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Report of a Private Working Group

Dreumel, The Netherlands, 20-25 September 2000
The Old Rectory, Beccles, England, 9-13 July 2001

John Pope, Niels Daan, Henrik Gislason & Jake Rice

Abstract

We address the issue of wedding fisheries management to ecosystem management and in particular put forward
ideas about the construction of neutral models for investigating community assembly rules and testing
ecological hypotheses. To build a statistical model that mimics the North Sea fish community, we derived
distributions of relevant parameters such as k-dominance curves, maximum length, log abundance and species
richness from survey data. Subsequently, abundance and distribution of 100 species was modelled in MATLAB
based on the lognormal distribution of species abundance observed in the North Sea and varying assumptions of
annual variations in µ, s and in the centre of distribution. The hypothetical community was sampled annually to
investigate temporal developments in emergent properties such as species richness and rarity indices and these
were compared with survey estimates of the same parameters. In addition, an old idea of using MSVPA and
MSFOR results to fit multispecies Schaeffer Models was elaborated, and some ideas are presented on
possibilities to simulate multispecies, size structured communities and on potential measures of level of
exploitation of fish communities as a basis for ecosystem comparison.

----------

1. Introduction

1.1. Terms of reference

The private Working Group set as its own TOR to
have fun in the general area of multispecies models
and ecosystem indices and more specifically to

- discuss the wedding of fisheries management to
ecosystem management;

- provide Food for Thought on the issue of
suitable community metrics for evaluating
effects of fishing and anything else that came to
mind and was found worth pursuing.

1.2. Participation

The first meeting was held from 20-25 September
2000 at Waaldijk 39, Dreumel, The Netherlands and
was attended by

Prof Niels Daan - The Netherlands
Prof Henrik Gislason - Denmark
Prof John G. Pope - Norway (Chair)
Prof Jake Rice - Canada

As a follow-up, a second meeting was held from 9-13
July 2001 in The Old Rectory, Beccles, England.
Regretfully, Henrik could not attend on this occasion.

2. Wedding fisheries management to ecosystem
management

2.1. General musings

Earlier multispecies work within ICES (e.g. ICES,
1980 … 1997; Pope, 1989) focused on one process –
predation -, and really one population dynamics
parameter associated with that process – predation
mortality M2. At the time, this was the right
approach, because the primary goal was to feed
information on internal consumption within the
system into assessment tools of the day, and graft
predation onto single-species fish population
dynamics. The questions asked and uses made of the
work were to improve advice on the sustainability of
fisheries. Did fishing mortality F have to be adjusted
in response to M2, in order to keep total mortality Z
on any (or all) species sustainable? Of course we did
other things than just estimate M2, but our work was
structured around that focus.

The new generation of multispecies work still
has relevance to the earlier class of questions, but
enters a much larger domain of management concern
for biodiversity. Advice covers much more than how
F should be adjusted to keep Z sustainable. The
advisory roles of fishery science expand in two ways:
conservation questions are posed about non- target
species of fisheries, and about perturbations other
than fishing. The proximate example of such
expansion raised at the meeting (Daan, 2001) was a
desire by managers to have objective methods for
identifying what was a truly rare species that
warranted particular protection for conservation of
biodiversity, and what areas were particularly
important as hotspots of biodiversity.
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Many other similar issues loom in the near
future. Fishery science can make two general types of
contributions to the scientific advice on these issues:
• Building up realistic, empirically based expectations
of what can and does happen in marine ecosystems –
so managers can know whether or not a particular
problem really exists and in need of a solution;
• Testing the likelihood that management actions
under consideration will actually improve an
undesirable situation or cure a particular problem, if
one has been shown to exist.

Both of these contributions require having a
quantitative handle on (and subjective understanding
of) what are "expected states" of vectors and
processes, and "normal" rates and patterns of change
in them, so Null Hypotheses can be tested, and
deviations from "expected" conditions can be
evaluated. Our ability to make important and unique
contributions comes from three factors. We have
access to and familiarity with important data sets,
methods of data analysis, and modelling approaches
and methods. These contrast markedly with the
perspectives and tool-kits of "conservation
biologists" coming into marine ecosystems from
terrestrial ones, who are used to working in strongly
habitat-o-centric contexts.

2.2. Musings specific to the PWG

Tasks considered worthwhile:
1) Refine the questions that ecosystem managers /

biodiversity conservers, etc should be asking;
2) Move our modelling efforts to enable construction

of neutral models for investigating community
assembly rules and testing ecological
hypotheses;

3) Determine what rules are necessary and
sufficient conditions for simulating communities
that are statistically indistinguishable from the
available survey data for the North Sea; this will
involve both the neutral modelling in (2) and
some careful thinking about what statistical tests
are actually appropriate for drawing inferences
about how similar is similar "enough".

Pitfall:
Countless ecological questions, avenues for
modelling, and opportunities for descriptive and
sometimes even hypothesis testing data analyses
arise. With all of us lacking infinite time with which
to pursue things, which ones matter? Why do they
matter?

Opportunities:
• Does the Daan (2001) rarity index (see section 5.1)
have properties that are robust to sampling intensity
and to different ways in which a species may be
’rare’ (any µ & low σ; low µ and any σ; )
• Are there spatial hotspots for rarity? Is the index a
good tool for picking them up? Is the suggestion that

rarity is more likely on the margins of the North Sea
a process feature of the system or an artefact?
• Is the North Sea system being (has this system
been) perturbed anomalistically in the recent (any)
period, by intensification of F, climate change, etc?
What degree of change would be expected without
anomalous forcing? The latter question involves
looking at inherent turnover rates of the system
annually:

by species as present / absent
at IBM scale, dis-aggregated by species
at IBM scale, dis-aggregated by size class.

[NB. IBM – Individual-Based Model]

2.3. Narrative on neutral modelling – reasons,
approaches, ideas

Why do we do it? We want to build non-biased and
quantitative "expectations" of what the North Sea fish
fauna would look like, and how it would change,
given a known structure. The structure is known
because we build it up from the bottom. The less
structure that is hard-wired into its construction, the
more powerfully it can test whether a particular
process is necessary (or sufficient) to account for
patterns observed (e.g., do we have to structure in a
correlation between mean abundance of a species and
breadth of its distribution before a fauna which
"looks like" the real fauna can be simulated?). Do
complex properties – like patterns of richness in
space, and mixtures of common and rare species in
plots – "emerge" from very simple rules, or must they
be hard-wired in to be reproduced? In using models
to increase our understanding of what really causes
the structure and functioning of the North Sea, it is
important to hard-wire in as little as possible –
otherwise we get out what we structured in, and only
prove that we can program correctly.

At the same time, neutral models are only
informative if they DO produce reasonable
behaviour. Hence it is important to think what
constraints have to be met, before behaviour is
considered "reasonable". We started fitting the k-
dominance curve, but that only constrained us to get
the abundance of the most common 5-7 species
correct. We learned by doing that we should have a
frequency distribution of numbers of species by (say
ln) abundance class as a constraint, and fit the whole
distribution (testable with a chi-square, as long as we
are unrealistic about numbers of bins). We also
chose, as a constraint, to fit the frequency distribution
of numbers of species per rectangle (also testable
with a chi-square) – get the right number of species
with narrow distributions, wider ones, etc. Finally,
during the simulations it quickly became clear that
many models had difficulties reproducing the
relationship between the number of rectangles
occupied and ln(abundance), with breadth of
distribution increasing more slowly with abundance
in the models than was the case in the IBTS data.
This also became a criterion for accepting a model as
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a reasonable representation of the system. When
constructing neutral models, it is always important to
consider how many constraints are necessary before
results of a simulation are "reasonable" enough to be
informative about the real system of interest. We
concluded that at least as a first step, we would have
informative simulations just by fitting these two
constraints. From simulated communities that met the
specified constraints we could calculate rarity index
values by species or rectangle, and with multiple
iterations construct an expected distribution for this
community parameter. Locating the observed values
from the IBTS survey on the expected distribution
from the simulations allows the probability of the
observed values to be tested relative to the null
hypotheses that neither specific species are more rare
nor selected rectangles support more rare species than
is expected by chance.

The utility of neutral model simulations in
constructing expected distributions for community
parameters is only one benefit of constrained neutral
models, however. The work of developing
simulations which fit the chosen constraints sheds
light on a number of ecological questions about how
the North Sea fish community is put together. For
example, we should first ask if we can fit the
constraints with µ’s and σ’s in Section 2.2 drawn
from specified and smooth distributions? By using
the least amount of information from the actual
observations, this would be hardest to do, but most
general, indicating that there was a strong underlying
regularity to the community as a whole. If we failed
to fit the constraints assuming µ’s and σ’s were
drawn from some regular distributions, could we fit
the constraints by re-sampling the vector of observed
µ’s and smoothly distributed σ’s (next hardest) or re-
sampling independently on observed vectors of both
parameters? If it was necessary to input the observed
vectors of either µ or s in order to match the North
Sea surveys, then we would have established that
there was no underlying regularity to either mean
abundances or breadths of distribution of the full
community. However, we would have also
established that µ’s and σ’s are independent in the
real North Sea; that is breadth of distribution is
independent of abundance. If we still failed to fit our
constraints with independent sampling of µ’s and σ’s,
then we would have established that is was necessary
to force even more structure directly on the
simulation. The first alternative would be by drawing
µ’s and σ’s from specified distributions, but with a
correlation, or, if that simulation failed to fit the
constraints, re-sampling the observed vectors with a
structured correlation. Note that the sequence of
simulations attempts to add as little structural
complexity as possible at each step, so results are
maximally information about the degree of
underlying structure in the real community. These
ecological insights are a valuable companion to

developing the simulation tool needed to construct
the expected distribution of the rarity index.

The stress on keeping the simulations as
structurally simple as possible is only good science:
many different and incompatible explanations that
are more complex than the most parsimonious one
can always be reconciled with a data set. However,
the need for parsimonious models does not prevent
the simulations from getting more complex over
time. As we learn more from simple ones, we are
likely to ask more complex questions. This is also
good science, as long as we keep adding additional
constraints, relevant to our new and more complex
questions, so models with incorrect representations of
the additional processes can be rejected efficiently.
Two of the things which may be added early include
capturing the patterns of length in community
composition and simulating the effects of interannual
variation around µ especially relative to the patterns
produced by repeated annual realisations of σ.  The
former would require fitting some additional
constraint regarding size-based properties of the
community, whereas the latter would require fitting
some interannual patterns in distributions of
abundance, species per rectangle, or other relevant
properties. Correlation of simulation parameters, and
things like adding a contagion or exclusion parameter
to placing centres of simulated distributions, are other
directions of complexity likely to be explored in
future. Further down the road, trophic roles, life
history features, and similar things, may be explored.

The added structure to the simulations is not an
end in itself – this is not a test of how many factors
we can add to our model. Each step has to be
preceded by careful formulations of what hypothesis
we are trying to test, and what constraints are
adequate to be confident we can reject incorrect
model formulations. These tasks are not always
straightforward. Just saying that our initial goal was
to examine the reliability of the rarity index did not
give us a clear idea of what simulations would do that
task. However, as illustrated in section 6, the
development of the simulations provided a number of
insights into the structure of the North Sea fish
community.

Such work is necessarily accompanied by giving
a lot of thought to how existing data can be used to
test against model simulations. This stimulates new
ideas about how the survey data sets can be
aggregated or broken down, re-sampled, and
standardized. It also requires creative thinking about
statistical tests that can be used in these multiple
directional studies. These are both important
additional benefits of undertaking a neutral modelling
approach to exploring community structure.
Particularly by stimulating to look at data in novel
ways, we can get much greater mileage out of work
already done. These tasks also require that we all
have the data available in highly dis-aggregated form,
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so they can be collapsed along different axes for
different types of questions.

3. Using MSVPA and MSFOR results to fit
Multispecies Schaeffer Models (or a little knowledge of
matrix algebra is a dangerous thing!).

Simple representations of the yield surface (Pope,
1989) indicate how a multispecies Schaeffer model
can be constructed using the values of changes in
fleet and species yield Y(s,f), for n species s and m
fleets f. consequent on 10% increases in each of the
fleets in turn as estimated from the MSFOR model.
These are used as estimates of ∂Y(s,f)/∂E(g) where g
can be any of the m fleets in the model.

We have from the multispecies Schaeffer model,

Y(s,f) = a(s,f)*E(f)+Σall gb(s,f,g)*E(f)*E(g). [3.1]

Hence, if g π f then

∂Y(s,f)/∂E(g) = b(s,f,g)*E(f), [3.2]

or if g=f then

∂Y(s,f)/∂E(f) = a(s,f) + 2 b(s,f,f)*E(f). [3.3]

If current effort is taken as unity (i.e. as a base line
level) then with values at the current equilibrium
denoted by prime’ these equations become:

Y’(s,f) = a(s,f) + Σall g b(s,f,g), [3.4]

for g ≠ f

∂Y’(s,f)/∂E’(g) = b(s,f,g), [3.5]

and for g = f

∂Y’(s,f)/∂E’(f) = a(s,f) + 2 b(s,f,f). [3.6]

Thus for an n species and m fleets there are n*m
a(s,f) terms and n*m*m b(s,f,g) terms. These may be
solved for using the n*m equations [3.4] above and
the n*m*m equations [3.5] and [3.6] above. Note that
equation [3.5] gives b(s,f,g) directly if g π f. Then the
equations [3.4] and [3.6] are used to solve for a(s,f)
and b(s,f,f). Alternatively these may be solved
directly by linear algebra. The resulting multispecies
Schaeffer model can be used to solve for MSY, F0.1
and other reference points (ICES, 1989).

The above approach draws on the equilibrium
solutions available from MSFOR. However, it should
be possible to calculate these directly from MSVPA
results providing one is prepared to accept say a ten
year average of biomass and yield as a steady state
[we do so in grateful memory of Rodney Jones].

If we have n fleets such that

F’(s,a) = Σall f q(s,a,f)*E’(f), [3.7]

then if B(s,a) is the average annual biomass of
species s at age a, we may write:-

Y’(s,a,f) = q(s,a,f)*E’(f)*B’(s,a), [3.8]

if g π f,

∂Y’(s,a,f)/∂E’(g)=q(s,a,f)*E’(f)*∂B’(s,a)/∂E’(g) [3.9]

or if g = f,

∂Y’(s,a,f)/∂E’(f) = q(s,a,f)*E’(f)*∂B’(s,a)/∂E’(f)
                                  +  q(s,a,f)* B’(s,a). [3.10]

Thus, given estimates of ∂B’(s,a)/∂E’(f) we can
estimate ∂Y’(s,a,f)/∂E’(g). These may be summed to
give ∂Y’(s,+,f)/∂E’(g), where + indicates summation
over the suffix. We may then use these to estimate
the parameters of the multispecies Schaeffer model as
with equations [3.4]-[3.6]. The attraction of the
current route is we may include features such as stock
recruitment not used in the existing MSFOR runs.
What follows closely mirrors Pope’s (1989) working
paper going straight for the Jacobian (Jonesian?).

To estimate ∂B’(s,a)/∂E’(g) consider

B’(s,a,f) = Wt(s,a)*Recruits*exp(-cumF-cumM1-
                  cumM2(s,a)), [3.11]

where cum denotes summation over all ages <a and
allowing 0.5 *{F or M1 or M2} at age a, as an
approximation to the equation of average biomass
{i.e., taking exp(-Z/2) as an approximation to (1-
exp(-Z))/Z}.

Further assume a power curve formulation of the
stock recruitment relationship

Recruits=α*SSB(s)β, [3.12]

|{∂B’(s,a)/∂E’(g)}Y*/B’(s,a)|=|β(s)|*|PropSSB(s,a)|*
       |{∂B’(s,a)/∂E’(g)}/B’(s,a)|-|CUM|*|q(s,a,g)|
      -|CUM|*|M2(s,a,S,A)|*
       |{∂B’(s,a)/∂E’(g)Y*)P}/B’(s,a)|, [3.13]

where:-
• |{∂B’(s,a)/∂E’(g)}/B’(s,a)| is a sa (the number of

s,a combinations) by m matrix,;
• |β(s)| is a diagonal sa by sa matrix containing the

S/R power value for species s,
• |PropSSB(s,a)| is a sa by sa matrix containing a

series of diagonally positioned square matrixes
referring to each s block of ages and containing
the proportion each of the species contributes to
its SSB (i.e. terms of
Wt(s,a)*Fecundity(s,a)*B(s,a)/SSB(s)).

• |CUM| is an sa by sa matrix of sub-diagonal
blocks of ones and diagonals of 0.5 (such as to
sum up all ages ã<=a),

• |q(s,a,g)| is a sa by m matrix of catchabilities.
• |M2(s,a,S,A)| is a sa by sa matrix containing the

current M2(s,a,S,A) of predator S,A on prey s,a.
This can then be solved as

|∂B’(s,a)/∂E’(g)| = -|B(s,a)|*[I-|α(s)|*|PropSSB(s,a)|
  +|CUM|*|M2(s,a,S,A)|]-1*|CUM|*|q(s,a,g), [3.14]



PWG Report - 5 -

with |B(s,a)| as a sa by sa diagonal matrix containing
B’(s,a) and I as an identity matrix of dimension sa.
These equations may be summed to give
|∂B’(s)/∂E’(g)| and these used in lieu of MSFOR
estimates of gradient in equations [3.5] and [3.6].

Given estimates of a(s,f) and b(s,f,g) these may
be summed for f to give

a’(s)=a(s,+) [3.15]

and

b’(s,g) = b(s,+,g). [3.16]

Because

Y(s,f)=B(s)*E(f), [3.17]

using [3.1] we may write,

B(s)= a(s,f) + Σall g b(s,f,g)*E(g). [3.18]

Summing for the p(s)≤n cases where Y(s,f)≠0, we
obtain

|p(s)|*|B(s)|=|a’(s)| + |b’(s,g)|*|E(g)|, [3.19]

where |p(s)| is a diagonal matrix of size n, where
|B(s)| and |a’(s)| are column vectors of length n,
where |b’(s,g)| is a n by m matrix and where |E(g)| is
a column vector of length m. In the simple case
where n=m and where |b’(s,g)| is non singular we
may write

|E(g)|= |b’(s,g)|-1*|a’(s)| - |b’(s,g)|-1*|p(s)|*|B(s)|. [3.20]

Thus,

|b’(s,g)|-1 *|a’(s)| = γ(s) [3.21]

and

|b’(s,g)|-1 *|p(s)| = η(s,r), [3.22]

the constants of the multispecies Schaeffer model as
expressed in biomass B(s), B(r) terms. This
formulation is also used in the AD model builder fits
(section 4).

Where n<m or n>m or where |b’(s,g)| is singular,
we will have to use pseudo inverses of |b’(s,g)| to
obtain similar, but in the case of m<n, non-unique
estimates of γ(s) and η(s,r).
[NB. This may be related to the estimatability of the γ(s) and
η(s,r). If the fleets do not span the n dimensional vector space of
species - because there are fewer distinct fleets than there are
species - then we cannot hope to uniquely identify the γ(s) and
η(s,r), unless perchance, the non-equilibrium case gives additional
information. There would probably be utility in choosing as many
fleets as there are species. Note that predators might be treated as
an additional fleet. ]

"And yet methinks, I own this hope as rare,
since non equilibrium doth but equilibrium repair?"

Given that we establish g(s) and h(s,r) (either via
equations [3.4]-[3.6] or by [3.4], [3.10] and [3.13],

then we could enter the fitting procedure described in
section 4 with specified values of these parameters
and see how much they need to be modified to fit
interactions to account for non- (or wrong) predation
interactions and for climate effects on the model! The
route through equations [3.4]-[3.6] is simpler but that
through [3.4], [3.10] and [3.13] allows more flexible
choice of fleets and also the inclusion of various
stock recruitment relationships from constant to
linear increases with a very minimal knowledge of
the SR terms.

4. Using a multispecies surplus production model
to describe population dynamics and species
interaction.

4.1. Introduction

At one of the meetings of the Multispecies
Assessment Working Group, a multispecies Schaefer
model (Pope, 1979) was fitted to results from
MSFOR predictions of +/-10% changes in fishing
effort in the various North Sea fisheries. The model
was subsequently used to predict changes in species
and fleet yield as a function of effort and to estimate
multispecies reference points (ICES, 1989). When
the output was compared to MSFOR, the predictions
from the two models were quite similar even for
changes in fishing of up to +/-50% from the status
quo. This raises the question whether simple
biomass-based models can be used as a substitute for
complicated multispecies models such as MSFOR
when insufficient data are available to run the latter.

So far the parameters of the multispecies
Schaefer model have only been estimated from
MSFOR predictions for the North Sea. However,
attempts to estimate the parameters of simple
multispecies biomass-based models elsewhere (e.g.
Collie and deLong, 1999) suggest that biologically
meaningful values for the interaction coefficients can
be derived from time series of yield and effort data. It
was therefore decided to investigate whether the
parameters of the multispecies surplus production
model could be estimated directly from fishing effort,
CPUE and biomass data from the North Sea.

4.2. Model structure.

According to Quinn and Deriso(1999) the single
Schaefer surplus production model can be written as:

dBi/dt = ki(1–Bi/Ki)*Bi–Fi*Bi [4.1]

where B i is the biomass of species i, ki is an intrinsic
growth parameter, Ki is the carrying capacity, and Fi

is the fishing mortality.
Adding a species interaction term to this

equation to account for predation and/or food
dependent growth, and a term to account for the
natural mortality caused by predators not included in
the model, produces:
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dBi/dt = ki(1–Bi/Ki)*Bi–Fi*Bi-Σ dI,j*Bi*Bj-OMi*Bi [4.2]

where the sum runs over all other species groups, j
(j≠i), and OMi is the natural mortality of species i
caused by other predators.

Schnute(1977) suggested to rearrange the
equation to:

dBi/Bi = ki(1–Bi/Ki)*dt–Fi*dt-Σ di,j*Bj*dt-OMi*dt [4.3]

for which an analytical solution can be found.
By integrating from time t to t+1 and replacing

the integral of Bi from t to t+1 by the average
biomass, Bi,av, the solution can be written as:

Ln(Bi,t+1/Bi,t)+Fi+OMi,t,t+1=ki–(ki/Ki)*Bi,av-Σ di,j*Bj,av [4.4]

or by substituting biomass by cpue, U, and F by
effort, E, and adding an error term, as:

Ln(UI,t+1+1/UI,t ) = ki-ki (Ui,t +Ui,t+1)/(2qiKi)
      –qi(Ei,t+1+Ei,t)/2-OMi,t,t+1-Σ di,j*(Uj,t+Uj,t+1)/2+εt [4.5]

4.3. Parameter estimation

The model was written in AD model Builder and
fitted to MSVPA estimates of log biomass ratios,
average biomasses and average fishing mortalities for
the period 1974-1994. Initially all 10 species were
included, but although estimates of the (110)
parameters could be derived, the associated standard
deviations were high, and many of the parameters did
not seem to have a biologically meaningful sign and
magnitude.

Table 4.1. Parameter estimates from the simple 3 species
groups model.

# Objective function value = 1.78621
   Maximum gradient component = 2.21109e-05
# k: 0.61 0.23 1.41
# d: 0.05 -0.14 0.01

0.17 -0.27 0.14
0.92 -0.14 -0.24

According to Pope (1979), the sum of the
Schaefer curves of individual species should conform
to a Schaefer curve provided the fishing mortalities
of the species are linearly related. The species were
therefore grouped into roundfish (cod, haddock,
saithe and whiting), pelagic (herring and mackerel),
industrial (sandeel and Norway pout) and flatfish
(plaice and sole). The model was fitted to ln biomass
ratios using the sum of the removal rates (catches and
other predation) and average biomass for each group.
The parameter estimates for flatfish were highly
variable and added little explanatory power to the
overall model. This group was therefore removed
leaving three major species groups to be modelled
and 12 parameters, i.e. three k’s and 9 d’s (including
the ki/Ki term), to be estimated. In addition, a run in
which the k parameter was assumed to change
gradually over time was attempted. In this run k was

modelled as a random walk and updated according
to:

ki,t+t = ki,t * exp(ki) [4.6]

where ki is a normally distributed random variable
with 0 mean and a variance which was assumed to be
5 times less that the variance of the log biomass
ratios.

4.4. Results

Parameter estimates from the three species groups
model are given in table 4.1. Some of these differ
from expectations. The intercepts are all positive, but
the diagonal in the d matrix, that expresses how the
rate of biomass change depends on the biomass of the
species itself (ki/Ki term), contains negative values. A
negative value in the diagonal introduces a positive
biomass squared term producing a positive feedback
on the biomass of the species itself. In the model, a
negative value in the diagonal is therefore likely to
lead to unstable population dynamics.

Table 4.2. Parameter estimates from the random walk
model.

# Objective function value = 1.29
   Maximum gradient component = 8.14e-05
# k: 0.62 0.29 7.34

0.63 0.29 6.79
0.63 0.29 5.76
0.61 0.29 5.07
0.62 0.29 4.94
0.61 0.30 4.90
0.62 0.30 5.06
0.62 0.30 4.62
0.63 0.30 4.89
0.64 0.30 4.52
0.64 0.30 4.71
0.65 0.30 4.32
0.65 0.29 4.46
0.64 0.29 4.34
0.63 0.28 3.94
0.63 0.28 4.01
0.63 0.28 3.91
0.64 0.28 3.91
0.66 0.29 3.97
0.67 0.29 3.96
0.66 0.29 4.11

# d: -0.002 -0.133 0.028
-0.159 -0.252 0.142
1.999 0.206 0.177

The observed change in average biomass over
time is compared to the output from the simple model
in Fig 4.1. For the roundfish and pelagic groups the
model provides a fair description of the change over
time, while the fit to the industrial species is less
convincing.

When the biomass growth parameter, ki, is
allowed to change over time, the fit to the biomass of
industrial species improves considerably. In this run,
the ki parameter for the industrial species declines
over time to approximately half its initial value (table
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4.2). For the roundfish and pelagic species the
parameter stays reasonably constant and for these
species groups the results change only slightly (Fig.
4.2).

The parameters are less unrealistic (table 4.2),
but will still produce very low (and in some cases
negative) virgin biomasses, in particular for the
roundfish group.

4.5. Discussion

Unfortunately none of the models produced realistic
parameter estimates. Several explanations are
possible. The models may be too simple to capture
the changes in biomass production that have
occurred. Simple Schaefer models cannot capture
fluctuations in recruitment success due to
environmental changes and cannot account for the
influence of changes in age composition on the rate
of biomass growth. However, even when the
instantaneous rate of biomass production was
allowed to change with time, parameter estimates
were still unrealistic. Another possibility is the
lumping of species into larger functional groups
(roundfish, pelagic and industrial). This is only valid
if the fisheries for the individual stocks within each
of these groups develop in parallel. Considering the
changes in the North Sea fisheries that have occurred
between 1974 and 1994 this is perhaps not a feasible
assumption. Finally the time series of observations
may have been too short and without sufficient
contrast. Further analysis on a larger set of data will
be necessary before the usefulness of the approach
can be thoroughly evaluated.
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Fig. 4.1. Predictions of biomass from the simple
multispecies surplus production model.
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Fig. 4.2. Predictions of biomass from the multispecies
surplus production model with a time varying instantaneous
rate of biomass growth.
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5. The North Sea fish community as viewed by
trawl surveys

5.1. Introduction

The concern of conservationists for maintaining or
restoring biodiversity is directly linked to the issue
of endangered species, which are defined either by
intrinsic rarity or by declining trends. The
traditional measures of biodiversity (species
richness, Shannon-Wiener, evenness) are aimed to
characterize communities in a way that allows
comparison within and across ecosystems in terms
of spatial and temporal differences, but have the
disadvantage that they cannot be decomposed into
the contribution of individual (rare) species.
Actually, within an area, species composition
might change completely without necessarily
having an effect on the value of any of these
indices, i.e. any metric may represent a large
variety of community configurations. Similarly, the
value itself does not give a clue as to whether the
situation is satisfactory from a management point
of view. In fact, although the general perception is
that less interference of human activities will result
in higher biodiversity, there are numerous
examples where the observed effect is reversed.
Altogether, they do not provide objective criteria
that may be used unambiguously in management.

In response to a request to derive quantitative
spatial and temporal measures of rarity of North
Sea fish species, Daan (2001) developed a rarity
index that takes into account both abundance and
geographical extent of the distribution area of all
species that composed the community. An
important characteristic is that the index can be
used to describe spatial and temporal differences in
the contribution of rare species to the total
community, but that it can also be decomposed in
the constituting species. On the other hand, the
index describes patterns within a particular data set
(obtained with specific gears and thus reflecting all
the problems generally related to variations in
catchability: it characterizes the community as
perceived through the gear!) and has no meaning
for comparing different systems. An essential
feature is that extensive data from routine
monitoring programmes (fish surveys) are
available, because paying extra attention to rare
species requires that enough observations are
available to estimate their rarity!

Although the analysis revealed some clear
patterns in the geographical and temporal
distribution of rare species, the question arises to
what extent the index is affected by the existing
geographical and temporal variations in sampling
intensity, which are large. Our aim was to
investigate this problem by simulating a North Sea
fish community and then sample this artificial
community to find out what kind of deviations
might be observed in the index (see section 6).

However, the reconstruction of a ‘typical’ North
Sea community requires that the simulation model
should be parameterized according to features
observed in the data. Apart from this specific
application, such a simulation model might serve
many other purposes.

This section provides information on the North
Sea fish community that was considered pertinent
to the modelling exercise. The database is the same
as used by Daan (2001) and includes 24 412 valid
hauls from 3 different surveys. The data set was
restricted to 91 taxa comprising truly North Sea
species (spawners and migrants). Vagrants as well
as species with apparently a very low catchability
were excluded. Species with major identification
problems were grouped to the genus level.

5.2. K-dominance curve

K-dominance curves represent a measure of
relative abundance and rarity of the species
constituting a community. The estimated curve for
the North Sea (fig. 5.1) shows a steeply ascending
slope, that suddenly bends off into an extended flat
tail. The six most abundant species make up more
than 90% of the total abundance. These are all of
commercial interest, although the dab is only
marginally so. The 15 most abundant species out of
91 reported represent 99% of all fish caught.
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1 11 21 31 41 51 61 71 81 91
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Fig. 5.1 K-dominance curve North Sea fish community.

5.3. Relation between range-size and density rarity

Daan’s biodiversity index integrates two aspects of
rarity that are not independent and therefore we
investigated the relationship between the
percentage of rectangles in which species have
been caught and the average numerical abundance
(fig 5.2). Although there is a clear overall
relationship that can be described by a simple
polynomial function, the scatter of points around
the line is quite pronounced, especially in the mid-
range of the observed abundance. This by itself is
an indication that it is worthwhile to combine the
two aspects into one integrated index.

The question arises, whether there are general
biological characteristics of individual species that
affect the estimated relationship. One obvious
possibility is the size of the species, because
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dispersion may be expected to depend on
swimming ability. Therefore, the residuals from the
fitted line were plotted against the maximum size
of the individual species derived from Wheeler
(1978) and Knijn et al. (1993).

y = 0.0036x2 + 0.0113x - 0.0174
R2 = 0.73

0%

20%

40%

60%

80%

100%

0 4 8 12 16

LN Abundance

Fig. 5.2 Relationship between % of rectangles where
observed and LN abundance with fitted polynomial.
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Fig. 5.3 Residuals of polynomial fit plotted against
species L-max.

Fig 5.3 reveals that the residuals among the
smaller species (roughly L-max <50 cm) were
mostly negative, whereas they were mostly positive
for intermediately sized fish.

Consequently, making a distinction between
small and large fish revealed markedly different
responses in the relationship between percentage of
squares where species were caught and their
numerical abundance: small fish species are found
in larger densities over smaller areas than expected
from the mean and vice versa for large fish (Fig.
5.4). In both cases, the variance explained
increased significantly (R2=0.79 and 0.81,
respectively) compared to the total set (R2=0.73).

A similar plot where pelagic fish were
contrasted with benthic/demersal species revealed
that the latter were more wide-spread in lower
numbers (Fig. 5.5). Although this seems to be
counterintuitive, there may be confounding with L-
max, because many pelagic species are relatively
small. The variance explained was high for pelagic
species (R2=0.87), but the value for

benthic/demersal species (0.71) was lower than for
all species combined. No differentiation was
observed between strictly benthic (e.g. flatfish) and
demersal species (e.g. gadoids). However, the issue
needs further investigation, because other aspects
may be confounded with size as well, such as depth
range.
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Fig. 5.4 As fig 5.2, but for species with high and low L-
max separately.
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Fig. 5.5 As fig 5.4, but for benthic/demersal and pelagic
species separately.

5.4. L-max

L-max is an important ecological parameter that is
for instance related to predator-prey interactions
and r/k strategy. Therefore, the frequency
distribution (FD) of L-max among the species
constituting a community would seem a relevant
community metric (Fig 5.6). On an arithmetic
scale, there is a marked dip just above 70 cm, but a
LN transformation suggests a lognormal
distribution.

It should be noted that L-max is a somewhat
arbitrary measure based on hap-hazard
observations. The Bertalanffy growth parameter L∞
would seem more appropriate as a population
average, but estimates are not readily available for
many species. Moreover, both L-max and L∞ may
be biased when derived from heavily exploited
populations that have little chance to reach their
‘normal’ size.
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Fig. 5.6 FD of L-max among 91 North Sea fish species:
(top) by arbitrary classes, (bottom) by LN classes).

5.5. LN abundance

Another important community characteristic is how
the average abundance is distributed among the
different species (Fig 5.7). Taking the overall mean
abundance over 30 years (a) gives quite a different
picture from the means of the annual FD (b).
Although the pattern of the latter seems to be more
regular, there is a clear over-representation of the
lowest abundance class (i.e extremely rare species).
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Fig. 5.7 FD of number of species (a) by LN mean
abundance class and (b) by average LN abundance by
year.

Based on the annual FD, we also related the
standard deviation of the means to the mean LN
abundance of all species (Fig. 5.8). For the rare
species (LN abundance <4), the sd appeared to
increase linearly with LN abundance (sd equal to
the mean; i.e. Poisson distribution), while the sd
clearly decreased for the more abundant species.
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Fig. 5.8 Relationship between the standard deviation of
the mean LN abundance and mean LN abundance by
year.

5.6. Species richness

Fig. 5.9 presents the FD of the average percentage
of rectangles fished that yielded a particular
number of species. The top panel shows the raw
data whereas the bottom panel is corrected for
sampling intensity. The correction is based on 100
trawl hauls assuming a constant slope for the
relationship between species richness and sampling
intensity (see Daan, 2001). The difference signifies
the importance of taking sampling intensity into
account when dealing with species richness, but a
more sensible correction factor might have to be
based on bootstrapping.
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Fig. 5.9 FD of % of rectangles with different species
richness classes (a) uncorrected and (b) corrected for a
standard sampling intensity of 100 hauls.
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Another way of viewing species richness is
how many species were found in which percentage
of rectangles (Fig. 5.10). On an annual basis (a), a
very high percentage is observed in a small number
of rectangles and the distribution drops off rapidly,
but the ranges observed in the (cumulative) annual
FD (b) indicate that variation among years is rather
small. The overall picture based on all data
combined (c) is flattened compared to the FD based
on annual data, which emphasizes that the
distribution areas of all species are better defined
when data are combined. If we could fish hard
enough, all species might be encountered
everywhere!

Obviously, species richness in the marine
environment is not as straight forward as in
terrestrial ecology, because we have only indirect
observations that depend on limited sampling.
While we can be confident that a nest of an osprey
may not have been overlooked, catching the last
mature skate is a different matter.
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Fig. 5.10 FD of (a) the annual percentage of species
observed in percentage of rectangles, (b) the range
observed in these cumulative distribution.s, and (c) of the
overall percentage combining all 30 years.

5.7. Species richness and LN abundance

A question arising was whether the number of
species per rectangle is somehow related to the
overall abundance of fish (Fig 5.11). Plots were
made both for the uncorrected number of species
and the number that would have been caught in 100
hauls in each rectangle. Although the correlation
for the corrected richness is slightly lower, both are
highly significant. However, the explained variance
is low and the correlation appears to be driven
largely by the lower end of the distribution of LN
abundance, where actually the low number of fish
caught might set an upper limit to the potential
number of species caught.

It should be noted also that gear efficiency is
partly a function of the catch. While a codend
without fish may just swirl over the bottom, as
soon as fish have been collected in the net, the gear
assumes the shape that it has been designed for.
This may bias survey data in areas where there are
relatively few fish in the first place.
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Fig 5.11 Species richness by rectangle vs LN abundance
of all species combined: (a) corrected for sampling
intensity (100 hauls), (b) uncorrected.

5.8. Discussion

The analyses presented here should be seen as a
first attempt to describe the North Sea fish
community in statistical terms. In fact, the most
important reservation is that we can only see the
community through the catches of the gear used,
and we can be certain that catches of any gear will
never mirror the true abundance in the sea. Among
all commercially exploited species, sandeels yield
the highest catches and probably represent the
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single-most abundant taxon in the North Sea fish
community. Nevertheless, they do not show up in
large numbers in our catches. Whether this matters
depends on the questions asked. If one wants to
model the food web quantitatively, it is obvious
that each species should get the proper weight to
allow predictions of what effect exploitation may
have on the system. However, it is an equally valid,
and much easier, approach to model the system as
we can view it through the catches of a survey gear
and try to understand what has caused the changes
observed. Of course, our picture will be biased, but
our perception of the changes may not be. From a
management point of view, it would seem useless
to try to manage things, which cannot be seen and
more appropriate to concentrate on those things
that can be observed, even if this does not mirror
the true world.

However, one important restriction of
accepting bias is that the bias should not vary. In
practice, this means entirely consistent data
collection: doing things wrong is not bad as long as
you do it consistently. In the past, much effort has
been spent on ensuring standardisation of gears and
catch procedures among nations participating in
routine surveys in the North Sea. However, little
attention has been paid to things like species
identification. Daan (2001b) showed severe
inconsistencies in the temporal and geographical
distribution of a variety of less common species
reported by individual countries participating in the
International Bottom Trawl Survey in the North
Sea. This immediately affects all of the community
metrics presented here to characterize the North
Sea fish fauna as viewed through scientific survey
gear. 

Nevertheless, it would seem unlikely that the
major statistical properties of the community
derived could have been flawed by such
inconsistencies in data collection, because they are
unlikely to cause anything but random noise on the
estimated frequency distributions. More important
effects can be expected on temporal changes in
community metrics.

We were surprised to see how many metrics
could be derived from survey data, that are
pertinent to statistical modelling of a community
and that at the same time have been so rarely
addressed in the past. Still, this analysis is by no
means exhaustive and in fact raises more questions
about potential interdependencies of different
metrics than it resolves. Our main conclusion is
that there must be a wealth of significant
information still burrowed in data sets around the
world, that could be used to make intercomparisons
between fish communities across different
ecosystems and to identify common anthropogenic
causes of observed changes.

6. A neutral model of the NS fish community

6.1. Introduction

The search for suitable metrics for evaluating
ecosystem effects of fishing is severely hampered
by the lack of established theory on how
ecosystems operate. Although a variety of metrics
has been proposed, with a few exceptions (e.g. size
spectra) there is uncertainty how these metrics
might be influenced by fishing. Also, lack of
information on their variability hampers the
development of quantitative criteria that could be
used to evaluate hits, false alarms, misses and true
zeros in the context of signal theory (Helstrom
1968). The rarity index developed by Daan (2001)
evokes similar questions as many of the other
metrics:
• when are observed differences in rarity value

between species, rectangles or years significant
and

• when do they matter for management?
In ecology, the first question can be addressed

by neutral modelling; that is, simulating a
community on the basis of known, explicit rules
and investigating the empirical distribution of a
metric based on repeated sampling from such a
community (Lockwood et al., 1997; Belyea and
Landcaster, 1999). There are many options here. At
one extreme one might construct a completely
arbitrary and hypothetical community, which bears
no relationship to the real world. Although this
would allow investigations of the variability in
particular metrics, this would not give much
guidance for evaluating empirical metrics when
applied to a particular community  (c.f. Colwell
and Winkler 1984; Connor and Simberloff, 1984).
It is well established in impact assessment
(Lockwood, 1997; Beyers, 1998) that the
usefulness of a simulation increases as it
approximates an existing community as closely as
possible without structuring into the simulation
exactly the assumptions about possible interactions
that one wishes to test.  Correspondingly, we used
available empirical survey information (section 5)
as the basis for constructing a neutral model that
broadly mimicks the structure of the resident North
Sea fish community (excluding vagrants).

6.2. Materials and methods.

Mean abundances for 100 species were assigned by
resampling from the smoothed frequency
distribution of mean relative abundances (Fig.
5.7b) of the 91 species observed in 30 years of
North Sea research vessel surveys (Daan, 2001).
For each species, the latitude x and longitude y of
the centre of distribution were chosen at random on
a 25 by 50 grid representing the North Sea (1250
squares; corresponding to 1323 squares sampled in
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the North Seas when each ICES rectangle is
divided in 9 sub-rectangles). A standard deviation
sigma, representing the extent of range (equal in all
directions), was chosen with distribution 5+5*r
where r is distributed uniformly in the range 0-1.
The mean of the parameter sigma was tuned to
make the frequency distribution of species richness
by rectangle match the observed frequency
distribution in the surveys (cf. Fig. 5.10; χ2=11.95,
df=9,  0.30>P>0.20 ).
[NB. Here we want P>0.05 to show that our simulated
community did indeed match the true North Sea
community, at least with regard to the number of species
with various breadths of distribution.]

At the beginning of the simulation, individuals
of the species are distributed across the 25*50
rectangles according to a bivariate normal
distribution centred on x,y with sigma multiplied
by the species abundance. Thus, the simulation
makes the abundance of each species highest in the
centre of its circular range, and abundance declines
symmetrically in all directions, with 95% of its
total abundance within 2 sigma of its centre. Each
species had a unique value of sigma, which was
held constant for an entire simulation.

 Each year, these distributions are
“surveyed” with a chance of observation chosen
from a Poisson distribution with a mean related to
the abundance in each rectangle. Species with low
abundance in a rectangle thus have a possibility of
having zero catch. A low abundance in a rectangle
can result either from a low mean abundance (a
species that is “rare” even in the centre of its
distribution) or because a rectangle is far (relative
to sigma) from the centre of distribution of a
species with a high mean abundance (a rectangle
that is on the “edge of the range”).

The base run (table 6.1) held mean abundance
and location of the centre of distribution fixed for
all years, so the only stochasticity was in the
probability of observation. This situation would
mimic resampling a fish community within the
same year. Alternative runs added interannual
variance separately or combined in the two key
features: µ and X-bar, Y-bar (table 6.1). The mean
abundances could be perturbed by a random factor
chosen on the interval of half to double. The
centres of distribution of species could be perturbed
by a random factor of between –3 and +3
rectangles in all directions. These sources of
stochasticity reflect, respectively, changing
abundance over time or changing area occupied.

Resulting survey catches are then processed to
provide:
1. a rectangle dominance curve (cumulative curve
of aggregate survey catch by rectangles ranked in
order of catch per rectangle) showing what
percentage of the rectangles contain what
percentage of the total catch;
2. a histogram of the numbers of rectangles
occupied by species;

3. a histogram of the species count per rectangle;
4. plot of rectangles occupied by species versus log
species abundance;
5. Daan’s Z measure of rarity by rectangle;

The simulation was programmed in MATLAB.
The code is shown in annex I.
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Fig. 6.1. Base run: (a) rectangle dominance curves (% of
total abundance by rectangle sorted in descending order),
(b) % frequency of rectangles observed with different
percentages of species after 1 to 8 years (cumulative) and
(c) a similar plot for the % frequency of species observed
in different numbers of rectangles (expressed as % of
1250 rectangles).

6.3. Results

Most of the performance measures from the
simulations proved rather insensitive to the
different runs: allowing variance in annual
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abundance and/or centre of distribution did not
alter the average of any of the metrics. Fig. 6.1
shows some results for the base run. The rectangle
dominance curves (a) by year were
indistinguishable among years and among runs.
These curves simply reflect the overall lognormal
abundance distribution, which is not changed in
response to the various ways that the lognormally
distributed set of species is distributed over the grid
cells. No data were available from the survey to
check the result against survey data, but this should
be possible in due course.

The frequency distribution of rectangles with
the cumulative observed number of species over
the 8 years (b) and the frequency distribution of the
cumulative number of species observed in each
rectangle (c) varied more among the runs, but the
patterns were similar.

Apparently, such measures of species richness
are useful only under special conditions, because
they keep changing as more years of information
become available. It is of course well known that
species richness depends on sampling intensity and
therefore should always be expressed relative to
some measure of sampling intensity (e.g. per x
hour fishing).

However, these simulations are able to
partition the effect of mere increased sampling
effort in a single survey (run 5) from the additional
increase in the number of cells in which a species
occurs over time caused by sampling in different
years.  The latter effect could be due to either
varying mu (with constant sigma, in years of high
abundance a species has a marginal occurrence in
cells from which it is essentially absent in years of
low abundance), or varying X,Y (shifting centre of
distribution results in new cells being “colonised”
over time).

Fig. 6.2 provides plots of the number of
rectangles in which each species has been observed
against the observed ln(abundance) for 2 different
runs (cf table 6.1). These plots may be directly
compared with similar information derived from
the North Sea surveys (Fig.5.2). The similarity
between the observed and simulated sets is striking,
although the larger spread in the North Sea data at
intermediate abundance suggests that the simulated
variability should be increased. However, from the
comparison of the relationship after the first year
and after 8 years of simulation, it is clear that the
steepness of the curve keeps changing, as it should,
because catches of ever more species may be
expected in individual rectangles by sampling more
years.  Again, constrasts among the simulations
allow the effect of simply increased sampling to be
partitioned from the effects of variation in
abundance, variation in range, and variation in
breadth of occurrence.

The differences between the base run without
annual variation and run 8 with maximum annual

variation are slightly counterintuitive, because the
overall relationship seems hardly affected. In
contrast, fixing sigma at a constant mean value (run
4) for all species clearly reduced the variability.
However, this run was only included to clarify
baseline conditions, but was not intended for
comparison with real data sets.  For example, Fig.
5.4 suggests that small and large species are
characterized by different breadth of distribution
for a given abundance. This alone should
correspond to different species having different
sigma, independent of their abundance as simulated
in the base run. There is, of course, the possibility
that µ and σ co-vary; that is, breadth of distribution
increases non-linearly with abundance.  That effect
is being explored in further simulations.

Finally, fig. 6.3 provides the spatial
distribution of rectangle rarity values following
Daan (2001) for the base run and the run with
maximum variability, both after one and after 8
years of observation. Increasing variability seems
to spread out rarity values among more rectangles.
This is not unexpected because the square where
the probability of observing a less abundant species
is highest changes from year to yearin this case. It
is also clear that the scale of variation among
species is reduced when more observations are
added (more species have values larger than 1 and
no species has values higher than 10 after 8 years).

6.4. Discussion

The model was originally intended to evaluate
variation due to sampling in a specific metric
(Daan’s rarity index). However, constructing the
model turned out to be a rewarding experience in
itself, because it compelled us to evaluate a wide
range of distributional properties for characterizing
the fish community (section 5). Features such as
the lognormal distribution of the abundance of
individual species might otherwise have remained
hidden.

The model signifies also the interpretational
problems that we face in sampling a fish
community with large differences in abundance
and distribution among species, because nearly all
metrics vary with the amount of information that
becomes available. Moreover, several different
properties of the community could change (mu,
sigma, X,Y among runs 6, 7, and 8), yet very
similar patterns were observed in our performance
measures.  Even when we have documented that
“change” has occurred, there will be serious
challenges determining exactly what aspect(s) of
the community structure have changed.

 The sensitivity of our metrics to sampling
intensity, and their low diagnostic value will
greatly reduce the possibilities for making
comparisons of communities among ecosystems.
The sampling problem is serious because not only
survey gear but also sampling intensity and length
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of time series are bound to vary.  The fact that
many different factors can produce the same
patterns in the metrics is serious, because in real
data we will not have independent knowledge of
the underlying distributions of mean abundances,
variances in abundances, and centres of
distribution. Nevertheless, the simulations are only
a first step.  Many more scenarios are planned for

intersessional work, and many more metrics can be
explored for the various outputs. The simulations
do more than just highlight where problems lie.
They can also be research tools to obtain more
stable metrics that account for sampling intensity
and number of surveys, and display distinctive
patterns when specific properties of community
structure have changed.

0

250

500

750

1000

1250

0 5 10 15

0

250

500

750

1000

1250

0 5 10 15

Ln(abundance)

0

250

500

750

1000

1250

0 5 10 15

0

250

500

750

1000

1250

0 5 10 15
Ln(abundance)

Fig. 6.2 Relationship between the number of rectangles occupied per species vs ln(abundance) after (top panels) one
and (bottom panels) after eight years of sampling for the base run (run 5; left panels) and the run with random variation
in µ and in the centre of distribution (run 8; right panels).

Table 6.1. Specification of runs with the MATLAB simulation model of the North Sea fish community.

Run Mu Sigma X-bar, Y-bar Rational

4 fixed µ fixed at 7.5 fixed to initial rand no variation in parameters
5 fixed µ 5+5*rand fixed to initial rand base run (sigma species specific, range 5-10)
6 µ*exp(-0.7+1.4*rand) 5+5*rand fixed to initial rand annual variation in abundance (50-200%)
7 fixed µ 5+5*rand initial rand-3+6*rand annual var. in distribution centre (± 3 rect.)
8 µ*exp(-0.7+1.4*rand) 5+5*rand initial rand-3+6*rand all parameters except sigma vary by year
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Fig. 6.3. Daan’s integrated rarity index (abundance and distribution) after (top panels) 1 year and (bottom panels) eight years
for the keyrun (5; left panels) and the run with maximum variation (8; right panels).
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7. Simulation of multi-species, size-structured
communities.

7.1. Rationale

The linear size spectrum of the fish community has
interested fisheries scientists for two decades.
Interpreting changes in slope of the size spectrum
as a consequence of fishing is supported by both
survey data from real ecosystems, and simulation
studies of moderate sized sets of species interacting
as predators and prey in an MSVPA-type way.
Despite the body of evidence supporting the use of
change in the slope of the size spectrum as an
indicator of past fishing, there is concern that no
one is quite sure why it works. We identified two
possible explanations of very different complexity,
and therefore likely to be of very different
consequences for comparative studies and for
management advice.
• The "ecological hypothesis" presumes that the
linearity is a consequence of processes that act to
produce an orderly decline in abundance with size.
Temporary irregularities, for example a bump
caused by the influx of an exceptional number of
recruits, are rapidly smoothed out by ecological
processes. For instance, large numbers of recruits
attract more predators that may graze down the
bump. Density dependent processes, particularly
growth and survivorship, or the effects of one year
class on the succeeding one, could easily be built
into plausible mechanisms for smoothing bumps.
Likewise, if a temporary dip were to occur in the
linear size spectrum (for example by excessive
fishing of one intermediate size interval) plausible
arguments about density dependent survivorship,
competitive release, etc, could provide a process-
based explanation for preserving the linearity of the
size spectrum of fish abundances. Such process-
based explanations are attractive to many
ecologists and fisheries scientists.
• The "aggregate hypotheses" is much simpler,
invoking no process-based ecological interactions
in producing the size spectra with negative linear
slopes. It aggregates some simple single-species
patterns that must exist, across all the species in the
community. The first pattern is that regardless of
what size a fish species may reach, it starts off
small and can only stay the same size or get larger
over time. Correspondingly, even though
individuals of a species that is small (small Lmax)
may never be large, all individuals of a species that
is large (large Lmax) will begin their life small, and
move through all the size intervals in the size
spectrum. (It is true that some fully grown fish can
lose body condition, and possibly even a little
length, under particularly unfavourable feeding
conditions, but this is unlikely to be common
enough to negate the general pattern invoked
here.). The second general pattern is that cohorts
can only decrease in abundance over time, and are

always equally or less (often much less) numerous
as they increase in size. Combining these patterns
means that:
• the smallest sampled size interval should have

all the species observed in all larger size
intervals,

• numbers of contributing species will decline
over size intervals

• on average each species should tend to become
less numerous over size intervals.
It is possible that aggregating these patterns

across species will produce linear size spectra with
negative slopes, without invoking any further
biological processes.
[NB. Variation in cohort strength means that the latter pattern
will not strictly hold for every species at all times, but it will be
true on average. Moreover, some species with small Lmax are
very numerous in the smallest size intervals, and decline in
abundance quickly across increasing size intervals. This factor
could mask a great deal of the variability in abundance of
cohorts of species with larger Lmax, when they are small.
Complicating factor: species where the adults migrate into an
area, appearing for the first time at intermediate sizes in the
range being sampled.]

If the aggregate hypothesis is sufficient to
account for the size spectra constructed from real
samples of fish communities, then the impacts of
fishing on the fish community can be accounted for
fully by the impacts of fishing on the individual
species killed by fishing. (This will usually be a
longer list than the list of target species, of course,
because of by-catch and incidental mortality of
non-target species.). If the aggregate hypothesis
does not account for the observed linear pattern,
then the impacts of fishing on the fish community
will be moderated by interactions among species.
This will make the ecosystem effects of fishing
much more difficult to track. However, it is worth
noting that if the consequence of the interactions is
to maintain a linear slope to the size spectrum, then
they will act to compensate at the community scale
for the effects of fishing, buffering not amplifying
the effects. This won’t make them any easier to
predict, or necessarily lead to more desirable (from
whatever standpoint one may have) community
configurations, but they will act to retain ecosystem
structure in the face of perturbations by fisheries,
and not dissipate it.

It may be possible to differentiate among these
two hypotheses through simulating fish
communities, and contrasting properties of the
simulated communities with properties of real
communities. The patterns expected under the
aggregate hypothesis should be straightforward to
reconstruct, making a small number of assumptions
about single-species properties. If the aggregated
patterns from the simulation match the patterns
seen in real communities, then there is no empirical
justification for invoking the much more complex
interactions that constitute the ecological
hypothesis. If the patterns from the aggregate
simulations are unable to match patterns seen in
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real communities, then there is justification to
conclude that specific interactions occur in real
communities to preserve the linear size spectrum. It
is possible (although not certain) that the ways in
which the simulated community fail to match the
real communities may shed light on the nature of
the structuring interactions. That is, of all the
possible complex interactions that could be added
to the aggregate simulation, a small number of
them might correct the lack of fit most
parsimoniously.

7.2. Concepts to be captured in the aggregate
simulation

One specifies/assigns:
• N species, where the necessary N is somewhat
larger than the actual number of species observed
in a typical survey. (NB. This is Preston’s "Veil
Line" once again. Some species will be assigned
parameters that result in them being so rare that
they are unlikely to be taken in simulated
"samples". Likewise, in real communities some
species are so rare that they have not appeared in
any samples by the time a survey has been
completed.).
• A mean and variance in cohort strength for
each species. This applies to the cohort strength
when it enters the smallest size interval included in
the survey data. Based on previous work, this
might best be done drawing means from a log-
normal distribution, and variances from a normal
(or lognormal) one. The parameters of the
distributions of means and variances can be
estimated from the community to be matched, or
one can just tune values iteratively. Alternatively,
one can accumulate the actual distributions of mean
abundances and variances in abundance across all
the species in the community to be matched, and
just resample from the observed distributions.
These options for parameter choice will be
available for all of the subsequent parameter sets.
In all cases the strategy of drawing from a specified
distribution is more general and flexible. However,
it requires motivating use of some specific
distribution. The alternative re-sampling strategy
ensures that the true distribution of means and
variances in the community to be matched are
represented in the simulated community. In that
case any lack of fit between the observed and
simulated patterns is definitely due to the absence
of one or more processes in the simulation, and not
to just getting the distribution of means slightly (or
greatly) wrong. In either case allowance must be
made for the "veiled species" issue.
[NB. In community simulations there is often an issue of
whether or not means and variances of abundance/cohort
strength are independent or correlated. It is always good
practice to begin the project by assigning means and
variances in cohort strength independently for each
species, but it can be useful to have the simulation

constructed so that a correlation between mean and
variance of each species’ cohort strength can be
specified.]
• Parameters to control the rate at which the
cohort moves through the size intervals. There
are several options, each seeming to need two
parameters:
- Give each species a von Bertalanffy growth

pattern. This means specifying a k and L   for
each species. As with the mean and variance of
cohort sizes, the sampling distribution for k
and L∞ may be either lognormal (as a
convenient first guess) with parameters from
the real community, or the distribution of
observed k’s and L∞’s bootstrapped from the
real community. The degree to which pairs of
growth parameters should be correlated should
be determined by the knowledge of the system
to which the simulation is being compared. If
the simulations should be able to include the
possibility of density-dependent growth, then
selection of one or both of the growth
parameters has to be able to be made
conditional on assigned cohort size.

- Make pre-terminal stage residency and
terminal stage as a transition matrix with
parameters assigned for each species. Random
assignment of transition rates would produce
all possible combinations of fast growing (fast
transitions across pre-terminal stages) and
slow growing (slower transitions across pre-
terminal stages) species, and small (early
terminal stage) and large (late terminal stage)
species. It would seem to be appropriate to
have transition rates decelerate as a species
moved through the larger stages, but it should
start as a common factor for all species (as the
vonB growth curve is a common functional
form). The same considerations apply to
sampling distributions of the transition matrix
values as for the von Bertalanffy case. It would
be interesting to see if it was necessary to
specify correlations between transition rates
and terminal stage parameters (that is, do
individuals of species which are destined to be
large move through small size classes faster
than individuals of species whose terminal size
is small.). The simulation should definitely be
able to explore the impacts of such
correlations.

Whichever option is used, there should be some
provision for intra-cohort variance in the rate at
which the cohort moves through size classes. A
transition matrix approach should intrinsically be
able to smear a cohort across adjacent size intervals
over time, but a vonB growth model will require a
variance term. Should it be a simple (normal)
random variable from a universal (same sampling
distribution for all species) distribution, from a
species specific distribution, or should intra-cohort
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variance in growth rate be correlated with either (or
both) cohort size and L∞?  In the transition matrix
approach there should be some way to explore the
effect of (and need for) species-specific matrix
values to covary with cohort size as well as
terminal stage attained.
• A parameter for natural mortality rate. This
again could be done in a couple of different ways:
- Species-specific M: would almost certainly

have to be correlated with L∞  (or terminal
stage). M could apply to the species over its
entire life span, although for species with high
L∞  M for the first few size classes might need
some multiplier. Sampling distribution for M
would follow all the considerations above,
although the "theoretical" distribution across
species is unclear, if the choice is not to
resample.

- Size specific M : Same considerations apply as
for species specific M, but there would be
fewer parameters in the total simulation, as
long as there were fewer size intervals than
species. If there was to be some variance
among species in their rate of decline over size
intervals, it should probably be assigned once
to each species at the beginning of the
simulation, rather than assigned independently
at each size interval. The proper (data
determined) sampling distribution for variance
in M would be interesting.

• A parameter for fishing mortality. This will be
specified as a forcing process in the simulations,
and set on a scenario-specific basis. Considerations
include:
- The simulation design will have to allow F to

be set separately (if desired) for each species,
and to vary in planned ways across size
intervals.

- One proposal of interest was to have knife-
edge vulnerability at a specified percentage of
L∞ for every harvested species.

- Setting F to match the fishery for target species
should be straightforward. The fraction of
species with high, moderate and low L∞ that
are fished in the real community can be
known, and the simulation will have to include
a step to ensure that can be preserved. An
approach may be to rank species by their L∞
value in the set-up pass, and have a Heavyside
function for whether each will be fished or not,
with mostly 0’s for small L∞ and increasing 1’s
for large L∞ values. This Heavyside vector can
be matched to a vector of F’s, so it would be
possible to adjust separately targeting among
large and small species, and the intensity of F
for different large and small species. This still
leaves the question of how should by-catch
mortality be handled?

7.3. Simulations

Set up:
• Specify number of species.
• Assign mean and variance in cohort size per
species (initially uncorrelated).
• Assign growth parameters or transition matrix
entries per species.
• Assign M per species (or size interval)
correlated with maximum growth parameter or
terminal size.
• Specify fishing mortality matrix by species and
size interval.

Year 1:
• Specify cohort size for each species
• If assuming density dependent growth, adjust
growth parameters / transition rates for realized
cohort sizes.
• Let each species grow.
• Kill off each species with species or size
specific M + F. (If a species is growing through
several size intervals in one time step, it is
necessary to account for all mortality correctly).

Year 2 –
• Repeat year 1 for cohort size and growth rate
of recruits to smallest size interval.
• For recruits plus last year’s survivors by
species and size class, grow and kill off.
[NB. QUESTION: Once more than one cohort of a species
occurs in the same size interval, do the density dependent
growth and/or mortality parameters (if they are being used)
remain the ones initially assigned given the initial cohort sizes,
or are they readjusted to reflect the current density of
conspecifics of similar size? This is important, because it will be
a different simulation if cohorts keep their growth and mortality
parameters through life (so all cohorts should be tracked
individually until they reach their terminal size), or if
conspecifics are pooled within in each size interval at each time
step and what happens to them next would be determined by
those local conditions.]

Repeat Year 2 until essentially all species have
reached their L∞. This becomes the initial condition
for the simulation. At this point, you continue
simulation in the same way, but can begin to track
yield and estimate the size spectrum parameters.

7.4. Further thoughts

The first simulations should be without the density
dependent linkages of growth and mortality
parameters to cohort size, if only because this is the
simplest case, invoking the fewest processes. If the
simulations fail to fit the real data, then adding the
intra-specific density dependent factors should be
the next level of complexity explored. If it is still
impossible to fit the real surveys, then inter-
specific density dependence may be the next case
to explore. Here the intra-specific formulations
may provide the right model to follow, with the
degree of inter-specific impact increasing as
species have increasingly similar L∞’s. At this point
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the simulation would almost certainly have to be
designed so that the density dependent adjustments
were made size interval by size interval, not cohort
by cohort. That structure would be necessary in
order to examine community responses to size-and-
species-selective fishing, where relative abundance
of cohorts of different species might be changed
abruptly when the cohort was part-way through its
total scope for growth.

Thought should be given to what properties are
to be compared between simulated and real survey
communities. Total species richness, yield, and size
spectra parameters are the minimum. Is it necessary
for communities to match on more properties,
though, such as
• Richness per size interval
• Distributions of abundances across species
within size intervals
• Initial distributions of cohort strengths across
species on a year by year basis.

8. Exploitation level of ecosystems

8.1. Introduction

One problem in evaluating effects of fishing at
higher levels of aggregation than the single species
such as the fish community is that the single
species measures of exploitation (i.e., F) cannot be
readily aggregated or averaged over species. If
different ecosystems - or features of the same
ecosystem at different times - are to be compared in
terms of responses to exploitation, some
quantitative measure of exploitation level of the
total ecosystem is needed, because it will make a
difference whether only one or the majority of
species is overexploited. Also, exploitation of
forage fish may have a different impact on the
community than exploiting predators. It seems
doubtful whether one single measure could capture
all aspects and therefore we may need several
measures, which together reflect total impact. We
explore various optioms.

8.2. Yield/biomass and yield/production ratio

Potentially useful measures that have been or could
be applied to single species and which could easily
be aggregated over species are the percentage
biomass removed each year and the
yield/production ratio. However, this is not a
simple matter, because reliable data are generally
only available for commercially important species
and very little is known about the biomass or
production of other species that are landed,
discarded or not caught with the existing gears.
Although survey data might be used for swept-area
estimates, differential catchability among species is
likely to distort the picture obtained relative to the
true biomass composition, because gears have been
developed to catch commercial species and their

catchability is therefore probably higher than for
other species. Jiming (1982) and Sparholt (1987)
are among the few who systematically addressed
this problem, but the wealth of survey data
presently available and often obtained with
different gears should make it worthwhile to update
and refine these analyses.

Fig 8.1. Bulk biomass steady state isopleth surface of
yield vs harvest rate and wc/ws ratio.

8.3. Weight-in-the-catch weight-in-the-sea ratio

While catch/biomass ratio is potentially a useful
measure of overall exploitation, it does not
differentiate exploitation of different size classes.
One possible measure of the size selection is the
average weight-of-fish-in-the-catch (wc) relative to
the average weight-in-the-sea (ws). Again, this idea
has been tried out on Northeast Arctic cod. Fig 8.1
presents the steady state yield isopleth surface as a
function of harvest rate (yield/biomass ratio and the
associated wc/ws ratio, based on a bulk biomass
model for the stock. By increasing the harvest rate
from zero to half, the weight ratio drops to about
1/3 of its original value. This suggests that it could
be a sensitive parameter for changes in
exploitation.

Fig. 8.2 provides time series data of wc, ws and
their ratio for the same cod stock. While weights in
the catch may be considered empirical observations
based on market sampling, weights in the stock
were constructed from length at age data and VPA
estimates of stock size age 3 and older cod.
Although there is obviously quite a bit of short
term variability that is related to recruitment of
good or bad year classes, there is a clear long-term
increasing trend in the ratio that matches the
increase in fishing mortality as estimated by VPA
(ICES, 2000). While average weights in the catch
could be aggregated over species, an index of the
mean weight of fish in the sea might be derived
from survey catches for all species combined.
Potentially, this may produce a useful measure of
exploitation of the entire community.
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Fig. 8.2. Time series of (a) weight in the catch (wc) and
weight in the sea (ws) for Northeast Arctic cod and (b)
the ratio between these two (wc/ws).

8.4. Length-stratified distributions of ln(N)

During the exploration of the proper distribution of
mu’s across all fish species in the North Sea
(Section 6], mean abundances across the
community could be approximated by a log-normal
distribution. Although this was only explored in
some depth for total abundance, there were some
indications that the abundances followed a log-
normal distribution when dis-aggregated by length
interval as well. At the smallest well-sampled
length intervals there would be more species, and
the range of ln(abundances) would also be broader
(reasons for this are developed more fully in
section 7). Hence, as size increases the peak of the
length-stratified log-normal distributions would
move towards the origin on the ln(abundance) axis,
and the ascending limb of the distribution would
become progressively more truncated. Contours of
particular percentages of all species would be
expected to follow lawful patterns across the
surface of this family of probability density
functions.

There are several reasons why the length-
stratified distributions of ln(abundance) could be
sensitive to exploitation rate. As fishing pressure
increases, at least initially ln(abundance) of all
exploited length classes would decline. Three
processes should make the effect stronger at higher
length intervals. First, fishing itself would likely be
size-selective within species and overall, with

fishing mortality usually asymptotically highest at
the larger sizes attained by each species. Second, a
higher proportion of species are expected to be
exploited from higher length intervals than lower
length intervals (both directed and as by-catch), so
the abundances of more species in larger length
intervals would be reduced by fishing. Third, in the
long run production of individuals in shorter length
intervals could be stimulated through exploitation
of larger length intervals, either by reduction in
predation mortality or compensatory increases in
production (sensu Schaeffer).
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Fig. 8.3. Distribution of ln(abundance) at length octaves
for (a) a simulated unexploited community and (b) a
heavily exploited community.

These patterns, if confirmed by more intensive
analyses of survey data, would offer another
potential tool for measuring community-scale
intensity of exploitation. If it is possible to estimate
both virgin biomass (B o) and L∞ for all species in a
community, with reasonable assumptions about
growth it should be possible to reconstruct
estimates of the distribution of abundances by
length interval for an unexploited community. At
the least, given a time series of survey data during a
period of increasing (or decreasing) fishing effort
overall, it would be possible to estimate the
distribution of abundances across species by length
interval for the earliest period. This family of
length-stratified distributions would be contrasted
with the same family of distributions after a period
of exploitation.
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Changing slopes of various contours along the
distribution, as well as the trajectory of the peaks of
the distribution, would be potential quantitative
indicators of the community scale impact of
fishing. Simulated data for an unexploited suite of
species and the same suite of species subjected to
heavy exploitation (Fig. 8.3) illustrate the type of
pattern that might occur. Results of this preliminary
simulation are sufficiently encouraging that we feel
this type of analyses should be pursued further for
data sets providing size composition data for most
(if not all) fish species in a community over time.
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Annex I. MATLAB code for simulating the North Sea fish community.

10%dist1.m is a script file to simulate species catch distribution over a 50 by 25 rectangle
grid.
Murange=[2118.741 400.8973 49.21935 583.4292 73.44769 ...
18797.32 12.40647 703.5578 0.668664 341.4263 ...
70.94638 363.3153 506.5686 0.191772 41.88106 ...
0.095249 174.9356 328134.3 191.5823 525.5121 ...
502.1311 948.0459 12.90904 1061.022 5566943 ...
161.6698 90.55344 0.083326 0.152089 56.762 ...
130831.9 547501.8 11.71147 65.20542 13762.71 ...
276.8308 1149.21 0.657203 1385.711 0.126283 ...
10.02747 18450.05 0.499205 1.454931 660.3638 ...
24510.01 97.4651 72.09501 8.217466 3170.617 ...
1028242 9582.622 4.871136 0.349855 9109.401 ...
29518.53 159.7109 1187.203 268.9741 123389.2 ...
2144.668 293.3998 253.2517 35.68984 458160.3 ...
1785.773 1634259 17.05746 35.76972 120128.3 ...
1302.321 75.53079 170.0227 1.488706 0.150808 ...
46.12436 4224.979 95.25508 1.529151 16.57292 ...
15.56597 2029.592 93587.37 3060.986 35.25514 ...
476.5384 28619.45 2511.215 0.831986 2954.723 ...
29.59972 71.449 42.09216 35.9646 10.01292 ...
325.7231 1042321 62.69502 13.32592 0.159615]
xcount=zeros(25*50,100);
norec=zeros(8,100);
zrem=zeros(8,100);
remscsq=zeros(8,1250);
remlco=zeros(8,100);
remsr=zeros(8,1250);
remspr=zeros(8,100);
cou=zeros(25,50);
for i=1:100
xbar(i)=50*rand;
ybar(i)=25*rand;
sigma(i)=5+5*rand;
end
for y=1:8;
y
cou=zeros(25,50);
for i=1:100
prob=zeros(25,50);
prob=norman(xbar(i)-3+rand*6,ybar(i)-3+rand*6,
murange(i)*exp(-1+2*rand),sigma(i));
m=i;
for k-1:25
for l=1:50
n=(k-1)*50+1;
pr=prob(k,1);
co=poisson(pr,floor(25+3*pr));
xcount(n,m)=xcount(n,m)+co;
cou(k,l)=cou(k,l)+co;
end
end
end

figure
surf(cou)
hold on
title(‘summed species abundance per rectangle’)

count=xcount/y
sqco=count*ones(100,1);
spco=count’*ones(1250,1);
sumsp=sum(spco);
lcount=count>0.001;
sprec=lcount’*ones(1250,1)
lll=sprec(95:100,1)’
z=1250*ones(100,1)./((sprec+1).*sqrt(spco+1));
zsum=sum(z);
z=z*1000/zsum;
zrem(y,1:100)=z’;
cou=zeros(25,50);
invco=z./(spco+1);
zrec=count*invco;
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for k=1:25
for l=1:50
zz(k,1)=zrec((k-1)*50+1,1);
end
end

figure
mesh(zz)
title(‘Daans z assigned to rectangle’)
ylabel(‘rect count W-E’)
xlabel(‘rect count S-N’)
zlabel(‘Z score per rectangle’)

cumsq=cumsum(flipud(sort(spqo)));
cumsq=100*cumsq/cumsq(1250,1);
figure
plot(cumsq,’or’)
remcsq(y,1:1250)=cumsq’;
title(‘Rectangle dominance curve’)
xlabel(‘rectangle rank’)
ylabel(‘% of Cum count of individuals)

figure
hist(sum(lcount));
norec(y,1:100)=sum(lcount)
title(‘Histogram of rectangle occupied per species’)
xlabel(‘rectangle occupied’)
ylabel(species frequency’)

figure
hist(sum(lcount’))
remsr(y,1:1250)=sum(lcount’);
title(‘Histogram of species per rectangle’)
xlabel(‘number of species’
ylabel(‘species frequency’)

figure
logco=log(spco);
stem(logco,sprec,’.r’)
remlco(y,1:100)=logco’;
remspr(y,1:100)=sprec’;
title(‘rectangles occupied by species versus log(species abundance)’;
xlabel(‘log(species abundance’)
ylabel(‘rectangles occupied’)

save a:\zz.dat y –ascii
save a:\zz.dat zz –ascii
end

figure
save c:\matlab\remcsq.dat remcsq -ascii
save c:\matlab\remlco.dat remlco -ascii
save c:\matlab\remsr.dat remsr -ascii
save c:\matlab\remspr.dat remspr -ascii
save c:\matlab\norec.dat norec -ascii
save c:\matlab\zrem.dat zrem -ascii
save c:\matlab\xcount.dat xcount -ascii
save c:\matlab\lcount.dat lcount -ascii
save c:\matlab\cou.dat cou –ascii
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