
Rules of Thumb for Conservation of Metapopulations Based on a Stochastic Winking‐Patch
Model.
Author(s):   Rampal S. Etienne and   J. A. P. Heesterbeek
Reviewed work(s):
Source: The American Naturalist, Vol. 158, No. 4 (October 2001), pp. 389-407
Published by: The University of Chicago Press for The American Society of Naturalists
Stable URL: http://www.jstor.org/stable/10.1086/321986 .
Accessed: 23/02/2012 04:26

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

The University of Chicago Press and The American Society of Naturalists are collaborating with JSTOR to
digitize, preserve and extend access to The American Naturalist.

http://www.jstor.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wageningen University & Research Publications

https://core.ac.uk/display/29302615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstor.org/action/showPublisher?publisherCode=ucpress
http://www.jstor.org/action/showPublisher?publisherCode=amsocnat
http://www.jstor.org/stable/10.1086/321986?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp


vol. 158, no. 4 the american naturalist october 2001

Rules of Thumb for Conservation of Metapopulations

Based on a Stochastic Winking-Patch Model

Rampal S. Etienne* and J. A. P. Heesterbeek†

Biometris, P.O. Box 100, 6700 AC Wageningen, The Netherlands

Submitted March 31, 2000; Accepted May 18, 2001

abstract: From a theoretical viewpoint, nature management ba-
sically has two options to prolong metapopulation persistence: de-
creasing local extinction probabilities and increasing colonization
probabilities. This article focuses on those options with a stochastic,
single-species metapopulation model. We found that for most com-
binations of local extinction probabilities and colonization proba-
bilities, decreasing the former increases metapopulation extinction
time more than does increasing the latter by the same amount. Only
for relatively low colonization probabilities is an effort to increase
these probabilities more beneficial, but even then, decreasing ex-
tinction probabilities does not seem much less effective. Furthermore,
we found the following rules of thumb. First, if one focuses on
extinction, one should preferably decrease the lowest local extinction
probability. Only if the extinction probabilities are (almost) equal
should one prioritize decreases in the local extinction probability of
the patch with the best direct connections to and from other patches.
Second, if one focuses on colonization, one should preferably increase
the colonization probability between the patches with the lowest local
extinction probability. Only if the local extinction probabilities are
(almost) equal should one instead prioritize increases in the highest
colonization probability (unless extinction probabilities and colo-
nization probabilities are very low). The rules of thumb have an
important common denominator: the local extinction process has a
greater bearing on metapopulation extinction time than colonization.

Keywords: colonization, extinction, metapopulation, conservation.

Ever since Levins (1969, 1970) presented his well-known
metapopulation model, it has been clear that the key pro-
cesses in single-species metapopulation dynamics are local
extinction and (re)colonization. For nature management
of single-species metapopulations, this has the important
consequence that attempts to prolong metapopulation
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persistence can either be directed toward decreasing the
probability of local extinction or toward increasing the
probability of colonization. The former may be achieved
by, for instance, improving habitat quality or size (cf. Klok
and de Roos 1998), whereas the latter is often attained by
building corridors or stepping stones (Schultz 1998). How-
ever, corridors may affect local extinction probability as
well, both positively (by the rescue effect; Brown and
Kodric-Brown 1977) and negatively (by a leakage or di-
lution effect; Allen et al. 1992). Likewise, improving habitat
quality may have positive and negative effects on the ability
to generate colonists or to be colonized (a better-quality
patch might attract more immigrants and could produce
more colonizers due to higher reproduction [see, e.g.,
Hanski 1994; Vos et al. 2001], or such a patch might sustain
a larger population and thus offer less incentive to dis-
perse). These diverse processes make it difficult to answer
the practical question of whether, given a limited budget,
improving habitat or building corridors (or perhaps a
combination of the two) is the best option for metapop-
ulation management. As a first step toward answering this
question, we will investigate the problem on the level of
local extinction and colonization probabilities: Will meta-
population persistence benefit most from a small change
in colonization probabilities or from an equally small
change in local extinction probabilities? We will also study
variations to this theme: If one focuses on local extinction
probabilities in a network of patches, which patch should
receive most attention, and similarly, if one focuses on
colonization probabilities between patches, which con-
nection between which patches deserves most attention?
The setting of this study is a single-species, stochastic wink-
ing-patch (terminology of Verboom et al. 1993) or patch-
occupancy (terminology of Gosselin 1998) metapopula-
tion model in discrete or continuous time. With this
model, the answers to the above questions are straight-
forward for special cases in which the values for the col-
onization and local extinction probabilities are known ex-
actly. However, these probabilities are usually only vaguely
known, for example, in terms of “high” and “low.” There-
fore, this article aims at providing rules of thumb, in the
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spirit of Wilson and Willis (1975) and Frank and Wissel
(1998), rather than precise answers to the questions above.

The Model

Discrete Time

Consider a single-species metapopulation distributed over
n patches that can be either occupied or empty. Assume
that there is a discrete phase in which local population
dynamics take place but no dispersal. After this “extinction
phase” there is a “colonization phase.” This separation of
phases has been suggested by several authors (Akçakaya
and Ginzburg 1991; Hansson 1991; Sabelis et al. 1991;
Burgman et al. 1993). During the extinction phase, the
population in each occupied patch i has an extinction
probability ei, and during the colonization phase, dispers-
ers from each occupied patch i can colonize an empty
patch j with colonization probability cij. For the most part
in this article, all these probabilities are considered to be
independent; that is, we assume that extinctions and col-
onizations are not correlated. This means, for example,
that we do not incorporate the rescue effect (Brown and
Kodric-Brown 1977; Etienne 2000). We will also briefly
study a model with correlated extinctions; other, probably
less important, correlations require detailed models of dis-
persal and local dynamics that are beyond the scope of
this article.

Because every patch is either occupied (denoted by 1)
or empty (denoted by 0), the metapopulation is in any of
2n states. For example, for , these states are (patchn p 2
2, patch 1 0,0), (0,1), (1,0), and (1,1); for , these) p ( n p 3
states are (patch 3, patch 2, patch 1 0,0,0), (0,0,1),) p (
(0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), and (1,1,1). We
will order these states lexicographically as in these ex-
amples (this is why the order of the patches may seem a
bit odd at first) and number them so that, for example,
for , the states (0,0), (0,1), (1,0), and (1,1) corre-n p 2
spond, respectively, to 1, 2, 3, and 4.

With the extinction and colonization probabilities given,
we now describe the dynamics of the metapopulation, that
is, the changes in its state. We follow Day and Possingham
(1995) and Akçakaya and Ginzburg (1991), but see also
Gyllenberg and Silvestrov (1994), who present a similar
discrete-time model but without separation of extinction
and colonization phases. Suppose that and then p 2
metapopulation is in state (patch 2, patch 1 0,1).) p (
From this state, the metapopulation can reach state (1,1)
if the first patch does not go extinct and if it subsequently
provides colonists to the second patch to make it occupied.
These two events occur with probability because(1 � e )c1 12

we have assumed independence. If we now define M24 to
be the probability that the metapopulation changes from

state 2 ( in the lexicographical ordering) to state{ (0,1)
4 ( ), then . Similarly, we can de-{ (1,1) M p (1 � e )c24 1 12

fine Mij as the transition probability that the system moves
from state i to state j. For any pair of states i and j, one
can calculate the transition probability as above. The

matrix M thus defined is the Markov transitionn n2 # 2
matrix of the metapopulation system with n patches. For

, the transition matrix M is given byn p 2

M p

1 0 0 0 
( ) ( )e 1 � e (1 � c ) 0 1 � e c1 1 12 1 12 , (1)

( ) ( )e 0 1 � e (1 � c ) 1 � e c 2 2 21 2 21

( ) ( )e e 1 � e e (1 � c ) 1 � e e (1 � c ) M 1 2 1 2 12 2 1 21 44

where

M p (1 � e )e c � (1 � e )e c44 1 2 12 2 1 21

� (1 � e )(1 � e ). (2)1 2

If and for all i and j, then matrix M cane p e c p ci ij

be simplified to an matrix P, the ele-(n � 1) # (n � 1)
ments of which are transition probabilities to go fromPkl

any state with k occupied patches to any state with l oc-
cupied patches. They are given by (see app. A)

min (k, l)
k n � ii k�iP p (1 � e) e�kl ( ) ( )i l � iip0

i l�i i n�l# [1 � (1 � c) ] [(1 � c) ] , (3)

in which the terms

y( )x

are combinatorials.
For large n, the assumption of equal c is very unrealistic.

Patches are usually colonized by their neighbors, not by
distant populations. We can easily incorporate these
thoughts in the model by replacing in equationi(1 � c)
(3) by where , thus allowing ais(1 � c ) i p (i/n) min (s, n)s s

maximum of s occupied patches to contribute (equally)
to colonization. (Below, we will use —so we will bes p 8
concerned with c8—which is quite arbitrary but is moti-
vated by the number of neighbors of a patch in a lattice.)
The subscript s is added to c for no other reason than to
distinguish this adjusted model from the original one. We
remark here that this adjusted model assumes that oc-
cupied patches do not form clusters but are randomly
distributed in space, which is not true for nearest-neighbor



Metapopulation Conservation Rules 391

colonization. If one wants to be strict, one should use the
general model at the cost of a much higher dimension or
aggregate patches into a single patch ending up with a
much lower dimensional metametapopulation.

Day and Possingham (1995) and Akçakaya and Ginzburg
(1991) do not describe the case in which extinctions are
correlated (Akçakaya and Ginzburg [1991] do incorporate
it in their model but do not specify how). In appendix A,
we derive the following analogue of equation (3) with ex-
tinctions correlated with parameter based2 2r p j /(1 � j )
on an underlying normal distribution:

k�i

2 1/2 �1(1�j ) F (e)min (k, l)
k

P p �kl �( )[ ]iip0 ��

i

�

�# N [y, 0, Y(r)]dy (4)� k[ ]2 1/2 �1(1�j ) F (e)

n � i i l�i i n�l# [1 � (1 � c) ] [(1 � c) ] ,( )l � i

where is the k-dimensional normal distri-�N [y, 0, Y(r)]k

bution of the k-dimensional variable y with zero mean and
(co)variance matrix , with J a k-by-k matrix2Y(r) p j J � I
with all elements equal to 1 and I the k-by-k identity
matrix; is shorthand for repeating the integrationb bi( )∫ ∫a a

i times.
One can show (see, e.g., Halley and Iwasa 1998) that

the second largest eigenvalue l2 of the transition matrix
(M or P) is a measure of the expected extinction time of
the metapopulation:

1
T p . (5)ext 1 � l 2

This extinction time is an average over the extinction times
of all initial states, where each state is weighed according
to the so-called quasi-stationary distribution (Darroch and
Seneta 1965; Gilpin and Taylor 1994; Gosselin 1998),
which is the probability distribution of states for a system
in pseudoequilibrium.

The expected metapopulation extinction time Text is the
measure of persistence used in this article. Other measures,
such as the basic reproduction number R 0, are also possible
and may lead to different conclusions (for comparison of
these measures in a general metapopulation setting, see
Etienne and Heesterbeek 2000).

Continuous Time

If instead of a discrete-time Markov process, a continuous-
time Markov process is used, then one uses extinction and
colonization rates (probabilities per unit of time) instead
of probabilities. To keep the model simple and for reasons
that become clear later on, we will only study the case
where all extinction rates are equal and all colonization
rates are equal, and we will denote these rates by er and
cr, respectively. Then one can write down the differential
equation for the probability Qx of x patches being occu-
pied:

dQ x p R Q � R Qx�1, x x�1 x�1, x x�1dt

� (R � R )Q , (6)x, x�1 x, x�1 x

where is the rate of transition from k occupied patchesRk, l

to l occupied patches and where it is assumed that in
infinitesimal time steps no more than one extinction or
colonization event can occur. In matrix notation,

dQ
p QR, (7)

dt

where Q represents an –dimensional vector con-(n � 1)
taining the probabilities of patches being oc-x p 0 … n
cupied and R is the –by– transition matrix(n � 1) (n � 1)
with elements

ke for k p l � 1r

�ke � kc (n � k) for k p lr rR p . (8)kl kc (n � k) for k p l � 1r{
0 otherwise

For example, if , then R is given byn p 2

0 0 0 
R p e �e � c c . (9)r r r r 

0 2e �2e r r

The expected metapopulation extinction time is related to
the second largest eigenvalue l2 of R (Keilson 1979; Frank
and Wissel 1998):

1
T p � . (10)ext

l 2

The extinction and colonization rates can be converted to
probabilities using
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e p 1 � exp (�e ), (11a)r

c p 1 � exp (�c ), (11b)r

because and are the probabilities of aexp (�e ) exp (�c )r r

patch not having become extinct and not having colonized
after one time step.

Using the Model for Rules of Thumb
in Nature Management

As announced at the beginning of this article, we will focus
on several questions that are important for nature man-
agement. First we will study whether a metapopulation
benefits (in terms of the expected extinction time) most
from a small change in colonization probabilities or from
an equally small change in local extinction probabilities.
We will then ask two more detailed questions. First, if one
focuses on local extinction probabilities, extinction of
which patch should receive most attention? Second, if one
focuses on colonization probabilities, colonization be-
tween which pair of patches deserves most attention? The
answers to these two questions depend on the particular
metapopulation structure; therefore, we study two extreme
structures for each question to gain insight in the system,
and then we try to generalize to some rules of thumb. We
first use the uncorrelated discrete-time model to obtain
these answers and regard the continuous-time model and
the correlated discrete-time model as test models to see
how robust these answers are to changes in model struc-
ture. The changes in model structure that we consider are
relatively small, so robustness of our results to these
changes is definitely not sufficient to conclude overall ro-
bustness. Yet models that are very dissimilar in model
structure (and hence seem a better test of robustness) are
much more difficult to gauge. Therefore, we restrict our-
selves to our relatively small deviations in model structure.
Robustness to these deviations may not be sufficient, but
it is certainly necessary.

Should One Decrease Local Extinction Probability or
Increase Colonization Probability?

We first consider the situation in which all local extinction
probabilities are equal ( for all i) and all colonizatione p ei

probabilities are equal ( for all i and j); this meansc p cij

that we can use matrix P. If we decrease the local extinction
probability e by a small amount or increase the colo-De
nization probability c by a small amount , then we canDc
ask whether decreasing local extinction probability yields
a larger metapopulation extinction time than increasing
the colonization probability. Because Text(e, c) increases
monotonically with increasing c when e is fixed and with

decreasing e when c is fixed, it suffices to look for the pairs
(e, c) for which

�T �Text ext�De p Dc . (12)F F�e �c(e, c) (e, c)

These pairs (e, c) then form the boundary in (e, c) space
between regions in (e, c) space where Text benefits more
from a decrease in e and regions where Text benefits more
from an increase in c. It remains to choose appropriate
changes in e and c, that is, to choose De and Dc. We will
assume that

De p Dc (13)

and discuss the reasons for this choice and consequences
of other choices at the end of this article. This choice allows
us simply to compare the derivatives in equation (12).

Numerical calculations gave graphs pictured in figure 1A.
It can be shown analytically (see app. B) that the curves of
figure 1A–1C cross the –axis at .(c p 0) e p 1 � 1/(n � 1)
This means that for small c and , it is alwayse 1 1 � 1/(n � 1)
better to decrease local extinction probability than to in-
crease colonization probability. This can be understood in-
tuitively as follows: if e is close to 1, a large contribution
to the metapopulation extinction time comes from rapid
local extinction in all patches before recolonization even
gets the opportunity to increase the metapopulation ex-
tinction time. Therefore, a change in the colonization prob-
ability has only a small influence. When n increases, the
probability of local extinction in all patches together de-
creases, so the effect of recolonization increases, resulting
in a higher upper bound for e when c is small.

From figure 1A, one can conclude that if nothing is
known about e and c, the results suggest that one should
aim at decreasing e rather than at increasing c because the
region in (e, c) space in which increasing c is favored is
substantially smaller than the region where decreasing e is
preferred. If we know that the colonization probability is
(very) low and the extinction probability is smaller than

, then increasing c is the better option. The1 � 1/(n � 1)
latter addition makes clear that a hasty conclusion that
one should increase c when the metapopulation is most
extinction prone is not warranted.

To investigate the robustness of these results to model
structure, we repeated the analysis with slightly modified
models. First, we considered the adjusted model with a
maximum of eight patches contributing to colonization.
For this model, we get similar results, but the lines of
figure 1A lie a bit higher for (but still do not risen 1 8
above ) and do not appear to go down again forc p 0.38

large n but instead seem to become independent of n.



Figure 1: The pairs (e, c) satisfying equations (12) and (13) for several values of n (A–C) and (e, c)–pairs estimated from data (D). A, The discrete-
time model. Above the lines, decreasing e increases the metapopulation extinction time more than increasing c. Below these lines, the opposite
applies. B, The continuous-time model. Between the lines, decreasing e increases the metapopulation extinction time more than increasing c. Below
the lower and above the upper lines, the opposite applies. The line is drawn for convenience; the lines appear to converge to this limit as nc p e
approaches infinity. C, The discrete-time model for with correlated extinctions for several values of the correlation parameter r. D, Maximumn p 5
likelihood estimates of the parameter combinations (e, c) and (e, c8) from turnover data for several metapopulations. The pairs (e, c) and ( , c8)e
corresponding to the same metapopulation are connected by a line; its lower end is (e, c), and its upper end is (e, c8). The models used to estimate
(e, c) and (e, c8) are the (uncorrelated) discrete-time model and its analogue for a limited number of eight patches contributing to colonization.
The letters denote the source of the turnover data (with the number of patches in parentheses): a, Briers and Warren 2000 (68); b, Eber and Brandl
1994, 1996 (513); c, Hanski et al. 1994 (50); d, Lei and Hanski 1998 (50, 22); e, Harrison et al. 1988 (59); f, Hecnar and M’Closkey 1997 (160); g,
Hill et al. 1996 (69); h, Kindvall and Ahlén 1992 (110); i, Morrison 1998 (129); j, Nürnberger 1996 (51); k, Smith and Gilpin 1997 (78); l, Sutcliffe
et al. 1997 (14); m, Thomas and Harrison 1992 (16, 20); n, Van der Meijden and Van der Veen-Van Wijk 1997 (102, 79); o, Villard et al. 1995 (51).
Although the data sets are of different quality, we have not included a measure of the error in the parameter estimates because they are intended
for illustrative purposes only.
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Figure 2: Boxplots of the sensitivity to colonization relative to the sen-
sitivity to extinction ( ) for 1,000 sets of ran-n n� [�T /�c ]/� [�T /�e ]i, j ext ij i ext i

domly chosen ei and cij values ( ) with (A) ; (B)c ( c 0 ! e , c ! 1 0 !ij ji i ij

, ; (C) , ; (D)e ! 1 0.4 ! c ! 0.6 0 ! e ! 0.5 0 ! c ! 0.2 0 ! e p e ! 1, 0 !i ij i ij i

. Other intervals yielded similar plots. The lower bound of thec ! 0.2ij

box is the 2.5th percentile (25 sets have a lower value of sensitivity to
colonization than this), the upper bound is the 97.5th percentile, and
the lines in the box denote the 25th, 50th, and 75th percentiles. The ends
of the vertical lines above and below the box are the maximum and
minimum.

Second, we considered the model in continuous time.
The results are shown in figure 1B. The main difference
between figure 1A and 1B is the presence of a second region
favoring changes in c that is absent in figure 1A. This is
caused by the difference in the nature of the underlying
models. When c is close to 1, colonization is almost certain,
so all patches are almost always occupied. Therefore, me-
tapopulation extinction can almost only come about if
extinctions occur in all patches within a very short time
interval so that recolonization cannot take place. In the
discrete-time model, there is a finite period in which all
patches can go extinct together, so decreasing e always has
some impact, even for the extreme case . In thec p 1
continuous-time model, simultaneous extinctions were as-
sumed to be impossible, so metapopulation extinction can
occur only by subsequent extinctions of all patches without
recolonizations in between. Hence, if , metapopu-c p 1
lation extinction is impossible, so decreasing e has no effect
whatsoever. This makes it plausible that for values of c
only a little smaller than 1, decreasing e has hardly any
influence, while increasing c brings the system even closer
to the situation where a change in e has no effect. Another
difference between figure 1A and 1B is that in figure 1A,
for fixed e, the corresponding value of c initially increases
as n increases but then starts to decrease at some value of
n (which depends on e), whereas in figure 1B, the values
of c below the line keep increasing with n; they seemc p e
to approach the line . This elevation of the linesc p e
occurs because increasing c changes colonization proba-
bilities for all pairs of patches, although decreas-n (n � 1)
ing e only changes extinction probabilities of n patches, a
difference of a factor in favor of increasing c. In then � 1
discrete-time model, there is an opposing force in favor
of decreasing e, which dominates for large n: the proba-
bility of local extinction always benefits from decreasing
e, whereas the probability of a patch being colonized does
not gain much from increasing c when n is quite large.
This opposing force is (almost) absent in the continuous-
time model. The continuous-time model thus yields results
similar to the discrete-time model: decreasing e is the pre-
ferred strategy unless c is small and (seee ! 1 � 1/(n � 1)
app. B). However, the continuous-time model favors in-
creasing c when n becomes large ( ) or when c isn 1 30
quite large.

Third, to gain understanding of possible effects of cor-
related extinctions on the results, we repeated the analysis
for using the discrete-time model with correlatedn p 5
extinctions (eq. [4]) for several values of the correlation
parameter r. The resulting figure 1C shows that correlation
between extinctions makes the region in (e, c) space in
which increasing c is favored become smaller with increas-
ing r. More generally, we expect that correlation strength-
ens the effect of decreasing the local extinction probability.

Finally, we examined what happens when we drop the
assumption of equal e and equal c. We considered 1,000
sets of randomly chosen ei and cij (i.e., drawn uniformly
from one of several choices of intervals, e.g., 0 ! e , c !i ij

, or , ) for the case1 0 ! e ! 1 � 1/[n � 1] 0 ! c ! 0.2i ij

and determined, in the spirit of equation (12),n p 5
whether or not

n n
�T �Text ext� De 1 Dc (14)� �i ijF F�e �cip1 i, j(ii (e, c ) ij (e, c )

with

De p Dc (15)i ij

and denoting the entire set of extinction and colo-(e, c)
nization probabilities. This could be interpreted as a com-
parison between changes in patch habitat quality and ma-
trix (between-patch) habitat quality. The results show that
the left-hand side of equation (14) is almost always greater
than the right-hand side, even for ,0 ! e ! 0.5 0 ! c !i ij

(fig. 2). Only if the ei do not differ much (e.g., all0.2
equal) and the cij are small (e.g., ) is the right-0 ! c ! 0.2ij

hand side greater for a substantial number of the 1,000
sets ( in the example; see also fig. 2D). But, more58.9%
important, when extinction changes are favored, it is by
a factor of up to 500, while when colonization is more
important, it is by only a twofold difference at most.

Until now, we have compared decreasing e and increas-
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ing c on the metapopulation level: all probabilities partic-
ipated. We can also make the comparison on a local level;
for example, comparing decreasing ei with increasing

, that is, a comparison between lowering ex-� (c � c )j ij ji

tinction risk and raising disperser input and output of a
patch. We did this in the 1,000 sets for the case wen p 5
have just discussed and found that the results are quali-
tatively the same: decreasing the extinction probability is
far more effective than increasing the sum of colonization
probabilities for any patch.

First Rule of Thumb. From all these results we induce
the following rule of thumb: To increase metapopulation
extinction time, decreasing local extinction probability is
preferred over increasing colonization probability; this is
strengthened if extinctions are correlated. Only if the col-
onization probabilities are (very) low and the extinction
probabilities are almost equal and smaller than 1 �

or if the colonization probability is high and1/(n � 1)
colonization occurs continually is increasing the coloni-
zation probability preferred.

Thus, if we have no knowledge about the extinction and
colonization probabilities of a particular metapopulation
we need to manage, the rule of thumb proposes that we
decrease the extinction probability. This reasoning is based
on the assumption that, if any further knowledge is lack-
ing, all combinations of e and c are equally likely. In figure
1D, we have plotted the most likely combinations of (e,
c) and (e, c8) of several species estimated from data on the
number of extinctions and colonizations using, respec-
tively, equation (3) and equation (3) with replacedi(1 � c)
by . It is evident that values of e smaller than 0.5i8(1 � c )8

and c8 (which is more realistic than c, particularly in large
metapopulations) smaller than 0.2 are most common, so
it seems that the exception mentioned in the rule applies
to these metapopulations. However, while it is clear that
metapopulation management should (also) be based on
data, we caution that calculations from data should not
be followed blindly (see “Discussion”).

In Which Patch Should the Local Extinction
Probability Be Decreased?

To address this question, we consider two extreme situa-
tions in both of which we look for that patch i for which
a small decrease Dei in the local extinction probability
results in the largest increase in the metapopulation ex-
tinction time; that is, we look for that patch i for which

�Text�De (16)i
�ei

is largest. In the first situation, all colonization probabil-
ities are equal ( for all i and j), but the local ex-c p cij

tinction probabilities ei are allowed to differ. In the second
situation, all local extinction probabilities are equal
( for all i), but the colonization probabilities cij aree p ei

allowed to differ. We make the assumption, analogous to
equation (13), that Dei is the same for all i, so in fact, we
look for the patch i for which is largest.�T /�eext i

In the first situation ( for all i and j), we nu-c p cij

merically calculated for 1,000 sets of randomly�T /�eext i

chosen ei ( ) for various values of c and n. Since0 ! e ! 1i

calculations for large n are very time consuming, we re-
stricted ourselves to . The results indicate that then ≤ 7
metapopulation extinction time is mostly affected by a
change in the smallest ei. In all sets, this result was found.

This result can be understood as follows. We have for
the discrete-time model

1
T (c p 0) p ,ext min (e )j j

2�T �T (c p 0) if patch i has the smallest eext ext ip ;F {0 for all other patches�ei cp0

1
T (c p 1) p , (17)ext n� ejp1 j

�T 1ext p � T (c p 1).extF�e ei cp1 i

In both cases, we find that is largest in absolute�T /�eext i

value for the patch i with the smallest value of ei. Because
Text is monotone in ei and c, it is not to be expected that
this will be different for intermediate values of c.

In the second situation ( for all i), we numericallye p ei

computed for 1,000 sets of randomly chosen cij�T /�eext i

( ) for various values of e and . The results0 ! c ! 1 n ≤ 7ij

indicate that, in general, the largest influence on meta-
population extinction time is obtained by a change in the
ei of the best-connected patch, that is, a change in the local
extinction probability of that patch i for which � (c �j ij

is largest. This means that for , there would bec ) n p 2ji

no preference between the patches, which was indeed the
case in the calculations. To give some idea of how well
this criterion works, the percentage of sets for which this
criterion indeed picked the right patch (the patch for
which decreasing the local extinction probability prolongs
metapopulation persistence most), exceeded 70% for all
values of n we studied ( ). Moreover, decreasing then ≤ 7
extinction probability of the worst connected patch is al-
most never the best option to prolong metapopulation
persistence. No significant trend for different values of e
was observed nor was there any significant change if values
for cij were restricted to a smaller interval than between 0



396 The American Naturalist

Figure 3: Boxplots of with k denoting the k th best patch, k th best meaning (A) k th lowest extinction probability or (B) k th(�T /�e )/(�T /�e )ext k ext 1

largest sum of colonization probabilities, for the 1,000 sets of randomly chosen ei and cij values. Here, , but boxplots for the other0 ! e , c p c ! 1i ij ji

intervals of the parameters mentioned in the text look very similar.

and 1 with a different mean than 0.5 (we chose 0 ! c !ij

, , and for comparison). How-0.2 0.8 ! c ! 1 0.4 ! c ! 0.6ij ij

ever, there is a significant drop in the percentage for which
the criterion picks the right patch when n increases, but
this is simply due to the presence of more patches com-
peting for the position of best-connected patch. If we allow
a patch to be the right patch if it belongs to the top 20%,
say, of best-connected patches, then there is no such de-
crease. When we set , the percentage of correctc p cij ji

picks became even higher than with .c ( cij ji

Thus, the results suggest that to increase metapopulation
extinction time, one should decrease the lowest local ex-
tinction probability or the local extinction probability of
the best-connected patch, that is, the patch i for which

is largest. Evidently, in a situation where all� (c � c )j ij ji

parameters may differ, the patch with the lowest extinction
probability will generally not be the best-connected patch.
To study the trade-off between “lowest extinction prob-
ability” and “best connected,” we considered the case

and calculated for 1,000 sets of randomlyn p 5 �T /�eext i

chosen ei and cij for several intervals of these probabilities
( , ; , ; ,0 ! e ! 1 0 ! c ! 1 0 ! e ! 1 0 ! c ! 0.2 0 ! e ! 0.5i ij i ij i

; , ) where we chose0 ! c ! 1 0 ! e ! 0.5 0 ! c ! 0.2ij i ij

for simplicity, thereby getting the strongest effectc p cij ji

of . We found that “lowest extinction proba-� (c � c )j ij ji

bility” very strongly dominates over “best connected,” that
is, largest . In the four above-mentioned pa-� (c � c )j ij ji

rameter intervals, we observed that for 94.6%, 98.2%,
95.2%, and 96.5% of the sets, decreasing the ei of the patch
with the lowest ei gave the largest . For the patch�T /�eext i

with the largest , these percentages were 21.4%,� (c � c )j ij ji

18.9%, 21.2%, and 20.0%, which is insignificant because
for , a total indifference to would given p 5 � (c � c )j ij ji

20%. Figure 3 gives an impression of the relative differ-

ences in for the patch with the lowest extinction�T /�eext i

probability, the second lowest extinction probability, and
so on, and for the patch with the best connections, the
second best connections, and so on. We can see from figure
3A that sometimes choosing the patch with the lowest
extinction probability is not the optimal choice, but the
difference with the real optimum is always relatively small,
whereas choosing a patch with the second lowest extinction
probability may already differ up to a factor of 1,000 with
the real optimum. In figure 3B, we indeed observe that
choosing the best-connected patch does not guarantee at
all that one is even close to the real optimum.

Second Rule of Thumb. Summarizing, we find the fol-
lowing rule of thumb, given that we focus on extinction:
To increase metapopulation extinction time, one should
preferably decrease the lowest local extinction probability.
Only if the extinction probabilities are (almost) equal
should one preferably decrease the local extinction prob-
ability of the best-connected patch, that is, the patch i for
which is largest.� (c � c )j ij ji

Between Which Patches Should the Colonization
Probability Be Increased?

To address this question, we consider the same two ex-
treme situations as above, but now we look for that pair
of patches i and j for which a small increase Dcij in the
colonization probability results in the largest increase in
the metapopulation extinction time; that is, we look for
that combination of patches i and j for which

�Text
Dc (18)ij

�cij



Metapopulation Conservation Rules 397

Figure 4: The percentage of cases (out of 1,000) in which increasing the highest (best), median, and lowest (worst) colonization probability cij has
the largest impact on the metapopulation extinction time for , several e, and all cij randomly chosen in the range (A) , (B)n p 5 0 ! c ! 1 0.4 !ij

, (C) , and (D) . For simplicity, is chosen.c ! 0.6 0 ! c ! 0.2 0.8 ! c ! 1 c p cij ij ij ij ji

is largest. We make the assumption, analogous to equations
(13) and (16), that Dcij is the same for all combinations
of i and j, so in effect, we look for the patches i and j for
which is largest.�T /�cext ij

In the first situation ( for all i and j), we nu-c p cij

merically calculated for 1,000 sets of randomly�T /�cext ij

chosen ei for various values of c and . The resultsn ≤ 7
suggest that one should always “put one’s money on” in-
creasing that cij between the patches i and j with the lowest
extinction probability, that is, the i and j for which e �i

(or eiej) is minimal. Moreover, no difference betweenej

and was observed. In all sets, this result�T /�c �T /�cext ij ext ji

was found.
In the second situation ( for all i), we numericallye p ei

computed for 1,000 sets of randomly chosen cij�T /�eext i

for various values of e and . For these computations,n ≤ 7
matters are more complicated than above. To simplify
somewhat, we chose . Then, in general, an increasec p cij ji

in the largest cij has the greatest impact on the metapop-
ulation extinction time unless the cij are all very small and
e is small (fig. 4). In the latter case, the smallest cij has the
greatest impact (fig. 4C). Furthermore, as e increases, the
percentage of sets in which the largest cij is indeed the one
with the largest impact on Text increases significantly up
to a certain value of e, after which it decreases. This final
decrease can be understood following a line of reasoning
used earlier. When e is very large, metapopulation ex-
tinction occurs before colonization even gets the oppor-
tunity to prolong metapopulation longevity; therefore,
there is no strong preference for increasing any particular
colonization probability as e becomes very high.

Thus, the results suggest that to increase metapopulation
extinction time, one should increase either the coloniza-
tion probability between the patches with the lowest ex-
tinction probability or the highest colonization probability
(unless extinction probabilities and colonization proba-
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Figure 5: Boxplots of with k denoting the kth best, kth best meaning (A) the cij with the kth smallest value of or (B)(�T /�c )/(�T /�c ) e � eext k ext 1 i j

kth highest colonization probability cij, for the 1,000 sets of randomly chosen ei and cij values. Here, , but boxplots for the other0 ! e , c p c ! 1i ij ji

intervals of the parameters mentioned in the text look very similar. Because and , the number of possible values for kc p c �T /�c p �T /�cij ji ext ij ext ji

equals 10.

bilities are very low). Naturally, in a situation where all
parameters differ, the colonization probability between the
patches with the lowest extinction probability will generally
not be the highest. To study the trade-off between “be-
tween the lowest extinction probabilities” and “highest col-
onization probability,” we considered, just as for the pre-
vious question, the case and calculated forn p 5 �T /�cext ij

1,000 sets of randomly chosen ei and cij for several intervals
of these probabilities ( , ; ,0 ! e ! 1 0 ! c ! 1 0 ! e ! 1i ij i

; , ; ,0 ! c ! 0.2 0 ! e ! 0.5 0 ! c ! 1 0 ! e ! 0.5 0 ! c !ij i ij i ij

), where we chose for simplicity. We found that0.2 c p cij ji

“between the lowest extinction probabilities” strongly
dominates over “highest colonization probability.” In the
four above-mentioned parameter intervals, we observed
that for 83.0%, 90.0%, 56.0%, and 92.2% of the sets, in-
creasing the cij of the connection between the patches with
the lowest ei gave the largest . For the connection�T /�cext ij

with the largest cij, these percentages were 14.3%, 12.4%,
21.1%, and 9.8%, which is not significant. Figure 5 gives
an impression of the relative differences in for�T /�cext ij

the connection between the two lowest extinction prob-

abilities, between the two second lowest extinction prob-
abilities, and so on, and for the patch with the highest
colonization probability, the second highest colonization
probability, and so on.

Third Rule of Thumb. To recapitulate, the following rule
of thumb can be formulated, given that we focus on col-
onization: To increase metapopulation extinction time one
should preferably increase the colonization probability be-
tween the patches with the lowest extinction probability.
Only if the extinction probabilities are (almost) equal
should one preferably increase the highest colonization
probability (unless extinction probabilities and coloniza-
tion probabilities are very low).

Discussion

The results of this article lead to three rules of thumb.
First, for most combinations of the local extinction prob-
ability e and the colonization probability c, a decrease in
e will increase the metapopulation extinction time more
than would a comparable increase in c. This suggests that,
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in general, one should focus on decreasing e rather than
on increasing c, even more so when extinctions are cor-
related. This preference for lowering extinction probability
is in agreement with general conclusions in the literature
(e.g., Goel and Richter-Dyn 1974; Drechsler and Wissel
1998). Second, if one focuses on decreasing local extinction
probability, then one should generally select the patch with
the lowest local extinction probability; only if the extinc-
tion probabilities are (almost) equal should one generally
select the patch with the best direct connections in terms
of the largest value of . We expect that the latter� (c � c )j ij ji

criterion works only if indirect connections do not vary
much between patches, such that the sum of direct con-
nections are a good proxy for overall connectivity. Third,
if one focuses on increasing colonization probability, then
one should generally select the colonization probability
between the patches with the lowest extinction probability;
only if the extinction probabilities are (almost) equal
should one select the highest colonization probability, or
at least not the lowest.

We stress that these rules of thumb should be treated
with caution (as should all rules of thumb). We will discuss
some of their limitations below, but first, we want to re-
mark that these rules of thumb show an important sim-
ilarity that may be more robust than the rules of thumb
themselves: extinction appears as a more dominant process
than colonization. The main reason for this is presumably
that extinction is not only important on a generation basis
(i.e., affecting the number of patches colonized by an oc-
cupied patch during its lifetime as an occupied patch) but
also in real time (see also Goel and Richter-Dyn 1974;
Diekmann and Heesterbeek 2000), both of which are im-
portant for the expected metapopulation extinction time.
In contrast, colonization plays a part only on a generation
basis. If an alternative measure of metapopulation per-
sistence is used—such as R0 (the mean number of patches
colonized by an occupied patch in an otherwise empty
environment) and its related, computationally simpler
measures of colonization potential (Etienne and Heester-
beek 2000) and metapopulation capacity (Hanski and
Ovaskainen 2000), or the mean occupancy—the domi-
nance of extinction might disappear. The measure to be
used depends on our management goals and the meta-
population in question. The variable (or colonizationR 0

potential or metapopulation capacity) is a measure of the
resilience of the metapopulation after a catastrophe (fire,
drought, disease), while patch occupancy stresses abun-
dance, not just presence of a species. We chose the expected
time to metapopulation extinction as a measure of per-
sistence because of its easy interpretation and its connec-
tion with real time (in which we live), but we remark that
it may be fairly useless in specific cases, for example, when
catastrophes are likely to occur on a timescale shorter than

the metapopulation extinction time. Furthermore, we need
to stress that the expected metapopulation extinction time
depends on the initial state. We took as our initial state
the quasi-stationary state, which was said to represent
pseudoequilibrium. Pseudoequilibrium seems to be the
most neutral starting point for deriving rules of thumb
for metapopulations in general. One may wonder whether
mathematical pseudoequilibrium corresponds to the eco-
logical pseudoequilibrium we have in mind, but without
a clearly better alternative, the choice seems fair, especially
if we remember that only changes in the metapopulation
extinction time were studied instead of predicted values
for the metapopulation extinction time itself.

From the common denominator in the rules of
thumb—local extinction is more important than coloni-
zation—it would seem that one could conclude that the
metapopulation approach to management is not very ef-
fective; it seems better to manage a single extinction-proof
patch and regard the other patches as a bonus, that is, a
mainland-island setting. Add to this the risks of increasing
colonization (e.g., facilitating spread of pathogens) and
one may have a fairly strong case for a dismissive attitude
toward building corridors and stepping stones. We do not
fully subscribe to this opinion. First of all, as we noted
above, the conclusion may be valid only if we use the
expected metapopulation extinction time as a measure of
persistence, which is debatable on scientific and other
grounds; a high patch occupancy may be politically more
defensible than a long time to metapopulation extinction
due to survival in only a few (perhaps distant) patches.
Second, as the data shown in figure 1D indicate, most
metapopulations have low colonization probabilities, in
which case matters are subtler. Third, such an opinion
disregards the fact that increasing colonization is still ben-
eficial, albeit not as beneficial as decreasing extinction in
most cases, and nature managers may not always have the
option to maintain a mainland or even diminish local
extinction risk at all, especially in a very fragmented land-
scape. In that situation, they should have some idea
whether they should, for example, improve some existing
corridors or build new corridors. So, we think that our
results should dim the enthusiasm for connectivity and
restore the interest in local habitat management, but they
should not lead to rejection of the metapopulation ap-
proach; we need to keep working at multiple scales.

We noted that figure 1D, with values of (e, c) and (e,
c8) calculated from data, calls into question our first rule
of thumb that we should focus on decreasing e rather than
on increasing c. However, the data may not represent clas-
sical metapopulations, and the models used in the cal-
culations assume equal e and c across patches, which is
obviously far from realistic. Moreover, recalling figure 2,
we see, first, that if increasing c is preferred, decreasing e
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is not much less successful than increasing c and, second,
that if one chooses to increase c based on incorrect in-
formation, we may be far from the optimal situation
achieved by decreasing e. In sum, we feel that figure 1D
warns us to be cautious in using the rule of thumb but
no more than that.

When we compared the effect of small changes in the
probabilities (i.e., De, Dc, Dei, Dcij), we assumed that they
were equal. Especially when comparing changes in e and
changes in c, we may be comparing apples and oranges;
they only have in common that they are probabilities in
the same way that apples and oranges are both fruit. A
fair comparison seems possible only on the level of effort
or, indeed, money. If we are to choose between putting a
certain amount of effort or money x on increasing c or
decreasing e, we need to know De and Dc as functions of
x. A similar procedure should be followed with respect to
comparisons between the Dei’s and between the Dcij’s. Un-
fortunately, such a function is not easily formulated. One
may try to relate the extinction and colonization proba-
bilities to measurable quantities such as patch area (Ai)
and interpatch distance (dij); see, for example, Gyllenberg
and Silvestrov (1994), who put ande p exp (�A ) c pi i ij

, with dc the characteristic dispersalexp [�A exp (�d /d )]i ij c

distance, in a discrete-time model similar to the model of
this article but without separation of extinction and col-
onization phases. Yet, even if area and interpatch distance
are considered sufficient to describe extinction and colo-
nization, these relationships are debatable. Moreover, we
still require expressions of DAi and Ddij as functions of x.
Therefore, we deliberately chose to stay on the level of
extinction and colonization probabilities, thus avoiding
these relatively arbitrary choices of the functional forms.
And in fact, there is an alternative option that might in-
corporate some aspects of a function relating De and Dc
to x on this probability level: comparing transformed
changes. For example, we could compare a change in the
local extinction probability for all patches together with a
change in the colonization probability for all connections
together (i.e., all pairs of patches); that is, wen (n � 1)
could require

( )nDe p n n � 1 Dc. (19)

Such a comparison will strengthen the effects of decreasing
e because Dc will be smaller than De for . Anothern 1 2
example is to compare relative changes in the parameters
instead of absolute ones; that is, we could require

De Dc
p , (20)

e 1 � c

which is a mathematical formulation of the intuition that

it will be more difficult to change e when its value is small
than when it is large and, analogously, that it will be more
difficult to change c when its value is close to 1 than when
it is close to 0. The consequence for figure 1A–1C is that
all the lines lie a little higher, start higher for small e, and
end on the –axis at larger values of e, namely, atc p 0

. So this choice would weaken the first rulee p 1 � (1/n)
of thumb, but the region in (e, c)–space where increasing
c is better than decreasing e is still smaller than the re-
maining region. For the second and third rules of thumb,
the requirement analogous to equation (20) becomes

De Dek lp , (21a)
e ek l

Dc Dcij klp (21b)
1 � c 1 � cij kl

for each i, j, k, and l. This may again have a weakening
effect on the rules of thumb. Yet, as stated above, equation
(20) is a mathematical formulation of an intuition, and it
is questionable whether we should trust intuitions in this
case. For example, well-connected patches may be much
easier to connect than poorly connected patches precisely
because of the fact that they are well connected: the in-
frastructure may allow for more connectivity. So, unless
De and Dc as a function of x are known, both equations
(13) and (20) seem quite arbitrary, and we chose the sim-
pler of the two.

Another feature of our analysis needs some attention
here. All our randomly generated sets of probabilities were
based on the uniform distribution, albeit on several dif-
ferent intervals. Ideally, we should have used extinction
and colonization probabilities in real landscapes for real
species, but if we knew these for so many different land-
scapes and species, most of this article would be super-
fluous. Since determining these probabilities is not an easy
task, we are left to use some distribution of these prob-
abilities that we think is fairly realistic. Yet, without strong
arguments for a particular distribution, we chose the (ar-
guably) simplest one: the uniform distribution. Encour-
aged by the limited effect of different intervals, we con-
jecture that different choices still support our conclusions
but in a different degree.

In this article, we have only explored three of many
questions that may be raised in management of metapop-
ulations. There are many more combinations of changes
(in particular, a combination of an increase in colonization
probability and a decrease in extinction probability) than
those we investigated; we tried to pick those that are both
simple and useful. Also, we restricted our study to small
changes in the parameters, although successive small
changes or one large change could lead to different optima.
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Another interesting option would have been to study the
effects of increasing the number of patches, but this dis-
crete change is difficult to compare with small continuous
changes in the probabilities (e.g., how to allocate colo-
nization and extinction probabilities to a newly added
patch). Furthermore, we examined some modifications of
the main model, but many more are conceivable (multiple
species, explicit local dynamics, catastrophes). Neverthe-
less, we believe that this article is a first step toward finding
optimal strategies for nature management of metapopu-
lations. The rules of thumb could act as guidelines or null
hypotheses that need testing in particular cases and could
steer further research, either with different (e.g., using
graph and percolation theory; see, e.g., Keitt et al. 1997;
Bunn et al. 2000; Urban and Keitt 2001) or more detailed

models or, ideally, with empirical data. To our knowledge,
no such model-based null hypotheses were available be-
fore. In addition, we feel that the processes underlying
metapopulation dynamics have been somewhat disentan-
gled and that new light has been shed on the complexity
of the remaining entanglement.
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APPENDIX A

Derivation of Equations (3) and (4)

In this appendix, we give the derivation of equations (3) and (4). Let us start with equation (3). The transition from
k to l occupied patches can take place though extinctions to the intermediate state of i occupied patches and,k � i
subsequently, through colonizations to the final state l:l � i

min (k, l)

P p p p , (A1)�kl ki il
ip0

where i is bounded by the initial number of occupied patches k, on the one hand (no new occupied patches can arise
after extinction), and by the final number of patches l, on the other (there can be no more patches after extinction
than there can be after colonization). Assuming extinctions to be uncorrelated, extinction of patches has probabilityk � i

. If patches go extinct, i patches do not go extinct, which happens with probability . There arek�i ie k � i (1 � e)

k( )i

different ways in which patches can go extinct. Hence,k � i

k i k�ip p (1 � e) e . (A2)ki ( )i

Colonization of patches by the remaining i patches has a probability of the probability of not being colonizedl � i 1 � (
by i patches), that is, . If l patches are occupied in the end, then patches have not been colonizedi l�i[1 � (1 � c) ] n � l
by the i patches remaining after extinction, and this has probability . There arei n�l[(1 � c) ]

n � i( )l � i

ways of empty patches being colonized if there are empty patches. Hence,l � i n � i
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n � i i l�i i n�lp p [1 � (1 � c) ] [(1 � c) ] . (A3)il ( )l � i

If we have correlated extinctions, then equation (A2) is no longer valid. Instead, we suppose that it becomes

k
p p f(e, k, i, r) (A4)ki ( )i

for some function f that describes the probability of patches going extinct and i patches not going extinct whenk � i
extinctions are correlated with some measure of correlation r. To find an expression for f, we need knowledge of the
mechanism that correlates the extinctions. Because this mechanism may be very complicated and our main goal is to
get some insight in how any correlation in extinctions might change our results, we use a more phenomenological
approach that yields an explicit expression for f.

We postulate that the extinction of each occupied patch j is governed by a stochastic variable yj and that extinction
occurs unless yj exceeds some critical or threshold value . We assume, further, that each yj can be written ascy y pj j

, where mj is a constant and u and �j are normally distributed variables with zero mean and variances 2m � u � � jj j

and 1, respectively. This entails that yj is also normally distributed with mean mj and variance . All yj have u in21 � j

common, so u (or equivalently ) measures the strength of the correlation. To obtain a correlation measure with a2j

value between 0 and 1, we define . Suppose we have k occupied patches. From the construction of2 2r p j /(1 � j )
the yj, it follows that the vector is a k-dimensional normally distributed variable with mean vectory p (y , y , … , y )1 2 n

and covariance matrix , where J is a k-by-k matrix with all elements equal to 1 and2m p (m , m , … , m ) Y p j J � I1 2 k

I is the k-by-k identity matrix.
We can now relate the extinction probability ej to the variable yj in the following way:

cy � mj jc c 2 �1�e p P(y ! y ) p F ⇒ y � m p 1 � j F (e ), (A5)j j j j j j( )2�1 � j

where F(x) is the cumulative standard normal distribution in one dimension. Now we want to calculate the probability
that certain patches go extinct while others do not. If we number the patches such that patchesf(e … e , k, i, r)1 k

are the ones that go extinct and do not, this probability f is given by1 … k � i k � i � 1 … k

c c( )f(e … e , k, i, r) p P y ! y for j ≤ k � i and y 1 y for j 1 k � i1 k k j j j j

c c( )p P y � m ! y � m for j ≤ k � i and y � m 1 y � m for j 1 k � i (A6)k j j j j j j j j

2 1/2 �1 2 1/2 �1(1�j ) F (e ) (1�j ) F (e ) � �1 k�i

�p … … N (y, 0, Y)dy,� � � � k
2 1/2 �1 2 1/2 �1�� �� (1�j ) F (e ) (1�j ) F (e )k�i�1 k

where we have attached the subscript k to P to denote that the probability concerns k events, is the normal�N (y, 0, Y)k

distribution in k dimensions with zero mean and covariance matrix Y, and we have used equation (A5). If we now
substitute for all j and use equation (A4) in equation (A1), we get the required equation (4).e p ej

We remark that to facilitate numerical calculation of the integral in equation (A6), one can use Ihm’s (1959) formula,
which in this case reads

�
1 2 2�(1/2)(z /j )� �N (y, 0, Y)dy p e N (y � zd, 0, I)dydz, (A7)� k � � k�j 2pB �� B

with B the k-dimensional domain of integration and d a k-dimensional vector with all elements equal to 1. Furthermore,
one can use the fact that, since we have ,e p ei
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i
ic c h c( )P y ! y for j ≤ k � i and y 1 y for j 1 k � i p (�1) P (y ! y for j ≤ k � i � h), (A8)�k j j j j k�i�h j j( )hhp0

with, evidently, and , which means that if there are n patches, we onlyc cP (y ! y for j ≤ 0) p 1 P(y ! y for j ≤ 1) p e0 j j 1 j j

have to compute integrals to get all possible values pkl.n � 1

APPENDIX B

The Value of e Satisfying Equation (12) and c p 0

In this appendix, we will show that the curves of figure 1A and 1B cross the –axis for . First,(c p 0) e p 1 � 1/(n � 1)
we note from equations (5) and (10) that in the discrete-time case,

�T � 1 1 �lext 2p p , (B1)( ) 2( )�x �x 1 � l l � 1 �x2 2

and that in the continuous-time case,

�T � 1 1 �lext 2p � p , (B2)
2�x �x l l �x2 2

where x denotes any one of the two parameters e and c. Thus, we see that, in both cases, the equality

�T �Text extp � (B3)F F�e �c(e, c) (e, c)

is equivalent to the equality

�l �l2 2p � . (B4)F F�e �c(e, c) (e, c)

Below, we will use the following result from Caswell (1989): for a matrix A with elements aij, left eigenvector w, right
eigenvector v, and a parameter x, we have

�l �a �a�l 12 ij ij2 ¯p p w v , (B5)�� �� i j�x �a �x v 7 w �xi j i jij

where the dot represents the inner product and the bar represents the complex conjugate.

Discrete Time

For any n, when , the second largest eigenvalue l2 of P is , and it has right eigenvectorc p 0 (1 � e) v p
if ( ) and left eigenvector . In this case, Caswell’sT(0, 1, … , k, … , n) e ( 0, 1 k p 0, 1, … , n w p (�1, 1, 0, … , 0)

formula gives
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�P�l 1 ij2 ¯p w v�� i jF F�x v 7 w �xi jcp0 cp0

n �P �P1 0j 1j
p �v � v� j jT F F( )(0, 1, … , k, … , n) 7 (�1, 1, 0, … , 0) �x �xjp0 cp0 cp0

n n�P �1j
p j p jP� � 1jF F�x �xjp1 jp1cp0 cp0

n 1
� 1 n � ii 1�i i j�i i n�jp j (1 � e) e [1 � (1 � c) ] [(1 � c) ] (B6)�� F{ ( ) ( ) }i j � i�x jp1 ip0 cp0

n
� n � 1 j�1 n�jp (1 � e) c (1 � c) j� F[ ( ) ]j � 1�x jp1 cp0

n�1
� n � 1 j (n�1)�jp (1 � e) c (1 � c) (j � 1)� F[ ( ) ]j�x jp0 cp0

�
p (1 � e)[1 � (n � 1)c] ,F�x cp0

where in the last line properties of the binomial distribution are used.
Now,

�l 2 p �1[1 � (n � 1)c]F p �1, (B7)cp0F�e cp0

�l 2 p (1 � e)(n � 1)F p (1 � e)(n � 1), (B8)cp0F�c cp0

so condition (12) is satisfied in ifc p 0

1
e p 1 � . (B9)

n � 1

Continuous Time

When , the second largest eigenvalue is , which has right eigenvector ifTc p 0 l p �e v p (0, 1, … , k, … , n) e (2 r

( ) and left eigenvector . Again, we can compute the derivative of with0, 1 k p 0, 1, … , n w p (�1, 1, 0, … , 0) l 2

respect to a parameter x (er or cr) in this case:
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n n
�l 1 �R �R � �2 ij 1j¯p w v p j p jR p [�e � c (n � 1)] . (B10)�� � �i 1j r rjF F F F F( )�x v 7 w �x �x �x �xi j jp0 jp0cp0 cp0 cp0 cp0 cp0

First, we observe that from equations (11a) and (11b), it follows that

dc d 1r p [� ln (1 � c)] p , (B11a)
dc dc 1 � c

de d 1r p [� ln (1 � e)] p . (B11b)
de de 1 � e

Because

�l �l dc 1 �2 2 rp p [�e � c (n � 1)] p n � 1, (B12)r rF F F�c �c dc 1 � c �ccp0 r cp0 r cp0

�l �l de 1 � 12 2 rp p [�e � c (n � 1)] p � , (B13)r rF F F�e �e de 1 � e �e 1 � ecp0 r cp0 r cp0

equation (12) is satisfied in for .c p 0 e p 1 � 1/(n � 1)
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