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Abstract

Using deterministic methods, rates of genetic gain (∆G) and inbreeding (∆F) were compared between pure line
selection (PLS) and combined crossbred purebred selection (CCPS), for the sire line of a three-way crossbreeding
scheme. Purebred performance and crossbred performance were treated as genetically correlated traits assuming the
infinitesimal model. Breeding schemes were compared at a fixed total number of purebred selection candidates, i.e.
including crossbred information did not affect the size of the purebred nucleus. Selection was by truncation on
estimated breeding values for crossbred performance. Rates of genetic gain were predicted using a pseudo-BLUP
selection index. Rates of inbreeding were predicted using recently developed methods based on long-term genetic
contributions. Results showed that changing from PLS to CCPS may increase ∆F by a factor of 2·14. In particular
with high heritabilities and low purebred-crossbred genetic correlations, CCPS requires a larger number of parents
than PLS, to avoid excessive ∆F. The superiority of CCPS over PLS was judged by comparing ∆G from both
selection strategies at the same ∆F. At the same ∆F, CCPS was superior to PLS and the superiority of CCPS was
only moderately reduced compared with the situation without a restriction on ∆F. This paper shows that the long-
term genetic contribution theory can be used to balance ∆F and ∆G in animal breeding schemes within very limited
computing time. 
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Introduction
In crossbreeding programmes, the primary aim is to
increase the performance of the crossbred animals.
For this reason, the breeding goal should be defined
on the crossbred level, though some weight may be
given to purebred performance in particular cases
(Jiang and Groen, 1999). Several studies have shown
that selection response in crossbred performance can
be increased by including both purebred and
crossbred information in the selection criterion (Wei
and van der Werf, 1994; Baumung et al., 1997; Bijma
and van Arendonk, 1998; Uimari and Gibson, 1998).
Purebred performance and crossbred performance
can be treated as genetically different traits, and
selection may be based on an estimated breeding
value for crossbred performance (EBV), which uses
both purebred and crossbred information (Wei and
van der Werf, 1994; Bijma and van Arendonk, 1998).
Such a selection strategy is referred to as combined
crossbred purebred selection (CCPS), whereas

selection based solely on information from the pure
line is referred to as pure line selection (PLS). None
of the studies mentioned above, however, has
considered the effect of CCPS on the rate of
inbreeding. As will be argued next, the use of CCPS
may substantially increase the rate of inbreeding
compared with PLS. 

In a CCPS programme, an important information
source is the phenotypic information on crossbred
half sibs of the selection candidate (Wei and van der
Werf, 1994). For example, in a three-way
crossbreeding system, sires from the sire line may
simultaneously be mated to dams of the sire line and
to F1 dams from the multiplier level of the dam line.
In that case, sires from the sire line produce two
types of offspring; purebred offspring within the sire
line, which are the selection candidates for the next
generation, and commercial crossbred offspring
which provide information on crossbred
performance. When estimating breeding values for
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the purebred selection candidates, the information
on their crossbred half-sibs can be included in the
EBV, which results in a higher accuracy of selection.
Wei and van der Werf (1993) and Spilke et al. (1998)
show how mixed model equations can be set up to
estimate genetic parameters and breeding values
with CCPS. 

When the breeding goal is crossbred performance
and the genetic correlation between purebred and
crossbred performance (rpc) is low, the information
coming from crossbred half sibs will dominate the
EBVs of selection candidates. As a consequence,
there will be a high intraclass correlation between
EBVs of full- and half-sibs present among the
purebred selection candidates. Depending on the
value of rpc, therefore, selection in a CCPS
programme may tend to between family selection,
resulting in increased rates of inbreeding. To
maintain genetic variation and to limit inbreeding
depression in the pure line, rates of inbreeding have
to be restricted in animal breeding programmes. The
relevant question, therefore, is whether the
superiority of CCPS schemes over PLS schemes can
be sustained when rates of inbreeding are restricted.
This question has not been addressed so far. 

The aim of this paper is to compare CCPS schemes to
PLS schemes while restricting the rate of inbreeding.
First, we will compare the intraclass correlation
between EBVs of sibs for PLS and CCPS schemes.
Subsequently, rates of genetic gain and rates of
inbreeding will be compared between CCPS and PLS
schemes which have the same size of pure line.
Finally, we will maximize genetic gain from PLS and
CCPS schemes by optimizing the number of selected
parents while restricting the rate of inbreeding. The
superiority of CCPS schemes over PLS schemes will
be judged by comparing rates of gain from both
selection strategies at the same rate of inbreeding. 

Methods
Traits
Purebred and crossbred performance will be treated
as two different traits having a genetic correlation of
rpc. It is assumed that both traits are determined by
the infinitesimal model, that phenotypic variance
equals one for both traits and that heritability is
equal for both traits. 

Population structure
The population structure was the same as the
structure considered by Bijma and van Arendonk
(1998), and will be described briefly here. The sire
line of a three-way crossbreeding system in pigs was
modelled. Mating structure was hierarchical and
generations were discrete. Sires from the sire line

were mated to npd purebred dams from the sire line
to produce npo purebred offspring per dam (1⁄2npo of
each sex). At the same time, the same sires were also
mated to F1-dams from the multiplier level of the
dam line, to produce ncb crossbred fattening pigs per
sire. Each purebred selection candidate, therefore,
had ncb crossbred half sibs providing crossbred
information. Purebred performance was measured
on animals within the sire line, and crossbred
performance was measured on fattening pigs.
Information on purebred and crossbred individuals
was assumed to be available at the same time. The
traits were measured on both sexes and each sire had
the same number of offspring tested. Each
generation, ns males and nsnpd females were selected
out of the 1⁄2N = 1⁄2nsnpdnpo purebred selection
candidates of each sex, to become parents of the next
generation. Selection was by truncation on EBV for
crossbred performance, without a restriction on the
number of parents contributed by a single family. 

Rates of gain
Throughout this paper, rate of genetic gain in
crossbred performance with PLS is denoted as ∆ Gpls
and rate of genetic gain in crossbred performance
with CCPS is denoted as ∆ Gccps. Rates of genetic gain
in crossbred performance were predicted using the
pseudo-BLUP selection index of Bijma and van
Arendonk (1998). This index is an extension of the
single trait pseudo-BLUP index of Wray and Hill
(1989) to CCPS, and combines phenotypic
information of the selection candidate and its full-
and half-sibs together with EBVs of parents into a
pseudo-BLUP EBV for crossbred performance of the
selection candidate. The pseudo-BLUP index predicts
response in crossbred performance for a situation
with multi-trait animal model BLUP evaluation,
including all purebred, crossbred and pedigree
information, and where selection is by truncation on
the EBV for crossbred performance. Detailed
equations of the index are described by Bijma and
van Arendonk (1998). 

A minor modification was made to the index of
Bijma and van Arendonk (1998). Bijma and van
Arendonk (1998) explicitly modelled the F1-dams,
but here we will assume that EBVs of F1-dams are
not available, which is likely to be the situation in
practice. Consequently, the F1-dams were omitted
from the index, and the total number of information
sources equalled 9, whereas the index of Bijma and
van Arendonk (1998) contained 10 information
sources. 

Selection intensities accounted for finite population
size and intraclass correlations between EBVs of
relatives, and were calculated using the method of
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Figure 1 Intraclass correlations between EBVs of full- and
half-sibs with CCPS, as a function of rpc, for ns = 20, npd =
3, npo = 4 and ncb = 60. ■ full-sibs, h2 = 0·15;

▲ half-sibs, h2 = 0·15; ■ full-sibs, h2 = 0·6;
▲ half-sibs, h2 = 0·6; The symbols at rpc = 1 represent

intraclass correlations for PLS.
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1·0Meuwissen (1991). Selection and mating were
iterated until Bulmer’s (1971) equilibrium
parameters were reached, using the equations
described by Bijma and van Arendonk (1998). Rates
of genetic gain were predicted for the equilibrium
situation. 

Rates of inbreeding
Rates of inbreeding (∆ F) were predicted
deterministically using the long-term genetic
contribution theory (Woolliams et al., 1999;
Woolliams and Bijma, 2000). The application of this
theory to CCPS is a direct analogy of the method to
predict ∆ F for single trait BLUP selection as
described by Bijma and Woolliams (2000). Here we
will only outline the main steps involved in
predicting ∆ F, detailed equations can be found in
Bijma and Woolliams (2000). 

The procedure for predicting ∆ F consisted of the
following steps. First, Bulmer’s (1971) equilibrium
genetic parameters were obtained by iterating on the
pseudo-BLUP index of Bijma and van Arendonk
(1998). Subsequently, the intraclass correlation
between EBVs of full- and half-sibs were calculated
from the selection index equations, following the
approach described in appendix A of Bijma and
Woolliams (2000). Finally, rates of inbreeding were
predicted using equations 1 through 13 and
appendix B of Bijma and Woolliams (2000). In
equations 2 and 3 of Bijma and Woolliams (2000), the
single trait breeding value was replaced by the
breeding value for crossbred performance. For single
trait BLUP selection, an example of computation is
given in appendix B of Bijma and Woolliams (2000).
In the present paper, the accuracy of the predicted
rate of inbreeding will be evaluated by means of
stochastic simulation for a number of CCPS schemes. 

Optimization of breeding schemes
Breeding schemes were optimized by maximizing
genetic gain while restricting the rate of inbreeding.
Optimization was performed at different fixed values
of the mating ratio (npd) and of the total number of
selection candidates (N). The optimization variable
was the number of sires, i.e. the number of sires was
increased until the inbreeding constraint was
achieved. The number of dams and the number of
offspring per dam was a result of the number of sires
and the mating ratio, i.e. the number of dams was
nsnpd and the number of offspring per dam was
npo = N/(nsnpd). The number of offspring per dam
was allowed to be a non-integer value, because the
primary purpose of this paper is to examine trends,
and not to present values for specific actual breeding
schemes. 

The optimization is in one dimension, i.e. the only
variable is the number of sires, and from ns ≥12 and
higher, ∆F and ∆G are continuously decreasing
functions of ns, which makes it easy to identify the
optimum scheme. With increasing ns, the optimum
scheme, i.e. the optimum ns, is the first scheme where
∆F is smaller than or equal to the constraint, and the
maximum possible ∆G given the constraint on ∆F is
the rate of gain from this scheme. The optimality of
CCPS v. PLS was judged by comparing ∆Gpls and
∆Gccps for the optimum schemes of both selection
strategies, at the same rate of inbreeding and for the
same total number of selection candidates. 

Results
Intraclass correlation between EBVs of sibs
Figure 1 shows the intraclass correlation between
EBVs of full- and half-sibs with CCPS, as a function
of the purebred-crossbred genetic correlation (rpc)
and for two different heritabilities, h2 = 0·15 or
h2 = 0·6. (Note that purebred and crossbred
performance were assumed to have the same
heritability. ) With rpc = 1, purebred and crossbred
performance are the same trait, so for this situation,
CCPS corresponds to single trait selection. With
h2 = 0·15 and rpc = 1, intraclass correlations are high,
which shows that with low heritability single trait
BLUP selection puts substantial emphasis on family
information. With h2 = 0·6 and rpc = 1, intraclass
correlations are substantially lower, because
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Figure 2 Rates of inbreeding (∆F) with CCPS as a function
of rpc, for ns = 20, npd = 3 and ncb = 60. ■ npo = 8, h2 =
0·15; ▲ npo = 8, h2 = 0·4; ● npo = 8, h2 = 0·6;

■ npo = 4, h2 = 0·15; ▲ npo = 4, h2 = 0·4; ● npo
 = 4, h2 = 0·6. Lines represent predictions, symbols represent
results from simulation.
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Figure 3 Rates of genetic gain in crossbred performance
(∆G) as a function of rpc, for ns = 20, npd = 3, npo = 8 and ncb =
60. For CCPS: ■ h2 = 0·6; ✕ h2 = 0·4; ▲  h2

= 0·15. For PLS: ■ h2 = 0·6; ✕ h2 = 0·4; ▲ h2 =
0·15.
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BLUP-EBV are largely determined by individual
performance when heritability is high. With
decreasing rpc, the intraclass correlation increases
rapidly for h2 = 0·6, because emphasis shifts from the
purebred individual performance to family
information for crossbred performance. For h2 = 0·15,
the increase is smaller because family information
already receives substantial emphasis for rpc = 1.
With PLS the intraclass correlation is slightly smaller
than with CCPS and rpc = 1, because with CCPS there
are an additional 60 half-sibs included in the EBV. In
conclusion, intraclass correlations increase with
decreasing rpc and the increase is largest for high
heritabilities. 

Rates of inbreeding and gain
Figure 2 shows the rate of inbreeding with CCPS as a
function of rpc, for different heritabilities and for two
different selection intensities, npo = 4 or 8. To evaluate
the accuracy of the deterministic predictions (lines in
Figure 2), Figure 2 also shows ∆F estimated from
stochastic simulation (symbols in Figure 2), which
reveals that predictions and simulations are in close
agreement. A discussion on the origin of prediction
errors is in Bijma and Woolliams (2000).

 
Figure 2 shows that ∆F increases with decreasing rpc
and that the relative increase is largest with high

heritabilities and high selection intensities. For
example, with npo = 8 and h2 = 0·6, the rate of
inbreeding increased by a factor of 2·14 when rpc
decreased from 1 to 0·4; whereas with h2 = 0·15, the
rate of inbreeding increased only by a factor of 1·42.
The large increase of ∆F for high heritabilities agrees
with the trend in the intraclass correlations observed
in Figure 1. 

Figure 2 also shows a rapid increase of ∆F when
selection intensity increases. For example, with
h2 = 0·15 and rpc = 1, ∆F increased by a factor of 1·81
when the number of purebred offspring per dam was
doubled from 4 to 8; and for rpc = 0·4, ∆F increased by
an even greater factor 2·06. This shows that, with
BLUP selection, doubling the number of selection
candidates while keeping the number of parents
constant may double the rate of inbreeding.
Obviously, the rate of inbreeding with PLS (results
not shown) is independent of rpc and was slightly
lower than ∆F for CCPS with rpc = 1. In conclusion,
Figure 2 shows that, when keeping the number of
parents constant, changing from PLS to CCPS may
substantially increase ∆F, in particular for small rpc,
high h2 and high selection intensity. 

Figure 3 shows ∆Gpls and ∆Gccps as a function of rpc
and for different heritabilities. With PLS, genetic gain
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Figure 4 Ratio of genetic gain with CCPS over genetic gain
with PLS (∆Gccps/∆Gpls) as a function of rpc, for optimum
schemes with ∆F < 1% and with N = 768, npd = 5 and ncb =
60. ■ h2 = 0·15; ✕ h2 = 0·4; ▲ h2 = 0·6.
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Figure 5 Ratio of genetic gain with CCPS over genetic gain
with PLS (∆Gccps /∆Gpls ) as a function of rpc, without a
restriction on ∆F, for ns = 30, npd = 5, npo = 6, and ncb = 60.

  ■ h2 = 0·15; ✕ h2 = 0·4; ▲ h2 = 0·6.
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in crossbred performance is equal to the product of
∆Gpurebred and rpc, and, therefore, ∆Gpls increases
linearly with rpc. As expected from previous studies
(e.g. Wei and van der Werf, 1994), CCPS gives more
genetic gain than PLS and the superiority of CCPS
over PLS increases with decreasing rpc. The relative
superiority of CCPS over PLS is largest for low
heritabilities. For example, with rpc = 0·4 and
h2 = 0·15, using CCPS instead of PLS increased
genetic gain by a factor 2·02, whereas for h2 = 0·6,
genetic gain increased only by a factor of 1·73. 

Combining Figures 2 and 3 shows, that for high
heritabilities together with high selection intensities,
∆F increases more rapidly than ∆G when changing
from PLS to CCPS. For example, for h2 = 0·6, rpc = 0·4
and npo = 8, changing from PLS to CCPS increased
∆G by a factor of 1·73 and ∆F by a factor of 2·14. 

PLS v. CCPS with constrained inbreeding
To make inferences on the superiority of CCPS over
PLS when the rate of inbreeding is restricted, the
ratio ∆Gccps/∆Gpls was calculated for schemes where
genetic gain was maximized while restricting ∆F.
Figure 4 shows ∆Gccps/∆Gpls for optimum schemes
with a fixed total number of 768 pure line selection
candiates, where ∆F was restricted to be smaller than
1%. To validate the deterministic optimization, a
limited number of schemes was optimized using
stochastic simulation (results not shown), which

revealed close agreement between predictions and
simulations. Results in Figure 4 show that, with a
restriction on the rate of inbreeding, CCPS remains
superior over PLS, i.e. the ratio ∆Gccps/∆Gpls exceeds
one. The superiority of CCPS over PLS increases with
decreasing rpc and with decreasing h2. The ratio
∆Gccps/∆Gpls was also evaluated for other values of N
and d, but the relation was almost identical, which
indicates that with constrained inbreeding, the
superiority of CCPS over PLS is determined almost
entirely by rpc and h2. Results for other values of N
and d, therefore, are not shown. 

Figure 5 shows the superiority of CCPS over PLS
without a restriction on the rate of inbreeding, for a
scheme with ns = 30, npd = 5 and npo = 6. For h2 = 0·15,
the ratio ∆Gccps/∆Gpls is very similar to the situation
where ∆F is restricted, e.g. with rpc = 0·4 and no
restriction on ∆F the ratio was 2·06 (Figure 5),
whereas with ∆F < 1% the ratio was 2·02. For low
heritabilities, therefore, restricting ∆F hardly affects
the superiority of CCPS over PLS. For higher
heritabilities the superiority of CCPS over PLS
decreased when ∆F was restricted, e.g. with h2 = 0·6,
rpc = 0·4 and no restriction on ∆F the ratio was 1·74
(Figure 5), whereas with ∆F < 1% the ratio decreased
to 1·51. Compared with the large increase of ∆F when
changing from CCPS to PLS (Figure 2), the reduction
of ∆Gccps/∆Gpls when ∆F is restricted is strikingly
small. 
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Table 1 Optimum number of selected sires for CCPS and PLS
schemes with constrained inbreeding (∆F)†

h2 rpc ∆F < 2% ∆F < 1% ∆F < 0·5%

0·15 0·4 32 44 61
0·5 31 44 60
0·6 30 43 59
0·7 29 42 58
0·8 28 41 57
0·9 27 40 56
0·99 26 39 55

PLS‡ 26 38 53
0·4 0·4 30 42 59

0·5 28 41 58
0·6 27 39 56
0·7 25 37 54
0·8 24 36 53
0·9 22 34 51
0·99 21 32 49

PLS‡ 21 32 49
0·6 0·4 28 41 58

0·5 27 39 56
0·6 24 37 54
0·7 22 34 51
0·8 20 32 49
0·9 19 30 46
0·99 17 28 44

PLS‡ 17 28 44

† For N = 768, npd = 5 and ncb = 60, h2 = heritability,
rpc = purebred-crossbred genetic correlation.
‡ With PLS the optimum design is independent of rpc.
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Figure 6 Relation of ∆F and ∆G with the number of
selected sires ns  for a fixed test capacity of N = 768, with npd
= 4, h2 = 0·4, rpc = 0·4 and ncb = 60;     ■      ∆G;   ✕ ∆F.
Lines represent predictions, symbols represent results from
simulation.
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Table 1 shows the design of optimum breeding
schemes, i.e. the optimum number of selected sires,
for different constraints on the rate of inbreeding.
With PLS, the optimum number of sires is always
lower than with CCPS and decreases when h2

increases. With CCPS the optimum number of sires
decreases with increasing h2 and rpc. With decreasing
rpc, the required number of sires increased rapidly for
h2 = 0·6, whereas for h2 = 0·15 there is only a small
increase. This result agrees with the observation that
the increase of intraclass correlations is largest for
high heritabilities (Figure 1). Results in Table 1
indicate that, with a constraint on ∆F, the difference
between the optimum number of sires with PLS and
CCPS increases with heritability. For low
heritabilities, this difference is relatively small
because single trait BLUP selection already puts
substantial emphasis on family information. 

The comparison of CCPS v. PLS at fixed rates of
inbreeding involves a trade off between accuracy and
intensity of selection. Table 1 shows that with CCPS
the constraint on ∆F is achieved by selecting more
parents, which is at the expense of selection intensity.
On the other hand, CCPS benefits from a higher
accuracy of selection due to the use of crossbred

information. The superiority of CCPS vs. PLS at fixed
rates of inbreeding (Figure 4) indicates that the
increase of gain due to increased accuracy exceeds
the decrease of gain due to decreased selection
intensity. 

Given the large differences in ∆ F between CCPS and
PLS (Figure 2), the difference between the optimum
number of sires for both selection strategies (Table 1)
is surprisingly small. This indicates that a small
increase in the number of sires is sufficient to
substantially reduce ∆F. Figure 6 shows the relation
of ∆F and ∆G with the number of selected sires, for
h2 = 0·4, rpc = 0·4 and N = 768, which shows that ∆F
drops substantially when the number of sires
increases, whereas ∆G decreases only moderately.
There are two distinct mechanisms causing the sharp
decrease of ∆F. First, in the absence of selection, ∆F
approximately halves when the number of parents is
doubled (Wright, 1969). Second, with fixed N,
selection intensity decreases when the number of
parents increases, which further reduces ∆F (see
appendix B of Bijma and Woolliams (2000)). For the
scheme in Figure 6, both mechanisms contribute
approximately equally to the reduction of ∆F. The
different relation of ∆F and ∆G with the number of
sires also explains why the superiority of CCPS over
PLS, i.e ∆Gccps/∆Gpls, reduces only moderately when
∆F is restricted (Figure 4 v. Figure 5). 
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Discussion
In this paper, we have compared CCPS to PLS with
particular emphasis on the rate of inbreeding. When
keeping the number of parents constant, changing
from PLS to CCPS may substantially increase ∆F. In
particular with high h2 and low rpc, CCPS requires a
larger number of parents than PLS, to avoid
excessive rates of inbreeding. When compared at the
same rate of inbreeding, CCPS was superior to PLS
and the superiority of CCPS was only moderately
reduced compared with a situation without a
restriction on ∆F. 

Until recently, balancing rates of gain and inbreeding
in animal breeding programmes required
computationally demanding stochastic simulation,
which seriously restricted the number of alternative
schemes involved in the optimization. This paper
shows that the use of the long-term genetic
contribution theory for predicting ∆F (Woolliams et
al., 1999; Bijma and Woolliams, 2000; Woolliams and
Bijma, 2000) enables the optimization of rates of gain
and inbreeding of breeding schemes, within very
limited computing time with no restriction on the
number of alternative schemes involved. For
example, the results in Figure 4, which involved the
evaluation of approx. 750 alternative breeding
schemes, were generated within nine wall clock
seconds. 

Following the approach of Wei and van der Werf
(1994), we have treated purebred performance and
crossbred performance as correlated traits, assuming
the additive infinitesimal model. Other studies have
used finite locus models with several degrees of
dominance, and generally with equal effects for all
loci (Baumung et al., 1997; Uimari and Gibson, 1998).
Neither of these models is fully realistic, i.e. the true
number of genes must be finite, but on the other
hand we have little knowledge of the number of
genes, their effects and the interactions between
genes. 

Prediction of short-term selection response by means
of selection index theory does not require the
infinitesimal assumptions, providing gene effects are
not very large and gene frequency of favourable
alleles is near 0·5 (Hill, 1998). When phenotypes and
breeding values follow a multivariate normal
distribution, the regression of breeding values on
phenotypes, i.e. the selection index, is unbiased. With
multivariate normality, therefore, selection index
theory exactly predicts response to a single cycle of
selection. Although selection may induce deviations
from normality, Turelli and Barton (1994) show that
the prediction of genetic gain by regression on
phenotypes is robust against deviations from

normality, even with strong truncation selection.
Therefore, prediction of response by means of
selection index theory is expected to be adequate in
the short term. 

In the long-term, selection response depends on the
nature of the genetic variation, i.e. the number of
genes, their effects etc. However, we have little
knowledge of those parameters, and it will be
difficult to convince practitioners to sacrifice short-
term response (i.e. by not using CCPS) when it
remains doubtful whether doing so will indeed yield
more long-term response. The most practical
approach, therefore, seems to be the use of CCPS
while restricting the rate of inbreeding, so as to
maximize short-term response and simultaneously
avoid rapid erosion of the genetic variation. To
account for changing genetic parameters due to
changing gene frequency, genetic parameters should
frequently be re-estimated so that optimality of the
CCPS EBV is guaranteed. 

In this study, breeding schemes were optimized
given a fixed total number of purebred selection
candidates, whereas the number of recorded
crossbred individuals varied between schemes. In
other studies, crossbred individuals were tested at
the expense of purebred individuals, thus reducing
the number of selection candidates (Wei and van der
Werf, 1994). Whether testing crossbred individuals is
at the expense of purebred individuals depends on
whether testing of crossbred individuals is part of
the nucleus-breeding programme, or, alternatively,
information from the commercial population is
collected, e.g. at the slaughterhouses. Collecting
information at the slaughterhouse has the advantage
that one can directly measure the traits that
determine the carcass price, e.g. carcass grade and
lean%, instead of an ultrasonic measurement of
backfat, which may increase accuracy of selection.
Additionally, measuring crossbred performance on
individuals of the commercial population has the
advantage that G ✕ E interaction is accounted for.
When crossbred information is collected outside the
nucleus, PLS and CCPS are not compared at the
same total amount of resources, so the relevant
question is whether the additional gain arising from
using CCPS instead of PLS makes up for the cost of
measuring crossbred individuals. 

CCPS and PLS can be compared at the same level of
resources by specifying the ratio of the costs of
testing a purebred v. a crossbred individual and,
subsequently, evaluating breeding schemes at the
same total costs. In that case, testing crossbred
individuals will reduce the number of purebred
selection candidates, which reduces selection
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intensity and has a decreasing effect on ∆F (Figure 2).
When compared at the same level of resources,
therefore, changing from PLS to CCPS will give
smaller increases of ∆F than the values presented in
Figure 2. Methods used in this study can as well be
used to balance rates of inbreeding and gain for
crossbreeding schemes with a fixed total level of
resources. 

In this study, constraints on ∆F were achieved by
increasing the number of parents. Alternatively, one
can use dynamic selection algorithms that directly
constrain ∆F (Meuwissen, 1997; Grundy et al., 1998).
Though dynamic selection algorithms are expected
to give higher ∆G at the same ∆F, optimization of
breeding schemes using those algorithms can only be
implemented by means of computationally
demanding stochastic simulation, which limits the
number of alternative schemes considered in the
optimization. Our methods provide good insight into
the impact of different parameters and as such
provide a good starting point for the optimization of
breeding schemes. 
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