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The Levins metapopulation model describes the dynamics of several

populations in patches of suitable habitat. These populations may go

extinct, leaving empty patches of suitable habitat, but these empty patches

may be recolonized by other populations via dispersal. The metapopula-

tion can therefore persist if recolonizations balance local extinctions. This

simple model has been criticized for its alleged simplicity, and it has been

frequently extended to incorporate more realism. This article scrutinizes

the assumptions of the Levins model to reveal its true simplicity. It turns

out that many assumptions may be considerably weakened without

affecting the model.
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Albert Einstein once said, ‘‘The significant problems we face cannot be
solved at the same level of thinking we were at when we created them’’
(Mayer and Holms, 1996). One such problem is why a patch of habitat is not
always occupied by a population of the species for which it is suitable. The
Levins (1969, 1970) model solves this problem at a higher level of thinking
by introducing the metapopulation concept. A metapopulation is a collection
of populations living in discrete patches of suitable habitat. These local
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populations may go extinct, for example, due to demographic stochasticity,
thus leaving empty patches of suitable habitat, but these empty patches may
be recolonized by other local populations via dispersal. Despite local
extinctions, the metapopulation can therefore persist if recolonizations
balance local extinctions. In such a balance empty suitable habitat is the rule.

The Levins model is generally presented mathematically as

dp

dt
¼ cpð1 � pÞ � mp ð1Þ

where p is the fraction of habitat patches that are occupied and hence 1 � p is
the fraction of patches that are empty, m is the extinction rate, and c is the
colonization rate (see below for a more precise interpretation of c and m).
This equation has two equilibria, denoted by p�. One is trivial equilibrium,
p� ¼ 0. The nontrivial equilibrium is given by

p� ¼ 1 � m

c
ð2Þ

which is only biologically realistic and different from the trivial equilibrium
if c=m > 1. This condition is also the condition for global stability of the
equilibrium. If c=m � 1, the trivial equilibrium is globally stable. Defining
R0 ¼ c=m, one can write the condition for a nontrivial globally stable
equilibrium as

R0 > 1 ð3Þ

where R0 is the basic reproduction number and can be interpreted as the
expected number of patches colonized during the lifetime of a local
population in a virgin environment (i.e., all other patches are empty). If
Eq. (3) is satisfied, the local population can more than replace itself before it
becomes extinct, and thus the population can grow initially. Because Eq. (2)
predicts that p� is generally smaller than 1, suitable but empty habitat patches
are indeed common in a metapopulation.

It is instructive to note that the Levins metapopulation model can be cast
in the familiar form of the logistic equation for population growth by writing
Eq. (1) as (Amarasekare 1998)

dp

dt
¼ rp 1 � p

K

� �
ð4Þ

with

r ¼ c � m ð5aÞ

K ¼ 1 � m

c
ð5bÞ
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An important difference with the logistic model is that the metapopulation
carrying capacity is not set beforehand, but it is determined dynamically by
the colonization and extinction parameters.

Almost every theoretical text on metapopulations cites this Levins
metapopulation model (which Levins himself calls the migration-extinction
model in Levins and Culver 1971). According to Hanski (1999) it is one of
the three basic models on which all other metapopulation models are
grounded; the other two are the two-population model and the lattice model.
For example, modifications of the Levins models are the incorporation of
rescue effect (Hanski 1983; Hanski et al. 1996; Etienne 2000), patch
preference effect (Ray et al. 1991; Etienne 2000) and Allee effect
(Amarasekare 1998), and the model concept has been applied to models
involving multiple species interactions (Levins and Culver 1971; Slatkin
1974; Sabelis et al. 1991; Hess 1996; Nee et al. 1997; Taneyhill 2000; Gog
et al. 2002), succession (Amarasekare and Possingham 2001), heterogeneous
habitat (Holt 1997), and the quality of the matrix habitat (Vandermeer and
Carvajal 2001), and to structured models containing local population
dynamics and dynamics of patch formation and destruction (Hastings 1991,
1995; Gyllenberg and Hanski 1992, 1997; Gyllenberg et al. 1997). While the
Levins model is originally a deterministic one, stochastic versions have also
been developed (Gyllenberg and Silvestrov 1994; Hanski 1994; Day and
Possingham 1995; Vos et al. 2000) of which the spatially explicit incidence
function model (IFM) is a particular example tailored to be parameterized by
occupancy data. Most of these extended models aim to include more
biological realism, because the Levins model itself is often considered overly
simplistic, depending on too strong assumptions. It is, however, not always
clear what these assumptions are, and how the Levins model is derived from
these assumptions. Nor is it always obvious how the parameters in the model
should be interpreted. In this article I will try to shed some light on these
issues.

THE ASSUMPTIONS OF THE LEVINS MODEL

Hanski and Simberloff (1997), Gyllenberg et al. (1997), and Etienne
(2000) list the assumptions that supposedly lead to the Levins model of Eq.
(1), while Hastings (1995) lists the assumptions of an extension of the Levins
model. From these lists I attempted to build a coherent set of assumptions
given below. Often the strong (S) assumptions are made but—as we shall
see—the weak (W) assumptions are sufficient and provide more insight.

1S. There are infinitely many patches.
1W. There are sufficiently many patches such that the deterministic ap-

proximation is warranted.
2S. Patches are either occupied or empty.
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2W1. Local dynamics do not affect colonization and extinction rates.
2W2. Local dynamics occur on a much faster time scale than metapopula-

tion (i.e., colonization–extinction) dynamics, and immigration has
no effect on local dynamics.

3. There is no patch structure, that is, they are all alike. In particular there
is no spatial structure: Patches are not assigned a specific location in
space.

4. Colonization occurs by mass action.
5. There are no correlated extinctions and colonizations.

In this article I focus most attention on the role played by assumptions 1
and 2.

ASSUMPTION 1

Assumption 1W links the deterministic Levins model to its stochastic
counterpart with N habitat patches. First I will derive the Levins model
from this stochastic model by two methods, one quick and one thorough.
The first has as its state variable the probability that a patch is occupied, the
second has as its state variable a ðN þ 1Þ-dimensional vector of
probabilities that 0; 1; 2; . . . ;N are occupied. Then I discuss the implications
of assumption 1.

State Variable Is Probability That a Patch Is Occupied

If assumptions 2S, 3, and 5 are made, we can focus on a single patch and
describe the dynamics of the probability that it is occupied. Call this
probability p; then 1 � p is the probability that a patch is empty. The rate of
change of p is then given by

dp

dt
¼ Cðp; nÞð1 � pÞ � Mðp; nÞp ð6Þ

where Cðp; nÞ is the probability per unit of time that the patch is colonized
when empty and Mðp; nÞ is the probability per unit of time that the population
in the patch goes extinct when the patch is occupied. They may both depend
on p or on the actual number of occupied patches n. The form of Eq. (6) was
put forward by Gotelli and Kelley (1993) but they interpreted p as the fraction
of occupied patches. For extinction we have Mðp; nÞ ¼ m. For colonization
we note that assumption 4 implies that Cðp; nÞ must be proportional to n; let
us call the proportionality constant cN . Then Eq. (6) becomes

dp

dt
¼ cNnð1 � pÞ � mp ð7Þ
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For N large enough (assumption 1W), we can adopt the frequentist
interpretation of probability (i.e., the probability of an event can only be
inferred from the frequency of occurrence of the event) that the probability of
a patch being occupied is equal to the fraction of occupied patches, that is,
p ¼ n=N ) n ¼ pN. Inserting this into Eq. (7) and defining c :¼ cNN leads
to the Levins model of Eq. (1).

State Variable Is Vector with Probabilities of Occupancy

A metapopulation consists of populations like a population consists of
individuals. Colonization of empty patches and extinction of populations in a
metapopulation are analogous to birth and death of individuals in a
population. Let Pn be the probability that n patches out of N are occupied.
Following Goel and Richter-Dyn (1974) we can then write down a birth–
death model at the metapopulation level:

dPn

dt
¼ Cn�1Pn�1 þ Mnþ1Pn � ðCn þ MnÞPn ð8Þ

with

Pn ¼ 0 for n < 0 and n > N ð9Þ

Ci is the probability of colonization of an empty patch when i patches are
occupied and Mi is the probability of local extinction when i patches are
occupied. Note that we allow only one extinction event or one colonization
event to occur in an infinitesimal time interval. The occurrence of more than
one such event is of order dt2 as long as correlations are absent (assumption
5). For Cn and Mn we have

Cn ¼ cNnðN � nÞ ð10aÞ

Mn ¼ mn ð10bÞ

where cN is the colonization probability per unit of time per occupied patch
per empty patch and m is the extinction probability per unit of time per
occupied patch. This leads to

dPn

dt
¼ cNðn � 1Þ½N � ðn � 1Þ
Pn�1

þ mðn þ 1ÞPnþ1 � ½mn þ cNnðN � nÞ
Pn ð11Þ
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Multiplying Eq. (11) on both sides by n and summing over all n (0; . . . ;N)
gives

XN

n¼0

n
dpn

dt
¼
XN

n¼0

cNnðn � 1Þ½N � ðn � 1Þ
Pn�1 þ
XN

n¼0

mnðn þ 1ÞPnþ1

�
XN

n¼0

n½mn þ cNnðN � nÞ
Pn()

d

dt

XN

n¼0

nPn ¼
XN�1

i¼�1

cNði þ 1ÞiðN � iÞPi þ
XNþ1

i¼1

mði � 1ÞiPi

�
XN

n¼0

mn2Pn �
XN

n¼0

cNn2ðN � nÞPn

¼
XN

n¼0

cNn2ðN � nÞPn þ
XN

n¼0

cNnðN � nÞPn þ
XN

n¼0

mn2Pn

�
XN

n¼0

mnPn �
XN

n¼0

mn2Pn �
XN

n¼0

cNn2ðN � nÞPn

¼ cNN
XN

n¼0

nPn � m
XN

n¼0

nPn � cN

XN

n¼o

n2Pn()

d

dt
hni ¼ cNNhni � mhni � cNhn2i

¼ cNhni½N � hni
 � mhni � cNVarðnÞ() ð12aÞ

d

dt

hni
N

¼ c
hni
N

1 � hni
N

� �
� m

hni
N

� c
VarðnÞ

N
ð12bÞ

where we have used that

hni ¼
Xn

n¼0

nPn ð13aÞ

hn2i ¼
XN

n¼0

n2Pn ð13bÞ

From Eq. (12b) we get the Levins model (1) if we set p equal to the expected
fraction of occupied patches, that is, p ¼ hni=N, and neglect the term
involving the variance in n. The deterministic approximation thus comes down
to setting the variance of the occupancy equal to 0 when N is large (the
simplest form of moment closure). The accuracy of this approximation
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depends on p and therefore on cN ;N, and m. Figure 1 shows the coefficient of
variation as a function of R0 ¼ cNðN � 1Þ=m for different values of N when
the system is in pseudo-equilibrium, i.e. the stochastic equilibrium conditional
on non-extinction. For a fixed value of R0 > 1 the coefficient of variation
eventually decreases as N gets larger (note that R0 also depends on N).

Interpretation

If we take Eq. (12a) and ignore the variance term, thereby effectively
setting hni ¼ n where n is the number of patches, we arrive at

dn

dt
¼ cNnðN � nÞ � mn ð14Þ

This form of the Levins model is useful if one wants to study the effect of
habitat destruction or creation on metapopulation viability in a deterministic
setting, thus excluding stochastic effects for small N.

FIGURE 1 Coefficient of variation (standard deviation divided by the mean) of p* as

a function of R0¼ cNðN � 1Þ=m for different values of N: N¼ 2 (dashed), N¼ 10

(gray), N¼ 25 (solid, thick), N¼ 50 (solid, thin), and N¼ 100 (dotted).

A Scrutiny of the Levins Metapopulation Model 263



Traditionally, however, this has been studied by adjusting Eq. (1)
slightly to

dp

dt
¼ cpðh � pÞ � mp ð15Þ

where h is the fraction of habitat patches that is (still) suitable (Lande 1987;
May 1991; Nee and May 1992; Hanski et al. 1996; Hess 1996; Amarasekare
1998; Hanski 1999; Etienne 2000). Equations (14) and (15) are mathema-
tically equivalent but their interpretations are different. Equation (15) is
generally (but see Gyllenberg and Hanski 1997) viewed as describing a
metapopulation of infinitely many patches according to assumption 1S, so a
fraction h > 0 of suitable patches still yields an infinite number of suitable
patches. If we view the Levins model setting as an infinite surface of equally
connected patches, reducing h can be regarded as random patch destruction,
which lowers the density of suitable patches on the surface. Equation (15)
thus appears to allow for the study of habitat destruction for any h > 0
without loss of accuracy of the deterministic approximation, which is
certainly appealing. In contrast, Eq. (14) describes a metapopulation
consisting of a large but finite number of patches according to assumption
1W. Lowering N reduces both system size (and thereby the accuracy of the
deterministic approximation) and patch density. Interestingly, Levins himself
used the first interpretation in 1969 (Levins 1969), the second in 1970 (Levins
1970), and both in 1971 (Levins and Culver 1971).

The two interpretations can be linked by rewriting Eq. (15) as

dp

dt
¼ cNNpðh � pÞ � mp , ð16aÞ

dn

dt
¼ cNnðNh � nÞ � mn ð16bÞ

It seems that Eq. (15) can therefore be interpreted as the deterministic limit of
the stochastic model with

Cn ¼ cNnðNh � nÞ ð17Þ

This is true only if we set the total number of patches to Nh because Pn for
n > Nh must obviously vanish; Nh now simply plays the role played by N in
Eq. (14). We see now that ‘‘any h > 0’’ is too bold a statement; we need the
additional condition that Nh is sufficient large.

All this only applies (Etienne 2000) if a decrease in h implies that
colonists are lost in unsuitable patches that were suitable before. If, somehow,
colonists only attempt to colonize suitable patches, a decrease in h has no
effect whatsoever in the deterministic model. In the stochastic model, a
decrease in h makes the system smaller and thus more vulnerable to chance
extinction. However, if decreasing h means decreasing patch density and
colonists are subject to mortality during dispersal (e.g., due to predation),
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such a decrease should be accompanied by a decrease in the colonization
probability as well (Hanski and Zhang 1993).

As we saw already, the colonization parameter c in the Levins model (1) in
fact depends linearly on N. With assumption 1S, this means that the
colonization parameter cN must be infinitesimally small for c to be a finite
number. Stated in a different way, in the Levins model all occupied patches
contribute to colonization, and for the total contribution to be finite, their
individual contributions must be infinitesimally small. With assumption 1W,
the individual contributions are just very small.

ASSUMPTION 2

A frequent obection to the Levins model is that it ignores local dynamics
by assuming patches to be either occupied or empty (assumption 2S).
Assumptions 2W1 and 2W2 provide the mathematical conditions that local
and metapopulation dynamics need to obey to allow for such a simplification
as shown below.

Derivation from a Model with Structure in Population Size

We start with assumptions 1S, 3, 4, and 5, so we can clearly focus on
assumption 2. Assume that (a) there are n size classes of local populations
either measured in number or density, that is, number per unit area, (b) an
occupied patch with a local population of class i colonizes empty patches
forming a population of class j with rate ci j, and (c) it goes extinct with rate
mi ði ¼ 1; :::; nÞ. Hence, we can have density-dependent colonization and
extinction. By a patch of type i we will denote a patch with a population of
class i. These patches can change from type i into type j with rate aij by birth
or death (aii ¼ 0). By pi we denote the fraction of patches with a population of
size i. So different patch types only differ in the size of the population they
contain, not in, for example, their habitat quality. In other words, the model is
still unstructured as far as patches are concerned (assumption 3), but
structured as far as local populations are concerned. Because population sizes
of all types can be formed by colonization of empty patches, this model is a
generalization of the model in Etienne (2000), which is in turn a general-
ization of Hanski’s (1985) model and Hastings’s (1991) model that have
N¼ 2. I also give a more solid mathematical derivation than Etienne (2000).

The differential equations for the pi are

dpi

dt
¼
Xn

j¼1

cjipj 1 �
Xn

j¼1

pj

 !
þ
Xn

j¼1

ajipj �
Xn

j¼1

aijpi � mipi

i ¼ 1; : : : ; n

ð18Þ
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Defining

p :¼
Xn

i¼1

pi ð19Þ

and

cj :¼
Xn

i¼1

cji ð20Þ

we can write down the differential equation for all occupied patches by
summing Eq. (18) for all i:

dp

dt
¼
Xn

j¼1

cjpjð1 � pÞ �
Xn

i¼1

mipi ð21Þ

because

p1 ¼ p �
Xn

j¼2

pj ð22Þ

the system defined by Eqs. (21) and (18) for all i > 1 is equivalent to the
system (18) for all i.

Assumption 2W1 implies that colonization and extinction are the same for
populations of all sizes: ci ¼ c for all i and mi ¼ m for all i. Equation (21)
then trivially simplifies to Eq. (1). Assumption 2W1 is biologically very
unrealistic, because populations of different sizes generally have different
probabilities of colonization and extinction. Fortunately, assumption 2W1 is
unnecessarily strong. We just need assumption 2W2. We apply a singular
perturbation argument (Tikhonov et al. 1985; for an application see
Heesterbeek and Metz 1993). Suppose that local dynamics are much faster
than metapopulation processes, that is, the rates aij on the one hand and the
rates cij; cj, and mi on the other hand are at time-scales differing by a factor of
E � 1. Introducing bij:¼ Eaij sets the processes at the same time-scale.
Multiplying Eqs. (21) and (18) by E leads to

E
dp

dt
¼
Xn

j¼1

Ecjpjð1 � pÞ �
Xn

i¼1

Emipi ð23aÞ

E
dpi

dt
¼
Xn

j¼1

Ecjipj 1 �
Xn

i¼1

pj

 !
þ
Xn

j¼1

bjipj

�
Xn

j¼1

bijpj � Emipi i ¼ 2; . . . ; n ð23bÞ
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Let t ¼ t=E represent the fast time-scale. On this scale Eqs. (23a) and (23b)
become, after taking the limit E # 0,

dp

dt
¼ 0 ð24aÞ

dpi

dt
¼
Xn

j¼1

bjipj �
Xn

j¼1

bijpi i ¼ 2; . . . ; n ð24bÞ

Equation (24a) entails a constant fraction of occupied patches ~p at the fast
time-scale. We can find the quasi-steady state at the fast scale by setting Eq.
(24b) equal to 0:

dpi

dt
¼ 0 ) ~pi ¼

Pn
j¼1 bji~pjPn

j¼1 bij

¼
Pn

j¼1 aji~pjPn
j¼1 aij

i ¼ 2; . . . ; n ð25Þ

where ~p1 ¼ ~p �
Pn

j¼2 ~pj and the tilde denotes the quasi-equilibrium.
Equation (25) differs from the equation presented by Etienne (2000) in that
the denominator now lacks terms involving mi because these disappeared in
the limits E # 0. In other words, the mi were assumed to be negligibly small
compared to the aij and can therefore be omitted. The same argument applies
to terms involving cji. Although we eliminated the equation for p1, Eq. (25)
evidently also applies to i ¼ 1. We can therefore write Eq. (25) for all i in
matrix notation.

~p
!
¼ M ~p

! ð26Þ

where

~p
!
¼ ð~p1; ~p2; :::; ~pnÞT ð27aÞ

Mij ¼
ajiPn
j¼1 aij

ð27bÞ

Hence, the quasi-equilibrium ~p
!

is the right eigenvector of the matrix M
corresponding to the eigenvalue 1, normalized such that Eq. (19) applies.
Let us normalize ~p

!
to unity and denote it by ~q. We then have the following

expression for ~pi:

~pi ¼ qi~p ð28Þ

and hence Eq. (21) turns into

dp

dt
¼ c0pð1 � pÞ � m0p ð29Þ
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with

m0 :¼
Xn

i¼1

miqi ð30aÞ

c0 :¼
Xn

j¼1

cjqj ð30bÞ

Thus, the Levins model represents systems of patches with different local
population sizes having different extinction and colonization rates, which
together lead to effective colonization and extinction rates given by Eqs. (30a)
and (30b) as long as local dynamics are faster than metapopulation dynamics.
Note that we have not made any special assumptions about the aij except that
they are large compared to ci and mi.

Assumption 2W2 also mentions that immigration into already occupied
patches is assumed to have no effect on local dynamics. Hanski and Simberloff
(1997) state that this follows from the time-scale assumption, so it is not
an additional assumption. We argue here to the contrary that it is an additional
assumption, by incorporating the immigration effect (called the rescue effect;
Brown and Kodric-Brown 1977) into the structured model, and applying the
separation of time-scales. Let gijk represent the rate at which populations of
type i become populations of type j due to colonization from patches with
populations of type k; obviously, gijk ¼ 0 for j � i. Let mij represent the rate at
which the populations of type i become populations of type j due to
emigration out of type i populations; mij ¼ 0 for i � j. The mij are related to gijk,
on which we say more later. Again assuming mass action (assumption 4)
for the process of immigration, we have the differential equations

dpi

dt
¼
Xn

j¼1

cjipj 1�
Xn

j¼1

pj

 !
þ
Xn

j¼1

Xn

k¼1

gjikpjpk �
Xn

j¼1

Xn

k¼1

gikjpjpi

þ
Xn

j¼1

mjipj �
Xn

j¼1

mijpi þ
Xn

j¼1

ajipj �
Xn

j¼1

aijpi �mipi i¼ 1; : : : ;n ð31Þ

The same procedure as earlier, with the additional definitions that xijk :¼ Egijk

and nij ¼ Emij, leads to the following equations at the fast time-scale:

dp

dt
¼ 0 ð32aÞ

dpi

dt
¼
Xn

j¼1

Xn

k¼1

xjikpjpk �
Xn

j¼1

Xn

k¼1

xikjpjpi

þ
Xn

j¼1

ðnji þ bjiÞpj �
Xn

j¼1

ðnij þ bijÞpi i ¼ 2; : : : ; n ð32bÞ
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The quasi-steady state at the fast scale follows from setting Eq. (32b) equal to 0:

dpi

dt
¼ 0 ) ~pi ¼

Pn
j¼1

Pn
k¼1 xjik~pj~pk þ

Pn
j¼1ðnji þ bjiÞ~pjPn

j¼1

Pn
k¼1 xikj~pj þ

Pn
j¼1ðnij þ bijÞ

¼
Pn

j¼1

Pn
k¼1 gjik~pj~pk þ

Pn
j¼1ðmji þ ajiÞ~pjPn

j¼1

Pn
k¼1 gikj~pj þ

Pn
j¼1ðmij þ aijÞ

i ¼ 2; . . . ; n

ð33Þ
This is a nonlinear equation in the ~pi, which can therefore not be put in
matrix notation. If for the sake of argument we slightly simplify the equations
by assuming that the gijk do not depend on the type k of the patch producing
the immigrants, that is, gijk � gij for all j, then we get

~pi ¼
~p
Pn

j¼1 gji~pj þ
Pn

j¼1ðmji þ ajiÞ~pj

~p
Pn

k¼1 gik þ
Pn

j¼1ðmij þ aijÞ
i ¼ 2; . . . ; n ð34Þ

Realizing that Eq. (34) is now linear and also valid for i ¼ 1, it can be cast in
the matrix form of Eq. (26) with

Mij ¼
~pgji þ mji þ aji

~p
Pn

k¼1 gik þ
Pn

j¼1ðmij þ aijÞ
ð35Þ

We can proceed just as in the case without the rescue effect to arrive at a
Levins model with adjusted parameters c00 and m00, which are, however, no
longer constants but depend on p. In the special case discussed by Etienne
(2000), where n ¼ 2, c12 ¼ c22 ¼ 0, c11 ¼ c21 ¼ c, g12 ¼ g, m21 ¼ 0, M is
given by

M ¼
0

a21

~pgþ a12
~pgþ a12

a21
0

0
@

1
A ð36Þ

which indeed has an eigenvalue equal to unity with right eigenvector

~~p ¼

a21

a12 þ g~p þ a21

g~p þ a12

a12 þ g~p þ a21

0
BB@

1
CCA~p ð37Þ

and the ODE for p at the slow time-scale is

dp

dt
¼ cpð1 � pÞ � m1

a21

a12 þ gp þ a21

þ m2
gp þ a12

a12 þ gp þ a21

� �
p ð38Þ
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This result differs from the result in Etienne (2000) in that the fractions in
Etienne (2000) contain mi. This is due to inaccurate application of the time-
scale argument in Etienne (2000). As we showed here, the mi in the fractions
must vanish because of the limit E # 0.

Interpretation

To invoke the time-scale argument we had to assume that cij and mi are
small compared to the other parameters. This may seem somewhat
inconsistent, because mi can be regarded as a special case of aij or mij,
namely, ai0 or mi0. In a similar vein, cij can be regarded as a special case of gkij,
namely, g0ij. Hence, the assumption that metapopulation dynamics occur on a
slower time-scale than local dynamics entails the assumption of a fundamental
difference between colonization of empty patches and population growth due
to immigration into occupied patches, and a difference between extinction of a
population and population decline due to death and emigration. The first
difference can be defended biologically by claiming that colonization of
empty patches is hampered by Allee effects and stochastic founder effects,
while immigrants into extant populations immediately contribute to popula-
tion size, thus having a much larger effect. Also, conspecific attraction (Ray
et al. 1991; Smith and Peacock 1990; Vos et al. 2000) has a positive effect on
immigration but a negative effect on colonization. Yet, for conspecific evasion
(e.g., in territorial species; but see Stamps 1991) these effects are reversed.
The second difference may be interpreted biologically as a difference between
environmental stochasticity or catastrophes causing the entire population to go
extinct and demographic stochasticity causing death and emigration of only a
few individuals. The former event is rare, while the latter is common. Note
also that for the time-scale argument to work mathematically, it is not required
that all aij, mij, and gijk are large for only one value of j and one value of k must
aij and aij be large compared to mi and must gijk be large compared to ckj, while
there are no conditions at all for mij. For example, j ¼ i þ 1 and k ¼ n reflect
that only transitions between adjacent size classes and immigrations from the
largest populations are fast.

We can now understand why absence of the rescue effect is often assumed
to be implied by the time-scale argument. If metapopulation dynamics is
interpreted as including immigration, then the gijk are parameters denoting
slow processes and thus have no effect on local dynamics. If, however,
metapopulation dynamics includes only colonization and extinction, the gijk

may denote processes at the fast time-scale and induce a rescue effect. In this
view, absence of the rescue effect is an independent assumption of the Levins
model. Interestingly, I was not fully aware of this myself in Etienne (2000),
where I required g to be small to avoid a conflict with the time-scale
argument. We have now seen that this requirement is inconsistent but can
easily be avoided.
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The parameters cij, gijk, and mij are not independent. To gain insight into
how they are linked, we separate the dispersal process into three processes:
emigration, movement in the matrix between the patches of origin and
destination, and immigration (Frank and Wissel 1998; Etienne and
Heesterbeek 2000; Ovaskainen 2002). Let dout

i denote the emigration rate
out of patches of type i, dmatrix

ik the probability to survive the journey through
the matrix between patches of type i and k (which realistically should depend
only on the matrix and not on i and k), and d

in;k
j the probability of colonizing

(when k ¼ 0) or immigration (when k > 0) while increasing population size
to size class j > k or of decreasing population size to size class 0 < j < k.
Then, examples of expressions for cij, gijk, and mij are

cij ¼ dout
i dmatrix

ik d
in;0
j ð39aÞ

gijk ¼ dout
i dmatrix

ik din;k
j ð39bÞ

mij ¼ dout
i d

in;i
j ð39cÞ

Thus the mentioned difference between colonization and immigration comes
down to a difference between d

in;k
j ðj > k > 0Þ and d

in;0
j . Furthermore, an

increase in the emigration rate will result in an increase in all three
parameters by the same amount, because more patches undergo these
processes. These expressions do not represent the possibility that a larger
emigration rate will cause more increases to larger size classes in destination
patches and more declines to smaller size classes in the patches of origin, that
is, that dout

i affects d
in;k
j (all k). For an example of this possibility with

j > k ¼ 0 see chapter 4 of Etienne (2002).

Derivation from a Model with a Disperser Pool

Splitting up the dispersal process, as in Eq. (39), has led to metapopulation
models with a so-called pool of dispersers: Patches produce dispersers, which
enter this pool, stay there for some time, and then either die or enter a patch
(Gyllenberg and Hanski 1992; Hanski and Gyllenberg 1993; Gyllenberg et al.
1997; Gyllenberg and Metz 2001; Metz and Gyllenberg 2001). We follow the
model of Hanski and Gyllenberg (1993), which consists of an ODE for the
population size x, a PDE for the fraction of patches p with population size x
and carrying capacity y (which are continuous quantities in contrast to the
discrete quantities in the models presented earlier), and an ODE for the
dispersers D and a boundary condition for the PDE:

dxðtÞ
dt

¼ gðx; yÞ � gðx; yÞ þ acðyÞDðtÞ ð40aÞ
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@

@t
pðt; x; yÞ þ @

@x

dxðtÞ
dt

pðt; x; yÞ
� �

¼ �mðx; yÞpðt; x; yÞ ð40bÞ

dDðtÞ
dt

¼ �ðaþ nÞDðtÞ þ
Z 1

1

Z 1

1

gðx; yÞpðt; x; yÞ dx dy ð40cÞ

½gð1; yÞ � gð1; yÞ þ acðyÞDðtÞ
pðt; 1; yÞ

¼ bðyÞDðtÞ hðyÞ �
Z 1

1

pðt; x; yÞ dx

� � ð40dÞ

where gðx; yÞ describes population growth (for example, as a logistic
equation), gðx; yÞ is the emigration rate (which we called dout

i in the model
with discrete size classes earlier), a describes the rate at which dispersers
leave the pool and arrive at some patch, cðyÞ is the probability of arriving at a
patch of carrying capacity y that reflects patch quality (similar to d

in;k
j ),

mðx; yÞ is the extinction rate as before, n is the mortality rate during dispersal
(which was reflected in dmatrix

ik ), bðyÞ describes the per disperser and per
empty patch rate at which dispersers colonize empty patches successfully
(similar to d

in;0
j ), and hðyÞ is the fraction of patches of carrying capacity y.

This model incorporates assumptions 1S, 4, and 5, but relaxes assumptions 2
and 3 by allowing population size to have an effect on colonization and
extinction, and by allowing patches of different quality.

Hanski and Gyllenberg (1993) derive the Levins model as follows. All
patches have equal quality (assumption 3), hence hðyÞ ¼ dðy � y0Þ, that is,
the Dirac measure concentrated at the carrying capacity y0. Furthermore, b; g,
and m are independent of population size x (assumption 2W1, see later
discussion). With the definition, similar to (19), pðtÞ :¼

R R
pðt; x; yÞ dy dx,

model (40) reduces to two ODEs:

dpðtÞ
dt

¼ bDðtÞ½1 � pðtÞ
 � mpðtÞ ð41aÞ

dDðtÞ
dt

¼ �ðaþ nÞDðtÞ þ gpðtÞ ð41bÞ

Hanski and Gyllenberg (1993) then say that the assumption that local
dynamics are much faster than metapopulation dynamics (first part of
assumption 2W2, see later discussion) makes the rates a; n, and g much
larger than b and m, which then leads to

DðtÞ ¼ g
aþ n

ð42Þ

Inserting this in Eq. (41a) gives (1) with colonization rate c000 defined by

c000:¼ bg
aþ n

ð43Þ
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Interpretation

Hanski and Gyllenberg (1993) thus apply the time-scale argument in a
different way than Etienne (2000). They state that Eq. (42) follows from the
assumption that local dynamics are much faster than metapopulation
dynamics, but in fact they assume disperser dynamics (emigration, mortality,
and immigration) to be much faster than metapopulation dynamics
(colonization and extinction). In addition, they applied a stronger assumption
when they set the rates b; g, and m independent of population size. This is
just assumption 2W1.

At the same time, the assumption that disperser dynamics are much faster
than metapopulation dynamics was actually also made to get Eq. (32b). There
we required that gijk be much larger than cij and mi, and gijk consists of the
ingredients dout

i , dmatrix
ik , and din;k

j as exemplified in Eq. (39b), which are akin
to, respectively, g; n, and a of the model of Hanski and Gyllenberg (1993).
So we must interpret local dynamics in assumption 2W2 as all processes
different from colonization and extinction.

ASSUMPTION 3

I discuss two extensions of the Levins model that relax assumption 3. The
first allows patch quality to differ between patches, and the second allows
patches to have a specific spatial location.

A Model with Structure in Patch Quality

While structure in population size does not affect the form of the Levins
model as long as metapopulation dynamics are slow enough relative to other
processes, structure in patch quality can no longer be represented by a single
Levins-type ODE. Gyllenberg and Hanski (1997) describe such a model
where patch quality is either discrete or continuous. Suppose assumptions 1S,
2S, 4, and 5 are made. Let cðxÞ and mðxÞ be the colonization rate and
extinction rate, respectively, of a local population in a patch of quality x, and
let hðdxÞ be the measure denoting the fraction of patches with quality x: this
measure notation allows patch quality to be either discrete ½h ðdxÞ ¼
hx; x ¼ 1; . . . ;1
 or continuous ½hðdxÞ ¼ hðxÞ dx
 or both (e.g., a point
mass h1 at x ¼ 1, and a continuous density hðxÞ for x > 1). In the same vein
pðdxÞ is the measure denoting the fraction of occupied patches of quality x.

Gyllenberg and Hanski prove that ifZ
ð0;1Þ

cðxÞ
mðxÞ hðdxÞ > 1 ð44Þ
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there is one globally stable nontrivial equilibrium, given by

p� ¼
Z
ð0;1Þ

C�

C� þ mðxÞ hðdxÞ ð45Þ

with C� satisfying Z
ð0;1Þ

cðxÞ
C� þ mðxÞ hðdxÞ ¼ 1 ð46Þ

while p� ¼ 0 if Eq. (44) is violated. If all patches have equal quality
(assumption 3), then hðdxÞ ¼ dðx � x0Þdx and Eq. (44) reduces to
cðx0Þ=mðx0Þ > 1, which is equivalent to Eq. (3), and Eq. (45) reduces to
p� ¼ 1 � mðx0Þ=cðx0Þ, in which we recognize Eq. (2).

Thus, although this model is not reducible to the Levins model with
adjusted parameters as before, it possesses the same properties as the Levins
model. In this sense, the Levins model can be claimed to be even robust to
relaxation of assumption 3 as far as patch quality is concerned.

A Model with Spatial Structure

Suppose assumptions 1W, 2S, 4, and 5 hold. Let pi describe the probability
that a patch at location i is occupied. For this patch we can write the
equivalent of Eq. (6),

dpi

dt
¼ Ciðp; nÞð1 � piÞ � Miðp; nÞpi ð47Þ

We now follow Ovaskainen and Hanski (2001), who define

Miðp; nÞ ¼ m

wi

ð48aÞ

Ciðp; nÞ ¼ cN

XN

j 6¼i

sijpj ð48bÞ

where wi and sij do not depend on the pi, and m and cN are species-specific
parameters (see also Adler and Nuernberger 1994 and Hanski and
Ovaskainen 2000). Let M be a matrix with elements Mij ¼ wisij for j 6¼ i
and Mii ¼ 0. Ovaskainen and Hanski (2001) show that there is a globally
stable nontrivial equilibrium, if and only if

cN

m
lM > 1 ð49Þ
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where lM is the dominant eigenvalue of M. With the following weighted
version of Eq. (19)

p�
l ¼

XN

i¼1

lirip
�
i ð50Þ

where li and ri are the ith components of the left and right leading
eigenvectors of the matrix with elements ðcN=mÞMijð1 � p�

i Þ scaled such that
SN

i¼1liri ¼ 1, the nontrivial equilibrium p�
l can be written as (Ovaskainen et al.

2002)

p�
l ¼ 1 � m

cNlM

ð51Þ

Comparing Eq. (49) with Eq. (3) and Eq. (51) with Eq. (2) we see that the
spatially structured Levins model has exactly the same properties as the
original Levins model, which thus turns out to be even robust to relaxation of
assumption 3 as far as spatial structure is concerned.

Interpretation

The realm of the Levins model now appears to be almost endless. Its basic
properties are still conserved when we relax the assumption that there is no
structure in patch quality or patch location. However, as far as spatial
structure is concerned, this has only been shown for functions Miðp; nÞ and
Ciðp; nÞ as in Eq. (48). And these functions deserve scrutiny themselves. The
rate Ci at which patch i is colonized, see Eq. (47), depends on the occupancy
of the patches (occupied or empty) at time t, and not on the probabilities of
occupancy pi at time t. Assumption 1W offers no help now; we cannot use
the frequency interpretation of probability, because ni ¼ 1 for all i—that is,
each patch is at a unique location. Ovaskainen and Hanski (2001) do not
provide a mathematical or biological justification for Eq. (48b).

It is interesting to draw a parallel between the spatially structured model
and the Levins model given by Eq. (7). For equally sized patches with equal
interpatch distance, lM is given by the number of patches N. Hence, lM can
be regarded as a properly weighted measure of the capacity of the landscape
to contain a metapopulation. It was therefore termed the metapopulation
capacity (Hanski and Ovaskainen 2000).

ASSUMPTION 4

Assumption 4 states that colonization is proportional to the product of the
patches of origin and the patches of destination. In the Levins model, these
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are the occupied patches and the empty patches; in the model with rescue
effect the occupied patches are also patches of destination. In the model
structured by population size, there are patches of origin and of destination
for each population size class. Assumption 4 should not be interpreted as
stating that the choice of patches by potential colonists is random, which I
show in an example.

A Model with Conspecific Attraction

Ray et al. (1991) introduced a conspecific attraction parameter A, which is
the probability (or degree) that a disperser will look for other occupied
patches with conspecifics where it will then settle. Such dispersers are wasted
from a metapopulation point of view because colonization of already
occupied patches has no effect on metapopulation persistence (assuming no
rescue effect). In this case, choice of patches by potential colonists is clearly
nonrandom.

The dynamics are described by

dp

dt
¼ cpð1 � pÞð1 � AÞ � mp ð52Þ

which is equivalent to Eq. (1) with c0000:¼ cð1 � AÞ. Thus, the Levins model
also covers conspecific attraction as long as the random part of colonization
occurs by mass action (and the nonrandom part has no effect on
metapopulation dynamics). The model is, however, mathematically fully
equivalent to a model in which a fraction A of the potential dispersers stay in
their patch, so colonization is simply reduced. This can also be interpreted
biologically as conspecific attraction being one of the causes for dispersal.

In the model of Ray et al. (1991), a fraction A of the dispersers will not
settle in empty patches, even if there are no occupied patches at all other than
the patch where they are produced. Conspecific attraction can then hardly be
the cause for dispersal. It may be easier to consider conspecific attraction as
acting on dispersers that have already left their patch of origin.

Suppose that the total number of colonizations of both occupied and empty
patches per unit of time is cp. Assume further that c1p2 is the number of
colonizations of occupied patches per unit of time and c2pð1 � pÞ is the total
number of colonizations of empty patches per unit of time. Hence, we have
mass action for all processes, but with different proportionality constants. The
relative value of c1 to c2 is a measure of the amount of conspecific attraction.
We must have

c1p2 þ c2pð1 � pÞ ¼ cp ð53Þ

This can only be true for all p if c1 and=or c2 depend on p, which violates
assumption 4. An example of such a model is given in Etienne (2000) where
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c1 ¼
c 1
v

1 � p þ p

v

and c2 ¼ c

1 � p þ p

v

with v ¼ c2=c1 denoting the preference for empty patches relative to the
preference for occupied patches.

ASSUMPTION 5

Although the importance of correlated colonizations and extinctions has
been acknowledged (Harrison and Quinn 1989; Gilpin 1990; Akçakaya and
Ginzburg 1991; Sutcliffe et al. 1997; Frank and Wissel 1998; Etienne and
Heesterbeek 2001; Ovaskainen et al. 2002), they have scarcely been studied
in the context of the Levins model. Correlated extinctions in particular may
have a large impact on metapopulation persistence. I show how relaxation of
assumption 5 in a special case of such correlated extinctions still allows for a
Levins model with rescaled extinction parameter.

Derivation From the Stochastic Birth–Death Model

Suppose assumptions 2S, 3, and 4 are satisfied. Let mN denote the
probability per unit of time that a disaster occurs; this reflects the idea that a
larger number of patches N will usually cover a larger area with a
corresponding larger risk of disasters occurring. Let rk denote the probability
that a disaster affects k patches, wiping out the extant population when a
patch is occupied and having no effect when a patch is empty; if rk > 0 for
some k > 1 then correlated extinctions may occur. We must requirePN

k¼1 rk ¼ 1. Furthermore, let QijðkÞ denote the probability that the disaster
affecting k patches reduces the number of occupied patches from i to j.
Assuming that empty and occupied patches are equally likely to be affected,
QijðkÞ is hypergeometrically distributed, that is,

QijðkÞ ¼
i
j

� �
N�i

N�k�j

� �
N

N�k
Þ

� ð54Þ

With these assumptions, Eq. (11) becomes

dPn

dt
¼ cNðn � 1Þ½N � ðn � 1Þ
Pn�1 þ mN

XN

k¼1

Xk

j¼1

rkQnþj;nðkÞPnþj

� mN
XN

k¼1

Xk

j¼1

Qn;n�jðkÞ þ cNnðN � nÞ
" #

Pn ð55Þ
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I consider the special case that rk ¼ 0 for k > 2 here and explore the full
model elsewhere. The two extinction terms of Eq. (55) sum to

m ðn þ 1Þ r1 þ 2r2
N � 1 � n

N � 1

� �
Pnþ1 þ ðn þ 1Þr2

n þ 2

N � 1
Pnþ2

�

�n r1 þ 2r2
N � n

N � 1
þ r2

n � 1

N � 1

� �
Pn

�
ð56Þ

Multiplying by n, summing, and using some algebra similar to that required
in Eq. (12), gives �mð1 þ r2Þhni. Inserting this into Eq. (12a) and applying
assumption 1W results in

d

dt
hni ¼ cNhni½N � hni
 � m000hni ð57Þ

with

m000 ¼ mð1 þ r2Þ ð58Þ

We see that the Levins model also represents systems with correlated
extinctions, at least in this special case where only two populations can go
extinct at the same time; the extinction rate is merely increased by a factor
1 þ r2 where r2 is the probability that a disaster affects two patches.

CONCLUSION

In this article I have examined the assumptions of the Levins model. Many
of the assumptions that are often considered unrealistic can be relaxed
without affecting the model; Eq. (1) remains applicable, albeit with rescaled
parameters. In other words, the parameters in Eq. (1) represent many
mechanisms, including local dynamics, correlated extinctions and one form
of conspecific attraction. Furthermore, even in cases where simple parameter
rescaling does not suffice, the properties of the Levins model (a nontrivial
equilibrium for p if R0 > 1) remain intact when spatial structure and patch
quality are incorporated. At the same time, there are certainly important
mechanisms that the Levins model does not describe, notably the rescue
effect, a second form of conspecific attraction, and the extensions listed in the
introduction. Careful examination of a model’s assumptions is therefore
absolutely necessary to know the model’s action radius.
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