate plant-parasites, to 

test host specificity of endoparasitic nematodes on a natural plant species, and 

effects of the nematode on the growth of dominant plant species that occur in the 

various stages of succession in the coastal foredune vegetation. 

In a field survey at three locations along a 150-km stretch of coastline in the 

Netherlands, the root zones of various plant species have been sampled to 

establish the occurrence of Heterodera spp. H. arenaria was most abundant on the 

early successional pioneers Elymus farctus and A. arenaria. In later stages of 

succession, dominated by Festuca rubra ssp. arenaria, Carex arenaria, Elymus athericus 

and Calamagrostis epigejos, another endoparasite, H. hordecalis was found. Both 

Heterodera species occurred on A. arenaria, with H. arenaria confined mainly to 

vigorous plants in mobile dunes, and H hordecalis assuming dominant in 

degenerated^, arenaria in stable dunes. H. hordecalis however, was only found in the 

root zone soil and not on the roots themselves. 
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In pot trials, reproduction of H. arenaria was highest on E. jarctus and A. 

arenaria, suggesting that the occurrence of H. arenaria in the field is due mostly to 

host specificity. The growth of the susceptible hosts was not affected negatively by 

nematode inoculation, but root biomass of the poor, non-susceptible, hosts F. 

rubra and E. athericus grown in sterilised soil was reduced when H. arenaria was 

added. Furthermore, the inoculation of A. arenaria with greater densities of H. 

arenaria did not result in more abundant cysts or further growth reduction of the 

host, in comparison to smaller densities. Thus, H. arenaria has low pathogenicity 

towards the host plants they occur on naturally. The tolerance of the natural hosts 

is suggested to be due to co-adaptation of host plant and parasite. The reduced 

growth of non-hosts is due possibly to a higher degree of pathogenicity or 

virulence of H. arenaria or to the fact that those plants in the field could not have 

developed tolerance in the absence of H. arenaria. 

In the coastal foredunes, H. arenaria is part of a complex of parasites and 

pathogens. The results demonstrate that biotrophic parasites may be moderately 

pathogenic even in a community containing a complex of parasitic and pathogenic 

organisms. The moderate effects on its natural hosts suggest that H. arenaria, alone, 

is not the main component in the complex of soil pathogens influencing the 

foredune vegetation. The specificity of successive pathogen complexes, as 

observed in previous studies, may, therefore, not be due to single species, but 

rather be due to specific species interactions or to the specific composition of the 

complex of parasites and pathogens as a whole. 

INTRODUCTION 

The number of studies on the role of soil pathogens in processes of natural 

plant communities in which space and time are involved, the so-called spatio-

temporal processes, is steadily increasing. Activity of soil pathogens has been 

related to spatio-temporal processes in old fields (Bever, 1994; Mills and Bever, 

1998), prairies and natural pastures (Holah and Alexander, 1999; Blomqvist et al., 

2000; Olff et al., 2000), tropical rain forest (Augspurger, 1990), temperate forest 

(Packer and Clay, 2000), annual plants (Carey et al., 1992; Newsham et al, 1995a; 

Mihail et al, 1998), and coastal sand dunes (e.g. Oremus and Otten, 1981; Seliskar 

and Huettel, 1993; Van der Putten et al, 1993; Zoon et al, 1993). The role of soil 

pathogens in cyclic and directional succession has been visualised by conceptual 

models on plant-soil feedback (Bever et al, 1997; Van der Putten and Van der 
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Stoel, 1998). If we want to further understand plant-soil feedback, however, we 

need to obtain information on how plants may selectively interact with the soil 

community, such as demonstrated for pathogenic soil fungi by Mills and Bever 

(1998), Holah and Alexander (1999), and Packer and Clay (2000), and for 

arbuscular mycorrhizal fungi by Bever eta/. (1996). 

In most of the known cases on soil pathogens and parasites in natural 

ecosystems, the prime attention has been on pathogenic soil fungi. Many soil fungi 

are facultative saprotrophs, which can be highly aggressive (Jarosz and Davelos, 

1995), thereby causing strongly negative plant-soil feedback. Litde is known on the 

aggressiveness or pathogenicity (in this study both used as the capacity to cause 

damage or disease leading to growth reduction) of natural plant-parasitic 

nematodes, although nematodes are notorious because of yield reduction in a wide 

variety of arable crops (e.g. Stone, 1977; Baldwin and Mundo-Ocampo, 1991). 

Biocide treatments of prairie soils resulted in considerable increase of net primary 

production of prairie grasses (Stanton, 1988) and in coastal foredunes, 

endoparasitic nematodes are supposed to play a key role in the specificity of 

successional soil pathogen complexes (Van der Putten and Van der Stoel, 1998). 

Specific endoparasitic nematodes may be regarded as biotrophic parasites for 

which theory predicts mild aggressiveness towards their natural hosts (Lenski and 

May, 1994). However, plant-parasitic nematodes are known to occur in multi-

species complexes, which could lead to enhanced levels of aggressiveness because 

this requires competitive ability at the expense of the shared host (Lenski and May, 

1994). 

In the present study, we address the question if endoparasitic nematodes 

may be key species in the soil pathogen complex of Ammophila arenaria (Marram 

grass) because of its specificity and pathogenicity towards its natural host. This 

grass species is one of the early successional dominant pioneers of coastal 

foredunes that degenerates and becomes replaced when dunes get stabilised 

(Huiskes, 1979). In mobile foredunes, plants are vigorous when constantly 

colonising new layers of freshly deposited sand, which is supposed, among others, 

to enable escape from natural soil pathogens (Van der Putten et a/., 1988). Little 

and Maun (1996) have demonstrated for the North-American cogener Ammophila 

breviligulata that sand burial may enhance protection of plants by arbuscular 

mycorrhizal fungi against the endoparasitic nematodes Heterodera sp. (cyst 

nematode) and Pratylenchus sp. (root-lesion nematode). Reduced sand deposition 

would then make plants more susceptible to endoparasitic nematodes because 

plants are less protected by arbuscular mycorrhizal fungi (Little and Maun, 1996). 
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In the case of A. arenaria, the endoparasitic nematode Heterodera arenaria has been 

found abundandy in the root zone (Cook, 1982; De Rooij-Van der Goes et al., 

1995b) and appeared not to produce cysts on the later successional grass Festuca 

rubra ssp. arenaria (Sand Fescue) (Van der Putten and Peters, 1997). This makes H. 

arenaria an interesting candidate for further studying the host status of dominant 

successional foredune plants and the pathogenicity of the nematode to hosts and 

non-hosts. 

We tested the hypothesis that the cyst nematode H. arenaria is host specific 

for the early pioneer A. arenaria and that it has the potential to reduce the growth 

of its natural host. We used a sequence of natural coastal foredune plant species 

that are locally dominant: Filymusfarctus, the first coloniser of the beach, A. arenaria 

(vigorous in mobile foredunes and degenerating in stabilised foredunes), and their 

successors Festuca rubra ssp. arenaria, Carex arenaria, Rlymus athericus and Calamagrostis 

epigejos. Each of these species reaches dominance locally. We started with a pilot 

field survey to determine the occurrence of Heterodera species on the above-

mentioned six dominant plant species. Based on the results of this pilot survey, a 

second, more detailed survey was conducted at several locations along the Dutch 

coast, which included vigorous and degenerating stages of A. arenaria in the 

foredunes. Molecular identification of the cysts to species level was carried out by 

Clapp et al. (2000) and described in Chapter 3. An inoculation experiment was 

carried out to test the host status of each plant species for the cyst nematode H. 

arenaria collected at .A arenaria. The completion of a life cycle (i.e. the production of 

new cysts) was used to qualify the host status of the plants, and biomass 

production was measured to determine potential effects of the nematodes on plant 

growth. As A. arenaria allowed the cyst nematodes to complete their life cycle, but 

did not show any growth reduction, a dose-response experiment was carried out to 

determine if cyst nematodes may have any direct effects on their natural host plant. 

The results are used to discuss pathogenicity of biotrophic parasites, occurring in a 

multi-parasite and -pathogen environment, to their host, as well as the possible key 

role of H. arenaria in foredune soil pathogen complexes. 

MATERIALS AND METHODS 

Heterodera arenaria 

Cooper (1955) included the species Heterodera major var. 'arenaria' from 

Marram grass in his key to British Heterodera species. In 1996, Robinson et al. 
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redescribed the species as H. arenaria. In general, nematodes of the genus Heterodera 

are known to be specialised plant-parasites with sophisticated interactions with 

their hosts (Cook, 1991; Sijmons et a/., 1994; Trudgill, 1997). After penetration of 

the root as a juvenile, the nematode injects secretions in the root cells that induce 

the plant to form a syncytium. This is a multinucleate cell of high metabolic 

activity, which is formed after cell walls breakdown and the protoplasm of the cells 

fuse due to nematode stylet penetration (Endo, 1971; Wyss, 1987; Burrows, 1992). 

The cyst nematode depends upon this syncytium as its sole source of nutrients for 

further development and reproduction (Baldwin and Mundo-Ocampo, 1991; 

Sijmons et ai, 1994). Cyst nematodes include several major agricultural pests 

(Stone, 1977), such as the sugar beet cyst nematode H. schachtii, the soybean cyst 

nematode H glycines, and the oat cyst nematode H. avenae (Baldwin and Mundo-

Ocampo, 1991). 

Field surveys 
Pilot survey 

To survey the occurrence of Heterodera spp. on the various foredune plant 

species, rhizosphere samples were collected in December at three locations along a 

stretch of about 150 km of Dutch coastal dunes: Haringvlietdam (51°52' N 4°04' 

E), Walcheren (51°35' N 3°32' E), and the island of Texel (53°07' N 4°45'E). 

Samples were collected from the rhizosphere of the successional series of 

dominant monocotyledonous plant species from the beach towards inner dunes. 

Sampled species were FLlymus farctus, Ammopbila arenaria, Festuca rubra ssp. arenaria, 

Carex arenaria, Ejymus athericus and Calamagrostis epigejos. For each plant species 

eight random samples of about 1 kg of soil and roots were collected from an area 

parallel to the coastline of 50 m long and 10 m wide. These samples were pooled 

to form composite samples representative of the sampling area. 

The samples were sieved (mesh size 1 cm) to remove coarse material and 

separate roots from soil, and the soil was homogenised. Heterodera spp. cysts were 

extracted from soil by adding about 4 1 of water to a subsample of 1 1 of soil. The 

soil-water mixture was stirred, and the water with the cysts was decanted onto a 

180 um-mesh sieve. This procedure was repeated four times. In addition, males 

and juveniles of Heterodera spp. were isolated from a subsample of 250 ml of soil by 

elutriation (Oostenbrink, 1960). Heterodera spp. cysts on roots were counted using a 

binocular microscope (10-15x magnification). 

49 



CHAPTER 4 

Detailed survey 

Based on the results of the pilot survey, a limited number of plant species 

was chosen for a more detailed survey in December of a subsequent year at the 

same three locations. Samples were collected from the rhizosphere of E. farctus, 

vigorous A. arenaria, degenerated A. arenaria and C. epigejos. At each location, along 

a transect perpendicular to the beach, four sites of 50 m long and 10 m wide 

parallel to the coastline were chosen such that each site was dominated by one of 

the plant species. For each plant species, 6 random samples o f l 5 x l 5 x l 5 cm3 

were collected with a spade. Each sample represented an individual tussock and 

contained about 5 kg of soil and roots. In the cases of E. farctus and vigorous A. 

arenaria, the top 10 cm of soil was removed prior to sampling to reach the upper 

root zone underneath the wind-deposited sand layer. 

Each sample was sieved with a mesh size of 1 cm to remove coarse material 

and separate the roots from the soil. Each soil sample was mixed gently. Cysts and 

free-living nematodes were extracted from the soil in the same way as described in 

the pilot survey. Part of the roots was used to extract nematodes by the funnel-

spray method according to Oostenbrink (1960). The remaining fraction was used 

for the visual counting of Heterodera cysts on the roots using a binocular 

microscope (10-15x magnification). 

Identification of cysts 

After DNA extraction of the single adult cysts, the nematodes were 

identified to species level on the basis of ITS2 sequence variation detected by 

PCR-SSCP (PCR Single-Strand Conformational Polymorphism). The identification 

of the field cysts has been described by Clapp eta/. (2000) (see Chapter 3). 

Host specificity ofH. arenaria 

Soil was collected from the foredunes of Voorne (51°52' N 4°04' E) in the 

rhizosphere of six dominant successional plant species (E. farctus, vigorous A. 

arenaria, F. rubra ssp. arenaria, C. arenaria, E. athericus, and C. epigejos). After sieving 

(mesh size 1 cm), the soil was mixed gently and part of it was sterilised by means of 

gamma-irradiation (25 kgray). In earlier studies, soil that had received this dose 

appeared to be sterile (Oremus and Otten, 1981). The unsterilised soil of each 

origin was checked for the occurrence of Heterodera spp. juveniles. The seeds of all 

plant species were collected from the same sampling site at Voorne. The seeds 

were allowed to germinate for 10 days on glass beads with a 16/8 hour light/dark 

regime at 25/15°C. After germination, seedlings were pre-cultured for 7 days in 
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cones of 30 ml in a greenhouse with a 16/8 hour light/dark regime at 23/19 

(±2)°C. After pre-culture, each plant species was planted in soil that was collected 

from the successional zone dominated by that particular plant species. Four 

seedlings of one plant species were planted per 1.5 1 pot filled with 1500 g of soil, 

containing 10% soil moisture (ww-1). The soil surface was protected against 

desiccation by an aluminium foil cover. Half of the pots were filled with sterilised 

soil whereas the other half was filled with a mixture of 60% sterilised soil and 40% 

of unsterilised soil. Sterilised soil was mixed through the unsterilised soil, to 

prevent excessive suffering of the seedlings from growth reduction by soil 

pathogens. This ratio of 60% of sterilised and 40% of unsterilised soil was based 

on earlier studies by D ' Hertefeldt and Van der Putten (1998). The pots were 

placed in a greenhouse. Twice a week, the soil moisture content was adjusted to 

10% (ww"1) with demineralised water. Once every week, a full strength Hoagland 

nutrient solution was added to all pots in the following amounts: weeks 1 to 6,12.5 

ml; weeks 7 to 11, 25 ml; and weeks 12 and 13, 50 ml per pot. 

The juveniles used in this experiment had hatched from cysts collected from 

vigorous A. arenaria at Voorne. Crushed roots (10 mg of fresh roots olA. arenaria 

seedlings were crushed in a mortar and suspended in 500 ml tap water) stimulated 

the hatching of Heterodera juveniles from these cysts. Cysts were placed in Petri 

dishes containing 5 ml of this suspension. One week after planting the seedlings, 

half the pots were inoculated with 1700 juveniles, whereas no juveniles were added 

to the other half. All treatments were carried out in six replicates. 

Thirteen weeks after inoculation, all pots were harvested. Total shoot 

biomass was dried for 48 hours at 70°C. Half of the root biomass was dried 

immediately after harvesting at 70°C for 48 hours, whereas the other half was first 

examined for the occurrence of adult cysts of Heterodera before being dried. To 

extract Heterodera cysts from the soil, the soil was washed into a 10 1 bucket, and 

the water was decanted onto a 180 |j.m-mesh sieve. All replicates of the non-

sterilised treatments as well as the pots with the sterilised soil inoculated with 

Heterodera were decanted to collect cysts. Non-inoculated pots with A. arenaria in 

sterilised soil were decanted to look for cysts to test the completeness of 

sterilisation. 

Response of A. arenaria to various inoculation densities o/H arenaria 

Soil was collected from the foredunes of Voorne, the Netherlands, at a site 

north of Haringvlietdam (51°52' N 4°04' E) in the successional zone dominated by 

vigorous Ammophila arenaria. After sieving (mesh size 1 cm), the soil was mixed 
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thoroughly and sterilised by means of gamma-irradiation (25 kgray). A. arenaria 

seeds were collected from the same area and were treated as described for the 

previous experiment. After pre-culturing, four seedlings were planted per 1.5 1 pot 

filled with 1500 g of soil containing 10% soil moisture (ww"1). The soil surface was 

covered with aluminium foil to prevent desiccation of the soil, and the pots were 

placed in the greenhouse. Watering and nutrient addition were the same as in the 

previous experiment. 

The juveniles used in this experiment had hatched from Heterodera arenaria 

cysts collected from vigorous A. arenaria and from H. arenaria cysts harvested from 

an earlier greenhouse-experiment. All inoculation material originated from the 

same area as the seeds and soil. The hatching of the Heterodera arenaria juveniles 

from these cysts was stimulated in the same way as in the experiment described 

earlier. One week after the seedlings had been planted, different concentrations of 

Heterodera juveniles were inoculated: 0, 1380, 2760 and 4140 individuals per pot. 

After both 6 and 13 weeks, five pots of each inoculum concentration were 

harvested. Total shoot biomass was dried for 48 hours at 70°C. The roots were 

first examined for the occurrence of adult cysts of Heterodera before they were dried 

for 48 hours at 70°C. The soil was washed into a 10 1 bucket, the water decanted 

onto a 180 um-mesh sieve, and examined for cysts of Heterodera using a binocular 

microscope with a 10-15x magnification. 

Data analysis 

Nematode abundance in the field survey and the numbers of cysts in the 

experiment testing the response of A. arenaria to various inoculation densities were 

analysed by a Kruskal-Walks non-parametric test. Cyst data of the inoculated pots 

in the host specificity experiment were analysed by a two-way analysis of variance 

with plant species and sterilisation as factors after natural-log-trans formation in 

order to achieve homogeneity of variances. 

The plant biomass data of each plant species in the host specificity 

experiment were analysed by a two-way analysis of variance using soil sterilisation 

and nematode inoculation as independent factors. Plant biomass data of A. arenaria 

in the dose-response experiment were analysed statistically by a one-way analysis of 

variance using inoculation density as the factor. Data were tested for normality of 

distribution by means of the Kolmogorov-Smirnov test and for homogeneity of 

variances by means of Bartlett's test. When necessary, data were natural-log-

transformed to obtain homogeneity. Treatment means were compared using 

Tukey's HSD test (P< 0.05). 
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RESULTS 

Field survey 
Pilot survey 

In the root zone soil, Heterodera cysts were confined mainly to sites 

dominated by Elymus farctus, A^mmopbila arenaria and Calamagrostis epigejos (Table 1). 

Of these plant species, cysts on roots were only found in stands dominated by E. 

farctus and A., arenaria and not in those with C. epigejos. Numbers of juveniles were 

greatest in the soil of the early successional plant species E. farctus and A., arenaria. 

The root zone soil of Festuca rubra ssp. arenaria, Carex arenaria and Elymus athericus 

rarely contained cysts and juveniles of Heterodera. The general pattern of occurrence 

of Heterodera was similar at the three locations. 

Table 1. Numbers of Heterodera cysts and juveniles found in the pilot survey in the rhizosphere of six 

plant species at three locations along the Dutch coast. Numbers are expressed per gram root dry weight 

or per volume of soil. 

Plant species 

Elymus farctus 

Ammophila arenaria 

Festuca rubra ssp. arenaria 

Carex arenaria 

Elymus athericus 

Calamagrostis epigejos 

Cysts/g root 

Cysts/ 1 soil 

Juveniles/ 1 soil 

Cysts/g root 

Cysts/ 1 soil 

Juveniles/ 1 soil 

Cysts/g root 

Cysts/ 1 soil 

Juveniles/ 1 soil 

Cysts/g root 

Cysts/ 1 soil 

Juveniles/ 1 soil 

Cysts/g root 

Cysts/ 1 soil 

Juveniles/ 1 soil 

Cysts/g root 

Cysts/ 1 soil 

Juveniles/ 1 soil 

Locations along the 

Haringvliet 

0.2 

9 

60 

0.2 

24 

84 

0.0 

2 

0 

0.0 

2 

0 

0.0 

4 

4 

0.0 

60 

0 

Walcheren 

0.4 

13 

40 

0.9 

10 

72 

0.0 

2 

0 

0.0 

1 

0 

0.0 

0 

0 

0.0 

56 

12 

coast 

Texel 

2.8 

85 

264 

0.8 

10 

104 

0.0 

1 

0 

0.0 

0 

0 

0.0 

2 

0 

0.0 

10 

0 
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Detailed survey 

Heterodera cysts and Heteroderidae males (identified to family level) isolated 

from the roots occurred significantly more often on E. farctus and vigorous A. 

arenaria (mobile foredunes), than on degenerating A. armaria and C. epigejos 

(stabilised foredunes) (Table 2). Numbers of cysts and males extracted from the 

soil did not differ among plant species. Few Heterodera juveniles were extracted 

from the roots, and the numbers extracted from the soil were not different among 

plant species. No significant differences in the numbers of the various Heterodera 

life-stages were found between the three locations. 

At all locations, the cysts isolated from E. farctus and vigorous A. arenaria 

were, based on their PCR-SSCP profile identified as H. arenaria, and cysts collected 

from C. epigejos as H. hordecalis (see Chapter 3). Cysts from the root zone soil of the 

degenerating stage of A. arenaria at Haringvliet and Walcheren were identified as H 

hordecalis, and at Texel both Heterodera species were isolated from the degenerating 

A. arenaria stand. However, from the roots, only H. arenaria cysts were isolated. 

Table 2. Mean numbers of Heterodera cysts, Heterodera juveniles and Heteroderidae males extracted from 

roots (expressed as the mean number per gram root dry weight) and soil (expressed as the mean number 

per liter soil) of the root zone of four plant species (vig. = vigorous; deg.= degenerated) at the locations 

Haringvliet (Hv), Walcheren (Wch) and Texel (Tx). The results of the Kruskal-Wallis analyses on the 

effects of location and plant species are presented direcdy underneath the data. ** P < 0.01. 

Location: 
Plant species 

Root E. farctus 

vig. A. arenaria 
deg. A. arenaria 
C. epigejos 

Location 
Plant species 

Soil E. farctus 

vig. A. arenaria 
deg. A. arenaria 
C. epigejos 

Location 
Plant species 

Hv 

0.6 

8.5 
0.0 
0.0 

df 
2 
3 

4.5 

4.7 
8.3 
0.8 

df 
2 
3 

Cysts 
Wch 

2.0 

2.0 
0.0 
0.0 

F 
1.4 
11.7 

2.5 

4.7 
0.8 
11.2 

F 
0.1 
4.9 

Tx 

0.0 

1.1 
0.3 
0.0 

P 
0.508 
0.008" 

1.0 

0.3 
2.3 
18.2 

P 
0.953 
0.180 

Hv 

0.0 

0.0 
0.0 
0.0 

df 
2 
3 

73.3 

0.0 
0.0 
0.0 

df 
2 
3 

Juveniles 
Wch 

0.0 

7.9 
0.0 
0.0 

F 
2.0 
3.6 

40.0 

20.0 
13.3 
20.0 

F 
4.0 
2.4 

Tx 

0.0 

0.0 
6.3 
0.0 

P 
0.372 
0.308 

0.0 

0.0 
33.3 
16.0 

P 
0.138 
0.499 

Hv 

0.0 

176.7 
0.0 
0.0 

df 
2 
3 

6.7 

0.0 
6.7 
6.7 

df 
2 
3 

Males 
Wch 

9.7 

27.9 
0.0 
9.2 

F 
1.0 
11.7 

20.0 

20.0 
0.0 
0.0 

F 
3.9 
1.6 

Tx 

130.7 

16.3 
0.0 
0.0 

P 
0.606 
0.009" 

0.0 

0.0 
0.0 
0.0 

P 
0.140 
0.657 
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Host specificity o/H. arenaria 

Aboveground biomass of A. arenaria and F. rubra ssp. arenaria was affected 

significantly by soil sterilisation (Table 3). Biomass in non-sterile soil was smaller 

than in sterilised soil (Fig. 1), although the comparison of the treatment means by 

Tukey's HSD test did not show significant differences in the case of A. arenaria. 

Root biomass of all plant species was enhanced significandy by soil sterilisation 

(Table 3). For A. arenaria and C. epigejos, the differences were apparendy too small 

to result in significant differences between treatment means according to Tukey's 

test (Fig. 1). In sterilised soil, root production of F. rubra and E. athericus was 

reduced significandy by inoculation with H. arenaria (Fig. 1), although their shoot 

biomass was not affected. Root production of the other three plant species was not 

affected by inoculation with H. arenaria. In unsterilised soil, none of the plant 

species showed any significant response to inoculation with H. arenaria. Growth of 

Carex arenaria was very poor in all treatments, and pots were therefore harvested 8 

weeks after inoculation. No differences were found between the treatments (data 

not shown). 

Table 3. The effects of soil sterilisation and addition of H. arenaria on the growth of various plant 

species. The results of the two-way ANOVA's with soil sterilisation (S) and addition of 1700 H. arenaria 

juveniles (N) as factors are presented. Degrees of freedom, F- and P-values are presented for the shoot 

and root biomass per plant species. Root biomasses of E. jarctus were log-transformed to achieve 

homogeneity of variances. Root biomasses of F. rubra were analysed by Kruskal-Wallis non-parametrical 

test. * P<0.05; ** P<0.01; *** P<0.001. 

Shoot Root 

Plant 

species 

Treatment df df 

E. Jarctus 

A. arenaria 

F. rubra 

E. athericus 

C. epigejos 

S 
N 
SxN 
S 
N 
SxN 
S 
N 
SxN 1 
S 1 
N 1 
SxN 1 
S 1 
N 1 
SxN 1 

1 1.019 
1 0.403 
1 0.160 
I 9.341 
1 0.00003 
I 0.232 
I 13.714 
I 0.272 
1 1.071 

0.028 
1.832 
2.077 
0.545 
0.022 
1.134 

0.325 
0.533 
0.693 
0.0062" 
0.996 
0.635 
0.0014" 
0.608 1 
0.313 
0.869 1 
0.191 1 
0.165 1 
0.470 1 
0.883 1 
0.301 1 

1 25.676 
I 1.648 
1 5.817 
1 4.956 
I 0.160 
I 0.903 
I 8.333 

2.613 

17.667 
1.497 
13.872 
9.820 
0.037 
0.623 

<0.001*" 
0.214 
0.026* 
0.038' 
0.693 
0.353 
0.0039" 
0.106 

<0.00f* 
0.235 
0.0013" 
0.0057" 
0.849 
0.440 
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Figure 1. Shoot and root biomass of five successional foredune plant species grown for 13 weeks in pots 

containing soil of their specific root zone. The plants were grown on either sterilised soil without H. 

arenaria juveniles (s-), sterilised soil with H. arenaria juveniles (s+), non-sterile soil without added H. 

arenaria juveniles (ns-), or non-sterile soil with added H. arenaria juveniles (ns+). The error bars represent 

the standard error of the mean. Two-way ANOVA's with the factors 'soil sterilisation' and 'nematode 

addition' and subsequent Tukey's HSD tests have been carried out for each plant species. Bars with 

different letters indicate significandy differences within a plant species at P < 0.05. 

Numbers of cysts per gram root dry weight were affected gready by the 

plant species (Table 4). In sterilised soil, the numbers of cysts on the early 

successional plant species E. farctus and A. arenaria were significandy greater than 

on F. rubra, E. athericus and C. epigejos. This indicates a high degree of specificity of 

H. arenaria towards E. farctus and A. arenaria. Also in unsterilised soil, significandy 

greater numbers of cysts occurred on E. farctus and A. arenaria than on the other 

plant species, but their numbers were not significandy greater than those found on 

F. rubra ssp. arenaria. 

The significant two-way interaction effect in the ANOVA between plant 

species and soil sterilisation was apparent mainly for F. rubra. On the roots of all 

plant species, numbers of cysts tended to be smallest in the non-sterile treatment. 

However, F. rubra showed significantly greater numbers on roots of the plants 

grown in inoculated non-sterile soil than in inoculated sterilised soil. No Heterodera 

spp. juveniles were found in the soils of the various origins at the start of the 
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experiment. The soil was not checked for the occurrence of cysts at the start of the 

experiment, but cysts were collected at the end of the experiment from non-

inoculated pots with F. rubra on unsterilised soil (5.7 ± 2.0 (SE) per gram root dry 

weight; data not listed in Table 4). On all the other plant species a maximum of 0.5 

cysts per gram root dry weight was found in the unsterilised soil not inoculated 

with H. arenaria (data not shown). 

Table 4. The effect of addition of H. arenaria to sterile and non-sterile soil on the cyst production on the 

roots of various plant species. The mean number of cysts per gram root dry weight ± standard error on 

five plant species grown in pots with either sterilised or non-sterile soil. H. arenaria juveniles were added at 

the start of the experiment at a density of 1700/pot. ANOVA results (degrees of freedom, F- and P-

values) of the log-transformed cyst numbers are presented in the lower part of the table. The results of 

the subsequent Tukey's HSD test are indicated by letters. Different letters indicate significant differences 

between the treatments at P < 0.05. 

Soil treatment 

Sterilised 

Non-sterile 

Plant species 

Sterilisation 

Plant species x 

E.farctus 

19.8 (±5.3)* 

15.2 (±3.6)abc 

Sterilisation 

A. arenaria 

37.3 (±10.3)a 

30.1 (±7.1)ab 

df 

4 

1 

4 

F. rubra 

0.8 (±0.3)ef 

7.2 (±1.4)bcd 

F-value 

43.590 

0.278 

6.218 

E. athericus 

0.7 (±0.3)ef 

0.3 (±0.1)f 

P-value 

<0.001 

0.6006 

0.0005 

C. epigejos 

4.5 (±1.3)cde 

2.6 (±1.0)de 

Response of A., arenaria to various inoculation densities o/H. arenaria 

Six weeks after inoculation, H. arenaria had influenced root biomass of A. 

arenaria negatively (Table 5). Root biomass was greatest when no nematode 

inoculum was added. At the lowest level of inoculation (1380 juveniles) root 

biomass was reduced significantly, but inoculation with more nematodes did not 

result in a further reduction of the root production. Later, 13 weeks after 

inoculation, root biomass was no longer affected significandy by the inoculation 

treatments. Shoot biomass of A. arenaria, at both harvests, was not affected by 

inoculation with H. arenaria. 

In all three treatments where Heterodera juveniles had been inoculated cysts 

were produced. However, within the range applied, there was no effect of 

increasing inoculation densities on the number of cysts produced after 13 weeks. 
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Table S. The effects of various densities of H. armaria on the growth of A. armaria and the production of 

cysts. Mean dry biomass (g-potr1) ± standard error of the harvested shoot and root biomass, at two 

harvest dates for four inoculation densities (0, 1380, 2760 and 4140 juveniles per pot). The number of 

cysts produced per gram root dry weight was determined 13 weeks after inoculation. Shoot and root 

biomass were statistically analysed by a one-way ANOVA (degrees of freedom, F- and P-values and Mean 

Square Error); cyst numbers were analysed by the Kruskal-Wallis non-parametric test (K-W). Treatment 

means were compared by Tukey's HSD. Different letters indicate significant differences at P<0.05. 

Inoculation 

density 

(Npot1) 

0 

1380 

2760 

4140 

df 

F-value 

P-value 

MSE 

Harvest 6 weeks after 

inoculation 

Shoot 

0.59 (±0.06)a 

0.61 (±0.07)' 

0.55 (±0.05)" 

0.50 (±0.06)a 

3 

0.648 

0.596 

0.0178 

Root 

0.76 (±0.13)a 

0.32 (±0.07)b 

0.23 (±0.04)b 

0.37 (±0.1 l)b 

3 

6.010 

0.006 

0.0458 

Harvest 13 weeks after inoculation 

Shoot 

4.01 (±0.12)a 

3.97 (±0.12)" 

3.65 (±0.13)a 

3.81 (±0.19)a 

3 

1.320 

0.303 

0.1028 

Root 

1.64(±0.12)a 

1.19 (±0.17)a 

1.32 (±0.1 l)a 

1.33 (±0.05)a 

3 

2.548 

0.092 

0.0711 

Cysts/g root dw 

0.0 (±0.0)b 

22.1 (±4.3)a 

13.1 (±1.2)a 

22.3 (±5.3)a 

3 

13.117 (K-W) 

0.004 

DISCUSSION 

The present study addressed the hypothesis that the cyst nematode 

Heterodera armaria is host specific for the early pioneer Ammophila arenaria and that it 

has the potential to reduce the growth of its natural host. The occurrence of H. 

arenaria on successional dominant monocotyledonous plant species in coastal 

foredunes corresponded well with the ability of the nematodes to complete their 

life cycle on those plant species. The nematode occurred on roots of two early 

successional plant species, E. farctus and A. arenaria. In the greenhouse, both E. 

farctus and A. arenaria allowed H. arenaria to complete its life cycle, so that these 

plant species were obviously susceptible hosts for H. arenaria. Only one later 

successional plant species, C. epigejos, allowed moderate reproduction in the 

experiment on host specificity, however, in the field H. arenaria did not occur on C. 

epigejos. 

Cysts collected in the field from the root zone of C. epigejos were of 

Heterodera hordecalis (Clapp et a/., 2000). H. hordecalis has been found previously to 

parasitise various cereals and grasses (Andersson, 1975), such as A. arenaria in sand 
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dunes (Sturhan, 1996), Festuca spp. (Cook, 1982), and plants in salt marshes 

(Sturhan, 1982). It has therefore been suggested that H. hordecalis does not show 

profound host specificity to a particular plant species. In the present study, except 

for their occurrence on C. epigejos, H. hordecalis cysts were found also in the root 

zone of degenerating ^4. arenaria, but not on the roots themselves or in the vicinity 

of vigorous A. arenaria. It is, therefore, not clear from this study whether A. 

arenaria is a natural host to H. hordecalis as found by Sturhan (1996). Presuming that 

A. arenaria is, in fact, a host to both Heterodera spp., H. hordecalis and H. arenaria 

might not be expected to co-occur. Our results suggest that the Heterodera spp. are 

separated spatially by components of the abiotic environment [e.g. sand 

deposition). Further study is required to determine why H. hordecalis is absent in 

mobile dunes and why H. arenaria disappears when A. arenaria containing dunes 

become stabilised. One possibility may be that H. hordecalis is not able to survive 

the environmental conditions in the mobile dune area, whereas H. arenaria may be 

outcompeted by H. hordecalis when dunes become stabilised. 

The cysts that were found on F. rubra in the non-sterile soil to which H. 

arenaria was added, most likely were due to the initial presence of H. hordecalis cysts 

in the soil. Two arguments support this suggestion. First, also the non-inoculated 

non-sterile soil collected from around F. rubra yielded cysts at the end of the 

experiment. Even though the unsterilised soil did not contain any juveniles of 

Heterodera spp. initially, the initial presence of cysts in the soil obviously cannot be 

excluded. Second, the identification of the cysts harvested at the end of the 

experiment from the inoculated pots with unsterilised F. rubra soil showed the 

presence of both H. arenaria and H. hordecalis, clearly indicating at the initial 

presence of H. hordecalis. Only few of the inoculated juveniles had actually been 

developed into new H. arenaria cysts, so that the reproduction of H. arenaria on F. 

rubra was not different from that on E. athericus and C. epigejos. 

In the greenhouse trials, inoculation of the host species, E. farctus and A. 

arenaria, with H. arenaria did not cause growth reduction. Only at six weeks after 

inoculation in the dose-response experiment root biomass of A. arenaria showed a 

negative response to inoculation of H. arenaria juveniles. According to the dose-

response experiment, the lower end of the range of initially inoculated H. arenaria 

densities was already above the maximum carrying capacity for the seedlings that 

were used as test plants. Within the range of nematode densities applied, there was 

no relationship of initial density of H. arenaria and final root biomass of A. arenaria. 

The highest two densities inoculated, exceeded the density in the field based on a 

rough estimation of 1 cyst per 100 gram of soil, which translates to 15 cysts per 

59 



CHAPTER 4 

pot, each estimated to contain approximately 150 eggs. Thus, when inoculated in 

isolation, field densities of H. arenaria appear to have little impact on its natural 

hosts. Thirteen weeks after inoculation, there was also no correlation between the 

initial inoculum density and the number of H. arenaria cysts produced. 

In other studies on dose-response curves with similar endoparasitic 

nematodes on cereals, e.g. Seinhorst (1995) found a strong growth reduction with 

increasing inoculation density. De Rooij-Van der Goes (1995) found reduced 

growth of A., arenaria with increasing numbers of T. ventralis, an ectoparasitic 

nematode. However, significant growth reduction as caused by the ectoparasite 

occurred only at unnaturally high doses. 

As H. arenaria does not negatively influence its natural host plant and 

reproduction may be regulated by the plant, it might be that the population 

development of H. arenaria is strongly regulated by the food supply, which keeps 

them in equilibrium with host growth (Cook and York, 1980). Furthermore, 

nematode species such as H. arenaria, which require living plant cells for their 

development and reproduction, may be regarded as biotrophic parasites (Jarosz 

and Davelos, 1995). Biotrophs usually show moderate pathogenic effects on hosts 

due to selection towards lower capacity to suppress resistance genes (Lenski and 

May, 1994; Jarosz and Davelos, 1995). Pathogens that are highly pathogenic may 

kill their host, thereby reducing their own food source {e.g. Burdon, 1993). In 

multi-parasite systems however, it has been hypothesised that biotrophic species 

may possess higher levels of pathogenicity then expected, because of the need to 

compete with other parasitic species (Lenski and May, 1994). Such levels of 

pathogenicity however, were not recorded for H. arenaria on its natural hosts. 

Apart from the selection for moderately pathogenic nematodes, the host plants 

may have developed tolerance to these nematodes. 

In most of the agricultural systems, the interaction between plants and 

parasites might be different in two ways. Either the crop plant might not have had 

the time to develop tolerance to the parasite, because most agricultural crops are in 

the field only for a short period of time or the parasites might be more pathogenic 

because their food source is growing on the field only for a limited time during the 

year. In the system described by De Rooij-Van der Goes (1995) an ectoparasitic 

nematode had been used, which most probably did not have a highly specific 

relationship with the plant. In contrast to endoparasites, ectoparasites may be less 

influenced by selection and therefore not develop reduced levels of pathogenicity 

to the plant. So, in natural ecosystems there could be an analogy between 
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ectoparasitic nematodes and the aggressiveness of facultative pathogens as 

described by Jarosz and Davelos (1995). 

In contrast to susceptible tolerant hosts that were not harmed by H. arenaria 

{i.e. E.farctus and A. arenaria), both F. rubra and E. athericus were negatively affected 

by the addition of H. arenaria in sterile soil. F. rubra and E. athericus were poor hosts 

for H. arenaria, and only very few cysts developed on their roots. As F. rubra and E. 

athericus seem non-susceptible to H. arenaria in the field, there may have been no 

opportunity for selection towards lower levels of pathogenicity to the plants 

(Jarosz and Davelos, 1995). In non-sterile soil, no effect could be measured from 

the addition of H. arenaria to F. rubra and E. athericus. The soil organisms of the 

rhizosphere of F. rubra and E. athericus may outcompete H. arenaria, or H. arenaria 

may contribute only slightly to the negative effect caused chiefly by other soil 

organisms in the rhizosphere of these plant species. 

In the present study, H. arenaria showed a high degree of specificity to the 

early successional plant species in the coastal foredunes. Although it was expected 

that a biotrophic parasite with a highly specific relation with its host plants would 

contribute to vegetation succession, the present results show that H. arenaria, even 

in a multi-parasite system, hardly affected host plant biomass. Therefore, this single 

species alone, through the moderate pathogenicity toward the host plant, is not 

able to affect the succession of foredune vegetation. 

The effect of H. arenaria on non-host plants suggests that this species may 

negatively affect growth of non-host plant species. However, as reproduction of H. 

arenaria will be very low on non-host plants, and as in the field H. arenaria has 

hardly been found, this negative effect will not be very persistent. Considering the 

effects of H. arenaria on both host plants and non-hosts, it may not be the 

specificity of single species, but its interactions with other pathogens or the 

complex of parasites and pathogens as a whole, that determines the specificity of 

successional pathogen-complexes in coastal foredunes. 
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WHAT CONTROLS THE POPULATION DYNAMICS OF PLANT-

P A R A S I T I C NEMATODES IN NATURAL ECOSYSTEMS? T H E CYST 

NEMATODE HETERODERA ARENARIA AND THE CLONAL GRASS 

AMMOPHILA ARENARIA IN OUTER COASTAL DUNES AS A MODEL 

with W. H. van der Putten and H. Duyts 

submitted to Phytopathology 

ABSTRACT 

The population dynamics of plant-parasitic nematodes in natural ecosystems 

has hardly been given any attention, so that there is little, if any, knowledge about 

the factors that control plant-parasitic nematode densities in natural ecosystems. 

Here, the population dynamics of the cyst nematode Heterodera arenaria have been 

investigated in relation to the growth strategy of its natural host Ammophila arenaria. 

Heterodera arenaria is an endoparasitic nematode that occurs specifically in the 

mobile stage of outer coastal dunes. Ammophila is a clonal grass that thrives well in 

mobile dunes, and is an effective sand stabilising plant species. 

We examined how important migration is for the nematode in order to 

persist in mobile dunes and analysed the possible roles of bottom-up and top-

down processes for the control of nematode densities. 

During two growing seasons, at monthly intervals, we collected root and soil 

samples at various depths in the soil. The depths represented the years of first 

formation of the roots. In the newly deposited and colonised sand layer the first H. 

arenaria cysts were found one month after formation of the first new roots. By 

then, the cysts produced in the previous year had already lost about 90 per cent of 

their eggs. At the sampling data between late autumn and spring of the following 

year, hardly any second stage juveniles were observed. The eggs or juveniles within 

or outside the cysts may have been parasitised, although there is no direct evidence 

to prove such top-down regulation. Only about 0.4 per cent of the hatched 

juveniles finally succeeded to develop into a new cyst. The relatively constant 

number of cysts per gram root throughout the year, suggests that, in spite of 

considerable mortality before parasitisation, bottom-up processes control this 
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specialist plant-parasitic nematode. This result is in contrast with many host-

nematode studies known from agro-ecosystems. 

We found no obvious direct positive effect of migration on the performance 

of individual nematodes. However, the development time in the newly colonised 

root layer and the contents of the newly formed cysts, showed that on the longer 

term migration provides a fitness advantage to H. arenaria. 

INTRODUCTION 

Few studies have concentrated on the ecology of plant-parasitic nematodes 

in natural ecosystems. This is in contrast to the numerous studies on plant-parasitic 

nematodes in agro-ecosystems. In non-agricultural systems most studies focus on 

the relative abundance of nematodes in different trophic groups (Magnusson, 

1983; Hodda and Wanless, 1994), on the spatial distribution of various feeding 

types (Wasilewska, 1970, 1971; De Goede et al., 1993; Popovici and Ciobanu, 

2000), or on their distribution at a certain moment in time (Yeates, 1996). Other 

studies on nematodes in natural ecosystems have examined their taxonomy and 

concentrate on the morphological description of the nematodes (Sturhan, 1996; 

Karssen et al, 1998a,b; Karssen et al., 2000). 

The population dynamics of plant-parasitic nematodes in natural ecosystems 

have hardly received any attention. In agricultural land, the population dynamics of 

endoparasitic nematodes have been studied extensively (e.g. Seinhorst, 1967, 1970, 

1986a; Schomaker and Been, 1999; Been and Schomaker, 2000), because species 

that belong to this group of plant-parasites are involved in yield depressions of 

major crops (Stone, 1977; Baldwin and Mundo-Ocampo, 1991). In a natural sand 

dune, however, endoparasitic nematodes do not seem to be responsible for direct 

growth reduction (Van der Stoel and Van der Putten, see Chapter 4; Brinkman, in 

prep.). Therefore, the endoparasites behave like true obligate parasites (Lenski and 

May, 1994). This phenomenon makes it very interesting to examine the population 

dynamics of endoparasitic nematodes in a natural ecosystem, in order to determine 

what controls their population density and how individuals may maximise their 

fitness. As a model for our study, we used Heterodera arenaria, a cyst-forming 

endoparasitic nematode occurring in outer coastal sand dunes of north-western 

Europe. 

Heterodera arenaria is specific to two pioneer foredune grasses that dominate 

the mobile area of the coastal foredunes: Elymus farctus (Sand twitch) and vigorous 
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Ammophila arenaria (Marram grass) (Van der Stoel and Van der Putten, Chapter 4). 

Both plant species occur on the seaward slope of the coastal foredunes, where the 

nematodes have to deal with yearly sand deposition in autumn and winter. Up to 

80 cm may be deposited on top of Ammophila and plants still emerge (Van der 

Putten et a/., 1989). Later in the successional sere, in the more stabilised dunes, 

where Ammophila is heavily degenerated and later successional plant species, such 

as Festuca rubra ssp. arenaria have become established, H. arenaria is no longer 

observed (Van der Stoel and Van der Putten, Chapter 4). 

In greenhouse inoculation trials, H. arenaria reproduced best on plants with 

which it was associated in the dunes. However, on its natural host Ammophila only 

a limited number of juveniles of H. arenaria was found to reproduce, and no 

growth reduction of the plants was observed (Van der Stoel and Van der Putten, 

Chapter 4). Bottom-up effects, i.e. that the survival and reproduction of an 

organism is controlled by the amount or availability of resources, seem to play a 

major role in the greenhouse. However, the bottom-up effects may not be the 

critical regulatory factor in the field, where migration, dispersal and predation may 

also affect the population densities. Therefore, it is of interest to quantify the 

population dynamics including the dispersal of this nematode species in its natural 

environment. 

The question arises which properties allow H. arenaria to persist in mobile 

dunes and how it manages to deal with the yearly sand deposition. Ammophila 

requires burial with sand to keep its vigour (Huiskes, 1979). For H. arenaria the 

sand deposition implies that the juveniles, in order to reach the new root layer, 

need to migrate over large distances. In agricultural fields, plant-parasitic 

nematodes generally disperse only a few centimetres a year (Norton, 1978; 

Seinhorst, 1965), but this often has been measured in the horizontal direction. Prot 

(1980) argued that active movement of nematodes might also occur over larger 

distances. Vertical migration is known from Anguina tritici, a species that is able to 

disperse up to 30 cm to reach the roots of host plants (Leukel, 1962) and 

Meloidogyne spp. have been shown to bridge a vertical distance of 25 cm in 10 days 

(Prot, 1978). 

In order to study the population dynamics of H. arenaria, we collected 

samples at monthly intervals during two growing seasons from root layers of A. 

arenaria at various depth layers. The depth layers each represent one sand burial 

event. After sand accretion, during autumn and winter storms, internodes elongate 

and new nodes are formed just underneath the sand surface. As the node-staples 

mark distinct root layers and the roots are formed horizontally, the root layers are 
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comparable to year-rings in trees, each layer produced at a different depth. After 

isolation from the roots and the soil, the numbers of individuals were quantified 

representing various stages of the life cycle (second stage juveniles, males, cysts and 

eggs)-

In order to keep up with their host plant, nematodes continuously have to 

shift upwards. We tested the hypothesis that migration to a new root layer 

enhances the performance of individual nematodes in comparison to individuals 

that do not migrate. In order to test that hypothesis, we examined components of 

fitness of H. arenaria in both newly colonised and existing root layers of A., arenaria. 

This is the first detailed study on population dynamics and dispersal of a sedentary 

endoparasitic nematode in a natural and highly dynamic environment in the root 

zone of a clonal host plant. We discuss whether the upward migration of the 

nematodes closely following the root expansion of their host constitutes any 

fitness-related benefits to the nematode. 

MATERIALS AND METHODS 

Collecting soil samples from the field 

Soil samples were collected from the coastal foredunes of Voorne, the 

Netherlands, at a site north of Haringvlietdam (51°52' N 4°04' E). This site has 

been used in preceding studies and has been described by Van der Putten et al. 

(1989) and De Rooij-Van der Goes et al. (1995a). At monthly intervals from April 

1997 to December 1997 and from April 1998 to September 1998, samples were 

collected from the root zone of vigorous Ammophila arenaria growing on the 

seaward slope of the first dune ridge. 

Roots and root zone sand were collected from root layers at different 

depths. In 1997, samples were collected from a layer that had been colonised in the 

summer of 1996 (indicated as L-96), and from a layer with sand deposited in the 

autumn/winter of 1996/1997 and colonised in the summer of 1997 (indicated as 

L-97). In 1998 also roots and root zone sand were collected from a layer with sand 

deposited during the autumn/winter of 1997/1998 and colonised in the summer 

of 1998 (indicated as L-98). 

The sampling site consisted of an area of 150 m long, parallel to the 

coastline, and 10 m wide, covering the seaward slope of the outer foredune ridge. 

In 1997 and in April 1998, five random samples each of about 20x20x20 cm3 were 

collected from each of the layers. For each replicate and each layer, a tussock oiA. 
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arenaria was randomly chosen. Consequently, different year-layers were sampled 

independendy. From May until September 1998, based on the power of the 1997 

sampling data, we increased the number of replicates to 15. Per replicate a hole was 

dug in front of a randomly chosen tussock of vigorous A. arenaria exposing the 

three different root layers and vertical underground stems. From all three root 

layers (L-96, L-97 and L-98) a soil/root sample of about 15x15x15 cm3 was 

collected. 

Sample processing 

Rools 

Each sample was sieved (mesh size 0.5 cm) to remove coarse material, and 

the roots were separated from the soil. The roots were weighed fresh and divided 

into subsamples. One subsample was used for the extraction of free-living 

nematodes from the roots by the funnel-spray method (Oostenbrink, 1960). The 

extracted nematodes were identified using a reversed light-microscope (50-200x 

magnification) and counted. Another subsample was used to collect and count the 

number of Heterodera arenaria cysts by means of a binocular microscope (10-15x 

magnification). After the nematodes had been extracted from the roots, the 

subsamples used for nematode extraction and visual counting were dried at 70°C 

for 48 hours, and weighed. 

Soil 

After sieving, the soil was homogenised gently, and subsequendy used for 

various purposes. For each purpose different fractions of the total sample were 

used. First, free-living nematodes were extracted from a subsample of 250 ml using 

the Oostenbrink elutriator (Oostenbrink, 1960). Nematodes were identified and 

counted as described before. Second, H. arenaria cysts were extracted from a 

subsample of 1 1 of soil. After weighing the soil, 4 1 of water was added, and stirred, 

whereafter the water with the floating cysts was decanted on a 180 |J.m mesh sieve. 

This procedure was repeated five times. Finally, about 50 g of soil was weighed, 

dried at 70°C for 48 hours, and weighed again to determine the soil moisture 

content of each sample. 

Assessment of the number of eggs and juveniles in Heterodera cysts 

To determine the contents of H. arenaria cysts, an image analysis system was 

used consisting of a reversed light microscope (50x magnification) that was 

connected via a camera to a computer. For each month and layer, approximately 
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20 cysts originating from the roots and approximately 20 from the sand were used 

to determine the number of eggs. 

In Qwin, a special program was developed based on various parameters of 

the eggs and juveniles of H. arenaria (e.g. length, width, surface area) to analyse the 

pictures of the cyst contents sent to the computer. In each picture the real eggs and 

juveniles were translated into areas with a certain grey-intensity. These areas were 

measured and counted when they fitted within the given si2e. Each run of the 

program consisted of screening 25 wells of 1.4 cm3 each, in a 5x5-grid pattern. In 

each well an individual cyst was placed into a droplet of tap water. The cyst was 

crushed, the cyst wall was removed and subsequently the well was filled up with 

water. Within each well, the total circular pattern of 8x10 pictures was screened on 

the presence and the number of juveniles and eggs. The results were automatically 

added in a Windows-Excel worksheet. 

Data analyses 
Root biomass 

For each layer (two layers in 1997 and three in 1998), we carried out a one

way ANOVA to determine differences between months. The root biomass per 

kilogram of soil was considered as the dependent variable and month as the 

independent variable. Then, in order to determine the differences between layers, 

one-way ANOVA's were carried out for the different months with layer as the 

independent variable. Treatment means were compared using the Least Significant 

Difference (LSD) test (P<0.05). 

Nematodes 

The abundance of nematodes in samples was calculated by adding up the 

total numbers in the roots and in the soil. The number of nematodes per gram root 

dry weight was calculated by dividing the total number of nematodes by the total 

dry root biomass. This parameter was used for the statistical analyses. In order to 

achieve homogeneity, the data were log (x+l)-transformed, with x being the 

number of nematodes per gram root dry weight. 

Three stages of the life cycle of H. arenaria, i.e. females/cysts, second-stage 

juveniles and males, were analysed separately. To determine whether there were 

any differences between months, a one-way ANOVA was carried out for each 

layer with month as independent variable. Treatment means were compared using 

the LSD-test (P<0.05). To determine whether nematode numbers differed 
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between layers, pair-wise comparisons between layers were carried out by 

comparing the means of corresponding months in a Wilcoxon matched pairs test. 

Contents of the cysts 

Differences between months in the numbers of eggs and juveniles within 

cysts in a particular layer were analysed using a one-way ANOVA for each selected 

layer with month as the independent variable. Differences between layers were 

compared exclusively based on the contents of cysts collected in corresponding 

months. Both one-way ANOVA's with layer as independent variable, and two-way 

analyses with layer and origin of the cysts (collected from the sand or from the 

roots) as independent variables were carried out. Treatment means were compared 

using Tukey's HSD test (P<0.05). 

RESULTS 

Root biomass 

In 1997, in the newly deposited and colonised sand layer, the first new roots 

were observed in June, whereas in 1998 new roots were already found in April 

(Table 1). The later development in 1997 corresponds well with the low 

temperatures during the winter of 1996/1997 (Fig. 1) (KNMI-jaaroverzicht, 1996, 

1997, 1998). In August of both years, the amount of root biomass per kg dry soil 

in the new layer was at the same level. In 1997, the peak root biomass was 

recorded in November. The peak root biomass of 1998 may have been missed, 

since sampling was stopped after September. 

Early in the season root biomass per kg dry soil was significantly higher in 

the one-year-old root layer than in the newly formed root layer, whereas later in the 

season significandy more root biomass was present in the new root layer (Table 1). 

Following the root layers during two subsequent years, the root biomass tended to 

decrease with increasing age of the root layer (Table 1). In 1997, in the newly 

formed layer, root biomass dropped strongly between November and December. 

Since the biomass in December is in line with the biomass in the same root layer in 

April 1998, this sharp decline of root biomass does not seem to be due to an 

outlier. In already existing root layers the root biomass was more constant 

throughout the year than in newly formed root layers. 
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Table 1. Root biomass (average root dry weight per kg dry soil) in various root layers (L-96, L-97, and L-

98) during two subsequent years, in the months April - December in 1997 and April - September in 

1998. In the upper part of the table different letters indicate significant differences between months 

within a root layer. In the lower part of the table, for each of the two years individually, the letters indicate 

significant differences between root layers within a particular month. Treatment means were tested at 

P<0.05. (Data from 1997 were obtained from Van der Stoel el ai, see Chapter 2) 

Month 

Root layer 

April May 

Within root Iyer; between months 

1997 L-97 

1997 L-96 

1998 L-98 

1998 L-97 

1998 L-96 

Between layers; 

1997 L-97 

1997 L-96 

1998 L-98 

1998 L-97 

1998 L-96 

0.000= 

0.179°i= 

0.005= 

0.223"b 

0.128"1* 

within month 

B 

A 

C 

A 

B 

0.000= 

0.405* 

0.071= 

0.263"b 

0.1051* 

B 

A 

B 

A 

B 

June 

0.036= 

0.173=d= 

0.203b 

0.259"b 

0.150"b 

B 

A 

AB 

A 

B 

July 

0.150^= 

0.125d= 

0.256b 

0.310" 

0.175" 

A 

A 

AB 

A 

B 

Aug. 

0.395W 

0.298b 

0.423" 

0.206b 

0.088= 

A 

A 

A 

B 

C 

Sept. 

0.701b 

0.21511"1 

0.213b 

0.200b 

0.1091* 

A 

B 

A 

A 

B 

Oct. 

0.4831* 

0.105= 

A 

B 

Nov. 

1.081" 

0.234"* 

A 

B 

Dec. 

0.272=d= 

0.108= 

A 

B 
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Figure 1. Average temperatures over 

the period September 1996 up to 

September 1998. (KNMI-

jaaroverzicht, 1996, 1997, 1998) 

Month 
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Nematodes 
Colonisation of the deposited sand layer 

In both years, one month after the first roots were found, the first H. 

arenaria cysts appeared in the samples (Fig. 2A,C). In 1997, in L-97, the only 

significant difference between the numbers of cysts occurred between November 

and December, but not in other months (the months in which no cysts were found 

were excluded from the analysis). In 1998, in L-98, the only significant difference 

was found between July and May. In conclusion, in the new root layer the 

proportional occupation of roots with the cysts was fairly constant throughout the 

growing season, whereas the cyst density per 100 g dry soil (not shown) was 

steadily increasing. This implies that cyst formation is a continuous process once it 

has started. 

L-98 

L-97 

L-96 

Month 

Figure 2. The development of cysts, juveniles, and males of Heterodera arenaria in various root layers (L-

98, L-97, and L-96) of Ammophila arenaria during two subsequent years. Data are presented on a log(x+l)-

transformed scale (+1 SE) per gram root dry weight. Above each graph the LSD-values for each 

developmental stage are presented at P<0.05. 
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In 1997 in October, the cysts in the newly formed layer contained 

significantly more eggs and juveniles than in the other months (Fig. 3A). In 

November, however, the contents of the cysts had decreased significandy. In 1997, 

there was no difference in contents between the cysts collected from the roots and 

those collected from the sand. In 1998, in the newly formed layer, the increase of 

the contents of the cysts up to September followed a pattern similar to that in the 

new layer in 1997 (Fig. 3C). However, in 1998, in the newly formed layer, the cysts 

collected from the sand contained significandy more eggs and juveniles than the 

cysts from the roots. This is most likely due to an incomplete development of the 

cysts still present on the roots, as in October 1998 when the contents of cysts were 

determined for other purposes a cyst contained on average 379 eggs and juveniles 

(data not shown). 

1997 1998 

500 

400 

300 

200 

100 

0 

I sand 0 root 

b 

• . II 
L-98 

500 

400 

300 

200 

100 

0 

I sand 0 root 

d c be 

B 
500 

400 

300 

200 

100 

0 * Z L ^ ii 

L-97 

L-96 

Month 

Figure 3. Average content (+1 SE) of Heterodera arenaria cysts collected from various root layers of 

Ammophila from the sand and the roots in two subsequent years. Different letters above the bars mean 

significant differences between months (for the cysts in the sand and in the roots together) within a root 

layer at P<0.05. 

72 



POPULATION DYNAMICS OF H. ARENARIA 

Based on the number of cysts and the content of these cysts, the total 

number of eggs was calculated per dry soil weight (Table 2). In both years, in the 

newly formed root layer, the total number of eggs per 100 gram dry soil increased 

during the growing season. In November 1997 and in September 1998, similar 

numbers of eggs were present. However, as in September 1998 fewer roots were 

present, the number of eggs expressed per gram roots was higher than in 

November 1997 (36086 in 1998 vs. 7707 in 1997 (data not shown)). 

Heterodera males and second-stage juveniles also occurred one month after 

the first roots had been found in the newly colonised sand layer (Fig. 2A,C). The 

numbers of Heterodera juveniles per gram dry root varied between months. In 1997, 

significandy highest numbers of juveniles were observed in November, which may 

be due to hatching from cysts produced early in the growing season. In 1998, most 

juveniles were found in May, although it cannot be excluded that a possible peak 

later in autumn may have been missed (Fig. 2A,C). 

Comparison between and within years 

In the first sampling months of 1997, before Heterodera was present in the 

newly deposited sand layer, there were cysts, and, in lower numbers, juveniles and 

males present in the one-year-old root layer formed in 1996 (Fig. 2B). The cysts 

were brown and fully developed and appeared to have been formed in the previous 

growing season. The first new cysts in this root layer were observed in August, 

about one month later than in the newly formed root layer. In 1998, however, 

there was no time lag in the cyst formation between the newly formed and the one-

year-old root layer. In both layers new cysts were found in May, but in the one-

year-old root layer the number of new cysts was significandy lower (0.75/g root) 

than in the newly formed root layer (94.5/g root) (data not shown). 

In 1997, it took at least two months (from April to later than June) for the 

juveniles to migrate to the newly formed root layer and to develop into young 

white females. The developmental time may be shorter, however, in the case that 

the juveniles observed in April did not succeed to develop into new females, and 

the later ones did succeed to develop into the females observed in July 1997. As 

the number of eggs in April 1997 in L-96 was already very low, juveniles most 

likely had already hatched from the cysts earlier than April. In the samples, the 

observed juveniles were only a small fraction of all eggs present in the cysts, 

suggesting that a large mortality occurred during the months when no samples had 

been collected. The sampling data do not show whether mortality is due to 
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parasitism of the eggs within the cysts or to predation or otherwise mortality of the 

juveniles. 

As the number of cysts per soil dry weight in the newly formed root layer 

tended to increase during the growing season, and new white females were 

observed up to October, cyst formation is a continuous process once it has started. 

As also in the one-year-old root layer new cysts were produced from August 

onwards, obviously not all juveniles had migrated towards the newly formed root 

layer. 

In 1997, in the one-year-old root layer, significandy more cysts per gram 

roots were present throughout the year (from July to December) than in the newly 

formed root layer (1.61 vs. 1.20 (Fig. 2A,B)). However, the total cyst density per kg 

soil in the newly formed root layer increased during the growing season, and from 

September onwards, cyst densities per unit of soil tended not to be different 

between the newly formed and the one-year-old root layer. In the one-year-old 

layer, most cysts were found in the sand and they contained significandy fewer 

eggs and juveniles than the cysts from the new root layer (Table 3A). Therefore, 

the total number of eggs in the cysts tended to be lower in the one-year-old root 

layer than in the new root layer (Table 2). 

In 1998, the numbers of Heterodera cysts, juveniles and males per gram root 

were on average not different between the three root layers (Fig. 2C, D and E). 

However, as the biomass of roots on average tended to be lower in the oldest root 

layers (Table 1), the amount of cysts per unit of dry soil decreased with increasing 

age of the root layer. Furthermore, in the newly formed root layer, both the cysts 

collected from the sand and the roots contained more eggs and juveniles than the 

cysts from the older root layers (Table 3B). The larger contents of the cysts 

resulted in a higher total number of eggs that can form a new generation in the 

newly formed root layer than in the older root layers. 

Similar to the comparison within a year, also between years particular root 

layers were compared to follow the development of the root layer in time. The 

cysts in the one-year-old root layer in 1998 contained fewer eggs than the cysts in 

the same layer in 1997 when it was newly formed (Table 3C). For the layer that has 

been formed in 1996, the cysts collected from the sand showed the same content 

during the years, but the cysts collected from the roots contained more eggs and 

juveniles when they were collected in 1997 than in 1998 (Table 3D). So, obviously 

the potential offspring in the cysts in a root layer decreased both with depth in the 

soil and in time. 
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CHAPTER 5 

Table 3. The average content of the Heterodera cysts. The main comparisons were: A. and B.) between 
different root layers within the same year; C. and D.) the same root layer sampled in two subsequent 
years. In all comparisons a two-way ANOVA was carried out with the layer and the cyst origin as 
independent factors. As often no homogeneity in the data was achieved, the non-parametric Kruskal-
Wallis test was carried out. Different letters mean significant differences at P<0.05 in a Tukey's HSD test. 

A. 1997L-97 vs. 1997L-96 (for the months July, September, October, and November) 
Cyst origin 

Layer sand root 
1997L-97 291.3* 291.2* 
1997L-96 49.0b 228.4a 

Independent variable df F P 
Kruskal-Wallis Layer 1 107.037 <0.001*** 

Cyst origin 1 20.586 <0.001*** 

B. 1998L-98 vs. 1998L-97 vs. 1998L-96 (for the months June, August and September) 
Cyst origin 

Layer sand root 

1998L-98 203.7* 113.0* 
1998L-97 113.7b 68.8b 

1998L-96 37.1c 73.6b 

Kruskal-Wallis with independent variable 'Layer' 
cysts from sand cysts from roots 

df 2 2 
F 42.772 17.057 
P <0.001*** <0.001*** 

C. 1997L-97 vs. 1998L-97 (for the months July up to September) 
Cyst origin 

Layer sand root 
1997L-97 159.9' 129.5* 
1998L-97 113.7*b 68.8b 

Independent variable df F P 
Kruskal-Wallis Layer 1 90.228 <0.001*** 

Cyst origin 1 0.0019 0.9649 NS 

D . 1997L-96 vs. 1998L-96 
Cyst origin 

Layer sand root 
1997L-96 43.5C 163.3* 
1998L-96 39.6C 95.4b 

Independent variable df F P 
Kruskal-Wallis Layer 1 1.001 0.317 NS 

Cyst origin 1 43.944 <0.001*** 
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POPULATION DYNAMICS OF H. ARENARIA 

In April 1998, the cysts in the one-year-old root layer have already released 

the majority of the eggs that occurred in the cysts at the end of the growing season. 

In October 1997, in the newly formed root layer, there were on average about 430 

eggs per cyst, whereas in June 1998, by then the one-year-old root layer, their 

content was reduced to about 40 eggs per cyst (Fig. 3A,D). This implies that 

already within a year after formation, over 90 per cent of the offspring had been 

released from the cysts. There are no data of 1996, but the low number of eggs and 

juveniles in the cysts in April 1997 suggests that this pattern is consistent. The 

juveniles may have hatched during winter or early spring before the new roots have 

been formed in the newly deposited sand layer. Eventually, in spite of the large 

numbers that have been released, only a small percentage of the juveniles survive 

and develop into a new cyst. Only 3.1 cysts per 100 gram of soil were observed in 

the new root layer in September 1998 out of the 823 eggs present in November 

1997 (Table 2). 

DISCUSSION 

The potential offspring produced by a population of Heterodera arenaria cyst 

nematodes is highest in the newly formed root layer of their host plant A. arenaria. 

The population density may be affected both by bottom-up effects, given the 

relatively constant number of cysts per gram root biomass, and by top-down 

effects or natural mortality in the winter. Ultimately, however, the amount of new 

cysts formed seems to be controlled at the root surface or inside the roots, which 

is a bottom-up process. However, the differences between numbers of cysts and 

eggs per gram root dry weight varied considerably between years. In order to 

explain this variation, the mechanism of bottom-up control needs further study. 

The question arises whether there is an immediate benefit at the individual 

level to migrate, and what the relative contribution is of top-down and bottom-up 

effects in regulating the cyst density. Variation in the developmental time in 

different layers, the emergence of the second-stage juvenile, the contents of the 

produced cysts, and the chance of survival will be discussed to elucidate the 

possible advantages of migration. 

Development time: Rapid development in the new root layer offers the 

possibility of having more generations during the same period of time, and could 

thus provide a selective advantage (Kozlowski and Wiegert, 1986). However, the 

development time from a second-stage juvenile to the production of a young 
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female was found to differ only slightly between root layers at different depths in 

the soil. In 1997, in July the first young females were found in the new root layer, 

whereas in the one-year old root layer the first were found in August. This suggests 

that the development time in the new root layer is shorter. However, in 1998 in 

both root layers new young cysts were recovered in the same month. Therefore, 

evidence on developmental advantages of vertical migration was not consistent 

between years, although shorter development time only once every several years 

could already be a selective advantage of migration. 

Juvenile emergence: In November 1997, large numbers of juveniles emerged, 

which suggests that a second generation may start to be formed within one year. 

The number of generations per year varies strongly between Heterodera species 

(Mulvey, 1959; Von Mende and McNamara, 1995). For example, juveniles of 

Heterodera avenae, a cyst nematode that is closely related to H. arenaria (Clapp et a/., 

2000), also were present in highest numbers during late autumn and winter 

(Meagher, 1970), although H. avenae is known to produce only one generation per 

year (Cook, 1982; Mor et a/., 1992). The juveniles of H. mani, on the other hand, 

immediately hatch and reinvade the roots after the cysts have been formed (Cook, 

1982). The strategy observed for H. arenaria could lead to three generations in two 

years. On the other hand, cysts that had been produced in late summer may not be 

able to release juveniles already in November, and may produce only one 

generation in one year. 

Apart from a possible advantage of emergence before the winter starts, 

there is also the potential risk of emergence before the winter, as juveniles are less 

well protected to survive harsh conditions than cysts. As large numbers of eggs 

disappear during the winter period, the survival during winter indeed seems to be 

low. However, during summer, desiccation in the upper layer of sandy soil may 

cause a high juvenile mortality as well. The release of juveniles from cysts in 

autumn was observed in both root layers in 1997, which suggests that the cysts are 

unable to actively keep the juveniles inside their cyst wall. In conclusion, there are 

no indications that migration to the upper root layer directly affects emergence. 

Reproduction: The cysts collected from the sand in older root layers were less 

well filled than those in the new root layer. However, the older root layers 

contained a mixture of old and young cysts. The cysts on the roots are more likely 

to have been newly formed than those in the sand. In 1998, in the old root layer, 

cysts on the roots contained significandy lower numbers of eggs and juveniles than 

those in the new root layer. In general, a reduced content of the cyst is related to 

unfavourable conditions, such as reduced plant metabolism, death of the roots, or 
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fungal infection of the feeding site (Cook, 1977; Perry and Gaur, 1996). So, 

although we cannot completely exclude that older cysts were present on the roots, 

the reduced numbers of eggs per cyst indicates a disadvantage for individual 

nematodes when they do not migrate to a new root layer. However, the results 

from 1997 indicate only a slight, but insignificant trend towards lower numbers of 

eggs per cyst collected from the roots in the one-year-old root layer. Therefore, 

evidence on improved individual performance following vertical migration in terms 

of achieving higher reproduction is inconsistent between the two years of 

sampling. Improved individual performance could, therefore, be a factor in some 

years but not in each year. 

Survival: Although hard to measure, as in the old root layer cysts of older 

generations interfere, in spring 1998, about 90 per cent of the contents of the cysts, 

as was observed in October 1997, was released. No data are available of autumn 

1996, but the contents of the cysts in spring 1997, suggest that the strong 

reduction of the number of eggs and juveniles in cysts over the winter period is a 

more general phenomenon. From agricultural systems much lower percentages of 

hatching have been reported (Sharma and Nene, 1992). However, the hatching 

percentages greatly depend on the absence or presence of a suitable host, as Den 

Ouden (1963) also found hatching percentages from 84 up to 95 when placing the 

cysts in root diffusates of a suitable host. The dune system is covered by 

permanent vegetation of a perennial host plant. The release pattern of juveniles 

from the cysts may be different in the dune system than in the case of an annual 

host plant that is only incidentally present, such as in a crop in rotation. It is, 

therefore, of interest to perform population studies of cyst nematodes in natural 

annual plant species as well in order to compare the release patterns of eggs from 

cysts. 

The decrease in the number of eggs, between November 1997 and April 

1998, has an important effect on the population dynamics, since no new roots had 

been formed in the new root layer. In the cysts in the one-year-old root layer, only 

a small percentage of the eggs were left, and only very few juveniles were recovered 

from the soil. As we did not take samples during the winter period, it is not clear 

what has happened to the contents of the cysts. There seems to be a severe 

mortality over winter. Except for possible inaccuracy in detection and natural 

mortality, which is not likely to be 90 per cent of the total potential offspring, 

mortality may be caused by a number of factors besides natural mortality. Even 

before the juveniles hatch from the cysts, the eggs inside the cyst may be 

parasitised by micro-organisms or fungi (Kerry, 1993, 1995; Chen and Dickson, 
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1996; Chen et a/., 1996; Rao et a/., 1997). Furthermore, juveniles may die during 

their migration to the new root layer or predators may cause mortality of juveniles 

when leaving the cysts. In conclusion, excluding major recovery inaccuracy, there is 

considerable mortality over winter, to which natural antagonists may contribute. 

Several species of soil micro-organisms with antagonistic potential have been 

isolated from the root 2one of A. arenaria (P.C.E.M. De Rooij-Van der Goes, 

unpubl. results), but quantification of top-down effects is open for further studies. 

When trying to answer fitness-related questions on nematodes, there are a 

number of constraints. In spring, hatched juvenile nematodes either migrate to the 

newly deposited sand layer, or they stay in the same root layer where they hatched. 

Both the hatching of the juveniles and the formation of new cysts are processes 

that continue for several months. The inability to follow individual juveniles makes 

it impossible to estimate the exact amount of time required for the moment of 

hatching until the juvenile enters the root, and from the entering of the root to the 

presence of a new female. Furthermore, it was not possible to determine from 

what root layer the juveniles originate, in which layer they enter the root and 

whether the juveniles develop into males or females. Therefore, we cannot 

determine the chance of survival in the different root layers, which may largely 

influence the individual performance of the nematode. 

Another constraint is the establishment of the longevity of males. In another 

cyst nematode species, the longevity of a male cyst nematode was, on average, 9 or 

10 days (Evans, 1970). As we did not check this for H. arenaria, the monthly 

samplings do not allow to make assumptions on the real total number of males 

produced per year. Furthermore, it is hard to make a proper assessment of the 

increasing number of females during the year, and in the one-year old root layer a 

mixture of newly formed cysts and cysts of a former generation may be present. 

Single generations cannot be separated and the plant, as well as the resource 

availability may affect the sex ratio of the nematode (Yeates, 1987). 

As we have been able to only measure small direct advantages of migration 

on the level of the individual nematode performance, there may be cues that 

induce a juvenile to migrate, which are not a component of fitness but may work 

proximately. Root exudates often play an important role in the attraction and 

orientation of cyst nematodes (Klingler, 1965). But similar to H. major (Hesling, 

1957), H. arenaria juveniles continued to hatch over a period of several months, 

whereas, when root exudates are the only cue for hatching, juveniles may emerge 

from cysts within a period of four to five weeks (Fenwick and Reid, 1953). On the 
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other hand our results showed a strong correlation between the formation of the 

roots and the occurrence of the first cysts, suggesting that juveniles are capable of 

tracking newly formed roots in an early stage. Whether this is an active or passive 

process has not been investigated, but physical factors such as the soil moisture 

and the soil temperature may be involved in timing {e.g. Sharma and Sharma, 1998; 

Meagher, 1970; Clarke and Perry, 1977). Another factor that may positively affect a 

juvenile's individual performance following migration, is the competitive advantage 

of an early migrating juvenile over the later arriving individual of the same or 

another nematode species (Eisenback, 1985). 

In conclusion, for the population as a whole the roots formed in the new 

root layer of Ammophila are qualitatively superior to the roots in the lower layer. 

For individual nematodes, based on the field data, it is hard to discern any direct 

fitness-related advantages of migration although on a longer time-scale even small 

effects as a slightly faster development and a higher content of the cysts may 

positively affect the migrated individual nematode. The highest mortality seems to 

take place during winter, when eggs disappear from cysts whereas no accumulation 

of juveniles is observed. Whether this is due to egg-parasites or predation of 

juveniles in the soil is an open question. Top-down effects may influence the 

population density. However, bottom-up effects by the plant are probably more 

important in finally controlling the density of the H. arenaria population. Further 

studies are needed to elucidate which factors affect decisions made by nematodes, 

as well as what signals are perceived that affect the processes of decision-making. 
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DISPERSAL-RELATED PERFORMANCE OF THE CYST NEMATODE 

HETERODERA ARENARIA AFTER SAND DEPOSITION IN OUTER 

COASTAL FOREDUNES 

with W.H. Van der Putten 

submitted to Functional Ecology 

ABSTRACT 

The costs and benefits of the dispersal of cryptic organisms, such as plant-

parasitic nematodes, have received litde attention. Dispersal is an important aspect 

of the life history, but to study the dispersal of a cryptic species is highly 

complicated. In outer coastal dunes, yearly up to 80 cm freshly windblown sand is 

deposited. In this layer the majority of new roots of Ammophila arenaria is formed 

and plant-parasitic nematodes have to migrate upwards to keep up with their host. 

A previous field study has shown that part of the population of the cyst nematode 

Heterodera arenaria migrates upwards to the new root layer, whereas another part 

remains in the older root layer, where also some new roots are formed. Depending 

on the year of study, the nematodes that had migrated to the new root layer had a 

fitness advantage due to an earlier start of development and a higher production of 

eggs in the newly formed cysts. 

In the present study, we tested the hypothesis that juveniles from cysts that 

are formed in the new root layer after migration perform better than juveniles in 

cysts present in a one-year-old root layer. To test this hypothesis, cysts were 

collected from the newest root layer of A., arenaria, and from the one-year-old root 

layer. In two experiments under controlled conditions, we compared the rate of 

emergence of the second-stage juveniles, their survival and their reproductive 

success. 

The first juveniles from the mother-cysts of the new root layer emerged 

faster than the juveniles from the mother-cysts of the one-year-old root layer. After 

the early start the further development resulted in equal proportions of males and 

females for both origins. Furthermore, the chance of survival and the reproductive 

success were not different for juveniles of both origins, although the daughters of 
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the cysts collected from the new root layer appeared to better adjust the numbers 

of eggs to unfavourable conditions. 

In conclusion, on the short term, the daughters of the cysts formed after 

dispersal to the new root layer of A. armaria did not show obvious fitness 

advantages. Fast emergence may lead to a second generation in favourable years, 

but most responses suggest an ultimately determined development irrespective of 

the origin of the cysts. However in the long run, dispersal will enable the 

nematodes to keep up with the root formation of A. arenaria in the new sand layer, 

which is a clear fitness advantage. The observed fixed development after release of 

the juveniles in combination with results from a previous field study suggests that 

there are few specific cues used by H. arenaria in the timing of emergence. The 

strategy of dispersal, possibly with the help of more general cues that stimulate 

migration upwards, seems to be effective for H. arenaria in order to encounter new 

roots. 

INTRODUCTION 

In studies on life history theory and the optimisation of the life history 

strategy, considerable attention has been paid to dispersal {e.g. Stearns, 1992; Roff, 

1992; Van der Pijl, 1969). An obvious advantage of dispersal is the increase in the 

chance of finding new resources, which is necessary for survival when the 

resources in a patch become depleted. Another advantage may be the chance of 

meeting new mating partners, which lowers the chance of inbreeding (Silvertown et 

ai, 1997). On the other hand, there are also costs, as dispersal requires energy and 

may involve a higher exposure to natural enemies and, consequently, a higher 

chance of mortality. 

Very few studies have focused on dispersal as a component of the life 

history strategy of cryptic organisms. Siepel (1994, 1995) studied the life history 

strategy of soil microarthropods, but to our knowledge hardly anything is known 

on dispersal as a component of fitness in soil inhabiting plant-parasitic nematodes. 

Most long-distance dispersal of nematodes occurs passively by wind (White, 1953; 

Orr and Newton, 1971). Human activities, such as the use of agricultural 

machinery or planting-material (Von Mende, 1985), also contribute considerably to 

nematode dispersal. Active dispersal of nematodes is limited, as nematodes may 

spread horizontally about 10 cm per year in agricultural soils (Wallace, 1963). In 

the vertical soil profile, the nematode distribution may passively follow the root 
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distribution of the host plant deeper into the soil (Barker and Nussbaum, 1971). 

Nematodes even may be found at several meters depth in fruit tree root zones 

(O'Bannon and Tommerlin, 1969). 

On active vertical dispersal of plant-parasitic nematodes only few studies are 

known. Plant-parasitic nematodes that occur in the outer coastal dunes have to 

disperse vertically in the upward direction over considerable distances in order to 

keep up with the yearly sand deposition and the root formation in this sand layer. 

Sand deposition occurs mosdy during autumn and winter storms, and may be up 

to 80 cm annually (Van der Putten et ai, 1989). In subsequent spring and summer, 

the nematodes migrate upwards and colonise the new root zone (De Rooij-Van der 

Goes et ai, 1998). There is, however, little known about the costs and benefits of 

nematode dispersal, fitness consequences and on cues involved. 

One of the major plant species in the outer coastal dunes, the clonal grass 

Ammophila arenaria, is the natural host of the cyst nematode Heterodera arenaria 

(Cook, 1982). The dune grass needs sand deposition to produce new roots on top 

of old root layers, thereby maintaining its vigour (Huiskes, 1979). In the field, most 

of the new H. arenaria cysts are formed after dispersal of juveniles to the newly 

deposited sand layer, although some cysts of the new generation are formed in one 

of the already existing root layers deeper in the soil (Van der Stoel et ai, see 

Chapter 5). 

In the field, some differences were observed between cysts originating from 

the migrated versus the non-migrated juveniles, which suggest a benefit of 

migration. First, in the newly formed root layer, at least in one out of two growing 

seasons development started earlier in the growing season (Van der Stoel et ai, see 

Chapter 5). This may enlarge the chances of survival or the production of a second 

generation within one growing season. Secondly, the higher numbers of eggs in the 

H. arenaria cysts produced in the new root layer (Van der Stoel et ai, see Chapter 5) 

may also constitute a fitness advantage to the migrated juveniles most likely related 

to the higher resource-quality {e.g. Koenning and Sipes, 1998). As with increasing 

depth and age of a root layer both the root biomass and the H. arenaria population 

density gradually decline, it is disadvantageous to remain in one of the older root 

layers. In the field study, however, it could not be tested whether a higher potential 

offspring {i.e. the numbers of eggs per mother-cyst) in the cysts formed in the 

newest root layer would lead to a higher actual offspring {i.e. the number of 

daughter-cysts). 

In the present study, the hypothesis is tested that juveniles emerging from 

cysts collected from the newest root layer of the dune grass A. arenaria perform 
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better than juveniles emerging from cysts collected in a one-year-old root layer. 

Based on a previous field study (Van der Stoel et ai, see Chapter 5), a better 

performance is here defined as a faster emergence (i.e. the exit of the hatched 

juvenile from the cyst (Sharma and Sharma, 1998)) of the juveniles leading to an 

earlier start of development, and a higher chance of survival and development into 

new cysts filled with eggs. One experiment was conducted in order to test the 

success of reproduction of the cysts originally collected from the field (mentioned 

as mother-cysts) into new cysts (mentioned as daughter-cysts) on test plants in a 

growth chamber. We compared newly formed cysts of a new root layer with cysts 

of a one-year-old root layer of A. arenaria. The one-year-old layer consisted of a 

mixture of one-year-old and newly formed cysts. A second experiment was 

conducted by sequentially harvesting a pot trial, in order to establish the start of 

emergence and development of the juveniles from the cysts of both root layers. 

MATERIALS A N D METHODS 

Soil 

Early October 1998, soil was collected from the coastal foredunes of 

Voorne, the Netherlands, at a site north of Haringvliet (51°52' N 4°04' E). Around 

vigorous A. arenaria soil was collected that, after sieving on a 0.5 cm-mesh sieve, 

was sterilised by means of gamma irradiation (average 25kgray). The soil was 

stored until the start of the experiment at 4°C in the dark. 

H. arenaria cysts 

Simultaneously, at the same site, roots and rhizosphere soil were collected 

from vigorous A. arenaria for the extraction of H. arenaria cysts. From two distinct 

root layers of vigorous A. arenaria, the roots and the rhizosphere sand were 

collected separately. One batch of cysts was extracted from the root layer that was 

newly formed in the growing season of 1998 and only contained cysts also being 

formed in 1998 (the 1998-cysts). The other batch of cysts was extracted from the 

root layer that was formed first during the summer of 1997, and contained a 

mixture of cysts formed in the growing seasons of both 1997 and 1998 (the 1997-

cysts) (Van der Stoel et ai, see Chapter 5). Roots and rhizosphere sand were 

washed in a bucket in order to extract the cysts. The water and the cysts were 

decanted onto a 180 urn-mesh sieve. From the sieve, the cysts were washed in a 
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filterpaper-cone and left to dry for 2 days. Thereafter, the cysts were handpicked 

from the filter using a binocular microscope (10-15x magnification). 

Before the start of the experiments, the numbers of eggs and juveniles 

within the cysts were determined. From each root layer 25 cysts were randomly 

chosen and the number of eggs and juveniles inside these cysts was determined by 

automatic image-analysis as described by Van der Stoel etal. (see Chapter 5). 

CulturingA. arenaria seedlings 

Seeds of A. arenaria had been collected from the same dune area during the 

summer of 1995. Prior to the start of the experiment, seeds were germinated for 21 

days on glass beads at a 16/8 hour dark/light regime with corresponding 

temperatures of 25/15°C. Every three weeks a new amount of A. arenaria seeds 

from the same batch was germinated for the same period of time until use. After 

germination, seedlings were pre-cultured for 14 days in cones filled with 30 ml of 

the gamma-irradiated foredune soil in a greenhouse with a 16/8 hour light/dark 

regime at 23/19 (±2) °C. 

Experimental conditions 

At the start of the experiments, the soil was set at 10% (ww1) soil moisture. 

Twice a week the moisture content was reset at 10% by adding demineralised 

water. Once a week a full strength Hoagland nutrient solution was added. In both 

experiments 12.5 ml was added to each pot during the first three weeks, whereas 

later 25.0 ml was added. In the climatised growth chamber where the plants grew 

during the first three weeks after planting (Fig.l; pots and rings indicated with A), 

conditions were set at a 16/8 hour light/dark regime at 20/16°C. In the larger 

climatised room, where the plants were placed for the last 14 weeks of the 

repetitive attraction experiment (Fig.l; pots and rings indicated with B), the 

temperature was set at 23/19°C during a 16/8 hour light/dark regime. 

Testing the study system 

A small pilot experiment was carried out to test the experimental procedure. Cysts 

were added to a 15-cm high, 1.5 1 pot, filled with sterilised dune soil. A ring, 10-cm 

high, with the same diameter as the pot was placed on top, filled with sterilised 

dune soil and planted with four A. arenaria seedlings. We tested whether it was 

possible to attract juveniles to the plant roots without the roots growing from the 

ring into the pot within an experimental time long enough to allow ample 

nematode migration into the root zone. As roots were not found to have grown 
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into the pot after three weeks, this seemed an appropriate time for the experiment 

to separate the two parts. 

harvest 

Similar up to A3, 
A4 and B3 and B4 

Figure 1. Repetitive attraction experiment: experimental procedure. Pot and ring (AO) were separated 3 

weeks after the start of the experiment. Underneath the original ring a new pot was placed with sterilised 

soil without H. arenaria cysts. This new combination (Bl) was harvested 14 weeks later. On top of the 

original pot (containing the mother-cysts) a new ring was placed with four pre-cultured A. arenaria 

seedlings. Three weeks later, the separation and the formation of new combinations (Al) was repeated. In 

total, the separation of the pot and the ring was carried out four times: 3, 6, 9, and 12 weeks after the first 

planting of the pre-cultured seedlings. 

Repetitive attraction experiment 

The repetitive attraction experiment started with thirty 1.5 1 pots. Each pot 

was filled with a layer of about 3 cm of sterilised soil (foredune sand) on top of 

which thirty cysts were placed (the mother-cysts), originating from the 1997-layer 

(15 pots) or from the 1998-layer (15 pots). With about 12 cm of sterilised soil, the 

pots were then filled up to the brim and set at 10% (ww1) soil moisture. A 10-cm 

high ring was placed on top of the pot and also filled up with sterilised sand and 

set at 10% (ww1) soil moisture. Four 5-week-old A. arenaria seedlings were placed 

in each ring. The soil surface was covered with aluminium foil to prevent 

desiccation of the soil. The pots with the ring and plants on top of them were 

placed in a climatised growth chamber (see experimental conditions) for three 
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weeks (Fig.l, pot and ring indicated with AO). During this period, juveniles were 

allowed to emerge from the cysts and migrate towards the roots. Water and 

nutrient solution were added as described before. 

After three weeks, the ring and the pot were carefully separated by placing a 

sharp blade between these two parts. The ring with the plants including the 

juveniles that had migrated during the previous three weeks, was placed on top of 

another 1.5 1 pot filled with sterilised foredune sand and set at 10% (ww-1) soil 

moisture. These combinations of a pot and a ring were placed in the climatised 

room for another 14 weeks to allow daughter-cysts to develop out of the attracted 

juveniles before being harvested (Fig.l, pot and ring indicated with Bl). 

On top of the original pots containing the mother-cysts, a new ring was 

placed, filled with sterilised soil, set at 10% soil moisture, and planted with four 

new 5-weeks-old A. arenaria seedlings. The new combination was placed back in 

the climatised growth chamber, again for three weeks (Fig.l, pot and ring indicated 

with Al). In total, the procedure of placing and separating rings and pots was 

carried out four times, so that the whole experiment included 4x2x15 (time interval 

x cyst origin x replicates) pots. 

After 12 weeks, when the rings of the fourth series had been placed on new 

pots, the pots with the mother-cysts were harvested. The soil was washed in a 10-1 

bucket, and the juveniles, males and mother-cysts were extracted by decanting (see 

harvest details). The remaining contents (eggs and hatched but non-emerged 

juveniles) of the mother-cysts were established by automatic image-analysis as 

described by Van der Stoel et al. (see Chapter 5). The difference in content between 

the start and the end of the experiment gave an estimate of the maximum number 

of juveniles that had emerged from the cysts during the period of 12 weeks. 

Continuous attraction experiment 

In addition, a continuous attraction experiment parallel to the repetitive 

attraction experiment was carried out. In the continuous attraction experiment, 

pots with rings were harvested sequentially, and we allowed one set of plants to 

develop roots and to attract nematodes for a period of 12 weeks in order to study 

the emergence of juveniles from the H. arenaria mother-cysts and the formation of 

daughter-cysts. 

Simultaneously with the start of the repetitive attraction experiment, forty 

1.5 1 pots were filled with sterjlised soil and set at 10% (ww1) soil moisture. In a 

pot we placed twenty cysts from the 1997-layer or twenty cysts from the 1998-

layer. There were 20 pots of each cyst origin. Similar to the repetitive attraction 
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experiment, an additional ring was placed on top of the 1.5 1 pot and filled with 

sterilised sand and set at 10% (ww1) soil moisture. Per ring four 5-weeks-old A. 

arenaria seedlings were planted. The soil surface was covered with aluminium foil to 

prevent desiccation of the soil and the pots with the rings were placed in the 

climatised growth chamber. Every three weeks 10 pots and their rings were 

harvested: 5 replicates of each cyst origin. At each harvest, plant biomass and the 

numbers of juveniles and males were determined. After 12 weeks, when the last 

replicates were harvested, also the cysts, both the mother- and the daughter-cysts, 

were harvested. From the mother-cysts the remaining numbers of eggs and 

juveniles were determined by using an automatic image-analysis system (Van der 

Stoel etal., see Chapter 5). 

Harvests 

In both experiments, at harvest, the soil was washed from the roots into a 

10-1 bucket. To extract the juveniles, males and cysts from the soil, the suspension 

was stirred and the water with the floating nematodes was decanted on a set of 

sieves (1.0 mm, 180 urn, 75 (am, and 3x45 um mesh). Shoot and root biomass was 

dried at 70°C for at least 48 hours, and weighed. The numbers of juveniles and 

males were counted by reversed light-microscopy (50-200x magnification). The 

numbers of daughter-cysts were counted, using a binocular microscope (10-15x 

magnification), and their content was quantified by automatic image-analysis 

system. 

Data analysis 

A one-way ANOVA was used to test for differences between the initial 

content of the 1998- and 1997-mother-cysts, with the origin of the cysts as 

independent variable and the numbers of eggs and juveniles as the dependent 

variable. In the repetitive attraction experiment, it was tested whether there was 

any effect of the origin of the mother-cysts and of the period in which juveniles 

had migrated on the number of daughter-cysts, the root biomass of the plants, and 

the number of cysts formed per gram of root biomass. To this end, three two-way 

ANOVA's were carried out with the origin and the period of migration as the two 

independent variables. Tests were carried out with the number of daughter-cysts, 

the root biomass, or the number of daughter-cysts per gram root dry weight as the 

dependent variables. Treatment means were compared in an LSD-test (P<0.05). 

In a one-way ANOVA the origin of the mother-cysts was used as 

independent variable and the proportion of emerged juveniles as the dependent 
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variable. In order to calculate this proportion, the number of eggs within a cyst at 

the end of the experiment was subtracted from the average initial number of eggs 

in the cysts at the start of the experiment, and divided by the average initial 

number of eggs in the cysts. This analysis allowed to test for differences between 

1997- and 1998-cysts irrespective of their different initial contents at the start of 

the experiment (a number of the 1997-cysts had already released most of their 

juveniles before the start of the experiment). A similar one-way ANOVA, with the 

proportion of daughter-cysts formed after 12 weeks related to the initial content of 

the mother-cysts as dependent variable, was carried out to test whether the origin 

of the mother-cysts affected the formation of daughter-cysts. 

In a one-way ANOVA with the origin of the mother-cysts as the 

independent variable and the contents of the daughter-cysts as the dependent 

variable, it was tested for each time interval whether the origin of the mother 

affected the number of eggs and juveniles inside the daughter-cysts. Furthermore, a 

Wilcoxon matched pairs test was carried out, including data of all four time-

intervals, to test for differences in the contents of the daughter-cysts between the 

two origins of the mother-cysts. 

In the continuous attraction experiment, a Wilcoxon matched pairs test was 

used to test whether different numbers of juveniles had emerged from the mother-

cysts from both origins. Therefor, for all four harvests, the average number of 

juveniles that had emerged from the 1997-mother-cysts was compared to the 

average number of juveniles that had emerged from the 1998-mother-cysts. In 

order to determine the emergence during the 12-week period for both cyst origins, 

data of the continuous attraction experiment of males, juveniles and newly formed 

cysts were expressed in a cumulative way. To check whether cysts of a different 

origin had a different strategy in releasing their juveniles, the cumulative numbers 

were divided by the initial numbers of eggs and juveniles inside the mother-cysts. 

This was necessary because there had already been more natural release from the 

1997-cysts than from the 1998-cysts before being collected in 1998. 

In a one-way ANOVA with the origin of the mother-cysts as independent 

and the proportional number of emerged juveniles after three weeks of attraction 

as the dependent variable, it was tested whether cysts of a different origin had a 

different strategy of releasing their juveniles. In order to determine whether the 

numbers of daughter-cysts formed after 12 weeks was different between the 

origins, a one-way ANOVA was carried out with the origin of the mother-cysts as 

independent variable and the proportion of daughter-cysts, related to the initial 

content, as the dependent variable. 
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In a two-way ANOVA with plant biomass as the dependent variable, it was 

tested whether the date of harvesting and the origin of the parent cysts affected the 

dry weight of the A. armaria plants. 

RESULTS 

Repetitive attraction experiment 

In all four sequential time-intervals of three weeks, juveniles had migrated to 

the rings with A. arenaria plants, and developed into cysts in the next 14 weeks 

(Fig. 2A). Both the origins of the mother-cysts and the time-interval, during which 

juveniles had migrated, significandy affected the number of new cysts that were 

formed. Significandy more daughter-cysts were formed after hatching of the 

juveniles from 1998-mother-cysts than from cysts of the one-year-old root layer. 

The third time interval was the only exception. For both cyst origins, the peak of 

attraction seemed to be at the same time as most cysts were formed by juveniles 

attracted in the last time-interval. The low number of cysts that had been produced 

after the third time-interval correlated with an aphid infestation in the climate 

chamber. The aphids most likely caused the interaction-effect between the factors 

'time-interval' and 'origin of the cysts'. 

The origin of the added cysts had no effect on the root biomass of A. 

arenaria plants harvested 14 weeks after the ring and pot were separated (Fig. 2B). 

The number of daughter-cysts expressed per gram root dry weight (Fig. 2C) 

resulted in a significandy higher occupation of the roots in the pots to which 1998-

mother-cysts were added, except for the third time interval, when there was an 

aphid infestation. 

The cysts collected from the 1997- and 1998-layers initially contained 

significantly (P<0.001) different numbers of eggs and juveniles (132 in cysts from 

the 1997-layer and 378 in the cysts from the 1998-layer, respectively). In order to 

determine what has happened with the offspring, the numbers of produced males 

and females over all four time-intervals were added and compared to the initial 

numbers of eggs and juveniles in the mother-cysts (Table 1). A significantly higher 

fraction of the initial numbers of eggs and juveniles had emerged from the 1997-

cysts than from the 1998-cysts (P=0.0018). Also the number of daughter-cysts as a 

proportion of the average initial number of eggs in the mother-cysts was 

significantly highest for the cysts originating from the 1997-layer. However, in 

absolute numbers, more eggs had hatched from the 1998-mother-cysts (Table 1). 
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The further development of the juveniles that had actually emerged from 

the 1997- and 1998-mother-cysts, resulted in similar percentages that developed 

into males and females, causing a similar female-biased sex ratio for both cyst 

origins (Table 1). 
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Figure 2. Repetitive attraction experiment. A.) Numbers of newly formed H. arenaria cysts (+1 SE) 

harvested 14 weeks after juveniles had migrated to the roots. 0-3, 3-6, 6-9, and 9-12 represent four time-

intervals. The mother-cysts originated from a one-year-old and a newly formed root layer of an A. arenaria 

stand in mobile foredunes. B.) Root biomass at the moment of harvesting. C.) The newly formed cysts 

expressed per gram root dry weight. Different letters indicate significant differences at P<0.05, and the 

comparison includes both cyst origins and the time-intervals. 

As also the potential reproduction of the next generation may be a measure 

for the fitness of the nematode, it was tested whether the daughter-cysts of the 

1997- and 1998-mother-cysts showed a different potential offspring (as indicated 

by the number of eggs in the daughter-cysts). For each time interval, a one-way 

ANOVA was carried out to test whether the origin of the mother-cysts affected 
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the final content of their daughters (Table 2). Only after the third time interval the 
cysts showed significandy different numbers of eggs and juveniles. The 1998-
daughter-cysts contained most eggs. Over all, however, comparing the averages 
over the four time intervals, no significant difference was found between the 
contents of the daughter-cysts of both origins (Table 2). 

Table 1. Repetitive attraction experiment. Per pot the initial content, the final content, and the percentage 

of emerged eggs of the mother-cysts of the two root layers are presented. The total number of produced 

males and females of the newly formed generation are added up for all four time-intervals, and 

calculations on these numbers are presented in the lower part. 

Mother-cysts 

Initial content 

Final content 

Number emerged (percentage of initial) 

Newly formed generation 

Males 

absolute 

as % of initial 

as % of emerged 

Females (daughter-cysts) 

absolute 

as % of initial 

as % of emerged 

Sex ratio (males:females) 

1-year-old 

3951 

1803 

2148 

45.4 

1.15 

2.1 

217 

5.49 

10.1 

0.21 

root 

(54.4%) 

layer new root layer 

11355 

7821 

3534(31.1%) 

88.7 

0.78 

2.5 

378 

3.33 

10.7 

0.23 

Table 2. Repetitive attraction experiment. Results of one-way ANOVA's for each time-interval with the 

origin of the mother-cyst as the independent variable and the total amount of eggs and juveniles in the 

daughter-cysts as the dependent variable. Different letters indicate significant differences within the 

comparison of treatment means at P<0.05. 

Factor 

Cyst origin 

Time-interval 

0-3 

3-6 

6-9 

9-12 

Overall (Wilcoxon) 

df 

1 

1 

1 

1 

1 

F 

3.846 

2.311 

6.194 

3.007 

1.095 

P 

0.054 

0.132 

0.013* 

0.087 

0.273 

Treatment 

1-year 

366a 

347a 

456b 

514' 

421a 

-old 

mean 

new 

454" 

417a 

545" 

440a 

464a 
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Continuous attraction experiment 

As in the repetitive attraction experiment, 1997- and 1998-mother-cysts did 

not affect plant growth differently (Fig. 3). The total amount of juveniles emerged 

from the 1998-cysts was almost significandy higher (P=0.068) than from the 1997-

cysts. The weak significance is most likely due to the low number of pairs in the 

test. At the end of the experiment, the mother-cysts originating from both 1997-

and 1998-root layers had released 25% of the initial numbers of eggs (data not 

shown). 
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Figure 3. Continuous attraction experiment. The total plant biomass (+ 1 SE) of A. imnaria per pot, 3, 6, 

9, and 12 weeks after addition of cysts. N=5. 

In the continuous attraction experiment, as a result of the destructive way of 

harvesting, the pattern of emergence from mother-cysts and the nematode 

development could be quantified. Three weeks after the start of the experiment, 

juveniles were found to have hatched from the cysts (Fig. 4). From week 6 

onwards, males were present, so that the second juvenile stage had gone through 

three more moults via the third and fourth juvenile stage into adult males. The 

emergence of juveniles was a continuous process as at all harvests juveniles were 

observed, which confirmed the results of the repetitive attraction experiment. 

At the final harvest, 12 weeks after the start of the experiment, the amount 

of newly formed cysts was quantified. As the final number of daughter-cysts and 

males was considerably lower than the estimated numbers of eggs that had 

disappeared from the mother-cysts in the total experimental period, many eggs or 

juveniles either had died in the course of the experiment, or juveniles were still in 

the roots as immobile stage. On average 53% of the expected emerged juveniles 
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from the 1997-mother-cysts and 46% of the expected emerged juveniles from the 

1998-mother-cysts could not be recovered as a male or a daughter-cyst. 

The emergence of juveniles from the 1998-cysts started earlier than the 

emergence from the cysts of the one-year-old layer (Fig. 4B), whereas the pattern 

of development of emergence over the rest of the 12-week period was similar for 

both cyst origins. The proportion of juveniles released during the first three weeks 

of the experiment was significantly (P=0.009) higher for the 1998-mother-cysts 

than for the cysts originating from the one-year-old layer. After the early start in 

the first three weeks, the percentages that had hatched at week 6 were already 

similar for both cyst origins. 
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Figure 4. Continuous attraction experiment. Numbers of H. armaria juveniles, males, and cysts extracted 

at 3, 6, 9, and 12 weeks after the start of the experiment to which cysts were added originating from a 

one-year-old root layer (left) and from a newly formed root layer (right). In A.) the data are presented as 

cumulative numbers. In B.) the cumulative numbers are expressed as a percentage of the initial content of 

the mother-cysts. For each data point N=15. 

The 1997 layer will have contained a mixture of cysts formed in 1998 and in 

1997, which was indicated by the distribution of the mother-cysts based on their 

initial contents over various categories (Fig. 5A). In the 1997 layer, 60% of the 

cysts contained 0-100 eggs. Only about 30% of the cysts contained more than 200 

eggs, which may be the cysts that have been formed in 1998. In the 1998 layer, 
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about 70% of the cysts contained more than 200 eggs. These cysts may have 

contained more 'fast-hatching' juveniles, which probably had disappeared already 

from the cysts collected from the 1997 layer. Furthermore, the cysts of the 1997 

layer that contained most eggs still contained fewer eggs than the best-filled cysts 

of the 1998 layer (Fig. 5B). So, even though a number of cysts of the 1997 layer 

may have been formed in 1998, they contained fewer eggs than the best-filled cysts 

of the 1998 layer. 

Although early emergence of juveniles was more apparent for the cysts of 

the 1998 layer, it finally did not result in a significanuy higher proportion of 

daughter-cysts, as related to the initial contents of the mother-cysts (P=0.656). 

3.21% of the initial content of the mother-cysts from the 1998 root layer had 

developed into daughter-cysts vs. 2.93% of those from the one-year-old root layer. 
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Figure 5. A.) The distribution of the 1997- and 1998-mother-cysts over various categories of cyst 

contents, based on the initial contents of the mother-cysts. B.) For 25 cysts of both 1997- and 1998-

mother-cysts the content per cyst is presented on a log-scale. 

97 



CHAPTER 6 

DISCUSSION 

We studied whether H. arenaria juveniles emerging from cysts formed in the 

expansion zone of the clonal grass A. arenaria may perform better than juveniles 

from cysts in a more established part of the clone. In this study, the expansion 

zone corresponded with the root layer formed in 1998 and the more established 

zone with the one-year-old root layer formed in 1997. The performance of H. 

arenaria from the different root zones is discussed based on the rate of emergence 

of the juveniles, the number of eggs produced by the daughter-cysts, and the 

mortality of the juveniles. 

Rate of emergence: In the first phase of the continuous attraction experiment, 

more juveniles emerged from the 1998-cysts than from the cysts originating from 

the one-year-old root layer. Fast emergence of the first juveniles implies a fitness 

advantage as it enables the fast individuals to benefit most from the resources or 

feeding sites. Crowding and competition for feeding sites enhances the numbers of 

males (e.g. Trudgill, 1967; Mugniery and Fayet, 1981; Von Mende et al., 1998), 

whereas a higher food availability for the fast emerging juveniles may result in 

higher numbers of females (Yeates, 1987). 

In spring, in the dune system early emerging nematodes could take 

advantage of the newly formed root layer, but as observed in a field study (Van der 

Stoel et al., see Chapter 5), H. arenaria juveniles already emerge from the newly 

formed cysts at the end of the same growing season in which they have been 

produced. During winter, large numbers of eggs and juveniles were found to 

disappear (Van der Stoel et al, see Chapter 5), so that the fitness advantage of the 

fast emergence at the end of the growing season may be questioned. The most 

likely possibility is that fast emergence enables the new juveniles to produce a 

second generation, which also had been found in herbage crops (Cook and York, 

1980) and suggested for other Heterodera species, such as H. humuli (Von Mende 

and McNamara, 1995) and H. avenae (Meagher, 1970). However, possibilities for 

producing a second generation will strongly depend on the start of the root 

development and the length of the growing season (Van der Stoel et al, see 

Chapter 5), so that the advantage of fast hatching will only become apparent in 

some years. Previous field observations have shown that new cysts were (in one 

out of two years of field observations) produced earlier after dispersal to a new 

root zone than in an existing one (Van der Stoel et al, see Chapter 5). Therefore, 

selection in favour of fast emergence will be stronger in newly formed than in 

older root layers. 
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The cysts collected from the one-year-old 1997-root layer consisted of a 

mixture of one-year-old cysts, formed in 1997 that contain low numbers of eggs, 

and new cysts, formed in 1998 that are most likely the cysts that are better filled. 

The juveniles that emerge from the latter group of cysts may possibly achieve the 

same rate of emergence as the juveniles from the cysts of the same age, collected 

from the 1998-layer. We were, however, not able to separate new and one-year-old 

cysts collected from the 1997-layer. The difference in rate of emergence between 

juveniles from new (1998) cysts and largely emptied (1997) cysts may have been 

larger than the average difference between the cysts originating from the 1997 and 

the 1998 root layers. If all newly formed cysts (from both the 1998 and 1997 

layers) contain fast emerging juveniles, the first-hatched juveniles from cysts in the 

newly formed root layer may have an advantage over first-hatched juveniles in the 

older root layer. The latter have less roots available (Van der Stoel et a/., see 

Chapter 5), or first need to migrate upwards in order to get access to the new root 

layer. However, when there is no possibility to form a second generation, fast 

emergence may even be disadvantageous, because these juveniles will most likely 

not survive the winter period (Van der Stoel etal., see Chapter 5). 

Eggs produced by daughters: In a previous field survey, daughter-cysts in the 

new root layer contained more eggs than the average cyst present in older root 

layers, at least in one out of two growing seasons (Van der Stoel et a/., see Chapter 

5). As a higher number of eggs per cyst may be due to favourable feeding 

conditions (Cook, 1977; Seinhorst, 1986a; Koenning and Sipes, 1998), a higher 

numbers of eggs in the daughter-cysts indicate a selective advantage. The repetitive 

attraction experiment, however, did not support the idea that daughter-cysts from 

a new root layer may produce more eggs than daughter-cysts from an older root 

layer. The higher number of eggs in the daughter-cysts from 1998-mothers in the 

third time interval may have been caused by the aphid infestation of the young 

plants. Masters etal. (1993) suggested that above-ground insect herbivory may have 

an indirect negative effect on root feeders. The aphid infestation, as observed in 

the present study, may therefore have reduced the larval establishment in the roots. 

The aphid infestation was under control after the three-week period of attraction. 

As there was no reduction of the root biomass at harvest as compared to the root 

biomass at the fourth harvest, there are no indications that the root biomass had 

been reduced after the three-week period of attraction as a consequence of the 

aphid infestation. As lower numbers of juveniles had established on the roots as 

1998-daughter-cysts after the third time-interval, the unplanned treatment of aphid 

infestation may have reduced intra-specific competition for resources. The 
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observed difference in the contents of the daughter-cysts suggests that the 

daughter-cysts of 1998-mother cysts were more plastic in their response to reduced 

intra-specific competition than daughters of cysts from the 1997 layer. 

In these experiments, we cannot completely exclude the possibility that the 

numbers of produced cysts may have been limited by the amount of roots. The 

limitation may have lead to a higher production of males (Trudgill, 1967) or the 

competition for food may have resulted in lower numbers of eggs per cyst 

(Seinhorst, 1986a). However, as in the repetitive attraction experiment significantly 

most 1998-daughter-cysts per gram of root biomass were produced after the 

fourth time-interval, and as no such numbers had been found in earlier time 

intervals, only after the fourth time-interval for the 1998-cysts the amount of roots 

may have been limiting. Also in the continuous attraction experiment root 

limitation may have reduced the final number of 1998-daughter-cysts. A possible 

limitation of the cyst production may result in an underestimation of the total 

production of daughter-cysts, but most likely the emergence has not been affected, 

still allowing the previously discussed suggestions on the rate of emergence of both 

cyst origins. Furthermore, to achieve the same proportional success of 

reproduction as the 1997-mother-cysts, 1998-mother-cysts additionally had to 

produce 250 daughter-cysts, which is 1.66 times as many cysts as have been 

formed in the experiment. 

The contents of the daughter-cysts produced by the 1997-mother-cysts were 

similar for all four time-intervals. Even though the number of juveniles emerged 

from the 1997-mother-cysts will not have provided a limitation for cyst formation, 

the numbers of 1997-daughter cysts per gram root dry weight was still lower than 

of the daughter-cysts originating from the 1998-mothers. The higher numbers of 

1998-daughter-cysts and the similar availability of roots for mother-cysts of both 

origins indicate that root availability has not been limiting for 1997-daughter-cysts. 

Obviously the formation of daughter-cysts from the 1997-mother-cysts was 

limited by another factor. As the experiments were carried out in sterilised soil, it is 

not likely that natural predators negatively affected the survival of the emerged 

juveniles, unless the mother cysts may have been parasitised prior to the 

experiment. In coastal dune soil, De Rooij-Van der Goes (unpubl. results) had 

observed fungal egg-parasites, but it is not clear whether those parasites were 

restricted to older cysts only. Some of the H. arenaria cysts were filled with large 

fungal spores, and these always concerned older cysts (data not shown). The fungal 

spores have not been identified, and could therefore not be confirmed as possible 

parasite. In agricultural systems parasitism of eggs and cysts has often been 
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reported (e.g. Chen and Dickson, 1996; Kim eta/., 1998). Chen eta/. (1994) found a 

higher frequency of fungal colonisation in older brown cysts of Heterodera glycines 

than in younger females. This may indicate the possibility of an age-restricted 

parasite in H. arenaria limiting the formation of 1997-daughter-cysts. 

Juvenile mortality: Except for the possibility of parasitism causing mortality 

and limiting the number of 1997-daughter-cysts being formed, there was a high 

overall mortality. Based on the initial and final contents of the cysts and the 

observed numbers of females and males, many juveniles seem to die after 

emergence. Whether the mortality is related to the age of the mother-cysts has still 

to be proven, but juveniles from older cysts could have had less energy reserves so 

that a larger percentage of juveniles may fail to reach the roots (Reversat, 1981). 

The high mortality in combination with the continuous emergence of the 

juveniles and the equal percentages of produced males and females from the 

emerged juveniles suggests that the release of juveniles is not regulated by any cue. 

Juvenile release seems a fixed, ultimately determined process, which has not often 

been observed in agricultural systems. Many cyst nematodes show a clear response 

to a plant-related stimulus (e.g. Wallace, 1958; Clarke and Perry, 1977; Hashmi and 

Krusberg, 1995). However, also in agricultural systems, either in absence of the 

host (Seinhorst, 1986b; Sharma and Nene, 1992; Devine et al, 1999) or due to a 

period of unfavourable conditions such as occurs during winter time (Sipes et al., 

1992), the population density declines each year (Ferris and Ferris, 1998). 

The question rises how this strategy of fixed emergence that continues in 

winter can be effective for a plant-parasitic nematode. Possibly, gradual release of 

juveniles over a longer period of time is effective because of the large and 

unpredictable variation in the start of root formation in spring (Van der Stoel et al, 

see Chapter 5). Although a temperature or moisture gradient may be helpful in 

orientation over larger distances (Wallace, 1958; Rode, 1969) temperature 

fluctuations may not be easily sensed in deep soil layers. In that case, random 

release seems the best strategy when specific cues are lacking or not recognised. 

The juveniles that are released later, that are too late to successfully produce a 

second generation in the same year, will at some stage encounter the roots formed 

in the newly deposited sand layer. 

In conclusion, on the short term, none of the factors, rate of emergence, 

survival of the juveniles, and contents of the produced daughter-cysts indicates an 

advantage for the juveniles from the cysts of the 1998-layer. However, on the long 

run it may be an advantage having the ability to form a second generation in the 

case that it is allowed by the length of the growing season. Moreover, there is a 
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benefit of being closest to the root layer to be formed in the next year or having 

the possibility to adjust the number of eggs in the newly formed cysts. As H. 

arenaria was found to release juveniles in an ultimately determined way, it is 

suggested that this species may not be capable to use or recognise a plant-stimulus 

for the timing of the emergence of the juveniles. 
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G E N E R A L D I S C U S S I O N 

Species identification 

In previous studies on the occurrence of soil-borne pathogens in coastal 

foredunes, the presence of various Heterodera spp. had been observed, and it was 

suggested that they might contribute to the degeneration of A. arenaria (De Rooij-

Van der Goes, 1995; De Rooij-Van der Goes eta/., 1995a). More than one species 

of Heterodera was thought to be present, however, their exact identity was not 

known. 

In the present study various species of Heterodera have been observed in the 

rhizosphere of different grass species that dominate sequential stages of vegetation 

succession in the coastal dune area. With the use of PCR-SSCP the species were 

identified to the species level based on the ITS2 sequence of their ribosomal RNA. 

Heterodera arenaria occurred in the root zone of Elymus farctus and Ammophi/a arenaria 

in the mobile area of the outer coastal foredunes. At the more stabilised sites, later 

in the successional sere, Heterodera hordecalis and in one occasion Heterodera mani 

were recorded (Chapter 3). 

Heterodera arenaria is known to occur on A. arenaria (Cooper, 1955; Robinson 

eta/., 1996), but H. arenaria could not be distinguished from Heterodera avenae on the 

basis of ITS2 PCR-SSCP (Chapter 3). Also on the basis of restriction enzyme 

analysis, no enzymes were found that allowed discrimination between European 

populations of H. arenaria and H. avenae (Subbotin et a/., 1999). The proposition 

that H. arenaria may be a polyploid of H. avenae, resembling large H. avenae but 

having very long juveniles and longer eggs (Cooper, 1968), could not be confirmed 

as no difference in ploidy level has been detected thus far (Karssen and Van der 

Beek, pers. comm.). Further studies are needed to establish whether H. arenaria and 

H. avenae are actually different species or whether it is one species with populations 

that are adapted to coastal foredunes and others that are adapted to agricultural 

conditions. 

Specificity 

In the outer coastal dunes, Heterodera arenaria showed considerable host 

specificity (Chapter 4). The occurrence of H arenaria was limited to E/ymus farctus 
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and Ammophila arenaria in the mobile area of the outer coastal dunes. Only at the 

island of Texel, H. arenaria was found to occur also in the samples collected from 

degenerating A. arenaria. This may have been due to site characteristics. At the site 

where samples had been collected at Texel, the trajectory of degeneration occurs 

over a range of several hundred metres, whereas at Walcheren and Haringvliet A. 

arenaria is heavily degenerated within 50 metres from the vigorous stands. At the 

latter sites rhizosphere samples had been collected from heavily degenerated 

stands, whereas at the island of Texel samples were collected from A. arenaria that 

had just started to degenerate. In addition to the high degree of specificity found to 

occur in the field, in the greenhouse E. farctus and A. arenaria were also the only 

two plants species that allowed the development from second stage juveniles of H. 

arenaria to adult cysts, whereas hardly any cysts were produced on other foredune 

grasses that naturally occur more inland of the coastal foredunes (Chapter 4). 

In the present study, Heterodera hordecalis was found to occur in the 

rhizosphere of degenerating stands of A. arenaria and in stands with Calamagrostis 

epigejos. H. hordecalis is known to parasitise various cereals and grass species 

(Andersson, 1975). At the end of an experiment in which H. arenaria was 

inoculated to sterilised or non-sterilised soil with different dune grass species 

(Chapter 4), cysts of H. hordecalis were found in the pots with non-sterilised soil 

collected from the rhizosphere of Festuca rubra ssp. arenaria. As Heterodera spp. were 

not observed on the roots of severely degenerated A. arenaria stands, but only in 

the soil, it is still possible that A. arenaria is not the actual host to H. hordecalis, but 

that F. rubra ssp. arenaria is the actual host (Chapter 4). More inland, when A. 

arenaria degenerates, the species is succeeded by Festuca rubra ssp. arenaria, leading 

to a mixture with A. arenaria. Therefore, it can be concluded that H. arenaria occurs 

on grasses in mobile dunes, whereas H. hordecalis is found on grass species more 

inland, when coastal foredunes become stabilised. 

As it had been suggested that specific complexes of soil pathogens are 

involved in the species succession within the vegetation in coastal foredunes, 

specific pathogens or parasites are most likely to be key species in these vegetation 

processes (Van der Putten and Van der Stoel, 1998). The specificity of H. arenaria, 

and its presence in vigorous and early declining stands of A. arenaria suggest that, 

of the observed Heterodera spp., H. arenaria may be the most likely species involved 

in the actual degeneration of A. arenaria. 
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Pathogenicity 

Within a month after the formation of the first roots of A. arenaria in the 

newly deposited sand layer, colonisation of this layer by soil organisms already 

resulted in the development of pathogenicity in the bioassay (Chapter 2). As 

addition of a nematicide to unsterilised soil compensated for most of the growth 

reduction, the bioassay results suggest that plant-parasitic nematodes were involved 

in the poor growth of A. arenaria in the unsterilised soil. The colonisation of the 

soil by H. arenaria and Pratyknchus spp. parallel to the first development of 

pathogenicity suggested that these species might be involved in the growth 

reduction in the bioassays and, possibly, also in the degeneration of Ammophila in 

the field. However, in the greenhouse addition of H. arenaria to sterilised soil 

planted with seedlings of A. arenaria did not lead to a reduction in plant growth 

(Chapter 4). Therefore, it could not be concluded that H. arenaria as a single species 

has a major direct role in the poor growth in the bioassays, and in the degeneration 

of A. arenaria in the field. Furthermore, in the field, the root biomass in the newly 

deposited sand layer continued to increase throughout the growing season 

(Chapter 2). Therefore, the results from the bioassays may not be directly 

extrapolated to the field situation (Troelstra et a/., 2001). This has important 

consequences for the view on the length of the period during which A. arenaria 

may escape from its soil pathogens. 

With the resulting low expectations of the contribution of H. arenaria to the 

degeneration of Ammophila, the role of this nematode as a keystone species in 

directing vegetation succession, as had been hypothesised by Van der Putten and 

Van der Stoel (1998), may be small. 

In conclusion, the host range of H. arenaria is limited to E. Jarctus and A. 

arenaria out of six monocotyledonous species tested, but the nematode only occurs 

in the mobile dunes. In contrast to many sedentary endoparasitic species that cause 

severe damage in agricultural crops (Stone, 1977; Baldwin and Mundo-Ocampo, 

1991), H. arenaria may be considered to be a biotrophic parasite. Instead of 

reducing their own food source, biotrophic parasites usually show moderate 

pathogenicity, possibly due to selection towards a lower capacity to suppress 

resistance genes (Lenski and May, 1994; Jarosz and Davelos, 1995). In order to 

play a role in the degeneration of A. arenaria, H. arenaria also should possess a more 

distinct pathogenicity towards its host. 

From the nematode's point of view, two main questions arise, related to 

these findings. The first question is how H. arenaria is able to deal so well with the 
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yearly sand deposition and how this nematode can keep up with the root growth of 

Ammophila. Secondly, it may be questioned what mechanisms control the 

population density of H. arenaria in the field. In order to answer these questions, 

the population dynamics of H. arenaria were studied in the field and in the 

greenhouse. 

Population development 

Both in the field (Chapter 5) and in the greenhouse (Chapter 6) second stage 

juveniles of H. arenaria were capable of migrating to the roots of A. arenaria. In the 

field, already one month after the first roots had been formed in the newly 

deposited sand layer cysts and males were observed, suggesting that the roots were 

colonised by juveniles immediately after formation. 

In the field, H. arenaria cysts were produced both in the new root layer and 

in the one-year-old root layer. Based on the estimation of the numbers of eggs per 

100 gram soil in autumn, higher numbers were observed in the new root layer than 

in the one-year-old and the two-year-old root layers (Chapter 5). However, it could 

not be established whether the chance of success was larger for the juveniles that 

had migrated, since it was not possible to calculate which proportion of the 

emerged juveniles migrated to the new root layer and which proportion remained 

in the layer where the juveniles had emerged. In the two-year-old root layer, no 

new cyst-formation has been observed and it may be questioned whether the 

remaining contents of the cysts present in this root layer (about 10% of the original 

contents) still contribute to the population development in the newly formed root 

layer. 

Possible advantages of migration 

As the majority of the population increase of H. arenaria takes place in the 

newly formed root layer, the possible advantages of migration were examined. It 

was discussed whether the possible advantages on the population level were also 

beneficial for an individual nematode. In the field, the development of new cysts in 

the newly colonised sand layer tended to start earlier than in the one-year-old layer 

(Chapter 5). Also in the greenhouse, the juveniles from the mothers that had 

migrated prior to cyst formation emerged earlier than the juveniles from the cysts 

of the one-year-old root layer (Chapter 6). Early development may enhance the 

possibility of the formation of a second generation within the same year, which has 

been found to occur in other Heterodera species (Cook, 1982; Von Mende and 

McNamara, 1995). Another possible advantage of early migration may occur in the 
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competition between early migrating H. arenaria juveniles and later migrating 

individuals of the same species or of another nematode species for favourable sites 

on the roots (Eisenback, 1985). This will be the case if the availability of such sites 

is limited. 

The cysts that were formed on the roots in the newest root layer contained 

more eggs than the cysts in the one-year-old root layer (Chapter 5). Although it 

was not possible in the one-year-old root layer to distinguish between the newly 

formed cysts and the one-year-old ones, the contents of the best rilled cysts 

collected from the one-year-old root layer, were smaller than the contents of the 

best filled cysts of the new root layer (Chapter 6). The daughter-cysts produced 

from mothers originating from the two different layers did not contain different 

numbers of eggs (Chapter 6). However, the contents of the daughters produced by 

the mother-cysts that were formed after migration seemed to be more plastic in 

their response to unfavourable conditions i.e. when aphids had infested the A. 

arenaria plants. Cysts containing more eggs may potentially produce more 

offspring, so also the better filling of the cysts points at an advantage of migration. 

Apart from the possible advantages of migration, it may also be costly as 

dispersal requires energy and involves a higher exposure to natural enemies. 

Furthermore, desiccation of the upper layer of sandy soil may increase the risk of 

mortality. Non-migration and formation of cysts in the one-year-old root layer 

(Chapter 5) may, therefore, also be an evolutionary stable strategy, resulting from 

opposite selection pressure. 

Winter mortality 

As no field samples have been collected from January to March, it is not 

clear what exactly happens during the winter period (Chapter 5). The root biomass 

in the newest layer strongly decreased and within one year after the cysts were 

formed, 90 per cent of the contents had been released from the cysts. The final 

number of newly formed cysts at the end of the growing season (September 1998) 

was only about 0.4 per cent of the numbers of eggs present the year before 

(October 1997). As already 60 per cent of the contents of the cysts had emerged 

between October 1997 and April 1998, and no newly formed cysts had been found 

yet in April 1998, there should be a high mortality during the winter period. A high 

natural mortality may be a possible explanation for the high mortality during 

winter, but also top-down effects for instance due to parasitism on the nematodes 

may affect the population density. From other systems, it is known that fungal or 

bacterial organisms may parasitise the eggs inside the cysts (Kerry, 1993; Chen and 
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Dickson, 1996; Rao et al., 1997), which causes a reduction of the numbers of eggs. 

Outside the cyst, emerged juveniles may die during migration or may die after 

being predated. Although there is considerable potential for top-down effects on 

nematode numbers (P.C.E.M. De Rooij-Van der Goes, unpubl. results), there is, so 

far, no direct evidence that such effects limit the population size. 

Life history strategy 

The development of H. arenaria after emergence from the cysts was found 

to be an ultimately determined process (Chapter 6). Although in absolute numbers 

more juveniles emerged from cysts originating from the new root layer, the sex 

ratio of the developed males and females was equal to the sex ratio of the adults 

developed from juveniles of cysts collected from the one-year-old root layer. In the 

field, the formation of cysts in the new root layer was found to be a continuous 

process from about late spring to late autumn (Chapter 5). When root exudates are 

involved as a cue for hatching, juveniles may emerge from cysts within a period of 

four to five weeks (Fenwick and Reid, 1953). The continuous formation of cysts, 

therefore, suggests that the hatching of juveniles is not direcdy stimulated by, e.g., 

root exudates. Also the response as observed in Chapter 6, and the emergence of 

juveniles in November suggest that no specific cue is involved in the emergence of 

H. arenaria juveniles. 

In coastal dunes, this life history strategy of continuous formation and an 

ultimately determined response may be effective because of the relatively high 

variability in the formation of A. arenaria roots in the newly deposited sand layer 

between years. 

Population density control 

In contrast to the lack of evidence for top-down effects regulating the 

population density, there seem to be indications in favour of bottom-up control. In 

the inoculation experiment in which various densities of H. arenaria were added to 

A. arenaria plants, H. arenaria did not reduce growth of its host plant (Chapter 4). 

The lowest inoculation density was already above the maximum carrying capacity 

for new cysts to be formed, resulting in equal numbers of cysts developed per 

gram root in all inoculation densities. In the field, during the growing season, the 

number of cysts per unit of roots was relatively constant (Chapter 5), which 

suggests that a bottom-up process is the main regulatory factor controlling the 

population density of H. arenaria. 
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Various mechanisms may explain the results. First, the availability of feeding 

sites may be limiting. With a given size of the plant, above a certain threshold level 

of second stage juveniles, a maximum number of cysts may be formed because of 

intraspecific competition (Eisenback, 1985). Secondly, the juveniles may induce 

resistance in the plant, a mechanism that has mostly been studied in sedentary 

endoparasites (Ogallo and McClure, 1996; Huang, 1998). As an effect of induced 

resistance later juvenile nematodes may still penetrate the root, but fail to develop 

and reproduce (Huang, 1998). This mechanism may also lead to a certain limited 

number of cysts produced per unit of root biomass. 

In conclusion, given the very low percentage of the content of the H. 

arenaria cysts that is needed to produce new offspring, the control near or inside 

the plant root, either by the mechanism of resource competition or other plant-

related mechanisms, seems to be the most likely way of regulating the population 

density of H. arenaria. 

Conclusions 

• In outer coastal dunes, H. arenaria is specific to E. farctus and A. arenaria, but its 

occurrence is limited to the mobile dunes. 

• In stabilised foredunes, H. hordecalis is associated with C. epigejos and occurs in 

the mixture of degenerated A. arenaria and F. rubra ssp. arenaria, where H. mani 

was also found to occur in one occasion. 

• H. arenaria has not been found to be pathogenic to A. arenaria. 

• H. arenaria is not a keystone species in the degeneration of A. arenaria by direct 

activity. 

• H. arenaria can keep up with the growth of A. arenaria by migrating to the newly 

formed root layer. 

• An earlier start of development and a higher number of eggs in the cysts in the 

newly deposited sand layer are indicative of the benefits of migration of H. 

arenaria on the longer run. 

• The population density of H. arenaria seems to be bottom-up controlled by A. 

arenaria, but considerable mortality takes place even before the plant may affect 

the nematode density. 

Suggestions for further research 

In future research it would be interesting to test the effect of other 

nematode species and combinations with H. arenaria, in trying to explain the 
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degeneration of A. arenaria, and the role of plant-parasitic nematodes in foredune 

vegetation succession. Do nematodes compete with each other or do they have a 

synergistic effect on the plant? Also other groups of organisms such as pathogenic 

soil fungi, natural antagonists and arbuscular mycorrhizal fungi have to be included 

to tackle questions on degeneration and vegetation succession. Can the nematodes 

serve as a vector for bacteria or fungi enabling these species to infest the plant 

roots? Or do mycorrhizal fungi protect the roots against penetration of plant-

parasitic nematodes or pathogenic fungi? These are all questions that remain to be 

answered. 

In order to understand the population dynamics of H. arenaria more 

completely, the development has to be quantified also throughout the winter 

period. There do not seem to be plant-originating cues used by the nematodes to 

start hatching. However, subsequent tests need to be carried out to determine 

whether attraction over decimetres can be excluded, e.g., by varying the distance in 

experimental attraction studies and doing tests with and without the presence of 

the host. In order to study the control mechanisms, the addition of other groups of 

organisms such as microbial antagonists and predators, as suggested previously, 

may give insight in their role as control agents. To obtain insight in the 

mechanisms of bottom-up control of the population density of H. arenaria, 

experiments discriminating between density dependent regulation and regulation 

by induced resistance have to be carried out. 
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SUMMARY 

In natural ecosystems hardly any attention has been given to the population 

dynamics of plant-parasitic nematodes in relation to the development of their host 

plant. In the present thesis the population dynamics and dispersal of Heterodera 

arenaria, as well as its specificity and pathogenicity on the dominant sand-fixing 

coastal foredune grass Ammophila arenaria have been studied. 

Plant-parasitic nematodes of the genus Heterodera are sedentary 

endoparasites that generally have a high degree of host specificity. In outer coastal 

dunes of northwestern Europe, Heterodera spp. have been supposed to be involved 

in the degeneration of A. arenaria. As A. arenaria is the most important sand-fixing 

plant species in the coastal foredunes, degeneration may negatively affect the 

stability and the functioning of coastal foredunes as natural sea walls. 

Specificity and pathogenicity 

At various sites along the Dutch coast, samples were collected from the root 

zones of successional dominant foredune plant species, in order to establish the 

occurrence and relative abundance of Heterodera species. Heterodera spp. were found 

to occur mainly on Elymus farctus, Ammophila arenaria and on Calamagrostis epigejos 

(Chapter 4). Species identification based on the ITS2 region of the ribosomal DNA 

by using the molecular technique PCR-Single-Strand Conformational 

Polymorphism (PCR-SSCP), showed that Heterodera arenaria specifically occurred in 

the mobile dunes in stands of E. farctus and of vigorous A. arenaria. Heterodera 

hordecalis was observed later in the successional sere, in degenerated stands of A. 

arenaria and near C. epigejos, (Chapter 3). On the basis of the ITS2, H. arenaria could 

not be distinguished from Heterodera avenae. 

It was decided to concentrate the present study on H. arenaria, because this 

species was present when the degeneration of A. arenaria starts, usually when sand 

deposition diminishes or suddenly stops. The specificity of H. arenaria as observed 

in the field was confirmed by an inoculation experiment in the greenhouse with six 

dominant monocotyledonous foredune species. The nematode was only able to 

complete its life cycle on E. farctus and A. arenaria and not on later successional 

plant species (Chapter 4). 

Pathogenicity development against A. arenaria was assessed by repetitive 

sampling of soil from subsequent year-layers of the root zone in the field, and 

testing the soil in a series of bioassays in the greenhouse (Chapter 2). In the freshly 

deposited sand layer, initially not containing any harmful soil pathogens, 
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pathogenicity developed within a month after the layer had been colonised by plant 

roots and corresponded with the colonisation of the layer by the nematode species 

H. arenaria and Pratylenchus spp. In the first phase of the growing season, addition 

of the nematicide Vydate counteracted the reduced growth of A. arenaria, 

suggesting that H. arenaria and Pratylenchus spp. were involved in the observed 

growth reduction. However, direct addition of different densities of H. arenaria 

juveniles to sterilised soil did not cause any growth reduction of the host A. 

arenaria even when the field density was exceeded (Chapter 4). 

Later in the growing season, addition of nematicide no longer completely 

counteracted the growth reduction. The incomplete but positive effect of the 

nematicide was also observed when A. arenaria seedlings were grown in soil 

collected from a one-year-old root layer and from a degenerating stand of A. 

arenaria. Although the effects of Vydate have not been studied in more detail, the 

pathogenicity of the complex of soil organisms seemed to build up and possibly 

also change during the growing season. The results suggest that not only plant-

parasitic nematodes, but also other biotic factors, such as pathogenic fungi may be 

involved in the complex of soil organisms that cause pathogenicity to A. arenaria. 

In conclusion, H. arenaria was found to behave as a biotrophic parasite. In 

spite its specificity in the mobile dunes on E. farctus and A. arenaria, H. arenaria is 

not a keystone species directly involved in the degeneration of A. arenaria. 

Population dynamics 

In the field, soil and root samples were collected at monthly intervals during 

two growing seasons. The samples were collected from different root layers of 

vigorous A. arenaria in order to study the population dynamics of H. arenaria and its 

dispersal towards newly formed root layers (Chapter 5). Numbers of second-stage 

juveniles, males and cysts, as well as eggs in the cysts were determined. Both in 

newly formed and in one-year-old root layers new cysts were formed, albeit that in 

both growing seasons the highest numbers were observed in the newest root layer. 

Each year the largest part of the population that produced new cysts appeared to 

have migrated upwards to the new root layer. In the newly deposited layer, 

juveniles tended to be present earlier in the growing season and the cysts that 

developed from the migrated juveniles contained more eggs. Possibly, early release 

of juveniles could enable the (start of) formation of a second generation in a 

growing season. These findings suggest that, especially on the long run, it is 

beneficial for an individual to migrate. 
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The cysts that were formed in the field originating from a new and from a 

one-year-old root layer were used in an experiment to study the emergence and 

migration of juveniles (chapter 6). It was tested whether the next generation, 

produced by the cysts that were formed after migration to a new root layer, had a 

better performance than the daughters of the cysts collected from a one-year-old 

root layer. In these experiments the juveniles from the cysts of the new root layer 

emerged earliest. The daughters of both groups contained equal numbers of eggs. 

However, the daughters from the mothers of a new root layer seemed to have a 

higher plasticity in egg formation. 

Although migration seems to be beneficial, only 0.4 per cent of the 

offspring in a cyst was found to succeed to develop into the next generation 

(Chapter 5). Furthermore, the process of releasing juveniles and the further 

development into males and females appeared to be an ultimately determined 

process (Chapter 5 and 6). Juveniles emerged already in November, which causes a 

risk of not surviving the winter (Chapter 5). The proportions of the emerged 

juveniles that developed into males and females were not different between layers 

(Chapter 6). 

The results of chapters 4, 5 and 6 have been used to discuss the natural 

control of H. armaria in the root zone of A. arenaria. The population density of H. 

arenaria is most likely controlled by bottom-up processes. This is suggested by the 

levelling off pattern of the numbers of cysts of H. arenaria cysts formed on the 

roots of A. arenaria that were exposed to an increased number of larvae added 

(Chapter 4). In addition, the number of cysts per gram root present in the field was 

fairly constant (Chapter 5) However, it remains an open question what 

mechanisms are involved. 

Many eggs and juveniles did not seem to survive the winter period. The 

programmed process of release of juveniles from the cysts still may be an effective 

strategy. The distance between release of the juveniles from the cysts and root 

formation by the plant in newly deposited sand could be too large for specific cues. 

As the start of formation of roots in the newly deposited sand layer was found to 

highly vary in the two years of study, random release of juveniles from the cysts, 

therefore, seems to be the most efficient strategy when there are no or insufficient 

specific cues for timing. The relatively early release of the first juveniles from cysts 

originating from the newest root layer may be indicative of a potential to produce a 

second generation when the growing season starts early and ends late. 

In conclusion, H. arenaria is not a keystone species directly involved in the 

degeneration of A., arenaria, so that it is not likely that H. arenaria will negatively 
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affect the stability and functioning of the outer coastal dunes as natural sea walls. 

The present study on the population dynamics of H. arenaria as a specific 

endoparasitic nematode on A. arenaria contributes to the general understanding of 

relations between plant-parasitic nematodes and their hosts in natural plant 

communities. 

128 



SAMENVATTING 

In onderzoek aan natuurlijke plantengemeenschappen is relatief weinig 

aandacht besteed aan de populatiedynamica van bodemorganismen, zoals 

plantenparasitaire nematoden. Over de relatie tussen plantenparasitaire nematoden 

en hun natuurlijke waardplant is ook relatief weinig informatie bekend. In dit 

proefschrift is de populatiedynamica, de verspreiding, de specificiteit en de 

pathogeniteit bestudeerd van de nematode Heterodera arenaria ten opzichte van 

mogelijke waardplanten. Deze plantenparasitaire nematode komt o.a. voor bij 

Ammophila arenaria (helm), de belangrijkste natuurlijke zandvastleggende grassoort 

in de buitenduinen langs de kust van noordwest Europa. 

Plantenparasitaire nematoden die tot het geslacht Heterodera behoren, zijn 

sedentaire endoparasieten die behoren tot de zogenaamde cystenvormende 

nematoden. Door hun grote afhankelijkheid van en hun veelal nauwe relatie met de 

plant zijn Heterodera soorten over het algemeen specifiek en hebben ze weinig 

waardplanten. In eerder onderzoek naar de oorzaken van vermindering van de 

vitaliteit van helm (degeneratie) in buitenduinen werden Heterodera soorten 

gevonden, waardoor werd verondersteld dat deze nematoden betrokken zijn bij de 

degeneratie van helm als de aanvoer van vers strandzand stagneert. Aangezien 

helm belangrijk is bij het vasdeggen van zand, kan degeneratie van helm de 

stabiliteit van de duinen verminderen, wat een gevaar zou betekenen voor de 

veiligheid van de Nederlandse kust. 

Specificiteit en pathogeniteit 

Om vast te stellen of Heterodera algemeen voorkomt langs de Nederlandse 

kust zijn grondmonsters en plantenwortels verzameld op verschillende plaatsen 

langs de kust. Op elk van de locaties zijn de belangrijkste in successie 

voorkomende plantensoorten in de buitenduinen bemonsterd. Op alle locaties 

werden Heterodera soorten aangetroffen, die hoofdzakelijk voorkwamen op Elymus 

farctus (biestarwegras), helm en Calamagrostis epigejos (duinriet) (hoofdstuk 4). Met 

behulp van de moleculaire techniek PCR-SSCP (PCR-Single-Strand 

Conformational Polymorphism) zijn de voorkomende Heterodera soorten 

geidentificeerd en vergeleken met bekende Heterodera soorten (hoofdstuk 3). 

Heterodera arenaria komt alleen voor op biestarwegras en op vitale helm in het 

dynamische deel van de duinen. Heterodera hordecalis werd later in de successie 

aangetroffen, rondom gedegenereerde helm en duinriet. Ondanks het goede 

onderscheidende vermogen van PCR-SSCP, bleek het niet mogelijk te zijn 
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onderscheid te maken tussen H. arenaria en Heterodera avenae, een soort die 

voorkomt op Avena sativa (haver). 

In de huidige studie werd besloten verder te gaan met H. arenaria, omdat 

deze soort in het veld aanwezig is op de plaats waar de vitaliteit van helm begint af 

te nemen, terwijl H. hordecalis alleen aanwezig is als helm nauwelijks meer groeit en 

wordt verdrongen door de opvolgende plantensoort. 

De in het veld aangetroffen specificiteit van H. arenaria werd eveneens 

waargenomen in een experiment waarin H. arenaria werd toegevoegd aan zes 

plantensoorten, alien grasachtigen, die alien in een deel van de successie van de 

buitenduinen dominant zijn. Het bleek dat H. arenaria alleen op biestarwegras en 

op helm in staat was zich te ontwikkelen van juveniel tot een volwassen cyste. Op 

de overige plantensoorten was de ontwikkeling van H. arenaria niet volledig 

(hoofdstuk 4). 

De ontwikkeling van pathogeniteit tegen helm werd getoetst door 

maandelijks monsters te verzamelen uit de wortelzone van helm. Uit wortellagen 

van verschillende leeftijden, gekoppeld aan de groeiseizoenen, werden de monsters 

verzameld die vervolgens gebruikt werden in een maandelijks terugkerende 

biotoets in de kas (hoofdstuk 2). In de vers overstoven zandlaag waarin zich in 

eerste instantie nauwelijks bodemorganismen bevinden, die gedurende de laatste 

winterperiode was vastgelegd door helm, ontwikkelde de pathogeniteit in de kas 

zich binnen een maand nadat de eerste wortels in het veld gevormd waren. Het 

moment van optreden van pathogeniteit correspondeerde met het moment waarop 

H. arenaria en Pratylenchus spp. (wortellesienematode) deze zandlaag in het veld 

koloniseerden. In de eerste maanden van het groeiseizoen kon de groeireductie 

worden opgeheven door toediening van het nematicide Vydate. Dit suggereert dat 

plantenparasitaire nematoden een negatief effect hebben op de groei van helm. 

Echter, in een experiment waarin juvenielen van H. arenaria in verschillende 

dichtheden werden toegediend aan helmplanten in steriele grond, trad er geen 

groeireductie op in helm, terwijl de hoogste inoculatiedichtheid de velddichtheid 

ruim overschreed (hoofdstuk 4). 

Later in het groeiseizoen werd de groeireductie in het niet-gesteriliseerde 

zand niet meer volledig gecompenseerd door de toediening van het nematicide. 

Ondanks het feit dat er geen volledige compensatie optrad, verminderde de 

toevoeging van het nematicide de groeireductie. In de potten met zand verzameld 

in de andere wortellagen (een 1-jaar-oude wortellaag rondom vitale helm en de 

bovenste wortellaag rondom gedegenereerde helm) werden dergelijke resultaten 

gedurende het hele groeiseizoen gevonden. De resultaten suggereren dat gedurende 
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het groeiseizoen de pathogeniteit van het complex aan bodemorganismen 

toeneemt en dat niet alleen plantenparasitaire nematoden groeireductie 

veroorzaken, maar dat ook andere biotische factoren, zoals bijvoorbeeld pathogene 

bodemschimmels, betrokken kunnen zijn in het complex aan bodempathogenen 

dat een rol speelt in de degeneratie van helm. 

Naar aanleiding van de voorgaande veldwaarnemingen en experimenten 

wordt geconcludeerd dat H. arenaria specifiek voorkomt op biestarwegras en vitale 

helm in het dynamische gebied van de duinen, maar dat H. arenaria door de geringe 

pathogeniteit niet direct betrokken is bij de degeneratie van helm. 

Populatiedynamica 

In het veld zijn gedurende twee groeiseizoenen maandelijks grondmonsters 

en plantenwortels verzameld uit verschillende wortellagen van helm, die ieder het 

jaar vertegenwoordigen waarin ze in eerste instantie zijn gevormd. Aan de hand 

van deze monsters is de populatiedynamica van H. arenaria bestudeerd en is 

nagegaan hoe H. arenaria zich over de verschillende wortellagen verspreidt 

(hoofdstuk 5). Hiertoe zijn de aantallen juvenielen in het tweede juveniele stadium, 

de volwassen mannetjes, de cysten en de aantallen eieren en juvenielen in de cysten 

bepaald. In de nieuwste en in de 1-jaar-oude wortellaag werden nieuwe cysten 

gevormd, waarbij de grootste aantallen waargenomen zijn in de nieuwste 

wortellaag. In beide jaren vond migratie plaats naar de nieuwste wortellaag waar, 

afhankelijk van het jaar waarin de bemonstering is uitgevoerd, het groeiseizoen 

vroeger of later op gang kwam. De cysten die na de migratie van de juvenielen naar 

de nieuwste laag werden gevormd, bleken beter gevuld te zijn met eieren. De 

resultaten suggereren dat het, zeker op langere termijn, voor de individuele 

nematode gunstig is om naar de nog te koloniseren zandlaag te migreren. 

In twee experimenten zijn vervolgens cysten gebruikt die afkomstig waren 

uit de nieuwste wortellaag of uit de 1-jaar-oude laag. Met deze experimenten werd 

beoogd het uitkomen van de juvenielen uit de cysten en hun verspreiding te 

bestuderen (hoofdstuk 6). Getoetst werd of de juvenielen van de cysten verzameld 

uit de nieuwste laag (gevormd na migratie) eerder uit de cyste kwamen, en of de 

dochtercysten uit de gemigreerde juvenielen zelf ook grotere aantallen eieren 

bevatten dan de dochters van de cysten uit de 1-jaar-oude wortellaag. Het bleek dat 

de juvenielen eerder uit de moedercysten tevoorschijn kwamen die verzameld 

waren in de nieuwste wortellaag. Echter, het aantal eieren in beide groepen 

dochtercysten verschilde niet. Het leek er wel op dat de dochters van de moeders 
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uit de nieuwste wortellaag beter in staat waren hun aantallen eieren aan te passen 

aan omgevingsfactoren. 

Slechts 0,4 procent van de nakomelingen ontwikkelt zich uiteindelijk tot 

volwassen cyste in het veld (hoofdstuk 5). Het uitkomen van de juvenielen uit de 

cysten en de verder ontwikkeling tot mannetje of cyste bleek volgens een vast 

patroon te verlopen (hoofdstukken 5 en 6). Ondanks de reele kans om de winter 

niet te overleven als in het juveniele stadium, werden in november in het veld 

juvenielen waargenomen (hoofdstuk 5). Daarnaast bleek dat een vast percentage 

van de uitgekomen juvenielen zich tot mannetjes en cysten ontwikkelden, ongeacht 

de wortellaag waaruit de moeders afkomstig waren (hoofdstuk 6). 

De resultaten uit de hoofdstukken 4, 5 en 6 zijn vervolgens gebruikt om de 

manier waarop de natuurlijk voorkomende aantallen H. arenaria op helm 

gecontroleerd worden te bediscussieren. De min of meer gelijke aantallen cysten 

die op de wortels van helm gevormd werden, ondanks het toedienen van 

verschillende dichtheden (hoofdstuk 4) en de min of meer constante aantallen 

cysten per gram wortel in het veld (hoofdstuk 5) suggereren dat de 

populatiedichtheid van H. arenaria gecontroleerd wordt door de plant. Het is echter 

niet duidelijk welke mechanismen hierbij een rol spelen. 

Ondanks de grote sterfte gedurende de winter kan het continue proces van 

uitkomen van juvenielen een effectieve overlevingsstrategie zijn. De afstand die de 

juvenielen moeten overbruggen om bij de nieuwe wortels te komen, kan zodanig 

groot zijn dat eventuele specifieke plantenstoffen niet worden waargenomen. 

Bovendien lijkt de start van de vorming van nieuwe wortels in de vers overstoven 

laag sterk te varieren tussen opeenvolgende jaren. Hierdoor lijkt het continu en 

verspreid in de tijd uitkomen een betere kans te bieden aan juvenielen om de 

gastheer te vinden dan proberen af te gaan op signaalstoffen die wortelvorming 

aanduiden. Het vroege uitkomen van de juvenielen uit de cysten, die verzameld zijn 

in de nieuwste wortellaag, zou kunnen duiden op de mogelijkheid om een tweede 

generatie binnen een jaar te vormen als de lengte van het groeiseizoen dat toestaat. 

Geconcludeerd kan worden, dat H. arenaria, alleen, geen directe negatieve 

effecten veroorzaakt die zullen leiden tot de degeneratie van helm, waardoor H. 

arenaria ook geen directe negatieve gevolgen zal hebben voor de veiligheid van de 

Nederlandse kust. Daarnaast draagt deze studie aan de populatiedynamica van H. 

arenaria als specifieke endoparasitaire nematode rondom helm bij aan het begrip 

over de relatie tussen plantenparasitaire nematoden en hun gastheer in natuurlijke 

plantengemeenschappen. 
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Daar zit ik dan De klus is geklaard, en ik ben daar op z'n zachtst 
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allebei een eigen kijk op de zaak. Het is prettig om te ervaren dat er vertrouwen 

bestaat in een geslaagde afronding van het promotieonderzoek. Lijbert, je zakelijke 
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