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Abstract 

Hamelers, H.V.M. (2000) A mathematical model for composting kinetics. Doctoral Thesis, 

Wageningen University, Wageningen, The Netherlands. 

Composting plays an important role in waste management schemes and organic farming, as the 

compost produced enables reuse of organic matter and nutrients. Modern composting plants must 

comply with strict environmental regulations, including gas emissions such as nuisance odors. 

Designing composting plants to meet these requirements using current trial-and-error strategies is 

too costly and time consuming and poor performance and failure are too often the result. 

Mathematical reactor models can serve as an essential tool for faster and better process designs, 

system analysis, and operational guidance. 

However, all reactor models developed so far are based on empirical kinetic formulations, 

restricting the generality and thus applicability of the results. To achieve greater generality for 

design and analysis, a mechanistic model for composting kinetics is needed. Any mechanistic model 

is based on a number of assumptions and must be validated against experiments. To make 

validation possible, all model parameters must be identifiable. A parameter is identifiable if one can 

uniquely determine its value from the data at hand. The objective of this thesis is to develop a 

mechanistic kinetic model of the composting process whose parameters are all identifiable. 

This thesis has been structured in three main parts. 

The first part, "dimensional identifiability analysis," is concerned with the use of dimensional 

analysis of parameter identifiability. Together with a proposed modified deductive modeling 

strategy, this part of the thesis is a methodological contribution to modeling of relatively complex 

systems with limited available measurements. 

The second part, "the single particle model," is focuses on the development and validation of a 

theoretical model for the aerobic degradation of a single waste particle. This theoretical model gives 

insight into the processes occurring within a composting waste particle. An analytical solution of 

this model, containing only identifiable parameters, is both derived and validated. 

The third part of the thesis, "the distributed model," deals with the development, validation and 

application of a kinetic model for a waste consisting of a distributed range of waste particle sizes. 

The model is based on a distribution function describing the particle size distribution and the 

previously developed analytical solution to the identifiable single particle model. The distributed 

model is validated and is used to analyze aeration requirements, compost quality and compost 

quantity for a new composting reactor concept. This model application shows the advantages of the 

distributed model relative to previous first order models for reactor design and analysis. 



1. INTRODUCTION 2 

1.1. COMPOSTING OBJECTIVES 2 

1.2. THE COMPOSTING PROCESS 3 

1.3. THE COMPOSTING PLANT 5 

1.4. MODELLING CONCEPTS 10 

1.4.1. Some definitions 10 

1.4.2. Model building strategy 10 

1.4.3. State concept 13 

1.5. COMPOSTING KINETICS 15 

1.6. DEDUCTIVE MODELLING: MERITS AND LIMITATIONS 18 

1.7. THESIS OBJECTIVE 19 

1.8. THESIS STRUCTURE 24 

1.9. REFERENCES 26 



1. Introduction 

1.1. Composting Objectives 

Composting plays an important role in waste management schemes and organic farming, as it 

enables reuse of organic matter and nutrients. In organic farming compost is considered as an 

essential element for enhancing soil health [1] and disease suppressiveness [2]. 

Compost is generally produced from different types of organic waste like manure and the 

organic fraction of household waste. The primary objective of a compost plant is to produce 

compost conforming to specific product standards with minimal emissions to the 

environment. The quality of the product compost has to be guaranteed, to secure stable 

marketing of the compost. 

The quality of compost is determined by a number of product properties depending on the 

application. Typical applications are production of a soil amendment in field agriculture or an 

ingredient for potting mixes. Each application sets its specified quality criteria. Although 

criteria differ strongly from country to country and application to application, they have some 

aspects in common. These common aspects are: 

• Stabilisation [3] 

Stabilisation refers to the oxygen consumption rate of the compost, a low oxygen 

consumption rate implies a high stability. Application of compost with a high oxygen 

consumption rate may cause oxygen depletion for plant roots, resulting in plant damage. 

Compost is considered sufficiently stable, if the oxygen consumption under standardized 

conditions is below a specific level. 

• Pathogens level[4] 

Human pathogens are an important topic if the waste contains faecal matter, such as materials 

containing raw sewage sludge or night soil. Human pathogens present in the compost may 

cause disease in humans handling the compost. Also crops grown on the compost may be 

contaminated, endangering the health of the consumer. Plant pathogens can be present in the 

waste if it contains infected plants or plant parts. Plants grown on compost or in a soil 

amended with plant disease contaminated compost can get damaged after infection. 

Both human and plant pathogens are rapidly killed if the temperature is sufficiently high. 

Temperature induced decay and other decay mechanisms are operating during composting. A 

sufficiently long residence time of the waste at a certain temperature level is often used to 



guarantee pathogen reduction. This criterion can be easily checked as temperature is relatively 

simply recorded. 

• Dry matter content 

In practice a dry matter content in the range of 60-70% is often preferred. At this dry matter 

content the material can be easily handled, it is no longer sticky and transport costs are 

minimised. If the dry matter content becomes too high, dust problems may occur during 

handling of the compost. 

The main obstacle for public acceptance of a composting plant is the (expected) odour 

emission. A composting plant is only acceptable if the odour emissions are well controlled [5, 

6]. This has led to the application of so-called closed systems, enabling the collection and 

treatment of off-gasses. These closed systems have higher investment cost and are therefore 

only feasible if the residence time of the waste within the system is minimized. 

A composting plant should thus produce sufficiently stable, pathogen free and sufficiently dry 

compost with minimal odor emissions. To make this possible within economic constraints a 

well-designed operated composting operation is necessary. 

1.2. The composting process 

The biological oxidation of organic matter in solid waste to carbon dioxide, water and heat is 

generally used as an overall representation of the composting process. The microbial 

population in the waste catalyses this oxidation reaction, yielding new biomass. The produced 

heat accumulates in the solid waste, giving rise to a significant temperature ascent. 

The composting rate is a result of the microbial activity inside the waste, and is influenced by 

a number of factors. Biomass, oxygen, temperature, organic matter, moisture and waste 

structure are considered as the most important factors influencing the composting rate [7-15]. 

• Temperature[ 10, 11, 14,16-19] 

A temperature increase within the range of ambient up to 55 ±5 °C is considered beneficial for 

the process rate. Above this level a further temperature climb will lead to inactivation of the 

micro-organisms and consequently a decrease in process rate, a process referred to as 

microbial suicide. Therefore, compost mass has to be aerated sufficiently to remove excess 

heat, preventing too high temperatures. 

• Biomass[20,21] 

Although the microbial biomass catalyses the organic matter conversion, seeding or 



inoculating the process has no major effect on the rate. The composition of the microbial 

population changes strongly during the composing process as a result of changing conditions 

within the composting material. 

• Moisture[19,22-24] 

Drying of the composting waste leads to a lower composting rate in which case addition of 

water is beneficial. However, if the moisture content becomes too high a different limitation 

of the composting rate will occur as the aeration is hindered. A moisture content of 40-60% is 

generally considered optimal. 

• Oxygen[19, 25, 26] 

Oxygen is needed as a reactant and must be sufficiently supplied by aeration. If oxygen 

supply is too low to meet the demand, the oxygen shortage will result in a lower process rate 

and the production of odours. The effect of the oxygen level on the process rate is not yet fully 

documented, however a level of 10 vol.% in the gas phase is considered sufficient. 

• Organic matter[27-30] 

The composition of organic matter influences the degradation rate. Soluble components are in 

general degraded faster than insoluble components. Within the group of insoluble components 

differences exist, especially lignin and ligno-cellulose are relatively slowly degraded. These 

components are only degraded aerobically at a substantial rate by white-rot fungi. 

• Porosity[23] 

A certain air porosity of the waste is needed, to ensure sufficient permeability. If permeability 

is too low more aeration energy is needed to overcome the pressure gradient over the waste 

bed. 

• Particle size[ 14] 

A smaller particle size is assumed to enhance the degradation rate, although the experimental 

evidence is limited. A smaller particle size is beneficial as the surface for hydrolysis is 

increased or the transport of oxygen is enhanced. A too small particle size may lead to a low 

porosity. 

• C/Nratio[31] 

The C/N ratio is often used as a nutrient status of the waste, if the C/N ratio is too high N-

limitation of the composting rate is encountered. A value of 25 is considered sufficient. If the 

C/N ratio is too low excess N may lead to a volatilisation of ammonia. 



1.3. The composting plant 

Under normal operating conditions a composting plant should produce the desired product 

quality. The type of process and waste determine the potential compost quality. The actual 

quality is determined by more factors, notably the operation of the plant. Figure 1.1 shows a 

schematic representation of a typical state-of-the-art composting plant. Apart from the gas 

treatment all operations will be described sequentially starting with the waste acceptance. 

ENVIRONMENT 

WASTE Gas treatment 

Acceptation Pre-treatment Composting Post-treatment Storage 

Amendment Air 

COMPOST 

Figure 1.1: Schematic overview of composting plant 

Waste acceptation 

Acceptance of the waste is important for those quality aspects that can not, or only at high 

cost, be influenced by plant operations. Examples of such aspects are glass and heavy metals 

content. For safety and esthetical reasons glass may be present only at low levels. As glass is 

difficult to separate selectively, only acceptance of waste with low glass levels is a solution to 

the problem. The same applies to heavy metals, if these can not be removed at acceptable cost, 

only wastes with low levels of heavy metals are accepted. In this thesis the emphasis lies on 

composting technology, and the matter of waste acceptance will not be further discussed. 

Pre-treatmentr321 

The waste is pre-treated to obtain a good starting material for the subsequent composting 

process. If the starting material is not optimal, the limited process rate will give insufficiently 

stabilized compost, given the fixed residence time in closed composting systems. Water 

content, energy content, waste permeability, and particle size all are important aspects to 

consider. 



• Energy content 

The energy content of the waste can be too low; in that case insufficient heat is produced 

during the process to evaporate the water. This problem can occur in the case of waste 

material with a high water or ash content. Use of an energy rich amendment can solve the 

problem. This will in general not be compost as compost has a low energy content due to the 

stabilisation. An amendment from outside like sawdust or bark is necessary. 

• Water content 

A low water content limits the degradation rate and adding water to the waste is necessary. A 

possible source of water can be the condense from off-gas cooling. A high water content 

results in poor air permeability of the waste and consequently in poor aeration. Mixing with a 

dry amendment can solve this problem. The amendment can be a solid waste stream, such as 

coarse screenings from the post treatment, compost or may originate from outside. Too high a 

water content thus may cause two problems simultaneously, a poor permeability and a low 

energy content. In such cases an amendment is needed that increases the permeability and 

adds sufficient energy. Such an amendment often will consist of a mixture of compost and an 

energy rich material from outside. 

• Waste permeability 

Apart from the water content, waste air permeability is also effected by the waste 

compressibility. Upon piling the waste, it will experience a mechanical pressure depending on 

the position within the heap. The material at the bottom will encounter the highest mechanical 

pressure. As a result of the mechanical pressure the material will be compressed and the 

permeability will decrease. A high compressibility can be adjusted by using an amendment 

with a low compressibility. 

• Particle size 

Shredding can reduce particle size. A too small particle size may however increase the 

compressibility of the waste. The particle size distribution is important, as large particles tend 

to form air channels leading to preferential flow. An uneven air distribution leads to a 

retardation of the process rate, since in poorly aerated areas oxygen depletion may occur. Size 

distribution can be influenced by selectively shredding of big particles. 

Composting reactorlTOl 

The composting reactor is that part of the compost plant where the waste is actually 

biologically transformed into compost. In intensive composting systems, the reactor is not 

only the container of the waste but also includes the aeration, mixing, control facilities etc. In 



the composting reactor the pre-treated waste is piled on a perforated floor structure. The floor 

structure should enable an even aeration of the waste. The pile is confined within walls to 

prevent air leakage from the pile to the environment and to improve air distribution. Forced 

aeration is necessary, as otherwise a temperature inhibition of the process will occur. 

Continuous mixing of the waste is rarely applied and without loss of generality the 

composting process may be regarded as a static batch process. This so-called static pile forced 

aerated composting operation is therefore the basic composting operation considered in this 

thesis. This composting operation is representative for a typical modern composting plant, and 

most reactor research is aimed at this type of system. 

As a result of the forced aeration the composting material tends to dry. The material can 

become too dry to sustain a satisfactory process rate, and moistening will be necessary to 

reach stabilisation. For an uniform remoistening, mixing of the waste is necessary. In the case 

of remoistening the whole composting operation must consequently be described as a series of 

static pile forced aerated operations. 

Figure 1.2 shows the conceptual framework of this sequencing batch operation as a series of 

three reactors. This configuration makes it possible to control temperature, oxygen and 

moisture level. Before waste enters the first reactor water might be added to achieve a suitable 

moisture level. The reactor is filled and aeration switched on. As a result of the air supply, 

oxidation will start, heat produced and temperature will rise. To prevent a too high 

temperature and an oxygen limitation in the pile, sufficient air must be supplied. A simple 

process control is based on controlling the level of the temperature of the material at a certain 

location within the reactor. If the measured temperature exceeds the set level, the temperature-

control unit will increase aeration. Once the temperature is maintained at its set level, oxygen 

supply will be sufficient and separate control of the oxygen level is not necessary. 

A minimum flow should however be set to prevent oxygen depletion during start-up and at 

the end of the process. 

Within the pile a temperature gradient will develop. The lowest temperatures will 

predominate at the flow entrance point while the highest temperatures will be recorded at the 

flow exit point. Between entrance and exit locations temperature differences up to 50 °C are 

not uncommon. [33-35] This temperature gradient can be made smaller or even eliminated, by 

using air recirculation. By mixing the off-gases with the cooler air entering the system a more 

uniform temperature distribution through the pile is accomplished. This strategy is widely 



employed in mushroom substrate preparation. [36] 

Controlling at a constant temperature implies that the produced heat must be removed from 

the pile. The main mechanism of heat removal is evaporation of water and removal of this 

water vapor with the aeration flow. This causes drying of the material to such a point that the 

process rate may be limited. Mixing and remoistening can take away this limitation. Mixing 

and remoistening is generally done on a fixed time basis and care should be taken to supply 

the right amount of water. After mixing and remoistening the reactor can be filled again and 

the process is continued. 

COMPOST 

Figure 1.2: Schematic overview of composting reactor. 

Gas-treatment 

The off-gases are collected and will be emitted to the atmosphere after cleaning. Odour 

treatment is necessary in almost all cases as odour represents the biggest emission problem in 

composting. A high odour level is the biggest obstacle for public acceptance of the process. 

Composting of materials with a low C/N ratio like animal manure may have problems with a 

high ammonia emission [37]. Gas cleaning can be performed with physical-chemical as well 

as with biological methods. If a biofllter is used, cooling of the off-gases is necessary to 

prevent overheating of the biofllter. The cooling will produce condense that might be 

recovered and used for moistening of the waste. 



Post-treatment 

The composted material is further refined in the post-treatment step. Sieving is commonly 

used to obtain certain size fractions. The minimum quality standards can however hardly be 

influenced during this stage[38]. Water addition is sometimes applied, although only in the 

case of a too dry material. However excessive drying is an indication of sub-optimal process 

and should not be standard practice. 

Storage 

After the post-treatment step the product is either directly sold or stored. Storage requirements 

should always be considered, as the product might not be used on a regular base around the 

year. For instance compost use in field agriculture is almost absent during winter and has a 

peak in the early spring. 

The performance of the composting reactor largely determines the quality of the product. Of 

course proper operation of the other steps is important. However as they serve to optimize the 

performance of the composting reactor, they can be understood as secondary to the 

composting operation. 

It follows directly that proper design and operation of the composting reactor is necessary to 

guarantee a good compost quality and reduced emissions. As composting is primary a 

microbial process, the main function of the composting reactor will be realisation of optimal 

environmental conditions for the microbial population. To define these optimal conditions the 

dependence of the composting rate on environmental conditions, i.e. composting kinetics 

should be known. 

Knowledge of the kinetic optimum is not sufficient. Assume that for a specific waste the 

optimal composting temperature is determined as 45 °C. For pathogen reduction an elevated 

temperature well above 45 °C is necessary. These demands for the operational composting 

temperature obviously conflict, and a temperature level has to be chosen such that pathogen 

reduction is assured while the composting process rate is not too much hampered. In 

composting engineering a trade-off always has to be made between different conflicting 

objectives. Knowledge of the optimum alone is therefore not sufficient and the explicit 

dependence of the composting rate in a broad range of the environmental factors should be 

known. This allows better optimisation through calculation. The best way to achieve this is 

via proper modelling of the process. This motivates the efforts in this thesis to develop a 

suitable and useful composting model. 



1.4. Modelling concepts 

Before discussing composting kinetics modelling in more detail some general notions on the 

model cycle and state space models will be introduced to facilitate the discussion. 

1.4.1. Some definitions 

In this thesis the term model is always used to mean a mathematical model. Aris defines a 

mathematical model concisely as "any set of equations that under certain conditions and for a 

certain purpose provide an adequate description of a physical system"[39]. A physical system 

is an outlined part of reality whose properties one seeks to understand, in this thesis the 

composting rate of a waste sample. A model contains basically two types of quantities, 

parameters that are constant in time and variables that vary in time. An input variable is a 

variable that is not affected by other quantities within the model and that can be freely chosen 

(to some extent) or is imposed by the outside world. The output is a variable that is observed. 

All remaining variables are called internal variables in this thesis. Composting kinetics is a 

dynamic process as its output depends not only on the current input but also all earlier inputs, 

for instance the composting rate is dependent on the temperature history of the sample, not 

only on the current temperature. 

1.4.2. Model building strategy 

A model building strategy describes the steps needed to build an adequate model for a given 

process. A model building strategy is no strict methodology, it is more a set of guidelines that 

have proven useful. In literature many different sets of guidelines can be found, see for 

example [40-47]. Figure 1.3 gives a schematic representation of the model building process 

based on the work of Heij and Eykhoff. The figure is structured around the starting points and 

outcome that are underlined in the text. 

10 
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Figure 1.3:The model building process. 

The starting point of the strategy lies in the phenomenon or process of interest, the theory 

about the process and the objectives of the modelling exercise. Modeling objectives influence 

modelling process during all phases. Typical modelling objectives are understanding, 

describing, predicting, controlling or optimising the process. For instance, in modelling a 

composting process it is important to know whether one wants to have a model that just 

describes the rate of a specific waste or one wants to understand the processes that are 

occurring. In the case of describing the rate one might use an empirical model, while for 

understanding how various factors affect the rate one uses a mechanistic model. Objectives 

are especially important when evaluating the resulting model. 

The process of interest in this thesis is composting kinetics. Associated with this process is a 

body of more or less well developed theory that describes and explains the phenomenon. 

Theory if available leads to a set of a priori concepts about the process. For instance, realising 

that composting is a microbial process leads to inclusion of the concept "microbial biomass" 

into the model. The choice for concepts is also influenced by the model objective. Based on 

the a priori concepts a model structure is defined, i.e. a collection of feasible models is 

constructed. The strategy of deriving a model structure from theory is called the deductive 

strategy (classical modelling, white box modelling), where the theory takes a central place. 

11 



However theory is not always available, or theory is deemed less relevant, in such a case a so-

called inductive strategy (black box modelling) is followed. Instead of deducting a model 

from first principles, a flexible model family (e.g. linear regression, difference equations with 

flexible order, etc.) is chosen as the model structure. The inductive approach tries to find the 

relationship between output and input. 

From studying the phenomenon through experimentation data are obtained. These data are 

used to identify the model that best describes the data. From the theory is it sometimes 

possible to partly specify the parameter values. However parameter values for the specific 

process are often not sufficiently accurately known and parameter estimation is necessary 

from data. The parameter values are estimated by selecting those parameter values that give 

the best correspondence between the model outcome and data. To evaluate the 

correspondence between data and prediction a criterion is needed, that ideally is based on the 

modelling objective. In the inductive strategy model identification is broader in the sense that 

also changes in the model structure can be investigated. Based on the data decisions are made 

on what terms to retain in, add to, or remove from the model. The distinction between 

parameter estimation sec and model identification in a broader sense is not so clear cut, if 

parameter estimation yields zero for a certain parameter value, this might induce a change in 

the model structure. As a result of the model identification an identified model results. 

After having identified the model the validity of the result should be assessed. Model 

validation might be loosely defined as assessing the quality of the model i.e. determining 

whether the model will be adequate for its intended use. As validity is not a clearly defined 

property, it is not surprising there are no universal tools to measure validity. However, a 

number of elements may be distinguished [47]. 

Before validating the model first the extent to which the model can describe the data is 

evaluated. This is a not an element of model validation, as during model development the 

parameter values have been chosen such that the data and model prediction correspond best. If 

this correspondence is poor the model validity may be doubted, but if there is a good 

correspondence this does not necessarily mean that the model is good. A faulty model 

containing sufficient parameters may well be able to describe the data very well. 

A first element of model validation is to compare the model prediction with new data, i.e. data 

that have not been used for parameter estimation. Although this test is better than using the 

data used for parameter estimation it still does not tell whether the model represents the 

underlying structure of the process [48]. 

12 



A second element is to investigate to what extent the model structure corresponds to what is 

known about the process. Elements of this step are comparing parameter values and the output 

development to what is known or expected. This is not a step that can be put rigorously in a 

statistical framework like the first element. However it does give information on how good 

the model represents the underlying structure of the process. This latter step makes sense only 

for the deductive modelling strategy. 

Iteration (not shown in figure) is an important step in modelling process. If at some stage of 

the modelling process the outcome is not satisfactory, this stage or some previous stage has to 

be repeated. 

The inductive and deductive strategy can be viewed as the extremes of a continuum of 

modelling strategies. Intermediate strategies, using both theoretical elements and empirical 

functions are sometimes called grey box modelling. These grey-box modelling strategies are 

commonly used, however this concept needs the concepts of inductive and deductive 

modelling for definition and tools. 

1.4.3. State concept 

The state is a vector of variables that are assumed to sufficiently accurate represent the process 

at some point of time. Variables are called state variables if knowledge of the current state and 

the future inputs completely describes the future development of the process, i.e. it is not 

required to know the history of the process. Using the state concept a dynamic process is 

conventionally [45] represented as: 

eq.1-1 ^ = f(X(t),u(t),0) 

at 

eq. 1-2 y(t)= g(x(t\u(t),0) 

t : time 

x(t) : n-dimensional state vector 

u(t) : m-dimensional input 

6 : q-dimensional parameter vector 

y(t) : p-dimensional output vector 

f,g : vector valued functions 
13 



A vector expression is natural as in most cases more than one state variable is involved. The 

following elements can be distinguished in a state-space representation: 

State variables 

The state variables are assumed to represent the essential aspects of the process under study. 

Typical state variables in composting would be temperature, oxygen, moisture content etc. A 

state variable generally shows a spatial and temporal development in response to the influence 

of other state variables and/or the environment. An important application of models is 

predicting the trajectory of the state variables in time and space. 

Constitutive relationships 

The state variables are linked to each other via a number of relations and some or all state 

variables are linked to an input. If the model is meant to reflect a physical reality, such a 

linkage represents some physical, chemical or biological interaction. These equations are 

derived from chemistry, physics and biology, for instance the Monod-relationship describing 

the growth rate of a bacterium as function of substrate concentration. 

Parameters 

Parameters are part of equations describing the constitutive relationships. Parameters are 

typically constant and independent of the state variables. Parameters are generally not directly 

measurable and must be inferred from some type of experiment. If the relationships reflect 

some well accepted principle it is often possible to relate the unknown parameters to results of 

other research. 

Input 

The input describes the influence of the environment on the process. Typical examples in 

composting are airflow rate, mixing, etc. The initial state of the state vector can also be 

viewed as an input, but because it is a constant vector it is often useful to consider it part of 

the parameters. The input sometimes can not be observed, for instance the initial biomass 

concentration in composting. In such a case the unknown initial state can be treated as a 

unknown parameter. 

Output 

The output describes which part of the process is observed. This can be a direct observation of 

the state variables or some other derived measures as a conversion rate. Once the model is 

available, also other quantities of interest for which no observations are available can be 

14 



computed. These are sometimes called "performance outputs". 

A specific state-space representation without the specified parameter values is often referred 

to as a model structure in systems science literature. However to fully characterise a process 

not only a model structure but also a specific set of parameter values is needed. In control 

theory a model is often defined as a model structure together with a specific set of parameters. 

The same model structure with a different set of parameter values is in this view a different 

model. This may be confusing as in the engineering literature usually the term "model" refers 

to the model structure only, e.g. the Monod-model. In this thesis we will use model to refer to 

the structure, and a model with a set of specific parameter values will be referred to as 

calibrated or identified model. 

1.5. Composting kinetics 

Composting kinetics is defined in this thesis as a comprehensive set of equations 

(mathematical model) that describes the dependence of the composting rate on environmental 

factors over a range of practical interest. The kinetic model to be developed should be able to 

predict the process rate in relation to the (actual) composition of the waste and (actual) 

conditions to which this waste is exposed in the reactor. 

The process rate is preferably expressed on the basis of a unit amount of waste and not of the 

total amount of the waste. Keener [49] discusses this matter in more detail and proposes the 

following first order model: 

eq. 1-3 — = —k(x,,x2,---xll).[m — me\ 
dt 

m : Composting mass [kg] 

k : Composting process rate constant [h"1] 

Xj : Environmental factor e.g. temperature, oxygen, moisture, etc 

t : Time [h] 

me : Equilibrium mass, i.e. the residual mass after infinite composting time [kg] 

If the environmental factors remain constant in time, integration of the above equation directly 

leads to 

15 
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eq. 1-4 R = — = e ' 2 "' 

R : Compost mass ratio [1] 

The compost mass ratio changes from 1 at t=0 to 0 at t= oo and is a useful measure for process 

progress and consequently compost stability. In case of chicken manure the data of Keener 

[49] show that this model is applicable over a short time period (approx. 3 days), after such a 

period the k-value had to be updated, to reflect the changes in waste composition. In the case 

of yard waste the model is applicable over a much longer period once the peak activity has 

been reached [50]. The value of the first-order constant depends on the type of waste. 

A number of kinetic models have been published in the literature about the dependence of the 

first order rate constant on environmental factors [4, 13, 16, 23, 24, 51-55]. These models 

share the following multiplicative structure: 

eq. 1-5 k(x],x2,...,xn) = ks.fl(x]).f2(x2)..fn(xn) 

ks : Composting process rate constant under standard environmental conditions [h1] 

n : Number of environmental factors 

f, ,f2 : Environmental factor effect function 

The functions f describe the effect of a specific rate determining factor on the process rate 

constant. If the process rate is measured under standard conditions all functions have the value 

1. The most extensive model is still the kinetic model proposed by Haug. This models runs as: 

eq. 1-6 Ra(T,02,M,BVS,FAS) = ks.BVS.f/T).f2(M).f,(02).f4(FAS) 

R, : Absolute degradation rate [kg.hr"'] 

BVS : biological degradable volatile solids [kg] 

kj : Standard rate constant [hr1] 

T : Temperature [°C ] 

02 : Gas phase oxygen content [% vol.] 
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M : Moisture content waste [kg water, (kg waste)"1] 

FAS : Free air space [m3 air.(m3 bulk waste)'] 

An important assumption underlying the multiplicative model is the independence of the 

effects of the different environmental factors involved. However, Richard [18, 26] has shown 

that depending on moisture content, oxygen content and material, the optimal temperature 

varied from 52 °C to 64 °C. The effect also depends on the extent of organic matter 

degradation, thus not only do environmental factors influence each other but also the changing 

composition of the waste influences the effect. Compared to the factors oxygen, moisture and 

temperature, the dependence of the rate on the waste composition has received little attention. 

A distinct feature of the models used to date is that they are inductive models i.e. they try to 

relate directly the input (e.g. temperature) to the output, the composting rate. Although these 

models give a good description of the observed kinetic dependencies, it is expected that the 

data-oriented approach will not yield a comprehensive kinetic model i.e. a model that 

embraces all major environmental factors including waste composition. The following 

justification is given to substantiate this statement. 

1. To investigate all environmental factors and their possible interactions a big experimental 

effort is needed. This is especially so because the heterogeneity of the waste calls for 

numerous replications. For instance to determine the effect of oxygen and moisture on the 

optimal temperature Richard performed the experiments at three moisture levels, three 

oxygen levels and four temperatures. To achieve sufficient accuracy each combination 

was measured three times, yielding a total of 108 experiments. Trying to include two 

additional factors like pH and porosity in this scheme would give 3x3x108 experiments, 

which gives a total of 972 experiments. 

2. A number of factors (biomass, particle size) are expected to be important but can not be 

measured. For instance biomass can not be measured as no techniques are available for 

quantitative measurement in an organic waste matrix [56]. This makes it impossible to 

come up with an inductive model for these factors. As these factors tend to be variable, 

they constitute a source of variability when measuring the effect of other factors. 

None of the aforementioned objections is of a principal nature, i.e. with sufficient effort and 

smart measurement techniques they could be overcome. Nevertheless taking into account the 
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current measurement standards in composting the inductive approach seems to have reached 

its practical limit. 

The lack of a theoretical framework for composting kinetics thus seems to be the main 

obstacle for further development of kinetics and hence a deductive model approach is needed 

to achieve further progress. 

1.6. Deductive modelling: merits and limitations 

In the previous section it has been argued that the empirical approach has been developed to 

its limit of practicality. Further progress is not expected because of limits in measurement 

techniques and the resources needed to perform all experiments needed. 

In contrast, mechanistic models exploit not only the data but also a priori information from the 

laws of physics, chemistry, etc. The deductive strategy is expected to lead to models with 

fewer parameters, as no parameters are needed to describe what is already known. As a 

mechanistic model reflects the structure of the process it is expected to yield better 

extrapolations [45]. 

However in the field of environmental and ecological modelling the deductive methodology 

does not always yield adequate models [41, 46, 57-60], and in particular the predictive power 

is low [48]. As the composting process can be considered as a microbial ecological process, 

the problems encountered in the field of ecological modelling may be expected to also occur 

in modelling of composting kinetics. 

The basic problem can be made clear by considering the state space representation. Assuming 

the model to have a solution x(t)=H(x„,u(t),0) and substituting this relationship in the output 

function shows that the output function can also be considered as a function of the parameter 

vector, input and the initial value vector. 

eq. 1-7 y = G(x0,u(t),&) 

If we consider the initial states as parameters that need to be estimated, one may write the 

following model: 

eq. 1-8 y = G(u(t),e) 



© : Extended parameter vector 

This model will be called the conceptual input-output (I/O) model, as it describes the output 

of the system as function of the input and a number of parameters, based on the conceptual 

model. It is important to note that an inductive model has a similar nature, i.e. it tries to relate 

the output to the input using some parameterized relationships. 

If the state space model is made more complex by incorporating more state variables, the 

conceptual I/O model will contain more parameters. The number of (unknown) initial values 

and the number of parameters of the constitutive relationships generally increase. It is obvious 

that if the number of states introduced in the model increases while the number of inputs and 

outputs remain the same at some point the number of parameters needed for deductive 

modelling will be larger than needed for the inductive model derived from the same input 

output set. The larger number of parameters often show to be unidentifiable as non-

identifiability can occur already in relatively simple models [60]. In this situation the 

advantage of a good predictability attributed to deductive modelling might be lost, as 

numerous sets of parameters are able to describe the data set. In this way an increase in the 

number of parameters may lead to an increase in the uncertainty of the prediction. The crux of 

the problem is that what one assumes about the system is much more complex than what one 

observes from the system. [41]. 

The problems of inadequate theory and incomplete measurements are related. If sufficient 

measurements were available, probably more complete and well accepted theory would be 

available. Incomplete measurements are thus a problem both in inductive and deductive 

modelling. Either strategy tends to obscure the problem. The inductive strategy discards the 

theory and thus has no way of knowing that measurements might be lacking. The deductive 

modelling often tacitly assumed that there exists a well-established quantitative theory of the 

phenomenon of interest. This is however not always the case. Neglecting the status of the a 

priori concepts would lead to overconfidence in the predictive power of the model [46]. 

1.7. Thesis objective 

In section 1.5 it has been argued that the inductive approach seems to have reached its limit of 

practicability in the field of composting kinetics and a more deductive approach would seem 

in place. As discussed in section 1.6 it shows that in the field of ecological and environmental 

modelling to which composting belongs, the deductive approach also is limited. Due to a lack 
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of sufficient data and adequate theory, deductive models tend to be overparameterized and 

parameters are often unidentifiable. The problem is made worse because experimentation with 

environmental systems is restricted. Although in composting kinetics, experimentation is 

more accessible the basic problem of insufficient data and inadequate theory is definitely 

present. In such a case deductive modelling might yield models with unidentifiable 

parameters. 

The challenge would seem to lie in developing a deductive model with yet identifiable 

parameters. To meet this challenge the so-called identifiability analysis is introduced as an 

important additional step in the deductive modelling strategy. Identifiability analysis is 

concerned with the question whether and under which circumstance parameters are 

identifiable. Consequently the objective of the thesis is: 

To develop and test a theoretical framework for the composting kinetics that serves as a 

basis for the development of a comprehensive, yet identifiable kinetic model. The 

development of the kinetic model is performed using a deductive modelling 

incorporating identifiability analysis. 

To prevent that the deductive strategy yields an overparametrized model, an additional 

modelling step is introduced, namely specification of an identifiable conceptual I/O model. 

The modified strategy is depicted in figure 1.4, the differences with the general modelling 

strategy as depicted in figure 1.3 will be discussed. 

The main change is the introduction of two types of related models, the conceptual model and 

the conceptual I/O model. Based on theory and the model objective a qualitative conceptual 

will be set up first. The qualitative model is a kind of picture of the process of interest. This 

qualitative model is based on a number of notions and assumptions with different degrees of 

credibility. The credibility may range from well established laws like the principle of mass 

and energy conservation, up to pure hypothesis for instance on the structure of waste. The 

model objectives influence the conceptual model via the selection of boundaries and the level 

of sophistication. The qualitative model will next be transformed into a set of equations. In 

this thesis the state space representation is used. This type of model is a natural choice as it is 

based on a number of balance equations describing the fate of the different components 

present within the composting particle. The result of this step is the so-called conceptual (state 

space) model, as represented in eq. 1-1 and eq. 1-2. 
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Figure 1.4:The modified model building process. 

As a first step the conceptual I/O model will be set up, i.e. the function relating the input to the 

output without reference to the state variables, as represented in eq. 1-8. In this thesis an 

analytical solution is sought as this improves the insight in the process. To arrive at an 

analytical I/O model it will be necessary to use a number of simplifying assumption during 

the derivation. In this thesis two main techniques will be employed. 

1. State aggregation 

By reducing the number of states the number of initial values is reduced. The aggregation of 

states implies also aggregation of the associated constitutive relationships, and consequently 

leads to a reduced number of parameters. It depends on the nature of these relationships 

whether acceptable approximations can be achieved or not. 

2. Separation of time constants 

A state model often introduces different sub processes like microbial growth, diffusion and 

mixing. If the sub processes have a considerable faster or slower dynamics, they can be 

represented either as pseudo-steady state descriptions (fast, e.g. pH equilibrium) or as 

constants (slow, dissolution of inert materials). 
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As a limited amount of measurements is available, probably the parameters in the conceptual 

I/O model will be unidentifiable. Therefore if the conceptual I/O model is unidentifiable, a 

new conceptual I/O model will be derived, one that contains only identifiable parameters. In 

this thesis two techniques will be mainly used. 

1 Dimensional analysis 

In this thesis it will be shown that dimensional analysis is also a very useful tool in 

identifiability analysis. It offers a simple way to convert part of the unidentifiable parameters 

into groups of identifiable parameters. 

2 Practical identifiability analysis 

Practical identifiability analysis makes it possible to investigate the experimental conditions 

under which the I/O model is identifiable. In this thesis the main experimental condition taken 

into account the duration of he experiments. For the practical identfiability analysis and the 

experimental set-up simulation data are used that are generated by the conceptual model. 

In this way a new conceptual I/O model arises, with identifiable parameters. Because this 

identifiable I/O model finds it starting point in the conceptual model, a relationship between 

the parameters in the original conceptual I/O model and the identifiable can be established. 

This relationship gives some insight in the physical basis of unidentifiability. The parameter 

in the conceptual model will be referred to as basic parameter while the parameter in the 

identifiable I/O model will be called aggregated parameter, as they often are a function of a 

number of basic parameter. 

For model validation, it is important to note that one is dealing with two types of models, the 

conceptual model that parameterises the whole process, and the identifiable input-output 

model that parameterises the relationship between input and output as implied by the 

conceptual model. Although both models are related, the nature of their validation differs. The 

identifiable conceptual I/O model can be primarily treated as a model relating input and 

output. The capability of the model to do such is the essential test. As the parameters are 

estimated minimising the prediction error, bias and variance of the prediction error are useful 

statistics to assess the model performance. 

Validation of the conceptual model must be considered in a different fashion. From the 

reduction it has become clear that it is often not the full model but only part of it is that is 

validated. Validation of the identifiable conceptual I/O model is thus a necessary but not a 

sufficient condition for validation of the full model. If the estimated parameter values are in 
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accordance with current knowledge, it may be assumed that the right hypotheses have been 

made, which gives an enhanced credibility to the conceptual model. 

The credibility of the conceptual model can also be assessed using a comparison of alternative 

conceptual models. Comparing a number conceptual models means comparing the associated 

identifiable I/O models. The conceptual model that has the identifiable conceptual I/O model 

that best describes the data has the highest credibility. If the identifiable conceptual I/O 

models describe both the data well, the only way to distinguish between them is by applying 

additional different inputs to the process. Only those models consistent with these new stimuli 

will be retained. 

Distinction between the conceptual model and the I/O model is thus also helpful for model 

validation. The identifiable I/O model can be validated against data in a stricter manner, while 

the conceptual model can be only checked for credibility. 

Using the modified modelling approach in this thesis a theoretical model with an associated 

identifiable I/O model is developed. This combination of models makes it possible to: 

1. link existing knowledge on kinetics to more general theory on microbial kinetics. For 

instance if it is possible to incorporate the parameters microbial yield and growth rate in 

the model, values of these parameters from the literature can be used. This makes more 

information available for modelling. 

2. get more insight into the structure of the composting process. This insight is a result of the 

fact that a theoretical interpretation is given to the data. This is not only of scientific 

interest but might also open up new ways for process improvement. 

3. make a more efficient use of the relative scarce data. As it is practically impossible to 

obtain the combined effects of all relevant environmental factors (temperature etc.) for the 

same type of waste, it is not surprising that different inductive models have been put 

forward for the effect of the same factor [13]. However these different data could be 

interpreted and used in a more coherent way, by a conceptual identifiable I/O model as the 

interactions are accounted for in the aggregated parameters as they are based on the 

conceptual model. 

4. extrapolate the results to some extent. The objective of the kinetic model is to correctly 

predict the composting rate under the condition prevailing in a composting reactor. In a 

composting reactor many different combinations of factors will occur and prediction 

outside the measurement range (time, temperature, type of waste, moisture etc) will 

probably always occur. As has been argued in section 1.5, this is because it is practically 
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impossible to measure all potential combinations of factors. Extrapolation outside the 

realm of measurement is risky if the model is based on data solely. However if one has a 

model that is structurally valid, it is expected that extrapolation still makes sense. 

1.8. Thesis structure 

In chapter 2 the dimensional analysis is introduced as a new tool to investigate parameter 

identifiability. Dimensional analysis is used to prove a new necessary condition for parameter 

identifiability and gives a simple tool to construct the maximum number of parameter groups 

that are identifiable. Dimensional analysis also plays a role in facilitating further identifiability 

analysis by reducing the number of parameters involved. 

In chapter 3 the so-called conceptual model is developed based on theoretical knowledge. 

This model represents the structure to the best of our knowledge. Use has been made of 

lumped variables to prevent the model from becoming unwieldy. 

In chapter 4 an analytical conceptual I/O model is developed for the OUR time course. The 

analytical model is an approximation of the conceptual model. The quality of the analytical 

model is based on a comparison of the behaviour of the conceptual and the analytical model. 

In chapter 5 the analytical conceptual model is validated. The identifiability of the parameters 

in the analytical model is first studied, together with the experimental design. This 

identifiability will be mainly based on dimensional analysis and a local identifiability 

analysis. A transformation will be performed to get an analytical identifiable conceptual I/O 

model for the OUR time course. Experiments with a so-called flat plate system are described 

that give the data needed for the parameter estimation. Where possible the aggregated 

parameter of the identified models will be compared to the basic parameters in the conceptual 

model. 

In chapter 6 a distributed model will be developed. This is done in two steps. First an 

appropriate distribution function is chosen based on an extension of the conceptual model 

developed in chapter 3. Combining this distribution function with a slightly simplified version 

of the identifiable model developed in chapter 5 will yield a new model describing a set of 

distributed parameters. 

In chapter 7 the distributed model will be investigated for its practical identifiability, again 

with a local identifiability analysis. Validation of the distributed model takes place by 

comparing the response of a distributed model system with the response of the flat plate 

system 
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In chapter 8 the predictive capability of the new kinetic model is compared to that of the 

generally used first order model. To do so a comparison of the both models capability to 

predict the OUR time course at a low gas phase oxygen content is made. 
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2. Dimensional analysis and parameter identifiability of state space 

models 

2.1 Introduction 

Dimensional analysis is widely applied in mathematical modeling of physical systems and is 

primary used as a guide line in setting up models and model analysis [1, 2]. Dimensional 

analysis is based on the principle of dimensional homogeneity that states that a relationship or 

model should be conceptually valid irrespective of the choice of the system of units involved 

[3]. Application of dimensional analysis leads to a reduction of the number of variables and 

parameters involved in a certain model structure. This reduction is achieved by transforming 

the original model structure to a dimensionless model structure via the famous n-theorem [4]. 

The result is an equivalent model structure with dimensionless groups that are combinations 

of variables and parameters of the original model. 

Theoretical mathematical models of physical systems contain physically interpretable 

parameters i.e. parameters that have a specific meaning. In many cases the parameter values 

are (partly) unknown and experiments are performed to arrive at the correct parameter values. 

An input is given to the system and the output is monitored. From these measurements 

knowledge about parameter values is extracted. These measurement are in general not 

dimensionless, they will have some associated unit. 

Making a model structure dimensionless causes difficulties for parameter estimation purposes. 

The dimensionless groups will contain both measured variables as well as parameters that are 

yet unknown. Parameter estimation is thus not possible with the transformed dimensionless 

measurements, as the parameters needed for transformation are not known beforehand. This 

makes a straight application of the El-theorem in the field of parameter estimation difficult. 

This does not mean, however, that in parameter estimation dimensional analysis can not 

play a useful role. This chapter is intended to show the usefulness of dimensional analysis 

in the field of parameter estimation, more specifically in parameter identifiability analysis. 

A parameter estimation routine fed with data will aim to generate a parameters vector that 

describes the data best in some sense. If there exist more parameter vectors that describe the 

same data set equally well the following problems may arise: 

- The parameters do not give a unique physical representation of the system. This is a 
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problem when the model is going to be used for extrapolation or prediction. If the 

description is not unique, one may end up with different extrapolations depending on the 

parameter vector used for prediction. 

- A non-unique parameter vector might yield an ill-posed identification problem, i.e. the 

parameter estimation routine might fail. 

It is thus important that the experiment is designed such that a unique parameter set is 

identified. Identifiability analysis is trying to answer the question whether the results of an 

intended experiment will yield a unique parameter estimate. A parameter that can be uniquely 

determined is called identifiable. Identifiability analysis has been introduced by Bellman and 

Astrom [5]. Since then a large body of papers has been published on this issue, see for a 

review [6]. 

Basically two approaches might be distinguished for identifiability analysis, the so-called 

structural or theoretical identifiability analysis and the so-called practical identifiability 

analysis. The theoretical identifiability analysis aims at determining which parameters can be 

uniquely identified from the data at all. The practical identifiability analysis is involved with 

the question whether the data and the model structure allow a sufficiently accurate parameter 

estimation. Even if a parameter can theoretically be uniquely determined it still might be the 

case that several values for this parameter give nearly the same data set. In such a case the 

unique parameter vector is hard to resolve. A parameter should thus not only be theoretically 

but also practically identifiable. 

There exist methods to assess theoretical and practical identifiability for both linear and non

linear models [7]. Especially for non-linear these methods require extensive symbolic 

manipulation and extensive calculations, probably hampering a more widespread use of these 

methods [8]. 

In this paper the usefulness of dimensional analysis in the field of parameter identifiability 

analysis will be investigated. It will be shown that by dimensional analysis a (partial) 

simplification is sometimes possible. This partial simplification reduces the complexity of the 

theoretical identifiability analysis and shows connections with model structures with known 

identifiability properties. 

When studying practical identifiability it is common to use some kind of scalar identifiability 

measure [9]. By optimizing this measure in relation to the experimental input an optimal 

experimental design is sought. It will be shown that by applying dimensional analysis a less 
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complicated optimization problem can be constructed. 

This paper is application oriented and its primary goal is to show the usefulness of applying 

dimensional analysis to the area of parameter identifiability. All ideas are applied to the 

parameter estimation from batch culture data. To make the paper self-contained first some 

concepts linked to dimensional analysis, parameter identifiability and microbial growth 

models will be introduced. 

2.2 Basic concepts 

2.2 A Units, measures and dimension 

Engineering literature often equates dimensional analysis with the famous Buckingham El-

theorem. As this theorem is very powerful and useful it often hinders a broader view on the 

theory of physical dimensions. The major notions and theorems on dimensional analysis are 

as follows. 

To a physical quantity Q a value can be assigned by means of a suitable measurement. 

Performing a measurement consists of two steps, selecting the appropriate unit U and 

carrying out the comparison of the physical quantity with the chosen unit. 

The result of the measurement is a numerical value the measure, expressing the ratio of Q to 

U. The measurement result thus consists of a numerical value (the measure) and a unit 

associated with the measurement. Take as an example, the measurement of the distance 

between two points. The distance is the physical quantity, one uses a measuring stick with a 

length of 1 m, which is adopted as the unit. Comparing the length of the distance with the 

measuring stick gives as a result the ratio distance: measuring stick = the measure. 

After accepting the meter as a basic unit one can start to define the unit for area. The choice of 

a unit is to some extent arbitrary and one might use for instance the hectare as the area unit. 

Accepting meter as length unit and the hectare as the area unit, the equation for the area of a 

rectangle runs as: 

eq.2-1 A = 1/10,000 Lx.Ly 

A : Area of rectangle [ha] 

Lx, Ly : Length of rectangle sides [m] 
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The constant 1/10,000 is only introduced to account for the difference in length and area unit. 

If one would change the basic length unit from m to mm, one had to change the constant in 

eq. 2-1. This type of constant is called an arbitrary constant as it is used for unit conversion 

only, it reflects no physical relationship[10]. 

The common standard area unit is the area of a square with unit length, the area unit thus 

being m2. Using the m2 area unit the area of a rectangle can be calculated as: 

eq. 2-2 A = Lx.Ly. 

A : Area of rectangle [m2] 

This equation does not change upon a change in the distance unit. The m2 area is a so called 

derived unit. A derived unit is composed of basic units, according to some definition 

relationship. Use of derived units makes it possible to arrive at consistent set of units. A set of 

units is consistent if the use of this set does not lead to arbitrary constants in the physical 

relationships. Basic units are also referred to as primary or fundamental units. Basic units are 

independent, they can not be derived from each other. The basic units together form the unit 

system. 

The derived unit of a physical quantity Q can be generally represented as: 

eq.2-3 {Q} = U^ 

{Q} : Unit of Q 

U,.. Uk: k Fundamental units 

dj : Dimensional exponents with respect to basic unit i. 

The measure of a physical quantity depends on the system of units used. Whenever we are 

setting up or manipulating an equation describing some physical reality, we do not worry 

about the specific units chosen. The only requirement is that the same system of basic units is 

used throughout and that the derived units are consistent with these basic units. In such a case 

the variable coincides with the measure. 

Sometimes in the text we are considering more than one system of basic units and we have to 
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refer explicitly to the dependence of the measure on the system of basic units. In such a case 

we denote the measure as 6|U , in which U denotes the specific system of basic units used. 

Even a set of consistent basic units is to some extent arbitrary, for instance the physical 

quantity length can be measured with different basic units as m, cm, mm, km, foot, yard etc. 

These units have in common that they can measure each other, they can be compared to each 

other, expressed in some ratio. Changing a basic unit will likely influence the measure. 

Consider a new unit of length with a measure L expressed in the original length unit. The new 

consistent unit of area will have a measure of L2 expressed in the original length unit. L2 is 

called the measure formula and is the mathematical expression for the measure of the new 

consistent unit expressed in terms of the original consistent unit. This expression is by 

convention also referred to as the physical dimension, i.e. independent of a specific set of 

basic units [11]. The physical dimension can be considered as a variable that describes all 

potential units that can be compared to each other. The variable L thus stands for all potential 

length units (m, cm, mm, km, foot, yard etc). In the sequel a dimension will be indicated with 

a bold capital letter (L = length, T =time). The dimension of a single physical entity can 

therefore be represented by the dimensional vector [Q] 

eq.2-4 [Q] = 
d. 

KdkJ 

i.e the vector of the dimensional exponents of the fundamental units U (see eq. 2-3). It should 

be noted that this vector is independent of the set of basic units and it only depends on the 

definition of the dimensions. 

2.2.2 Dimensional homogeneity 

Consider a relationship between a (dependent) physical quantity Q, and some (independent) 

physical quantities Q2.. .Q„, Q,= f(Q2.. .Qn). If this relationship is a sound physical description 

the equation(s) should be invariant for the choice of the basic units. Would this property not 

hold, then the result of a relationship would depend on the system of units chosen. This is 

certainly an unwanted situation, as two observers would see a different reality only because 
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they were using different unit systems. A meaningful physical relationship between physical 

entities should thus be independent of the choice of the system of units. The relationship 

should be such that if the system of fundamental units is changed the outcome of the 

relationship using the new measures should be the original outcome expressed in the new 

system of units. A relationship holding this property is called dimensional homogenous. A 

relationship is thus dimensionally homogeneous if the relationship, 

eq. 2-5 ||e,|u||=/(|e2|u|,||e3|u|,-,|a|u|) 

holds for any consistent set of basic units. 

The property of dimensional homogeneity can be studied with an algebraic framework of 

which Langhaar gives an excellent overview [3]. Central in this framework is the dimensional 

matrix. The dimensional matrix is formed by aligning the dimensional vectors of all physical 

quantities involved. The rows indicate the dimensions involved, while the columns stand for 

specific quantities. 

eq. 2-6 [a,&,-,a]= 

(du dl2 

4.. du 

\dk,\ dk,2 

• d, 

k,n J 

A central issue in dimensional analysis is the question whether a specific relationship is 

dimensionally homogenous. To test dimensional homogeneity two theorems can be 

employed, the Rank-theorem and the Differential theorem. Both theorems are described by 

Langhaar and express a necessary and sufficient condition for a dimensionally homogenous 

relationship. The first is a straightforward combination of the theorems 6 and 7 of Langhaar 

[3]. 

Rank (R)- theorem 

The relationship Q,= f(Q2.. .Qn) is dimensionally homogeneous if and only if the dimensional 
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matrix [Q2,.QJ has the same rank as the dimensional matrix [Qi,Q2..Q„]. 

Differential Equation (D)-Theorem 

A differentiable function Q,= f(Q2...Q„) is dimensionally homogeneous if and only if it is a 

solution of the (set of) differential equation(s): 

eq. 2-7 [ f i , & , • • & , ] • 

a-

a-

-a 
<r(a,--a) 

322 

<r(a.---a) 
32. 

. 

V 

0 

,0, 

Of course the dimensional homogeneity of a given relationship can be simply checked by 

hand. The interesting aspect of these theorems is that the functional relationship need not be 

known, as only a list of physical quantities involved suffices to check the dimensional 

homogeneity. 

2.2.3 The n-theorem and dimensional analysis 

The ri-theorem describes how a dimensional relationship can be transformed into similar 

relationship containing only dimensionless variables. These dimensionless variables are 

products of the original dimensional variables. The number of dimensionless groups is in 

general smaller than the number of original variables. The n-theorem states: 

n-Theorem 

Every relationship F(Q,.. .Q„)=0 between n physical quantities can be reduced to a equivalent 

dimensionless form between k dimensionless groups ns, F(n,,..nk)=0, k<n. The value of k 

equals n - m, in which m is the rank of the dimensional matrix [Q,.. .QJ. 
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Application of the Il-theorem has a number of advantages [2]: 

(i) The number of physical quantities that enter the relationship is reduced which makes it 

easier to treat the problem at hand. This is true when solving equations, but also when 

performing experiments. A reduction of variables is even possible if the exact functional 

relationship is not known yet. 

(ii) Seemingly different models may appear to be similar when put in dimensionless form. 

This may make it possible to use results already derived from other systems, 

(iii) Dimensionless numbers give insight in scaling. Scaling is only physically meaningful if 

two quantities have the same dimension. Dimensionless numbers make scaling possible 

when more dimensions are involved. 

The dimensionless groups can be constructed from the dimensional matrix of the physical 

quantities involved. In most practical situations the number of physical quantities involved (n) 

will be larger than the number of basic dimensions involved (k). To find the dimensionless 

groups the dimensional matrix (see eq. 2-8) is separated in a left side identity matrix and a 

right side residual matrix. This separation can be achieved by applying Gaussian reduction. 

eq.2-8 [fi,22,- -,&,L = 

f 1 0 0 -
.. 1 ... . 

0 0 1 0 0 

1 

0 0 0 •• 

0 

0 

1 

dlM\ ••• 

diM\ ••• 

dk,M ••• 

••• « c 

- d,n 

••• dKn, 

[Qi>Q2>- • QJR Reduced dimensional matrix 

Left of the dashed line the first k columns form the identity matrix, right of the dashed line the 

remaining n-k columns form the residual matrix. From this reduced dimensional matrix the n-

k dimensional groups can be constructed as [4]: 
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* 
•4 eq.2-9 n , = QJ+k ]J Q?,J* 

k : Rank of dimensional matrix. 

n : Number of physical entities 

j : j lies in the range 1 ..n-k 

i : i lies in the range 1 ..k 

djj : Element i j of reduced dimensional matrix. 

Ilj : Dimensionless number j 

In this way a set of mutually independent dimensionless numbers is constructed. It should 

however be noted that there are more ways to construct these sets depending on the choice of 

the physical quantities making up the identity matrix. 

2.2.4 State space models and estimation 

Continuous dynamic systems can be conveniently represented in state space form as: 

&(0-/W0,«(0,<9) eq. 

eq. 

X 

*0 

Q 

0 

2-10 

2-11 

State vector, *(f)e 9?" 

Initial values 

Admissible parameter 

Parameter vector, 0e 

dt 
*(0) = 

yif) 

space 

Qc5R" 

y{t) = g{x(t),u{t),8) 

[0,T] : Time interval considered 

t :Time, te[0,T] 

u(t) : Input vector, u(t) e 9T 

f : Vector valued state function 

g : Vector valued output function 

40 



y : Output vector, y(t) e 5R ' 

The state space model representation is widely used to model phenomena in natural sciences. 

In engineering state space models are derived from the mass and energy balances describing 

the phenomenon at hand. The state variables x describe together the state of the system under 

study. The input describes the influence of the environment on the system. The interaction of 

the state variables with the input and the interaction between the state variables determine the 

development of the system over time. These interactions are described by the state vector 

function f, containing the parameter 0. Here only state space models with parameters that have 

a physical interpretation will be considered, where the parameter value quantifies the 

relationship between state variables. The output y describes the information obtained from the 

system through some kind of measurement. 

Knowledge of input, initial values and parameters make it possible to predict the behavior of 

the system, i.e. calculate the trajectories in time (and space) of the state variables, irrespective 

of the previous history. 

In most practical cases not all information is available and experiments have to be performed 

to obtain the missing information. In an experiment one applies an input to the system, 

observes the output and tries to deduce the parameter values from the results thus obtained. 

For the estimation of the parameters a (vector valued) function is needed that relates the input 

to the output. In this so-called input output (I/O) function the state variables as such play no 

role. The state variables are auxiliary signals of the system that are not measured, but only 

used to represent the system [12]. This can be illustrated in the following way. An obvious 

prerequisite for the model 2-10 is of course that the model has a solution, i.e one can write 

eq. 2-12 x(t)=F(t,x0,0,u(t)) 

F : Solution to function f 

Substitution of this solution into the output equation (eq. 2-11) gives: 

eq. 2-13 y(t) = g(F(t,xo,0,u{t)),0,u(t)) 
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This shows that the output is only linked to the parameter vector, input and initial values, and 

the state variables as such play no role. In (environmental engineering) practice often only 

limited measurements are possible because reliable affordable sensors are lacking [9]. This 

means that in practice initial values are unknown or are controlled by a known momentary 

input. The unknown initial values will be treated as a parameter, and an extended parameter 

vector q is defined that contains the proper parameters and the unknown initial values. An 

extended input vector is defined which contains the proper input and the controlled initial 

values. Without loss of generalization the input-output relation can thus be formally written 

as: 

eq.2-14 y(f) = h{q,z(t)) 

yif) 

q: 

z 

h 

Estimated output 

Extended parameter vector 

Extended input 

Vector valued I/O function. 

The parameter vector q is estimated by finding that parameter vector that gives the closest 

match between the predicted and measured output. Conventionally the parameters are found 

by minimizing a quadratic objective function J: 

eq. 2-15 j(q)= [(ym(t)-h(q,z{t)Ydt 

J : Objective function 

ym(t) : Measured output at time t 

As already noted, in (environmental engineering) practice limited measurements are often 

available. This makes the question whether the estimation procedure will lead to a unique 

value of q particularly meaningful. Parameter uniqueness is a desirable property as it prevents 

ambiguity in interpretation of data and predictions. 
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2.2.5 Identifiability 

If a parameter has the property that it can be uniquely estimated it is called identifiable. 

Identifiability analysis is concerned with the techniques needed to assess the existence of this 

property. Identifiability can be investigated by determining whether output obtained with 

different parameter values can be distinguished one from another, independent of the value of 

other parameters. Only if this is the case a parameter can be uniquely identified. The problem 

of distinguishing between parameters can thus be replaced by the problem of distinguishing 

between outputs [13]. There are a number of different closely related definitions of 

identifiability. In this chapter the definition as proposed by Walter [7] will be used. 

Parameter identifiability definition 

Consider a model y =h(q, z(t)) as defined before, (eq. 2-14). Consider two parameter vectors r 

and q. The parameter q( is said to be identifiable if h(q,z(t))=h(r,z(t)) implies that q(= r̂  

It should be noted that the property is defined for a specific parameter. This property needs 

not to hold for all model parameters, some parameters may be identifiable while others are 

not. If this property holds for all parameters in the model, it is said that the model is 

identifiable. Both definitions have a local analog, local identifiability is defined over the 

neighborhood of a specific parameter value. The main question is how to determine these 

properties. There is a large amount of literature on identifiability for linear systems but few 

methods exist for nonlinear models. Some methods will be specifically mentioned as use is 

made of them. 

Local identifiability 

Local identifiability is a necessary condition for global identifiability. Local identifiability 

analysis is more frequently applied in the literature than global identifiability analysis as it is 

easier to use. If the parameter values are approximately known a local identifiability analysis 

might give sufficient information. An important tool to study local parameter identifiability is 

the sensitivity function. The sensitivity function is defined as the first derivative of h with 

respect to a specific parameter. The sensitivity function shows the effect of a small parameter 

change on the response of the system. 

43 



eq. 2-16 
A ' dq, 

S; : Sensitivity function of function h for parameter i 

Sensitivity functions are used for sensitivity analysis and local identifiability analysis. In 

sensitivity analysis the sensitivity coefficients are used to quantify the effect of a parameter on 

the output of the model. Beck and Arnold state that parameters are identifiable, if the 

sensitivity coefficients are linearly independent over the range of observations. They derive 

this criterion from studying the prerequisites that guarantee the existence of a minimum of a 

generalized least squares sum The sensitivities are expressed by means of the sensitivity 

matrix K, given by: 

eq.2-17 K(q) = 

K(q) : Sensitivity matrix 

z; : Input z(t) at t= t. 

(ch(q,z,) 
dq, 

3i(q,z) 
dqx 

ch{q,z„) 

, <%i 

Mg.zx) 
dqj 

3i(q,z) 
dqj 

ch{q,zn) 

dq, 

oh(q,z,) 

*P 

3i(q,z) 

ch{q,zn) 

*P 

If the rank of this matrix equals the number of unknown parameters then the parameters are 

identifiable[7]. This criterion is equivalent to the linear independence of the sensitivities [14]. 

This criterion can also be used to investigate the presence of structural identifiability i.e. 

irrespective of the estimation method used [7]. 

Global identifiability 

There are several methods to investigate global identifiability for dynamic systems [15]. In 

this paper the power series expansion method according to Pojanpahlo [16] will be used. The 

method is based on expanding the output function as a Taylor series. The series and thus the 

output function is only distinguishable if the different derivative terms are unique. 
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Consider an input-output function y(t) = h(q,z(t)) as in eq.2-14. It is sufficient for the 

identifiability of the system that the set of equations 

eq.2-18 hk(q,z(6))= hk(r,z(0)) k = 0~<x, 

in which: 

hk : k-th Time derivative of the output function at t=0 

q, r : Parameter vectors 

implies that q=r. 

Three main steps can be distinguished when using the procedure. For a general nonlinear 

system the procedure involves three main steps[17]. 

1. Successive differentiation of h(q,z). 

2. Evaluation of hk(q,z(0)) by substitution of quantities already known from lower 

derivatives 

3. Solving q as a function of r, and checking the uniqueness of the solution. 

Practical identifiability 

If the model is correct and the measurements are error-free, a perfect match can be found, so 

the lowest possible value of the objective function J will be zero. In the error-free case, the 

parameter vector for which J(q)=0 will be called the nominal parameter vector q„. However, in 

practice measurements are always corrupted and the minimal value of J will be larger then 

zero. If the measurement error variance p2is considered additive one can write for the 

(expectation) of the objective function using experimental data: 

eq- 2-19 Jexp(q)=J(q)+p2 

J(q) : Objective function using error-free data, i.e. model error. 

Jexp(q) : Objective function using experimental data, i.e. containing an error 

p2 : Error variance 
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Consider a parameter vector q in the neighborhood of the nominal parameter set qn. For the 

nominal parameter set J(qn)=0 and thus the value of the objective function using experimental 

data is expected to be: Jexp(qn) = p2.For any q *q„ this means that Jexp(q)-Jexp(qn)=J((ln) >0- Thus 

in presence of an additive error, the parameter are also identifiable. However if p2 » J(q) then 

Jexp(q) and Jexp(qn) are practically the same and it is practically impossible to identify qn as a 

unique estimate. Thus we would like Jexp(q) - Jexp(qn) to be maximized. This is what optimal 

experimental design wants to achieve, optimizing the experimental input such that the 

practical identifiability is maximized. 

Along these lines an identifiability measure has been developed by Reich. The principle of the 

method [18] is as follows. Given the input and assuming the model to be correct a measure for 

practical identifiability can be obtained by studying the correlation-like matrix R,,: 

eq. 2-20 Re = D l M e D 1 

in which the matrix D equals the diagonal matrix: 

eq. 2-21 V = diag{y[^l,y[^2 yfmZ) 

where Me is the symmetric matrix with elements m^ defined by: 

eq. 2-22 m,. = L£dh((<lM) dh{(q,z{tk)) 
k-l dqt dqj 

: Number of observations 

The elements of D represent the sensitivities of the individual parameters while the matrix 

Rg represents the redundancy of the parameter. The value of the inverse of the determinant of 

Re, |Re|""' is used as the identifiability measure. Reich states that if |Rg| "' > 104 the parameter 

will be not practically identifiable. 
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2.3 Dimensional parameter identifiability analysis 

2.3.1 Single parameter identifiability 

Parameter identifiability implies that each (potentially) observed error-free trajectory can be 

associated with a single value of the identifiable parameter. This property is a direct 

consequence of the identifiability definition. If two values of the same parameter would give 

rise to the same data set, the parameter is not identifiable by definition. This means that for 

each identifiable parameter there will exist a parameter identification function such that: 

eq.2-23 q^dfaz) 

qi parameter i 

d, :parameter estimation function belonging to parameter i 

Essential for application of dimensional analysis is the question whether this relationship is 

dimensionally homogenous. As estimation is concerned with a realistic physical situation, it is 

expected that this parameter identification function should be dimensionally homogenous. To 

prove this conjecture we start by assuming that the parameter is identifiable and that the 

parameter identification function is not dimensionally homogenous. It will be shown that 

these assumptions lead to a contradiction, proving that parameter identifiability implies 

dimensional homogeneity of the parameter identification function. The proof runs as follows: 

(i) The input-output relationship under study y = h(z,q) is dimensionally homogenous. This 

assumption is valid as the input-output relationship describes a physical reality, 

(ii) The parameter qj is an identifiable parameter and consequently has an estimation function 

dj such that qi = dj(y,z). This follows directly from the definition of identifiability. 

(iii) The estimation function dj is not dimensionally homogenous by assumption, 

(iv) From the R-theorem it follows that if the rank of the dimensional matrix [qi;y,z] equals the 

rank of [y,z], than the parameter identification d< function would be dimensionally 

homogenous. As assumption (iii) states that parameter identification d| is not 

dimensionally homogenous it follows directly that r([qj,y,z])>r([y,z]). As addition of a 

single column to a matrix can lead at most to an increase of the rank by one it follows that 
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r([qj,y,z])=r([y,z])+l. Here the notation of r(A) as rank of matrix A is introduced 

(v) As the dimensional matrix [y,z,q„..qn] has more columns than r([q;,y,z]) it follows directly 

that r([y,z,q„..qn]) > r([qj,y,z]) and in combination with (iv) that r([y,z,q„..qj) > r([y,z]) 

+1. 

(vi) The dimensional homogeneity of the input-output relation (i) implies that there exists a 

reduced dimensional matrix. As r([y,z,q„..qn]) > r([y,z]) +1 (v) at least one column 

representing the dimensional exponents of a parameter is needed for the construction of 

the identity matrix part of the reduced dimensional matrix. The parameter qf can be used 

for this purpose as r([qj,y,z])=r([y,z])+l (iv). The reduced dimensional matrix can thus be 

based on the ordering of the physical quantities as: [y,z,qj,...qj ...],j =l..n,j * i . 

(vii) As the input-output relationship is dimensionally homogenous it follows directly that the 

input-output relation is a solution of the vector of differential equations given by D-

theorem. The differential equation at position i = r([y,z])+l runs as: 

eq-2-24 f q,***™*-*,-,. =0 

This equation holds as the elements dy of the reduced dimensional matrix are zero for i < 

r[y,z]+landj=r([y,z])+l. 

(viii) From (vii) it follows directly that the parameter q; is locally not identifiable, and thus also 

not globally. This proves that the assumption of identifiability implies that the parameter 

estimation function is dimensionally homogenous 

(ix) Combining the R-theorem with the result (viii) gives the 

Dimensional non-identifiability theorem (Dl-theorem). 

A parameter q( is non-identifiable if the rank of the dimensional matrix [y,z] i.e. of the 

observed quantities is smaller than the rank of the dimensional matrix [y,z,qf] i.e. of the 

observed quantities together with the parameter q{. 

A parameter that is detected to be unidentifiable with this criterion will be called 

dimensionally-non-identifiable. Any parameter for which the rank of the dimensional matrix 

[y,z] equals the rank of the dimensional matrix [y,z,q] is potentially identifiable. It wil be said 
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that such a parameter is not dimensionally-non-identifiable. This somewhat cumbersome 

expression arises from the fact that the Dl-theorem is a necessary but not sufficient condition 

for parameter identifiability. A direct consequence of this theorem is that a dimensionless 

parameter is always not dimensionally-non-identifiable. 

2.3.2 Unobserved dimensions free representation 

Dimensional analysis is able to detect whether a parameter is dimensionally unidentifiable. 

The presence of a non-identifiable parameter makes parameter estimation troublesome. The 

parameter estimation routine may fail, and interpretation of parameter values is difficult. In 

the following it will be shown that if a model is dimensionally non-identifiable, it is possible 

to transform this model into a model that: 

- contains fewer parameter 

- contains only not dimensionally-non-identifiable parameters 

- has an output function that is indistinguishable from the original. 

(i) The starting point is an output-input relationship y=h(z,q),as has been defined before 

which is dimensionally homogenous, i.e. r[y,z,q] = r[z,q]. The parameter vector q contains 

p parameters. Let n be the total number of dependent and independent variables. 

(ii) The number of dependent and independent variables equals the rank of the dimensional 

matrix [y,z]=n. This means each measured variable represents a basic dimension. Addition 

of an another measured variable with the same dimension adds no new information from 

the point of view of dimensional analysis. It is therefore perfectly valid to neglect 

additional measurements with the same dimension. 

(iii) If the I/O model is dimensionally non-identifiable, there is at least one parameter that is 

not identifiable. As a consequence of the Dl-theorem this means that r[y,z,q]=v>r[y,z]. 

(iv) If the I/O model is dimensionally homogenous, then according to the El-theorem there 

does exist an equivalent dimensionless representation with at most m=n+p-v 

dimensionless groups. 

(v) As m is the upper bound on the number of dimensionless groups that are needed to 

describe the I/O-relation, then m is also the upper bound on the number of identifiable 

parameter (combinations). 

(vi) According to the Dl-theorem the m dimensionless groups are all not dimensionally-non-
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identifiable. Together with (v) this implies that there exists an equivalent representation of 

the I/O-relationship that contains no dimensionally-non-identifiable parameters. However, 

this equivalent relationship describes the data in a dimensionless framework. This is 

theoretically fine, but when performing actual measurements and parameter estimation, 

the data can not be made dimensionless, as the parameters needed for rendering the 

dimensionless parameters are not known yet. 

(vii) To apply dimensional analysis to parameter estimation one needs to construct a 

representation free of unobserved dimensions. The unobserved dimensions are those 

dimensions that are part of the dimension of a parameter but not part of the dimension of 

the observations. The unobserved dimensions are represented by the rows i>n. As an 

example see the reduced dimensional matrix for 4 dimensions. 

eq. 2-25 

1 

0 

0 

0 

o ! o 
1 | 0 

o i l 

0 | 0 

0 

0 

0 

1 

4.4 • 

4,4 • 

4.4 ' 

^4,4 • 

' 4 , • 

•• 4 , „ + / 

•• 4,„+p 

•• 4,n+„ 
d4,n+P , 

Above the horizontal line are the observed dimensions, below the line the unobserved 

dimensions. Left of the vertical dashed lines are the columns representing the dimensional 

vector of the input and output. Left of the second uninterrupted line are the columns 

representing the dimensional vector of the physical quantities that make up the basis for 

making the relationship dimensionless. 

(viii) Similar to the construction of dimensionless groups parameter groups (eq. 2-9) can be 

constructed that are free of unobserved dimensions. These parameter combination that are 

free from unobserved dimensions can be constructed as: 

eq. 2-26 
i=n+i 

i: « + l...v 

\-m 

q; 

j : 

: Unobserved-dimensions-free-parameter combination j 

It easily checked with the Dl-theorem that these m groups are not dimensionally-non-

identifiable. 
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(ix) The I/O function that is transformed with these parameters contains only observed 

dimensions, thus only parameters that are not dimensionally-non-identifiable. The number 

of these parameters is m= n+p-r[y,z,q]. The I/O function obtained in this way has the same 

equivalent dimensionless representation as the original I/O model and is thus equivalent to 

the original. 

(x) Although the dimensional transformation of the I/O function leads to an equivalent 

function, the solution of the I/O function is often not known. In these cases the parameters 

are estimated from a numerical integration of the original model. To achieve the same 

result in the simulated I/O function, the original state space model can be dimensionally 

transformed to the representation free of unobserved dimensions. 

These findings can be summarized as: 

Unobserved Dimension Free representation (UDF) theorem 

If the rank of the dimensional matrix [y,z,q] =v and the rank of the dimensional matrix of the 

observations [y,z] equals n then the maximum number of identifiable parameter combinations 

equals p+n-v. If n<v then there are at least v+l-n (original) parameters that are dimensionally-

non-identifiable. The identifiable parameter combinations can be found by gaussian reduction 

of the dimensional matrix [y,z,q]. The identifiable groups are constructed from this reduced 

matrix according to eq 2-26 

2.4 Examples: Batch microbial growth 

2.4A Basic model equations 

In a batch reactor the growth of a heterotrophic organism oxidizing an organic compound is 

often described by the Monod-equation: 

— = S X 
eq.2-27 dt ~Mm'Ks+S' 

t = 0, X = X0 
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d§_ = _}_dX_ 
eq. 2-28 dt~ Y,' dt 

t = 0, S = S0 

X : Microbial biomass density [X.L°] 

S : Growth-limiting substrate [S.L"3] 

t : Time [T] 

|am : Maximum growth rate [T 1 ] 

Kj : Half-saturation constant [S.L3] 

Ys : Microbial yield on substrate [X.S1] 

These two equations that together describe the batch growth dynamics are the starting point 

for the identifiability analysis. Apart from the biomass and substrate concentration, 

sometimes the so-called oxygen uptake rate (OUR) is measured by respirometry. The OUR 

is the amount of oxygen consumed per unit time and per unit volume. The OUR is described 

by: 

eq. 2-29 OUR = ^ = - . .X 
Yo2 Ks+S 

OUR : Oxygen uptake rate [02.T'.L3] 

Y02 : microbial yield on oxygen [X.02"'] 

Instead of the usual indication of units, the dimensions are indicated as X for biomass 

amount, S for substrate amount, L for distance and T for time. This convention is adopted 

to stress once more the difference between a unit and a dimension. Substrate and biomass 

have different dimensions, as they indicate the amount of a substance. According to the SI 

convention (1998), the preferred expression is mole of substance. Of course one can express 

both the substrate and biomass in kg per m3. Although the unit is then seemingly the same, 

the dimension isn't! 

The identifiability of the parameters in the basic model i.e. Ys, |j.m, Ks, S0, Xowill be studied 

in dependence on the type of measurement available; The case that both substrate and 
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biomass are measured is the basic model MO. However, in practice it is not always possible to 

measure both substrate and biomass concentration. Three different cases will be discussed in 

which only one type of measurement is available. The case that only substrate is measured is 

called Ml. M2 is the case in which the oxygen uptake rate (OUR) is measured. This model 

contains an additional parameter Y02. Model M3 is characterized by the measurement of 

only the biomass concentration. 

2.4.2 Model MO 

Both the substrate and biomass concentration are a function of the parameter, initial values 

and the time. The dimensional matrix can be set up using the dimensions T, S, X and L for 

the consecutive rows 1 to 4. The column sequence of the matrix is similar to the ordering of 

the dimensional exponents S, t, X, Ys, fxm, Ks, S0, X,,. The dimensional matrix has been set up 

and transformed into an identity matrix with the associated left residual matrix. This operation 

gives as a result that none of the parameters are dimensionally non-identifiable. This is not 

surprising as all state variables are directly measured and therefore the matrices are not 

explicitly presented. 

2.4.3 Model M1 

In case of the substrate measurement only the I\0 model can be described as S = h(t, Ys, ̂ iro, 

Ks.So.X,,). The dimensional matrix can be set up using the following dimensions T, S, X and 

L for the consecutive rows 1 to 4. The column sequence of the matrix is similar to the 

ordering of the quantities in the I/O function, i.e. are formed by the dimensional exponents S, 

t, Ys, |im, Ks, S0, XQ. Setting up the dimensional matrix gives as a result: 

eq. 2-30 

f 0 1 0 - 1 0 0 0} 

1 0 - 1 0 1 1 0 

0 0 1 0 0 0 1 

-3 0 0 0 - 3 - 3 - : 

This matrix is transformed into the right identity matrix and the left residual matrix. This 

gives as a result: 
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eq.2-31 

(\ 

0 

0 

l« 

0 

1 

0 

0 

0 

0 

1 

0 

0 

- 1 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1> 

0 

1 

0; 

Although four dimensions are distinguished, the rank of the dimensional matrix [S, t, Ys, \im, 

Ks, S0, X J is 3. This is reflected in the reduced dimensional matrix as the fourth row consists 

of zeros only. This means that the distance dimension (L) is superfluous, the S and X 

concentration can in this case be considered as a basic dimension in their own right. The rank 

of the dimensional matrix of the observations, i.e. r[S, t] =2. According to the UDF-theorem 

this means that a maximum of 5+2-3 = 4 parameter groups can be identified, while at least 5-

4+1=2 parameters will be dimensionally non-identifiable. 

The first two rows reflect the dimensional exponents associated with the observed dimensions 

T and S. The third row reflects the unobserved dimension X. The parameters um, Kg, S0 are 

not dimensionally non-identifiable, none of them have non-zero dimensional exponent in the 

third row. The parameters Ys and X^ are dimensionally non-identifiable, as they contain a 

non-observed dimension. This can be seen from the presence of non-zero dimensional 

exponent in the third row. The parameter combination XO/Ys however is not dimensionally 

non-identifiable. 

As an explicit solution for the I/O function is not known, the original model will be 

transformed such that only not dimensionally non-identifiable parameters remain. This can be 

done by using the transformation Z=X/YS. This gives the following modified model: 

eq. 2-32 

dZ__ S 

dt ~^m'Ks+S 

t = 0, Z = Z0 

Z 

eq. 2-33-
dS_ 

dt 

dZ^ 

' dt 
t = 0, S = Sn 
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The effect of the transformation is that the parameters Ys, and X„ have been replaced by a 

single new parameter Z0. This representation can be used for numerical integration, needed for 

the parameter estimation. 

2.4.4 Model M2 

The I/O function is OUR = f(t, Y02, Ys, p^, Ks, X,,, S0) and contains 6 parameters. The rows of 

the dimensional matrix are ordered according to the dimensions T, 02, S, X. The distance 

dimension is left out, as incorporation would show it to be superfluous again. The columns are 

ordered according to the listing of the quantities of the I/O function. Constructing again the 

reduced dimensional matrix [OUR,t, Y02, Ys, p.m, Ks, XQ, S0] gives as a result: 

eq. 2-34 

(\ 

0 

0 

o 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

- 1 

0 

0 

1 

1 

1 

- 1 

1 

1 

1 

0 

1> 
1 

1 

- 1 

The rank of the dimensional matrix [OUR, t, Y02, Ys, \xm, Kg, X,,, S0] =4, while the rank of 

[OUR,t]=2. This implies (UDF-theorem) that the I/O function contains maximally 6+2-4= 4 

parameters or parameter combinations that are not dimensionally non-identifiable. There are 

at least 6-4+1 = 3 original parameters dimensionally non-identifiable. 

Looking at the rows under the horizontal dashed line indicates that the parameters Ys, Y02, X„ 

and S0 are not identifiable. The parameter (combinations) \im> KS.YS/Y02, X/Y02 and S0.Ys/YO2 

are all not dimensionally non-identifiable. The original model can be transformed into a 

system with only parameters that are not dimensionally non-identifiable (Z, = X/Xg, Z2 = 

S-Ys/Y02, K^ = Ks.Ys/Y02): 

eq. 2-35 

dZl _ Z2 

dt ~MmK0X+Z2 

t = 0, Z.=Z,0 

•Z, 
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dZ2 _ dZ, 
eq. 2-36 dt dt 

t = 0, Z2=Z2fi 

eq.2-37 OUR = /im. Z* -Z, 
Kox+Z2 

2.4.5 Model M3 

This model can be treated along similar lines as for substrate Ml. The main result is that the 

following parameters are not dimensionally non-identifiable; p.m, KS.YS, X,,, S0.Ys.Using the 

transformation Z=S.YS, Z0=S0.YS and Kx=Ks.Ys, the following transformed model is 

obtained: 

— = z
 x 

eq.2-38 dt Mm'Kx+Z' 
t = 0, X = X0 

dZL__dX_ 
eq. 2-39 dt ~ dt 

t = 0, Z = Z0 

2.4.6 Model similarity and global identifiability 

An important advantage of dimensional analysis is that it brings the model to its structural 

essential, it might connect models that might otherwise look seemingly different. This will be 

illustrated by application to the study of the global identifiability properties of the models 

M0..M3. Holmberg [19] studied the global identifiability of the model MO extended with an 

additional biomass decay term. This model proved to be identifiable. However, this does not 

imply that the model MOwill be identifiable, as removing one term might make a model non-

identifiable [6]. 

It must be realized that if a parameter has been shown to be identifiable in the framework of a 

certain model structure, this result is independent of the units of the physical quantities 

involved. This is the principle of dimensional homogeneity applied to identifiability. This 

means that the result of the analysis is independent of the units attributed to the different state 
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variables, as long as the model structure is not changed. 

To better show the similarity between the models some variables are renamed, and the output 

is written in terms of the new variable names. The results of this operation are shown in table 

2.1. 

Table 2-1: Overview of M0..M3 expressed with similar variable 
names 

Model 

MO 

Ml 

M2 

M3 

Rename 

X = ZX 

S = Z1 

z = z, 
s = z2 

x = z, 
z = z2 

Equation 

dZ, Z2 ^ 
— - = M„- —Z. 
dt m Ks+Z2 ' 

t = 0, Zt=Zh0 

dZ2 _ 1 dZ, 
dt Ys ' dt 

t = V, Z2 = Zj 0 

dZt S 
—- = u„- z, 
dt m Ks+S ' 

f = 0, z,=z,fi 
dZ2 _ dZx 

dt dt 
t — U, Z 2 = Z 2 0 

Output 

y = 

y = 

y = 

y = 

'z; 
^ 2 / 

(z -z \ 
l ^2 J 
(z -z > 

f z' ' 
V 2 ~Z20^ 

This table shows that the model Ml, M2 and M3 are identical, while MO only differs through 

the presence of the yield coefficient Ys. The models Ml, M2 and M3 are thus special cases of 

the original model MO with Ys =1. 

The main difference between the models is the type of output, MO has two outputs X and S 

while the other models have a single output. However for the models Ml, M2 and M3 two 

outputs can be reconstructed. For model Ml it follows directly from eq. 2-28 that Z-Z0 = S0-S. 

This means that from the measurements of S a second output Z-Z0 can be reconstructed. To 

obtain a similar output for model M2 one has to consider that: 

eq. 2-40 
dt dt 

57 



From this it follows straightforwardly: 

Zx-Zy, = [0UR{x)dT 
eq. 2-41 * 

Z2-Z2Q=-l0UR(T)dT 

This means these two outputs similar to S and X in the model MO can be constructed from the 

output OUR. The output for M3 can be constructed in the same fashion as for Ml. All outputs 

are tabulated in table 1 using the new variable names. 

As first step in investigating the global identifiability of all models M2 has been investigated. 

The result of the analysis is that the model is identifiable, i.e. all parameters are identifiable. 

The details of the analysis are not shown, they showed analogous to the analysis of Holmberg 

[19], with the difference that in our analysis an additional time derivative had to be taken into 

account. 

With this result the of the other models M0,M1 and M3 can be easily checked using the 

following outcome of the power series expansion theorem (eq. 2-18). If y(t) = h{q,z(t)), with 

all parameters identifiable and the initial value y(0) equals zero then parameter q is than also 

identifiable for a modified output y'(t) equalling y(t)+g(q). 

(i) The first equation of the system of equations generated according to eq. 2-18 for the 

original output y(t) runs as: 0=0 and gives thus no information on identifiability. 

(ii) As the parameters are identifiable this means that the subsequent equations imply: q=r . 

(iii) The first equation of the system for the modified output y'(t) runs as: qo+g(q)=ro+g(r). 

(iv) The remaining equations for the modified output y'(f) are the same as for the y(t) as 

dt 

(v) Results iii and iv together show that the subsequent equations imply q=r and thus that the 

model equations are also identifiable for the modified output. 

As model M2 has a zero initial output for both output, it follows directly that Ml and M3 are 

also globally identifiable. For model MO the identifiability of Ml implies that the parameter 

u, Ks and Z,fi=XJYs, can be identified. However as X„is measured, Ys can be directly found 

from Z, 0 and all parameters are identifiable. 
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2.4.7 Practical identifability model M2. 

The practical identifiability of the estimation of the Monod parameters from a batch culture 

with only substrate measurement (model M2) will be studied using dimensional analysis. The 

main aim is to show the usefulness of the application of dimensional analysis. The practical 

identifiability measure IRJ"1 as defined before will be used. The most informative experiment 

can be designed by looking for the optimal value of this identifiability measure in relation to 

the experimental input. In case of Monod kinetics this is an essential step, as has been shown 

by Holmberg for a batch culture [19]. In a batch culture depending on the chosen initial 

substrate level the variance of the estimated maximal growth rate constant can range between 

5% and 700%. 

The practical identifiability measure should preferably be dimensionless. The measure is then 

independent of the choice of units. The measure IR "̂' as discussed before is indeed 

dimensionless as the inspection of the matrix R quickly reveals. 

The practical identifiability measure IRJ"1 depends on: 

the parameters um, Ks, S0, X</Ys 

It must be noted that the two parameters S0, Xo/Ys are assumed to be under experimental 

control. The initial substrate concentration can be freely chosen and measured. Although the 

biomass concentration can not be measured it is assumed that the initial biomass 

concentration can be influenced by the amount of seed. 

- the measuring frequency fM 

The measuring frequency describes the number of observation per time unit. In general a 

higher measuring frequency will lead to better practical identifiability as more information is 

obtained. In this thesis we are mostly interested in on-line measurements and we will analyze 

the situation that the frequency is sufficiently high. 

- the cultivation time. 

Holmberg showed that with an increasing experimental time the practical identifiability 

increased. With insufficient culture time the substrate concentration at the end of the 

experiment is still much higher than Ks. This means that during the experiment the parameter 

Ks does not influence the output and thus is not identifiable. Consequently instead of the 

experimental time the substrate concentration at the end of the experiment (SE) will be used as 

a measure of the cultivation time. 
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Accepting this list of relevant quantities it is clear that there exist a relation between the 

practical identifiability measure \RQ\'1 and the listed quantities. 

eq-2-42 |Rel"' = Aft* U Hm,Ks,S0, X</Ys) 

Applying the Fl-theorem to this relationship gives the dimensionless relationship 

eq.2-43 1^1'= fill.AAA) 

in which, 

eq. 2-44 

n, 

n2 

n3 

n, 

So 
_ Xo 

S0-Ys 
_ s E 

So 
_ J M 

Mm 

Assuming that n4 is so large that a further increase no longer gives a substantial improvement 

of the practical identifiability, it may be concluded that the practical identifiability is in 

essence only influenced by the three dimensionless groups n „ Tl2 and n3. The number of 

influencing variables to be optimized is reduced by two, the number of observed dimensions. 

This makes the optimization less complicated, as fewer variables need to be taken into 

account. 

Figure 2-1 shows the results for the effect of n „ n2on the identifiability measure 

IRel"1. The dimensionless parameter n3 has a value of 10A Based on experimental times listed 

in literature this is a realistic value. The X-axis shows the log value of n „ the Y-axis the log 

value of n2. The value of log flRel"1) is shown as contour lines. The figure has two distinct 

minima expressed as log values around (-1.4, -0.9) and at (-4, -0.9) The last minimum is 

clearly lower and would the preferable experimental set up. 
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n, H 

-1.5 

Figure 2.1: Contourplot of |/?e|"' as a function of17/ and IJ2- Note the logaritimic 
scale of the X and Y-axis. The numbers denote log(\R^x) values. 

Practical identifiability of the Monod model in batch culture has been previously investigated 

in literature. Holmberg investigated the effect of the ratio Ks/S0 = n , by lowering the Ks 

value. This gives a number of points parallel to the horizontal axes (H1,H2,H3,H4). Holmberg 

found the point H3 to be the optimal experimental design. 

Yoo [20] proposed a sequential design based on the Fischer information index. The points 

Ml, M2 and M3 represent sequential improvements of the estimation. It shows nicely that 

indeed their approach leads to an improved estimate. Robinson [21] investigated the 

identifiability with a visual inspection of the sensitivity functions, and studied the points Rl, 

R2 and R3. They found the point R2 to be optimal. 

It is interesting to note that the results of these studies conform with this figure. This is clearly 

a good indication of the soundness of this approach. It also shows the advantage of this 

approach. The optimal location can be directly read from one curve. 

It is also clear that all these previous studies missed the existence of a better minimum. This is 

probably due to the fact that in all studies the initial biomass concentration was fixed. 
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2.5 Discussion 

Dimensional analysis is a tool widely used in mathematical modelling. It's strength lies in the 

fact that is an easy technique that may simplify the model under study. This simplification 

will save work and effort in subsequent modelling steps. 

In parameter estimation straight application of the Fl-theorem is not possible, as the 

parameters needed for construction of dimensionless groups are unknown. The essence of this 

chapter is that a meaningful application of dimensional analysis is possible by looking at the 

unobserved dimension free representation. This means one aims not at removing all 

dimensions (dimensionless representation) but at removing those dimensions that are not part 

of the dimensions of the observations. In this way information on what is observed is 

incorporated in the dimensional analysis. With this in mind it was shown to be beneficial to 

apply dimensional analysis to the problem of theoretical and practical identifiability. 

Theoretical identifiabilitv 

One type of non-identifiability can be assessed with the dimensional method developed in this 

paper (Dl-theorem). The source of the non-identifiability is the incomplete observation of all 

the fundamental dimensions involved. In this way the method gives more insight into the 

nature of the problem of parameter non-identifiability. 

Using the reduced dimensional matrix it is possible to transform the model such that the 

parameters remaining have only observed dimensions. This technique is very useful as it can 

be used without specific knowledge of the functional relationship between observations and 

parameters. In this way any dimensionally non-identifiable parameters are removed from the 

model structure. 

Dimensional analysis is not a replacement for formal theoretical identifiability proofs. It is 

more a tool to be applied before embarking on a more formal method. The gain to be expected 

is that if dimensional non-identifiability occurs this can be removed, and a simpler 

transformed model can be used as a starting point for the formal method. This has been 

illustrated with an example of Monod kinetics during batch cultivation. 

Practical identifiability analysis 

If a practical identifiability measure is used that is dimensionless, application of the II-

theorem leads to a substantial reduction of the influencing factors. In this way it is easier to 

define an optimal experimental design. This has been done for the model Ml, and indeed 

showed to give a good insight in the design of an optimal experiment. 
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Dimensional analysis can thus profitably be applied both for theoretical and practical 

identifiability analysis. Depending on the model, using the dimensional analysis might: 

(i) Give insight into the presence of source of non-identifiability 

(ii) Remove this source of non-identifiability 

(iii) Give a model with a smaller number of parameters for identifiability analysis, 

(iv) Show a relation between identifiability of parameters of related models, 

(v) Give a better insight in the optimal experimental design. 

Dimensional analysis alone is not a sufficient tool for theoretical or practical identifiability 

analysis. Other formal tools are yet needed, however, applying dimensional analysis prior to 

formal identifiability analysis reduces the complexity of the problem at hand. It is concluded 

that dimensional analysis is a powerful and easy method that merits wider application in 

parameter estimation. 
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3. A theoretical model of a single composting particle: 

development and simulation 

3.1 Introduction 

The Oxygen Uptake Rate (OUR) is the amount of oxygen that is taken up by a unit sample of 

waste in a unit period of time. It is the most important composting process rate indicator as it 

is directly linked to the composting reaction[l], it is linearly linked to heat production 

independent of molecular substrate composition [2, 3]and it is a direct measure of compost 

stability[4]. The OUR depends strongly on the state of the waste, e.g. temperature and 

moisture content influence the OUR [5-7]. 

To predict the OUR a kinetic model is needed that relates the rate determining factors to the 

OUR. Kinetic models developed so far are empirical multiplicative models [1]. Multiplicative 

models have the following structure: 

eq. 3-1 OUR(Xl,x2,...,xn) = OURs.ffa).f1{x1)..fm(xm) 

OUR : Oxygen Uptake Rate [mol Oj.rn'.s"1] 

OUR,, : Oxygen Uptake Rate under standard conditions [mol 02.m"3.s"'] 

Xj : Rate determining factor i, i=l ..n 

n : Number of rate determining factors 

fj : Function describing the effect of rate determining factor factor i 

The functions ^ describe the effect of a specific rate determining factor on the OUR. If the 

OUR is measured under standard conditions all functions have the value 1. Two questionable 

assumptions are implied by the use of multiplicative models. The first is that the rate 

determining factor are supposed to act independent of each other. This is an assumption that 

requires further investigation, as during composting the waste composition and structure 

strongly changes. The second is that the waste is treated as a kind of homogenous matter, the 

distributed nature of the waste composition is not taken into account. As a waste sample 
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contains many different particles accepting this assumption without further examination is 

doubtful. 

A theoretical model is proposed representing the main biological and transport processes 

occurring in a single composting particle. The theoretical model is synthesized on the basis of 

principles from microbiology, mass transfer and biotechnology. This approach enables use of 

scientific knowledge already available and relates phenomena in composting to more general 

biotechnological principles. The model is based on seven state variables: particle size, 

insoluble substrate, soluble substrate, dissolved oxygen, biomass, inert material and water. 

The model describes the temporal development and if necessary the spatial development of 

the state variables. The processes of microbial growth, microbial decay, microbial hydrolysis, 

diffusion and volumetric change are included. Such models are up to now lacking for 

composting. A first approach to a state-space model for composting kinetics was presented in 

a previous publication [8]. In this chapter the model is extended in the sense that the role of 

water is further elaborated 

The main application of the model is to predict the Oxygen Uptake Rate (OUR) of a 

composting particle in relation to the particle state. The development of in time of the OUR 

and main state variables was studied in detail for the so-called nominal parameters. The 

nominal parameters set describes the composting of chicken manure under thermophilic 

conditions. A parameter sensitivity analysis was performed for the OUR. The effect of the 

waste characteristics on the OUR was further studied by changing the corresponding 

parameter values. All information obtained in this way allows an understanding of the 

sequence of processes occurring in the particle. 

Analysis of the theoretical model shows that the main assumptions underlying the use 

empirical multiplicative models are not justified. Multiplicative models will thus not suffice to 

describe composting kinetics, this will be shown by some examples from literature. The 

theoretical model, in contrary to multiplicative models, can explain these examples. Some 

comments will be made on the steps necessary to develop a practical model from the 

theoretical model. 

3.2 Model development 

3.2.1 Introduction 

The volume of a waste particle is made up of four components, water, insoluble substrate, 
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inert matter and aerobic biomass. Although these components are not pure, the four 

components have distinct physical, chemical and biological properties. Except for water these 

components are treated as solid phases existing in tiny lumps. The solid phases interact only 

via the water phase that is present everywhere within the particle. The tiny particles form 

together a porous matrix, of which the pores are filled with water. The boundary of the waste 

particle is the interface with the gas phase, by definition a waste particle thus contains no gas. 

The water contains soluble substrate that is produced by microbial hydrolysis from insoluble 

substrate. This soluble substrate is oxidised by aerobic micro-organisms, transforming he 

soluble organic matter into carbon dioxide and new micro-organisms, while producing heat. 

This reaction, called the composting reaction, is the basis of the whole composting process. 

The waste particle is exposed to a gas phase that serves as the source of oxygen needed for the 

composting reaction. From the gas-waste particle interface the oxygen will diffuse via the 

water phase into the particle. The concentration gradient necessary to induce diffusion is 

created by the oxygen consumption by the aerobic biomass. 

A typical penetration depth of oxygen within the particle is estimated to be in the order of 

magnitude of 50 urn [8]. This limited penetration is due to diffusion transport resistance inside 

the particle, and not by a mass transfer limitation at the gas phase side. Due to the limited 

penetration of oxygen the core of the waste particle can be anaerobic. Figure 3.1 shows a 

schematic representation of the particle. 

Within the anaerobic core the particle insoluble inorganic material will be converted into 

soluble substrate by microbial hydrolysis. The hydrolysis reaction is brought about by exo-

enzyms excreted by anaerobic micro-organisms. Within the anaerobic region the hydrolysis 

products will be rapidly transformed by fermentative organisms into different fermentation 

products, mainly volatile fatty acids as acetic acid and propionic acid. The energy gained by 

the organisms from the hydrolysis and fermentation reactions is small compared to the energy 

gained from oxidation of these compounds. The energy and the anaerobic biomass produced 

by these reactions is consequently neglected. The rate of the fermentation reactions is in 

general much higher then the hydrolysis rate. The chain of reactions occurring under 

anaerobic conditions can thus be replaced by a single reaction converting insoluble organic 

material into soluble fermentation products. The rate of this lumped solubilisation reaction is 

determined by the hydrolysis rate while the products composition is determined by the 

fermentation reactions and the composition of the original insoluble organic matter. 
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Figure 3.1: Schematic representation of a waste particle, the outer thick black 
line indicates the boundary between the gas phase and the particle. The gas 
phase is flushed with a gas stream (arrows). The white squares indicate the 
insoluble substrate, the white circles the inert matter, the black circles the 
aerobic biomass. The tiny lumps of the solid components form a matrix of which 
the pores are water filled. The gray area between the tiny particles indicates the 
water phase. The water in the outer part of the particle contains dissolved oxygen 
(light gray), the water in the inner region (dark gray) is anaerobic, due to oxygen 
depletion by the aerobic biomass. 

Carbon dioxide will diffuse to the edge of the particle and be removed with the gas flow. 

Carbon dioxide is assumed not to influence transport and conversion processes and will no 

longer be considered. Other mineralization products like ammonia and sulphate will not be 

considered for similar reasons. Nutrients are assumed to be sufficiently present. During 

practical composting the temperature of the material usually increases because of the heat 

produced and a gradient of temperature within a composting pile is observed. Because of the 

small size of the particles almost no temperature gradient exists within the particle. [8]. 

Therefore the temperature gradient over the particle may be neglected. In most modern 

composting operations a temperature control is employed, resulting in a fairly stable 

temperature over time. This means that individual particles will be exposed to a constant 

temperature in time. In this paper therefore only particles with a homogenous temperature in 

space and time are considered. 

Summarising a waste particle is a water filled porous matrix, consisting of two regions, a thin 

outer aerobic layer and a larger inner anaerobic region. The anaerobic region serves as a 
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substrate base for the aerobic layer. Insoluble material is hydrolysed and the soluble products 

are subsequently transported by diffusion to the aerobic layer. Within the aerobic region the 

population of aerobic micro-organisms oxidises the soluble substrate and new aerobic 

biomass is formed. Decay of the aerobic biomass again leads to the production of new 

insoluble material. The OUR is a measure of the actual microbial reaction rate. The 

diffusional transport rate of oxygen, the diffusional transport rate of the soluble substrate and 

the solubilisation rate may limit the microbial reaction rate. It depends on the state of the 

system which process or combination of processes will be determining the overall composting 

rate, a mathematical model is needed to find out which process is rate determining. 

3.2.2 Geometric structure 

The geometric structure of the composting particle is represented as a two-sided flat plate (Fig 

3.2). The left side is the centre of the plate where no net flux occurs. At the right side the 

particle is bounded by the gas phase interface. The flat plate representation can be used to 

model other geometry's also as long as they have the same specific surface area [9, 10] and 

the conversion takes place in a small layer of the particle next to the gas interface. As the 

penetration depth of oxygen is small this approach seems valid. For most regular bodies the 

specific surface area can be written as: 

eq.3-2 A,= — 

As : Specific area [m2.m3] 

a : Body specific constant [-] 

Lc : Characteristic size measure of the body [m] 

In the case of a sphere a =3 and Lc equals the radius of the sphere, in case of a cylinder a =2 

and Lc equals the radius of he cylinder, in case of a two-sided flat plate a =1 and Lc is half of 

the plate thickness. As a two-sided flat plate represents the geometry of the waste particle, the 

specific surface area of a particle is determined by the half-plate thickness. This measure is 

called the characteristic particle size, and will be used to characterise the surface area of the 

waste particle. 
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Figure 3.2: Flat plate representation of the waste particle. The rectangle 1 
indicates the gas phase, that is flushed with a gas flow Q and acts as a source of 
oxygen (O2) and as sink for carbon dioxide (CO2) and heat (AH). As the whole 
system is isothermal and the gas phase is assumed to be saturated with water 
vapor no removal of water takes place. The transport rate of oxygen between the 
gas phase and the particle is determined by the rate of diffusion inside the 
particle. The area 2 indicates the aerobic segment. Here soluble substrate (Ss) is 
oxidized yielding carbon dioxide, heat, water and new biomass (X) In the 
anaerobic core, area 3 the soluble substrate is produced from insoluble 
substrate.(Si) This soluble substrate is transported by diffusion to the aerobic 
region. The decay of microbial biomass is not indicated. 

3.2.3 State variables 

The state variables describe all relevant properties of the waste particle under consideration. 

Based on the pervious description the following variables are taken into account: the aerobic 

biomass concentration X, the dissolved oxygen concentration 02, the soluble substrate 

concentration Ss, the insoluble substrate concentration Sf, the insoluble inert material 

concentration I and the water content W. The tiny lumps of inert material and insoluble 

substrate are considered impermeable and water is retained only at the surface of these lumps 

via adhesive forces. The behaviour of the biomass colonies with respect to water is more 

complex. The water is partly retained within the cell and partly in the pores between the cells 

inside the colony. These water retaining forces inside the microbial colony are considered to 
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be much bigger then those of the other two insoluble components. That is why water is 

divided in two separate phase the colony bounded water and the remaining free water. The 

water content therefor refers to the free water i.e. the water not retained in the colony and will 

be expressed as volume fraction ew. If not otherwise mentioned, water will refer to the free 

water. All other components are expressed as concentrations i.e. as the amount of the 

component per particle volume. This definition eases the structuring of the mass balances, 

however it lacks a thermodynamical meaning. This has to be considered for the dissolved 

species when their influence on kinetics is described. The size of the lumps of insoluble 

compounds is assumed to be so small, that the system can be described as a continuum. 

3.2.4 Conversion reactions 

Three conversion reactions are distinguished, growth and decay of aerobic biomass and the 

solubilisation of the insoluble substrate. The aerobic biomass growth is modeled with a 

Monod-type of growth model. The growth of the aerobic biomass is modeled with an explicit 

dependence on oxygen and soluble substrate. 

eq. 3-3 Rc = / /„. ^ . ^ .X 

RQ : Growth rate of biomass [mol X.m"3.s"'] 

X : Biomass concentration [mol X.m"3] 

0 2 : Oxygen concentration [mol 02 .m3] 

Ss : Soluble substrate concentration [mol Ss.m"3] 

^„, : Maximal conditional growth rate [s1] 

sw : Free water fraction [-] 

Ko2 : Half saturation constant oxygen [mol02 .m3] 

Ks : Half saturation constant soluble substrate [molSs.m
3] 

In case no other factors limits the specific growth rate, the half-saturation constant denotes 

that concentration at which the growth rate reaches half of its maximum value. As growth 

takes generally place in the aqueous phase, the half-saturation constant expresses the activity 

(concentration) of the limiting substance in the water phase. As mentioned earlier 

concentrations are however expressed on the total particle volume. Therefore the half-
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saturation constants need to be expressed on the particle volume basis and not on basis of the 

water phase. This is accomplished by the multiplication with EW. The biomass decay rate R<, is 

given by: 

eq.3-4 Rd=b.X 

Rd : Biomass decay rate [mol X.m"3.s"'] 

b : Biomass decay rate contstant [s1] 

This means that the net production rate of biomass Rx can be written as: 

eq.3-5 RX=RG-Rd 

R, : Net biomass production rate [mol X.m"3.s"'] 

The consumption rate of oxygen Ro2 is linearly related to the production rate of the aerobic 

biomass and is expressed as: 

eq.3-6 R0i = | ^ 

Ro2 : Consumption rate of oxygen [mol 0 2 .m'3.s'] 

Y02 : Biomass yield on oxygen [mol X.mol 02"'] 

The hydrolysis rate of insoluble substrate Rh is described by: 

eq.3-7 *»=M,-

Si : Insoluble substrate concentration [mol Sj.m3] 

Rh : Hydrolysis rate [mol Sj.m .̂s"1] 

k,, : Hydrolysis rate constant [s1] 

The net production of soluble substrate is both influenced by the hydrolysis rate and the 
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soluble substrate consumption rate. The net production of soluble substrate R^ can thus be 

written as: 

eq.3-8 Rs=Rh-^-
s. 

RSs : Net production rate of soluble substrate [mol Ss.m" 3.s"'] 

Y& : Biomass yield on soluble substrate [mol X.mol Ss"'] 

The net production rate of insoluble substrate R^ is given by: 

eq-3-9 Rs=-Rh+^-
Si 

Rsi : Net production rate of insoluble substrate [mol Sr.s"'] 

Ysi : Biomass yield on insoluble substrate [mol X.mol S;"'] 

The second term describes the conversion of dead biomass into insoluble substrate, the 

stoichiometric coefficient is given as a biomass yield. This somewhat counter intuitive 

representation has been selected to get a consequent notation of the stoichiometric 

coefficients. 

During the oxidation of soluble substrate water is formed, however water is also needed for 

the construction of new cells as the largest part of a cell consists of water. Microbial culturing 

is generally performed in aqueous culture and the amount needed for new cells is small 

compared to the amount present. Therefor the amount of water needed for new cells is not 

considered in aqueous cultures. In composting however the amount needed for the 

construction of new cells may locally be considerable compared to the amount locally present 

and should therefore be considered. The amount of water needed for hydrolysis is neglected. 

The net water production rate Rw may therefor be written as: 

eq.3-10 RIV=-V.RX+^-
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R,, : Net production rate of water [mol W.s"1] 

¥ : Biomass water content [mol W.mol X"1] 

Yw : Biomass yield expressed on water [mol X.mole W"1] 

3.2.5 Diffusional mass transport 

As water is fluid and interacts with solid surfaces it moves as a result of a water content 

gradient within the particle. Such a gradient can develop as a result of drying or spatial 

differences in degradation of insoluble substrate. Although this transport has no common 

physical background with diffusion of dissolved species, its transport rate is often treated as 

being linearly related to the water content gradient, giving diffusion like behaviour. The 

colonies have the strongest binding force with respect to water and are therefore assumed to 

have constant water content irrespective of the amount of free water remaining. The remaining 

free water is attached through the action of surface adhesive forces to the surface of the other 

insoluble particles. These forces tend to bring the water distribution to an equilibrium 

condition in which each insoluble tiny lump of insoluble substrate and inert material is 

surrounded by the same equilibrium amount of water. It is assumed that this equilibrium is 

always instantaneously reached. These assumptions imply a spatially constant volumetric free 

water fraction sf based on the total volume excluding the biomass. This exclusion is because 

of the strong water binding inside the colony. The ef will be expressed as: 

V 
eq. 3-11 - - ""' 

A.L-VnX 
C p,A 

Vp,w : Total free water volume within the particle [m3] 

Vp x : Total biomass volume within the particle [m3] 

sf : Equilibrium free water filled porosity [-] 

These assumption with respect to the distribution of water are quite strong, however 

insufficient information is available to refine the assumptions. It is important to note that the 

equilibrium free water fraction is different from the free water fraction ew. This variable has 

been introduced previously as a conversion factor from water based concentration to particle 
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volume based concentrations. Although in practice the difference between these two variables 

will be very small as the biomass volume is relatively small, they need to be distinguished for 

a further coherent development of the model. 

The soluble substrate and oxygen are transported via diffusion in the water phase. This 

diffusion is hindered due to the presence of impenetrable particles of insoluble and inert 

material. The biomass colonies represent also a barrier to diffusion, however this obstruction 

is only partial as diffusion is still possible within a biomass colony, as the biomass colonies 

contains pores with water. As the transport distance is also increased due to the increased 

tortuosity the effective diffusion coefficient will decrease. The effective diffusion coefficient 

is calculated as: 

eq.3-12 Dieff=Drsl 

DiefT : Effective diffusion coefficient of compound i [m2.s"'] 

Dj : Diffusion coefficient of compound i in pure water [m2.s"'] 

Of course this represents again a simplification, however this type of relationship is widely 

used in modelling sediments and soils [11, 12]. Insoluble components diffusion transport is 

excluded due to their grain size. 

3.2.6 Convective mass transport 

As the amount of components present in the waste particle is changing during composting the 

particle as a whole is expected to undergo volume changes. Assuming the particle to retain its 

integrity, i.e. it does not break or crack, a change in particle volume is equivalent to a change 

in particle size. Models that take volume changes of the system itself into account are 

relatively scarce compared to models with constant volume systems, therefore this point will 

be more in detail discussed. 

Figure 3.3 shows a schematic representation of a certain particle volume Vp at time t with an 

area A and a characteristic particle size Lc. The components in the volume Vp fill this volume 

up and the total component volume equals the volume Vp. Within a certain time step dt the 

volume Vp(t) has increased and has become the volume Vp(t+At). This increase of the volume 
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Vp leads to an outward mass flow, as the newly produced material can not be contained within 

the volume Vp(t).Material leaves (in case of net volume production) or enters (in the case of 

net breakdown of volume) the volume Vp at z=Lc as the boundary at z=0 has been chosen as a 

reference point. This means that at Lc at time t a volumetric mass flow with a velocity u 

occurs that equals: 

eq. 3-13 
A At 

A 

V P 

t 

At 

u 

: Total surface area of the particle 

: Particle volume 

: Time 

: Small time increment 

:convective velocity 

K ] 
K ] 

[s] 

[m.s1] 

0 

Figure 3.3: Occurrence of a convective flow u within the waste particle as a 
result of change of the volume of the components contained in volume V(Z). u is 
the convective flow at location z. A is the total cross-sectional area of the flat 
plate system considered. V(z) is the volume from the particle-gas boundary until 
the specific depth z. At the right side the particle is assumed fixed, the left side 
represents the center of the particle. 
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The exact value of the convective velocity can be found by having At approach zero. This 

limit yields straightforwardly: 

,\ dV(t) 
eq.3-14 U(t)=—>±1 

w dt 

It is important to note the same type of movement will occur within the particle at each depth 

z. The reasoning above yielding eq 3-14 is valid for each component volume V that exist 

within the particle. Associated with each location z within the particle is the total components 

volume V between 0 and z, equalling: 

eq. 3-15 V(z)=z.A z<Lc 

z :Distance from gas-particle interface [m] 

This implies that at each location z there is an associated convective flow u(z). 

, , , t\ 1 dV{z) 
eq. 3-16 u[z)=—.—^-L 

A dt 

The volume V(z) can be divided in the volume of the water phase and the insoluble 

compounds. 

eq. 3-17 V(Z)=VSI(Z)+V,(Z)+VX(Z)+VIV{Z) 

Vsi : Volume of insoluble substrate between 0 and z [m3] 

V, : Volume of inert material between 0 and z [m3] 

Vx : Volume of biomass between 0 and z [m3] 

Vw : Volume of free water between 0 and z [m3] 

Consequently the rate of change of the components volume can be written as: 
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eq.3-18 dV(z) =dVs,{z) ^ dV,(z) ^ dVx(z) ^ dVw(z) 
dt dt dt dz dz 

The volume change of the insoluble species Sj, X and I is a result of the production rate of the 

insoluble species and can be calculated as: 

eq.3-19 ^M = jL)EMdC 
dt ! Xm 

dvM = 0 
dt 

psi : Specific density of insoluble substrate [mol S,.m"3] 

X„, : Maximal density of biomass [mol X.m"3] 

C, : Integration variable [m] 

The volume change of the water phase is not a result of the local production of water alone as 

it is the case with the insoluble species above. Water is assumed to redistribute 

instantaneously over the whole particle. The volume of (free) water within a specific volume 

V(z) is thus determined by the equilibrium free water fraction ef at that instance. It follows 

directly from the definition of the equilibrium free water that: 

0 dVw(z) de,.(v(z)-VAz)) 
dt dt 

Applying the chain rule gives: 

«& &l}=m.W>-rM 
dsf 

dt ' dt v v ' " v " dt 

Substituting eq. 3-18 and using the knowledge that the inert material is not converted gives 

the following result: 



eq. 3-22 (l_ ^ = ^ W + ( l _ S f Y J M + { v { z ) _ v M
d _ £ L 

y " dt dt y n dz V W xK " dt 

By substituting eq. 3-22 and eq. 3-19 in eq. 3-16 gives the following result for the convective 

velocity. 

eq. 3-23 «(*) = \-s f 
±4 
dt I 

1 R, 

[l-£f)ps, 
d£ 

This result shows clearly that the convective velocity is determined by the global change in 

the equilibrium free water content (first right hand term term) and the local conversion of 

biomass and insoluble substrate (second right hand term). The net production rate of water 

does not enter this equation directly as it is accounted for via the first global term. 

3.2.7 Model equations 

The balance equations for all state variables are listed. They are formed combining all process 

descriptions according to the model description given up to this point. 

Oxygen 

eq. 3-24 
d02 _ 

dt 
t = 0 

t>0 

cD0 .eff-

ck 
0 

z 

m 
dz 

<z: 

= 0 

du{z\0 
dz 

*4 

>-+R 

o2 = 
o2 = 

h 

0 

o u 

t>0 z = L, 
d02 

dz 
= 0 

Dn : Effective diffusion coefficient of oxygen 

02j : Dissolved oxygen content at gas side interface 

[mis'] 

[mol 02.m°] 

The dissolved oxygen content at the gas side interface 02 ; is assumed to be in equilibrium 

with the oxygen content of the gas phase. 
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Soluble substrate 

eq. 3-25 x. _ s-er a M4s, 
a 

t = 0 

t>0 

t>0 

a 
0<z<Lc 

z = 0 

* = k 

a 
T J V s , 

s, = s,,0 

a 
^ = 0 

a 

DSseff : Effective diffusion coefficient of soluble substrate [m2.s"'] 

Ss0 : Initial soluble substrate concentration [mol Ss.m"3] 

Biomass 

eq. 3-26 
dX t 

a 
t = 0 

t>0 

t>0 

Hz\X + 

a x 
0<z<Lc 

z = 0 

z = Lc 

X = X0 

^ = 0 

a 
^ = 0 

a 

X0 : Initial biomass concentration [mol X.m"3] 

Insoluble substrate 

eq. 3-27 dS. i 

a 
t = Q 

t>0 

t>0 

v '' • +R, 

a s' o<z<4 

z = 0 

z = Lc 

s, = suo 

a 
^ = 0 

a 

Initial insoluble substrate concentration [mol Sr.m"3 
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Inert material 

eq. 3-28 
fi__ du{z).I 

t = 0 

t>0 

t>0 

dz 
0<z<Lc 

z = 0 

z = L„ 

I = h 

dz 

dz 
= 0 

L : Initial inert material concentration [mol I.rn3] 

Water 

The equation for the equilibrium free water fraction can be derived from the water balance 

over the whole particle and runs as: 

eq. 3-29 
def 1 

~dT~Tc 

£f = £f,o * = o 

sf 0 : Initial equilibrium free water content [-] 

Particle size 

The change in particle size can be found by considering the overall volume balance and shows 

that the particle size is influenced by all three net production rates. The resulting equation runs 

as: 

eq. 3-30 dL, ^Rjg) + RM + ̂ M 
A* Px Ps, 

dK=\ 
dt j dS 

k=Lc,o t = 0 

LCi0 : Initial particle size [m] 
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The resulting model contains 5 partial differential equations and two ordinary differential 

equations. All equations contain non-linear kinetic expressions, making that this model can 

not be solved analytically. The model has been solved numerically, by discretization both in 

time and space. The resulting discretized equations have been integrated via an implicit 

algorithm. (Press et. all.) 

The equations for the non-dissolved components (inert matter, organic insoluble matter, free 

water, biomass) are linked via the prerequisite that their partial volume take up the total 

volume. One equation of a non-dissolved component could therefore be omitted, however in 

the calculations this is not done as an error-check would then be lost. 

3.3 Model behavior 

3.3.1 Model input and output 

The model input and output describe together the interaction of the system under study with 

its environment. The output are the measurements that can (potentially) be made on the 

system. The input are the means to influence the system. Input and output are the handles 

available to check whether the proposed model is justified. Model output consists of the 

following elements: 

The OUR is the rate at which a sample of waste consumes oxygen. The OUR is calculated as 

the oxygen flux at the gas interface of the particle. 

1 ^ dO, eq.3-31 OUR(t)= -—.D0^ef f 
Lcfi ">* dz 

The OUR is defined based on the initial volume, as measured values of the OUR are all based 

on some initial measure of the composting material. 

The state variables X, S,, S„ and O, are all a function of time and location within the particle. 

They all exhibit a spatial profiles within the particle, that influences the OUR. These profiles 

are therefore important output of the model. They are directly obtained from the numerical 

solution of the model equations. 

The average state variables X(t). S/t) and Sit) are found by integrating the calculated values 
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of the corresponding state variables as follows: 

1 K 

eq. 3-32 X(t) = —. jx(t, z)dz 
A- o 

X(t) : Spatially averaged biomass concentration [mol X.m"3] 

The average values of the insoluble substrate S;(t) and soluble substrate Ss(t)are calculated in 

the same way. The state variables e,(t) and Lc(t) are directly derived from the solution of the 

model equations. 

The model input consists of the following elements, the initial states of the state variables 

(7) and the interfacial dissolved oxygen concentration. As the model input consist mainly of 

waste characteristics, the model input will be referred to as waste characteristics, an 

important topic for plant design. 

Model calculations are performed for composting of chicken manure at 55 °C and an oxygen 

content of 18% in the gas phase. The chosen conditions represent a typical optimal situation 

[13]. Chicken manure is the main type of waste used in this research. The specific values used 

in the simulation are given in table 1. 

The development in time of the OUR and averaged state variables will be first studied. In the 

development of the OUR four phenomenological phases will be distinguished. These phases 

are used throughout this paper to structure the development of the output in general. Secondly 

the gradients of the main state variables will be studied. The spatial gradients will be 

compared at four points of time, typical for each phenomenological phase. Thirdly for each 

period the dominant OUR limiting process (growth, decay, hydrolysis, oxygen diffusion, 

substrate diffusion) is identified via a parameter and input sensitivity analysis. Such an 

analysis gives information on which parameters and inputs are influential at a certain point of 

time. If the parameters and inputs associated with a certain process are influential at a certain 

point of time it is supposed that the associated process is rate determining. 

Fourthly the effect of the waste characteristics on the OUR time course is studied. Waste 

characteristics can vary strongly, understanding the effect of these factors might show how 

general the phenomenological division of the OUR time series is. 
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Table 3.1: 
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Nominal parameter values. 
Symbol 
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Psi 
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Name 

Maximum biomass growth rate 

Biomass decay constant 

Hydrolysis constant 

Substrate saturation constant 

Oxygen saturation constant 

Biomass yield on oxygen 

Biomass yield on soluble substrate 

Biomass yield on water 

Biomass yield on polymeric substrate 

Oxygen diffusion constant 

Soluble substrate diffusion constant 

Insoluble substrate density 

Water density 

Biomass density 

Inert material density 

Biomass water content 

Particle thickness 

Initial soluble substrate concentration 

Initial polymeric substrate concentration 

Initial biomass concentration 

Initial water content 

Initial inert concentration 

Initial oxygen concentration 

Interfacial oxygen concentration 

value 

2KT4 

3.8 10 * 

4.9 10'7 

0.31 

3.4 10^ 

1.12 

0.53 

1.34 

1.0 

1.8 10-' 

1.1 1 0 ' 

23000 

55000 

8000 

46000 

5 

0.0025 

1420 

4750 

1.5 

0.83 

450 

0 

0.18 

unit 

s'1 

s-1 

s-' 

mol Cm' 3 

mol 02.m*3 

mol C.mor1 0 2 

mol C.mol C'1 

mol C.mol 'H20 

mol C.mor1 C 

m2.s-' 

m2.s-' 

mol Cm 3 

mole H2Om'3 

mole C .m'3 

mol Cm - 3 

mol H20 mole C 

m 

mole Cm' 3 

mole Cm' 3 

mole Cm"3 

H 

mole I.m'3 

mol 02.m"3 

mol 02.m'3 

Reference 

[14] 

[14] 

[15] 

[14] 

[16] 

[17] 

[17] 

Based on oxygen 

Assumption 

[18] 

[18] 

[19] 

[20] 

[21] 

[19] 

Assumption 

20 % DM 

Assumption 

[22] 

[22] 

Assumption 

[22] 

[22] 

Assumption 

[23] 
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3.3.2 OUR and state variables. 

Figure 3.4 show the time series of the OUR, divided into four period, indicated A, B, C and D. 

During the first period A the OUR clearly increases until it reaches a maximal level at 

approximately twenty-two hours. During the second period B the OUR remains at a steady 

maximum level, that lasts until 46 hours The OUR declines sharply during the third period C, 

within 10 hours, the OUR drops to another, albeit lower, nearly constant level. During the 

fourth period D the OUR decreases very slowly. 
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Figure 3.4: Course of the oxygen uptake rate (OUR, left Y-axis, thick line) and 
the spatially averaged soluble substrate concentration (S/t), right Y-axis, thin 
line) in time(X-axis). Capital characters indicate the distinguished process 
phases (see text). 

The soluble substrate concentration (Figure 3.4) reaches in period A an initial peak at 8 hr, 

after which the soluble substrate concentration decreases. During period B this decrease 

occurs nearly linear until the end of period B. At the start of period C the substrate is nearly 

depleted and the soluble concentration decreases more slowly. From 53 hours onward the 

soluble substrate concentration is negligible. 

The soluble substrate concentration (Figure 3.4) reaches in period A an initial peak at 8 hr, 

after which the soluble substrate concentration decreases. During period B this decrease 

occurs nearly linear until the end of period B. At the start of period C the substrate is nearly 

depleted and the soluble concentration decreases more slowly. From 53 hours onward the 



soluble substrate concentration is negligible. 

The biomass concentration (Figure 3.5) strongly increases during period A, during period B 

the increase rate levels off and the biomass concentration reaches a maximum at the end of 

period B. At the start of period C there occurs a relative steep drop in the biomass 

concentration. During period D a nearly constant level is reached. 
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Figure 3.5: Course of the spatially averaged biomass concentration (X(t), left Y-
axis, thick line) and the spatially averaged insoluble substrate concentration (S/t) 
.right Y-axis, thin line) over time (X-axis). 

The insoluble substrate concentration (Figure 3.5) decreases initially during period A. 

However soon the level increases again until the end of period B. During period B and C there 

is a slow decrease in insoluble substrate concentration. 

The free water fraction ef (Figure 3.6) is relatively constant during the period considered. 

There is initially a small decrease during the first two periods, followed by a slow increase 

during period C and D. 

The particle size (Figure 3.6). shows at the start of period A an initial decrease shortly, after 

which it starts to increase until the end of period B when it reaches its maximum. The particle 

size decreases from this point on during period C and D. 

Although the inert material is not converted in any way, the inert concentration still shows 

some variation. However, this variation is solely a result of changes in particle volume and 

therefore only the development of the particle size has been shown. 
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Figure 3.6: Course of the free water fraction (ef, left Y-axis, thick line) and the 
particle size (Lc .right Y-axis, thin line) over time (X-axis). Capital characters 
indicate the distinguished process phases (see text) 

3.3.3 State variable profiles 

State variables having a distinct gradient will be shown at the following points of time; at t=10 

hr characteristic for period A, at t=35 hr characteristic for period B, at t= 45 hr characteristic 

for period C and at t=100h characteristic for period D. As the inert material is not subject to 

any reaction, and its concentration can be calculated from the other components, this gradient 

will not be discussed. 

Figure 3.7 shows that oxygen has only a limited penetration within the particle. Going from 

case t=10 hr to case t=35 hr the penetration depth decreases. At t=45 hr and t=100hr the 

penetration depth has increased again. In all cases only a small fraction of the particle is 

oxygenated. 

Figure 3.8 shows the development of the gradients of the soluble substrate. The soluble 

substrate has at t= 10 hr a high level and nearly no gradient can be distinguished over the 

whole particle. At t= 35 hr the level has lowered and no clear gradient has developed. At t= 45 

hr and at t=100 hr a clear gradient has developed with basically a zero concentration at the gas 

side interval. 
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Figure 3.7: Dissolved oxygen profiles (O2, Y-axis) at four points of time. TheX-
axis denotes the distance [m] from the particle-gas phase interface, note the 
partial scale with respect to the particle size(Lc 0 = 0.0025 m). The Y-axis 
denotes the oxygen concentration [mole.m~*]. 
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Figure 3.8: Soluble substrate concentration (Ss) profiles at four points of time. 
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The biomass profiles (Figure 3.9) show at t= 10 hr and t=35 hr the same shape, maximal at the 

gas-side interface and from this location slowly decreasing. The depth over which the biomass 

concentration is flat at the gas side interface coincides with the oxygen pentration depth. The 

overall biomass level is much higher at t=35 hr. At t=100 hr a clear peak in biomass density 

has developed, the peak coinciding with oxygen penetration depth. The biomass profile at t= 

45 hr is a kind of transitional profile. 
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Figure 3.9 : Biomass concentration (X, Y-axis) profiles at four points of time. The 
X-axis denotes the distance fmj from the particle-gas phase interface. Note the 
partial scale with respect to the particle size (LCi 0 = 0.0025 m). 

The insoluble substrate profile (Figure 3.10) is nearly flat at t= 10 hr, there is only a slight 

depression at the gas side interface. This depression however has deepened at t= 35 hr. At 

t=45 hours the insoluble substrate concentration rises again at the gas side interface, and a 

small peak emerges. At t=100 hr the picture becomes more complex as two peaks have 

emerged. The insoluble substrate profile is mirror image of the biomass profiles. 
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Figure 3.10: Insoluble substrate concentration (Si, Y-axis) profiles at four points 
of time. The X-axis denotes the distance [m] from the particle-gas phase 
interface. 

3.3.4 OUR sensitivity analysis 

Understanding the importance of the parameters gives insight in the nature of the rate 

determining processes and might give a direction for further model simplification. The 

sensitivity function is defined as: 

eq. 3-33 S(p,t) = 
p dOURjt) 

OUR(t) cp 

p : Parameter of interest 

S(p,t) : OUR sensitivity for parameter p at time t. [1] 

The sensitivity function is dimensionless as it is scaled with respect to the OUR and the 

parameter. The absolute value of a sensitivity function is a measure of the influence of the 

associated parameter at that specific point of time and is called the absolute sensitivity. A 

parameter is defined as influential if its absolute sensitivity is at least 10% of the maximum of 

all absolute sensitivities, (at that specific point of time). For each period (A, B, C and D) the 

average values of the sensitivities over each period are compared. The sensitivity functions 
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and their average are determined numerically. 

Table 3.2 lists for each period the influential parameter. The yield on oxygen is influential 

during the whole process. The maximal growth rate, the oxygen diffusion coefficient, particle 

size, interfacial oxygen level are influential during the first three periods. The biomass decay 

factor and the initial biomass concentration are only important during the first period. The 

maximal biomass density is important during the second and third period. The yield on 

substrate, hydrolysis rate, initial soluble substrate, and initial insoluble substrate are important 

during the third and fourth period. The other parameter show to be of minor importance with 

respect to the course of the OUR. 

Table 3.2: The averaged scaled sensitivities of the influential parameter of the model. 
Parameters that are not mentioned have no significant effect in any period. The symbol -
indicates that the parameter has no significant effect in the associated period. 

* 02 

Hn, 

D02 

^c,0 

O,: 

b 

Xo 

x„ 

K„ 

YSs 

Ss,0 

S,0 

Period A 

-0.21 

1.0 

0.21 

-0.42 

0.24 

-0.16 

0.14 

— 

— 

--

— 

Period B 

-0.49 

0.57 

0.5 

-1.0 

0.53 

— 

— 

0.45 

— 

— 

— 

Period C 

-0.50 

-0.82 

-0.35 

0.83 

-0.47 

— 

— 

-0.30 

0.35 

1.0 

0.74 

0.29 

Period D 

-0.76 

— 

— 

— 

— 

— 

— 

— 

0.86 

1.0 

0.17 

0.72 

Period A will be referred to as the biomass growth limited period. The increase of the OUR 

during period A is mainly determined by the biomass growth. The parameters describing the 

biomass growth (nm, b, X,,) are all influential during this period. Also the diffusion of oxygen 
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is already of importance, (D02, Lc 0, 02 s) however the process of biomass growth is more 

important as the maximal growth is the dominant parameter. 

Period B is the biofilm-limited period. The parameters associated with the diffusion of oxygen 

are more important then during the first period. As the simulation indicates there has been a 

development of a biofilm at the gas-side interface. As oxygen is the main limiting substrate 

and has a low saturation constant, it is interesting to compare these results with the equation 

given by Harremoes [24] for the oxygen flux of a steady-state biofilm with zero-order 

kinetics. Dividing this flux by the particle size give the following relationship for the OUR: 

eq. 3-34 OUR = l-j2.D0^.02i.^^ 
Yc 

The values of the calculated sensitivities compare well to the sensitivities as predicted by the 

formula above, -1 for Lc, -Vi for Y02, and lA for D02eff, 02i, |xm, X,,,. 

During period D, the hydrolysis-limited period the OUR is determined by the hydrolysis rate. 

The Sj0 and kh are the dominant parameter. The fact that Ss0 also influences the hydrolysis rate 

is due to the conversion of soluble substrate to biomass. This biomass forms insoluble 

substrate after biomass decay. 

Period C can be characterized as a transition period. The balance between soluble substrate 

consumption and production shift during period C. In the first two period sufficient soluble 

substrate is present and the soluble substrate consumption rate is determined by the OUR. In 

the last period the soluble substrate production rate determines the OUR. The transition period 

is very short and is characterized by the influential position of soluble substrate concentration. 

The initial soluble substrate concentration determines the length of the period A and B, 

however not the rate itself, as is shown by the low sensitivity during period A and B. This 

explains why the parameter sensitivities of Lc,0, Y02, D02 eff, 024, \im, and ^ have nearly the 

negative value of period B during period C. If the OUR in period B is lower it will take longer 

to achieve soluble substrate depletion. This means that the OUR during period C will increase. 

Also if the hydrolysis is faster more soluble substrate will be produced during period A and B 

and depletion will occur later. 
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3.3.5 Waste characteristic analysis 

The following waste characteristics are studied, particle size, interfacial oxygen concentration, 

initial soluble substrate, initial insoluble substrate, initial ash and initial biomass. The waste 

characteristics are changed one by one, by multiplication of the nominal values with the 

factors 0.25, 0.5, 2 and 4. A change in one component is in all cases compensated by an 

opposite change in the water content. 

Moisture influences the particle size within a pile, as with increasing moisture content more 

and more small pores are filled. (Miller) Filling small pores is equivalent to reducing specific 

surface area and thus increasing the particle size. This effect of moisture can thus not be fully 

incorporated with a model that takes into account a singe particle. Water content as such is 

therefore not studied at this point. The results for inert material are not shown as this showed 

to have a negligible effect both on the OUR and the average soluble substrate concentration. 

Initial biomass concentration 

The initial biomass concentration (Figure 3.11) has only a minor effect on the OUR time 

course. Period A becomes somewhat shorter, the rest of the behavior remains basically the 

same. This finding is in accordance with the sensitivity analysis, only during period A 

biomass is an influential factor. The initial biomass density is in literature generally accepted 

to have a small effect. Nakasaki studied the effect of inoculation on sewage sludge 

composting [25] and houshold waste [26]. The inoculum was compost from the thermophilic 

composting phase. The composting rate was measured as the carbon dioxide production rate 

at a constant oxygen level and temperature. They studied mixtures consisting of a seed and 

either sewage sludge or household waste. As a control a mixture with sterilized compost was 

used. This makes their study special as they are able to discriminate between the effect of 

adding (thermophilic) biomass and other effects induced by the material itself. The studied the 

inoculum at three levels, their result was in good accordance with the model predictions. The 

peak in activity occurred earlier in time with increased inoculation, however the maximum 

composting rate was not influenced. The same effect in the case of household waste was more 

pronounced as the waste itself contained fewer organisms than sewage sludge. 
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Figure 3.11: The 
effect of a change in 
initial biomass 
concentration (XQ) on 
the course of the OUR 
(A, Y-axis) and soluble 
substrate 
concentration Ss (B, 
Y-axis) The X-axis 
denotes the time in 
hours. The time course 
of OUR and Ss are 
shown for five 
different values of XQ, 
specifically 2~2,2-l, 1, 
2 and 4 times the 
nominal value. A thick 
line indicates the time 
course of the nominal 
value. The arrow 
indicates the time 
courses for increasing 
values ofXg. 

The initial insoluble substrate 

The initial insoluble substrate concentration (Figure 3.12)has only a slight influence on the 

rate during periods A and B, the main effect is an extension of period B. There is a small 

effect on the maximal oxygen uptake rate, however this effect is small as compared to the 

effect of particle size and interfacial oxygen concentration. During period D the OUR 

increases clearly with an increasing insoluble substrate concentration, which is in accordance 

with the sensitivity analysis. The effect of the initial insoluble substrate on the average soluble 

substrate concentration is twofold, the peak increases and it takes longer to achieve the soluble 

substrate depletion. 

Initial soluble substrate 

The initial soluble substrate concentration (fig 3.13) has no effect on the OUR during period 

A The duration of period B is extended, however, the maximum rate is not influenced. At the 

lowest value of the initial substrate concentration it seems that period A is not completed and 

period B is absent. Period C and D are only slightly influenced. The soluble substrate 

concentration course is of course strongly influenced by its initial value, however, the shape of 
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Figure 3.12: The 
effect of a change in 
initial soluble 
concentration (Ss>o) 
on the time course of 
the OUR (A) and 
spatially averaged 
soluble substrate 
concentration Ss(t) . 
(B) The X-axis denotes 
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time course of OUR 
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Figure 3.13: The effect 
of a change in initial 
insoluble concentration 
(SJO) on the time 
course of the OUR (A) 
and spatially averaged 
soluble substrate 
concentration Ss(t) (B) 
The X-axis denotes the 
time in hours. The time 
course of OUR and Ss 

are shown for five 
different values of SIQ, 
specifically 2-2,2-1, 1, 2 
and 4 times the nominal 
value. A thick line 
indicates the time 
course of the nominal 
value. The arrow 
indicates the time 
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the curves remain comparable. The main difference is that with increasing initial soluble 

substrate it takes longer before the soluble substrate is depleted. 

Interfacial oxygen concentration 

The interfacial oxygen concentration (Figure 3.14) strongly influences the OUR during period 

A and B. During period A the rate increases with increasing interfacial oxygen concentration, 

the duration of the period seems to increase slightly. With increasing interfacial oxygen 

concentration the maximum OUR during period B increases and the duration of the period 

decreases. There seems to be no strong effect on period C and period D. With an increasing 

interfacial oxygen concentration the period for complete depletion of the soluble substrate 

decreases. 
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Figure 3A4:The effect of 
a change in the 
interfacial oxygen 
concentration (02tj) on 
the time course of the 
OUR (A) and spatially 
averaged soluble 
substrate concentration 
Ss(t) (B) The X-axis 
denotes the time in hours. 
The time course of OUR 
and Ss are shown for five 
different values of O2J, 
specifically 2~2,2~1, 1, 2 
and 4 times the nominal 
value. A thick line 
indicates the time course 
of the nominal value. The 
arrow indicates the time 
courses for increasing 
values of02 i-

Initial Particle size 

With increasing particle size the OUR drastically decreases during both period A, B and C 

(Figure 3.15). The particle size has no effect on the duration of period A, the duration of 

period B and C however increases. The rate during period D is independent from the particle 

size. With increasing particle size it shows that it takes longer for the soluble substrate to 
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become depleted. The behavior of the soluble substrate concentration is thus following the 

changes of the OUR. 
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Figure 3.15: The effect 
of a change in the 
particle size (Lc Q) on 
the time course of the 
OUR (A) and spatially 
averaged soluble 
substrate 
concentration Ss(t) (B) 
The X-axis denotes the 
time in hours. The time 
course of OUR and Ss 

are shown for five 
different values of 
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3.4 Model Comparison 

The theoretical model will be compared to current empirical models for composting kinetics. 

The comparison will focus on the effect of oxygen level on composting kinetics. Oxygen has 

been chosen because suitable data and empirical models are available. For other model inputs 

either good data or empirical models are not available. 

Empirical models use the Monod model to describe the effect of the oxygen level in the gas 

phase on the OUR. The actual OUR is calculated as a function of oxygen level and the OUR 

measured at optimal reference conditions. 

eq. 3-35 OUR(t,p02)=
 P0* .OUR{t,p02„f) 

Ko, +P02 

p0 2 : Oxygen level of the gas phase 

p0 2 ref : Reference oxygen level of the gas phase 

100 

[vol. % 02] 

[vol. % 0 2 ] 



In experimental studies the oxygen content of the gas phase is used as a measure for the 

dissolved interfacial oxygen concentration. In the oxygen pressure range used in composting 

the linear relation between oxygen level and dissolved oxygen concentration is valid and the 

Henry relationship can be used. However it should be kept in mind that the Henry coefficient 

changes strongly as a function of temperature, at a higher temperature oxygen solubility will 

be lower[23]. The Henry coefficient may also change as a result of a change in dissolved 

components [27]. The oxygen gas phase content is generally measured after removal of water 

vapor. Compared to the measurements the actual oxygen content of the gas inside the 

composting matrix gas phase is lower due to the presence of water vapor. As the water vapor 

content increases with temperature, the actual oxygen content will decrease. This means that 

care should be exerted when comparing K^ values from different situation with respect to 

temperature and waste composition. 

In many studies on composting kinetics the so-called Cumulative Oxygen Uptake (COU) is 

used as a composting process rate measure. The cumulative oxygen uptake is defined as: 

eq- 3-36 COu{tlow,tupper)= f~OUR(r)dT 

COU 

lupper 

Cumulative Oxygen Uptake [mol 02.m"3] 

Lower value of time period [s] 

Upper value of time period [s] 

If the oxygen content remains constant over time, the oxygen correction factor can be directly 

used as a correction factor for the oxygen dependence of the COU. 

eq. 3-37 COu{tlower,tupper,02)= °2 •COu{tlnMr,t^r,0^f) 
K0i+U2 

In models studies different values of K^ are used ranging from 1 to 6 vol.-% of oxygen 

(Richards ).In some studies the so-called Cumulative Carbon dioxide Production or CCP is 

used as composting rate measure. The CCP and COU are linearly correlated [19,28]. 
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There are relatively few studies on the effect of oxygen level where a constant oxygen level is 

maintained while oxygen is consumed. All studies to be discussed support the use of the 

Monod relationship, i.e a saturation level is found. However in all of these controlled studies 

results are reported that hamper the use of a multiplicative model. It will be investigated to 

what extent the theoretical model is able to explain these discrepancies. 

3.4.1 Effect of an anaerobic period 

Anaerobic periods occur frequently in practical processes as a result of equipment 

malfunction. Van Ginkel [19] studied the effect of an anaerobic period on the heat production 

of a sample of a mixture of manure and straw. The process rate was amongst others measured 

as the oxygen uptake rate. The process rate was determined at 37 °C, the oxygen level was 

kept at 20 vol.%. The batch of material was first 5 days run at a oxygen level of 20% 

subsequently two days at 0% and then for another period of nearly 3 days at 20% again. 

This oxygen level input sequence was simulated. To account for the effect of temperature the 

maximum growth rate was reduced by a factor 2 compared to the nominal parameter set [29]. 

Moisture content, inert content, soluble and insoluble substrate concentrations have been 

changed according to the mixture composition. Other parameters were the same as in the 

nominal situation. 

Figure 3.16 shows the calculated course of the OUR. The first five days the OUR shows the 

normal development. When the oxygen level drops to zero no oxygen uptake occurs. At the 

moment the oxygen level is increased again there is nearly immediate increase in OUR, 

however the maximum level is kept only for a short period and the OUR drops again to the 

stable level from the previous aerated period. The calculated and measured OUR (not shown) 

time series agree satisfactorily, the maximum levels are in reasonable agreement. Both 

calculations and measurements show the rapid OUR increase after the anaerobic period. The 

explanation suggested by the theoretical model is that during the anaerobic period, the 

hydrolysis goes on and the soluble hydrolysis products will accumulate. After the oxygen 

level has restored again, this leads to an increased activity. The response is rapid compared to 

the start up as the biomass is already available from the previous period and needs not to grow 

as during start up. Such a behavior can not be modelled by a multiplicative model, this would 

predict the same level directly after as before the anaerobic period. The distinct peak could not 

have been modelled let alone be predicted, as is the case for the theoretical model. 
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Figure 3.16: Effect of an aerobic period on the time (X-axis) course of the OUR 
(Y-axis). Arrows indicate the beginning and ending of the anaerobic period. 

3.4.2 Combined effect of oxygen and moisture 

Suler [30] investigated the effect of oxygen level concentration on composting rate under 

different temperature and moisture conditions. The composting rate was expressed as the 

cumulative amount of carbon dioxide evolved over a 96-hour production CCP(0-96). The 

relationship was tested at different temperatures (48, 52, 56, 60,64, 68 and 72 °C) at a 

moisture content of 60 %. At all temperatures the CCP(0-96) was measured at oxygen levels 

of 2%, 10%, 18%. At 52 °C the CCP(0-96) was also studied at 25 and 35 % 02. The findings 

with respect to the effect of oxygen were at all temperatures the same. Only the CCP(0-96) at 

2% was significant lower, from 10% onward no significant increase in CCP(0-96) was found. 

The same oxygen dependency was found at a moisture content of 50% and a temperature of 

56 °C. At the same temeperature, however, the oxygen dependency changed drastically at 

moisture content of 70%. At this moisture content a clear overall decrease in process rate was 

found and up to 18% oxygen a clear positive effect was found. 

To understand this change in oxygen dependence the experiments at moisture content of 60 

and 70% and temperature of 56 °C were simulated. The nominal parameter set was used a 

starting point. The waste characteristics were changed to account for the dry matter and 

organic matter content. The particle size was adjusted to account for the observed maximum 

carbon dioxide production rate. At 70% moisture this maximum production rate was 

significantly lower. This can be attributed to the fact that at a higher moisture content more 
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pores in the waste bed are filled with water. The surface area in the bed will be lower and thus 

particle size will be bigger. The OUR time course was simulated over 96 hours, summation of 

the OUR results gave the simulated COU values. This exercise was performed for oxygen 

levels of 2%, 4%, 8%, 16% and 32%. 

Figure 3.17 shows the simulated relation between COU and oxygen level. For both simulated 

situations the calculated values give the same pattern as the measured value. At 60% moisture 

there is no effect of oxygen from 10% onward, however for the experiment at 70% moisture a 

distinct relationship can be seen up to 20%. 
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Figure 3.17: The simulated COU(0,96) (Y-axis) as a function of gas phase 
oxygen level (X-axis) for two different moisture levels (60% thick line, 70% thin 
line). 

This effect of the moisture content is a result of the change induced in the maximum OUR 

achieved during the biofilm limited period. If the activity of the biomass is such that all 

soluble substrate is consumed during the COU measurement period, the COU will be solely 

determined by the amount of available soluble substrate. This means that if the soluble 

substrate is depleted within the measurement period no longer any effect of the oxygen level 

on the substrate saturated phase can be detected by the COU. Any further increase of the 

oxygen level in this situation might lead to a more rapid degradation of the initially soluble 

substrate, but this effect is not reflected in the COU. 
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This situation changes if the OUR is lowered to such an extent that the substrate is no longer 

depleted at the end of the measurement period. At the 60% moisture content this occurs at an 

oxygen level smaller than 10%. Below this value any further decrease of the oxygen level will 

be reflected in the COU as the availability of soluble substrate is no longer limiting. 

At 70% moisture soluble substrate is still available at the end of the measurement period at an 

oxygen level of 20%. This is because the OUR is smaller due to the larger particle size and it 

takes longer to deplete the soluble substrate. If soluble substrate is still present a change in 

oxygen will reflect in the COU. 

3.4.3 Effect of high temperature. 

Richard [31] investigated the effects of the oxygen level on the composting rate. The materials 

tested were a synthetic food waste mixed with wood chips and sewage sludge mixed with 

wood chips. The material was composted in a rotating drum reactor of 1500 1. From the 

reactor at regular intervals a sample was taken. This sample was divided over 36 one liter 

micro-reactors. These reactors were able to control the temperature and air oxygen level. The 

composting rate of the material could in this way be measured at different temperatures 

(35,45,55 and 65 °C) and at different oxygen levels (2%, 4% and 21%). The composting rate 

was measured as the CCP measured between 12 to 36 hours, after filling the micro-reactors. 

Richards compared different models to account for the observed effect of oxygen and found 

the Monod to be the best model, to describe the data. To account for the observed dependency 

of the K02-parameter on temperature and moisture content, this parameter was presented as a 

linear function of temperature and moisture. The observed dependency on sampling time was 

not accounted for. 

The positive effect of moisture i.e. with an increasing moisture content a higher ^-parameter 

is found can be explained along the same line as for the work of Suler. The most striking 

feature was the occurrence of negative K02-parameter values at high temperature values. This 

indicates an inverse relationship, i.e with increasing oxygen content a lowering of the CCP 

was found until a stable level was reached. This type of behavior was observed at 65 °C and 

sometimes at 55 °C. 

To understand this unusual behavior the experimental set up has been simulated with the 

theoretical model. To do so the two steps had to be simulated, first the composting in the 

rotating drum reactor and secondly the measurement in the micro-reactors. To simulate the 
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composting period, the OUR was simulated for nine days with constant conditions of oxygen 

(20 vol. %) and constant temperature of 55 °C. After simulation of the nine days reactor 

period the average waste composition was calculated. This mimics the mixing of the material 

before filling the micro-reactors. This average composition is used as starting conditions for 

the simulation of the micro-reactors. The mixed material has a lower soluble substrate and a 

higher biomass density, compared to the nominal input set. The OUR is simulated for 36 

hours and the COU is based on the 12-36 hour period. 

Figure 3-18 B shows the simulated COU dependence of the oxygen content. The figure shows 

the characteristic inverse effect. In this case a Ko2 value of-2.3 was found. This is in the same 

range as indicated by Richards. The reason for this inverse behavior lies in the choice of the 

12-36 period. Figure 3-18 A shows the COU(0,36) and COU(0,12). The upper line shows the 

COU(0,36), this line shows the behavior as in the case of the study of Suler. This shows a 

saturation level starting from 4 vol.% of oxygen. This saturation level is again a result of the 

soluble substrate depletion. The lower line shows COU(0,12), this shows a strong dependence 

on the oxygen level as sufficient soluble substrate is present. The difference between these 

curves gives the COU(12,36). This value increases with decreasing oxygen not as a result of 

some microbial stimulation but as a result of the increased availability of soluble substrate in 

the 12-36 hrs period. The higher COU in this period is thus a result of an oxygen limitation, 

however due to the experimental set up is interpreted as a stimulation of the process. 

That this phenomenon is mainly seen at higher temperatures is a result of the fact that the 

growth rate is than higher and the amount of soluble substrate consumed in the first 12 hours 

is bigger, and thus differences are bigger. A second point that can be explained is that the 

inverse behavior was mainly seen in the nine day samples, while it was nearly absent at the 

31-day samples. After such a long time the initial soluble substrate will be zero and the 12-36 

period will be substrate depleted in all cases. 

3.5 Discussion and Conclusions 

A mathematical model based on mechanistic assumptions has been developed for a 

composting particle. The model analysis showed that the composting process must be 

understood as a sequence of four phases during which different sub-processes determine the 

overall process rate. During the first period biomass growth is the most important rate 

determining process. Soon however also the diffusion rate of oxygen starts to influence the 
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Figure 3.18: 
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overall process rate as a biofilm emerges at the surface of the particle. The overall process rate 

during this second period may be described by biofilm kinetics. Once the soluble substrate is 

depleted the third period starts. This is a short transition period during which the OUR drops 

sharply and becomes at its end solely hydrolysis limited. At this point starts the forth period, 

the hydrolysis limited period. Analysis of the effect of the waste characteristic on the OUR 

development showed that this view is valid for a large range of different characteristics. Only 

if the amount of soluble substrate initially present is very low the biofilm period is not present. 

Oxygen level dependence of the composting rate reported in literature have been evaluated. 

The calculations show that the theoretical model also predicts a saturation level with respect to 

the oxygen level. Application of the Monod relationship to the calculated oxygen dependence 

gives Koj-parameter values that are much higher than the one used to describe the microbial 

kinetics, indicating the importance of mass transfer limitation of oxygen. The K02-parameter 

values based on the theoretical model are in the same range as reported by Richard [31]. 

Examination of the data also revealed the inadequacy of the assumption of independence of 

rate determining factors. The work of Richard showed that the Koj-parameter was not 

constant but differed depending on the conditions of the waste (temperature, moisture)[l]. 

Also Suler [30] found that the oxygen dependence was depending on the moisture content. 

107 



Van Ginkel [19] clearly showed that an anaerobic period influenced the oxygen dependency. 

All these findings can be simulated and explained by the theoretical model. This shows that 

the assumptions underlying the theoretical model, seem to be reasonable at least with respect 

to oxygen. 

This dependence of the oxygen dependency on the state of the particle has two consequences. 

The first is that the assumption of a single constant KQ2 value underlying empirical models, is 

not warranted. This value is depending on the state of the waste, notably the soluble substrate 

concentration. This implies that in the context of an empirical model the KQ2 is a function of 

the state variables. As some of these variables can not be easily measured, this means that a 

restriction for the development of an adequate empirical model. The second consequence is 

that the COU is not the most suitable measure to monitor oxygen dependence. The 

dependence of the K^ on the soluble substrate concentration makes that statements on the 

effect of oxygen are strictly speaking only valid for the COU and can not be generalized. This 

dependency makes that a result of the integration step as in eq. 3-36 is invalid, and that the 

COU is not a proper measure to asses the effect of oxygen on the composting rate. These 

considerations imply that conclusions based on COU/CCP measurement should be 

extrapolated very carefully, their validity is restricted to the observation period, measurement 

conditions and waste type. However experimental data are readily generalized to statements as 

"10% oxygen is sufficient". Such statements might be true but need not to be, as they depend 

on the period and the phenomena of interest. 

It seems to be fair to conclude that the theoretical model is a powerful tool to get insight in the 

composting process. The theoretical model explains and describes phenomena that are not 

handled by current empirical models like the interactions between rate determining factors, 

like oxygen. The model describes the OUR development as a process with distinct phases, 

and it would be almost accidental if the effect of some input would have the same effect on 

the output during all phases. The interfacial oxygen level gives a clear example of this. The 

parameter sensitivity analysis showed oxygen to be only influential when soluble substrate is 

not depleted, but even then with different degrees. A function accounting for the effect of 

oxygen on OUR should thus take into account the soluble substrate concentration. This 

undermines the assumption of independence underlying current empirical models. 

The multiplicative empirical model has shown to have such major limitations that other types 

of models are needed to acquire reliable reactor models. The theoretical model is a natural 
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candidate for such new type of model, however it needs some major adjustment to be of 

practical use. For reactor applications, and parameter estimation the model is too complicated 

and a reduced model is needed. 
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4. An analytical approximate solution of the OUR. 

4.1. Introduction 

To understand the composting process and to develop better composting systems knowledge 

of the composting kinetics is paramount. The Oxygen Uptake Rate (OUR) is the most 

important composting process rate measure (chapter 3). In chapter 3 a theoretical model was 

constructed for the composting kinetics of equally sized particles. The theoretical model 

showed to explain the effect of oxygen on the OUR dynamics better than conventional 

empirical models. 

Although the theoretical model seems to be a good starting point for process design, the 

numerical solution however requires a big computational effort. As a process design involves 

many process evaluations, direct practical application of the theoretical model seems limited. 

To increase the potential for practical application of the theoretical model an analytical 

approximate solution of the theoretical model will be developed in this chapter. Modern 

composting plants operate at constant process conditions (temperature, oxygen) by using 

feedback control. Therefore the analytical model aims at describing the OUR time course 

under constant process conditions. 

Apart from practical application as such, an analytical solution has the additional advantage of 

giving more insight into the relations between the basic processes determining the OUR. 

Otherwise insight in the theoretical model may only be obtained by numerical approximation 

e.g. a sensitivity analysis. The results of such an analysis always depend on the specific values 

of the parameters used for the simulation. An analytical model however can be understood 

with little or no knowledge of the parameter values involved. 

For composting, at the moment no analytical solutions are present for the OUR time course 

other than a first-order model [1]. This model is only valid over a specific time period and 

does not handle the initial higg rate period well [2]. In the field of solid state fermentation 

the logistic function is used as a description of the OUR[3]. However this function is also 

empirical and lacks a mechanistic background to relate the model parameters to 

environmental conditions. The logistic model has been used only to model a much shorter 

fermentation period than is conventionally needed for composting. 
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This chapter focuses on an analytical approximation of the OUR, other state variables are 

only taken into account if this is necessary to arrive at the solution for the OUR. In this way an 

approximate analytical expression for the development in time for soluble substrate, insoluble 

substrate, biomass and oxygen is obtained as a function of the initial particle conditions water 

content, particle size, interfacial oxygen concentration. The analytical approximation is based 

on a simplification of the mass balances underlying the theoretical model. These 

simplifications cause a deviation between the numerical results of the theoretical model and 

the analytical approximation. The analytical approximation is only valuable if this deviation 

may be neglected. The deviation of the analytical approximation will therefore be investigated 

for different situations. 

4.2. Approximate model 

4.2.1. Conceptual model outline 

The conceptual model used in this chapter is based on the conceptual model presented in 

chapter 3. Chapter 3 describes in more detail the assumptions underlying the conceptual 

model. The basic model assumption is the particulate nature of the waste. The waste is 

assumed to exist in separate particles that are influenced only via the gas phase surrounding 

the particles. The particle volume is made up of water, inert material, insoluble substrate anr 

aerobic microbial biomass. Soluble substrate and oxygen are dissolved within the water. 

The primary reaction occurring in the particle is the oxidation of soluble substrate. This 

reaction produces water, carbon dioxide, heat and new biomass. The reaction is performed by 

the aerobic biomass and the rate is influenced by the concentration of biomass, oxygen and 

soluble substrate. Carbon dioxide and heat are assumed to be removed without influencing the 

process. 

The oxygen needed for oxidation originates from the gas phase that is assumed to have a 

constant oxygen content. The gas phase and the particle have the same constant temperature. 

The gas phase is saturated with water and thus no water loss from the particle occurs. As 

oxygen is directly consumed within the particle, oxygen penetrates the particle only over a 

short distance. Oxygen is transported by diffusion in the water phase because of an oxygen 

profile induced by the oxygen consumption. As only the outer region of the particle is aerobic, 

the remaining inner region of the particle will be anaerobic. 
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Insoluble substrate is converted into soluble substrate via microbial hydrolysis. This process 

occurs both in the aerobic and the anaerobic region. Soluble substrate is only degraded in the 

aerobic layer of the particle and thus a concentration profile within the particle will build up. 

As a result of the profile, soluble substrate will diffuse from the anaerobic into the aerobic 

region. 

Water is either free water that can migrate under the action of a water potential difference or is 

associated with biomass. The associated water is attached to extracellular polymeric 

substances or is contained within the cell membrane. As water is a main constituent of 

biomass, biomass growth is accompanied by an appreciable water uptake. As biomass growth 

takes place only in the aerobic region a free water profile will arise. It is assumed that the 

water transport induced by this free water profile is so fast that an instantaneous redistribution' 

of water within the particle occurs. 

Biomass growth, insoluble substrate degradation and water redistribution cause a convective 

mass transport within the particle. As biomass only grows within the aerobic region the main 

volume increase takes place in this region. This volume increase induces a convective 

material transport toward the anaerobic region. 

Material balances, accounting for conversion reactions, diffusion transport and convective 

transport were set up as described in chapter 3. Computer simulation gave the characteristic 

OUR time course shown in figure 4.1. Initially the OUR shows a strong increase and reaches 

a maximum plateau. At a certain point of time the OUR suddenly drops sharply. This sharp 

drop is followed by a slow decrease in the OUR. A parameter sensitivity analysis gives an 

explanation for this characteristic behavior, schematically shown in figure 4.2. Initially 

sufficient soluble substrate is present and the OUR is only determined by the penetration 

depth of oxygen and the biomass concentration (Fig. 4.2A). Growth of biomass occurs only 

within the aerobic region. As a result of the biomass increase the OUR will increase and 

consequently the penetration depth of oxygen will decrease. At a certain point of time the 

biomass concentration has reached its maximum level (Fig. 4.2B). As long as sufficient 

substrate is available, the maximum conversion rate will be maintained. The produced 

biomass is expelled by the convective mass transport, which velocity is maximal during this 

phase. As a result of the soluble substrate conversion in the aerobic phase, a concentration 

profile has developed (Fig. 4.2A/B). 

116 



n 
(A 

m * 

"a 
o 
— 
B 

O 

7.0E-03 

6.0E-03 

5.0E-03 

4.0E-03 

3.0E-03 

2.0E-03 

1.0E-03 

O.OE+00 

A B < : D 

20 40 60 80 
time [hr] 

100 120 

Figure 4.1: The characteristic development in time of the OUR. Four different 
periods are distinguished. A: OUR increase due to biomass growth; B: plateau of 
maximum OUR due to biofilm limitation; C: fast decrease due to limited soluble 
substrate availability; D: slow decrease due to hydrolysis of insoluble substrate. 
The periods A and B form together the substrate saturated stage, The periods C 
and Dform together the substrate limited stage. 
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Figure 4.2: Schematic representation of the development in time of the main 
processes. The four situations are representative for the periods enumerated in 
figure 4.1. The left side is the interior of the particle, the right side is the gas side 
interface. The gray area is the area where the aerobic microbial activity takes 
place. The black line indicates the soluble substrate profile, the dashed line the 
oxygen profile. The arrow indicates the direction and importance of the inward 
directed convective mass transport. Lc is the characteristic particle size andL„ is 
the penetration depth of oxygen within the particle. 
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After some time the soluble substrate becomes rate limiting. The biomass within the aerobic 

region is no longer fully saturated with substrate. This situation arises at the moment that the 

soluble substrate concentration is zero at the gas particle interface. (Fig. 4.2C) 

From this moment on an ever-increasing part of the biomass will be substrate limited (Fig. 

4.2D). Oxygen supply is no longer limiting. The conversion initially takes place in a small 

region next to the gas interface as biomass is abundantly present there. The OUR in this 

situation is determined by the flux of soluble substrate into the biomass region next to the gas 

interface. At first this flux is determined by the diffusional transport rate and the OUR 

decreases quickly. Soon the flux is solely determined by hydrolysis, and the OUR decreases 

only slowly. 

4.2.2. Simplifying assumptions 

The approximate analytical solution is based on a modified model, resulting from simplifying 

the theoretical model as presented in chapter 3. The following simplifying assumptions are 

used: 

• The conversion processes are approximated. 

In chapter 3 a biomass decay coefficient b was introduced that described the death of biomass. 

The dead biomass was incorporated into the insoluble substrate using a conversion constant 

YSi. The sensitivity analysis showed this conversion constant unimportant, implying that this 

process might be simplified. The same applies for the dependence of the growth rate on 

soluble substrate and oxygen. The parameters describing this dependency showed no 

significant effect in the sensitivity analysis. The following simplified description of the 

conversion reactions is therefore proposed. The aerobic microbial growth process rate (RJ 

consists of three sub processes, all first order in biomass. The maximum growth rate (u„,) 

describes the growth as a result of the conversion of soluble substrate. The decay rate constant 

(b) describes the auto oxidation of the organism needed for its maintenance requirement. This 

is a different interpretation of the biomass decay factor, such that no dead biomass is produced 

but the apparent yield remains the same. With respect to oxygen and soluble substrate these 

processes are zero-order. Hydrolysis of all biomass is introduced to allow degradation of the 

produced biomass on the long term. Otherwise, the biomass would accumulate, as no 
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degradation of biomass at all would take place. If oxygen and soluble substrate are present, 

hardly any effect can be seen on the growth rate as kh«u.m. 

Rx={Mm-b).X-kh.X = M„.X 
eq. 4-1 

X 

02 

ss 

K 
Hn 

Mm 

b 

K 

"X V~m " r" "h"~ fi 

Rx=-kh.X 

: Biomass concentration 

: Oxygen concentration 

: Soluble substrate concentration 

: Aerobic microbial growth rate 

: Net growth rate constant 

: Maximal growth rate constant 

: Biomass decay constant 

: Hydrolysis rate constant 

o2 

o 2 

>0 

= 0v 

* s s 

ss = 

>0 

= 0 

[mol X.m°] 

[mol 02.m"3] 

[mol Ss.m"3] 

[mol X.m"3 s1] 

[s-1] 

[s-1] 

[s-1] 

[s-1] 

Associated with the microbial growth is the soluble substrate consumption. This conversion 

rate equals: 

eq.4-2 R, = ̂ -.X = —^-.Rx 

RSs : Consumption rate of soluble substrate [mol S8.m"3.s"'] 

YSs : Biomass yield on soluble substrate [mol X.mol S,"1] 

It is important to note that the soluble substrate consumption is determined by the maximum 

growth rate constant, as soluble substrate is consumed both for net growth and maintenance. 

For the consumption rate of oxygen (Ro2) a relationship similar to the soluble substrate 

consumption rate can be set up using the biomass yield on oxygen (Y02). 

119 



eq.4-3 R0i =~^L.RX 
Lb, 
Yo7M„ 

RQ2 : Consumption rate of oxygen [mol 02.m"3.s"'] 

Y02 : Biomass yield on oxygen [mol X.mol 02"'] 

As both the insoluble substrate and biomass act as a source of soluble substrate it makes sense 

to lump these two variables together to a new variable, called total insoluble substrate. (Si-t) 

eq-4-4 Su=Sl+£-

si( 

Biomass yield on insoluble substrate [mol X.mol S,"1] 

"Genuine" insoluble substrate concentration [mole Sj.m3] 

Total insoluble substrate concentration [mole Sit.m"3] 

This lumping is also practically meaningful, because a as a rule, biomass and insoluble 

substrate can not be separated from each other when present in waste. The hydrolysis rate of 

the total insoluble substrate can be described by a first-order approximation. 

eq.4-5 Rs =kh.Su 

Rsi : Hydrolysis rate of total insoluble substrate [mol SM.m"3.s'] 

• The particle size is assumed constant. 

As the simulation in chapter 3 with the theoretical model revealed that the particle size 

showed only a moderate change, the particle size Lc is assumed constant, at any time Lc equals 

the initial particle size Lc 0. Particle size constancy can be considered as a different 

interpretation of the average state variables, their concentration being now based on the initial 

volume and not on the actual volume. This agrees with composting (research) practice where 

as a rule measured amounts are related to some initial amount or volume. The reason for this 

is the difficulty to measure frequently amounts of different components accurately. 
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• Convective mass transport 

Convective mass transport is of importance only during the first phase of the process, when 

significant amounts of biomass are produced. Particle size constancy implies that at any time 

the overall volume changes must cancel. The volume changes of water and biomass are 

considered. The volume change of insoluble substrate may be neglected over the first part of 

the process, as it is a relatively slow process. 

• Water 

The particle size is assumed constant and the total particle volume consequently does not 

change. As only the biomass volume and water volume changes are taken into account, the 

change in water volume and thus amount is determined by biomass growth. Hence the balance 

equation for water needs not be evaluated explicitly, and will no longer be considered. 

Diffusion of soluble compounds takes place only in the water phase. The effective diffusion 

coefficient of oxygen is determined according to : 

eq-4-6 D0i=sltJ)0i%w 

D02 

D02,„ 

Effective diffusion coefficient of oxygen [m2.s"'] 

Diffusion coefficient in pure water [m2.s"'] 

Initial volumetric water fraction [-] 

The effective diffusion coefficient for soluble substrate is determined in the same way. 

eq-4"7 Ds, =£l,o-DSs,w 

DSs : Effective diffusion coefficient of soluble substrate [m2.s_1] 

DSsw : Diffusion coefficient of soluble substrate in pure water [m2.s"'] 

As inert material is not converted and the particle size is fixed, the average concentration will 

not change over time. The inert material is therefore not longer taken into account. 
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4.2.3. Balance equations 

From the previous discussion it has become clear that the state variables biomass, oxygen, 

soluble and insoluble substrate are taken explicitly into account. The balances are based on the 

balances derived in chapter 3, however they are sometimes altered to correspond with the 

simplifying additional assumptions listed before. The dependency of the state variables on 

space and time is not explicitly represented to simplify the notation. This holds for the 

following variables, X, Ss, S(, 02, Rx, RQ2, R^, RSi and the convective velocity u. 

Biomass. X 

eq. 4-8 

t = 0 

t>0 

t>0 

dX du.X 

dt dz 

z>0 

z = 0 

z = k 

+ RX 

X = X0 

dz 

^ = 0 
dz 

z : Spatial coordinate [m] 

X<, : Initial b iomass concentration [mol X.m"3] 

Lc : Characteristic particle size [m] 

u(z) : Convect ive velocity [m.s 1 ] 

t : T ime [s] 

The first term of the balance eq. 4-8 reflects the convective transport rate while the second 

term denotes the microbial growth rate 
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Oxygen. (X 

eq-4-9 ^ = D O 2 ^ _ R O 2 

t = 0 0<z<Lc 02 = 02i 

t> 0 z = 0 02 = 02i 

z=Lp=Lc ^ = 0 or 
oz 

z = L<L ^ 2 - = 0 A 6 > 2 = 0 
p dz 

t>0 

Lp : Penetration depth of oxygen [m] 

02 j : Oxygen concentration at the gas side interface [mol 02.m"3] 

The same balance is used as in the theoretical model, except that the convective mass 

transport is neglected. The first term in the balance denotes the diffusion term. The diffusion 

coefficient is assumed constant and thus no longer makes part of the derivative term. The 

second term describes the oxygen consumption rate. The boundary condition at the gas 

interface side (z=0) describes that the oxygen concentration there is constant, i.e. determined 

by a constant gas phase oxygen content. Two situations must be however considered for the 

other boundary condition. If the particle is fully penetrated the boundary condition at z=Lc 

becomes the zero flux condition. However if the particle is not fully penetrated a new variable 

the oxygen penetration depth (Lp) enters into the problem. This new variable describes the 

depth within the particle where the oxygen has just been depleted. The equation can in this 

case be solved by using two conditions at z=Lp both the oxygen concentration and the oxygen 

flux are zero. 

The choice of the initial condition is somewhat arbitrary. However it will show that this is 

not a matter of great importance as a pseudo-steady state is rapidly attained, i.e. the initial 

condition is no longer relevant. 
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Soluble substrate balance. S. 

eq-4-10 Q. = D ?jL + R R 
ct 01 . . . 

t = 0 0<z<Lc SS=SS<0 

( > 0 z = 0 ^ - = 0 
dz 

ar t 

( > 0 z = L —s- = 0 

SA0 : Initial soluble substrate concentration [mol Ss.m"3] 

Apart from the omission of the convective transport term the same balance equation has been 

used as for the theoretical model. The first term of the balance again denotes the diffusion 

term, again with a constant diffusion coefficient. The second term is the production of soluble 

substrate through hydrolysis, while the third term denotes the consumption of soluble 

substrate by microbial oxidation. 

Total Insoluble substrate. S;, 

eq.4-11 ^L = -kh.sn+_^L 
dt J YSi 

eq.4-12 t = 0 0<z<Lc Su=SUfi 

Si ,o : Initial insoluble substrate concentration [mol SM.m3] 

The spatial distribution of the insoluble substrate has been neglected. The balance can 

therefore be expressed as an ordinary differential equation. The first term denotes the 

degradation of insoluble substrate due to hydrolysis, while the second term denotes the 

production of new total insoluble substrate due to growth of biomass. 
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4.2.4. Solution strategy 

The previous paragraph presented the balance equations that need to be solved to obtain an 

expression for the OUR as a function of time, initial states and the constant process 

conditions. The strategy used to solve these balances is based on the presence of the two 

distinct process stages, the substrate saturated and the substrate limited stage. In the first stage 

sufficient soluble substrate is present and the OUR is determined by the penetration depth of 

oxygen and the specific volumetric conversion rate within this region (Fig. 2A+2B). A 

solution of the oxygen and biomass balance is needed to solve for the OUR. 

During the subsequent substrate limited stage the OUR is determined by the availability of 

soluble substrate to the biomass (Fig 2D). The OUR can be determined by solving the soluble 

substrate balance. 

The point of time at which the transition from the substrate saturated to the substrate limited 

stage occurs is called the switch time (ts). The solution is only complete if the switch time is 

known. The switch time can be found by the condition that at the switch time the soluble 

substrate concentration at the gas interface has just become zero (Fig 2C). To obtain a solution 

for the switch time the soluble substrate balance during the substrate saturated stage needs to 

be solved. 

The main interest lies in a typical OUR time course i.e. the process development of particles 

with such properties as can be expected to exist in practice. This allows sometimes further 

simplifications because solutions irrelevant for practice need no consideration. 

4.3. Substrate saturated stage solution 

4.3.1. OUR 

All equations under this heading are valid if time is smaller than or equal to the switch time t< 

ts. This condition will not be explicitly mentioned with each equation. The biomass balance 

will be considered first. The OUR is determined by the active biomass i.e. the biomass inside 

aerobic region. The aerobic region is determined by the penetration depth of oxygen within 

the particle (Lp), i.e. the distance at which the oxygen concentration has become zero. Through 

differentiation eq. 4-8 can be written as: 
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dX vdu cX n 

eq. 4-13 — = -X. u. — + RX z<LD 

dt dz dz 

It is assumed that initially the biomass concentration is homogeneously distributed. As the 

biomass growth takes place at the same rate within the aerobic region, the biomass 

a y 
concentration will remain homogeneously distributed, and therefore the term u.— in eq. 4-

dz 

13 vanishes. 

Biomass and free water are the only two components that undergo an appreciable volume 

change.' This means that the convective velocity can be calculated as: (see chapter 3: eq3-16, 

3-17 and 3-18): 

/ \ 1 dV(z) 1 (dVx(z) dVw(z) eq. 4-14 u(z) = —.—^ = —. —±X± + —* \± 
A dt A dt dt 

V(z) : Volume of all components going from 0 to z [m3] 

Vx(z) : Cumulative biomass volume going from 0 to z [m3] 

Vw(z) : Cumulative water volume going from 0 to z [m3] 

A : Specific surface area of particle [m2] 

The free water is defined as the water that does not make part of the microbial colonies within 

the waste particle. At any time the free water is assumed evenly distributed over the inert and 

insoluble lumps within the whole waste particle. This assumption implies that a volumetric 

free water fraction Ef may be defined that everywhere within the particle has the same value. 

The volumetric free water fraction may change in time due to microbial growth. 

eq.4-15 ef=- ^ f ^ -
V(Le)-Vx(Lr) 

ef : Free water fraction on biomass free volume [-] 

As the total particle size is assumed constant in time the following relation holds: 
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eq. 4-16 dVx(Le) = -dVw(Le) 

This equation expresses that a change in biomass volume is compensated by an opposite 

change in water volume. This is a realistic assumption as the biomass volume is mainly made 

up of water and the degradation of insoluble substrate is relatively small during the substrate 

saturated stage. The local water volume is changing due to the local production of biomass 

and the change in the volumetric free water content ef.. 

eq.4-17 
dVw{z) _de,{v(z)-Vx(z)) 

dt dt 

The change of the free water fraction ef. can be found by considering the total particle volume. 

eq.4-18 
dt dt 

The change of biomass volume is a result of biomass growth and one can write: 

Vx{z)=A.\ 
( X^ 

eq. 4-19 dlM = A\ 
dt \XmJ 

dC 

C, : Spatial coordinate 

Xm : Maximal biomass density 

[m] 

[mol X.m"3] 

Upon substitution eq.4-15, eq. 4-16, eq. 4-19 in eq. 4-18 and some manipulation the 

following relationship for the temporal change in the free water content is found: 

eq. 4-20 
1 de f 1 

\-sf dt \ X %X. 
f
 Le-j JC* 

0 M 

•ff* 
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Combining eq 4-14,4-17 and 4-19 gives the following result for the convective velocity: 

z-)—de , 
eq.4-21 «(z)= ^ = _ . ^ + f * ^ 

Combining eq. 4-20 and 4-21, eliminating e^gives the following relationship for the 

convective velocity u(z): 

eq. 4-22 u(z) = *-£*—. J ^L^ + j&_^ 

0 m 

For the biomass balance the first derivative of the convective velocity with respect to z (eq. 4-

13) is needed. Two additional relationships are used to derive this derivative. The first relation 

(4-23) is an approximation and expresses that the biomass expelled into the anaerobic region 

is not taken into account when evaluating the integral over the whole particle. This introduces 

no substantial error as this biomass fraction is very small anyhow and thus it omission only 

influences the convective velocity marginal. 

eq.4-23 )2Ld<; = LfftXM 

0 m m 

Xa(t) : Biomass concentration within the aerobic region [mol X.m"3 

A new biomass variable has been introduced for the sake of clarity. Xa represents the biomass 

concentration within the aerobic region, this biomass concentration is everywhere the same 

within this region, and is therefore represented as a function of time only. 

The second relation (4-24) is exact as biomass growth takes place only within the aerobic 

region. 
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eq. 4-24 ']ZLdc=L,<fy*& 
I y 

0 m 

Combining the biomass balance (4-13) with the appropriate rate term (4-1), the convective 

velocity equation (4-22) and the additional relationships (4-23,4-24) gives after some 

manipulation the following equation describing biomass growth within the aerobic segment: 

eq. 4-25 
dXaif)_ Rx 

dt 1 Xa{t)Lp{t) 
1 £&1 

X„ 

This equation can not be directly solved, as the penetration depth is a yet unknown function of 

time. However ahead of the treatment of the oxygen balance it will be assumed here that the 

penetration depth is inversely proportional to square root of the biomass concentration. The 

penetration depth reaches its minimum when the biomass concentration Xa(t) reaches it 

maximum value. 

eq. 4-26 Lp(t)=Lp 
X. 

Xaif) 

L mi„ : Minimum penetration depth of oxygen [m] 

Substituting eq 4-26 in eq. 4-25 gives a differential equation that can be solved. 

eq. 4-27 

dXa(t)^ M„-Xa(t) L Xa(t) 
dt . I„mi„ \xjt)\ Xm _ 1 ^p.min 

t = 0 x=xn 

This equation can be solved by separating the variables and has as a solution: 

eq. 4-28 
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/M = H 
Xaif) xm-x0 

xm-xa{ty X0 
-.In 

Xm+Xajf)-2.4Xm.Xa{t) Xm-X0 

Xm-Xa(t) 'Xm+X0-2.JX^X( o J 

The biomass concentration can not be expressed as an explicit function oft. However in case 

that the minimal penetration depth is much smaller than the particle size, the second term on 

the right side of equation 4-28 may be neglected. This can be seen by solving eq. 4-27 for 

Lp,min=0The biomass concentration can than be expressed as an explicit function oft, i.e. the 

logistic function. 

eq. 4-29 xM)-
P + e 

•X. 

: Dimensionless initial biomass concentration [1] 

In this function (3 equals: 

eq. 4-30 P = 
X„ 

X„ 

In case that the factor \tmin =Lpmi]/Lc may not be neglected the logistic function can still be 

used for approximation. In this case the parameter u„ and (3 need to be adjusted in the 

following way. At the point of time that X=0.5, the first time derivative of the logistic 

function reaches its maximum. The parameter values for u„ and p for the approximating 

logistic function (4-29) are chosen such that X=0.5 is reached at the same point of time as the 

general solution (4-28) and has the same value of the first time derivative at this point. The 

resulting approximating solution runs as: 

eq. 4-31 X(t) = —^l .Xm 

: Effective dimensionless initial biomass concentration 

: Effective growth rate constant 

[-] 
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eq.4-32 neff = //„. 
1 - ^ ^ , - V K 

X̂ mj, :Dimensionless minimal penetration depth [-] 

It is interesting to note that this result implies that the effective growth rate depends on the 

particle size. Of course this only an apparent growth rate constant, the true constant remains 

the same al the time. The effective initial biomass concentration runs as: 

V/7+I + V/7 2-S 
eq. 4-33 j}^ = yff1"^™'^ ,4% 

L min 
This approximation works well if Xp min =

 p'""" « 1 and becomes exact if Xp min = 0. 

For larger particles when Xfnin is small the effective constants coincide with the "true" 

constants, however as \nia increases the effective growth rate constant increases. To 

understand this phenomenon, consider a nearly fully penetrated particle, biomass growth and 

OUR increase will than be almost exponential. However the situation is described by a 

logistic function that predicts an ever decreasing specific growth rate in time. To use the 

logistic curve in such a situation the growth rate constant needs to be increased. A similar 

explanation can be given for the initial dimensionless biomass density. 

The penetration depth of oxygen can be found by solving the oxygen balance. As shown in 

appendix A-2 the solution of the oxygen profile can after a short initial period be described as: 

eq. 4-34 02 = 02i - -
Pm 'Mm eff 

- Y0i.D07 Peff+e-
z 

V*,, 
LP 

From eq 4-34 and the condition that the oxygen concentration is zero at the penetration depth, 

the penetration depth can be calculated as: 
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eq-4-35 LP(t)= A2.D0202.i 
'XMH. 

This equation shows that the assumptions made about the penetration depth earlier to solve 

the biomass balance are warranted (eq. 4-26) and the minimum penetration depth Lpmin, can be 

expressed as: 

eq. 4-36 Z,„,min = .\2.D02O2j, — 
PxMm 

The OUR is determined by the penetration depth and the conversion rate within the aerobic 

region. 

eq.4-37 0UR(t) = Lp(t).^.—^—7.Xm 

Substituting eq. 4-35 and eq. 4-31 in this relationship (4-37) gives the time dependence of the 

OUR during the substrate saturated stage. 

eq-4-38 OUR(t) = I ^ rOURm 

\Peff +e^ 

OUR,,,: maximally attainable OUR [mol 02.m"3.s"'] 

The OURn, is a new parameter is and describes the OUR reached at maximal biomass density 

given the interfacial oxygen concentration and particle size. The parameter OUR„, equals: 

eq- 4-39 OURm = —j2.D0l-02j-Xm'Mm 

Lc \ To, 

A second variable of importance is the cumulative oxygen uptake. By integration over time of 

the OUR function the COU can be calculated as: 
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eq.4-40 COU(t) = ln 
2.fieff+e-^'+2.^eff.(pe/r + e ^f 

\.Peff+\ + 2.peirkPeff+\) 
+ Meff-t 

OUR 

*<# 

4.3.2. Soluble substrate 

The solution of the soluble substrate can be found by applying the method of variation of 

parameters as described in appendix (A-3). The solution runs as: 

eq. 4-41 

S,{t,z)= S,„ + \kh.Su{r)dT-f- \0UR{z)dT-

Y0i OUR(t)^ 2 

' S , 0 

YSi D± t!(n^ynjr.Lp(t) 
sin ' n^\-e-^\os(z.4i:) 

: eigenvalue n (see appendix) [-] 

eq. 4-42 
/ \2 

v 4 y 

The first term of the solution 4-42 is the initial soluble substrate concentration, the second 

term is the amount of soluble substrate produced and the third term represents the amount of 

oxidized soluble substrate. The first three terms together represent the time course of the 

average soluble substrate concentration. The fourth term describes the shape of the soluble 

substrate profile in the particle. It is clear that at t=0 this term is zero due to the exponential 

term. After some time the exponential term has completely decayed and the steepness of the 

profile depends strongly on the current OUR, with a higher OUR the profile will be steeper. 

The profile will be also steeper with an increasing particle size and a decreasing diffusion 

coefficient DQt. 
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4.3.3. Total insoluble substrate 

A solution for the total insoluble substrate development during the substrate limited period is 

needed to estimate the amount of soluble substrate produced during this period. This 

information is needed to obtain the switch time. The biomass production is linearly linked to 

the oxygen uptake rate as the transient term has been neglected in the solution of the oxygen 

balance. The total insoluble substrate balance may than be written as: 

eq.4-43 ^ = -kh_Sii+.^L.OUR(t) 

eq.4-44 t = 0 0<z<Lc Su=SUfi 

The general solution to this equation is given as: 

eq. 4-45 S„ =Sno.e^' +e^J'.\^-.^$^dr 
o 1sl

 K 

OUR{T) 

As no solution to the integral in 4-45 could be found, the solution was approximated in the 

following way. After some time the OUR approaches its maximum value OUR,,, and the OUR 

is almost independent t. In case the OUR is constant the solution to eq. 4-45 can be directly 

found. Therefore we split the substrate saturated in two periods, one during which the OUR 

clearly changes over time and during which the OUR is nearly constant. The main thus 

focuses on the period during which the OUR has not yet sufficiently approached it's 

maximum. This period starts at t=0 and ends a certain time ta, the saturation time. At this 

point of time the OUR equals a.OUR„,. These parameters are denned as: 

eq. 4-46 
.=guR(f)= peff 

OURm peff+e-^ 

ta : saturation time [s] 

a : saturation level [-] 
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From this equation ta.may be expressed as a function pef!> neff and the chosen parameter a as: 

eq. 4-47 ta = In 
1 . ( «* 

^ • ( l -« 2 ) . 

The attention is of course focused to the integral in eq 4-45. Using partial integration it can be 

shown that the following inequality is valid. 

eq. 4-48 e'k"'. J0UR(r)dT<e~k,<'. J ° ^ j W < \0UR(r)dz 
o o e 0 

This means that the solution lies between the boundaries: 

eq. 4-49 SU0.e-""J +e~h'.-^-COU{f)<Su <SUfi£
k>J +-^COl/(t) 

S< Si 

By either choosing the lower or upper boundary the maximum error introduced is smaller than 

the difference between upper and lower bound. Expressing the difference between upper and 

lower bound as a fraction of the initial total insoluble substrate gives: 

eq.4-50 sA^e-^COUit) 

E : Approximation error [-

As k,,.ta«l and COU(ta)« Si-ti0, eq. 4-50 shows that the approximate solution will have a 

small error relative to the total amount of consumed oxygen. In case of the nominal parameter 

set the error is less than 0.1 %. The lower boundary will be used as a solution for the total 

insoluble substrate (KtJ: 
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eq.4-51 *,,,(') = Sufi+-^-COU(t) .e 

By substituting the relationship ta in eq 4-51- the following relation is obtained for Sit at ta. 

eq. 4-52 sM= S,,o + .In 
' l + a ^ 

Ys, Meff "\(l-a))/ 

Now if t>ta the relationship for the Sit is easily found from eq. 4-45 and 4-51 and runs as: 

eq.4-53 Su(t) = S,lfi+-^.COU{ta) 

The solution for the total insoluble substrate within the substrate-saturated period can be 

summarised as: 

IV 

eq.4-54 Su(t) = 

SiA0+^.COU(ta) - * » < t<t„ 

SiiQ+^.COU{ta)\e-k" +^.^^L.(l-e-k^)) t>ta 
^ S , * A 

The following result can be used for the amount of soluble substrate produced during the 

substrate saturated period, 

eq. 4-55 

0 ^ IS, Peff \V a)JJ IS, Kh V Kh 

This solution can be used for the whole substrate limited period for t >ta. For t <ta. the second 

term should be set to zero. 
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4.3.4. Switch time 

The substrate limited stage starts when the biomass within the aerobic region gets insufficient 

substrate. This situation starts when the soluble substrate concentration at the gas interface 

becomes zero. From this point of time on a small segment next to gas interface will be 

substrate limited. The switch time can be derived from the solution of the soluble substrate 

balance. The solution as given in eq. 4-41 is not very easily to interpret, but can be further 

simplified if «1 (see Appendix A-3). This is a realistic assumption as at ts the 
A-

biomass concentration will be high due to growth, and the penetration depth will be 

consequently small. The result runs as: 

eq. 4-56 S.(f,0)= *,(<>)+ J*. • * , » * - £ • )oUR(r)dr-\^°f& 

The switch time can be obtained from this equation via the condition that at the switch time 

the soluble substrate concentration at the gas side interface becomes zero. The equation can be 

solved for the switch time analytically, if the following assumptions hold: 

Pcg «1 A jueff .ts » 1 A kh .ts «1. Together with the previous mentioned condition 

«1, these conditions express that at switch time: 

• The penetration depth of oxygen should be small compared to the particle size. 

• The initial biomass density should be clearly smaller than the maximum biomass density 

• The switch time should be appreciably bigger than the biomass generation time. 

• The switch time should be so small that no appreciable fraction of the total insoluble 

substrate is degraded. 

It is sustained that these conditions will be met under practical circumstances. The first two 

conditions are not strictly necessary to obtain an analytical solution. Leaving these conditions 

out gives however an expression that is more cumbersome. If one of other two conditions is 

not met a numerical solution should be found for equation 4-56. The simplified analytical 

form will be used to show the meaning of the different factors influencing the switch time. 
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eq.4-57 , ,= 1--

(Y 
k„. -^.SU0+COU(ta) 

V°2 
OURm Y02 OURm Meg 3 A 

: Switch time [s] 

Equation 4-57 expresses the main factors influencing the switch time. The switch time is the 

product of two terms between brackets. The first of these terms is dimensionless and describes 

the effect of the ratio between the production of soluble substrate through hydrolysis and the 

consumption of soluble substrate through oxidation. This term will in practice be near one 

Ys 
as. OURm > kh • —~ Si,,, it is interesting to note that if the OUT^ becomes smaller the switch 

time will increase. This makes sense because if the maximum consumption capacity equals 

the production capacity, the point were the substrate will be depleted never will be reached. 

The first term might be considered as the inverse of the fraction of the consumption capacity 

left after the hydrolyzed soluble substrate has been consumed. 

The second term has time as dimensions and consists of three sub-terms that describe the 

factors that influence the degradation time of the initial soluble substrate. The first sub-term 

denotes the time needed to degrade the initial soluble substrate at maximum consumption 

capacity. This is of course an underestimate of the actual time needed as the initial 

consumption capacity is smaller that the maximum. This is corrected by the second sub-term. 

As P is smaller than one the term will be negative and thus the switch time will increase. At 

switch time a soluble substrate profile is present in the particle. This implies that not all 

initially substrate present needs to be degraded at switch time. The time needed to degrade 

this remainder is given by the third sub-term. 
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4.4. Substrate limited stage solution 

This phase starts at the switch time ts, the state of the system at the end of the substrate 

saturated stage determines the initial state for the substrate limited stage. The solutions will 

therefore be presented with the status at switch time as the initial state. 

4.4.1. Total insoluble substrate. 

First an overall approximate solution is sought for the insoluble substrate balance. The 

approximate solution is chosen such that it is expected to be exact on the long run. Therefore 

first the hydrolysis limited stage is considered, when the average soluble substrate 

concentration is in a steady state at low value. The biomass production rate will then be solely 

determined by the soluble substrate production rate i.e. by the hydrolysis rate. Under these 

circumstance the total insoluble substrate balance equation can be written as: 

—r-—kh.Sil+—-kh.Su- knSjt 
at Ys 

eq.4-58 ' t>ts 
k„=kh.(l-f-) 

k,, : net hydrolysis rate [s"1 

The initial condition at t=ts is given by S( t(ts) as calculated by 4-54. The first term in the total 

insoluble substrate balance is the proper hydrolysis rate, i.e. the amount of soluble substrate 

produced. The second term represents the biomass related insoluble substrate that is produced 

from the hydrolysed insoluble substrate. The solution for the total insoluble substrate runs as: 

eq-4-59 S„=Su{t,)e -*„ •(<-<,) 

4.4.2. OUR 

Both in the substrate saturated and limited stage the same set of equations describe the soluble 

substrate balance. However, there is a difference. In the substrate saturated stage the OUR is 

determined by oxygen and biomass concentration and the OUR can be solved without 

knowledge of the soluble substrate balance. In the substrate limited stage the OUR is 
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determined by the availability of soluble substrate and the OUR needs to be solved from the 

soluble substrate balance. 

As the soluble substrate balance is the same for both the substrate limited and substrate 

saturated stage, eq. 4-41 will also serve as a solution. For the substrate limited period the 

OUR can be obtained from this solution from the prerequisite that the substrate concentration 

at z=0 remains zero. Now starting from the simplified solution for the soluble substrate at z=0 

(see Appendix A-3): 

eq. 4-60 

sM = 0 = SAh)k^Xr)dr-^)oUR(r)dr-^^ 

To solve this equation for OUR the equation is differentiated with respect to time to obtain the 

following ordinary differential equation: 

eq. 4-61 
dOURJt) = 3 A 

dt L2 
VYo, 

kh.Su(t).-OUR(t) t>t. 

OUR = OUR{ts) 

The initial condition OUR(t.) can be obtained from eq. 4-38. Substituting the result of the 

insoluble substrate eq. 4-60 gives an expression that can be solved. The solution runs as: 

eq. 4-62 

3.£L 

OUR(t) = 

3A. "1 

OUR(f.)-^SM^-
3.DV 

('-'.) r« K. 
£ L *,,(',) 

h' L ; 

3.D, -.e 
- *»• ( ' - ' . , 

±-k„ 

4.4.3. Soluble substrate 

The average soluble substrate concentration can be easily found once the OUR is determined. 

The average soluble substrate concentration Ss(t) can be found by integrating the soluble 

substrate balance eq. 4-10 over z, giving : 
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eq. 4-63 

S,{t) = S,(t,)+ \kh.Su(r)dT-^jOUR{T)dT 

After substitution of eq 4-63, evaluation of the integrals and after some manipulation of these 

results the following equation is derived. 

eq. 4-64 

sA'hsAhsM 

3JJ, A 

3.D< 
±-k. 

{l-e-^) 

V "c J 

Y0i QUR(ts) kh , x 

v 3.D, 3X>. 
- - * . 

(l_e-U«.)) 

Now from eq.4-61 it becomes clear that at t=ts the following relationship is valid: 

eq. 4-65 
, , 1 Y0i QUR(ts) 

Substituting eq. 4-66 in eq. 4-65 then yields the final result for the soluble substrate 

concentration: 

s,(t)=sM 
eq. 4-66 

3A, ^ 

3.DC 

.(l_e-U~.))+ 

v •"<• / 
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4.5. Prediction Bias 

Simplification of the theoretical model was necessary to obtain an analytical approximate 

solution. Model simplification is however expected to introduce a prediction bias i.e. the OUR 

prediction of the approximate solution will differ from the theoretical model prediction. 

Although the primary interest lies in the OUR, evaluation of the prediction bias of some other 

model outputs is necessary. For some state variables (oxygen, soluble substrate, average 

insoluble substrate) an analytical approximation was needed to arrive at the analytical OUR 

approximation. As good approximation of the OUR does not guarantee a good representation 

of the underlying processes, the approximated variables will be assessed. If the essential 

behavior of the underlying processes is correctly reproduced the analytical approximation can 

also be considered as a sound representation of the mechanistic model basis. 

The extent and importance of the prediction bias will be studied for a nominal parameter set 

and for a larger parameter range. For the nominal parameter set (as defined in the previous 

chapter) both the OUR and the approximated state variables will be investigated. For the 

parameter range only the bias in the OUR prediction will be studied. The prediction bias is 

quantified by the conventional multiple correlation coefficient R2 and the median relative 

error e„, 

4.5.1. Comparison for the nominal parameter set 

The nominal parameter set as listed in chapter 3 describes the composting of chicken manure 

at 55 °C. The same parameter set will be used to investigate the performance of the analytical 

model. The bias in the following predictions is investigated, the OUR time course, the average 

soluble substrate concentration time course, the average total insoluble substrate time course, 

the soluble substrate concentration and the spatial profile of the oxygen concentration. The 

bias is expressed as the absolute relative error defined as: 

\OUR,{t)-OURM 
OUR^t) 

e( : Relative error of observation i [-] 

tj : Time instant of observation i. [s] 

OUR,(t|): Prediction with the theoretical model at t, [mol 02.m"3.s"'] 
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OUR^ti): Prediction with analytical approximation at t, [mol 02.m-3.s"'] 

The relative error measures the bias at one point of time. To measure the overall bias two 

measures will be used, the conventional multiple coefficient of variation R2 between OUR,(ti) 

and OURu(tj) and the median em of the relative error ej, both calculated over the a period 

running from 0 to 100 hr with a time interval of 0.25 hr. The median relative error is less 

sensitive to the outliers than the average. 

Figure 4.3 compares the OUR as calculated by the theoretical model and the analytical 

approximation. The two curves are the same with respect to the main features, the initial 

growth phase ending in plateau and the subsequent sharp drop followed by a low plateau, 

which has a gentle slope. The prediction by the analytical approximation of a two hour longer 

substrate saturated stage represents the main difference. 
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Figure 4.3: The time course of the OUR as predicted by the theoretical model 
(thick line) and as predicted by the analytical approximation (thin line). 

Figure 4.4 shows the relative error as a function of time together with the time course of the 

OUR. There are two distinct peaks in the relative error, one during the initial OUR increase 

and one at the end of the substrate saturated period. These peaks occur as a result of small 

shift in time of one curve relative to the other. At place where the OUR curve is steep a 

relative large error will occur. The second peak represents the largest contribution to the 

overall error. Leaving out this second peak gives an increase of R2from 0.967 to 0.991. The 
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average relative error gives a decrease from 2.1 % to 0.7%, In the sequel the median relative 

error em is used as this is in both cases 0.72% 
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Figure 4.4: The time course of the OUR as predicted by the theoretical model 
(thick line) and the relative error e of the analytical approximation (thin line). 

Figure 4.5 (R2 = 0.998) shows that for the time course of the average soluble substrate no clear 

differences can be noted. The analytical approximation predicts a somewhat higher soluble 

substrate concentration (15 mole.m"3), during the substrate saturated period. This increased 

level can explain the prolonged substrate saturated stage. 
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Figure 4.5: The time course of the average soluble substrate concentration as 
predicted by the theoretical model and as predicted by the analytical 
approximation. The lines almost completely coincide. 
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Figure 4.6 (R2 = 0.995) shows the time course of the average insoluble substrate. Both curves 

show an initial decrease of the total insoluble substrate, followed by an increase to a 

maximum at t=47 hrs, after which a steady decline takes place. There is a small difference at 

the maximum concentration, the analytical solution predicts a somewhat higher concentration. 

This difference can account for the increased soluble substrate production that leads to an 

extended substrate saturated stage. 

40 60 
time [hr] 

120 

Figure 4.6: The time course of the average insoluble substrate concentration as 
predicted by the theoretical model (thick line) and as predicted by the analytical 
approximation (thin line). 

Figure 4.7 (R2 = 0.994) shows the oxygen gradient at t= 10 hr and at t= 35 hr. The analytical 

approximation follows the curves according to theoretical model well, both models predict a 

small penetration depth. At t= 35hr the penetration depth has decreased due to an increase of 

the OUR, which is predicted well by both models. 

Figure 4.8A (R2 = 0.994, 0.99, 0.99) shows the soluble substrate gradients at three different 

points of time. The curves at t= 10 hr do coincide, both models predict the actual increase of 

the soluble substrate. At t= 35 hr the concentration has become lower the gradient of both 

profiles has become steeper. A small difference between the curves is observed. As the 

multiple correlation coefficient is still very high this indicates that this difference is the same 

at each location, again indicating that the difference is caused by the higher predicted 

solubilization of insoluble substrate. At t=45 hr the soluble substrate is nearly depleted as 

predicted by both models. Figure 4.8B shows that there remains a difference in the soluble 

substrate profiles at t= 45. It is now clearer seen that the analytical profile still has not reached 
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Figure 4.7: Comparison between the oxygen profile as predicted by the 
theoretical model (thick line) and the analytical approximation (thin line) at two 
point of time. The full particle size Lc is 0.0025 m. 

Figure 4.8: The 
profile of the average 
soluble substrate 
concentration as 
predicted by the 
theoretical model 
(thick line) and as 
predicted by the 
analytical 
approximation (thin 
line). The profiles 
are shown at 
different points of 
time characteristic 
for the OUR time 
course. The lines 
coincide at t=10 hr. 
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a zero concentration at the gas side interface while the numerically calculated profile 

already has. Later on at t=100 hr the profile nearly coincide again, indicating that the 

solubilization rate is accurately approximated analytically. 
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4.5.2. Comparison over a parameter range 

The O U R t ime course is investigated over a larger parameter space ( including initial 

conditions), to see whether at different parameter sets the analytical approximation works also 

well. Fo r each different parameter set the O U R t ime course calculated wi th the theoretical 

(numerical) model and wi th the analytical approximation are compared. This makes it 

possible to see whether the effect o f a change in a certain waste characteristic is reflected in 

the analytical solution. A s the waste characteristics (particle size, interfacial oxygen 

concentration, initial ash concentration, initial insoluble substrate concentration, initial 

b iomass concentration and initial soluble substrate concentration) are expected to have the 

largest variance they are examined. The nominal parameter set is chosen as the reference point 

and the waste characteristic parameters are changed by factors 2'2,2"',2 and 22 . Parameters are 

changed one-by-one and the mult iple correlation coefficient is calculated and the median o f 

the relative error em is calculated for each parameter set. The results are presented in table 4 . 1 , 

only the results for the m in imum and max imum parameter value are shown in graphs. 

Table 4 .1: The relative median error (error) and the mult ipe correlation coefficient (R2) for 

different values of the ma in waste characteristics. The top line indicates the waste 

characteristics investigated. The factor indicates the multiplication factor of the nominal 

parameter value. 

Factor 

2"2 

2'1 

1 

2 

4 

Lc 

Error 

[%] 

0.9 

0.9 

0.7 

0.5 

0.1 

R2 

0.88 

0.95 

0.97 

0.96 

1.00 

°W 
Error 

[%] 

1.0 

0.9 

0.7 

0.5 

0.5 

R2 

0.98 

0.97 

0.97 

0.97 

0.96 

*M,o 

Error 

[%] 

0.5 

0.5 

0.7 

0.6 

0.5 

R2 

0.97 

0.97 

0.97 

0.96 

0.93 

s5,„ 
Error 

[%] 

0.8 

0.7 

0.7 

0.9 

1.0 

R2 

0.97 

0.97 

0.97 

0.95 

0.80 

Figure 4.9 shows that both for the small (4.9B) and the big particle size (4.9A) the 

approximate solution comes very near the theoretical OUR. Table 1 it shows that with 

increasing particle size the analytical approximation has a smaller median error and an 
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increasing R2, however in all cases the error remains small. When the period between the 

theoretical switch time and the analytically determined switch time is left out the multiple 

correlation coefficient becomes in all cases >0.99. This explains also why with decreasing 

particle size the error somewhat increases, a small particle gives a high OUR,,, and thus a 

larger error when the OUR drops after the switch time 
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Figure 4.9: The time 
course of the OUR as 
predicted by the 
theoretical model 
and as predicted by 
the analytical 
approximation for 
the maximum 
particle size (A) and 
the minimum particle 
size (B). In both 
cases the lines 
coincide. 

Figure 4.10 shows that with increasing Ss the switch time increases. The approximate solution 

shows the same behaviour. As with increasing Ss there is an increase in the switch time, a 

bigger difference in the approximated and theoretical switch time is expected. This results in 

an increasing error and decreasing R2. 

Figure 4.11 shows that with an increasing interfacial oxygen concentration the maximum 

OUR increases and the switch time decreases. This effect is very well mimicked by the 

approximate solution. Table 4.1 indicates that with a decreasing oxygen concentration the 

error increases. As the same behaviour is not detected in the R2 this could be a result of the 

fact that the average OUR value decreases, increasing in this way the relative error. 
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Figure 4.10: The 
time course of the 
OUR as predicted by 
the theoretical model 
(black line) and as 
predicted by the 
analytical 

approximation (gray 
line) for the 
maximum value (A) 
and the minimum 
value (B) of the 
initial soluble 
substrate 
concentration. In 
case B the curves 
nearly coincide 
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Figure 4.11: The 
time course of the 
OUR as predicted by 
the theoretical model 
(thick line) and as 
predicted by the 
analytical 
approximation (thin 
line) for the 
maximum value (A) 
and the minimum 
value (B) of the 
interfacial oxygen 
concentration. In 
both cases the curves 
nearly coincide. 
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Figure 4.12 shows that with increasing Sj the switch time and the hydrolytic activity both 

increases. The approximate solution is again nearly the same in both cases. With increasing Sj 

there is a small decrease in R2, probably as a result of the increasing switch time. The relative 

error shows no systematic change. 
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Figure 4.12: The 
time course of the 
OUR as predicted by 
the theoretical model 
(thick line) and as 
predicted by the 
analytical 
approximation (thin 
line) for the 
maximum value (A) 
and the minimum 
value (B) of the 
initial insoluble 
substrate 
concentration. In 
case B the curves 
nearly coincide. 
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In all cases it seems that the main deviation between theoretical model and analytical 

approximation is the overestimation of the switch time. Figure 4.13 shows the analytical 

prediction of the switch time plotted as a function of the prediction by the theoretical model. 

The latter value was determined as the first point of time after reaching the maximum OUR 

where the OUR has dropped to 99.5% of the maximum OUR. Linear regression analysis with 

a zero intercept shows that the switch is overestimated on the average by 5.7%. If a period of 

5 hrs before and after the switch time is omitted from the calculation the R2 is in all cases 

>0.99 while the median error < 0.2%. 
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Figure 4.13: The switch time as estimated by the analytical approximation Tsan 

as a function of the switch time estimated by the theoretical model Tsnum. The 
line gives the best linear fit with a zero intercept included. 

4.6. Discussion 

4.6.1. Evaluation 

An analytical approximation for the theoretical model has been developed. The bias of this 

analytical approximation is compared to the theoretical model. There is a trade-off between 

the complexity of the model and its accuracy. If a model is simplified, some phenomena will 

no longer be taken into account and the prediction error of the simplified model will increase. 

In the present case the prediction error introduced by the approximation yields a median error 

of less than 1%. Whether this value is critical depends largely on the intended use of the 

model, no general statements can be made in this respect. The advantage of using the 

analytical solution has to be weighted against the drawback of the prediction error. This will 

be done in the following for some applications of the analytical model: 

• Prediction of the OUR 

The analytical model can be used for predicting the OUR, e.g. predicting the rate in a reactor 

model. Use of the analytical approximation gives an increase of the prediction error, whether 

this increase is substantial depends on the size of other sources of prediction error. An 

important source of variance is the variance of the waste characteristics. This variance is 

intrinsic to most types of waste and is not a sampling error that can be restored by getting 

larger samples. For instance Veeken [4] found that biowaste had a large size distribution, 25-
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35% had a radius bigger than 5 and 15-20% has a size smaller than 0.05 mm. Such a large 

span of radius causes of course an effect far outweighing the variance induced by the use of 

the approximate solution. 

• Obtaining analytical understanding 

Analysis of the nominal parameter set showed that the analytical approximation describes 

very well the main features as predicted by the theoretical model. The analytical model thus 

reflects very well the underlying processes. This is definitely an advantage of the analytical 

approximation it gives an analytical understanding of the process, while the numerical 

approximation only gives a quantitative knowledge of the system. For instance the effect of 

particle size on the time course of the OUR time course can be understood without further 

calculations. 

• Parameter estimation 

In nearly all cases the parameter describing the composting process of a specific waste are 

fully or partly unknown, implying that parameters have to be estimated from experiments. 

Non-linear parameter estimation needs many evaluations of the model equations. The 

analytically approximation is well suited for this application as it needs only a small 

computational effort. One simulation over a period of 100 hr takes 20 minutes while the 

analytical approximation takes 0.3 seconds (PENTIUM II350 MHz) Using the simplified 

model would introduce only a slight bias in the parameter estimates. For instance in case of 

the nominal case, decreasing the soluble substrate concentration by 0.9% already gives a 

perfect fit of the theoretical and approximate model. 

• Checking the numerical approximation 

The prediction bias measures the difference in behavior resulting from the simplification of 

the model structure. It is assumed that if the prediction bias is small that the simplified model 

structures is equivalent to the original model structure. This approach however needs access to 

the model behavior of the original model. The theoretical model behavior is acquired from a 

numerical approximation of the model. The error introduced by this numerical approximation 

is unknown. 

The fact that both approximations are so near is a good indication that both the numerical and 

analytical approximation gives a good representation of the underlying model equations. 

Ascribing the prediction bias solely to the analytical approximation in a sense is an arbitrary 

152 



choice, as there is no knowledge on the numerical error. It even can not be ruled out that the 

analytical solution is a better representation than the numerical approximation. 

From the discussion it becomes clear that in most applications the analytical approximation is 

the method of choice as it combines a lower computational burden with analytical insight and 

introduces a small nearly negligible prediction error for practical purposes. The numerical 

approximation is needed when new situations are investigated that do not comply with the 

additional assumptions underlying the analytical approximation. 

4.6.2. Implications 

Accepting the analytical approximation some more general conclusions to be drawn on the 

time course of the OUR. 

1. The root-logistic relationship. 

Based on the presented derivation the root-logistic relationship emerges as a analytical model 

for the OUR time course during the substrate saturated stage. The model identifies the limited 

aerated zone at the surface of the waste particle as the growth limiting factor. The penetration 

depth of oxygen determines the extent of the aerated space. Biomass produced in excess over 

the amount needed to fill up this limited aerated space is removed via a convective flow 

directed at the aerobic core of the particle. 

In solid state fermentation the OUR is often described by the logistic growth, i.e. the same 

model however neglecting the square root. The logistic growth model is considered an 

empirical equation, i.e. a relationship with a good data-fit but without a mechanistic 

background. These two relationships are hard to distinguish if the data have some variance. If 

the data are generated by a root logistic rate equation with a growth rate neff it can be shown 

that a logistic relationship with a growth rate constant 72% of u^ describes the data also well. 

The growth rate measured in food solid state fermentation is usually lower then measured in 

submerged culture [5]. This analysis would show that the growth rate of biomass is not lower 

but only the growth rate of the aerobic biomass activity is lower. 

2. Maximum oxygen uptake rate 

The analytical solution shows that the maximum oxygen uptake rate OUR,,, is determined by a 

number of parameters, among which the particle size is the dominant parameter. Contrary to 

the wide spread assumption in composting literature the maximum oxygen uptake rate is not 

determined by the soluble substrate concentration. The soluble substrate is very important in 
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explaining the duration of the high rate phase. The analysis indicates that a clear distinction 

must be made between the value of the maximum rate and the period that the OUR stays at 

this maximum value. Such a distinction is often not made because most studies are focused at 

cumulative indexes that average the rate. 

3. The soluble substrate diffusion coefficient. 

The sharp drop in the OUR at the beginning of the substrate limited stage is modelled as being 

determined by the substrate diffusion rate. This might seems odd as the sensitivity analysis of 

the theoretical model in the previous chapter showed DSs to be of minor importance. The fact 

that the soluble substrate diffusion coefficient is not detected in the sensitivity analysis lies in 

the extreme sensitivity of the switch time. There are many parameters that influence the 

switch time. A small change in such a parameter shifts the switch time strongly and thus 

influences the activity in the transient phase stronger than the substrate diffusion coefficient 

does. 

4. The net hydrolysis rate 

The apparent hydrolysis is smaller than the actual hydrolysis rate, the reason being that part of 

the solubilized substrate is again converted to insoluble substrate in the form of biomass. This 

observation is interesting as the hydrolysis rate of the aerobic process would be lower than of 

complete anaerobic process,as methanogens have a much lower biomass yield. This might 

explain why anaerobic processes are operated at somewhat lower retention times than the 

aerobic processes [6]. This conclusion is only valid if the insoluble substrate is anaerobically 

hydrolyzed. Lignin and cellulose connected to it is hardly degradable during anaerobic 

processes but may be degraded aerobically. For such components this conclusion is not valid. 

These implications show the advantage of having analytical insight in the composting process. 

Insight is obtained that is independent of the exact value of the parameter used. On the other 

hand care must be taken to keep in mind the assumption underlying the derivation of the 

analytical assumption. The numerical approximation can however always be used to 

investigate the extent of a possible deviation. 

The analytical solution approximates the theoretical model well and gives more insight in the 

processes occurring in a composting particle. It will be used in the following chapters as the 

preferred model as it enables to introduce a size distribution. 
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A Appendix 

The function of the appendices is to clarify some steps with respect to the solution the partial 

differential equations describing the 02 and Ss balance. Both equations are solved by the 

method of variation of parameters. Although this is a standard method it is shortly generally 

introduced (A.l) to simplify the treatment of the individual balances. In this way more insight 

in the validity of some additional simplifications is obtained. In appendix A.1 the general 

solution for a partial differential equation with homogenous boundary conditions is described 

[Berg, 1978 #135]. The solution of the 02 balance (A.2) and Ss balance (A3) follows similar 

lines. First the partial differential equation is transformed into an equation with homogenous 

boundary conditions. For the specific equation that arises in this way the solution can then be 

directly derived from the general solution described in A.l. 

A. 1 The method of variation of parameters 

The method of variation of parameters is used to solve the partial differential equations 

resulting from the different material balances from chapter 3. This method is shortly 

introduced to simplify the treatment of the subsequent balances. 

For the sake of briefness the notation has been changed e.g. subscript t denotes the partial 

derivative with respect to t, z the first partial derivative with respect to z, zz the second partial 

derivative with respect to z. The first step is to transform the problem at hand to an 

inhomogeneous equation with homogenous boundary conditions. The resulting transformed 

problem can be written as: 

eq. A-l w,-k-w!z=Q{z,t) 0<z<L 0<t 

w 

z 

t 

Q 

k 

L 

: variable of interest e.g. 02 

: spatial coordinate 

: time 

: source function 

: constant 

: left boundary 
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The boundary conditions are represented as: 

eq. A-2 ,(0,«) = 0 t>0 

eq. A-3 w\ {L,t) = 0 t>0 

The initial condition is represented by the function f(z) as: 

eq. A-4 *<2,0)=/(z) 

The nature of the boundary conditions may differ depending on the nature of the original 

problem. The solution of the homogeneous problem has eigenvalues X,, and eigenfunctions 

cp„(z). The general solution to the problem is given by: 

eq. A-5 *<*,*)=£ c„.e^k' + je-^'-'\qXr)dT <PAZ) 

In this general solution the constant c„ is given by: 

eq. A-6 
9 

In this equation the factor 2/L is the normalizing constant of the eigenfunctions, which may 

differ, depending on the eigenfunctions. The constant c„ in combination with the exponential 

term c„ .e'x" *'' describes a transient part of the solution if X,„>0. These transient functions will 

be neglected if the product X„.k.t >5 at the time of interest. 

In the general solution qn is given by: 

eq. A-7 
2\ 

qn{f) = -\Q{z,i)q>n{z)dz 
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In the general solution qn forms with an exponential term the (convolution) integral 

r -A„.*.(i-r) q^t^T -pjjjg integral describes the combined effect of the source term and the 

boundary conditions. This integral can be considered as a weighted time average of the 

function q„, the importance of the function values further back in time diminishes. It is clear 

that if the exponential term drops sharply compared to the change in q„ this convolution 

integral can be well approximated by: 

eq. A-8 )e-x'k^xin{r)dr = )e^k(-).qn{t)dr = ^-{\-e-"^k•) 

Again if A^.k.t >5 the exponential term in the result above will be omitted. The validity of the 

approximation of the convolution integral is considered for the logistic function as this is the 

driving function during the substrate saturated phase. The analytical approximation is 

compared to a numerical approximation to find out under which conditions a good 

approximation is obtained. The logistic function is given by: 

eq. A-9 g(t) = -

\i : growth rate constant [time1] 

(J : initial dimensionless biomass (J [time] 

The logistic function is presented in this way to emphasize the property of P as inducing a 

mere time shift in the logistic function. By now considering the 0 the dimensionless time (|a.t), 

the convolution integral can represented as: 

e , 
eq. A-10 [e-°ia-'\ -rnrrdr 

6 : Dimensionless time \i.t [1] 
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In this equation u is the ration between the two time constants involved: 

eq.A-11 v = -
K-k 

: time constant ratio [1] 

Figure A-l shows the numerically calculated integral and the analytical approximation for 

ln(P') =3 (fig A-1A) and ln(P_,)=6 (fig A-1B). In both graphs the curves for u=l and u=5 is 

shown. The numerical approximation and the show that at a ratio of 5 the curves nearly 

coincide, while at u=l the curves coincide at higher values of 0. The parameter (3 has no effect 

on these conclusions as it represents mainly a shift in time of the curve. 

Figure A-l The numerically calculated integral I (eq. A-10) (thin line) and its 
analytical approximation (thick line) for ln(P~*) =3 for two different values of v. 
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Figure A-1B The numerically calculated integral I (eq. A-10) (gray thick line) and its 
analytical approximation (black thin line) for ln(P~*) =6 for two different values of o. 

A.2 Oxygen balance during the substrate saturated phase 

The balance equation is given in table 1 of chapter 3. The following transformation is used to 

obtain a problem with homogeneous boundary conditions. 

eq. A-12 u = 02 - 02i 

This gives the general form with: 

eq. A-13 Qbh-£-
P* 

J02 Peff+e 

••X. 

eq. A-14 m=-ov 

The associated eigenfunctions and eigenvalues are: 

eq.A-15 ^= s inWVz) 
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eq. A-16 A = 
« + - , . * 

It should be noted that Lp denotes the still unknown penetration depth of oxygen and not the 

particle size Lc. As f(z) is zero, the values of c„ are zero. The functions q„ can be easily found 

as Q is only a function of time: 

eq. A-17 a 2 M- ^eS X 

The convolution integral in the general solution given by A-5 can be written as: 

eq. A-18 e-*M>-<) 2 j^ P± 

This integral may be approximated by the following integral. 

eq. A-19 -X„D.(l-l) M. P* 
n + V[n Y02 frff+e - » & • ' m 

•XAr 

This approximation is acceptable if the value of A„ D is much bigger than \iefS> in which case 

the exponential term decays very rapidly compared to the decay of the logistic term. The 

effect of the initial condition on the solution will also decay very rapidly, and thus may be 

neglected. This approximating integral can be solved and gives as a general solution: 

eq. A-20 02 = 02i + Mn 
DoJo2 P*+e 

Peff x f 24 

n + — \JT 
2 

-sin 

« + — \.K 
2, 
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The sin series can be replaced by a quadratic term in z, which gives the following solution: 

eq.A-21 02 = 02 
Xm-M„ P*ff 

' \Do> fiv+e-"' I 2.1, 

As at Lp the oxygen concentration is zero the following result can be deduced for the 

penetration depth. 

eq.A-22 MO=M., Yo2-D02/3eff+e-^' 

*m-M„ Peff 

A.3 Soluble substrate balance during the substrate saturated phase 

The equation has to be solved to obtain the soluble substrate gradient at the end of the 

substrate saturated phase. This specific gradient is needed then as it constitutes the initial 

condition for the soluble substrate balance during the substrate limited period. The equation is 

given in table 1 of chapter 3. The conversion term can be written as: 

eq. A-23 

Rss = 

sif)= 

^.g(t).Xm z<Lp 

0 z>L„ 

P*+^'' • " & • ' 

The balance equation of the soluble substrate equation can be transformed to the standard set 

of equations by using the following transformation: 

eq. A-24 Ss(t,z) = w+jkh.Su(r)dT + Ss(0) 

The integral represents the amount of soluble substrate that is produced up to time t. As he 

total insoluble substrate is not considered as a function of spatial coordinate, it is not 
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necessary to have an explicit solution at this point. This gives the following function Q and f. 

eq. A-25 Q{z,t) = Rs 

eq. A-26 / (z)=0 

The associated eigenfunctions and eigenvalues are: 

eq. A-27 P»=cos(VVz) 

eq. A-28 A = n.n 
L 

The values of c„ are zero as f(z)= 0 as can be seen by considering the integral given in eq.A-6. 

The functions qn can be found by considering the integral A-7. This results in: 

eq. A-29 

1, •£-.—.g(tR,sin 
Ys n.w n.n.-

LM 
« > 0 

The general solution for u can thus be written as: 

eq. A-30 

1 
• J n.n Y„ sin 

n=l o 
n.n.-

M<)1 
dx .cosl fcz) 

As stated earlier the soluble substrate balance is needed to determine the switch time. At this 

point of time generally the biofilm will be well developed and g(t) and Lp(t) will only change 

slowly. This allows the following approximation: 
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eq.A-31 

I 'n.nYs 
.g(r).Xnsm rut.-

LM dz = 

n.n Y. 
.g(t).Xm.sin L,<fft 

nJT.-
\ ~c J 

Mm •g(f\xm 

Ds Xn .n.K 
.sin tut. 

J -/l„.D,,.(<-r) ~_ e •" '.at •• 
0 

Now realizing that: 

eq. A-32 QUR^hM^S^m 

The solution for the soluble substrate concentration runs as: 

eq. A-33 

Ss (t, z) = Ss (0) + \kh .StJ (r)dT - f- J0UR(t)dT • 
s, o 

Y02 QUR(t)+ 2 Lc . ( Lp(t)\ _VD \ / r— \ 

T7^rl(^-^irnn^^rll-e )cos( -̂z) ' s, s, »=1 

Upon neglecting the transient terms evaluating the soluble substrate concentration at z=0 

yields: 

Ys, 

DUR{t ) 4 + 2 
\L( v

s m 

j ,=i [rut) 

rut.—— 
I k J 

Now if L ( t )«L c , the following approximation can be made 
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eq. A-34 sin 
^ML *,(') n.n.— = n.n.-

V ^ J 

The sum term 

eq. A-35 
1 1 

„=i (n.n:) 6 

One can write for the soluble substrate concentration at the gas side interface for a larger 

particle after some time: 

eq. A-36 

SM = SA0)+)kkSu(r)dT-^)oUB(tyiT-\^^ 
s, "s. 

The switch time ts can be solved from these equation by using the equation S(ts,0)=0. 
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5. Experimental validation of the single particle model 

5.1 Introduction 

The oxygen uptake rate (OUR) is the single most important measure available to monitor 

the composting process. The time development of the OUR under constant environmental 

conditions is currently generally described as a first order process (chapter 3). In this thesis 

a theoretical model (chapter 3) for the OUR time course was developed together with its 

analytical approximation (chapter 4). The analytical approximation describes the time 

development of the OUR as a function of the initial state of a waste particle under constant 

environmental conditions. The initial state of the waste is characterised by its particle size, 

soluble substrate concentration, insoluble substrate concentration and initial microbial 

biomass concentration. Both the sensitivity analysis of the theoretical model (chapter 3) and 

the results of the analytical approximation (chapter 4) reveal the utmost importance of the 

particle size. To validate the theoretical model the effect of the particle size on the OUR 

time course will therefore be investigated experimentally. 

The model will be supported if the observed particle size effect on the OUR time course is 

according to the prediction by the analytical model. To obtain a prediction knowledge of the 

model parameter values is necessary. As these parameter values are not all accurately known, 

the predictions will have a large uncertainty. Deviations of the predicted OUR time course 

from the measured trajectory can then be either attributed to a deficient model or to a deficient 

knowledge of the parameter values. Direct comparison of model prediction, using literature 

parameter values, with data does not give sufficient information on the appropriateness of the 

model. 

Parameter estimation is thus necessary prior to model validation and the model parameter 

identifiability is therefore first investigated. Identifiability of a parameter means that it is 

possible to extract a unique value for each parameter from the data at hand. If no unique 

parameter values can be determined, physical interpretation of the parameter values is 

difficult. A lack of identifiability can be a result of the structure of the equation, the 

experimental design and/or the variance of the measurement. 

Identifiability is investigated using dimensional identifiability analysis and a local identifiably 

analysis with a parameter derivative based method according to Reich. The latter method is 
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also used to investigate the required minimum duration of an experiment. All these concepts 

have been introduced in chapter 2. 

The aim of this identifiability analysis is to obtain a model parameterisation such that all 

model parameters are identifiable given the data set used. The identifiable parameters may 

differ from the parameters originally proposed in the conceptual model. These identifiable 

parameters are called aggregated parameters, as they often consist of a number of 

unidentifiable parameters (proposed in the conceptual model). 

After defining the identifiable model, (i.e. a model with all parameters identifiable) the values 

of the identifiable parameters can be extracted from the data by finding an optimal fit between 

model and data. If the model reflects reality a good fit is expected, however if a good fit is 

found the opposite need not be true. 

The OUR time course is measured for particles with different sizes. For all experiments the 

aggregated parameters are estimated. As a result of this aggregation some aggregated 

parameter will depend on the particle size. Validation of the model is performed by comparing 

the measured particle dependency with the particle size dependency as predicted by the 

model. 

5.2 The identifiable OUR model 

5.2.1 Model equations 

In the previous chapter an analytical model for the OUR time course under constant 

environmental conditions has been developed. The analytical model is an approximation of 

the theoretical model, with a bias smaller than 1% compared to the theoretical model. 

Figure 5-1 shows the typical time course of the OUR. The OUR time course is 

characterized by two subsequent stages, the substrate saturated stage (period A+B) and the 

substrate limited stage (period C+D). During the substrate saturated stage, soluble substrate 

is abundantly present and the OUR is determined by the processes of biomass growth 

(period A) and oxygen diffusion (period B). During the substrate saturated stage the soluble 

substrate concentration decreases and eventually reaches such low levels that the 

availability of substrate starts determining the conversion rate. This is the onset of the 

substrate limited stage where the OUR is at first determined by the diffusional transport rate 
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Figure 5.1: The characteristic development in time of the OUR. Four different 
periods are distinguished. A: OUR increase due to biomass growth; B: plateau 
of maximum OUR due to biofilm limitation; C: fast decrease due to limited 
soluble substrate availability; D: slow decrease due to hydrolysis of insoluble 
substrate. The periods A and B form together the substrate saturated stage, The 
periods C and Dform together the substrate limited stage. 

(period C) and eventually by the hydrolysis rate of insoluble substrate (period D). The point 

of time at which the substrate saturated stage ends and the substrate limited stage starts is 

called the switch time ts. The analytical solution developed in chapter 4 reflects this two-

stage nature of the OUR time course as follows: 

*(') = • 

eq. 5-1 

OUR(t,)-^-Su(t,y 

As 
;OURm 

Ys.-Ys. 

3.ZX 

3.ZX 

3.D.. , •. _ . 
—T-(t-t<) Y K. \YS -Ys i 

3.ZX 

3.D, 

t<t. 

..e-U<-0 t>t 

— k. 

OUR(t): oxygen uptake rate at time t 

t : Time 

ts : Switch time 

Pefr : Effective dimensionless initial biomass concentration 

(j.eff : Effective maximal biomass growth rate 

[mol 02.m'3.hr'] 

[hr] 

[hr] 

[-] 

[hr'] 
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k,, : Net hydrolysis rate constant [hf'] 

OUR™ : Maximal oxygen uptake rate [mol 02.m"3.hf'] 

Lc : Characteristic particle size [m] 

DSs : Diffusion coefficient for soluble substrate [m2.hf'] 

YSs : Biomass yield on soluble substrate [mol X.mol Ss"'] 

YSj : Biomass yield on insoluble substrate [mol X.mol S,"1] 

Y02 : Biomass yield on oxygen [mol X.mol 02"'] 

Sj ,(ts) : Total insoluble substrate at ts [mole Sj.m3] 

In the derivation of this analytical expression the parameters ts, |xeff, Peff) and OUR™ are 

introduced, which are based on a number of basic biokinetic parameters. It is important to 

note that these aggregated parameters show a dependence on particle size, in contrast to the 

basic biokinetic parameters that are independent of particle size. Appendix A summarizes 

these relationships. 

The net hydrolysis constant k„ gives the hydrolysis constant of the total insoluble substrate. 

This net hydrolysis constant is smaller than the actual hydrolysis constant kh as part of the 

hydrolysed material is again converted into insoluble material in the form of biomass. The net 

hydrolysis rate is however no function of particle size. 

5.2.2 Dimensional identifiability 

Chapter 2 introduced the technique of dimensional identifiability analysis. This technique 

allows the selection of those parameters that are non-identifiable because they have a unit 

(e.g. mol biomass-C.m"3) that is not observed. A parameter that is dimensionally non-

identifiable can form part of a parameter combination that is not non-identifiable. The 

technique allows the construction of the maximum number of parameter combinations that 

are not dimensionally non-identifiable. The technique can not give a definite answer to the 

question whether a specific parameter or parameter combination is identifiable, as other 

sources of non-identifiability exist. This question will be addressed with a practical 

identifiability analysis. If the available data consist of the OUR development in time, the 

following parameters or parameter combinations are shown to be not dimensionally non-

identifiable. 
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eq.5-2 OURm, Meff, K, / *„ , t,, ^ S ji-SM ^ S J~ 
c 02 02 Sj 

Appendix B shows the procedure in more detail. It is important to note that the switch time 

is treated as a parameter that has to be identified as well. To express the model in a more 

clear way revealing the meaning of the identifiable parameter groups the following new 

parameters are introduced. 

eq. 5-3 
Ds / X 

Y -Y 5^(0 

Diffusional transport rate constant [hr'J 

SiitiiW : Insoluble substrate concentration expressed in oxygen equivalents [mole 02.m'31 

The diffusion coefficient itself is not identifiable, since it is assumed that generally no size 

measurements are available. In that case only the parameter kD might be identifiable. The 

parameter Sitox(ts) expresses the amount of oxygen needed for complete oxidation of the total 

insoluble substrate present at the switch time. The OUR model thus can be expressed as: 

eq. 5-4 QUR{t)--

P< 
Pen +e-""' 

OURm t<t. 

The dimensional analysis gives the maximum set of identifiable parameters, however the 

identifiability of these parameter(combinations) needs to be investigated further to remove 

other sources of lacking identifiability. 

5.2.3 Practical identifiability analysis 

Local parameter identifiability means that the parameters are uniquely determined in the 

neighborhood of parameter set involved. Several methods are available to assess the local 
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parameter identifiability [1]. Practical identifiability is a somewhat broader concept related 

to parameter identifiability. If a parameter is identifiable it means that the data set allows 

the determination of a unique value, i.e. the data can be generated by one parameter set 

only. However, for practical applications this finding in itself is not sufficient to guarantee 

meaningful parameter estimation results. The sensitivity of this unique outcome to changes 

in the data set has to be taken into account. Widely differing parameter values may generate 

different outcomes that do not differ appreciably. In such a case, it is hard to obtain 

meaningful parameter values because the uncertainty of the parameter values will be large. 

Of course the choice whether differences are appreciable depends on the experimental error 

involved. If this error is small, smaller parameter differences may be detected. 

A number of methods are based on studying the derivatives of the model equations with 

respect to the parameters, the so-called parameter sensitivity functions. Reich [2] introduced 

a dimensionless identifiability measure IR̂ I"1 that enables assessment of practical parameter 

identifiability given a certain experimental set up. The measure is the inverse of the 

determinant of a matrix, related to the sensitivity matrix. A value of IRgl"1 >104 indicates a 

lack of practical identifiability, a value of |Re|"' < 102 a good practical identifiability. In the 

range 102-104, additional information on the variance of the measurement error and the 

number of parameters involved is needed to determine whether the parameters are 

practically identifiable. The method is introduced in more detail in chapter 2 

The identifiability of the switch time ts itself can not be investigated by this method as the 

first time derivative of the solution has a discontinuity at this point. However as the switch 

time has such a dominant role in the description it can be assumed that this parameter is 

identifiable if the experiment lasts long enough to include the switch time. The analysis of 

practical identifiability will be applied separately for the substrate saturated stage and 

substrate limited stage. 

5.2.3.1 The substrate saturated stage. 

For this phase two different parameterizations are considered. The first is the 

parameterization as considered up till now: 

0UR(t)= \ ^ _ eq-5-5 O M ^ K L "^-OURm t<ts 

173 



This form will be called the P-parameterization. A second parameterization of this equation 

is the following. 

eq-5-6 OUR(t)=.l },,_aVOURm t<t. 
l + e-T^^)-

Q : Lag time 

In this parameterization a new parameter is defined, the lag time Q. This form is called the 

Q-parameterization. The lag time Q is related to effective dimensionless biomass 

concentration according to: 

o l n ( ^ ) eq. 5-7 Q = * -
Veff 

A decreasing initial biomass concentration leads to an increased lag time. 

The identifiability measure is a function of the experimental time, the number of equally 

spaced data points and the parameter values. The number of equally spaced data points is 

expressed as the measurement frequency, i.e. the number of measurements per unit of time. 

Instead of the experimental time the upper observed OURu is used i.e. the OUR value 

observed at the end of the experiment. The following relation may thus be assumed to exist: 

eq. 5-8 IRel"1 = f(OUR„, com, OUR,, (3efr, u^). 

IRel"1 : Identifiability measure [1] 

OURu :Upper observed OUR [mole02.m
3.s"'] 

com : Measurement frequency [hr-1] 

This relationship can be rendered dimensionless using the Il-theorem. This yields the 

following results: 

eq.5-9 |Re|-' = f(n„n2,n3). 
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In which the following dimensionless numbers are defined: 

eq. 5-10 

n, 

n2 

n3 

_OURu 

OURm 

= <»m 

Veff 

= Peff 

The first dimensionless number ranges from approximately p to l,as the OUR,, never can 

exceed OUR^. The second dimensionless number expresses the measurement frequency 

relatively to the growth rate. It is assumed that we have a sufficient measurement frequency, 

i.e. no further improvement is expected from an increase of the measurement frequency. The 

parameter pelT is already dimensionless, thus this shows up as the third dimensionless number. 

In a similar way the second parameterization (eq. 5-5) can be treated. This gives the 

dimensionless numbers: 

eq. 5-11 

n. 

ns 

nr 

_OURu 

OURm 

= <°m 
»eff 

= O-zv 

It is clear that EL, =11,, nb=n2 and nc= -ln(n3). Figure 5.2A shows the contour plot of 

logORfll"1) as a function of IT, and n3, while figure 5.2B shows the contour plot of log(R9|"') 

as a function of EL, and EL.. The Y-axis of figure 5.2A is logarithmic, i.e. log(n3), the Y-axis 

of figure 5.2B gives the values of -ln(10).nc. In this way for a given OUR-curve the 

identifiability measure can be read for both parametrizations at the same point. Comparison 

of the graphs shows that the area of acceptable dimensionless number combinations (i.e. is 

log(Re|')<2) is larger for the Q-parameterizations. It is thus easier to determine the 

parameter of the Q parameterization. 
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Figure 5.2:The 
contour plot of 
identifiability 
measure \R$~1 for 
the p (A) and Q (B) 
-parameterization. 
The label values give 
the '"log values 
ofR^r1. The plot is 
shown for 
dimensionless 
number ITj (X-axis) 
and II3 (Y-axis) for 
A and JTa (X-axis) 
and -ln(10).ITc pr
axis) for B. 

0.4 n 0.6 

5.2.3.2 Substrate limited stage 

The OUR during the substrate limited stage is described as the sum of two exponential 

terms. Identifiability of this type of model has been extensively studied in the literature [2], 

from which it can be concluded that the parameters in the substrate limited stage model are 

identifiable: 

(i) if the ratio of the diffusional and hydrolysis rate constant kD/kn>5, and 

(ii) if the exponential term associated with the fast rate constant e~*"'is effectively 

fully decayed, i.e. kD.t>5 ,and 

(iii) if the exponential term associated with the slow rate constant e"*"'is sufficiently 

decayed, i.e. k„.t>0.5. 
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In practice the time scales of the two exponential terms are so different that condition i is 

always met. As the difference is large, the terms can be treated as originating from two 

independent sequential processes. To identify all parameters therefore an experimental time 

is needed ts+5/kD+0.5/k„. The last term gives the largest contribution to the experimental 

time. As our interest lies here primarily in the effect of particle size, it is convenient to 

consider an experimental time >ts+5/kD and approximate the hydrolytic term with its first-

order Taylor approximation. The so-called short-term model can be described as: 

eq. 5-12 OUR(t) = I+ *>>«•('• 
4J-OUR„ 

-*D-(<-0 . 

t<t. 

[(OUR(ts)-Ah).e'^-->+Ah t>t. 

: hydrolytic activity [mole 02.m"3.s'] 

where A„ = k„.SUox(ts). 

Although the Q-parametrization is used to estimate the parameter, the estimated parameters 

Pefr will be reported. This parameter has a more relevant physical interpretation, and can be 

calculated from the estimated value of Q. via eq.5-7 

5.3 Materials and methods 

5.3.1 OUR-measurement device 

Figure 5.3 shows schematically the OUR measurement system. Gas enters the system via 

two mass flow controllers, one controller supplying nitrogen (1) and the other oxygen (2). 

Both oxygen and nitrogen are technical grade gases. The reactor vessel (3) is a stainless 

steel cylinder with a height of 30 cm and a diameter of 14.3 cm with a working volume of 

6.3 liter. The gas mixture enters the reactor via a perforated pipe along the height of the 

reactor. The gases leave the reactor via a similar pipe fitted at the opposite side of the 

entrance pipe. The reactor is closed with PE lid. The gas is recirculated over the reactor 

with a gas pump (4) at a rate of approximately 95 1/hr. This recirculation enables a nearly 

complete mixing of the gas phase, as was shown by residence time distribution 
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measurements (data not shown). The gas is recirculated via a glass bottle (5), containing 

water, to humidify the gas. The gas leaving the reactor is dried by an electro-cooler (6), 

after which the oxygen level is measured (7). Gas pump, water bottle and reactor are placed 

in a temperature-controlled cupboard (8). 

Figure 5.3: Schematic representation for OUR measurement device. Numbers 
are explained in the main text. 

The measurement device is able to control the effluent oxygen level and the reactor 

temperature. The reactor oxygen level is equal to the effluent oxygen level due to the 

sufficient gas mixing of the reactor. The control systems consist of a MS-DOS PC using the 

ControlEG-software connected to an RTI-board for A/D conversion. 

The OUR is measured as the difference in amount of oxygen entering and leaving a reaction 

vessel at a specific point of time. This estimate is exact if the oxygen level within the 

reactor is constant in time. To achieve this the following control algorithm is used. During a 

period i the flows of oxygen and nitrogen are kept constant. Assuming a respiration 

coefficient of 1 the OUR at the end of period i is calculated as: 

eq. 5-13 OURR(i)=F0i(i)-FT.02e(i) 

in wich: 

eq. 5-14 ^=^(0+^0,(0 
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OURR(i) : Reactor oxygen uptake rate [mole.h"1] 

FT : Total gas flow [mole.h1] 

F02(i) : Oxygen flow into the sytem [mole.h1] 

FN2(i) : Nitrogen flow into the sytem [mole.h1] 

02e(i) : Effluent oxygen fraction [1] 

From this OUR value the oxygen flow for the next period is determined as follows. 

eq. 5-15 F02(i + l) = OURR(i)+FT.02s 

0 2 s : Set value for effluent oxygen fraction [1] 

The nitrogen flow is set as the difference between the fixed total flow and the newly set 

oxygen flow. 

eq.5-16 FNi (i +1) = FT - F0i {i +1) 

The duration of a single period i (the period between flow adjustments) should be 

sufficiently long to assure a stable control. In all experiments a fixed flow and a twenty-

minute period is employed. The first period of an experiment takes always two hours. 

A separate temperature control device controlled the cupboard temperature. The set 

temperature of this device was set via the computer. If the temperature measured in the 

vessel exceeded the reactor set temperature, the cupboard set temperature was lowered. 

However the temperature difference between the reactor and cupboard set temperature was 

not allowed to exceed 5°C. In this way the temperature gradient in the reactor vessel was 

minimized (<2°C, data not shown). 

5.3.2 Experimental setup 

All experiments are performed with chicken manure, collected from an experimental 

facility from the WAU. Each experiment is performed with a different batch of material. To 

obtain a specific particle size circular plates (internal diameter 10 cm), with a brim at the 
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edge are filled with chicken manure. The height of the brim determines the thickness of the 

material placed on the plate. These plates are piled in the reactor with a space of 2 cm in 

between. Experiments were performed with a manure thickness of 2 or 4 or 8 or 16 mm. All 

experiments are performed in duplicate. Tap water is added to the manure to set a dry 

matter content of 21% ±1%. Using this dry matter content prevents crack formation when 

filling the plates. After filling the plates are leveled with a knife. In all experiments the 

reactor temperature is controlled at 55 °C and the oxygen content at 19 vol. % on a dry air 

basis. 

The data are fitted with the OUR-model eq. 5-12 using the least squares criterion. The 

parameter search is done with the so-called Simplex routine coded according to Press [3]. 

The organic matter content and dry matter content are analyzed at the start and the end of 

the experiment. The OUR is expressed on the basis of initial organic matter content, as is 

common in the literature. 

5.4 Results 

As a first step the OUR model was fitted to all data sets. This yields for each experiment a 

set of parameter values for the aggregated parameters. The result of the 16 mm particle size 

experiments were discarded, as they showed an irregular behavior. Gas .probably produced 

by anaerobic activity, could not leave the manure layer rapidly enough. As a result gas 

bubbles formed within the material, causing the material to rise and break. The space 

between subsequent plates was clogged, hindering the passing of the gas between the 

subsequent plates. The particle size changed strongly and made the result impossible to 

interpret with the model developed so far. Although these results can not be used to validate 

the model, they do show that anaerobic activity is present. This is in accordance with the 

results of the mechanistic model that predicts the existence of a fairly large anaerobic core 

inside the particle (see Chapter 3). For one experiment at 2 mm the control algorithm was 

after some time very unstable, this made estimation of the ts, kD and Ah in that case 

impossible. 

Figure 5.4 shows the measurements and the fitted model of the material at 2 (fig. 5.4A), 4 

(fig. 5.4B) and 8 mm (fig. 5.4C) thickness. The measured OUR displays oscillations, 

indicating a non optimal control algorithm. The curves observe the typical behavior 

predicted by the theoretical model, i.e. the steep ascent at the start followed by plateau, 

180 



subsequently a steep descent followed by a relative stable level. In accordance with the 

expectation it is found that with decreasing particle size the maximum OUR increases while 

the duration of the plateau becomes smaller (see Chapter 3). 
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As a second step the dependence of the aggregated parameters on the particle size is 

investigated. Table 5.1 shows the dependence of the identifiable aggregated parameters on 

the particle size. The first column denotes the identifiable parameter. The second column 

gives the particle size dependence of the aggregated parameters. The parameters A„ A2 and 

Ss0ox are newly introduced lumped parameters. The relationship between these newly 

introduced parameters and those introduced in the conceptual model is given in the third 

181 



column. These relationships can be straightforwardly derived from the relationships as 

derived in the previous chapter and summarized in appendix A. 

Table 5-1: 
Aggregated 

parameter 

m* 

Q 

OUR™ 

A„ 

kD 

t. 

Particle size dependence of the identifiable aggregated parameters. 
Particle size dependency 

4 A 
4+4 
-

i+ 
-

3 A , 

Ll 

ts = 
f A } 

\ 4 J 

-1 
ss,o,ox L ln(4) Q 1 

4 Meff kD 

Newly introduced parameters 

A-F°"l°:,. 
-

A2=J2.Dor02.i.^
!^ 

-

„ Yss •
1->s,o 

^S,0,ox ~ y 

It is investigated to which extent the particle size dependence is according to the 

dependence predicted by the mechanistic model, as outlined in table 5.1. The dependence of 

the OUR,,, on particle size is shown in figure 5.5. The data points can be reasonably fitted 

with the theoretical expectation. The value of the exponential parameter is -1.17 which is 

close to the theoretically expected - 1 . 

During the substrate saturated stage there is first a sharp drop in OUR (period C), 

characterized by a time constant kD. Based on the estimated value of kD and the particle size 

the diffusion coefficient can be calculated. The average value of the diffusion coefficient 

compare well for the 4 (DSs = 2.5 10"10 m2.s"') and 8 mm (DSs = 2.6 10"10 m2.s"') experiments. 

At 2mm only a single diffusion coefficient could be determined (DSs = 2.7 10"" m2.s"') 

which is clearly much lower. 
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Figure 5.5: Dependence of the maximum oxygen uptake rate OURm 
(Y-axis, mol 02-m'^.s'y on the particle size Lc (X-axis, mm). 

The OUR eventually reaches a stable level, characterized by the hydrolytic activity Ah 

(period D). According to theory the hydrolytic activity shows no dependence on the particle 

size. The data as shown in figure 5.6 give no reason to challenge this. 
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Figure 5.6: Dependence of the hydrolytic activity An (Y-axis, mol 02-m'^.s'^) 
on the particle size Lc (X-axis, mm). 
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Figure 5.7 shows the dependence of the lag time Q on the particle size. This lag time should 

be independent of particle size, only at very small particle sizes (<0.05 mm), an appreciable 

deviation is expected (see Appendix A). However it is found that the lag time increases as a 

function of particles size. 
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Figure 5.7: Dependence of the lag time £2 (Y-axis, hr) on the particle size Lc 

(X-axis, mm). 

For each experiment the parameter Ss0ox, i.e. initial soluble substrate expressed in oxygen 

equivalents can be calculated (see table 5.1). Figure 5.8 shows the resulting vales as a 

function of the particle size. As is expected, there is no relationship between particle size 

and initial soluble substrate. With the average value of the initial soluble substrate 

concentration (expressed in oxygen equivalents), the already established relationships for 

OUR™, Ah, DSs and Q and the average value of |aefT the switch as a function of particle size 

time can be calculated. Figure 5.9 shows the dependence of the switch time on particle size, 

together with the fitted theoretical curve. It is clear that the strong increase in the switch 

time ts with increasing particle size can be explained from the theory. 
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Figure 5.9: Dependence of the switch time ts (Y-axis, hr) on the particle size 
Lc (X-axis, mm). 

Figure 5.10 shows the dependence of the effective growth rate constant on the particle size. 

There is a strong increase of the growth rate constant at lower particle sizes. This 

relationship can be reasonably fitted with the particle size dependence relationship. As a 

third step the estimated parameter values will be compared with the theoretical expectation. 
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Table 5-2 summarizes the estimated values and the theoretically expected values. The 

theoretically expected values are based on the parameter values listed in chapter 3. These 

parameter values are taken from literature. Many reported values show an appreciable 

scatter and comparison of the estimated and predicted values can only be an order of 

magnitude comparison. Therefore the last column gives the 10log value of the ratio of the 

estimated to the expected value. 

Table 5-2: Estimated and expected model parameter values. 
Parameter 

A, 

A2 

Dss 

Heff 

Q 

°s,0,ox 

A„ 

Estimated 

1.7.103 

2.2.10s 

2.7.10-'° 

4.4.10'4-7.7.10s 

9-46 

988 

1.8.103 

Theoretical 

1.2.10s 

1.5.10s 

7.10-'° 

2.10-4 

13 

568 

1.1.10"3 

Unit 

m 

mol 02.m'2.s-
i 

m2.s-' 

s-' 

h 

mol 02.m"3 

mol 02.m"3.s-
i 

'°log(ratio)a 

2.2 

0.16 

-0.41 

-0.41....0.31 

-0.12...0.5 

0.24 

0.21 

a: ratio is estimated value over the expected value 
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Inspection of the table learns that except for A, the estimated values and expected values 

are within a half order of magnitude of each other. More can not be expected, as the 

theoretical values are only rough estimated for a system of which not much is yet known. 

5.5 Discussion 

Literature often refers to particle size as a factor influencing composting, nevertheless the 

amount of data proving this assertion is small. In all cases reported, reduction of the particle 

size, means grinding wood-type materials [4]. In such an experimental set up it is difficult to 

distinguish between the effect of particle size on the hydrolysis rate and on the oxygen 

transport. It has been well documented that increasing the surface area of solid primary 

particles increases the hydrolysis rate. As the material in this study has not been grinded, i.e. 

the surface available for hydrolysis has not been changed, any effect of particle size can be 

attributed the effect of particle size on oxygen and soluble substrate transport. Another 

complication in these reported studies is that waste consisting of particles with different 

particle sizes are used. Particles with different size have a different switch time and will thus 

reach the substrate limited period at different points of time. The OUR of the waste at a 

certain point of time will thus be determined both by particle in the substrate saturated period 

and the substrate limited period. This mixing up of phases makes data interpretation more 

troublesome. This is therefore the first study that allows a clear separation of the effect of 

particle size on mass transfer and hydrolysis on the composting rate. 

Based on the analytical model an identifiable model has been presented for description of 

the OUR time course of a single particle. Such a model is necessary as the original 

theoretical model contains so many parameters that OUR time course calculations are 

practically impossible due the necessity to obtain all parameter values involved. Using the 

dimensionless numbers Ila and ITC it can be checked whether the parameters are practically 

identifiable. 

In all experiments parameters showed to be well identifiable as na>0.99 and nc>10. The 

functional dependence of the parameters p.e!f, OUR^, kD, Ah and ts on the particle size can be 

well described by the proposed model. The only parameter that shows a deviant behavior 

with respect to particle size is the lag time that increase with increasing particle size. All 

estimated parameters except A, compare favorable with the theoretical value. The large 
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deviation of A, is an indication that the decrease of the growth rate constant with increasing 

particle size is the result of a process not yet accounted for in the model. Most likely this is 

caused by substrate inhibition of the aerobic microbial growth, as the hydrolytic activity at 

4mm and 8 mm particle size is relatively high compared to the maximum oxygen uptake 

rate OUR,,,. This leads to a temporary build-up of soluble substrate, and consequently a 

temporary inhibition of the growth rate. An increase of the particle size leads to an 

increased lag time Q as a result of this reduction of the growth rate constant. This initial 

retardation has been observed by others [5-7]. The effect of this Q increase on the overall 

OUR description is however small, as the switch time increases much stronger, with 

increasing particle size. 

The proposed identifiable model thus serves as an excellent description of the OUR time 

course with parameters that are well identifiable and have a clear physical interpretation. 

This is an important feature, as it gives some confidence to prediction outside the direct 

domain of observation. 

Waste materials are in practice composed of particles with different waste characteristics. 

For instance Veeken [8] gives a large spread in particle size for biowaste. As particle size is 

the main characteristic influencing the OUR time course, the particle size distribution needs 

to be taken into account for describing the time course of any practical waste. As the 

present model is very well able to describe the effect of particle size on the OUR time 

course it is an indispensable element to obtain further insight in the composting of a real 

waste. 
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A. Appendix Basic Parameters 

In chapter 4 an analytical approximation was developed for the theoretical model developed 

in chapter 3 . A number of parameters introduced in the theoretical model formed the basis 

o f the parameters introduced in the analytical approximation. These so-called basic 

parameters are.: 

Hn : Maximal net growth rate constant 1.8.10"4 [s-1 

X m : Maximal b iomass density 2850 [mole X.m"3 

Lc : Particle size 2.5 m"3.[m 

D 02 : Effective diffusion coefficient of oxygen 1.2.10"9 [m2.s"! 

DSs , : Effective diffusion coefficient o f soluble substrate 7.10"10 [m2.s"' 

kh : Hydrolysis rate constant 4.9.10"7[s"' 

C>2,i : Oxygen content at gas side interface 0.18 [mole O2.n1"3 

Sj, : Initial insoluble substrate concentration 4100 [mole S.m'3 

Ss,o : Initial soluble substrate concentration 1200 [mole S.m"3 

Xo : Initial biomass concentration 0.5 [mole X.m"3 

Y02 : Biomass yield on oxygen 1.12 [mole X.mole 0 2 -1 

YSj : Biomass yield on polymeric substrate 1.0 [mole X.mole S j -1 

YS s : B iomass yield on soluble substrate 0.53 [mole X.mole O2 -1 

Based on these basic parameters a set o f new parameters is introduced in the O U R model . 

These new parameters can be derived from the basic parameter in the following manner: 

eq-A-1 S . / o = 5 . o + £> 
s. 

eq. A-2 a = 0.85 

eq-A - 3 M„ = Mm~b 
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eq. A-4 i _ Xo 

Xm - Xo 

eq. A-5 1 L XmM„ 
OURm = —J2.Dor02,,^il]l 

eq. A-6 
1 . 

'Vmin ~~T ••,l2Do!-02,i-
02 

XmM„ 

eq. A-7 / v^ -^Vx )'•/<„ 

eq.A-8 Peff = p^'X-ai° ^ . 
(V/7 + l + V/7 )(2 - V2)") ( ' -WX) 

eq. A-9 ;s = 

k„. ^-suja+cou(ta) 
1--

Ot//?m 

^ 5,0 l ^ J Ij 
r0j 0 f « . //e# 3.Z),; 

eq. A-10 Su(t,) = s„fiAcou(ta) ig-**«. +^°L 0UR-,g ckh(,--'°)) 
?S, *• 

eq. A-ll __̂ W Q = -
/% 

Under normal conditions peff « l a nd \&m « 1 and eq. A-8 can be written as: 

eq. A-12 >w .vxr 

191 



Substituting eq. A-12 and A-7 in eq. A-l 1 yields the following result for Q: 

eq.A-13 Q = -M^l 
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B. Appendix Dimensional identifiability 
Again recalling the basic parameters 

H„ : Maximal net growth rate constant 

X m : Maximal biomass density 

L c : Particle size 

D02 : Effective diffusion coefficient of oxygen 

Dss, : Effective diffusion coefficient of soluble substrate 

kh : Hydrolysis rate constant 

C>2,i : Oxygen content at gas side interface 

Sj, : Initial insoluble substrate concentration 

Ss,o : Initial soluble substrate concentration 

Xo : Initial biomass concentration 

Y02 : Biomass yield on oxygen 

Ysi : Biomass yield on polymeric substrate 

Yss : Biomass yield on soluble substrate 

1.8.10^ [s-1 

2850 [mol X.m"3 

2.5 m"3.[m; 

1.2.10-9[mV 

7 .1<r 1 0 [mV 

4.9.10-7[s_1; 

0.18 [mol 02.m"3 

4100 [mol S.iri 

1200 [mol S.m"3 

0.5 [mol X.m'3 

1.12 [mole X .mo l 0 2 - l 

1.0 [mole X.mol S-1 

0.53 [mole X.mole02 -1 

Based on this listing the following dimensional matrices can be devised for the parameter A 

and the observations O. 

The vector D describes the basic dimensions used, respectively seconds (s), C-mole substrate 

(both soluble and insoluble) (S), C-mole of biomass (X), meter (m) and mole of oxygen (02) . 

S 

D = X 

m 

The vector P describes the parameters involved. 

P _ (A»Ys, ' Xm, Ds , D0i, fj„, y , , , Yo2 > kh, Sso, Si0, X0,02i) 
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The observation matrix O with columns time and OUR has rank 2,and runs as: 

o= 

1 

0 

0 

0 

0 

1 

0 

0 

-3 

1 

The parameter matrix A has rank 5 and runs as: 

A = 

0 0 0 _1 _1 _1 0 0 _1 0 0 0 0 

0 _1 0 0 0 0 -1 0 0 1 1 0 0 

0 1 1 0 0 0 1 1 0 0 0 1 0 

1 0 _3 2 2 0 0 0 0 _3 _3 _3 _3 

0 0 0 0 0 0 0 , 1 0 0 0 0 1 

The maximum number of dimensionally non-redundant parameter or parameter groups is thus 

13+2-5 =10. Combining the observation matrix O and the parameter matrix A and using 

gaussian reduction yields the following result Z: 

Z= 

1 0 0 0 0 1 1 1 0 1 1 0 0 0 1 

0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 

0 0 1 0 0 2 2 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 1 0 0 - 1 - 1 0 0 

0 Q 0 0 1 0 0 0 0 1 0 1 1 1 0 

From this matrix dimensionally non-redundant groups may be determined as: 

D 

It L 2 ' ^ U ' 

Yo Ys 
°2 7, O s i 
, > " * ' °s.0-x, x. 

S,r x. o, 
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Listed below are the OUR model parameters as they are defined in analytical approximation, 

these parameters are different from the fundamental parameters used in the dimensional 

analysis. 

OUR model parameters 

Peff : effective dimensionless initial biomass concentration [1] 

Ds : diffusion coefficient for soluble substrate [m2.hr"1] 

Lc : characteristic particle size [m] 

OURm : maximal oxygen uptake rate [mole02.m"3.hr"1] 

Sjt(ts) : total insoluble substrate at ts [mole Cm"3] 

ts : switch time [hr] 

Y02 : biomass yield on oxygen [mole C.mole O2"1] 

Ysi : biomass yield on insoluble substrate [mole C.mole C"1] 

Yss : biomass yield on soluble substrate [mole C.mole C'1] 

(xeff : effective maximal biomass growth rate [hr"1] 

The relationships between these OUR model parameters and the fundamental parameters are 

shown in appendix A. Inspection of these relationship shows that all OUR model parameters 

consist of dimensional non-redundant groups, and thus the OUR model parameters are also 

dimensionally non-redundant. 
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6. Development of the Distributed OUR Model 

6.1 Introduction 

In the previous chapters a theoretical model has been developed for the oxygen uptake rate 

(OUR) time course of a composting waste particle with a fixed size. It was shown that the 

particle size is the most important waste characteristic influencing the OUR time course. This 

was shown by a sensitivity analysis of the theoretical model (chapter 3), the results of the 

analytical approximation (chapter 4) and the measurements on the effect of particle size on the 

OUR development (chapter 5). 

In practice a waste generally does not consist of particles with one specific particle size but 

consists of particles with different sizes (e.g.[l]). Waste is characterised by a size distribution 

and not by a single particle size. As the particle size is the most important waste characteristic 

determining the OUR, modelling a real world waste implies that the particle size distribution 

needs to be taken into account. In this chapter a model is derived for a waste with a particle 

size distribution, this model will be referred to as "the distributed OUR model". 

The particle size distribution can be an original attribute of the waste and/or the result of waste 

pre-treatment like screening and shredding. To compost waste it is piled in heaps up to a 

height of 4 m. As a result of the pressure inside the pile, waste particles may agglomerate and 

the resulting particle size distribution in the pile will then differ from the original particle size 

distribution. It is this actual in-situ particle size distribution within the pile that is determining 

the OUR time course. 

The analysis of the distributed particle size model starts with a conceptual model of the piled 

bed of waste. Based on this conceptual model of the waste bed the gamma distribution 

function is proposed to describe the particle size distribution. Use of a conceptual model is 

necessary, as it allows the distribution parameters to be related to physical processes 

influencing the particle size distribution, like drying and compaction. This particle size 

distribution is combined with the analytical approximation of the OUR time course to obtain 

the distributed OUR model. The effect of the size distribution on the OUR time course is 

investigated and compared to the case of a single particle size. 
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6.2 Particle size distribution model 

6.2.1 Conceptual bed model 

The waste bed is assumed to consist of a pile of small solid organic and solid inert particles, 

called primary particles. Between the primary particles pores are present. Either gas or water 

fills the pores of this pile. Water is bound within the pores through capillary binding or by 

direct attachment through London-van der Waals forces. Water has a tendency to fill up first 

the smallest pores, as they have the biggest capillary suction. In this way areas will arise 

consisting solely of wetted particles connected via water filled pores. Such an area will be 

called a secondary particle. Gas filled pores constitute the border of the secondary particle 

(Figure 6.1). This set of secondary particles is assumed to be exposed to a homogenous gas 

phase with a constant composition. The secondary particles all have the same initial 

composition and the same constant temperature. There is no mass transport between the 

particles. The composting process occurs within the secondary particles as is described by the 

theoretical model (chapter 3). 

Figure 6.1: Two dimensional representation of the secondary particle. The 
rectangles represent the organic primary particles, circles the inert. The shaded 
area is the water bounded to the particles due to surface binding or capillary 
binding. The solid line represents the boundary between the gas phase and the 
secondary particle. 
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The conceptual model implies that the particle size is strongly influenced by the extent to 

which the pores are water filled. If more pores are water filled, the secondary particles will 

become larger. This can be understood by considering the gas filled pores. With an increase of 

water filled pores the number of gas filled pores will decrease. As the number of gas filled 

pores will decrease the average distance between the gas filled pores will increase. As the gas 

filled pores are the boundaries of the secondary particle this implies that the secondary particle 

size will increase. In this thesis the secondary particle size distribution will be derived by 

considering the distribution of the gas filled pores. The advantage of grounding the particle 

size distribution in a conceptual model is that the effect of moisture can be incorporated. 

6.2.2 The box representation 

As a first step to analyze the secondary particles size distribution, these particles will be 

represented as a box. This so-called representative box has the same specific surface area as 

the secondary particle and represents the secondary particle's shape best in some sense. A box 

is chosen to represent the secondary particle as it reflects the three dimensional aspect of the 

problem and remains close to the flat-plate representation used in the previous chapters. How 

to find a procedure for determining the representative box will not be analyzed further, as the 

existence of such a procedure and thus the existence of a uniquely representative box for each 

particle is assumed. Figure 6.2 shows a two-dimensional illustration of a secondary particle 

and the associated representative box. The faces of the representative box are the interface 

between the particle and the gas filled pores. The representative box is characterised by the 

distance between the opposite faces of the box in the three dimensions, denoted with Lx, Ly, 

L2. The size of Lx, Ly and Lz is thus related to the distribution of the gas pores within the 

waste. 

To determine the particle size distribution we therefore study the distribution of the gas pores. 

Consider first a unit length water of a water filled waste matrix. All primary particles will in 

this case be connected via single continuous water phase (Figure 6.3A). The presence of a 

pore will split this unit length in two smaller particles. The pore crossing density A. is defined 

as the number of pores that cross a unit distance (either x, y or z) of water connected primary 

particles (Figure 6.3B). Defining the crossing density in this way makes that only the presence 

of a gas pore determines the particle size and that the size of a gas pore does not influence the 
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Figure 6.2 Two dimensional illustration of a secondary particle (shaded area) 
and the associated representative rectangle). Lx and Ly denote the length of the 
box edges. 

particle size. The number of pores that cross a unit distance (either x, y or z) of water will 

determine the number and size of the particles (Figure 6.3C). In the following analysis it will 

be assumed that all primary particles have an equal probability to lie next to a gas filled pore 

in the x, y or z-direction. In other words the distribution of the pores in a certain direction is 

described by a uniform distribution. The uniform distribution is characterised by a uniform 

density, equalling the pore crossing density. A uniform distribution of the gas pores implies 

that the distribution of the distances between two consecutive tubes is given by a Poisson 

distribution function [2]. The distribution function of Lx is given by : 

eq. 6-1 f{Lx) = K.e^ 

f,(x) : Particle dimension distribution density in one dimension 

Lx : Box size in x-direction 

A.x : X-direction associated gas pore crossing density 

[m-1] 

[m] 

The expected value of Lx is equal to Ax'. A similar equation holds for the y-direction and the 

z-direction, for which the tube crossing densities are given by Xy and Xz. The pore crossing 
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densities in the three different directions need not to be equal. Together these three 

distribution functions describe the representative box size and shape distribution (Figure 

6.3D). 

The OUR model for a single particle size as developed in the previous chapter was based on a 

flat plate representation. This representation may be used safely for differently shaped 

particles as long as the specific surface area is the same and the penetration depth of oxygen is 

relatively small [3]. Under these conditions the reaction zone is confined to a thin outer shell 

of the particle, and thus proportional to the surface area. The volumetric conversion rate is 

> c 

Figure 6.3 : A shows a unit length of fully water filled waste matrix, i.e. all primary 
particles are only connected via a single continuous water phase. If less water is present 
within the waste gas pores will form. B indicates the location of these gas pores, that are 
uniformly distributed. It is important to note that only the number of gas pores 
influences the particle size and that pore size itself is not of importance. C shows the 
particles with different size that are formed as a result of the cutting of the unit length of 
waste. D shows a box that is a result of the cutting process in three dimensions. 
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thus proportional to the specific surface area of the particle in question. This is indeed the case 

for a composting particle, as was shown in chapter 3 and 4. 

To establish a relationship between the representative box and the single particle OUR model, 

a single measure, the characteristic particle size, will be associated with the representative 

box. The characteristic particle size is chosen such that the specific surface area of the box and 

the flat plate equal each other. The representative box has a specific surface A,, of: 

2.Lx.Ly+2.Lx.L2+2.Ly.L2 
eq. 6-2 A. = 

L .1 .L 
x y z 

Ac : Specific surface area of the representative box [m2.m3] 

The specific surface area of a flat plate equals: 

eq. 6-3 A, = — 
4 ' L. 

As : Specific surface area of the flat plate system [m2.m3] 

Lc : Characteristic particle size [m] 

By equating eq. 6-2 and eq. 6-3 and linearizing the resulting equation, a linear approximation 

for the characteristic particle size is obtained: 

eq. 6-4 L=^- + ̂ - + ^-
c 18 18 18 

The characteristic particle size is a weighted sum of the Lx, Ly and Lz. As the distribution 

functions for Lx, Ly and Lz. are known, these equations are the starting point for derivation of 

the characteristic particle size distribution function. By an 18 fold increase of the value of the 

pore crossing densities, the factor 18 can be left out in the subsequent derivations In the 

following of the text X„ Xy, and Xz denote these changed parameter values of the pore density. 

The distribution function of a weighted sum of functions can be derived in a straightforward 

manner (Appendix A). The distribution of the characteristic particle size is described by: 
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eq. 6-5 

K*K*A* K>o,^>o,/iz>o 

The distribution function is a sum of three exponential terms. This distribution function will 

be referred to as the "sum-of-exponentials" distribution function. The identifiability of this 

type of function has been extensively investigated [4] and it can be stated that all parameters 

should differ with a factor 5 of each other to be well identifiable. Although the value of the 

pore crossing density may differ from direction to direction, it is unlikely that they will differ 

that dramatically. This would indicate that the identifiability of this distribution function is 

poor. To solve this problem the gamma distribution will be introduced as an approximating 

distribution function. 

6.3 Gamma distribution as an approximate distribution 

The distribution of the sum of independent variables distributed according to exponential 

functions like eq. 6-1 with a common scale factor X can be described by the gamma 

distribution [5]. The probability density function of the gamma distribution runs like: 

eq.6-6 G(Lciij) = xr.L[_ -iL, 

G(Lc,X,y): Gamma distribution [-] 

X : Scale parameter [m"'] 

y : Shape parameter [-] 

T : Gamma function [-j 

For instance, if A,x = Xy =XZ then the resulting particle size distribution is described by the 

gamma distribution with a values of y =3 and ^.=^x. The extent to which the sum-of-

exponentials distribution function can be adequately described by the gamma distribution will 

be investigated for the particular case that all three pore density parameters differ from each 

other and all are unequal to zero. For this purpose values of y and X will be sought such that 
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the gamma distribution has the same first and second moment as the associated sum-of-

exponential distribution function. These parameter values will be called the corresponding 

values Xc and yc. Equating the moments of the gamma distribution with the moments of the 

sum-of-exponential distribution function and defining a = X JX x and p= Xz IX x, yields the 

following result for Xc and yc as detailed in Appendix A-2. 

For Xr it is found that: 

eq. 6-7 
_a.p(a + P + a.p) 

Ac a2+p2+a2p2 -Xx 

: Corresponding pore crossing density. [m1] 

PH 05-

0.1 0.3 0.4 0.5 0.6 

0.1 0.2 0.3 \>.4 

—1 
0.35 

tf-] 

- 1 
0.75 

Figure 6.4: The value ofZ(/Ax as function of a (X-axis) and p (Y-axis). 

The value of XJX% is shown as a function of a and P in figure .6.4. It is assumed that Xx>Xy 

and X>XZ.. This gives no loss of generality, in a given situation some dimension has the 

highest pore crossing frequency, and to this dimension the label x can be given. This implies 

that 0<a<l and 0<p<l. For jc it is found that: 
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(a.p + a + P)2 

eq. 6-8 y. = , , , , 
M c a2./32+a2+/32 

yc : Corresponding gamma value [-] 

This equation shows that the value of corresponding gamma is only determined by the ratios 

of the sizes of the different faces of the representative box. It is a measure of the shape of the 

average representative box. In this sense the shape parameter yc has two meanings, there is a 

relation to the average shape of the representative box and to the shape of the distribution 

curve. In figure 6-5 the dependency of the value of yc on the values of a and p is shown in a 

contourplot. This figure shows clearly that the value of y remains in the range of 1-3. As is 

shown in appendix A-2, the mean of the gamma distribution, and thus the mean particle size is 

given by: 

. i l l eq. 6-9 A = — + — + — 
A-X Ay Az 

A : Mean particle size [m] 

The variance equals: 

_2 eq. 6-10 aL =—- + —- + —-

x\ x\ x\ 

a2 : Variance of particle size distribution [m2] 

Appendix A-2 gives the details of the derivation. 

Figure 6.6 illustrates that the gamma distribution gives an acceptable approximation to the 

sum-of-exponentials distribution function. The first example gives the case that the pore 

frequency in all three dimensions differ appreciably from each other (X,x=l Xy =0.5 and 

Xz=0.25). The second case illustrates the case that the pore crossing frequency in one 

frequency is appreciably smaller ( X=l 7^ =0.9 and Xz=0.25). 
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P H 0J. 

0.23 

Figure 6.5 : The value ofyc shown in a contour plot as a function of a (X-axis) 
and p (Y-axis). 
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Figure 6.6: The 
probability density of 
the sum of 
exponential 
distribution curve 
(thin line) and the 
approximating 
gamma distribution, 
(thick line) The 
upper curve A is for 
the case Xx=l Xy 
=0.5 and X^O.25, 
the lower B for the 
case ( Xx=l Xy =0.9 
and Xz=0.25. 
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The gamma distribution seems a good approximation of the sum-of-exponential distribution 

function. The gamma distribution will therefore be used as the particle size distribution model. 

The model parameters yc and Xc still can be given a physical interpretation. If the pore crossing 

frequencies do not differ too strong a yc value in the range of 2-3 is expected. 

6.4 Gamma distribution and balance equations 

6.4.1 OUR model for a single particle 

In chapter 4 an analytical model for the OUR time course of a single particle under constant 

environmental conditions was derived. The model is expressed as: 

eq. 6-11 OUR{t) = 
-^—•OURm t<ts 

Pefr+e^1 

kH.fcn 

*D % J 

k„.kn OUR{ts)-St{ts\^±- .e-k^'-^ + St{ts).-^^.e-k-{-') t>t: 
K-K 

OUR(t): OUR of a single particle [mol Oj .mV] 

t : Time [s] 

ts : Switch time [s] 

(ieff : Effective maximal biomass growth rate constant [s1] 

Q : Lag time [s] 

k„ : Net hydrolysis rate constant [s1] 

OUR,,, : Maximal oxygen uptake rate [mol 02.m"3.s"1] 

kD : Diffusional transport time constant [s1] 

S, : Insoluble substrate expressed in oxygen equivalents [mol 02.m"31 

This model will be referred to as the analytical single particle OUR model. In the previous 

chapter the model has been validated. All parameters are identifiable if OUR data are taken 

over a sufficient long period. The lag time representation is used, as this parameter is better 

identifiable and does not depend as strongly on particle size as the effective initial 

dimensionless biomass concentration. 

When a distribution model is introduced this single particle model model can be further 
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simplified by neglecting the diffusional term OURfyJ-SuM KK 

k -k 
£ -*o •('-',) This 

simplification is justified, not only because this term influences the OUR over a very short 

period, but more importantly because this term will show to be negligible compared to a more 

dominant term introduced by the size distribution. The rate constant kD is much bigger than k„ 

(see chapter 3), which implies that: 

eq. 6-12 
k -k 
KD Kn 

The simplified model is then as follows: 

eq. 6-13 OUR,(t) = l + e-"#*-n> 
kn.Sh0.e' " 

.OURm t<ts 
m s 

t>t. 

in which: 

eq. 6-14 Si,a=Si{ts).e-k"'' 

Si0 : Apparent initial insoluble substrate [mol 02.m
3] 

OUR, : Simplified analytical OUR model, [mol 02.m"3.s"'] 

Leaving out the substrate diffusion means that the substrate saturated phase description will 

last until the soluble substrate is zero. From this point (ts) on, the soluble substrate will remain 

zero, and the OUR will be determined by the solubilization rate. From the equation for soluble 

substrate given in chapter 4 the following simplified equation for the soluble substrate can be 

derived: 
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eq.6-15 

Ss,o~ 

f ( 

-L. ln 
2 . e -^ n +1 + 2.Ve"*#-n.(e""#%1) 

0 

Ss : Soluble substrate expressed in oxygen equivalents 

Ss0 : Initial soluble substrate expressed in oxygen equivalents 

.OURm+Sifi^-e'k"-') t<t 

t>t 

[mole 02.m"3] 

[mole 02 .m3] 

S| 0 : Initial total insoluble substrate expressed in oxygen equivalents [mole 02 .m3] 

From the condition that the soluble substrate concentration becomes zero at the switch time 

the switch time can be determined. 

6.4.2 Average OUR-time relationship 

The OUR of a set of distributed particles can be calculated as the weighted average of the 

OUR of the individual particles. The development of the OUR in time will be named the size 

averaged OUR and denoted as OUR,(t). When the size distribution is described by a 

continuous function, such as the gamma distribution described above, the OUR^t) can be 

calculated as: 

eq. 6-16 OURJO = JG(Lc,Ac,yc).OURs(t,Lc)dLc 

OUR/^Lc) : OURj of a single particle as function of time and particle size [mole Oj.m^.s"1] 

OUR/f) : Size averaged OUR [mole Oj.m^.s"1] 

The average OUR is determined as the integral over the particle size from zero to infinity of 

the product of the OUR of a specific particle size and the probability density of this specific 

particle size. As during the substrate saturated phase the OUR of a single particle depends on 

the particle size, this is explicitly denoted as OUR(t,Lc). 

As the OUR, depends on the particle size only during the substrate saturated stage, the integral 

of eq. 6-16 is divided in two domains. The first is the domain of the particles, which have 

been fully depleted from soluble substrate. Their OUR will be solely determined by the 
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hydrolysis rate, and is independent of particle size. The small particles are depleted first, so 

the substrate depleted domain will run from particle size zero until some particle size Ls, the 

so-called switch particle size. All particles smaller or equal to Ls will be substrate depleted. Ls 

is a function of time because with increasing time larger particles will also become substrate 

depleted. 

The larger particles will still contain soluble substrate and are still in the substrate saturated 

phase. The OUR^ of these particles can be written as Nm divided by Lc, in which the constant 

Nn) is a constant that is not particle size dependent. The parameter Nm can be understood as the 

maximal oxygen flux through the surface of a waste particle. For the whole population one 

can write the equation: 

eq. 6-nOURJt)=)G(Lc,Ac,rc).^J -]^-n)
dL, + ]G(Lc,yc,Ac)k„.Si,o.ek-'.dLc 

L, Lc \\ + e 0 

Ls : Switch particle size [m] 

Nm : Maximal oxygen flux [mol 02.m"2.s"!] 

The first integral from Ls to infinity concerns the particles that are not yet substrate depleted. 

The second integral from 0 to Ls concerns the particles that are already substrate depleted and 

whose OUR is determined by the hydrolysis reaction. The OUR of this group is particle size 

independent. 

For any specific time Ls can be determined as that particle size at which the available soluble 

substrate has just become zero. This means that for this specific particle size the switch time 

has been reached at that specific instant. By writing this condition out and solving it for the 

particle size, the following relationship is obtained: 

eq. 6-18 Ls(t) = 

N-)i^^Jt 
Ss.o + Si.o-O-e1"-') 

Ls(t) : Switch particle size at time t [m] 

By substitution of the gamma distribution, eq. 6-6 in eq. 6-17 the following relationship can 
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be obtained: 

eq. 6-19 

OURM = Nm.^-^ryy^)G(Lc,\,yc - l)dLc + *„.Sw .g*'. \G(Le,ke,ye)dLt 

The scale factor Xc can be combined with the maximum oxygen flux Nm into a single new 

parameter, the scaled maximum oxygen uptake rate defined as Nm.Xc and denoted as OUR^. 

This new parameter has a comparable status as the maximum OUR,,, in the single particle size 

case. 

As the particle size is inversely proportional to the scale factor, the scaled particle size C, = 

XC.LC is introduced. Substituting C, A.c for Lc and changing the integration limits in eq. 6-19 

gives: 

eq. 6-20 

' e f c J (Jt) 0 

C, : Scaled particle size [1] 

C^ : Scaled switch particle size [1] 

OUR^ : Scaled maximum OUR [mol 02.m"V] 

Due to the change in integration limits of the integrals in eq. 6-20, a scaled switch particle size 

C^ is introduced that is given by: 

eq.6-21 ^,(t) = XcL,=-
iyi + e"^-OURmJL U lr-n)dT 

Ss.o + Si.o-O-e"-') 

It is important to note that OUR^x differs from the maximum oxygen uptake rate OUR„, of the 

average sized particle. Denoting OURntA as the maximum activity of the average size particle 

we can write : 

eq. 6-22 OURm, 
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In cases where yc has an integer value eq. 6-20 has an analytical solution that runs like: 

eq. 6-23 
c-l /••> \ 

«*«,-^^-^i-*|^+*-*W'-*l-

6.4.3 Substrate-time relationship 

A relationship can be derived for the average soluble substrate concentration Ssa in the same 

way as for the OUR^t). For Ssa only the result will be given, as for the OUR, this derivation 

has been presented in detail. By analogy one can find the following result: 

eq. 6-24 

f 

Ssa: Average soluble substrate concentration [mole/m3] 

Continuing the analogy with the OUR,,, for integer yc values one can write: 

eq. 6-25 

sM-^+s^..^i{i-.<'!£im-<M-.< 
„=o n\ ) y-1 

: , ^ J ] 

As the insoluble substrate degradation is not influenced by particle size, the same equation can 

be used as for the single size case. 

6.5 Behaviour of the distributed model 

The effect of the presence of a particle size distribution on the time course of both the OUR 

and the soluble substrate concentration is investigated. The OURj is compared to the OUR 

(OURs) of a single particle (OUR.) with the average particle size. For all calculations the 

standard parameter values used in chapter 3 and 4 are here as well used. 
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The gamma distribution is characterised by two parameters, Xc and yc. The scale parameter Xc 

is related to the average particle size and as such does not constitute a new parameter 

(compared to the single particle case). The shape factor yc is describes the narrowness of the 

distribution, and represents the new aspect in the distributed model i.e. the distribution. The 

coefficient of variation (standard deviation divided by mean value) is a measure of the 

homogeneity of the size distribution. A low value indicates a narrow size distribution. The 

value of yc determines the coefficient of variation of the gamma distribution as: 

a 1 
eq. 6-26 — = - ? = 

a : Particle size distribution standard deviation [m] 

This equation indicates that at a very high value of yc the OUR,, time course will approach the 

OURj time course for a single particle, as a single particle can be understood as very narrow 

distribution. Based on the previously developed theoretical consideration it is expected that 

the value of the shape factor yc is in the range 1-3. 

Figure 6.7 shows the OUR, time course for yc=3 and yc =9. The value yc=3 is chosen as this in 

the range of expected values, while yc=9 is chosen to show the intermediate behaviour 

between yc=3 and the single particle model (yc=°o). The OUR time course of the single particle 

is calculated with both the analytical model (eq. 6-11) and the simplified version (eq 6-13) 

used to derive the average OUR. The OUR, curves from the distributed model using both 

values of gamma differ strongly from the curves from the analytical model and the simplified 

analytical model. The difference between the curves of the two latter models is significantly 

smaller than the difference between these curves and those of the distributed model. This 

shows that the effect of the size distribution is bigger than the effect of the model 

simplification, even for a relative narrow distribution like yc=9. The shape of the OUR time 

course differs fundamentally from the single particle models, a distinct OUR peak with a 

gradual decrease instead of a plateau with a steep decrease. 

Figure 6.8 shows the effect of the size distribution on the average soluble substrate 

concentration time course. The effect is less pronounced than for the OUR time course, the 

distributed model shows a more gradual decrease of the soluble substrate concentration. The 
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Figure 6.7: 77ie OURa time course for two values ofyc (3,9) and the OURs time 
course for a single particle with the average particle size. The OURs curve is 
calculated according the simplified analytical model (I) and the original 
analytical model (II). See text for additional details. 

introduction of a size distribution influences the course of the OUR stronger than the average 

soluble substrate concentration. The effect of the size distribution is largest around the switch 

time for both the OUR as the average soluble substrate concentration. At the switch time the 

OUR is maximal and thus an effect can be easier observed than for the soluble substrate 

which is already low. 
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Figure 6.8: The Ssa time course for two values ofyc (3,9) and the Ss time course 
for a single particle with the same (average) particle size. The Ss curve is 
calculated according the simplified analytical model (I) and the original 
analytical model (II). See text for additional details 
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In chapter 3 it was shown that initial soluble substrate concentration, initial insoluble substrate 

concentration, interfacial oxygen concentration and especially particle size have a strong 

influence on the OUR,, time course of a single particle. The effect of these factors on the OUR,, 

of size distributed waste will be investigated by changing the factors one by one. The soluble 

substrate concentration time course is not analysed further, as this does not differ so distinctly 

from the single particle case as the OUR, does from the OUR,.. 

For comparison both the OIH^ as the OUR, are shown. The curves are shown for a high 

parameter value (the standard value times 4) in the A-figure, the low parameter value (the 

standard value divided by 4) in the B-figure. In both the A- and B-figure the effect of the 

distribution can be directly assessed by comparing OUR, to the OUR,.. It can then be further 

investigated whether this effect changes as a result of the different levels of the studied factor. 

Particle size (Figure 6.9) 

With an increasing average particle size the maximum OUR, value decreases, however this 

level is longer kept. This pattern can only be partly recognised in the OUR,, because as a 

result of the distribution a distinct OUR peak has developed. While for the high average 

particle size value the OU^ peak lies higher than the asociated OUR^ plateau the reverse is 

true for the low value. The peak activity decreases with increasing particle size, however this 

effect is less pronounced for OUR, than in the case of OUR,.. At a small average particle size a 

nearly symmetric peak arises while for a large average particle size the peak is strongly a-

symmetric. 

Initial soluble substrate (Figure 6.10) 

The effect of increasing the initial soluble substrate in case of a single particle is an extension 

of the substrate saturated phase. In both cases, the maximum level of the OUR,, is the same. 

Both for the high and low soluble substrate concentration, the presence of the distribution 

leads to the occurrence of distinct peak in the OUR followed by a very gradual decrease. For 

the high initial soluble concentration, the peak in OUR, is higher than the maximum level of 

OURj. For the low initial soluble substrate concentration, the opposite is true, the OUR, peak 

is lower than the OURj maximum level. The peak OUR, has thus become dependent on the 

initial soluble substrate concentration, with an increasing initial soluble substrate 

concentration a higher peak value is expected.. 
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Initial insoluble substrate (Figure 6.11) 

An increase in the initial insoluble substrate concentration leads to an increase of the switch 

time of the OURj when compared to the standard case. A decrease with respect to the standard 

case however does not lead to a decrease of the switch time. The reason lies in the fact that at 

the low level and the standard case the switch time is mainly determined by the initial amount 

of soluble substrate. Only at a very high level of insoluble substrate does the hydrolysis rate 

increase enough to delay the switch time. This effect is not so easily detected in the OUR, 

time course. Both curves have a distinct peak with the same maximum value at the same time. 

An increase of the initial insoluble concentration leads to a more gradual OUR, decrease after 

the peak. 

Interfacial oxygen concentration (Figure 6.12) 

An increase of the interfacial oxygen content leads to an increase of the maximal OUR. value, 

while the switch time decreases. This effect is also seen in the OUR,, however as in the case 

of the particle size the effect is diminished. 

6.6 Discussion 

The gamma distribution has been introduced as a description for the particle size distribution 

in waste. This distribution is based on a physical representation of the waste particles. This 

physical representation implies that the shape factor yc of the waste should be in the range of 

1-3. Combing this distribution function with the OUR model for a single particle yields a 

model for the description of the OUR of a particle size distributed waste. An interesting aspect 

of distributed OUR model is that for yc approaching infinity, the distributed OUR model 

approaches the single particle size OUR model. The calculations show that introduction of the 

size distribution changes the OUR time course fundamentally. The following effects are 

observed. 

1. Occurrence of a distinct OUR peak. 

The OUR of a single particle will reach after some time a certain maximum level and remain 

at this level until the soluble substrate is depleted. The OUR time course of a size distributed 

set of particles shows no plateau but a distinct peak, that occurs around the point of time that 

the single particle reaches its maximum level. 
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2. Introduction of a transient period 

For a single particle there is a sharp transient from the maximal OUR plateau to a new lower 

level, which is determined by the hydrolysis rate. This sharp transient drop is caused by the 

diffusional soluble substrate transport from the core of the particle to the outer oxygenated 

3.Z)C 

zone. The time constant kD describing this drop equals The introduction of a 

distribution introduces a far more slowly decreasing transient period, resulting in more 

gradual transient period from substrate saturation to hydrolysis limitation. In figure 6-13 this 

is further illustrated. Here the transient period is shown for the single particle case and the 

distributed model with a yc value of 400. This figure clearly shows that even for such a narrow 

distribution the transient period is more gradual in case of the distributed model. 

£ 

o 
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o 
a, 

OS 

o 
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6.0E-03 

4.0E-03 

2.0E-03 

0.0E+00 
42 43 44 45 46 47 48 49 50 51 52 

time [hr] 

Figure 6.13: The OURa time course for one values of yc =400 and the OURs 

time course for a single particle with the same (average) particle size. The OURs 

curve is calculated according the simplified analytical model (I) and the original 
analytical model (II). Only a short period around the switch time is shown 
because only here differences may be observed. See text for additional details 

This might explain also why the diffusion coefficient as determined for 2 mm particles in the 

previous chapter was much lower than expected. The technique used to assure even plates 

may be not precise enough, to avoid the development of small uneven spots. This size 

distribution, how small it might be, still leads to a more gradual decrease after the switch time. 
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Consequently, a lower estimate of the value of kD is obtained, that translates in a lower 

diffusion coefficient. 

3. Introduction of maximal level OUR dependence on soluble substrate 

For a single particle the maximal OUR level is not determined by the initial soluble substrate 

concentration. The introduction of the size distribution however introduces such dependence 

for the peak activity. This makes interpretation of data on maximal OUR levels more difficult, 

as the maximum level now depends not only on particle size and oxygen content but also 

initial soluble substrate concentration. 

The results have shown that the OUR time course is strongly influenced by the introduction of 

a particle size distribution. Based on the physical underpinning of the gamma distribution 

model it seems plausible that for a real waste a yc value of 1-3 is expected. But the example of 

yc= 400 showed that even a very narrow distribution already alters the OUR time course. This 

means that it is anyhow necessary to introduce a size distribution to describe the OUR time of 

a real waste. Available measurements on the OUR time course also point in this direction. 

OUR measurements of different waste materials like manure, sewage sludge and biowaste all 

show a distinct peak and no plateau [6]. 
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A. Appendix 

A. 1 Derivation of the sum-of- exponentials distribution function. 

The distribution function of the sum of two variables x and y is obtained [1] as: 

s2 

eq. A-l f2(s2)= I fx(u).fy(s2 -u)du 
o 

s : Sum of variables x and y [m] 

f2(s) : Distribution function of s. [-] 

fx,fy : Distribution function of x and y [-1] 

Taking Lx for x and Ly for y and using eq. A-l, we obtain: 

eq.A-2 fj{s) = ^L^-Ay.s.e-Ax.s) 
Ax~Ay 

By combining the function f2(s) with the distribution function of the weighted variable Lz 

the sum of the three weighted variables can be found by as follows : 

eq. A-3 / , ( ! ) = }/2(«)./,(Z,e -u)du 

Evaluation of the integral in eq. A-3 yields for the distribution function of the representative 

particle size Lc: 

eq. A-4 
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A. 2 Moments of the sum of exponential distribution function. 

The gamma distribution is given by: 

L1"' 
eq. A-5 G(LC,X,y) = Xr--7—.e " ' 

r(y) 

The first and second moment of the gamma distribution are given by (Shapiro 1981) as 

eq.A-6 M{(G(z,A,y)) = £ 
A 

eq.A-7 M2(G(z,A,y)) = t + L-

According to a theorem given by Heathcote [1] the moments of the general particle size 

distribution can be found by applying the following relationship: 

eq-A-8 M n{f(x)) = (-l ) n .^-L(f(x))\s = Q 

ds 

M„(f(x)) : n-th moment of function f(x) 

L(f(x)) : Laplace transform of function f(x) 

By evaluating eq. A-8 for n=l the first moment for the representative particle size can be 

found as: 

eq.A-9 M](f3) = ^ - + ̂  + ^ -
AX Ay /tZ 

Mi(f3): first moment of f3(x) [m ] 
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By evaluating eq. A-8 for n=2 the second moment for the representative particle size can be 

found as: 

eq. A-10 

(Ax-Ay Ag) 

M2(fxy): second moment of fxy(x) [m ] 

Equating the moments of the gamma distribution with moments of representative particle 

size and defining a = Xy/Xx and p= Xz IX x one obtains: 

eq A-ll X = a-Ka + fi + a-fl , 

X,c: characteristic pore density [m"1] 

The value of yc equals: 

(a.p + a + P)2 

The mean of the gamma distribution is given by eq. A-9. 

1 1 1 
eq. A-13 // = — + + — 

Ax Ay Az 

The variance can be derived to equal: 

2 1 1 1 eq. A-14 cr" =—- + —- + —-

X\ A\ A\ 

1. Heathcote, C.R., Probability: elements of the mathematical theory. 1971, London: 

Goerge Allen & Unwin. 

225 



. VALIDATION OF THE DISTRIBUTED OUR MODEL 228 

7.1 INTRODUCTION 228 

7.2 THE DISTRIBUTED OUR MODEL 229 

7.3 PRACTICAL IDENTIFIABILITY 232 

7.3.1 Experimental time 233 

Effect of 11] and Eh 236 

7.4 MATERIALS AND METHODS 238 

7.5 RESULTS 239 

7.6 DISCUSSION 243 

7.7 REFERENCES 246 

227 



7. Validation of the distributed OUR model 

7.1 Introduction 

The OUR is the most important measurement available to characterize the composting 

process rate. A mathematical model has been developed for the OUR of a single waste 

particle, the so-called single particle model (see Chapter 3 and 4). For a single particle it was 

found that the particle size is the most important factor influencing the composting rate. This 

was found, both theoretically (see Chapter 3,4) and experimentally (see Chapter 5). 

A real waste consists of an ensemble of particles with different particle sizes. To investigate 

how this particle size distribution influences the OUR time course the so-called "distributed 

OUR model" has been developed (see Chapter 6). This distributed model is based on the 

single particle OUR model and the gamma distribution model. It was found theoretically that 

the presence of a size distribution significantly influences the OUR. This finding implies that 

the OUR time course of a waste can be only adequately described if the particle size 

distribution is taken into account. 

The shape parameter yc is a characteristic parameter of the distributed OUR model. The shape 

parameter describes the range of the gamma distribution. With an increasing yc value the 

particle size distribution becomes narrower. For a yc value approaching infinity the outcome 

of distributed model therefore coincides with the outcome of the single particle model. 

The objective of this paper is to validate this distributed OUR model, i.e. to determine 

whether incorporation of a waste particle size distribution is necessary to understand the OUR 

time course. Unfortunately there are no practical means available to measure the particle size 

in-situ in a waste. This means that the effect of the waste particle size distribution can be only 

assessed from the measurement of the OUR-time course. Therefore this paper investigates 

whether it is possible to infer the extent of the size distribution from the OUR time course. 

In chapter 5 the OUR time course of a single particle has been studied experimentally for 

chicken manure. By studying the OUR time course of the same material reconfigured as a 

solid state matrix with a range of particle sizes, the effect of the size distribution can be 

investigated experimentally. As the same material is used basically all differences can be 

attributed to the particle size distribution. 

The distributed OUR model is fitted to the data and the yc value is established. If a low value 
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is found this indicates that there is an appreciable particle size distribution and that indeed a 

distributed model is necessary to understand the OUR of real waste. 

Before the model is used to fit the data the identifiability of the distributed model is 

investigated. Emphasis will be given to the effect of the shape parameter yc on the parameter 

identifiability, as the single particle OUR model has already been extensively investigated. 

7.2 The distributed OUR model 

The distributed OUR model, as derived in the previous chapter, is based on the single particle 

OUR model and a particle size distribution model. The waste particle size distribution is 

described by the gamma distribution, which is expressed as: 

eq-7-1 G(Lc,Ac,yc) = A:.-^-.e^ 
T(Yc) 

Lc : Particle size [m] 

Xc : Scale parameter [m"11 

yc : Shape parameter [-] 

r : Gamma function [-] 

The gamma distribution is defined for Lc > 0, Xc > 0 and YC>0. The mean of this distribution is 

given by: 

eq-7-2 4 , „ = ^ 

Lc,a : Average particle size. [m] 

The variance of the distribution is given by: 

eq. 7-3 cr2=-^f-
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a : Variance of the gamma distribution [m2] 

The coefficient of variation is thus given by: 

a l 

eq.7-4 1~ = ^ 

The parameter yc may be thus be interpreted as describing the spread of the distribution, 

independent of the average particle size. A large value of yc indicates a small particle size 

stretch, a small yc value a large stretch. 

In the previous chapter a relation has been established between the gamma distribution and 

the particle size distribution based on the presence of uniformly distributed pores. Under 

these circumstances a value of yc in the range 1-3 is expected. Although this was a "thought 

experiment" it did show that it is possible to establish a link between the gamma distribution 

and a simple physical model of the waste. Using this distribution model and the single 

particle OUR model, the following OUR model for a matrix of variably sized particles was 

derived: 

eq. 7-5 

• e i<• i/0 o 

OURa(t): Oxygen uptake rate at time t for a matrix with variably sized particles [mol 02.m~3.h"' ] 

p.eff : Effective maximal biomass growth rate [h"1] 

OURm,?.: Scaled maximum OUR of the mean sized particle [mol 02.m~3.h~'] 

Q : Lag time [h] 

C, : Scaled particle size [-] 

Cg : Scaled switch particle size [-] 

yc : Characteristic shape factor [-] 

kn : Hydrolysis rate constant fh"1] 

Sj,o : Initial insoluble substrate expressed in oxygen equivalents [mol O2.n1"31 

The first term on the right hand side of the equation describes the rate of those larger particles 
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that are in the substrate saturated phase, while the second part describes the smaller particles 

that have already depleted the soluble substrate. The scaled particle size is defined as: 

eq. 7-6 £ = A.C.LC 

A.c : Characteristic scale factor [m] 

The scaled particle size that at time t has just become substrate depleted, is called the scaled 

switch particle size C#. It is given by: 

eq.7-7 Qfi)-
Ss.o + Si.o-0-ek"') 

The background and properties of this model are extensively discussed in the previous 

chapter. In many cases adequate parameter values are not available in the literature. The 

parameter values need to be estimated from experiments. The parameters Si,o and k„ are only 

identifiable from long term experiments, i.e. kn.t>l. If the OURa is measured over a relatively 

short period, k n . t« l , than the OUR model must be altered to allow parameter estimation. 

This can be done by introduction of the hydrolytic activity Ah defined as: 

eq. 7-8 Ah=kn.Si0. 

At, : hydrolytic activity [mol C .̂m .̂hr"1] 

The OURa is then: 

eq. 7-9 

(jo 

The scaled switch particle size Q is then given by: 
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eq.7-10 £/t) = -
ljyji+e^-OURm.x U / _lT_n)dr 

Ss,o + Ahx 

Only this altered model will be used in the following, and therefore no notational difference 

has been made between general (eq.7-8) and altered model (eq 7-10). Modelling the 

hydrolysis rate as a zero order means that the altered model is only applicable during a 

relatively short period of the hydro lytic phase. 

Figure 7.1 illustrates the OUR time course according to the single particle model and the 

distributed particle model for the case of yc =3. The introduction of a size distribution leads to 

a different OUR time course, a distinct peak is present instead of a plateau and a more 

gradual OUR decrease after the peak appears. The parameter values used are based on the 

nominal values used in chapters 3 and 4. The OUR is here expressed per kg of initial volatile 

solids (VS), using an average mole weight of 26 g per C-mole of organic matter. 

7.3 Practical identifiability 

Dimensional analysis can be used to construct a model with aggregated parameters that are 

not dimensionally-non-identifiable (see Chapter 2). The dimensional analysis removes in this 

way an important source of non-identifiability. The dimensional analysis of the single particle 

OUR model revealed that a number of aggregated parameter could be defined that were not 

dimensionally-non-identifiable. The distributed model contains only a single new 

dimensionless parameter the scale parameter yc. As a dimensionless parameter is always not 

dimensionally-non-identifiable it follows directly that all parameters in the distributed model 

are not dimensionally-non-identifiable. 

Practical identifiability investigates to what extent it is possible to infer a unique parameter 

set with reasonable accuracy from an ideal error-free data set. The identifiability measure of 

Reich (see Chapter 2) was employed to determine the practical identifiability. This is a local 

identifiability method, which is preferred over other methods as it is relatively simply to 

implement and it offers the possibility to gain information on experimental design. The 

identifiability is expressed by the value of the inverse of the determinant of a matrix, the latter 

constructed from the sensitivity matrix. The value of this measure indicates whether under the 

given conditions a parameter set is identifiable. A value of 100 or smaller indicates that the 

parameter set will be identifiable. A value higher than 10,000 implies that the model in 
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general will be non-identifiable. 

The identifiability measure is a function of the model parameters, the observation period Texp 

and the measurement frequency. As in this study an on-line measurement system with a high 

measurement frequency is used, the measurement frequency may safely be assumed to be 

unimportant. The 6 model parameters and the observation period thus determine the 

identifiability. As the identifiability measure is dimensionless, rendering the equation 

dimensionless reduces the number of independent influencing factors, so that only 5 

dimensionless numbers need to be investigated. The parameters OURm,x and \i are used to 

give the following set of dimensionless groups: 

eq. 7-11 

n, 

r r 
n 2 

n3 

n4 

n5 

Ss.O-Meff 

OURmA 

. A 
OURmA 

= Q-Meff 

= r 
= A ^ exp 

rii : Dimensionless group i [-] 

Texp : Duration of the experiment [h] 

The first dimensionless group is the dimensionless period needed to deplete the initial soluble 

substrate with the scaled maximum oxygen uptake rate, the second is the dimensionless 

hydrolytic activity, the third is the dimensionless lag period, the fourth describes the spread of 

the particle size distribution and the fifth is the dimensionless experimental time. 

7.3.1 Experimental time 

The case of yc =2 will be analyzed more in depth to determine the necessary experimental 

time. At a value of yc = 2, the OUR takes the longest time to achieve the stable period, and 

thus an experimental time that is sufficient for yc = 2 certainly will be sufficient for higher yc 

values. For yc = 2 the OUR is described by : 

eq.7-12 OVR.(t) = O U R ^ ^ {^ye
<M +Ah{l-e^{\ + Z s(t))\ 
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The OURa time course consists generally of three periods, the rapid ascension of the OURa, 

the slow descent and the stable period (Figure 7.1). These periods can be recognized in the 

structure of eq. 7-12. During the first period the scaled switch particle size is much smaller 

than 1 and the term e"̂ s(t) is nearly 1, and thus the OUR will be mainly determined by the root 

logistic relation. Once the root logistic approaches 1, the scaled switch particle size will 

increase strongly (eq. 7-12) and the term e*(t) determines the course of the OUR. After the 

peak there will be a drop in activity, as in general OURm,>>Ah. At the same time the second 

term describing the hydrolytic activity increases as e"^(t) decreases. 

__ 
.a 
£ 0.15 
> eo 

o 0.10 

f 0.05 

o 
0.00 

\ A 1 \ 
I 

50 100 
time [hr] 

150 

Figure 7.1 The OUR time course according to the single particle model (thick 
line) and the OUR time course according to the distributed particle model with a 
y value of three. The other parameter values are the same i.e. the averaged 
maximum oxygen uptake rate equals the maximum oxygen uptake rate in case of 
the single particle model. 

Without further proof it is assumed that the parameters are only then potentially identifiable if 

the experiment lasts long enough to reach the stable period. The minimal experimental time 

can thus be determined as the sum of the time needed to achieve the maximum observed 

OUR peak and the time needed from this point on to reach the stable period. 

By setting the first derivative with respect to time of eq. 7-12 equal to zero, neglecting the 

hydrolytic activity in 7-10 and assuming that the root logistic function has approached 1, the 

time needed to reach the peak OUR is found to be: 
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eq. 7-13 T=Q—— .In 
Veff 

2. 
OURmk 

. S0-Meff 

\ 2 

+ 2.-
OURmJ OUR 

{ S0.M. tf J 
+ 1 

This equation expresses that the time at which the peak is reached is determined by the 

dimensionless substrate depletion time, the growth rate constant and the lag phase constant. 

As at t=Tp the root logistic term has approaches 1 the OURa during the remaining time can be 

described by: 

eq.7-14 OURJt) = OURm,x-ec>(,)+A^l-e^^ k + t sl?)\ t>Tp 

If now the end point of the experiment is determined by the occurrence of the event that 

OURa(t)/Ah=a, the following relationship is found for the experimental time 

eq. 7-15 

T = Q - -
exp 

.In 
• * » # 

'OUR, ^ 
\ So-Meff 

+ 2.-
So-Meff 

-In 
a.A 

A„ \ 

OURm 

^ + e °"V, 

rOURm^2 

So-Meff 
+ 1 

In 
OURm 

A„ \ 

• + e •A + OUR^ 

In this equation the first term describes the time needed to achieve the peak, and the second 

the time needed to achieve a. The desired value of this factor a is determined by calculation 

in the following way. For the nominal case the value of the identifiability measure is 

calculated for different values of the total experimental time. The results of these calculations 

are shown in figure 7.2. With increasing experimental time the identifiability measure 

decreases indicating an improved identifiability. Using a threshold value of 100 as threshold 

of good identifiability it can be seen that this situation is reached in the nominal case at t=160 

hr. At this point of time the value of a is 1.01. This strict value of the identifiability measure 

is used to assure that a value of a is chosen that is also valid for other parameter sets. 
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Figure 7.2: The identifiability measure \R$' (thick line) as a function of the 
experimental time for the standard case. Note that the Y-axis is logarithmic The 
straight lines indicate the levels of 10000 and 100, used as threshold values 

7.3.2 Effect of ri i and n2 

The influence of the dimensionless numbers Yl\ and II2 on the identifiability measure is 

investigated for different values of gamma. For each considered parameter set, first the 

experimental time is determined according to eq. 7-15, using a=1.01. Using this experimental 

time the identifiability measure is calculated as explained in chapter 2. 

Figure 7.3 shows the contour plot for yc =2, yc =3 and yc =10. The contour plot for yc =2 

shows that (threshold value of 1000) the parameter are only identifiable for higher values of 

the dimensionless substrate concentration Oi>8, with increasing hydrolytic activity a higher 

soluble substrate concentration is needed. 

The plot for yc =3 shows that the parameters are identifiable for values of the dimensionless 

substrate concentration Oi> 6.5. With a high hydrolytic activity a somewhat higher soluble 

substrate concentration is needed. For yx=10, nearly all combinations are identifiable. 

Together these plots show that with increasing gamma the identifiability increases. 

The dimensionless lag period II3 appears to have no big effect of the identifiability, changes 

up to a factor 10 do not influence the identifiability appreciably (Figure not shown). The 

absence of an effect on identifiability is probably due to the fact that a change in lag time is 

accounted for in the experimental time. 
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Zs 

Zs 

Figure 7.3: Contour plot of the identifability measure \R£' in the II, (X-axis) versus 
n2 (Y-axis) plane. The upper curve shows the results for y=2, the middle for y=3 the 
lower for y=10. All other parameters have their standard values. Label values repor 
the'"logoff 

237 



7.4 Materials and methods 

Materials 

All experiments were performed with chicken manure, which was supplied by an 

experimental facility of the WAU. The manure was collected from a belt that was emptied 

every two days. The manure was sampled when the belt was emptied. To enhance porosity 

the chicken manure was mixed with foam chips, which are commonly used as packaging 

material. The foam chips (approx. 0.8*1.8*2.6 cm) are biologically non-degradable and have 

a water impermeable surface. The specific surface area was estimated as 15.8 m2 per gram of 

foam chips. 

Methods 

The OUR time course of the manure -foam mixtures was measured with the OUR measuring 

device described in chapter 4. During the experiment a temperature of 55 °C and an oxygen 

content on dry gas basis of 19% by volume was maintained. Analyses of dry matter and 

organic matter were performed according to standard methods [1]. 

Experimental set-up 

The manure was transported to the lab and directly used for experiments i.e. no storage period 

was applied. The chicken manure was mixed with foam chips, either 1% or 3% chips on a 

fresh manure weight basis. After mixing the manure was mainly attached to the foam chips, it 

was therefore assumed that the average particle size is inversely proportional to the total chips 

surface in the mixture. Using the average dry matter (23%) and OM content (87%) and an 

average density of 1070 kg.m"3, the average particle size LCj£, was estimated as 2 mm for the 

3% amendment and 6 mm for the 1% amendment. Each experiment was performed with a 

different batch of manure. Four experiments were conducted with 1% chips, labeled A,B,C,D 

the four experiments with 3% chips are labeled E,F,G,H. 

Estimation procedure 

Eq. 7-9 and eq. 7-10 were used to estimate the parameters ueff, O, OURm,̂ , yc, Ah and SSlo 

using a conventional residual sum of squares (RSS) minimization with the simplex routine as 

coded by Press [2]. The identifiability analysis showed that depending on the value of yc the 

possibility exists that the parameter set is not well identifiable. This can give problems when 

estimating the parameter set from the measured data. The parameter set is therefore estimated 

with a fixed yc value. The parameter set that minimises the RSS is calculated for all integer 

values of yc ranging from 2 to 20. The parameter set that yields the lowest RSS in this range is 

reported. Also the range of yc values that have a RSS smaller than 1.12. the minimal RSS will 
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be presented. This value coincides with the 95% confidence interval assuming the ratio of 

variances to be described by the F-distribution and a number of 50 independent measurement 

points. In all experiments at least 250 measurements were present. However a lower number 

of observations was chosen as the measurements are correlated due to oscillations induced by 

the control algorithm. 

7.5 Results 

The measured OUR time course for an experiment with 1% chips is shown in figure 7.4 

while for 3% chips in figure 7.5. Both the measurements and fitted curve are shown. Both 

curves show the same general behavior, an increase of activity to a maximum followed by a 

gentle slope. The curve is nearly symmetrical around the peak. In both cases the gentle slope 

downwards is followed by a relatively stable level as is expected. 

0.20 

50 100 
time [hr] 

150 

Figure 7.4: Measured (thin line) and fitted (thick line) OUR time curve of 
experiment A (see table 7-1) 

The results of the parameter estimation are all presented in table 7-1. The first column 

denotes the experimental number. For each individual experiment the following results are 

given: the minimum value of the residual sum of squares (MRSS), the maximum OUR of the 

average sized particle (OURm,A), the maximal oxygen flux (Nm), the effective growth rate 

(H,efr), the lag time (Q), the initial soluble substrate concentration (Ss,o), the hydrolytic activity 

(Ah), the optimal yc value, the lower value of yc-range and the upper value of the yc-range. 

The maximum OUR of the average sized particle OURm?A is derived from the equation 

OUR,,,, , 
— (see chapter 6, eq. 6-21). The value of Nm is the maximal oxygen flux per m of 

7c 
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particle surface. It's determined as the product OURmK .Lca in which LCja is the average 

particle size. The latter parameter is determined as described in the materials and methods 

section. For each group of four experiment the mean value, the standard deviation and the 

coefficient of correlation of each parameter is also given 

100 
time [hr] 

Figure 7.5: Measured (thin line) and fitted (thick line) OUR time curve of 
experiment E (see table 7-1) 

Based on the theory as developed in chapter 5 (table 5.1) it is expected that the parameters 

Hen-, Q, yc, Ah and Ss,o are independent of the particle size. The parameter OURm,x is inversely 

proportional to the particle size, implying that Nm is independent of particle size. 

To test whether the parameters Nm, ncff, ^ , Yc Ah and Ss,o are indeed independent of the 

particle size, the mean values of the estimated parameters will be compared by reporting the 

P-value using a two sided Students t-test for independent samples with unequal variance [3]. 

The experiments with 1% chips (A,B,C,D) clearly have a lower MRSS than the 3% group 

(E,F,G,H). The MRSS is significantly affected by oscillations in the measurements due to an 

inadequacy of the control algorithm. This phenomenon was more pronounced in the 3% 

group as the OUR was higher and thus the disturbances were bigger. 

The 1% groups has as expected a lower OURm.A than the 3% group. The ratio between the 

average values is 2.25. Assuming the manure to be smeared out over the surface of the chips, 

an OURm,A ratio of 3 would be expected, as three times the surface area is available. The 

observed ratio is lower than the expected factor 3, however the values have a large spread and 

a factor of 3 can not be ruled out. In any case, the factor of three might be an overestimate of 

the theoretical factor, as part of the manure is not attached to the chips but is dispersed as 
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small particles between the chips. It is interesting to note that the ratio for the observed peak 

values of the OUR curves is only 1.7. This shows that the presence of distribution tends to 

diminish the effect of particle size. 

The values of Nm differ, however this difference is not significant (P=0.23). The growth rate 

constant Uefr is somewhat higher for the 3% group than for the 1% group. Again this 

difference is not significant P =0.46). The lag time (Q) also shows a difference but this is not 

very big and is again not significant (P=0.36). For the initial soluble substrate SS)o again no 

difference could be detected between both groups (P=0.76), the same applied to the 

hydrolytic activity (Ah, P=0.54). That all these parameters do no differ significantly is in 

accordance with the theory. 

For some experiments, the difference between lower and upper limit of the yc-range shows is 

appreciable. For each experiment the relative dimensionless substrate concentration III was 

calculated from the estimated parameters. In figure 7.6 the estimated gamma range i.e. upper 

minus lower value is plotted against the calculated Oj. This figure shows that with decreasing 

Oi an increasing gamma span is found. This is in accordance with the findings of the 

identifiability analysis, that with decreasing O] the identifiability becomes poorer. 
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Figure 7.6: Relationship between the estimated y-range and the value of the 
dimensionless depletion time JTi. 

All experiments have the yc-range 3-4 in common. For yc = 3.5 calculation shows that 111 

should be at least 8, to assure sufficient identifiability. Accepting this yc value, figure 7.6 

shows that four out of eight experiments have a too low Tl\. 
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7.6 Discussion. 

Chicken manure was mixed with an inert foam amendment and the OUR time curve of this 

mixture was measured. The OUR time course of this material has previously been established 

for single-sized particles in chapter 5. As the amendment is inert, it can be safely assumed 

that the differences in OUR time course between the foam-manure mixture and the single size 

particles can solely be attributed to the particle size distribution. 

Of the estimated parameters only the OURm,A shows a strong dependency on the particle size. 

From the definition of the OURmA this is clearly in accordance with the model. The other 

parameters show no obvious dependency on the particle size, as expected on theoretical 

considerations. In case of a single particle a dependency of the growth rate constant on the 

particle size was found. In the distributed case no clear dependence is found, but this can be 

explained as a result of the distribution of the particles. Big particles that have a weak particle 

size growth rate dependence are present in both groups, and thus diminish the effect. The lack 

of effect of particle size on the initial soluble substrate concentration and the hydrolytic 

activity is according to expectation. 

Overall a yc-value of 3-4 is found to be adequately describing the particle size distribution. 

The fact that such a wide distribution is found shows that incorporation of a particles size 

distribution in the model is indeed necessary, otherwise a much higher yc would have been 

found. 

Table 7-2 compares the average of the estimated parameters found in this study with the 

parameters determined in chapter 5 using the single particle size model. There is an 

acceptable agreement between the two experiments. The Nm value is somewhat higher in the 

current study, however this could partly be attributed to the fact that the estimate of Lc,a is 

relatively coarse. The value of Lc,a is determined using the assumption of smearing of all 

material, while part is present as distinct particles. 

The growth rate constant is found to be lower than in the previous study, this is in accordance 

with the higher lag time Q found. A possible reason for this lower growth rate and higher lag 

time might be the higher initial soluble substrate concentration. The hydrolytic activity is 

comparable considering the large variance in both studies. 

In 4 of the 8 experiments the identifiability was poor, resulting in a problematic large spread 

of the yc value. Although this is troublesome it also points to a realistic physical phenomenon. 

The effect of a distribution is that compared to single particle the different processes no 

longer occur in phase. For instance after the OUR peak value has been reached some of the 
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particles are in the substrate saturated phase, while others are already in the substrate depleted 

phase. The particle size distribution thus mixes up the information of the different phases, 

making it more difficult to separate between the information from the substrate saturated 

phase and the substrate limited phase. In this respect, the single particle size model has 

probably the best identifiability because the switch time in this model indicates very clearly 

the transition from the substrate saturated phase to the substrate limited phase. With a 

distribution present such a clear-cut distinction is not possible. This explains why with 

increasing yc values the parameters have a better identifiability. 

Table 7-2 : Comparison of parameters estimated using the single particle size model (chapter 
5) and the distributed model (this chapter). 

Nm 

M-eff 

Q 

Ss,0 

Ah 

mol Oa.nV.s"' 

s-' 

hr 

mol 02. kg VS" 

molCh. kgVS'.hr" 

Mean-d1' 

3.2E-05 

4.4E-05 

60 

9.4 

0.033 

Min-s" 

2.2E-05 

4.4E-04 

46 

6.2 

0.041 

Max-sJ' 

7.7E-05 

9 

1) Mean-d: mean value of the estimated parameters using the distributed model 

(this chapter) 

2) Min-s: minimum value of the estimated parameters using the single particle model 

(chapter 5) 

3) Max-s: maximum value of the estimated parameters using the single particle model 

(chapter 5) 

Superficially looking the identifiability issue may be considered a disadvantage of the 

distributed model, it must be emphasised that it is a property of the system that the 

distribution causes an attenuation of the signal. The identifiability analysis showed that 

reconstruction of the underlying process is only possible under certain conditions i.e. a 

sufficient high value of ITi and F^. These prerequisites are not met in all cases, resulting in 

larger parameter estimation variance. As this is a property of the system it seems unlikely that 

there will exist a reparameterized model with better identifiability properties. 
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The distributed particle size model is thus well able to describe the measurements, and yield 

parameter values with a physical interpretation. The dimensionless groups give clear 

conditions for identifiability. If these conditions are not met in practical situations, this is 

indicating a physical situation in which the distribution attenuation is stronger than the signal. 

A possible solution might be addition of soluble substrate to the waste, as in this way the low 

value of Il | can be increased to a sufficient level. 

For the chicken manure yc=3 described all cases well. It would be interesting to investigate 

whether this is true also for other types of waste, as this value is close to the value derived 

from the theoretical model presented in the previous chapter. In this respect it would be 

interesting to use the factor three as a default value in those cases where there is a poor 

identifiability. Using the parameter estimation procedure outlined here it is always possible to 

see whether this value is compatible with the data. 
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8 Significance of the new distributed OUR model for composting 

reactor design 

8.1 Introduction 

Current design approaches for composting reactors are based on a first order description of 

the solid matter degradation rate. Keener [1] uses the degradable solid matter as the prime 

state variable while Haug [2] uses the biodegradable organic matter as the prime state 

variable. The effect of environmental factors (e.g. temperature, oxygen content) is modeled 

by a multiplicative effect of the individual factors on the first-order rate constant. The first 

order model is an empirical model, e.g. it describes the data without physical interpretation 

of the parameters involved. 

In this thesis the so-called distributed OUR model has been developed that describes the 

time course of the oxygen uptake rate (OUR) under constant environmental conditions. 

This distributed model is based on a mechanistic conceptual model (see Chapter 6) and has 

been successfully validated (see Chapter 7). A major advantage of the distributed model 

over an empirical model is that more insight in the process is obtained. 

There is one important question that remains to be discussed: "does it matter for reactor 

design which type of model (first order or distributed) is used? ". To address this question, 

the distributed OUR model (see Chapter 7) and the first-order model (see Chapter 1) will be 

compared using the example of a novel composting system. This novel composting system 

aims at composting pig faeces with a reduced off-gas flow and ammonia emission. The 

composting system as described here forms an integral part of a sustainable pig production 

system, the so-called Hercules system [3]. This pig production system is being developed to 

cope with current difficulties facing traditional systems. 

A characteristic of this novel composting system is that it operates at lower gas phase 

oxygen levels, typically <10 vol.%. Current temperature controlled composting systems run 

at high oxygen levels, typically 15-20 vol.%. As the operational conditions of this 

composting system differ strongly from conventional systems it is necessary to test it with a 

pilot scale facility. Kinetic data on the effect of low oxygen levels are scarce and are 

difficult to obtain experimentally. This is a challenge for prototype design, as one can not 

rely on previous data only and it is necessary to use a model to predict the OUR 

development at low oxygen levels. Similar challenges would arise with other new system 

designs or whenever data are not available for feedstocks or control situations. 
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It is useful to distinguish between interpolating and extrapolating predictions. An 

extrapolating prediction aims at predicting the system behavior outside the measurement 

range. For prototype design, this is the most common situation as data on the systems 

performance are still scarce. The model comparison will therefore focus on their ability to 

make sensible extrapolating predictions. 

Two types of extrapolating predictions will be distinguished, time extrapolation and oxygen 

extrapolation. Time extrapolation means that a prediction is made outside the time domain 

of the measurements while an oxygen extrapolation is a prediction outside the measured 

oxygen level domain. 

The objective of this chapter is thus to compare the first-order model and the distributed 

model with respect to their capability of making predictions with respect to time and 

oxygen for the purpose of design. 

This chapter is structured as follows. First the novel composting system is introduced, 

together with the equations for the main design quantities. The two OUR models that will 

be compared, the distributed model (see Chapter 7) and the first-order model (see Chapter 

1), are briefly introduced. The materials and methods section describes the experiments, 

parameter estimation and design quantity prediction for both models. The result section 

presents and compares the prediction by both models. The results will be discussed and the 

findings will be generalized with respect to composting system design. 

8.2 OUR based design 

8.2.1 Novel composting system 

Large quantities of diluted pig manure are produced in traditional pig production systems, 

leading to high treatment and transport costs. Valorisation and application of pig manure is 

only possible if specific products are produced in an economical way without negative 

environmental impacts. One new approach to addressing this challenge is the separate 

collection of faeces and urine by a convex conveyer belt [3]. The separation creates options 

for separate treatment of the liquid and solid fraction into a nitrogen rich liquid fertiliser 

(containing 60-70% of total N) and a stabilised organic fertiliser (containing 95-98% of the 

total P), respectively. In this way pig manure can become a highly valuable resource 

through the recycling of nutrients and organic matter to soil systems, thus reducing the use 

of artificial fertilisers and peat. 
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Faeces can be converted into a stabilised organic fertiliser through composting. Composting 

will result in breakdown and stabilisation of organic matter, mass reduction, and removal of 

pathogens and weeds. However, composting of N-rich and poorly structured substrates such 

as pig faeces results in high ammonia emission and production of odours. Porosity and 

compactibility of less structured substrates can be improved through mixing with a bulking 

agent such as straw or wood chips. While some addition of bulking agent is necessary in 

this system to achieve aerobic conditions, adding enough amendment to reduce odour and 

ammonia emissions to acceptable levels would greatly increase the size and costs of the 

system. Ammonia and odour emissions can be reduced by the application of absorbing 

materials such as zeolite or peat [3] or treating waste-gases with biofilters [4, 5]. However 

these approaches are too expensive to give an economically feasible composting process for 

this agricultural application. 

A composting system is proposed, composed of a conventional tunnel reactor and a gas 

cooler, to reduce total waste-gas flow and ammonia emissions during composting (see 

Figure 8.1). The tunnel recirculation air passes a cooler that removes the heat from the 

system. The cooled air can be reused, and there is no longer the need to supply fresh outside 

air for cooling purposes. The system thus uncouples the cooling function and the oxygen 

supply of the air. Fresh air is only needed to supply sufficient oxygen for aerobic 

degradation, resulting in a considerable off-gas flow reduction. 

Reactor 

Q,n 

Condense 

Cooler 

1 Heat removal 

- • Q eff 

Figure 8.1: Representation of the integral system model for reactor-cooler 
system. 
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The proposed system could help in managing ammonia emissions in three ways: 

1. The effluent air flow is reduced, decreasing the cost of odour treatment 

2. Part of the emitted ammonia may be removed in the cooler with the condensate, 

lowering the total ammonia emission. 

3. As the effluent gas flow is independent of the composting temperature, it is possible to 

run the composting process at mesophilic temperatures without the excessive effluent 

gas flows needed in conventional systems. The importance of the latter point is that 

nitrification might be introduced. Autotrophic nitrification is generally considered a 

mesophilic process that does not occur at thermophilic temperatures. Of course a 

thermophilic phase remains necessary to assure pathogen destruction. 

8.2.2 Design quantities 

A full (prototype) composting plant design has to take many aspects (process, material 

handling and storage, environmental, safety, marketing etc.) into account. A good reactor 

design is essential for a proper operation of the composting plant as a whole (see chapter 1). 

Therefore this chapter will focus on three essential elements of the reactor design. 

1. Aeration requirement. 

Aeration is necessary to supply oxygen and remove heat. As composting is generally 

operated as a batch process, both the maximum aeration requirement and the average 

aeration requirement are needed. The maximum value is important as it determines the 

capacity of the ventilator(s) needed to be installed in the process. Too small a ventilator will 

result in an inadequate temperature and/or oxygen control, a too big ventilator gives a low 

energy efficiency and unneeded costs. Inadequate process control gives a less stabilised 

product and increases the odour emission strongly. 

A composting plant often consists of a large number of separately controlled composting 

reactors. The total plant off-gas can be calculated as the average flow of a single reactor 

multiplied by the number of reactors. The average aeration requirement is needed to size 

the off-gas treatment, a too low estimate gives an undersized gas treatment resulting in 

unacceptable emission. A too high prediction yields an oversized gas treatment and thus 

unnecessary investments. 

2. Compost quality 

Given sufficient aeration, the sizing of the reactor should be such that a specific product 

quality is achieved. To achieve this specific product a certain Solids Retention Time (SRT) 
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in the reactor is needed. A too small SRT leads to an unstable product, a too large SRT to 

an unnecessary investment of reactor volume. To obtain a properly sized reactor all 

predictions of compost quality must be made in relationship with the SRT. 

3. Compost quantity 

During composting a mass reduction takes place due to evaporation of water and oxidation 

of organic matter. A prediction of this mass reduction is needed to estimate the amount of 

composts that needs to be handled and marketed. For some application mass reduction is 

the main objective of the process and insight in the relationship SRT and compost quantity 

is then need for reactor design. 

8.2.3 Aeration requirement 

Figure 8.1 shows a schematic representation of the reactor-cooler system where the main 

mass and energy flows are indicated. A gaseous flow is characterised by its flow rate Q 

(mole/s), the temperature T (°C) and its composition, i.e. nitrogen fraction (N2), oxygen 

fraction (O2), carbon dioxide fraction (CO2) and water vapour fraction (H2O). All gaseous 

flows are expressed on a molar dry gas basis (leading to more clear and simple formula's). 

A molar dry gas flow can be transformed to the total volumetric flow by: 

eq-8-1 Qy=Q(l + Z j ^ 

Qv : Volumetric gas flow [m3.h"'] 

Q : Dry gas flow [mole.h"1] 

Zw : Water vapour to dry gas ratio at saturation [mole.mole"1] 

P : Total gas pressure [Pa] 

R : Gas constant [J.mole'.K"1] 

T : Gas temperature [K] 

The concentration of all gases, except water, are expressed as fraction of the dry gas. These 

fractions are denoted by their chemical formula, and its subscript indicating the location 

(e.g. C>2,in is the oxygen fraction of the influent gas). 

The reactor temperature and effluent oxygen level are assumed to be controlled perfectly, 

i.e. the actual temperature and oxygen content of the reactor exhaust gas are always at the 
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set value. This yields a significant simplification of the model, although it means that the 

initial heating phase and the finishing cooling down phase can not be modelled. However, 

for our present objective this is no significant problem as the main part of the process takes 

place under controlled conditions. The model aims at developing the steady-state 

relationships between current OUR, the oxygen set-point and the reactor temperature set 

point on the one hand, and the influent flow, effluent flow and cooler flow on the other 

hand. 

In solving the mass and energy balances the following additional assumptions are used: 

• the composition of the substrate is such that on a molar basis, 1 mole of oxygen is 

replaced by 1 mole of carbon dioxide produced. 

• the amount of carbon dioxide removed by the cooling liquid can be neglected with 

respect to the total carbon dioxide balance. 

• the amount of ammonia present in the gas phase within the reactor can be neglected 

with respect to the overall gas balance. 

• there is no gas hold-up in the system. 

• all gas streams except the incoming stream are saturated with respect to water vapour; 

the incoming stream is assumed to be completely dry. 

• heat production is proportional to the oxygen consumption with a proportionality 

constant (Hox) equal to 473 kJ/mole oxygen. 

• the enthalpy of a gas stream (E) is approximated by the molar specific heat capacity of 

the gas Cp (assumed equal for all gases and water vapour) and the latent heat from water 

evaporation (Hvap): E = (l + Zw) • (T - Tin)• Cp + Zw • Hvap, in which dry influent air is 

chosen as the reference state. 

The following relationships can be derived on basis of the mass and heat balances and 

preceding assumptions. The influent and effluent gas flows are equal and related to the 

OUR by: 

eq-8-2 Q,if)=Qeff{f) = - ^ -
U2,in U2,eff 

OUR : Oxygen Uptake Rate [mol 02.kg VS"1 .h"1] 

02,in : Influent gas oxygen fraction [mol 02.mol dry gas"1] 
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02,eff : Effluent gas oxygen fraction [mol 02.mol dry gas"'] 

Qin : Influent gas flow [mol dry gas.kg VS"1 .h"'] 

Qefr : Effluent gas flow [mol dry gas.kg VS"'.h"'] 

As the OUR is expressed per kilogram of initial organic matter expressed as kg volatile solids 

(VS), all related variables are expressed per kilogram of initial organic matter. From the 

enthalpy values, the flow needed to cool equals: 

H„ ?*-
eq. 8-3 Qc(t) = °2-" °2eff.OUR(t) 

Qc : Cooler effluent gas flow [mol.kg VS"1.^1] 

Eff : Effluent gas enthalpy [J.mol"1] 

Ero : Reactor effluent gas enthalpy [J.mol"1] 

Ec : Cooler effluent gas enthalpy [J.mol"1] 

It must be noted that the condition Qc > Qefr must apply, as this latter flow is part of the 

cooling flow. The reactor flow equals the cooler flow, as the same amount of dry gas enters 

and leaves the system. 

As all flow rates are proportional to the OUR value, all average flows will be proportional 

the cumulative oxygen uptake. 

8.2.4 Product quality 

The amount of organic matter is reduced as a result of oxidation. The disappearance rate of 

organic matter is assumed to be linearly related to OUR. Using the constant Mom, defined as 

the amount of organic matter degraded per amount of oxygen consumed the change in the 

organic matter amount can be described as. 

eq.8-4 * L = _ J _ . 0 £ Z R ( , ) 

m : Amount of organic matter per kg of initial organic matter [kg VS.kg VS"1] 

Mom : Organic matter degradation per unit of oxygen consumed [kg VS.mol O2"1] 
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Note that the organic matter amount is expressed per unit amount of initial organic matter. 

From this equation the organic matter content of the material can be calculated as: 

eq.8-5 OM(t)=OM0. '~COU^^ 
w ° \-OM0.COU(t)Mm 

OM : Organic matter fraction on dry matter basis [kg VS.kg"1] 

OMo : Initial organic matter content on dry matter basis [kg VS.kg"1] 

COU : Cumulative oxygen uptake [molC^.kg VS"1] 

Note that the organic matter fraction is expressed as fraction of the total dry matter. Keener 

proposed the degradation extent as a measure of compost stability. The degradation extent 

can be calculated as: 

eq.8-6 DE{t)=™^ 

con 

DE : Degradation extent [-] 

COUm : Maximum cumulative oxygen uptake i.e at t -» a> [mol C .̂kg VS"1] 

The COUm is the amount of oxygen needed for complete bio-oxidation of the waste. Based 

on the water balance and the relationships for the cooler gas flow and exit gas flow, the dry 

matter content of the material can at any time be calculated as: 

eq. 8-7 DM(t)=DM0. ^ o ^ ) - ^ 

DM : Dry matter content [kg.kg"1] 

B : Amount of water produced per mole O2 consumed [kg.mol O2"1] 

DMo : Initial dry matter content [kg.kg"1] 

in which: 
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eq. 8-8 A = 

H„ 

W 

'V w,r w,c / 

2, in 2,eff 

M.. 

Hox 

Er,0 

Ec 

Zw,r,0 

Mw 

Heat production per consumed mole of oxygen 

Reactor effluent gas enthalpy per mole [J.mole-1] 

Cooler effluent gas enthalpy per mole [J.mole-1] 

Reactor effluent water vapour to dry gas ratio at saturation 

Cooler effluent water vapour to dry gas ratio at saturation 

molar weight of water 

[J.mol 02 

[J.mol 02 ' 

[J.mol O2" 

[mol HaO.mol dry gas' 

[mol rtO.mol dry gas' 

[kg.mol" 

8.2.5 Product quantity 

Based on a total mass balance the product quantity can be calculated. This product quantity 

will be expressed as the Relative Product Quantity (RPQ) i.e. is product quantity as a 

fraction of the incoming waste amount. 

eq. 8-9 RPQit) = 1 + OM0.DM0.COU(t).(B - A - Mom ) 

RPQ : Relative Product Quantity [kg-kg1 

8.3 OUR models 

8.3.1 The first-order model 

Following the work of Keener [1] the following equation can be set up for the degradation 

rate of organic matter during composting. 

eq. 8-10 
dm 
dt 

= -k.f{02){m-me) 

me : Equilibrium organic matter i.e at t —> 00 [kg VS.kg VS" ] 

k : Standard first order rate constant, i.e. under standard oxygen conditions [hr1] 
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Keener [1] originally defined m as the amount of dry matter, however interpreting m as 

organic material makes no principal difference as only organic matter disappears. Eklind 

[6] estimated k and me values based on both dry matter and organic matter and found no 

significant differences. 

The effect of oxygen is generally described with a Monod-type of dependency. This gives 

the following correcting function for oxygen [7], relative to standard oxygen conditions. 

**>-A-^ 
f(C>2) : Oxygen effect correcting function [-] 

02,s : Oxygen standard level [vol.%] 

K02 : Oxygen half-saturation constant [vol.%] 

Integration of equation 8-10 gives as a result: 

eq. 8-12 m = me +(m0 -me)e~*'/(°2'-' 

mo : Initial organic matter, equals 1 by definition [kg VS.kgVS"1] 

By multiplying both sides by -1 and adding m0 to both sides, equation 8-12 can be 

rewritten as: 

eq. 8-13 m0-m = -(m0-me)e~kAOl)'+(m0-me) 

By integration of eq. 8-4 it can be found that: 

< i 

eq. 8-14 COU(t) = J0UR{r)dr = .(m0-m) 
0 om 

COU : Cumulative Oxygen Uptake [mol 02.kg VS"1] 

Substituting 8-14 in 8-13 gives as result: 
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eq. 8-15 COUf(t)= COf/m.(l-e'*/(°2)') 

-h COUf : COU according to the first order model [mol 02.kg VS 

By differentiating eq. 8-15 the following result for the development of OURf in time is 

found: 

eq. 8-16 OURf{t,02) = k.COUm.f(02)e • * / ( o 2 ) i 

OURf : OUR according to the first order model [mol 02.kg VS.hr ] 

A first order model predicts the maximum OUR at t=0. By setting t=0 in the previous 

equation it becomes clear that: 

eq. 8-17 OURf 0 = COUa .k.f{02) 

OURf,o : Initial OUR [mol 02.kg VS.hr"1 ] 

8.3.2 The distributed model 

A preliminary data analysis (not shown) showed that the distributed model for experiments 

with a constant hydrolytic activity can be used. The distributed OUR model for this case as 

introduced in the previous chapter is described as: 

eq. 8-18 

\ i + e v n * Yc-i ^ r f o - i ) 0
J r(/j 

OURa : OUR as predicted by the distributed model [mol 02.kg VS"1 .hr"1 ] 

Heff : Effective maximal biomass growth rate constant [hr1] 

Q : Lag time [hr] 

OURmA: Scaled maximum OUR [mol 02.kg VS"1 .hr"1 ] 

Ah : Hydrolytic activity [mol 02.kg VS^hr"1] 

258 

http://VS.hr
http://VS.hr%221


C, : Scaled particle size [1] 

£s : Scaled switch particle size [1] 

yc : Shape parameter of gamma distribution [ 1 ] 

T : Gamma function [1] 

The scaled switch particle size equals: 

eq.8-19 $,<*) = 

OURmA02))^^^dr 

Ss.0 + Ah.t 

The scaled switch particle size is a dimensionless measure of the size fraction that has been 

depleted of soluble substrate. Oxygen effects only the scaled maximum OURm,^. At a 

specific oxygen content the OURm>x can be calculated as: 

eq- 8 " 2 0 OURmJl (02) = OURmJ ( 0 2 s ) 3 -
V 2, 

8.4 Materials and methods 

8.4.1 Experimental 

The pig faeces were obtained from an experimental facility of the research institute ILOB-

TNO (Lelystad, the Netherlands). Straw was used as an amendment, 5% of straw (w/w) 

was added and mixed by hand. The OUR development over time was measured with the 

measurement system as described in chapter 5. Oxygen level was controlled at set levels of 

1 vol. % and 15 vol. % oxygen. Due to probably some kind of controller offset and non-

perfect mixing, the actual oxygen content differed from the set levels. At set level 15 vol. % 

the actual level was 14.6 vol. % , at set level 1 vol. %, the actual level was 1.6 vol. %. 

These levels were measured in the dried off-gas flow. This means that the levels within the 

reactor were lower as the reactor gas phase is water saturated. Correction for the water 

vapor pressure gives actual levels of 1.5 % and 13.4% The temperature was controlled at 38 

°C and remained within a ± 1 °C range. Dry matter (DM), organic matter (OM) of the 
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compost samples were determined in duplicate according to standard methods [8]. Dry 

matter of the mixture was 32% and organic matter 79%. 

8.4.2 Parameter estimation 

The parameters of the distributed model were estimated by minimizing the sum of squares 

of the OUR residuals, i.e. the difference between estimated and measured OUR value. 

Minimization was performed using the Minerr algorithm of the MathCad 2000 software 

(Mathsoft, Cambridge). 

Two approaches can be distinguished in the literature for estimating the first order model 

parameters. Either both parameters (ks, COUm) are estimated from the COU data or either 

an independently determined COUm value is used and only the time constant k, is estimated 

from the COU data. 

Parameters for both types of first order models were estimated minimizing of the sum of 

squares of the COU-residuals. The COU data are used because cumulative data are 

commonly used to estimate first order parameters. By conferring to this practice, a better 

comparison with current design practice is possible Minimization was performed using the 

genfit algorithm of the MatCad 2000 software (Mathsoft, Cambridge). The COU data were 

obtained by numerical integration of the same OUR data as used to estimated the 

distributed OUR model parameters. The numerical integration routine of MathCad 2000 

software was used.. 

For the k-only-estimation the COUm was evaluated from literature data. Based on literature 

data the maximum oxygen uptake COUm was estimated as 28 mol 02-kg VS"1. This 

estimate is based on literature data and methods as proposed by Keener [1,9]. 

8.4.3 Predictions 

The model based predictions are determined using a reactor model (structure), reactor 

model parameters, an OUR model structure and the OUR model parameters. The OUR 

model parameters are either estimated using OUR data or derived from literature. It may 

thus be said that a prediction is based on the reactor model (structure), reactor model 

parameters, the OUR model structure, literature derived parameters and the data underlying 

the parameter estimation. In this chapter the same reactor model and reactor model 

parameters are used for all predictions and as such the reactor model and its parameters will 
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not influence the comparison. The data set used for parameter estimation and the OUR 

model will be however varied. The prediction of design variable Y at time t and oxygen 

content O2 with model M , data D and literature derived parameters P will be expressed as 

Y(t, O2I M,D,P). The sign | is used to underline the conditional nature of a prediction. If a 

certain element, M, D or P is not needed for prediction, it will be left out of the list. For 

instance, if sufficient OUR data are available, the predictions can be based on the reactor 

model with its parameters and the OUR measurements, such a prediction will be expressed 

as Y(t, 021 D). 

Three models are distinguished, the distributed OUR model, Ml, the first order model with 

both k and COUm estimated, M2 and first order model with k-only-estimation, M3. The 

data set determined at 15% oxygen level is indicated as DH, the data set obtained at 1% 

oxygen level is called DL- For some calculation only the first half part (0 hr<t<265 hr) of 

DH is used, this specific set is indicated as Ds. Oxygen levels will be indicated in the text by 

1% and 15%, in all calculations however the actual levels in the reactor gas phase are used. 

8.5 Results 

8.5.1 Parameter estimation 

The fitted model Ml coincides almost completely with the OUR measurements as shown in 

Figure 8.2. This is reflected in the R2 value of 0.99. The models M2 and M3 are fitted to the 

COU data as shown in Figure 8.3. The model M2 coincides almost completely with the data 

(R2 = 0.99) while the model M3 shows some deviations. (R2= 0.96) 

Using the parameters obtained from the COU data the OUR time course was calculated for 

the models M2 and M3. Figure 8.1 shows that the first order models M2 (R2=0.62)and M3 

(R2= 0.26) are not able to describe the OUR time course well. Direct fitting of the first 

order model to the OUR data gives the same result. Figure 8.3 shows that using the 

parameters estimated from the OUR data the model Ml gives a good description of the 

COU data (R2=0.99) 
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Figure 8.2: OUR development of the faeces-straw mixture at 15% oxygen as 
fitted by the models Ml, M2 and M3. The measurements are given by the wavy 
line, that however nearly coincides with the fit of Ml. 
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Figure 8.3:. COU time course of the faeces-straw mixture at 15% oxygen as 
fitted by the models Ml, M2 and M3. The measurements completely coincide 
with the fit of Ml 

8.5.2 Time prediction 

The predictions of the different design quantities at different points of time will be 

compared for data obtained at 15%. This experiment has the biggest cumulative oxygen 

uptake, and is thus most suitable for investigation of the time prediction. To obtain insight 

in both interpolation as extrapolation the parameter estimation for all models is based on 
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the first half of the data set Ds. The prediction error is calculated for Ml and M2 in the 

following way: 

eq. 8-21 E(Y, Mi,t,15%) = |1- Y(t,15%| Mi,Ds)/Y(t|DH)| 

[-] 

[hr] 

E 

Y 

t 

Mi 

DH 

Ds 

Prediction error 

Design quantity 

Time 

MlorM2 

OUR data set obtained at 15% 0 2 

First half of data set DH-

The prediction error of M3 is calculated as: 

eq. 8-22 E(M3,t,15%)= |1- Y(t,15%| M3,Ds,COUm)/Y(t|DH)| 

The prediction error of Ml and M2 are based on the same information sources, and the 

prediction error values can be directly compared. For model M3 one has to take into 

account that additional information is supplied, one might expect a lower prediction error. 

The flow rates Qjn, Qjeff and Qc are all proportional to OUR, this means that the relative 

error in the design quantity maximum flow rate of Qjn is thus also applicable off-gas flow 

Qe, and the cooler flow rate Qc. The design quantity, maximum of the flow rate Qjn, is 

denoted as QmaX. 

The design quantity, average of the flow rate Qi„ is denoted as Qavg. As all average flow 

rates are proportional to the COU, they have the same prediction error. As DE is 

proportional to the COU, this design quantity has the same prediction error as Qavg-

Predictions for all design quantities were evaluated at three points of time, at t=265 hr, 

t=530 hr and t=795 hr. As t= 265 hr is the upper time of the time range of the data set Ds, 

the error at this point of time is an interpolation error. The error at t= 530 and t= 795 hr are 

extrapolation errors. The predictions at t= 795 hr could not be compared to the data as these 

are not available. The predictions were however compared to the prediction of Ml using 

kinetic parameters calculated from the whole data set, thus using Y(t,15%|Ml,DH) for 

comparison. 
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Fig 8.4 shows the errors for the DE and the Qavg. This figure shows that Ml and M2 have a 

negligible error at t=265 hr, while the error of M3 is clearly higher. At t= 530 hr, the error 

in M2 and M3 have strongly increased, while for Ml it remains small. The error in M3 is 

substantially bigger than for M2. The same trend is observed for t =795 hr. Similar trends 

can be observed for DM as shown in figure 8.5 and RPQ as shown in figure 8.6. As figure 

8.7 shows the error for QmaX increases in the sequence of MKM2<M3. 

The prediction for OM showed in all cases for all three models a negligible error, i.e. 

smaller than 0.1%. 

795hr 

530 hr 

265 hr 

0% 10% 20% 30% 40% 50% 

Figure 8.4: The time prediction error (X-axis, %) for DE and Qavg at different 
points of time for model Ml (grey), M2(diagonal hatch) and M3 (vertical 
hatch). 

8.5.3 Oxygen prediction 

The oxygen prediction error for Ml is calculated as : 

eq. 8-23 E(Ml,t,l%)=|l- Y(t,l%| Ml,Ds)/Y(t,l%|DL)| 

The oxygen prediction error for M2 is calculated as : 

eq. 8-24 E(M2,t,l%)=|l- Y(t,l%| M2,Ds,Ko2)/Y(t,l%|DL)| 
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Figure 8.5: The time prediction error for DM (X-axis, %) at different points oj 
time for model Ml (grey), M2(diagonal hatch) and M3 (vertical hatch). 

795 hr 

530 hr 

265 hr 

0.0% 20.0% 40.0% 60.0% 

Figure 8.6: The time prediction error for RPQ (X-axis, %) at different points oj 
time for model Ml (grey), M2(diagonal hatch) and M3 (vertical hatch). 
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40.0% 
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Figure 8.7: The time prediction error for Qmax (Y-axis, %)for model Ml (grey), 
M2(diagonal hatch) and M3 (vertical hatch). 

The oxygen prediction error for M3 is calculated as : 

eq. 8-25 E(M3,t,l%)=|l- Y(t,l%| M3,DS)COUm, Ko2)/Y(t,l%|DL)| 

These predictions are made for t=265 hr and t= 530 hr. As the data analysis showed that Ah 

as such was not identifiable from DL a sensible extrapolation for t=795 was not possible. 

Using the estimated parameter values the OUR at 1% oxygen can be predicted, both with 

the distributed and the first order model. For the first order model a value of K02 of 2.8 % 

was used in eq. 8-11. The oxygen standard level was chosen as 15 vol.%, enabling to 

directly use the ks value derived from the 15% experiment as the standard value. The K02 

value is based on a relationship given by Richard that gives the dependence of K02 on 

temperature and moisture content [7]. 

Figure 8.8 shows the error of the DE and Qavg. The errors of Ml and M2 are comparable, 

but compared to the case of 15 % oxygen substantially bigger. The error of M3 is again 

bigger than that of Ml and M2. At t=530 hr the errors of all thre models are comparable. 

This is also true for DM (Figure 8.9) and RPQ (Figure 8.10). The errors increase for 

MKM2<M3, but do not differ substantially. 
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530 hr 

265 hr 

0.0% 10.0% 20.0% 30.0% 

Figure 8.8: The oxygen prediction error for DE and Qmg (X-axis, %) at 
different points of time for model Ml (grey), M2(diagonal hatch) and M3 
(vertical hatch). 

530 hr 

265 hr 

0.0% 2.0% 4.0% 6.0% 8.0% 10.0% 

Figure 8.9: The oxygen prediction error for DM (X-axis, %) at different points 
of time for model Ml (grey), M2(diagonal hatch) and M3 (vertical hatch). 
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530 hr 

265 hr 

0.0% 5.0% 10.0% 15.0% 

Figure 8.10: The oxygen prediction error for RPQ (X-axis, %) at different 
points of time for model Ml (grey), M2(diagonal hatch) and M3 (vertical 
hatch). 

The only substantial difference is Qmax, in which case Ml has a substantially lower error 

(figure 8.11). The error for Ml is however bigger than was the case for an oxygen level of 

15%. 

The error for OM was again in cases very small, i.e. smaller than 0.5%. 

8.5.4 Oxygen effect 

As both 1% and 15% data are available it is possibly to directly determine the effect of 

oxygen on the OUR. According to the first order model the ratio of OUR values observed at 

different oxygen levels, is constant if the COU of these observations is the same. This 

constant value gives the reduction of the ks value as a result of oxygen limitation. Consider 

the OUR value at time t for an experiment performed at oxygen level O2, and the OUR 

value at time t with associated oxygen levels 02,s- According to the first-order model the 

following relationship should hold: 

eq. 8-26 

if 
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Figure 8.11: The oxygen prediction error for Qmax (Y-axis, %) for model Ml 
(grey), M2(diagonal hatch) andM3 (vertical hatch). 

eq. 8-27 COU{t,02)=COU(t\02s) 

In this equation t is thus the time at which the COU of experiment at 02,s equals the COU 

of the experiment at oxygen level O2 at time t. This equation is a direct consequence of the 

(assumed) multiplicative interaction of substrate and oxygen on the OUR. The oxygen 

effect is thus quantified as the ratio of OUR values at the same COU value. 

This oxygen effect is calculated based on the data obtained at 02=1% and 02,s = 15%. 

Spline interpolation was used to interpolate the OUR value. In the same way the oxygen 

effect was determined for model Ml, based on the predictions at 1% and 15% . The 

parameters used for the predictions are estimated from the data set Ds- For model M2 and 

M3, the oxygen effect can be directly calculated from the Monod value, using the earlier 

mentioned value of Ko2-

The results are shown in figure 8.12. It shows that initially the measured oxygen effect is 

approximately 1 and decreases to a stable level at COU = 0.9 mol 02-kg VS"1, the average 

of the stable period is 0.47. The model Ml predicts a similar shape, i.e. a decrease of the 

oxygen effect, followed by a stable period. The Monod model predicts a stable period over 
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the whole COU range. The distributed model and the Monod model both predict a 

somewhat lower value of 0.37 for the oxygen effect. 

2 4 
COU [mol Q2.kg VS"1] 

Figure 8.12: The oxygen effect as a function of COU error as measured (1), as 
predicted by model Ml (2) and as predicted by the Monod-model (3) 

8.6 Discussion 

The distributed model Ml and the first order models M2 and M3 have been compared in 

their capability of predicting certain design quantities. Part of the data set acquired at 15% 

has been used to estimate parameters for the models involved. Based on these parameter 

estimates prediction have been made for the design quantities RPQ, OM, DM, DE, Qavg and 

Qmax at different points of time and at a different oxygen content. 

For the time prediction it was shown that both Ml and M2 predict equally well the DM, 

RPQ, DE and Qavg at t=265 hours, indicating that both the mechanistic model Ml as the 

empirical model M2 are able to interpolate the data well. It is in this respect surprising that 

the prediction of Qm^ by M2 is poor, as the maximum OUR value occurs within the time 

range of the data set Ds used to estimate the parameters. The explanation lies in the fact that 

the first-order model is able to describe the COU data well (R2 =0.99) but describes the 

OUR data poorly (R2=0.63). This does not change if the first-order model is directly fitted 

to the OUR data, almost the same parameter values with the same low R2 value are found. 

The new model Ml developed in this thesis gives with the same parameter set a good 

description of both the OUR data (R2 =0.99) and COU data (R2=0.99). 
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These results show that a good description of the COU data does not automatically lead to a 

good description of the OUR data. It is thus possible that a model is able to describe some 

part of the system well while a closely associated variable is predicted poorly. This stresses 

that a model must be validated for the intended purpose. 

The prediction of OM is illustrative in this respect, for in all models this design quantity is 

predicted with less than 0.1 % error, while the prediction error for the other design 

quantities differs strongly between the different models. This shows clearly that an 

excellent performance for the design quantity OM gives no information whatsoever on the 

prediction performance for the other design quantities. That all models have a small OM 

prediction error is caused by the fact that the OM changes only little over the considered 

period and differences between the models can be hardly detected. 

The newly developed model Ml predicts the design quantities clearly better outside the 

measurement time range compared to M2 and M3. The case of M2 shows that a good 

description of the prediction within the measurement range yields no information on the 

correctness of the predictions outside the measurement range. 

The parameter estimation using model M2 gives an estimate of COUm=11.8 mol 02.kg VS" 
1 which is an unrealistic low prediction of the long-term cumulative oxygen uptake [1]. The 

model M3 is supplied with a sensible value of the COUm parameter, however M3 performs 

poor compared to model M2 and Ml. This is an indication of the empirical nature of the 

first-order model, the parameters have no physical interpretation. 

For the oxygen prediction it was shown that Ml performs best, however the differences in 

design quantities estimate errors of RPQ, OM, DM, DE, Qavg are not as substantial as in the 

time prediction case. The value of Qmax is again much better predicted by Ml, however the 

error is larger than in the time prediction case. 

This result can be better understood by considering the estimated oxygen effect (Figure 

8.12). Initially the oxygen effect is better predicted by Ml, however soon ,at COU =0.9 mol 

02.kg VS"1, Ml and the Monod model give the same prediction. The fact that oxygen 

prediction errors of all models for RPQ, OM, DM, DE, Qavg do not differ strongly is a result 

of the fact that the error is mainly determined by the oxygen effect prediction, which is the 

same for both the model Ml as the Monod model. 

At t= 530 h one would expect that the effect of time extrapolation as seen for the data at 

15% would influence the prediction errors at 1% much stronger. That the oxygen prediction 

error at t=530 hr has not strongly increased is because the COU at this point of time at 1% 

0 2 (COU =7.0 mol 02.kg VS"1) is actually smaller than the COU at t =265 hr at 15% 0 2 
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(COU =7.3 mol 02.kg VS"1). Thus with respect to the COU the oxygen prediction at 530 hr 

at 1% O2 is still an interpolation. This is in line with the oxygen prediction of Qmax, here the 

difference between the models has remained substantial, because the models M2 and M3 

fail to describe the OUR curve accurately. 

The status of the prediction of the oxygen effect by the model Ml and the Monod model is 

different. The selection of the Monod model and the saturation parameter is a result of 

parameter estimation, using an extensive data set. The prediction of the oxygen effect by 

the mechanistic model Ml is a consequence of the assumed model fundamentals. The fact 

that both predictions coincide is a confirmation of the soundness of the fundamentals 

underlying the mechanistic model Ml. 

Both models tend to predict a stronger oxygen limitation, than is measured. Whether this is 

an effect of the variability of the material or indicates some systematic deviations, can not 

be decided on, with only one experiment. 

The findings might be summarized as that the first order model M2 is able to describe the 

COU development sufficiently accurate but fails to describe the OUR development. As a 

result the interpolative predictions of COU based design quantities RPQ, OM, DM, DE, 

Qavg are performed well. Interpolation of the OUR based design quantity Qmax is however 

poor. Extrapolation in time showed to be poor, while extrapolation to another oxygen 

content is only possible if an adequate empirical model for the oxygen effect is available. 

The distributed model is able to describe both the OUR development and COU time course 

well, and consequently interpolates all design quantities well and gives better time 

extrapolations. The distributed model needs no additional information to predict the low 

oxygen effect equally well. 

Of course, only two data sets and of one type of waste are not really enough to generalize 

the findings to other types of wastes Yet the analysis gives sufficient confidence to expect 

the following generalized picture: 

1. It is expected that under all conditions the newly developed model Ml will describe at 

least equally well the COU data, as the model Ml can be simplified to a first-order model. 

2. The better behavior of the distributed model Ml relative to the first order model M2 can 

be explained from the presence of a peak in the OUR course. Of course the initial increase 

in the OUR followed by a decrease can not be handled well by a first order model. This 

type of model only can describe either a decreasing or increasing curve. The peak is 
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generally present in composting kinetics [10] and thus the distributed is expected to be 

superior in most cases to the first order model. 

3.Thoroughly tested empirical models for the effect of environmental conditions are only 

available for oxygen and temperature. It would be interesting to compare the temperature 

effect as predicted by distributed model with these empirical models. For other factors like 

moisture and porosity that are strongly correlated with the structure of the waste the 

distributed model is expected to be very helpful, and in fact almost indispensable. 

4. Even if an empirical function is present that describes the effect of environmental 

conditions it remains to be seen whether this function can be extrapolated. For instance a 

simulation of the oxygen effect using the parameters for the faeces straw mixture, changing 

only the distribution parameter from 1.1 (measured) to 3., gives a different picture (see 

Figure 8.13) for the oxygen effect. At a COU from 6 and up we see a dramatic change in 

the oxygen effect. This indicates that limitation may exist to the empirical functions. 

COU [mol Q2.kg VS"'] 

Figure 8.13: The predicted oxygen effect for a less distributed waste as a 
function of COU error, as predicted by model Ml (2) and as predicted by the 
Monod-model (3) 

The fundamental reason why the distributed model performs better is because it is able to 

model the different processes that occur within the composting particles. This makes it 

possible to retrieve more information from the data. It may be concluded that the distributed 

model Ml is to be preferred over the first order models M2 and M3, not only scientifically 

because of the enhanced insight but also practically because of possibility to improve 

273 



composting reactor designs. It is believed that the advantage using the distributed model 

will only grow as more environmental factors are taken into account. 
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Summary 

Composting plays an important role in waste management schemes and organic fanning, as 

it enables reuse of organic matter and nutrients. The compost produced can be beneficially 

used in agriculture as a soil conditioner or as an ingredient for container growing media. To 

compete with comparable products the compost should have a high quality and a fair price. 

A composting plant must comply with strict environmental regulations, especially 

concerning odor nuisance. The need to control odor emissions has led to the development 

of so-called closed composting systems, enabling collection and treatment of the off-gases. 

The construction costs for a closed composting facility are much higher than for an open 

system, and to remain efficient a closed composting process must operate at a much higher 

production rate compared to open composting systems. A modern plant should thus 

produce fairly priced high quality compost at a high rate with minimal odor emissions. 

Current design strategies for composting plants are mainly based on practical experience 

and rules of thumb. Optimization of the plant takes place during operation. This more or 

less trial-and-error design and optimization is a (too) costly approach as any error will 

result in a full scale facility producing a poor compost and/or odor problems for the 

surroundings. 

A more rational approach to design and plant optimization is needed to realize better 

composting plants. Mathematical reactor models are a useful, if not necessary, tool in 

rational design. All reactor models developed so far are based on empirical kinetics, which 

restricts their generality and thus applicability. To obtain a more general model for 

composting reactors a more general model for composting kinetics is needed. 

Current kinetic models are inductive models, i.e. they are inspired by the measured data. It 

is argued that the inductive model strategy has reached its practical potential. No further 

progress is expected, as certain important variables like biomass and particle size can not 

(yet) be adequately measured. Incorporation of new variables in the inductive model needs 

an ever-increasing massive experimental effort, as the number of interactions strongly 

increases. 

In this thesis the deductive strategy has been used to develop a more general kinetic model. 

A central problem in mechanistic modeling in environmental systems is the incongruence 

between the (presumed) complexity of the systems and the available measurements on the 
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system. This sets a limit on the predictive power of the developed models, as these models 

can not be fully validated. 

In this thesis a modified deductive strategy is proposed that aims at identifying the 

limitation arising from the incroguence between model complexity and available 

measurements. The principal tool used to detect these limitations is investigation of 

parameter identifiability. A parameter is identifiable if one can uniquely determine its value 

from the data at hand. Only if all model parameters are identifiable, the model can be 

sensibly validated. The objective of this thesis is thus to develop a mechanistic kinetic 

model for the composting process with all parameters identifiable. 

The thesis can be structured in three main parts. The first part, "dimensional identifiability 

analysis", is concerned with the use of dimensional analysis for identifiability analysis. 

Together with the proposed deductive modeling strategy it is a methodological contribution 

to modeling of relatively complex systems with limited available measurements. 

The second part, "the single particle model ", is concerned with the development and 

validation of a theoretical model for the aerobic degradation of a single waste particle. This 

theoretical model gives insight in the processes occurring within a composting waste 

particle. An analytical solution containing only identifiable parameters is derived and 

validated. 

The third part, "the distributed model", deals with the development, validation and 

application of a kinetic model for a waste consisting of size distributed waste particles. The 

model is based on a distribution function describing the particle size distribution and the 

developed analytical identifiable single particle model. The distributed model is validated 

and is used to design of a new composting concept. This model application shows the 

advantages the distributed model for reactor design. 

Dimensional identifiability analysis. (Chapter 2) 

Dimensional analysis is a tool widely used in mathematical modeling and (chemical) 

engineering. Central to dimensional analysis is the principle of dimensional homogeneity, 

which states that the description of a relation between a number of physical quantities 

should be independent of the system of units involved to measure these quantities. 

Dimensional analysis allows for model simplification by grouping of variables and 

parameters into dimensionless numbers. 

In the case of parameter estimation direct construction of dimensionless number is not 

possible. The measurements can not be made dimensionless beforehand, as the parameters 
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needed to do so are yet unknown. Dimensional analysis is however still a useful tool for 

parameter estimation purposes if a different starting point is chosen for the analysis. 

The unit of a parameter consists of one or more basic units. The basic units constitute 

together the basis of the unit system employed. It is shown that a parameter will be non-

identifiable if it contains a basic unit that is not part of the unit of the observations. Such a 

parameter is called dimensionally-non-identifiable. It is shown that if some parameters are 

dimensionally-non-identifiable, these parameters can be transformed to a set of aggregated 

parameters that are not dimensionally-non-identifiable. This type of dimensional analysis 

can be easily performed, and as it removes a source of non-identifiability it is advised to use 

the technique prior to any other technique for identifiability analysis. 

Dimensional analysis may also show relationships between parameter identifiability of 

different models that are otherwise not so easily detected. This is illustrated by analyzing 

the microbial growth in batch culture. For four different models the identifiability can be 

proven, while only for one model the tedious calculations to prove the identifiability have 

to be performed. Practical identifiability can be greatly facilitated by using dimensional 

analysis. This is especially true if a dimensionless identifiability measure is used. 

The single particle model; development, derivation and validation (Chapter 3-5) 

The Oxygen Uptake Rate (OUR) is the amount of oxygen that is taken up by a unit sample 

of waste in a unit period of time. It is the most important composting process rate indicator 

as it is directly linked to the composting reaction. The OUR is linearly linked to heat 

production independent of molecular substrate composition and is a direct measure of 

compost stability. The OUR depends strongly on the state of the waste, e.g. temperature 

and moisture content influence the OUR. To predict the OUR a kinetic model is needed that 

relates the rate determining factors to the OUR. Kinetic models developed so far are 

empirical multiplicative models. 

Chapter 3 introduces a theoretical model for composing kinetics. The basis of the model is 

the waste particle whose volume is made up of water, insoluble organic material, insoluble 

inert material and aerobic biomass. Soluble substrate and oxygen are dissolved in the water 

and are consumed by the aerobic biomass. The oxygen is transported from the gas phase 

surrounding the particle to the water phase inside the particle. Soluble substrate is initially 

present and is produced through microbial hydrolysis from insoluble organic material. 

Within the water phase both the soluble substrate and oxygen are transported via diffusion. 
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Two microbial processes are taken into account: aerobic heterothrophic growth and 

hydrolysis. 

Due to the low oxygen solubility, oxygen will penetrate the particle only partially. Aerobic 

microbial growth will occur only in the outer edge of the particle. The core of the particle is 

anaerobic and hydrolysis of insoluble material will take place. As a result of the fact that 

microbial growth only takes place locally a convective mass flow occurs within the particle. 

Based on a mathematical description of microbial reactions (biomass growth, hydrolysis), 

diffusional transport of oxygen and soluble substrate and convective transport of biomass, 

inert material, organic insoluble material and water, mass balances describing the system 

are set up. The resulting equations are solved numerically. The properties of the model are 

investigated via a sensitivity analysis. 

The OUR time course can be divided in four distinct phases depending on the dominant 

process involved. During the first phase the OUR rapidly increases as a result the growth 

rate of the aerobic biomass. After a biofilm has been formed at the gas-particle interface the 

OUR stabilizes at its maximal value, at a constant level. During this phase the OUR is 

determined by the biofilm activity. After the soluble substrate has been nearly depleted the 

OUR drops rapidly during the short third phase. The OUR enters then the fourth phase 

during which the OUR is determined by the hydrolysis rate. 

The model enables to investigate the effect of different waste characteristics and oxygen 

levels on the OUR. It showed that the particle size is the most influential single waste 

property influencing the OUR. Surprisingly the initial biomass density had almost no effect 

on the OUR time course. The model is able to explain a number of phenomena that can not 

be explained by conventional empirical models. 

An analytical solution for the OUR time course is found based on the theoretical model 

(Chapter 4). This so-called single particle model gives more insight in the parameter 

dependence of the OUR time course. The single particle model is based on a simplification 

of the balances derived in the previous chapter. Comparison of the numerical results and the 

analytical calculation showed an excellent agreement. 

The single particle model was validated, for which purpose the parameter identifiability 

was investigated (Chapter 5). Two dimensionless numbers were determined that can be 

used to check the practical identifiability of the parameters in the analytical model. To 

validate the analytical model an experimental system has been developed to asses the effect 

of particle size on the OUR time course. The material used was chicken manure and was 

composted at 55°C with 19 vol.-% of 02. Particle sizes of 16, 8, 4 and 2 mm were studied. 
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The results at 16 mm were discarded as the material swelled and cracked as a result of gas 

formation. The parameters of the single particle model were estimated for each measured 

OUR time curve. The dependence of the parameters on the particle size showed in all but 

one case an excellent agreement to the expected dependence. The parameter values were in 

accordance with the expected values. An indication for temporary substrate inhibition of the 

aerobic microbial growth was found. 

The distributed model; development, validation and application (Chapter 6-8) 

Waste is made up of a mix of particles with different particle sizes. Because the particle 

size is the most important factor influencing the OUR, the size distribution should be taken 

into account. 

The gamma distribution function is used to describe the particle size distribution of the 

particles within the waste (Chapter 6). The gamma function can be derived from the 

assumption that the gas-filled pores are homogeneously distributed within the waste matrix. 

The so-called gamma parameter describes the width of the distribution. With increasing 

gamma values the distribution becomes narrower and eventually approaches a single 

particle size. Based on theoretical considerations, a gamma value in the range 1-3 is 

expected. 

This distribution function is combined with the single particle model to derive the so-called 

distributed model. The OUR of a distributed set of particles shows to be determined by two 

classes of particles, those that still have soluble substrate and those that are depleted of 

substrate. The rate of the latter class is determined by the hydrolysis rate, which is 

independent of particle size. The rate of the class of particles containing soluble substrate is 

inversely proportional to the particle size. In time the substrate depleted class will grow as 

more and more substrate saturated particles become depleted. 

This OUR time course as described by the distributed model has been compared to the 

single particle model. The main difference is that the distributed model shows a clear OUR 

peak followed by a gradual decrease, while the single particle model has a distinct constant 

OUR level for some time, followed by an almost instantaneous drop. 

The identifiability of the distributed model has been investigated (Chapter 7). Given a 

sufficiently long measurement period with a sufficiently high measurement frequency the 

identifiability is mainly determined by the width of the distribution and the amount of 

soluble substrate. It showed that under some practical conditions, i.e. a wide distribution 

and a relative low initial soluble substrate concentration, problems with parameter 
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identifiability could not be ruled out. This lack of identifiability is a result of the fact that 

the OUR of the waste is a mixture of the OUR of the two classes with different behavior 

with respect to particle size, oxygen etc. This mixing up of signals makes the interpretation 

of the resulting signal more difficult. 

The distributed model was validated with the same waste material and environmental 

conditions as have been used for the validation of the single particle model. This material 

has been mixed with an inert amendment. This set-up enabled a direct experimental 

comparison of the outcome of both experiments, as the same material was used. It showed 

that the OUR time course runs as predicted by the distributed model. This clearly shows 

that a distribution is a necessary element in the description of real waste. 

The distributed model has been used for design of a new composting system (Chapter 8). 

The new composting system consists of tunnel reactor with a cooled recirculation flow, 

enabling a substantial reduction of the off-gas flow. As a result of cooling and reuse of the 

recirculation flow the oxygen level in the gas phase of the composting matrix is low (<10 

vol.%) compared to conventional composting systems (>15 vol.%). 

The distributed model has been used to predict a number of design quantities like flow 

rates, compost composition and amount. Some design quantities are depending on the OUR 

while others depend on the cumulative amount of oxygen consumed (COU). Two types of 

prediction were distinguished, interpolative predictions and extrapolative predictions. 

Interpolative predictions are predictions in the range of the measurements underlying the 

model parameters, while extrapolative prediction are outside this range. All predictions by 

the distributed model were compared to predictions made by the currently used empirical 

models and data based predictions. 

The distributed model has a smaller interpolative prediction error than the currently used 

models for the design quantities based on the COU. For the OUR based quantities the 

prediction error of the distributed model was substantially smaller, by a factor of 2. The 

distributed model showed to better describe the effect of oxygen on the OUR than the 

empirical model. 

It may be concluded that the distributed model predicts the design quantities much better 

than the empirical models. It is expected that this is also true in other situations, i.e with 

different types of waste and different rate determining factors, like temperature, porosity, 

etc. It is argued that for factors like particle size, porosity and moisture content, the 

distributed model is indispensable as the effect of these factors is closely connected to the 

structure of the waste matrix, an element that is explicitly modeled in the distributed model. 
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The distributed model is an almost essential tool for the design of composting system, it 

gives insight in the process and gives better predictions of design quantities. 
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Samenvatting 

Compostering van reststoffen maakt het mogelijk om nutrienten en organische stof in de 

vorm van compost op een nuttige wijze te hergebruiken. In de landbouw kan compost 

gebruikt worden als bodemverbeteraar en als ingredient voor potgrond. Om deze reden 

heeft compostering een belangrijke functie zowel in de afvalverwerking als in de 

biologische landbouw. Om te kunnen concurreren met vergelijkbare producten zoals veen 

moet de compost een goede kwaliteit en een redelijke prijs hebben. 

Composteringsinstallaties moeten voldoen aan strikte milieu-eisen, vooral wat betreft geur. 

De noodzaak om de geur emissies te reduceren heeft geleid tot de ontwikkeling van 

gesloten composteringssystemen. Deze gesloten systemen maken verzameling en reiniging 

van de afgassen mogelijk. De constructiekosten voor een gesloten systeem zijn veel hoger 

dan voor open systemen. Om efficient te produceren dient een gesloten 

composteringsinstallatie een veel hogere volumetrische verwerkingscapaciteit te hebben. 

Een moderne composteringsinstallatie dient dus een hoge capaciteit te hebben en een goede 

compost tegen een concurrerende prijs met minimale emissies te produceren. 

Huidige ontwerpstrategieen voor composteringsinstallaties zijn voornamelijk gebaseerd op 

ervaring en op vuistregels. Na het ontwerp vindt optimalisatie plaats gedurende het in-

bedrijf-zijn van de installatie. Deze "trial and error" strategic is een kostbare methode, 

omdat elke fout resulteert in een installatie, die compost van onvoldoende kwaliteit 

produceert en/of geurhinder veroorzaakt. 

Een meer rationele strategie voor ontwerp en optimalisatie is nodig om betere 

composteringsinstallaties te realiseren. Wiskundige reactor-modellen zijn hiervoor een 

bijna noodzakelijk instrument. De tot nu toe ontwikkelde modellen zijn gebaseerd op een 

empirische modelbeschrijving van de kinetiek. Dit beperkt de algemeenheid en dus de 

bruikbaarheid van de reactormodellen. Om een meer algemeen reactormodel te verkrijgen 

is een meer algemeen kinetisch model nodig. 

De huidige kinetische modellen zijn inductieve modellen. Dit betekent, dat ze uitsluitend 

gebaseerd zijn op gemeten data. Het gebruik van inductieve modellen voor de 

composteringskinetiek heeft zijn grens van praktische mogelijkheden bereikt. Geen verdere 

vooruitgang wordt verwacht, omdat bepaalde belangrijke variabelen zoals biomassa en 

deeltjesgrootte (nog) niet goed gemeten kunnen worden. Het toevoegen van nieuwe 

285 



variabelen aan inductieve modellen leidt tot een gigantische experimentele opzet, omdat het 

aantal interacties sterk toeneemt. 

In dit proefschrift wordt de deductieve modelstrategie gebruikt voor het opstellen van een 

meer algemeen kinetisch model. Een centraal probleem in de mechanistische modellering 

van de milieu systemen is de onbalans tussen de (aangenomen) complexiteit van het 

systeem en de beschikbare metingen. Dit stelt een grens aan de voorspellende waarde van 

de mechanistische modellen, omdat deze niet volledig gevalideerd kunnen worden. 

Een gemodificeerde deductieve strategic wordt voorgesteld, die bedoeld is om de effecten 

van de onbalans tussen metingen en modelcomplexiteit te identificeren. Om deze effecten 

in kaart te brengen wordt de zogenaamde parameter-identificeerbaarheidsanalyse toegepast. 

Een parameter is identificeerbaar, als een unieke waarde vastgesteld kan worden op basis 

van de beschikbare gegevens. Alleen als alle parameters in het model identificeerbaar zijn, 

kan het model op een zinvolle wijze gevalideerd worden. 

De doelstelling van dit proefschrift is het ontwikkelen van een mechanistisch kinetisch 

model met identificeerbare parameters voor het composteringproces. 

Het proefschrift is opgebouwd uit drie delen. Het eerste deel " dimensie-analyse van 

identificeerbaarheid" behandelt het gebruik van dimensie-analyse om de 

identificeerbaarheid van parameters te bepalen. Samen met de voorgestelde model strategie 

is dit de methodologische bijdrage tot het modeleren van relatief complexe systemen met 

beperkte metingen. 

Het tweede deel " het enkel deeltje model" behandelt de ontwikkeling en validatie van een 

theoretisch model voor de aerobe afbraak van een enkel afval deeltje. Het theoretische 

model geeft inzicht in de processen, die zich afspelen in een composterend afvaldeeltje. Een 

analytische oplossing met identificeerbare parameters is afgeleid en gevalideerd. 

Het derde deel " het gespreide model " behandelt de ontwikkeling, validatie en toepassing 

van een kinetisch model voor het totale afval bestaande uit een verzameling afvaldeeltjes 

met een deeltjesgroottespreiding. Het model is gebaseerd op een verdelingsfunctie voor de 

deeltjesgrootte en het reeds ontwikkelde kinetisch model voor het enkele deeltje. Het 

gespreide model is gevalideerd en toegepast voor het ontwerpen van een nieuw 

composteringsproces. Deze model-toepassing toont het vOordeel van het gespreide model 

voor het reactorontwerp. 
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Dimensie-analyse van identificeerbaarheid. (Hoofdstuk 2) 

Dimensie-analyse wordt veel gebruikt voor wiskundige modellering en in de chemische 

technologic Centraal staat het concept van dimensionele homogeniteit. Dit principe zegt 

dat de beschrijving van een fysiek systeem onafhankelijk dient te zijn van het stelsel van 

eenheden dat gebruikt wordt voor de metingen. Dimensie-analyse maakt 

modelvereenvoudiging mogelijk door het groeperen van een aantal parameters in een 

kleiner aantal dimensieloze getallen. 

In het geval van parameter-bepaling uit metingen is een directe constructie van de 

dimensieloze getallen niet mogelijk. De metingen kunnen niet dimensieloos gemaakt 

worden, doordat de parameters die hier voor nodig zijn, niet voorhanden zijn. 

Dimensie-analyse blijkt echter toch een bruikbaar instrument te zijn, als een ander startpunt 

wordt gekozen voor de analyse. Aangetoond wordt, dat een voorwaarde voor parameter-

identificeerbaarheid is dat de eenheden van de parameter op de juiste wijze voorkomen in 

de eenheden van de metingen. Parameters die niet aan deze voorwaarde voldoen zijn niet-

identificeerbaar. Een dergelijke parameter heet dimensioneel niet-identificeerbaar. 

Parameters die dimensioneel niet-identificeerbaar kunnen altijd gegroepeerd worden tot een 

kleiner aantal parameters die niet langer dimensioneel niet-identificeerbaar zijn. 

Dimensie-analyse kan verbanden aantonen tussen modellen die anders moeilijker 

opgemerkt worden. Dit wordt gei'llustreerd aan het voorbeeld van microbiele groei. Voor 

vier verschillende modellen is de identificeerbaarheid aangetoond, terwijl maar voor een 

model uitgebreide berekeningen uitgevoerd hoefden te worden om dit aan te tonen. Met 

hetzelfde voorbeeld wordt aangetoond dat dimensie-analyse ook de zogenaamde praktische 

identificeerbaarheidsanalyse vereenvoudigt. 

Het enkel deeltjes model: ontwikkeling, afleiding en validatie (Hoofdstuk 3-5) 

De zogenaamde zuurstofopnamesnelheid, aangeduid met de engelse afkorting OUR 

(Oxygen Uptake Rate) is de hoeveelheid zuurstof, die per tijdseenheid door een eenheid 

afval wordt opgenomen. Het is de meest belangrijke processnelheids-indicator, omdat deze 

direct gekoppeld is aan de composteringsreactie. De OUR is lineair gekoppeld aan de 

warmteproductie, nagenoeg onafhankelijk van de samenstelling van de organische stof. De 

OUR is tevens een directe maat voor de stabiliteit van de compost. De toestand van het 

afval (temperatuur, zuurstof etc.) bepaalt in sterke mate de OUR. 

Hoofdstuk 3 introduced! een theoretisch model voor de composteringskinetiek. De basis 

van het model is het afvaldeeltje, dat bestaat uit water, onopgelost organisch materiaal, 
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onopgelost inert materiaal en aerobe biomassa. Opgelost substraat en zuurstof zijn opgelost 

in het water en worden geconsumeerd door de aerobe biomassa. Het zuurstof wordt 

aangevoerd vanuit de gasfase om het deeltje heen naar de waterfase in het deeltje. Opgelost 

substraat is initieel aanwezig en wordt verder geproduceerd door microbiele hydrolyse uit 

onopgelost organisch materiaal. Zuurstof en opgelost substraat worden beiden via diffusie 

door de waterfase getransporteerd. Twee microbiele processen worden in het model 

onderscheiden, de heterotrofe microbiele groei en de hydrolyse. 

Als gevolg van de lage oplosbaarheid van zuurstof zal zuurstof het deeltje slechts 

gedeeltelijk binnendringen. Aerobe microbiele groei zal slechts in de buitenste schil van het 

deeltje plaatsvinden. De kern van het deeltje is zuurstofloos en daar zal slechts hydrolyse 

plaatsvinden. Omdat microbiele groei alleen in de buitenste schil plaatsvindt, zal er 

convectief massa-transport optreden in het deeltje. Gebaseerd op een wiskundige 

beschrijving van de microbiele processen, diffusie en convectief transport worden de 

massabalansen die de toestand van het systeem beschrijven opgesteld. De vergelijkingen 

worden numeriek opgelost. De kenmerken van het model worden onderzocht via een 

gevoeligheidsanalyse. 

Op basis van het dominerende snelheidsbepalende proces kan het verloop van de OUR in 

de tijd opgedeeld worden in vier fasen. Gedurende de eerste fase neemt de OUR sterk toe 

als gevolg van de biomassagroei. Gedurende deze fase vormt zich een biofilm. Wanneer 

deze eenmaal ontwikkeld is, begint de tweede fase, gedurende welke de OUR constant is. Is 

het opgeloste substraat bijna uitgeput dan daalt de OUR sterk, dit is de derde fase. Daarna 

begint de vierde fase, gedurende welke de activiteit bepaald wordt door de 

hydrolysesnelheid. 

Het blijkt dat de deeltjesgrootte verreweg de belangrijkste grootheid is, die het verloop van 

de OUR bei'nvloedt. Het model voorspelt het effect van interacties, die niet door de huidige 

empirische modellen kunnen worden verklaard. 

Een analytische oplossing is gevonden voor het theoretische model. (Hoofdstuk 4) De 

analytische oplossing is mede gebaseerd op een aantal vereenvoudigingen van het 

theoretische model. Desondanks wordt er een uitstekende overeenkomst gevonden tussen 

de uitkomsten van het theoretische en analytische model. 

Na een onderzoek van de parameter-identificeerbaarheid is het analytische model 

gevalideerd (Hoofdstuk 5). Twee dimensieloze getallen zijn gei'dentificeerd, die gebruikt 

kunnen worden om de praktische identificeerbaarheid van de parameters te controleren. Om 

het analytische model te valideren is een experimenteel systeem ontworpen, dat het 
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mogelijk maakte het effect van deeltjesgrootte op de OUR te meten. Als afvalstof werd 

kippemest gebruikt, die gecomposteerd werd bij 55 °C met 19 vol.-% zuurstof in de 

gasfase. Het tijdsverloop van de OUR van deeltjes met groottes van 16, 8, 4 en 2 mm is 

bestudeerd. De parameters in het analytische model zijn voor elke experiment afzonderlijk 

bepaald. De invloed van de deeltjesgrootte op de waarde van de diverse parameters zijn, 

uitgezonderd in een geval uitstekend te beschrijven door het model. De parameterwaarden 

zijn in redelijke overeenkomst met wat verwacht mag worden op basis van 

literatuurgegevens. Een aanwijzing voor een tijdelijke remming van het proces door de 

ophoping van opgelost substraat is gevonden. 

Het gespreide model; ontwikkeling, validatie en toepassing (Hoofdstuk 6-8) 

Afval bestaat uit een mengsel van deeltjes met verschillende deeltjesgrootte. Omdat 

gebleken is dat de OUR het sterkst door de deeltjesgrootte bepaald wordt, moet de 

deeltjesspreiding betrokken worden in een kinetisch model voor de compostering van afval. 

De zogenaamde gamma functie is gebruikt als spreidingsmodel. Deze functie kan afgeleid 

worden uit de aanname, dat de met gas gevulde porien in het afval homogeen verdeeld zijn. 

De zogenaamde gamma parameter beschrijft de breedte van de spreiding. Met toenemende 

gamma-waarde wordt de spreiding smaller en bereikt uiteindelijk een verzameling deeltjes 

met gelijke deeltjesgrootte. Op theoretische gronden wordt een gamma-waarde in het bereik 

van 1 tot 3 verwacht. 

Het spreidingsmodel is gecombineerd met het analytische model voor een enkel deeltje, 

waardoor het zogenaamde "gespreide model" kan worden afgeleid. De OUR van een 

verzameling deeltjes met gespreide deeltjesgrootte blijkt bepaald te worden door twee 

klassen van deeltjes, de deeltjes met voldoende opgelost substraat en de opgelost substraat 

uitgeputte deeltjes. De afbraaksnelheid van de laatste klasse wordt bepaald door de 

hydrolyse, die onafhankelijk is van de deeltjesgroootte De afbraaksnelheid van de klasse 

"deeltjes met voldoende opgelost substraat" is omgekeerd evenredig met de deeltjesgrootte. 

Gedurende de tijd zal de "substraat uitgeputte" klasse groeien, daar steeds meer deeltjes 

uitgeput raken. 

Het tijdsverloop van de OUR zoals beschreven met het gespreide model wijkt wezenlijk af 

van de beschrijving volgens het enkel deeltjes model. Dit toont aan dat de deeltjesspreiding 

een wezenlijk deel is van een kinetisch model. 

De identificeerbaarheid van het gespreide model is onderzocht, waarna het model 

gevalideerd is (Hoofdstuk 7). De identificeerbaarheid wordt voornamelijk bepaald door de 
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breedte van de spreiding van de deeltjesgrootte en de hoeveelheid opgelost substraat. 

Aangetoond is, dat onder bepaalde praktijkomstandigheden (brede spreiding en lage 

opgelost-substraat concentratie) problemen met de identificeerbaarheid kunnen ontstaan. 

De basis van het probleem is het gegeven dat de meting bestaat uit een mengsel van 

signalen van deeltjes, die een verschillend gedrag hebben afhankelijk van de klasse waartoe 

ze behoren. Deze menging van signalen maakt interpretatie van het gemengde signaal 

moeilijker. 

Het gespreide model is gevalideerd aan hetzelfde materiaal onder dezelfde 

omgevingscondities als het-enkel-deeltje model is gevalideerd. Het materiaal is gemengd 

met een kunststof-toeslag om een spreiding in deeltjesgrootte te verkrijgen. De resultaten 

tonen duidelijk aan, dat de spreiding een ander verloop van de OUR te zien geeft. Het 

gespreide model geeft een goede voorspelling van het verloop. 

Het gespreide model is gebruikt voor het ontwerp van een nieuw composteringssysteem 

(Hoofdstuk 8). Het nieuwe systeem bestaat uit een tunnel-reactor met gekoelde 

recirculatiestroom. Door koeling van de recirculatiestroom is een grote reductie van de 

afgashoeveelheid mogelijk. Als gevolg van de gereduceerde verversing van de gasfase zal 

de het zuurstofgehalte in het composterende materiaal aanzienlijk lager zijn dan in 

conventionele systemen. 

Het gespreide model is gebruikt om een aantal ontwerpgrootheden zoals gasdebieten, 

compost samenstelling en hoeveelheid te voorspellen. Sommige grootheden hangen af van 

de actuele zuurstofopnamesnelheid (OUR), sommige van de cumulatieve zuurstofopname 

(COU). Twee typen voorspellingen worden onderscheiden, nl. interpolerende 

voorspellingen en extrapolerende voorspellingen. Interpolerende voorspellingen liggen in 

het bereik van de uitgevoerde metingen , extrapolerende daarbuiten. Alle voorspellingen 

met het gespreide model zijn vergeleken met voorspellingen via een conventioneel model 

en voorspellingen gebaseerd op metingen. 

Het gespreide model heeft een kleinere fout wat betreft interpolerende voorspellingen van 

grootheden, die op de COU gebaseerd zijn. Wat betreft de OUR gebaseerde voorspellingen 

heeft het gespreide model een substantieel kleinere fout, een factor 2. Het gespreide model 

is beter in staat het effect van zuurstof te voorspellen. 

Geconcludeerd mag worden, dat het gespreide model de ontwerpgrootheden veel beter 

voorspelt dan de empirische modellen. Verwacht wordt, dat dit ook geldt voor andere 

situaties, bijvoorbeeld een ander afval of andere omstandigheden van temperatuur, vocht 

e.d. Voor processnelheidsbepalende factoren zoals vocht en porositeit, die een duidelijke 
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samenhang vertonen met de structuur van het afval is het gespreide model noodzakelijk om 

tot goede kinetische modellen te komen. Het gespreide model is een noodzakelijk 

instrument voor het ontwerp van een effectieve composteringsinstallatie. Het combineert 

inzicht in het proces met betere voorspellingen. 
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Dankwoord 

Aan het eind van dit proefschrift rest mij nog een dankwoord. Dit is hier zeker op zijn 

plaats, zonder steun van velen was dit boekje een zachte dood gestorven. 

In de eerste plaats de promotoren Wim Rulkens en Gerrit van Straten, die mij de 

gelegenheid gaven te promoveren. Wim, bedankt voor je continue zorg voor de grote lijn, 

"wat is de boodschap van dit hoofdstuk" en daarnaast je soms pijnlijk nauwkeurig checken 

van formules. Gerrit, bedankt voor het introduceren en meedenken op jouw vakgebied. Dit 

heeft mij een grote meerwaarde aan mijn denken over modellen gegeven. Hopelijk 

reflecteert zich dit in het proefschrift. 

Als docent heb ik veel studenten mogen begeleiden tijdens hun afstudeerwerk. Alhoewel 

alien gewerkt hebben aan de biologische verwerking van vast afval, is slechts een zeer klein 

gedeelte hiervan terug te vinden in het proefschrift. Echter alien hebben hun bijdrage 

gegeven aan het opperen, vormgeven en toetsen van ideeen, waardoor dit proefschrift is wat 

het is. 

De collegae van de vakgroep zijn in al die jaren belangrijk geweest voor een inspirerende 

werksfeer. Discussies tijdens werkbesprekingen maar ook tijdens koffie en lunch vormen 

een belangrijke inspiratiebron. Daarnaast zijn de collegae steeds bereid geweest bij het 

overnemen van taken opdat ik tijd had om het werk af te ronden. 

Iman Koster, Harry Hoitink, Harold Keener, Joop van Tubergen, Tom Richard en Adrie 

Veeken zijn in verschillende fasen van mijn werk van groot belang geweest door hun 

overtuiging dat het werk in dit proefschrift er toe doet voor het veld "compostering". Wat 

betreft de modellering waren de kritische beschouwingen van Gatze Lettinga "ik ben niet 

tegen modelleren, alleen tegen zinloos modelleren" steeds een aansporing om die zin te 

zoeken. 
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Geen onderzoek zonder gegevens, en in mijn geval geen gegevens zonder Vinnie de Wilde. 

Zonder zijn technisch kunnen en inzet voor het vlekkeloos laten verlopen van proeven zou 

er niet zo'n uniek experimenteel systeem werken. 

Geen proefschrift zonder thuisfront, zonder het geloof van mijn moeder en Ema had ik dit 

proefschrift niet op deze manier kunnen invullen. 
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Curriculum Vitae 

De auteur, Hubertus Victor Marie (Bert) Hamelers, werd op 1 augustus 1958 geboren te 

Maastricht. In 1976 behaalde hij het Atheneum-B diploma aan het Henric van Veldeke 

College te Maastricht. In datzelfde jaar werd de studie Milieuhygiene begonnen aan de toen 

geheten Landbouw Hogeschool. In januari 1987 werd de studie met lof afgerond met als 

specialisatie Waterzuivering. Afstudeervakken waren Waterzuivering, Microbiologic en 

Wiskunde. De stage werd doorgebracht bij het Institut fur Siedlungswasserwirtschaft und 

Abfalltechnik te Hannover in Duitsland, waar hij zich bezig hield met de anaerobe 

zuivering van brouwerij afvalwater. 

In 1987 was hij werkzaam voor de firma Paques bij de licentiehouder Ahlstrom in Finland. 

Het werk omvatte onderzoek naar de anaerobe zuivering van pulp en papier afvalwater, en 

training van de werknemers van Ahlstrom op het gebied van de anaerobe zuivering. 

In 1988 begon hij als toegevoegd onderzoeker bij de vakgroep Waterzuivering van de 

LandbouwUniversiteit Wageningen te werken aan een project op het gebied van de 

mestcompostering. In 1991 werd hij Universitair Docent aan dezelfde vakgroep, met de 

nieuwe naam Milieutechnologie. Zijn functie omvat onderwijs en onderzoek op het gebied 

van de biologische verwerking van vast organisch afval. 
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