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SUMMARY

We study the statistical inference from data on transmission obtained from one-to-one

experiments, and compare two algorithms by which the reproduction ratio can be quantified.

The first algorithm, the transient state (TS) algorithm, takes the time course of the epidemic

into account. The second algorithm, the final size (FS) algorithm, does not take time into

account but is based on the assumption that the epidemic process has ended before the

experiment is stopped. The FS algorithm is a limiting case of the TS algorithm for the

situation where time tends to infinity. So far quantification of transmission has relied almost

exclusively on the FS algorithm, even if the TS algorithm would have been more appropriate.

Its practical use, however, is limited to experiments with only a few animals. Here, we quantify

the error made when the FS algorithm is applied to data of one-to-one experiments not having

reached the final size. We conclude that given the chosen tests, the FS algorithm

underestimates the reproduction ratio R
!
, is liberal when testing H0 :R

!
& 1 against H1 :R

!
! 1,

is conservative when testing H0 :R
!
% 1 against H1 :R

!
" 1 and calculates the same probability

as the TS algorithm when testing H0 :R
!-control

¯R
!-treatment

against H1 :R
!-control

"R
!-treatment

.

We show how the power of the test depends on the duration of the experiments and on the

number of replicates. The methods are illustrated by an application to porcine reproductive

and respiratory syndrome virus (PRRSV).

INTRODUCTION

Laboratory experiments are an important tool in the

epidemiology of infectious diseases to estimate trans-

mission parameters and to determine the effect of an

intervention of transmission. A transmission exper-

iment consists of a number of trials. In each

transmission trial a number of infectious and sus-

* Author for correspondence: Farm Management, Wageningen
University, Hollandseweg 1, 6706 KN, Wageningen, The Nether-
lands.

ceptible animals are housed together and sampled

regularly to monitor the epidemic process. An

advantage of transmission experiments over field

studies is that they offer a controlled environment in

which the influence of a single factor on the

transmission can be investigated, while minimizing

variation caused by other factors. This implies that

more insight can be obtained into causative mech-

anisms underlying the transmission dynamics of

the pathogen. Furthermore, transmission experiments

are usually less expensive and less time-consuming

than field studies, and make it possible to evaluate
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intervention measures that are not yet implemented or

realizable in the field.

Data from transmission experiments may serve to

construct and fit an epidemiological model. Once

accepted as being appropriate, such a model can be

used to estimate certain biologically interpretable

parameters, and to test hypotheses. A model that is

often used in the epidemiology is the SIR model, in

which individuals are either susceptible, infectious, or

recovered [1, 2]. An interesting transmission par-

ameter of the SIR model is the reproduction ratio (R
!
)

that is defined as the average number of secondary

infections that would be caused by one infectious

individual during its infectious period in a large

population of susceptible individuals. If R
!
exceeds 1

the pathogen can spread and may cause a major

outbreak, while if R
!

is smaller than 1 the pathogen

cannot spread or it will at most produce a minor

outbreak.

Transmission experiments have already proved to

be useful in studies on viral pathogens such as

pseudorabies virus [3, 4], classical swine fever virus [5],

porcine reproductive and respiratory syndrome virus

[6] and bovine herpes virus [7]. The main aim of these

studies was to quantify the effect of interventions like

vaccination on R
!
using the traditional final size (FS)

algorithm. The observed data in these experiments

were the ‘final sizes ’ of the local epidemics, ie, the

total number of individuals ultimately infected in the

experiment. Thus, it was assumed that either no

infectious individuals or no susceptible individuals

were left at the end of the transmission trial so that the

epidemic process has ended before the trial was

stopped.

For some pathogens the final size approach may be

feasible, but for others it may not. Consider, for

instance, the bacterial pathogen Actinobacillus pleuro-

pneumoniae in pigs. The length of the infectious period

induced by this pathogen is unknown, and its

excretion pattern varies widely between individual

pigs [8], making it difficult to determine whether the

epidemic process has ended when the transmission

trial is stopped. For those pathogens it would be

better to use an estimation method that does not rely

on a final size situation.

An algorithm for the calculation of state proba-

bilities that is not based on the final size assumption is

available from the stochastic SIR model [9]. In this

paper we will call it the ‘ transient state ’ (TS)

algorithm. The TS algorithm takes the time course of

the experimental epidemic into account with no need

for a final size situation. Although an explicit solution

for any population size is theoretically available from

the TS algorithm, its practical use is restricted to

experiments with few individuals. This is because its

high degree of recursiveness may cause numerical

problems or long computation time [2, 10, 11]. The

high degree of recursiveness in the TS algorithm

disappears if time tends to infinity, turning the TS

algorithm into the readily applicable FS algorithm.

As long as the TS algorithm cannot be used for

experiments with larger numbers of individuals the FS

algorithm will have to be used, even if the final size has

not been reached. In this paper we investigate the

error made when the FS algorithm is applied to

experiments where a final size situation has not been

reached. We focus on what we call one-to-one

transmission experiments. One such experiment con-

sists of replicated one-to-one trials in which a single

infectious individual is housed with a single susceptible

individual.

There are several reasons for preferring one-to-one

experiments over experiments with more individuals.

From a mathematical point of view, there is the

advantage that a full analytic solution of the TS

algorithm is within reach, and that the estimation

methods can be based on binomial distributions, so

that standard methods of estimation and testing are

available. From a biological point of view, one-to-one

trials have the advantage that there is no doubt as to

which individual infected which other individual, and

co-infection can be excluded. Furthermore, it is

possible to estimate the probability of infection from

one-to-one experiments without assuming an under-

lying model, so that the estimated parameter is

robust. Therefore, one-to-one experiments are most

appropriate compared to bigger experiments if the

aim is to estimate R
!

or to test the effect of an

intervention on R
!
, knowing that R

!
in both treatment

groups is larger than the threshold value 1 [6].

The outline of the paper is as follows: (i) the

stochastic SIR model is described briefly; (ii) an

explicit solution for a single one-to-one trial is

obtained; (iii) these solutions are converted to a

binary outcome; (iv) the statistical inference with both

algorithms is investigated; and (v) the error made

when using the FS algorithm instead of the TS

algorithm is investigated. This error is investigated for

three topics : estimating R
!

and the corresponding

confidence interval ; testing the size of R
!
in relation to

its threshold value 1; and testing the reduction of R
!

due to an intervention. To illustrate the results we
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have added an example of a particular one-to-one

experiment with porcine reproductive and respiratory

syndrome virus (PRRSV) among pigs.

STOCHASTIC SIR MODEL

The stochastic SIR model, also called the General

Stochatic Epidemic, was proposed by Bartlett [9] and

has been the subject of analysis by others [2, 10, 11].

In this model individuals are either susceptible,

infectious or recovered. Let S(t) be the number of

susceptible individuals at time t, and let I(t) be the

number of infectious individuals at time t. The total

population size is constant, i.e., N(t)¯N, so that the

number of recovered individuals R(t) at time t is given

by R(t)¯N®S(t)®I(t). Hence, the population state

at time t is denoted by the pair (S(t),I(t)), and a

particular realization by (s(t), i(t)) or simply (s,i).

Given that the population state is (s,i) at time t,

it will be in state (s®1,i1) at some later moment if

a susceptible individual becomes infectious upon an

infection event. It will be in state (s,i®1) if a

infectious individual becomes immune upon a re-

covery event. The rate at which infection events occur

is proportional to the number of susceptible indivi-

duals, the proportion of infectious individuals present,

and the infection parameter β. This assumption is

commonly referred to as the ‘mass-action’ assumption

[12]. The rate at which recovery events occur is

proportional to the number of infectious individuals

and the recovery parameter α. Assuming that recovery

events occur independently then the mean infectious

period is given by 1}α.

Given the above assumptions, the dynamics of the

model are governed by a Markov process. The one-

step transition probabilities in a small time interval ∆t

are given by:

Pr²(S(t∆t),I(t∆t))¯ (s®1,i1) r (S(t),I(t))¯ (s,i)´

¯β
si

N
∆to(∆t)

Pr²(S(t∆t),I(t∆t))¯ (s,i®1) r (S(t),I(t))¯ (s,i)´
¯αi∆to(∆t)

Pr²(S(t∆t),I(t∆t))¯ (s,i) r (S(t),I(t))¯ (s,i)´

¯ 1®
E

F

β
si

N
αi

G

H

∆to(∆t), (1)

where o(∆t)! 0 when ∆t! 0. Denoting the initial

state of the process by (s
!
,i
!
), the state probabilities

can be written as:

p
s,i

(t)¯Pr²(S(t), I(t))¯ (s,i) r (S(0),I(0))¯ (s
!
,i
!
)´. (2)

After rescaling time to units of the mean infectious

period 1}α, the adjacent state probabilities satisfy the

forward differential-difference equations:

d

dt
p
s,i

(t)¯ (i1)p
s,i+"

(t)


E

F

R
!

(s1)(i®1)

N

G

H

p
s+",i−"

(t)

®
E

F

R
!

si

N
i

G

H

p
s,i

(t), (3)

where

R
!
¯

β

α

for 0% si% s
!
i

!
, 0% s% s

!
, and 0% i% s

!
i

!
.

Subject to the initial value p
s
!
,i
!

(0)¯ 1 this equation

can be solved using standard methods. The solution

that we call the transient state (TS) algorithm can be

used to calculate a continuous-time state probability

for each state in the epidemic process.

Despite the fact that the solution of equation (3) is

formally available, an exact calculation of the con-

tinuous-time state probabilities for all states in the

epidemic process is very laborious for all but the

simplest cases. Attempts to find useful explicit

solutions for the stochastic SIR model have been

made [10, 13–17], but calculation of the state proba-

bilities is still recursive, or involves a considerable

number of multiple summations and products.

The probability distribution used in the TS al-

gorithm is given by the set of all five time-dependent

state probabilities (Fig. 1). The probability distri-

bution of the FS algorithm is the limiting case of the

TS algorithm where time tends to infinity. In fact, as

t!¢ all state probabilities where i1 0 tend towards

zero, so that the limiting probabilities of the states

where i¯ 0 approach the final size distribution of the

experimental epidemic.

When using methods based on the SIR model to

quantify R
!
, one should remember that the results will

also depend on the assumptions underlying the model.

Some of the assumptions are : all animals within the

population have random contacts with each other ;

every class S, I and R consists of a homogeneous group

of individuals ; the infection rate is constant during the

entire infectious period; the duration of the infectious

period is exponentially distributed; and each recover

ed animal is fully immune towards infection. Thus,

application of both the TS and the FS algorithm

requires these assumptions to be checked carefully.



196 A. G. J. Velthuis and others

Fig. 1. A schematic structure of the epidemic process in a

one-to-one trial. Each state is given by the number of

susceptible and infectious individuals. In the long run, the

population ends up in one of the absorbing states (0,0) or

(1,0). The transition rates are given next to the arrows,

where time is scaled in units of infectious periods.

ONE-TO-ONE TRIAL

In a one-to-one trial a single infectious individual is

housed together with a single susceptible individual.

Hence, s
!
¯ 1, i

!
¯ 1 and N¯ 2, at t¯ 0. The

following states are distinguished: (1,1), (1,0), (0,2),

(0,1) and (0,0). In the long run the pair will always end

up in one of the absorbing states (1,0) or (0,0) (Fig. 1).

The probability distribution belonging to the TS

algorithm is :

p
","

(t)¯ exp

E

F

®
R

!
2

2
t

G

H

p
",!

(t)¯
2

R
!
2

E

F

1®exp

E

F

®
R

!
2

2
t

G

H

G

H

p
!,#

(t)¯
R

!

R
!
®2

E

F

exp(®2t)®exp

E

F

®
R

!
2

2
t

G

H

G

H

p
!,"

(t)¯®2
R

!

R
!
®2

exp(®2t)
4

R
!
®2

exp

E

F

®
R

!
2

2
t

G

H

2exp(®t)

p
!,!

(t)¯
R

!

R
!
®2

exp(®2t)®
8

R#

!
®4

exp

E

F

®
R

!
2

2
t

G

H

®2exp(®t)
R

!

R
!
2

, (4)

if R
!
1 2. If R

!
¯ 2 the state probabilities for (0,2),

(0,1) and (0,0) are given by: p
!,#

(t)¯ texp(®2t),

p
!,"

(t)¯®2exp(®2t)(1t®et) and p
!,!

(t)¯
e−#t($

#
t)®2exp(®t)"

#
. Note that the probability

distribution for the FS algorithm is a limiting case of

the TS algorithm, and is given by the state proba-

bilities of the two absorbing states :

p
",!

¯ lim
t!¢

p
",!

(t)¯
2

R
!
2

and

p
!,!

¯ lim
t!¢

p
!,!

(t)¯
R

!

R
!
2

, (5)

while all state probabilities of the transient states are

zero: p
","

¯ p
!,#

¯ p
!,"

¯ 0.

Figure 2 shows an example of the dynamics of the

model (4) where R
!
¯ 3. The probability of being in

the initial state (1,1) equals one at t¯ 0, and decreases

in time. The state probabilities of the intermediate

states (0,2) and (0,1) initially increase with time, and

thereafter decrease asymptotically to zero. The state

probabilities of the absorbing states (0,0) and (1,0)

increase asymptotically to a non-zero value when t

tends to infinity.

From the explicit solution, some interesting quanti-

ties can be determined, e.g., the mean time spent in

state (s,i) and its variance. Assumptions (1) and the

Markov property of the chain imply straightforwardly

that the time spent in the transient states (1,1), (0,2)

and (0,1) are independently exponentially distributed

with probability densities ("
#
R

!
1) exp(®("

#
R

!
1)t),

exp(®2t) and exp(®t), respectively [18]. Hence, the

respective sojourn times have means 2}(R
!
2), "

#
and

1 with variances (2}(R
!
2))#, "

%
and 1, respectively.

The mean time before absorption takes place and

its variance can be calculated as follows. There are

two possible routes towards absorption, the first

directly from (1,1) to (1,0), and the second from (1,1)

via (0,2) and (0,1) to (0,0). The probability of the first

route is equal to the probability that the waiting time

for transition to (1,0) is less than the waiting time for

transition to state (0,2). Hence this probability is

2}(R
!
2), and the probability of the second route is

R
!
}(R

!
2). Now let T

s,i
denote the time spent in state

(s,i), and δ¯ 0 if the first route is followed and

δ¯ 1 if the second route is followed. Then, for the

time to absorption Z we have say:

Z¯T
","

δ(T
!,#

T
!,"

). (6)

Calculation of the mean and variance of Z using the

above formulations is straightforward:

E(Z )¯
43R

!

2(R
!
2)

(7)

and

Var(Z )¯
R

!
(45R

!
)

4(R
!
2)#

. (8)

The mean time to absorption of a highly infectious

pathogen, R
!
!¢, is 1±5 infectious periods. Based on
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Fig. 2. The state probabilities of the five states in a one-to-one trial as a function of time. In this particular example R
!
¯ 3.

(7) and (8) 95% of the one-to-one trials will have

reached an absorbing state within 3±69 infectious

periods. In the case of a pathogen that is hardly

infectious (R
!
! 0), the mean time to absorption is 1

infectious period.

PRACTICAL CONSIDERATIONS

It is often difficult to distinguish between recovered

and infectious individuals in transmission experi-

ments. Consider, for instance, the bacterial pathogen

A. pleuropneumoniae in pigs where under experimental

conditions the excretion pattern varies widely between

individuals [8]. It may occur that individuals cease to

excrete the bacteria but that excretion is resumed after

a few days. Therefore, it cannot be concluded that a

pig has stopped being infectious when there has been

no excretion of the bacteria for a few days. Susceptible

individuals are easier to identify, because they are

consistently negative in bacteriological culturing and

serology during the experimental period.

To quantify R
!

it is desirable to use a probability

distribution over the number of susceptible individuals

(s) instead of the number of infectious and susceptible

animals (s,i). The probability of the number of

susceptible individuals in a one-to-one trial is easily

obtained by adding all state probabilities with equal

numbers of susceptibles, i.e., s¯ 1 or s¯ 0. Conse-

quently, the number of infectious individuals becomes

irrelevant in the quantification of R
!
. The probability

of having no susceptible individual at time t for the TS

algorithm is the sum of the state probabilities p
!,#

(t),

p
!,"

(t) and p
!,!

(t) :

p
s=!

(t)¯3
i

p
!,i

(t)¯

R
!

2R
!

®
R

!

2R
!

exp

E

F

®
2R

!

2
t

G

H

. (9)

The probability of having one susceptible individual

left at time t is equal to the sum of state probabilities

p
","

(t), and p
",!

(t). The state probabilities of having

one respectively no susceptible individual according

to the FS algorithm equal the state probabilities of the

two absorbing states (5), i.e., p
",!

respectively p
!,!

.

When planning a one-to-one experiment, it is

possible to calculate the minimal experimental period

depending on the expected R
!
. Since the original

number of state probabilities is reduced from five in

(4) to the two state probabilities in (9) where only the

number of susceptibles is considered, the minimal

experimental period can be determined by use of the

mean sojourn time and its variance in starting state

(1,1), i.e., 2}(R
!
2) and (2}(R

!
2))#, respectively.

This because, the observable final size situation is

reached immediately after state (1,1) has been left.

ONE-TO-ONE EXPERIMENTS

In a single one-to-one trial the outcome of the

infection process is a binary variable, since an infection

will occur or not. Hence, the total number of infection

events k from n mutually independent replications of

an one-to-one trial is binomially distributed with

index n, and parameter p
s=!

(t) (9) :

Q(K¯k;t)¯
E

F

n

k

G

H

[ p
s=!

(t) k [ (1®p
s=!

(t))n−k. (10)
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Fig. 3. The mean estimated R
!
(top panel) and the variance (bottom panel) as a function of the number of infectious periods

(t) calculated from 1000 simulations for given combinations of R
!

and t.

The binomial parameter for the FS algorithm is p
!,!

¯
lim
t!¢

p
!,!

(t). Since the FS algorithm is a limiting case of

the TS algorithm, it is interesting to investigate the

effect of early stopping, i.e., using the FS algorithm

instead of the TS algorithm. The error made when

using the FS algorithm instead of the TS algorithm,

where the latter should have been used, can be

quantified by comparing infinite t (FS algorithm) to

finite or even small t (TS) algorithm. In the subsections

to follow this will be done for different aspects.

Estimation of Ro

The maximum likelihood estimator (MLE) of par-

ameter p
s=!

(t) is simply the observed proportion of

successes, i.e., k}n. Hence, the MLE of R
!
is obtained

as the solution of :

Rq
!

2Rq
!

®
Rq

!

2Rq
!

exp

E

F

®
2Rq

!

2
t

G

H

¯
k

n
. (11)

One-sided and two-sided statistical tests about R
!
can

be performed on the basis of the probability dis-

tribution given in (10). A two-sided 95% confidence

interval (CI) for R
!

can be constructed as usual. In

case of extreme outcomes, i.e., k¯ n or k¯ 0, a one-

sided interval would be more appropriate.

To quantify the behaviour of the two estimators of

R
!
considered here, we simulated 1000 experiments of

20 one-to-one trials for a given pair of R
!

and t, by

drawing 1000 random numbers from the binomial

distribution (10). From each of the simulated ex-

periment, R
!
was estimated with both the TS and the

FS algorithm to give R
!-TS

and R
!-FS

. This procedure

resulted in two arrays of 1000 estimated R
!
s. From

these arrays we calculated the mean estimated R
!-TS

and R
!-FS

, and the variance. This whole procedure was

performed for several combinations of R
!

and t, and

the results are given in Figure 3.

The top panel of Figure 3 shows that the R
!-FS

underestimates R
!

for small values of t, while it

overestimates R
!

for high values of t. The R
!-FS

approaches R
!-TS

when t increases. So if the ex-

perimental period is relatively short and the FS

algorithm is used instead of the TS algorithm, then it

means that R
!
is underestimated. Note R

!-TS
overesti-

mates R
!

for all t and this overestimation increases

with the real R
!
.

R0 and the threshold value 1

An important purpose of transmission experiments is

to assess whether a particular intervention can be used
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Fig. 4. The cumulative probability M(X¯x ;t) (14) to observe at least x contact infections, plotted as a function of R
!

and t.

to eradicate an infectious agent. To achieve eradi-

cation R
!

should be brought below 1 so that the

infectious agent cannot persist, and only small

outbreaks can occur. To test whether an intervention

brings R
!

below 1 the hypothesis H0 :R
!
& 1 against

H1 :R
!
! 1 should be considered. Application of the

usual test for a binomial parameter, which in this case

is p
s=!

(t) (9), and the observation that p
s=!

(t) is a

monotone, increasing function of R
!
, means that

rejection of H0 sustains H1, i.e., R
!
is assumed to be

smaller than 1. To this end, the probability that k or

less infections have occurred is calculated under the

null hypothesis, R
!
¯ 1, and should be smaller than

0±05 to reject H0 :

Pr(K%k;t rR
!
¯ 1)¯ 3

k

i=!

Q(K¯ i;t rR
!
¯ 1)% 0.05.

(12)

Probability Pr(K%k ;t rR
!
¯ 1) is a decreasing

function of t. Thus, if the FS algorithm (t!¢) is

used for testing the above-mentioned hypothesis it is

possible to reject H0 :R
!
& 1 with a greater probability

than the indicated error rate. On the other hand, if the

FS algorithm does not rejects H0 the TS algorithm

will not reject it either. In other words the FS

algorithm is too liberal when testing H0 :R
!
& 1

against H1 :R
!
! 1.

Another hypothesis that may be of interest is H0:

R
!
% 1 against H1 :R

!
" 1. Rejecting H0 suggests that

R
!
is greater than 1. If this is so, it is unsure whether

the infectious agent can be eradicated from the

population and major outbreaks can occur. In this

situation eradication will take place only by chance

and minor outbreaks are possible depending on the

size of R
!
. Like (15), to reject H0 the probability that

k or more infections are observed should be lower

than 0±05. This probability Pr(K&k ;trR
!
¯ 1) is an

increasing function of t, so using the FS algorithm to

test H0:R
!
% 1 may lead to the wrong acceptance of

H0. However, if H0 is rejected with the FS algorithm,

it will surely be rejected with the TS algorithm. So, the

FS algorithm is conservative when testing H0 :R
!
% 1.

The effect of an intervention of R0

One application of transmission experiments is to

assess the effect of an intervention on the transmission

of an infectious agent. Here we compare the level of

transmission in two populations, e.g., one vaccinated

and the other unvaccinated. Although, in the simple

case of a one-to-one experiment with equal stopping

times in the control and treatment groups elementary

tests like Fisher’s one for testing equality of binomial

proportions could be applied, we propose a more

generally applicable method, which also can be

applied to experiments with larger numbers of animals

per trial or with different stopping times. Methods to

test the difference in transmission between two groups

are available [19]. The hypothesis to be tested is that

there is no difference in transmission between the

treatment group and the control group, H0 :R
!-control

¯R
!-treatment

versus H1 :R
!-control

1R
!-treatment

. Rejec-

tion of H0 in favour of its alternative makes it

plausible that the transmission in the treatment group
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differs from the control group. A natural test statistic

is the difference in the number of contact infections

between the two groups:

X¯ rK
control

®K
treatment

r.

To test H0 :R
!-control

¯R
!-treatment

the probability that

the observed difference in contact infections x or more

has to be calculated under the assumption that the R
!

is equal in both groups. The probability to obtain a

difference of x contact infections is twice the sum of all

possible products of Q(K¯ i ;t) and Q(K¯ ix ;t) for

x1 0:

D(X¯x;t)¯ 2 [ 3
n−x

i=!

Q(K¯ i;t) [Q(K¯ ix;t). (13)

H0 is rejected if the probability of a difference of x,

say M(X¯x ;t), is smaller than 0±05, i.e., if

M(X¯x;t)¯ 3
n

j=x

D(X¯ j;t)% 0±05. (14)

Note that we assume that the number of one-to-one

trials is equal in both groups. It is also possible to

calculate the above mentioned probabilities in situa-

tions where the numbers differ between treatment

groups. However, for simplicity we only present

results for the case where the numbers are equal.

Since the parameter p
s=!

(t) in Q(K¯k ;t) depends

on both parameters of interest R
!

and t, M(X¯x ;t)

depends also on R
!
and t. A conservative way to reject

H0 is to require that the maximum of M(X¯x ;t) is

smaller than 0±05 for any arbitrary R
!
and t for the TS

algorithm, and for any arbitrary R
!
with t!¢ for the

FS algorithm. In Figure 4 the surface of M(X¯x ;t) is

plotted against R
!

and t in the situation where the

observed difference is 4 in 20 one-to-one trials per

treatment group. The whole surface of M(X¯x ;t) is

below 0±05 and its maximum is on the same height for

any value of t. This is due to the fact that M(X¯x ;t)

depends on R
!
and t only through p

s=!
(t). Hence, for

this test it is sufficient to use p
!,!

according to the FS

algorithm.

In addition, one would also like to know how many

trials one should conduct in order to find a significant

difference between R
!-control

and R
!-treatment

. Thus we

have to calculate the power of the test, i.e., the

probability to find a significant difference given that

there is a difference. The power is determined by

adding all probabilities D(X¯x ;t) for all x for which

the difference, given R
!-control

, R
!-treatment

and n, is

significant.

Fig. 5. The power of the test H0 :R
!-control

¯R
!-treatment

versus

various alternative hypotheses. In the top panel the number

of replicates is n¯ 10, while n¯ 20 in the bottom panel.

Two scenarios are considered: R
!-control

¯ 3±5 vs. R
!-treatment

¯ 0±5, and R
!-control

¯ 10±0 vs. R
!-treatment

¯ 3±5. The error

rate is set at 0±05.

Figure 5 shows an example of a power calculation.

The top panel shows the results if the number of

replicates is n¯ 10, while n¯ 20 in the bottom panel.

Two scenarios are considered: R
!-control

¯ 3±5 versus

R
!-treatment

¯ 0±5, and R
!-control

¯ 10±0 versus R
!-treatment

¯ 3±5. The error rate is set at 0±05. It appears that high

power can only be obtained if R
!

exceeds 1 in one

treatment group and is less than 1 in the other. If R
!

exceeds 1 in both treatment groups, highest power is

obtained for small t. In this particular example reason-

able power (say " 0±80) is obtained if R
!-control

" 1

and R
!-treatment

! 1 and if the number of trials is

large (here n¯ 20).

ILLUSTRATION

The results presented above are illustrated by ap-

plication to the one-to-one experiment of Nodelijk et

al. [6], who investigated the effect of vaccination on

the transmission of porcine reproductive and res-

piratory syndrome virus (PRRSV). Two sets of ten

replicate one-to-one trials were carried out. In one set
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Table 1. Results of the one-to-one experiment carried

out to test the effect of �accination on the

transmission of PRRSV

Days post

Inoculation

Virus isolated from contact pig in

Control group

(n¯ 10)

Vaccine group

(n¯ 9)

3 0 0

7 3 1

10 9 1

14 10 6

17 10 9

56 10 9

of trials all pigs were vaccinated, while in the other

they were left unvaccinated in the other experiment.

At day 1, one pig from each couple was inoculated

intranasally with PRRSV, while the other pig was

placed in a separate pen. At day 2, the contact pigs

were placed back to their original pens. To determine

the onset and duration of viremia, sera were collected

from all the pigs at day 1, and thereafter every third or

fourth day. This continued until the end of the

experiment, 56 days post inoculation. A PRRSV

infection was confirmed by virus detection in the sera.

Table 1 shows the results of this experiment for the

contact pigs. One inoculated pig from a vaccinated

couple remained uninfected and was excluded from

the analysis. All unvaccinated contact pigs were

infected at day 14, while all vaccinated contact pigs

were infected at day 17. Thus, in all one-to-one trials

the final size of the outbreak had been reached in both

treatment groups before the end of the experiment,

making this experiment an ideal test case for an

illustration.

Now, let us assume that the experiment was not

stopped at day 56, but at day 7, 10 or 14, i.e., before

the final size was reached in all trials. The question is,

would there be a difference in the conclusions drawn

if the TS algorithm had been used instead of the FS

algorithm?

Table 2 gives the estimated reproduction ratios in

the unvaccinated (R
!-c

) and the vaccinated group

(R
!-v

) together with the 95%-CIs and the p-values

under the different H0 hypotheses for the different

scenarios. For the estimates with the TS algorithm we

assumed that the duration of the infectious period was

56 days [20].

Let us first assume that the experiment was stopped

at day 7. On this day only 3 out of 10 unvaccinated,

and 1 out of 9 vaccinated contact animals were

infected. Table 2 shows to what extent the FS

algorithm underestimates R
!-c

and R
!-v

. The FS

algorithm does not reject the hypothesis H0 :R
!-c

! 1

while the TS algorithm does. All other conclusions

drawn with the FS algorithm are the same as with the

TS algorithm.

Next, let us assume that the experiment was stopped

at day 10. At this day, 9 out of 10 unvaccinated, and

only 1 out of 9 vaccinated contact animals were

infected. As before, the FS algorithm underestimates

the R
!-c

and R
!-v

, but all other conclusions are the

same for both algorithms.

Third, assuming that the experiment was stopped at

day 14, by which time all unvaccinated couples, and 6

out of 9 vaccinated couples were infected, the final size

was reached in all unvaccinated couples but not in all

vaccinated couples. According to both algorithms R
!-c

tends to infinity. The R
!-v

remains underestimated

with FS algorithm. All other conclusions are the same

for both algorithms.

Overall, this example suggests that the FS algorithm

is a good algorithm to test the different H0 hypothesis,

except for H0 :R
!-c

! 1 at day 7. However, the

estimated reproduction ratios, R
!-c

and R
!-v

, will be

underestimated when the FS algorithm is used instead

of the TS algorithm.

DISCUSSION

In this paper we compared two algorithms to quantify

the transmission of an infectious agent from one-to-

one experiments. The first algorithm, the transient

state (TS) algorithm, takes the time course of the

experimental epidemic into account. The second

algorithm, the final size (FS) algorithm, does not take

time into account, and assumes that the final size of

the epidemic process has been reached before the

experiment was stopped.

The stochastic SIR-model on which both algo-

rithms are based was originally proposed by Bartlett

[9], and formal solutions are attributable to Billard

[17] and Kryscio [21]. Bailey [2] derived a likelihood

function for parameter estimation, although it was

not applied to real-world data. Inspired by observa-

tional data human diseases, Becker [22] described

methods for the analysis of a single epidemic in a large

community. Kroese and De Jong [19] considered

methods to analyse transmission experiments that

have been applied to experimental data [3, 4, 23, 24].
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Table 2. The estimated R
!-c

and R
!-v

95%-CI, and the p-�alues under the different H0 hypotheses for four

different scenarios, assuming that the experiment was stopped at days 7, 10, 14 and 17 post inoculation

Day 7 Day 10 Day 14 Day 17

FS TS FS TS FS TS FS TS

R
!-c

0±86 6±12 18±0 43±41 ¢ ¢ ¢ ¢
95%-CI 0±14–3±75 1±18–18±53 2±49–¢ 14±08–¢ 4±48–¢ 13±93–¢ 4±48–¢ 11±40–¢
H0 :R

!-c
" 1 0±56 1±00 1±00 1±00 1±00 1±00 1±00 1±00

H0 :R
!-c

! 1 0±70 0±00 0±00 0±00 0±00 0±00 0±00 0±00

R
!-v

0±25 3±42 0±25 2±01 4±00 12±95 ¢ ¢
95%-CI 0±01–1±86 0±08–19±29 0±01–1±86 0±05–11±4 0±85–24±72 4±04–36±13 3±95–¢ 10±49–¢
H0 :R

!-v
" 1 0±14 0±96 0±14 0±91 0±99 1±00 1±00 1±00

H0 :R
!-v

! 1 0±97 0±27 0±97 0±41 0±04 0±00 0±00 0±00

H0 :R
!-c

¯R
!-v

0±34 0±34 0±00 0±00 0±09 0±09 1±00 1±00

R
!
rH0 5±58 39±58 2±29 13±25 2±75 10±06 ¢ ¢

Their methods, however, are restricted to the final size

of the experimental epidemics.

Thus far, quantification of the reproduction number

from transmission experiments has relied almost

exclusively on the FS algorithm. This is not surprising

since the FS algorithm is easy to understand and

readily implemented on a personal computer, while

the computational burden of the TS algorithm quickly

becomes insurmountable as the size of the population

increases. On the other hand, the applicability of the

FS algorithm is not always warranted, as the epidemic

process may not have ended in one or more of the

trials when the experiment is stopped. The assumption

that the epidemic processes have ended before the end

of the experiment may be justified for viral infections

with relatively fast transmission dynamics. However,

the transmission dynamics of many bacterial infec-

tions are much slower, more variable, and less easy to

keep track of.

Well-known examples of slow and highly variable

infections include Salmonella enteritidis in chickens,

Mycobacterium paratuberculosis in cattle, and Actino-

bacillus pleuropneumoniae in pigs. For instance,

Velthuis et al. [8] studied the transmission of Actino-

bacillus pleuropneumoniae among pigs by means of a

transmission experiment. The excretion pattern of the

bacterium in tonsillar swabs and nasal swabs was

highly variable. In all trials the bacterium could still

be isolated from some pigs on the last day of the

experimental period.

Hence, we are faced with the problem that while it

is desirable to base the analysis of bacterial trans-

mission experiments on the TS algorithm, it is not

always feasible in practice. For one-to-one trials,

however, this problem does not arise since a full

analytical comparison of the TS algorithm is within

reach. In this paper we have presented different

aspects of the statistical inference based on the FS and

TS algorithms on data from one-to-one trials.

First, in case of one-to-one trials it is still possible to

estimate beforehand the time until absorption or until

an infection-event has occurred. In particular, the

mean time to absorption and its variance are expressed

in terms of R
!

by equations (7) and (8).

Second, the results show that the FS algorithm

underestimates R
!
when the final size has not yet been

reached. If the experimental period is short compared

to the infectious period, the degree of underestimation

is high. If, on the other hand, the experimental period

is relatively long, R
!

will only slightly be underesti-

mated. Furthermore, both algorithms lead to overesti-

mated R
!
s. This bias is a consequence of the fact that

R
!
is a convex function of the proportion of successful

infection-events. Although this proportion is an

unbiased estimate of the success probability, Jensen’s

inequality leads to a biased overestimation of R
!
,

which increases with time and R
!

[25].

Third, we conclude that use of the FS algorithm is

liberal in testing the null hypothesis H0 :R
!
& 1

against the alternative hypothesis H1 :R
!
! 1. In other

words, it is possible that the null hypothesis would be

rejected with the FS algorithm, whereas it would not

be rejected with the TS algorithm. The implication is

that conclusions based on the FS algorithm may

overestimate the possibility of eradication. On the

other hand, use of the FS algorithm yields con-

servative H0 :R
!
% 1 in testing against its alternative

H1 :R
!
" 1. The implication is that the FS algorithm

can safely be used for testing H0 :R
!
% 1 even if the

final size has not been reached in all trials.
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Finally, there is no difference in p-value between

both algorithms when testing: H0 :R
!-control

¯
R

!-treatment
against H1 :R

!-control
R

!-treatment
. This is due

to the fact that M(X¯x ;t) depends on R
!
and t only

through p
s=!

(t). Thus, in principle at least, the FS and

TS algorithm are equally good when testing for the

effect of an intervention. Note, however, that the

power of the test does depend on both R
!

and t. In

fact, the largest power is achieved if R
!-control

is greater

than 1 while R
!-treatment

is smaller than 1. Moreover,

the power of the test is largest at intermediate t. We

conclude that both algorithms can safely be used to

test for differences, but that the power of the test is

affected by both R
!

and t.

To the best of our knowledge, there are two studies

that use one-to-one experiments [6, 7]. Nodelijk et al.

[6] carried out 20 one-to-one trials, 10 with vaccinated

pigs and 10 with unvaccinated pigs. The aim of the

study was to test whether vaccination reduces the

transmission of porcine reproductive and respiratory

syndrome virus (PRRSV) among pigs. All the sus-

ceptible contact pigs were infected at the end of all the

trials. In the control as well as in the vaccine groups

both algorithms lead to the conclusion that R
!
exceeds

1. The authors concluded, with use of the FS

algorithm, that there was no proof that vaccination

reduced the transmission of PRRSV. However, it

could still be that vaccination reduces the repro-

duction ratio, albeit not below 1. The analysis

presented in this paper shows that there is indeed

evidence that vaccination has a significant effect on

the transmission on day 10 (p¯ 0±00) and a marginally

significant effect at day 14 (p¯ 0±09).

Mars et al. [7] carried out a one-to-one experiment

with 32 trials to test if cows infected with a gE-

negative bovine herpes virus 1 vaccine strain could re-

excrete the strain and transmit it to contact-exposed

cows. The number of trials was chosen such that the

null hypothesis H0 :R
!
& 1 should be rejected in

favour of H1 :R
!
! 1 when no contact infections

would be observed. The experiment lasted 5 weeks,

and no contact infections were observed. As a

consequence Mars et al. conclude that R
!

of the

vaccine strain is below 1. In fact, using the FS

algorithm R
!

was estimated at 0±0 with a 95%

confidence interval of (0±0; 0±91).

Finally, in this paper we have presented a first step

towards the statistical inference of transmission

experiments. Of course, much remains to be done. For

instance, one could think of extension to experiments

involving more animals per trial, to infectious proces-

ses with non-exponentially distributed infectious

periods, or so that differentiation in individual levels

of susceptibility and infectivity is allowed. To what

extent the results of the present paper still hold in a

more general setting, is at present an open question.
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