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Abstract

This thesis focuses on the use of modern statistical methods to solve problems on

sampling, optimal cutting time and agricultural modelling in Portuguese cork oak and

eucalyptus stands. The results are contained in five chapters that have been submitted

for publication as scientific manuscripts.

The thesis first addresses the decision of when to cut a rotation of eucalyptus produc-

tion forest. The aim is to optimise the long term volume production, corrected for replant

costs. On the long term the total financial yield divided by the total rotation time is an

important economical asset. Successive rotations and their growth curves are considered

as independent realisations of the same generating process. A Bayesian approach was

taken, using Shumacher curves. Prior information on the curve parameters was based on

a large number of observed growth curves. For known or accurately estimated curves,

a 16 % gain in optimisation of cutting times could be achieved, as compared to using a

common optimal cutting time. It is assumed that a farmer takes two volume measure-

ments to decide upon the cutting time of a rotation, the first measurement at a fixed

age, the second at an age that possibly depends upon the first measurement. Finding the

optimal second measurement time is entangled with finding the optimal cutting time. In

this thesis, simultaneous optimisation is carried out using numerical methods. The gain in

using a variable optimised second measurement time, compared with an optimised fixed

measurement time, however, was relatively small (up to 0.1 %), which is hardly above the

numerical noise level.

A second problem addressed in this thesis concerns estimation of stem diameter growth

curves in cork oaks. A data-set of 24 trees was used. A D-optimal experimental design

has been compared with equidistant designs to measure trees at particular ages to allow

for an optimal estimation of individual growth curves. An experimental design that is

locally D-optimal for a central parameter is proposed. This fixed compromise design can

be used for all trees. For individual growth curves and under certain conditions that are

discussed in the thesis such a design provides better estimates than an equidistant design.

The third study concerns spatial modelling of quantitative cork oak characteristics.

Spatial statistical methods are used to analyse cork oak stands, so-called montados. Spa-

tial correlations between neighbouring trees of crown shapes, of crown sizes and of stem

sizes are analysed using plots from two montados. A significant correlation is found be-

tween tree size and competition from neighbouring trees. In particular, larger trees have
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a regular spatial distribution in a montado.

The final study in this thesis compares three sampling methods for use in cork oak

farms. One method is currently in use by Portuguese farmer’s associations to estimate

cork value prior to stripping and the other two methods are compared to it. The three

sampling methods are applied to two cork oak farms and to simulated stands. The latter

are generated with spatial simulation methods on the basis of information obtained else-

where. The current method has a 15-50 % larger bias. For a clustered pattern standard

errors are lowest for the current method, but these are considerably higher for a regular

or a random pattern.

In conclusion, this thesis shows that modern statistical methods are valuable to im-

prove modelling and sampling of cork oak and eucalyptus forests. In particular, spatial

relations among neighbouring trees should preferably be included into management of

cork oak farms. Adequate sampling methods are basic to retrieve information of the

highest quality.
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Chapter 1

Introduction

Systems approaches are playing a prominent role in current agriculture and forest science.

In forestry, stands of trees may serve as silvopastoral systems. Such systems are subject to

environmental and weather conditions, as well as to management activities. Management

has to decide when, where and how actions have to be taken. Many decisions have a

quantitative background, and require a quantitative answer. They are preferably taken

on the basis of measurements on trees in the current system, in other systems under

similar conditions and on the same system in the past. They most likely could benefit

therefore from well-interpreted statistical analyses.

This thesis is based on precisely this approach. As a demand-driven research it inves-

tigates the role that current mathematical statistical methods can play to answer relevant

quantitative management questions. The thesis is focused on four typical research ques-

tions:

• What is the optimal cutting time of a rotation?

• What is an optimal experimental design to estimate stem diameter growth?

• How could one model spatial competition effects?

• What is the optimal sampling strategy to estimate tree characteristics?

Current methods from mathematical statistics are applied to answer these questions

as good as possible from nowadays’ perspective.

Several procedures have recently been developed in mathematical statistics. Since the

early nineteen nineties, Bayesian methods, although dating back to the 18th century, have

found a place between other common estimation and modelling procedures. This is mainly

due to the increased flexibility and power of modern computer systems in handling the
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2 Chapter 1. Introduction

increased amount of data and information required for such analysis. Bayesian procedures

allow to make a better estimate of parameters on the basis of prior information. Using

actual data, the prior is updated to give posterior estimates that may have a lower variance

than the prior parameters. Another recent development has taken place in D-optimal

designs, where issues of robustness are of an increasing concern. In spatial statistics and

image analysis increasing attention has recently been given to statistics of shapes. Shapes

are characterized by a low number (e.g. 4 – 8) of points to which possibly interpolating

splines or polygons are fitted. So far, applications in agricultural and production forestry

are lacking, however, although the benefits of these methods can be large.

This thesis develops these methods on Portuguese agricultural and forestry systems.

As a production forest system it considers forest stands consisting of eucalyptus trees

and of cork oaks. The eucalyptus was introduced in Portugal as an ornamental tree in

1829 and became economically important after the development of the paper industry in

1907. The most abundant eucalyptus species in Portugal is Eucalyptus globulus Labill.,

used mainly for pulpwood production and sawtimber. The eucalyptus is highly suited for

pulpwood production due to its fast growth and excellent fiber qualities, yielding whiter

fiber than any other tree species. Eucalyptus production forests are managed over very

short rotations (10-15 years). Average yearly volume production is usually between 15-20

m3ha−1.

Cork oak (Quercus suber L.) is grown in Portugal mainly in montados. A montado is

a agroforestry system, where the farmer keeps one or more tree species in a low density

and grows cows or sheep in the same area. Typically, montados occur in low populated

areas where the soil is too poor for agriculture, particularly in the south-east part of the

country. They cover large areas, often of a few hundreds of hectares in size. Cork oaks

have a life span of 300–400 years, but are economically viable for less than 150 years.

Cork is a thick and continuous layer of suberised cells, produced by the meristematic cork

cambium (or phellogen). It makes up the external envelope of the stem and branches of

the tree. The value of cork for industrial purposes highly depends on cork thickness. The

highest value is associated with thicknesses between 29 and 40 mm. The growth of the

trees and of the cork, as well as its quality, are determined both by genetic tree character-

istics, site quality and management practices. Management of cork oak stands includes

thinning, shape pruning, understorey clearing and soil fertility improvement. Production

of cork is an important economic activity, as the world demand for cork keeps increasing

and Portugal is its leading exporter.
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Purpose

The purpose of this research is to answer some important quantitative management ques-

tions with current mathematical statistical methods. As such, it is a demand-driven

approach and exemplary for the analysis and support of decision making at an agricul-

tural and a forestry system. Attention is focused on current systems in Portugal, where

these questions were raised. Some typical problems in cork oak farming and eucalyptus

forestry are addressed. The use of Bayesian statistics is investigated. Attention is given to

optimal experimental design, spatial statistics and modern simulation techniques. These

allow a better insight into sampling and management of these systems. The statistical

basis will be partly used in the initialization module of the SUBER model, a decision

support system aimed to help cork oak farmers (see section 5.5).

Outline

The outline of the thesis is as follows.

Chapters 2 and 3 address the optimal cutting time of eucalyptus production forests.

Eucalyptus is harvested for pulpwood when it attains approximately the biological rota-

tion age, i.e. the age for which the average yearly production in one rotation is maximal.

The economical aim is to maximise the long term yearly volume production, corrected

for replant costs, as measured over several rotations by allowing flexible cutting time for

each rotation by plantation age. The assumption is made replant costs are fixed in each

rotation. The problem is divided into two parts. Chapter 2 determines the optimal cut-

ting time. For maximisation of the long term volume production different growth curve

are assumed to apply to each rotation. It is shown that the optimal cutting time depends

both on the actual observed growth curve, and on all potential growth curves than may

occur in future rotations. A prior distribution for the growth curve parameters is used.

The general prior applied in this study covers volume growth curves observed in several

stands in different parts of Portugal. Approximate optimal cutting time is obtained for

the practical situation that a farmer measures trees at two different fixed ages at an early

stage of their development and derives two total volume estimates for the forest. The

actual growth curve can be estimated from the two volume estimates. Chapter 3 explores

the last situation further. It is assumed that a farmer makes the first measurement at a

fixed age. With that measurement and prior knowledge of volume growth, the time for

the second measurement is chosen so that in conjunction with the cutting time choice,

the long term production is exactly optimised. Both approximate and exact optimisation

were reached by means of extensive use of numerical methods.
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Chapters 4, 5 and 6 cover three separate problems in cork oak montados. Chapter 4

uses an optimal experimental design for estimation of stem diameter growth. Trees are

commonly measured to estimate tree growth by means of a series of regular time points,

a so-called equidistant designs. A locally D-optimal experimental design as an alterna-

tive consists of measuring trees at those moments in time, that the determinant of the

asymptotic variance matrix of the (growth) parameters is minimized. This is equivalent

to maximising the determinant of the information matrix of the parameters. This pro-

cedure yields measurements that are performed on specific ages of the trees. It allows a

more precise estimation, but is sensitive to the parameter values. Advantages of using a

hybrid experimental design, D-optimal for a central parameter, are analysed with respect

to the estimation of individual tree growth on cork oaks. Its robustness is studied under

parameter mis-specification.

Chapter 5 considers relations between neighbouring trees within single cork oak stands.

It is analyzed to which degree competition between trees influences availability of nutrients

and light and affects the shape and the size of tree crowns, which, in turn, are related to

tree health and growth. Competition is measured by current competition indices. Their

effects are studied by means of their correlation with tree diameter and tree height, crown

size and crown shape. Competition at the crown level is assumed to depend on the dis-

tances to neighbouring trees and their sizes.

Chapter 6 compares three sampling procedures for estimation of density, basal area

and cork volume in cork oak montados. Current management requires estimation of

the value of cork, just before cork extraction. This value depends upon quantity and

quality of cork. A yield estimate assists a farmer to set a price for his cork. A commonly

used sampling procedure consists of a polygonal transept or zigzag, with a convenient

starting point and covering the whole montado. Every tree located on the transept is

sampled. The two other methods are cluster sampling with fixed plot radius and cluster

sampling with a fixed number of trees and variable plot radius. Comparison is done on

simulated montados with different point-and-diameter patterns. Bias and precision of the

estimators, and sampling costs are considered.



Chapter 2

Optimal Bayesian design

applied to volume yield and

optimal cutting time prediction

Maria João Paulo and Albert Otten

In Ermakov, S.M.; Kashtanov, Yu.N. and Melas, V.B. editors. Proceedings of the 4th St.

Petersburg Workshop on Simulation. 2001. St. Petersburg University. 370-378.

In this study we consider a typical problem where a forester wants to

determine the optimal design in order to estimate the best cutting time

for a eucalyptus stand. We combine a Bayesian prior with observational

information to obtain estimates for the growth curve parameters and to

determine the best cutting time, our optimisation criterion being long

term net volume yield maximisation. Our preliminary results seem to

indicate that the observation variance and choice of prior have a greater

influence on yield than the choice of design.

5



6 Chapter 2. Volume yield optimisation

2.1 Introduction

In a eucalyptus production forest the farmer is interested in cutting the trees at the age

which maximises the long term volume production. For a particular (repeatedly used)

growth curve, this age is called the biological rotation age and is determined by the

line through the origin tangent to the volume growth curve. We take the Shumacher

growth curve V = Ae−k/t to explain Volume as a function of time t. Under this model

k is the biological rotation age, and the corresponding long term yearly yield is (A/e)/k.

Traditionally, the farmer wants to be able to predict early in time the biological rotation

age and the corresponding yield. However, the approach of cutting at the specific curve’s

rotation age is not optimal when a new curve (parameters) is ‘drawn’ from a known prior

distribution after each rotation, and in this case finding the optimal cutting time is an

optimisation problem in itself. In order to make the cutting time optimisation problem

meaningful, we introduce costs for each harvest, corresponding to a constant volume loss

V0. First we describe the optimal cutting time strategy, and its numerical implications,

when the actual curve is known to the farmer. Next we describe the optimal strategy when

the actual curve is unknown but observations at 2 time points are made, and present a

numerically feasible sub-optimal strategy for this situation. Using the latter strategy as

definition of cutting time, we finally are able to address the design problem of optimising

t1 and t2.

2.2 Materials and methods

One growth curve versus independent curves from same prior

In the forestry literature a growth period (i.e. time from when a stand of trees is re-

generated until the time when it is harvested) is called rotation. Assuming we have one

volume growth curve V (t) = f(t) in all rotations, then it’s well known that the cutting

time that maximises the long term volume production is given by the line through the

origin tangent to the volume growth curve, i.e. the point where V (t)/t is maximum. This

cutting time is called the biological rotation age. A similar result holds with costs, with

V (t)−V0 replacing V (t). If we have one unknown growth curve in all rotations, on which

we make observations, then we get to know the biological rotation age better after each

rotation. Here we consider the situation where instead of having one common curve in

every rotation for a given stand, we assume that we can have any curve V (t) = f(θ, t)

each time again, where θ has a known prior distribution.
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Data

The data set used is from plots belonging to a Portuguese pulp mill, Stora Celbi, Celulose

Beira Industrial, S.A. It contains the evolution in time of volume per ha for 158 plots

of Eucalyptus globulus. The plots have different areas, different tree densities and have

different quality indices. Each plot has been measured between 4 and 25 times, at different

ages. The volume has been estimated from measurements of diameter and height.

We used OLS to fit 11 growth functions, among others the exponential function (with

2 and 3 parameters), the logistic function and the Gompertz function, to the growth of

volume per ha in time. We selected the Shumacher function f(θ, t) = Ae−k/t, where A is

the curve asymptote, and k is the biological rotation age. This function gave the best fit

in most cases.

Prior information

We briefly studied Â and k̂, the OLS-estimated parameters for the fitted volume growth

curves. We observed their histograms, probability plots and bivariate plots, and repeated

this for transformations of Â and k̂. We found that ln(Â) and ln(k̂) for the pooled data

followed approximately a bivariate normal distribution, with

µ =

(

6.28

2.56

)

, Σ =

(

0.512 0.171

0.171 0.134

)

(2.1)

The within plot component is not negligible, but we proceed by taking π0 ∼ N (µ, Σ) as

the prior density for ln(A) and ln(k). So we generate parameters in the ln scale and when

necessary we will transform them back into the original scale. We note that the elements

of Σ in (2.1) are the total variance due to prior variation in ln(θ), and in l̂n(θ). We

further note that the prior density defined above is a very ‘broad’ one, observed over all

158 plots. These plots differ not only in location but also have different quality classes and

number of trees per hectare, for example. In a single plot we expect to observe differences

in volume growth due to some external factors such as weather and soil fertilization, as

well as genetic differences. Therefore we expect that the prior density observed for one

single plot or for a given quality class will have, besides different mean values for the two

parameters, a smaller covariance matrix. In this research it suffices to consider properties

of one rotation. We assume that the farmer knows the family of Shumacher growth curves

for the volume, and prior π0 for (ln(A), ln(k)). We distinguish between (i) θ known and

(ii) θ unknown to the farmer. In case of θ unknown, he makes two observations at times t1

and t2 with some error with known variance σ2. Then he estimates the parameters, using

information from the observations and from the prior distribution. The cutting time is

then chosen. The fact that we use prior information has consequences to the resulting
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cutting time, because if we know the underlying family of growth curves, we may want to

reject a ‘bad’ growth curve by cutting it earlier than the biological rotation age, or even

immediately at time t2 (For θ known, we consider t2 to be the minimally allowed cutting

time, for comparison reasons). Similarly, if our observed curve seems to be a very good

one, we may want to cut it a bit later than the biological rotation age. This seems to

improve the long term production.

Strategy for the choice of the cutting time

With ‘strategy’ we mean the rule or function which assigns a cutting time C to a known

curve (θ) or data (y1, y2). Formally, for a given strategy, the long term production is

defined as the ratio φ = E(Ae−
k
C − V0)/E(C), where the expectations are taken over

the prior distribution, and also over the observations (when the curve is unknown). The

cutting time optimisation problem is the problem of finding the strategy which maximises

φ. Analytical considerations show how to choose the cutting time once we know φmax.

If θ is known (i.e. the curve parameters are known), then the chosen cutting time C∗ is

such that

Ae−
k
C − φmaxC (2.2)

is maximal, C∗ ≥ t2. This leads to either C∗ being the latest time when the tangent to

the growth curve equals φmax, or to C∗ = t2. If θ is unknown, then given the observations

y1, y2 (in the ln scale), we would have to replace Ae−
k
C with EA,k(Ae−

k
C |y1, y2), and search

for C∗ such that

EA,k(Ae−
k
C |y1, y2) − φmaxC (2.3)

is maximal. Since actually φmax is unknown, we take a guess for φmax, say ρ, and use

it in (2.2) and (2.3) instead. Then every ρ will define a cutting time strategy, and the

performance can be measured by φ(ρ). The cutting time optimisation problem is reduced

now to finding the ρ for which φ(ρ) is maximal. By construction, this optimal ρ also

satisfies ρ = φ(ρ) and ρ = φmax. Maximising EA,k(Ae−
k
C |y1, y2) − ρC over C is actually

too computer intensive, so we approximate this expression with

Âe−
k̂
C − ρC (2.4)

where Â and k̂ now are the highest posterior density estimates of A and k. The ρ for which

φ(ρ) is maximal will be called suboptimal since it is expected that the approximation will

slightly degrade performance.
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The algorithm

For a given ρ, the evaluation of φ(ρ) requires two-fold (θ known) or four-fold (θ unknown)

integrals. We only show the most complicated situation (θ unknown):

Eθ,y [V (θ, C) − V0]

Eθ,y [C]
=

∫

k

∫

A

∫

y1

∫

y2
(Ae−

k
C − V0) h(y1, y2, θ) dy2dy1dAdk

∫

k

∫

A

∫

y1

∫

y2
C h(y1, y2, θ) dy2dy1dAdk

(2.5)

Here yi(θ, t) = ln(A) − k/t + εi, i = 1, 2, εi ∼ N (0, σ2); h(y1, y2, θ) is the joint density of

Y1, Y2 and θ, h(y1, y2, θ) = g(y1, y2|θ)π0(θ). Expression (2.5) for φ(ρ) is equivalent to

∫∞

−∞

∫∞

−∞

∫∞

−∞

∫∞

−∞
(Ae−

k
C − V0) e−

1
2 (z2

1+z2
2+z2

3+z2
4)dz4dz3dz2dz1

∫∞

−∞

∫∞

−∞

∫∞

−∞

∫∞

−∞
C e−

1
2 (z2

1+z2
2+z2

3+z2
4)dz4dz3dz2dz1

(2.6)

obtained when (A, k, y1, y2) are generated from independent z, z ∼ N (0, I).

Here

(

ln(k)

ln(A)

)

= µ + U ′

(

z1

z2

)

where U is the Cholesky root of Σ, i.e. U ′U = Σ.

Observations at time points t1 and t2 are y1 = ln(A)−k/t1+z3 ·σ and y2 = ln(A)−k/t2+

z4 · σ respectively. θ̂ was obtained from y1, y2 using a highest posterior density estimate.

The posterior density is that of θ given y: π(θ|y) = π(θ)g(y|θ)
g(y) . We found for each pair

of observations the θ̂ that maximised π(θ|y1, y2). The cutting time, C, depends on θ̂, on

t2 and on ρ. For practical reasons, C was truncated at 30 (years). The ratio φ(ρ) in

(2.6) was programmed in Fortran using calls to IMSL subroutines. We also implemented

the routine to optimise φ(ρ) over ρ. Note that we thus have the algorithm to produce a

(sub)optimal strategy for a given prior, σ2 = 0.5, t1, t2 and costs V0 (we took V0 = 50m3).

Therefore we can ask for the sensitivity of the corresponding (sub)optimal φ (written as

φ from now on) and for the (sub)optimal design.

Sensitivity of the (sub)optimal long term production φ

We calculated φ in the case that θ is known for the following situations:

1. for some values of the prior σln(A) and σln(k), maintaining the mean values of A

and k constant. We note that if ln(X) ∼ N (µ, σ2) then E(X) = eµ+σ2/2. We

modified the original standard deviation σln(A) and σln(k) in the prior distribution

by a multiplier 1
4 , 1

2 , and 2 (and also 0 for σln(A) and 4 for σln(k)). See Figure 2.1.

2. for some values of the prior corr(ln(A), ln(k)), maintaining µln(A), µln(k), σ2
ln(A) and

σ2
ln(k) constant (see Figure 2.2).
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Figure 2.1: Dependence of φ on the standard deviation of ln(A) in the prior distribution (E(ln(A))
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3. for some values of the time of the second measurement t2. In the case where θ is

known, no observations are generated, so t2 is considered to be the earliest possible

cutting time (see Figure 2.2).
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Figure 2.2: Dependence of φ on the prior correlation (left), and on the earliest possible cutting

time in years(right).

As a first step towards the search for an optimal design, we also calculated φ in the case

that θ is unknown for the following situations:

4. for some values of t1 and t2, maintaining the prior distribution and σ (see Figure 2.3).

5. for some values of the observation error standard deviation σ = 0, 0.25, 0.5, 0.75, 1
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Figure 2.3: Dependence of φ on design choice. Each curve corresponds to a different t1: 1 (∗); 3

(4); 5 (�) and 7 (�).

and ∞, maintaining the prior distribution constant and t1 = 3, t2 = 7 (see Fig-

ure 2.4).

2.3 Preliminary results

Case of known θ

In figures 1 to 3 we can see how changing some of the parameters can affect the resulting

ratio φ. We know that φ will increase for higher E(A) values and lower E(k) values.

The influence of the prior standard deviations on φ is less intuitive. When the curve

parameters are known, φ first drops and then climbs, and we observe that the minimum

shifts to larger σln(A) values when σln(k) increases. An explanation to the final increase

could be that a high variation in the values of A will produce some bad volume curves

with low A-values, which will be cut with little time loss, and some very profitable volume

curves with high A-values, which will be cut at a very late time. The ratio also seems

to decrease with a high correlation between the curve parameters, and of course with a

higher t2 (see Figure 2.2). Here t2 is only a minimum cutting time, and is not taking part

in the parameter estimation, therefore the higher t2 is, the later the bad curves can be

cut. We note that in the case where θ is known, measurement time optimisation does not

make sense.

Case of unknown θ

In this case the execution of the algorithm to find the (sub)optimal strategy takes a

minimum of 2 hours for a simple situation with fixed values for the parameters used. If
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Figure 2.4: Dependence of φ on the standard deviation of the observations, σ, in the case where

θ is unknown, t1 = 3, t2 = 7. The limit for φ when σ → ∞ is also shown.

we want to run the algorithm for some different values, then the algorithm execution may

take several days. Figure 2.3 shows that the effect of t1 is much greater on the resulting

φ than that of t2. The fact that very early t1 produces the best φ is caused by the chosen

observation errors. These are constant in the ln scale, so the parameter estimation is

considerably more accurate when t1 is small. For fixed t1 the curves show an optimum

for t2, as a result of two opposite effects: a higher t2 improves parameter estimation, but

it prevents early cutting. An increased standard deviation of the observations, σ, also

produces a lower φ, as expected (see Figure 2.4).

2.4 Discussion

Although our goal is to determine the optimal design for a given prior distribution and

observation error variance, we do not yet have results concerning optimal measurement

times for the volume. The algorithm produced allowed us to check the dependence of φ

on its components. We also conclude that φ is sensitive to the design choice. However,

we have based our results on a very ‘broad’ prior distribution, corresponding to very het-

erogeneous plots, located in different points in Portugal. We expect a more homogeneous

behaviour in the volume growth in plots confined to a particular region of the country.

Therefore we recommend the use of a sharpened prior in a practical situation.
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cutting times
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In a eucalyptus production forest the owner is traditionally interested in cutting the

trees at the age which maximises the yearly volume production. For a particular

growth curve, this age is called the biological rotation age and is determined by

the line through the origin tangent to the volume growth curve. In this study we

consider a more general situation where a different growth curve, with a known prior

distribution, can occur in each rotation. The goal now is to optimise the long term

(volume) production, here defined as long term yearly volume yield reduced by costs

of replanting. In this situation the optimal cutting time at each rotation depends

both on the current growth curve and on the prior distribution. In this case we have

two problems: estimating the growth curve for a particular rotation, and finding the

optimal cutting time for that rotation. We assume that two volume measurements can

be performed in each rotation, before deciding when to cut. The first measurement

is always taken at a fixed age, but the age to perform the second measurement can

be optimised, depending on the first observation. We compare some different priors

and strategies with respect to the long term production. Volume is always assumed

to grow according to a Shumacher curve. Despite the simple form of the curve,

optimisation requires the use of numerical methods.

15
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3.1 Introduction

The study is based on 158 eucalyptus plots belonging to a Portuguese pulp mill, Stora

Celbi, Celulose Beira Industrial, S.A. The study plots are very diverse in tree density and

in quality index. Each plot was regularly measured between 4 and 25 times during one

rotation, at different ages (one rotation is the period of time between seeding or planting

trees in a forest and their final cut). The volumes (m3ha−1) were subsequently derived

from measurements of tree height and diameter at breast height, for each measurement

time. The Shumacher growth curve V = Ae−k/t is used here to model the volume as

a function of time t. For this model, and under the assumption that the same volume

curve is drawn at each rotation, k is the biological rotation age, and the corresponding

long term yearly yield is (A/e)/k. However, it is assumed here that a different curve for

volume growth may be observed in each rotation. Here we use for short θ = (A, k). We

assume that two observations in the ln-scale yi = ln(A) − k/ti + εi, i = 1, 2 are to be

made at times t1 and t2 for each rotation, with εi independent N (0, σ2). The parameters

(in the ln-scale, ln(θ) = (ln(A), ln(k))) are then fit by least squares, in the ln-scale. Based

on the data and under the Shumacher model, a prior distribution was obtained for the

curve parameters. It was found that for the pooled data, l̂n(θ) = (ln(Â), ln(k̂)) followed

approximately a bivariate normal distribution N (µ, Σ), with

µ =

(

6.28

2.56

)

, Σ =

(

0.512 0.171

0.171 0.134

)

(3.1)

Σ in (3.1) includes the variation both due to prior variation in ln(θ), and due to variation

in l̂n(θ) given ln(θ). The fact that we can use prior information has consequences for

the choice of cutting time, because if the underlying family of growth curves is known,

it becomes advantageous to reject a ‘bad’ growth curve by cutting it earlier than the

biological rotation age. On the other hand if the observed curve is a very good one, then

cutting it later than the biological rotation age improves the long term production. In

order to make the problem more realistic we assume that there are fixed costs at each

rotation (for replanting the stand).

In a previous study (Paulo and Otten, 2001) we discussed the optimisation of the

cutting time when observations at fixed times t1 and t2 can be used. We studied the

behaviour of the long term production for changes in fixed t1 and t2, in error standard

deviation of the ln-observations and in parameters of the prior distribution (all changes

were done one-at-a-time). Here we extend that previous study, by considering two strongly

interfering optimisation problems: to find an optimal design (t1, t2) (with t1 fixed for all

curves, and t2 variable) of times at which to measure volume before deciding when to

cut, and to find the optimal cutting time at any rotation, based on the measurements

performed at (t1, t2). Moreover, apart from approximate optimisation, exact optimisation
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Table 3.1: Overview of the possible combinations of optimisation. Time t1 is always fixed.
Situation t2 C function to maximise over C result

I - fixed optimal Cf

II fixed sub-optimal Âe−k̂/C − ρC, where (ln(Â), ln(k̂)) are

III sub-optimal (highest pos- hpd-estimates of the curve parameters Ca
ρ(y1, t2, y2)

IV optimal terior density) given y1, t2, y2

V fixed optimal

VI sub-optimal (exact numeri- EA,k|y1,t2,y2
(Ae−k/C − ρC) Ce

ρ(y1, t2, y2)

VII optimal cal integration)

will be carried out now. We compare the situations where t2 and the cutting time are

fixed or optimised, and also when t2 is suboptimal. We also compare the results obtained

when the optimal cutting time is approximated or obtained with an exact procedure.

We note that in this study it is not our aim to construct optimal designs for parameter

estimation, such as D-optimal designs (as in Atkinson and Donev, 1992). Table 3.1 shows

the possible combinations of optimisation.

3.2 Optimisation of the long term production

We assume from now on that a different volume growth curve can occur at each rotation,

and that each curve is drawn from a Shumacher family of volume growth curves with the

prior distribution π shown in the previous section. The long term volume production we

want to maximise is defined by the ratio

φ = E(V (C) − V0)/E(C)

where V is the total volume, V0 is a constant representing a fixed cost of one rotation

and C is the cutting time. The expectation E is taken over the joint distribution of

A, k and C. Practically, this expectation has to be expanded in iterated conditional

expectations which may also involve conditioning with respect to the observations. If the

curve is known and the maximum attainable value of φ, φmax, is also known, analytical

considerations show that the optimal cutting time is either the latest time when the

tangent to the growth curve equals φmax, or it is as early as possible (usually at time t2).

Since φmax is usually not known, we take a guess for for it, call it ρ, and use it instead.

The cutting time optimisation problem is thus reduced to finding the ρ that maximises

φ(ρ). By construction, this optimal ρ also satisfies ρ = φ(ρ) and ρ = φmax. A similar

idea is presented in Ribeiro and Betters (1995, eq.8) for a finite series of known growth

curves. Obviously each value of ρ will define different cutting times for the same prior
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Figure 3.1: Example of two cutting times, optimal for ρ, for a good curve (A1 = 1250, k1 = 17)

and for a bad one (A2 = 350, k2 = 10). Two different assumed ρ values (15 and 20) are use to

show the different choices of cutting time. The curves V (t) are shown in solid, and the tangents

to the curves with a slope equal to ρ are shown with dashed lines. The corresponding optimal

cutting time positions are also shown with dashed lines. For ρ = 15 (left) C1 = 27.7 and C2 = 8.5.

For ρ = 20 (right) C1 = 22.2 and C2 = t2 (taken 0 in the graph).

information, with different resulting φ(ρ). Although the cutting time (and later on also

t2) derived for a given ρ is not optimal in the final sense, we will use the term optimal

here as well. Figure 3.1 shows the optimal cutting times for two different curves, and

given two different ρ’s. As seen in the figure, as ρ increases the optimal cutting times

decrease. We note here that if the cost V0 of one rotation was not used then there would

be no solution for the optimal cutting time, assuming the curve is known. In this case for

most curves the cutting times would become unrealistically low, and the more extreme

the selection of ‘good’ curves (with the rejection of ‘bad’ ones), the better.

C optimal, t2 fixed

If θ is unknown, we take two measurements y1 and y2 at fixed times t1 and t2 respectively.

Given the observations, we need to find C for which

EA,k|y1,y2
(Ae−k/C − φmaxC) (3.2)

is maximal. As before, φmax is unknown so we use ρ instead, and maximise

EA,k|y1,y2
(Ae−k/C − ρC)

In the notation of Table 3.1: Cρ(y1, y2) = arg max
C, C≥t2

{

EA,k|y1,y2
(Ae−k/C − ρC)

}

Later, we

search for optimal ρ, ρopt, such that ρopt = φmax. For a given ρ and C = Cρ(y1, y2), the
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evaluation of φ(ρ) requires four-fold integrals:

Eθ,y [V (θ, Cρ(y1, y2)) − V0]

Eθ,y [Cρ(y1, y2)]
=

∫

k

∫

A

∫

y1

∫

y2
(Ae−k/Cρ(y1,y2) − V0) h(y1, y2, θ) dy2dy1dAdk

∫

k

∫

A

∫

y1

∫

y2
Cρ(y1, y2) h(y1, y2, θ) dy2dy1dAdk

Here h(y1, y2, θ) is the joint density of y1, y2 and θ.

C optimal, t2 optimal

When optimising t2, t2 will become a function of y1, and the distribution of y2 will

depend on y1 through t2. For clarity we will write t2 explicitly in funtion arguments and

in (conditional) distributions. The natural evaluation order of the overall expectation is

now

Ey1(Ey2|y1,t2(EA,k|y1,t2,y2
)) (3.3)

In the inner expressions it does not matter wether t2 is fixed or a function of y1. In

order to clarify the optimisation strategies some extra notation is used for C and t2 as

functions of conditions and of ρ (see Table 3.1 and the derivations in the Appendix). Once

a functional form Cρ(y1, t2, y2) is obtained for C, the next step is to optimise t2, still for

a given ρ, as a function of y1. Thus t2 ρ(y1) is obtained by maximising over t2:

EA,k,y2|y1,t2 [Ae−k/Cρ(y1,t2,y2) − ρCρ(y1, t2, y2)] (3.4)

After carefully studying the optimal t2 as a function of y1 for different ρ and t1 simple

approximating functions for the optimal t2 were constructed. To distinguish between

the different situations we use double indices, the first referring to t2 and the second

to C. The indices can be ‘e’, ‘a’ and ‘f’ meaning exact optimal, approximate optimal,

and fixed optimal, respectively. For example ta,e
2 ρ(y1) refers to the situation where we use

Ce
ρ(y1, t2, y2) and an approximating function for t2.

The last step is to optimise φ over ρ once functions t2 ρ(y1) and Cρ(y1, t2, y2) are chosen:

φ(ρ) =
E[Ae−k/Cρ(y1,t2 ρ(y1),y2) − V0]

E[Cρ(y1, t2 ρ(y1), y2)]

where the expectations are taken over the joint distribution of y1, y2, A, k. The resulting

optimal ρ will be written as ρe,a
opt if te2 and Ca are used, and the corresponding φ(ρ) will

be written accordingly as φe,a
max, etc. In particular φf,e

max will be the maximal attainable φ

when t2 is fixed optimised and C exact optimised. Once ρopt is determined, the previous

functions have to be used by the farmer to determine first t2 from y1 and then C from

y1, t2, y2.
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C sub-optimal using highest posterior density approximation

In Paulo and Otten (2001) the hpd approximation was introduced in order to save cpu

time. The technique consists in using hpd estimates (Berger, 1988) ln(Â), ln(k̂) for

ln(A), ln(k), given observations (y1, y2), to approximate (3.2) by

Âe−k̂/C − ρC

and then optimise over C. The advantage of the approximation is that the mixture

EA,k|y1,y2
Ae−k/t of growth curves is reduced to one Shumacher curve Âe−k̂/t. The tech-

nique produces a sub-optimal cutting time as a function of y1 and y2. No modification

is needed in hpd estimation when t2 is a function of y1, t2 = t2(y1). Denoting param-

eter densities by π, observations’ densities by g and joint densities of parameters and

observations by h, we have

h(θ, y1, y2) = π(θ)g(y1|θ)g(y2|y1, t2 = t2(y1)) = π(θ)g(y1, y2|θ, t2 = t2(y1))

and posterior density π(θ|y1, y2) = h(θ, y1, y2)/g(y1, y2). The marginal joint density

g(y1, y2) is t2(.) dependent, but is ‘fixed’ in the task of maximising the posterior den-

sity for given y1, y2. The sub-optimal C, still for given ρ, will be denoted Ca
ρ(y1, t2, y2).

We recall that in the final optimisation over ρ, in general ρopt 6= φ(ρopt). Although

the joint density can be composed as a product of normal densities, the presence of k or

eln(k) in ln(A) − k/t prevents us from giving explicit expressions for hpd estimates.

Numerical optimisation and integration

The expectations EA,k|y1,t2,y2
can be conditioned one step further, yielding

Ek|y1,t2,y2
(EA|y1,t2,y2,k)

For given y1, t2, y2, k the volume asymptote A has a known log-normal distribution. Fur-

thermore, A is either not present or is an isolated multiplier in the target functions of

E(·), so we can always write EA|y1,t2,y2,k(·) explicitly as a function of y1, t2, y2, k. The

corresponding reduction in the number of iterated integrals needed makes numerical in-

tegration feasible, but still at the cost of hours in cpu-time for the hardest situations

(situation where both t2 and C are exactly optimised). The main reason for large cpu

loads is that functions Cρ and t2 ρ are repeatedly called by the optimisation and integration

routines, with new arguments each time (and results from previous calculations are not

reused). The calls branch and nest at several stages. For example, a call to φ(ρ) generates

an integral over y1; the integrand generates a second integral over y2, but only after t2 ρ

has been evaluated. This t2 ρ call in turn generates several tries for candidate t2 values.
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For each t2 an integral over y2 is generated; the integrand again needs Cρ(y1, t2, y2), etc.

An extra complication is that some normalising constants in conditional densities too have

to be calculated by numerical integration.

Implementation

The optimisation of the long term production was implemented in Fortran, with use

of IMSL-routines whenever possible. Exact C-optimisation was done with mixtures of

Newton-Raphson and/or interval halving techniques. The implicitly used assumption

that the shapes of the needed mixture curves were still of the sigmoidal type (like a single

growth curve) was never violated in the many test cases we generated.

Exact optimisation of t2 was performed only over integer values (or a finer grid).

Optimisation over ρ was done either using iterated substitution (when t2 and C were

exactly optimised) or using a IMSL-routine based on the Newton-Raphson algorithm.

For numerical integration the IMSL-routines were used.

Hpd estimates were also calculated using Newton-Raphson techniques. For fixed t1

and t2 an efficient way was to fill in advance a fine grid of (y1, y2)-values with hpd estimates

and later use it to interpolate from this grid. This approach did not work in the case of

t2 varying with y1.

3.3 Results

Cutting time fixed but optimised

From now on times t1 and t2 are in y (years), and φ is in m3ha−1y−1. Furthermore,

the costs of one rotation are set to V0 = 50 m3ha−1, and for practical reasons C ≤ 30.

Having a fixed cutting time (situation I) in the present setting is not an optimal choice,

but it is important to consider this situation to compare it with an optimal situation.

Furthermore, if the gain of an optimal procedure is small compared to the investment of

performing the two measurements on the forest, then this can be an attractive alternative.

The optimal fixed cutting time is then C = 17.6, and yields φ = 13.5. This same value

was obtained in an earlier study (Paulo and Otten, 2001) as a limiting situation when

the standard deviation of the observations y1 and y2 was increased to infinity. Figure 3.2

shows how φ varies with fixed C.

Cutting time optimised, t1 and t2 fixed

In this situation (V) the algorithm is run for a fixed (t1, t2) and guess values for ρ. We

then need to find the optimal ρ, i.e., ρ for which φ is maximal for (t1, t2). Situation V
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Figure 3.2: Situation where the cutting time is fixed, shown in detail on the right graph.

was run a number of times, for discrete (t1, t2) values: t1 = 3, 5 and several t2 values.

We did not search in earlier t1 times because they might be too early to use in practice.

For the original prior distribution, and assuming that σ = 0.5, the fixed optimal design

is (t1, t2) = (3, 10) yielding φ = 15.07. The result reported in our earlier study was

(t1, t2) = (3, 9) when using the hpd approximation (situation II). For the other choices of

prior the fixed optimal t2 varies substantially. Figures 3.3 and 3.4 show φ for fixed t1 for

different prior standard deviation values, σln(A) and σln(k). We also changed µln(A) and

µln(k) accordingly in order to keep E(A) and E(k) at the original values. The standard

deviation values were modified by factors 1
2 and 2 (σln(A)) and by factors 1

2 and 1.3

(σln(k)). The original value of σln(k) is also shown. Time t1 = 3 with optimal t2 produces

maximal φ in almost every situation, t1 = 5 is better for halved σln(k) combined with

original σln(A). For double σln(A) time t2 should be as early as possible to account for the

greater variation in parameter A, but for halved σln(A) t2 around 12 or later are optimal.

As seen in the graphs non-optimal designs can be considerably worse than the optimal

design. Figure 3.5 shows φ for different error standard deviations of the observations σ

(left), and for different correlations between ln(A) and ln(k) (right). σ was changed to

0.25 and to 0.75, and the original value 0.5 is also shown. The correlation between ln(A)

and ln(k) was changed to 0.32 and 0.96, and and the original value 0.64 is also shown. The

other parameters were left unchanged. An increase of σ leads to a fixed optimal design

where t1 and t2 are further apart. In the case of changing the prior correlation we see

that larger values produce larger fixed optimal t2. Data in these graphs is not complete

due to difficulties in some integral calculations.

The comparison of the exact optimal cutting time routine with the hpd approximation

(V versus II) was done in terms of the optimal φ obtained in each situation and in terms

of the computer time spent using each routine. We found that for fixed (t1, t2) the hpd
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routine always produced nearly the same optimal φ as exact numeric integration (the

difference in optimal φ was up to 1%), and the time needed to run the exact computation

of optimal cutting time is at least 100 times larger.

Cutting time optimised, t1 fixed, t2 optimised

The algorithm to find the exact optimal cutting time can still be further optimised with

the simultaneous optimisation of t2 (situation VII). This is a very computer intensive

procedure, and is used here mainly to find an upper limit to φ. For a given prior distri-

bution, optimal t2 depends on y1 and on ρ. The optimisation of a varying t2 produced a

negligible improvement (up to 0.1%) of optimal φ, compared with optimal fixed t2. The

approximating function for optimal t2 (situation VI) allowed fast computations and at

the same time produced an (even smaller) improvement of the resulting φ. Figure 3.6

shows some examples of optimal t2 (restricted to discrete values only), as a function of y1

(first measurement of volume, in the ln-scale), for fixed t1 and for fixed ρ. As a result of

our curve type and distributional assumptions, y1 can attain very low values when t1 is

small. These low y1 values correspond to volumes which would be too small to measure

in practice. In order to preserve numerical accuracy all y1 were accounted for during the

integration process, but the optimal t2 corresponding to very low y1 values is very erratic

and the final φ is insensitive for t2 for such low y1 values. These low y1 values are therefore

not shown in Figure 3.6, where y1 is truncated to practical acceptable values.



24 Chapter 3. Optimal measurement and cutting times

4 6 8 10 12 14 16
14.5

14.6

14.7

14.8

14.9

15

15.1

15.2

15.3

15.4

15.5

t
2

φ

σ
lnA

 halved

4 6 8 10 12 14 16
13

14

15

16

17

18

19

20

21

22

23

24

t
2

φ

σ
lnA

 doubled

Figure 3.4: Fixed (t1, t2) and corresponding φ for change in the prior σln(A) by factor 1
2

(left)

and 2 (right), and in σln(k) by factor 0.5 (4), 1 (unchanged,◦) and 1.3 (�). Time t1 is either 3

(empty symbol) or 5 (filled symbol).

3.4 Discussion

In a previously published manuscript (Paulo and Otten, 2001) we found an approximate

optimal cutting time and discussed the behaviour of the resulting long term production

under changes in the prior distribution of the growth curve parameters and in the error

standard deviation of the ln-volume observations. In this study we focus mainly on the

optimisation of the volume production by optimising exactly the cutting time, and by

choosing optimal times to measure volume in a stand for the second time, when guided by

the first measurement. The exact optimisation of the cutting times was achieved through

a change in the order of integration. The main difficulty here was that the integrand did

not have an explicit form, and thus a lot of calls to other functions an integrals had to

be made. As a result, computations became very heavy, and sometimes the numerical

integration routine could not reach the specified numerical precision, and optimisation

was not feasible.

The optimisation of the long term production depends obviously on the assumed type

of growth curve, here it was the Shumacher type. We found that our objective function,

the long term production, was unexpectedly insensitive to the use of non-optimal cutting

times and non-optimal designs. We think that it could have been caused by the Shumacher

curve properties. Even for one simple curve, the average yearly volume as a function of

time is quite flat in the neighbourhood of time k. Other curve types might have produced

sharper results. In this study we considered fixed replant costs, but the same results would

have been obtained if we had considered random costs, or systematically changing costs as

in the case of regeneration by coppice (Ribeiro and Betters, 1995). In fact only the mean

of the costs influences the function we are maximising, so our procedure is immediately
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applicable to variable costs per rotation as long as that value is known.

3.5 Conclusions

In this study we assume a Shumacher curve type to describe volume growth, a prior

distribution for the curve parameters’ distribution and that the errors of the two obser-

vations in the ln-scale come from a N (0, σ2) distribution. Under these assumptions, the

optimisation of the cutting time (instead of cutting at a fixed optimal time) allows an

improvement of 16% of the long term volume production, using a fixed optimal design.

Optimising the second measurement time gave a very small extra improvement of the long

term volume production, which is disappointing. This could be due to the growth curve

choice (Shumacher curve), which appeared to be very robust for the effect of parameter

mis-specification on volume/time ratios. The use of an approximating function to optimal

t2 worked well, in the sense that it did improve the objective function while substantially

reducing the computation time, but the improvements in the long term production were

even more disappointing. Under our model we think that a fixed optimal design is good

enough in practice to estimate the optimal cutting time, and recommend its use instead

of an arbitrary design. We did not find any practically useful explicit relation between

the fixed optimal design and the parameters of the prior distribution. For practical ap-

plications of our routines the farmer needs to have a prior knowledge of the growth curve

type, and its parameters’ distribution, and he needs a computer program to obtain t2 and

Copt.
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Appendix. Derivation of functions to be maximised

The need for maximisation of e.g. (3.4) over t2 was stated without proof. A derivation

of functions to be maximised is as follows. Suppose we choose specific functions t2(.)

and C(.) which assign a second measurement time t2(y1) to the first observation y1 and a

cutting time C(y1, y2) to the pair of observations (y1, y2), for all y1 and y2. Let φ be the

attained long term production:

φ =
E[Ae−k/C(y1,y2) − V0]

E[C(y1, y2)]
=

E1

E2
, say.

Let t′2(.) combined with C′(.) be any other choice, leading to E ′
1, E′

2 and φ′. Then the

pair {t2(.), C(.)} is optimal if and only if φ′ ≤ φ for all t′2(.), C′(.). Since the expected

cutting time E′
2 is positive, the latter condition is E ′

1 − φE′
2 ≤ 0 for all t′2(.), C′(.). For

{t2(.), C(.)} we have E1 −φE2 = 0, so {t2(.), C(.)} maximises E ′
1 −φE′

2 and the maximum

is 0. Formulated in the finally used way: {t2(.), C(.)} is optimal if and only if for some

ρ > 0:

(i) E1 − ρE2 = max
{t′2(.),C′(.)}

(E′
1 − ρE′

2) and (ii) E1/E2 = ρ.

The solution to (i) and (ii) is found by substituting results of (i) for given ρ as a function

of ρ in (ii), and by next solving (ii) as equation in ρ only. The maximisation of E1 − ρE2

for given ρ can be solved entirely in successive steps by following the conditioning order

of (3.3):

E1 − ρE2 = Ey1(Ey2|y1,t2(y1)(EA,k|y1,t2(y1),y2
[Ae−k/C(y1,y2) − V0 − ρC(y1, y2)])).

For any values y1, t2(y1), y2 the inner expectation can be maximised separately. Let the

function Cρ(.) be defined such that Cρ(y1, t2, y2) maximises EA,k|y1,t2,y2
[Ae−k/C −V0 −ρC]

over C for any y1, t2, y2. Then after substituting Cρ in the inner expectation the middle

expectation can be maximised separately for any y1 by suitable choice of t2(y1). Hence

let t2 ρ(.) be defined such that t2 ρ(y1) maximises

Ey2|y1,t2(EA,k|y1,t2,y2
[Ae−k/Cρ(y1,t2,y2) − V0 − ρCρ(y1, t2, y2)])

over t2 for any y1. Now for given ρ, requirement (i) leads to: for given y1 measure again

at time t2 ρ(y1), and for given y1, y2 cut at time Cρ(y1, t2 ρ(y1), y2). Note that V0 can be

skipped in (i) but not in (ii).
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Chapter 4

Robustness and efficiency of

D-optimal experimental

designs in a growth problem

Maria João Paulo and Dieter A. M. K. Rasch

Biometrical Journal, 44 (2002) 5, 527-540

To assess tree growth, for example in diameter, a forester typically

measures the trees at regular time points. We call such designs equidis-

tant. In this study we look at the robustness and efficiency of several

experimental designs, using the D-optimality criterion, in a case study

of diameter growth in cork oaks. We compare D-optimal designs (un-

restricted and replication-free) with equidistant designs. We further

compare designs in different experimental regions. Results indicate

that the experimental region should be adequate to the problem, and

that D-optimal designs are substantially more efficient than equidistant

designs, even under parameter mis-specification.
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4.1 Introduction

In this study we used the D-optimality criterion to determine the best allocation of ob-

servations for the estimation of the unknown parameter vector θ of a given regression

function E(yi) = f(xi, θ), i = 1, 2, · · · , n with θT = (θ1, θ2, · · · , θp), the xi from a given

experimental region X .

We used growth data of the diameter of 24 cork oaks from Portuguese forests. In order

to compare the efficiency of several experimental designs, we first fitted a growth function

to each of our 24 trees (24 empirical growth curves) and then we obtained the D-optimal

design for each.

We looked at the robustness of a D-optimal unrestricted compromise design against

parameter mis-specification. Further we looked at the relative efficiency of the equidistant

design and designs in different experimental regions. In particular we wanted to compare

D-optimal replication-free designs with the equidistant design. We propose the use of a

compromise design (given by the average parameter vector) for all trees in the data set

in further measurements.

The purpose of this study is to propose a design which is suitable for a high percentage

of trees that farmers could encounter in practice. We think a farmer will be interested

in and take action for a particular tree, where profit is not averaged over some prior

distribution of tree parameters. Or, as far as a prior distribution is involved, it will vary

between applications and will be narrowed in variability compared with that in our data

set. Hence we do not follow the refinements in estimators and designs that would be

offered by a random coefficient approach with known prior distribution as described for

example in Fedorov et al.(1993).

4.2 Materials and methods

Data

Measurements of the annual diameter growth of each of 24 cork oaks with ages between

41 and 139 years (Tomé et al., 1999) were used. The experimental region X was set to the

interval [1, 144] to include all the ages of the trees and also because it was convenient as it

will be seen later. We fitted five non-linear functions with 3 parameters by ordinary least

squares on the measurements of each tree, and we used the residual variance criterion per

tree to rank them. The Bertalanffy function provided a good fit to every tree, having for

22 trees the lowest or second lowest value of the residual variance. All the other functions

fitted worse. In table 4.1 we show the geometric mean of the 24 residual variances for

each function.
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Table 4.1: Non-linear functions used to fit diameter growth.

Name Expression Geometric mean

of residual variance

Bertalanffy f(x) = (α + βeγx)3 0.50

Gompertz f(x) = αeβeγx
0.61

exponential f(x) = α + βeγx 0.80

logistic f(x) = α
1+βeγx 1.20

arc-tan f(x) = α
2
{1 + 2

π
arctan[γ(x − β)]} 2.46

We wanted to find one suitable family of curves to describe diameter growth for the

cork oak and therefore chose the Bertalanffy function. For one tree, the Bertalanffy

function with p = 3 parameters and parameter vector θT = (α, β, γ) leads to the regression

model

yi = (α + βeγxi)3 + εi (4.1)

for the diameter growth. Here yi is the measurement at time xi and εi is the disturbance.

Twenty four individual parameter vectors θT = (α, β, γ) were estimated for the Berta-

lanffy function (for convenience we denote these 24 estimates as θi instead of θ̂i).

Model and least squares estimation

Suppose we have the model yi = f(xi, θ) + εi, i = 1, 2, · · · , n and θ p-dimensional, with

εi i.i.d. and having E(εi) = 0 and var(εi) = σ2. The least squares estimator θ̂ minimizes
∑n

i=1(yi − f(xi, θ))
2. The well-known linearization of the least squares problem with

iterative improvement leads to a series of normal equations. The coefficient matrices

are of the type F T F =
∑n

i=1 ∇f(xi, θ)∇fT (xi, θ). In linear regression we would have

E(θ̂) = θ and

var(θ̂) = σ2(F T F )−1 (4.2)

provided that θ is estimable. In non-linear regression these properties hold in an asymp-

totic sense when n → ∞ and the Jenrich conditions (Jenrich, 1969) are fulfilled. Hence,

further on, σ2(F T F )−1 will be called the asymptotic variance-covariance matrix of θ̂ and

we write V (θ̂) for this matrix. If the εi’s are normally distributed then (F T F )/σ2 is also

the Fisher information matrix at θ. Sometimes it is convenient to call F T F the informa-

tion matrix of the regression problem, and we will do so later in the text. We will base

design optimality on V (θ̂) = σ2(F T F )−1, regardless of the quality of the asymptotics.
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Design theory

In an exact design for estimating θ, the value of x has to be specified for each observation.

Equivalently, a series of distinct x-values (xi, i = 1, 2, · · · , q) is given together with the

number of replicates (ni, i = 1, 2, · · · , q). The xi are called the support points of the

design, and n =
∑q

i=1 ni is the size of the design. When developing a design, the xi have

to be chosen in a given experimental region X . An exact design ξ can thus be represented

in the form

ξ =

(

x1 x2 · · · xq

n1 n2 · · · nq

)

. (4.3)

In a continuous (and normalized) design one specifies a discrete distribution over

support points with real ‘weights’ mi and such a design is written as

(

x1 x2 · · · xq

m1 m2 · · · mq

)

,

q
∑

i=1

mi = 1, mi > 0 real. (4.4)

Each design of the form (2.2) can be specified by a continuous design and by its size

n (by setting mi = ni/n).

Replication-free designs are exact designs that have the form

(

x1 x2 · · · xq

1 1 · · · 1

)

(4.5)

i.e. they are exact designs with one single measurement at each support point. Depending

on the problem, the support points may have to satisfy side conditions. In this case study

we want to take one year as the practical unit and therefore we require support points to

be integers in the experimental time region. This gives a finite set of candidate support

points. The equidistant design is an example of a replication-free design. Replication-free

designs are of interest to us because in most cases tree diameter is measured no more

than once a year. Whenever confusion may arise, we will call designs with no restriction

on the support points nor on the number of replications unrestricted.

D-optimal designs

We consider the D-optimality criterion based on the determinant of the asymptotic

variance-covariance matrix V (θ̂) which takes the functional form V (θ, ξ) now. In the

context of exact designs, a D-optimal design is defined as:
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ξ∗ = argmin |V (θ, ξ)|, subject to support(ξ) ⊂ X , size(ξ) = n (4.6)

i.e. given n and X , the D-optimal design ξ∗ minimizes the determinant of the asymptotic

variance-covariance matrix, or equivalently, maximizes |F T F |. If f is intrinsically non-

linear V (θ, ξ) depends not only on ξ but also on θ and thus the D-optimal design will also

depend on θ. Therefore such designs are called locally D-optimal.

We know (Fedorov, 1972, p.120) that the minimal number of support points q needed

to find a D-optimal continuous design in any of our regression situations is restricted to

p ≤ q ≤ p(p + 1)/2. It is also known that for continuous D-optimal designs where q = p

optimal weights are equal (Fedorov, 1972, p.85). In the case of exact D-optimal designs

the ni are as equal as possible.

The information matrix for the Bertalanffy function can be written as:

F T F = 9

n
∑

j=1

(α + βeγxj )4







1 eγxj βxje
γxj

eγxj e2γxj βxje
2γxj

βxje
γxj βxje

2γxj β2x2
je

2γxj






(4.7)

with j = 1, 2, · · · , n numbering the observations. The asymptotic variance-

covariance matrix is V (θ, ξ) = σ2(F T F )−1 and the D-optimality criterion for the Berta-

lanffy function is thus given by:

|V (θ, ξ)| =
σ6

|F T F | . (4.8)

Schlettwein (1987) showed that for the Bertalanffy function, these asymptotic approx-

imations are good for D-optimal designs, even for small n; see also the discussion in Rasch

(1995a, p.631).

There is no analytical solution to find the D-optimal unrestricted design so the problem

has to be solved numerically for each set of parameters. In our problem we take σ2 = 1

w.l.o.g.

We used the program CADEMO to find a locally D-optimal exact design for each

parameter vector θi. We took n = 12 measurements, which seemed a good design size to

work with in practice. The experimental region was chosen to be X144 = [1, 144] in order

to simplify the partition of the interval in twelve subintervals. Other choices for X and n

were also possible.
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Algorithm used to find replication-free designs

The algorithm in Rasch et al. (1995) finds the D-optimal replication-free design by full

enumeration i.e. by evaluating all possible subsets of n integer points from the set X .

It was verified that the points xi are allocated in the neighbourhood of the support

points of the D-optimal unrestricted design. This algorithm performs very well for a

small number of candidate points, that is, experimental regions XH = [1, H ] with H up

to 40, but in the present case study we also have larger X so we could no longer use

it. Our experience with fine grid replication-free D-optimal designs is that the design

points appear in clusters around those of the unrestricted D-optimal designs. We used

this knowledge in the following heuristic algorithm, based on the sequential construction

of a D-optimal design (Atkinson and Donev, 1992) to obtain replication-free designs with

integer points:

1. Let the D-optimal unrestricted exact design with n observations be given by ξ∗(θ) =
(

x1 x2 · · · xq

n1 n2 · · · nq

)

and n be greater than q (i.e. at least some of the ni’s are

greater than 1). The xi’s don’t have to be integers but they have to be all different.

2. Start with the design ξ1 =

(

x1 x2 · · · xq

1 1 · · · 1

)

and calculate |V (θ, ξ1)| with

expressions 4.7 and 4.8. Let r = q.

3. For x′ ∈ {〈x1〉−1, 〈x1〉, 〈x1〉+1, 〈x2〉−1, 〈x2〉, 〈x2〉+1, · · · , 〈xq〉−1, 〈xq〉, 〈xq〉+1} in

X but not already in ξr, calculate |V (θ, ξr ∪x′)|. Choose x′ for which |V (θ, ξr ∪x′)|
is minimal and let ξr+1 = ξr ∪ x′.
If say xd in ξr+1 is non integer and is within distance 1 of x′ then delete xd (obtaining

thus a new ξr) and leave r unchanged. Otherwise set r = r + 1.

4. Repeat 3 until r = n.

For the smaller X it was verified that both algorithms found the same design. The

replication-free designs ξ∗rf (θi) were determined for θi, i = 1, . . . , 24 and X144, and for θC

(see next section), for some H values, both for n = 12 and for n = 20.

We then compared the different designs, obtained for different H . In particular we

wanted to see how close the D-optimal replication-free designs were to the D-optimal

unrestricted ones and whether increasing the number of points from n = 12 to n = 20 in

the replication-free compromise designs would result in a significant improvement of the

D-criterion value, and eventually compensate for the loss of efficiency due to a shorter

X . To compare the designs in a simple and informative way we plotted the D-criterion

values, actually |V (θ, ξ)|1/3, for all X and all designs calculated for θC .
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Efficiency of experimental designs

Given two designs ξ1 and ξ2, we can measure the efficiency of design ξ1 with respect to

design ξ2, at θ, by
{

|F T F (ξ1)|
|F T F (ξ2)|

}1/p

(cf. Atkinson and Donev, 1992), or equivalently by

E =
|V (θ, ξ2)|1/p

|V (θ, ξ1)|1/p
(4.9)

This measure is proportional to the design size of ξ1 regardless of the dimension p of

the model, so that for example two replicates of design ξ1 for which E = 0.5 would be as

efficient as one replicate of ξ2. Usually we want to know the efficiency of some non-optimal

design ξ1 with respect to an optimal design ξ2.

In practice an initial guess of θ may be quite bad, or we may want to work with one

parameter vector for all trees instead of one for each tree. With a robustness measure we

wanted to evaluate the performance of optimal designs in the case of a mis-specification

of θ, that is, to see how much information about θ is preserved when an optimal design

is used for another value of θ.

In this case we used a central value of θ, given by the average parameter θC =
1
24

∑24
i=1 θi, as the mis-specified (but easily estimated) value. Then we checked how ro-

bust the replication-free compromise design ξ∗rf (θC), D-optimal for θC , would be when

used at θ1, θ2, · · · , θ24. The robustness of the D-optimal replication-free compromise de-

sign against parameter mis-specification was calculated by expression (4.9), and setting

ξ1 = ξ∗rf (θC) in X144 and ξ2 = ξ∗rf (θi) in X144, i = 1, 2, · · · , 24.

Another measure we wanted to look at was the efficiency of the equidistant design ξeq

with respect to the locally D-optimal replication-free designs ξ∗rf (θi), also calculated by

expression (4.9). The design ξeq has the support points {12, 24, 36, 48, 60, 72, 84, 96,

108, 120, 132, 144} and all ni ≡ 1 (this is an interesting design because it is similar to

those often used in practice).

The robustness of ξ∗rf (θC) with respect to ξ∗rf (θi), and the efficiency of ξeq with respect

to ξ∗rf (θi) are of interest in their own right. On the other hand, a comparison between

these two measures should also provide information regarding how good ξeq is compared

to ξ∗rf (θC).

We also looked at the efficiency of ξ∗rf (θk) with respect to ξ∗rf (θi), k, i = 1, . . . , 24 and

k 6= i, to compare with the robustness of ξ∗rf (θC).

The experimental region X144 = [1, 144] is too long in practice and it does not make

much sense in the practical point of view to have measurements during 144 years. For

comparison purposes D-optimal unrestricted designs for θC were re-calculated in shorter

experimental regions XH = [1, H ], with H ∈ {24, 36, 48, 60, 72, 84, 96, 108, 120, 132} and

for n = 12. The efficiency of ξ∗(θC) for XH with respect to ξ∗(θC) for X144 was evaluated
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to see if by shortening the experimental region we can still get designs almost as good as

those for X144.

Summary of designs used in the case study

A summary of designs used is given in table 4.2. The θ have meaning: θ1, θ2, · · · , θ24: pa-

rameter vectors of the individual trees; θC : compromise, average value, θC = 1
24

∑24
i=1 θi.

Table 4.2: Summary of designs in the case study.
Symbol Indices and variables Description

ξ∗(θi) i = 1, 2, · · · , 24 Locally D-optimal design for tree i

H = 144

q = 3, n = 12

ξ∗rf (θi) i = 1, 2, · · · , 24 Locally D-optimal replication-free design

H = 144 for tree i

q = 3, n = 12

ξ∗(θC) H = 144, 132, 120, 108, 96,

84, 72, 60, 48, 36, 24

Locally D-optimal for θC , or compromise

design.

q = 3, n = 12

ξ∗rf (θC) H = 144, 72, 60, 48, 36, 24 Locally D-optimal replication-free for θC ,

q = n, n = 12 and n = 20 or replication-free compromise design.

ξeq H = 144, 72, 60, 48, 36, 24 Equidistant design.

q = n, n = 12

4.3 Results

The growth curves of the trees were very different as can be seen from the four examples

in figure 4.1.

A brief study of the residuals showed presence of autocorrelation, but no sign of

heteroscedasticity. We proceeded with OLS.

The locally D-optimal exact designs found were always designs with p = q = 3 sup-

port points. In every case one of the support points was equal to the maximum of the

experimental region X .

The average of the 24 parameter vectors was

θC = (3.468,−2.416,−0.042)T . (4.10)
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Figure 4.1: Empirical and fitted growth curves for diameter for 4 cork oaks, showing major

differences in shape.

We verified that the efficiencies of the D-optimal replication-free ξ∗rf (θi) relative to

the D-optimal unrestricted designs ξ∗(θi) were nearly one, not surprising as the optimal

replication-free design points were grouped around the optimal unrestricted design points.

Therefore we think that the efficiencies in comparing two D-optimal designs will be nearly

equal when using both designs unrestricted or both replication-free.

The values for the robustness of ξ∗rf (θC) with respect to ξ∗rf (θi), i = 1, 2, · · · , 24, calcu-

lated for X144, were 0.86 in average, being greater than 0.8 in 19 out of the 24 trees. The

maximum value for the robustness was 0.997. The efficiency of the 12 point equidistant

design however was 0.68 in average and its maximum value was 0.80 (see table 4.3). ξeq

performed better than ξ∗(θC) only for two trees. From this we conclude that for the set

of 24 trees the D-optimal unrestricted design for θC is, generally speaking, better than

the equidistant design.

Table 4.4 displays the efficiencies of locally optimal designs when used with other trees,

i.e, the efficiency of ξ∗rf (θk) with respect to ξ∗rf (θi), k, i = 1, . . . , 24 and k 6= i. On the

diagonal we show the robustness of ξ∗rf (θC). We see that for any given tree the efficiency

of ξ∗rf (θC) is never inferior to the efficiency of a locally optimal design for another tree.
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Table 4.3: |V (θi, ξ)|
1/3 · 105 values and efficiencies of the (replication-free) optimal design, com-

promise design and equidistant design, for X = [1, 144].

θi |V (θi)|
1/3 · 105 for designs Efficiency of ξ1 relative to ξ2

ξ∗(θi) ξ∗(θC) ξeq ξ∗(θC), ξ∗(θi) ξeq , ξ∗(θi) ξeq , ξ∗(θC)

1 16.64 19.28 26.71 0.86 0.62 0.72

2 42.56 96.45 127.35 0.44 0.33 0.76

3 34.26 48.61 67.44 0.71 0.51 0.72

4 7.85 8.73 10.16 0.90 0.77 0.86

5 4.51 5.55 5.70 0.81 0.79 0.97

6 20.58 21.33 31.51 0.97 0.65 0.68

7 9.28 10.42 12.01 0.89 0.77 0.87

8 16.83 17.67 22.33 0.95 0.75 0.79

9 18.58 18.63 26.47 1.00 0.70 0.70

10 16.90 17.27 23.56 0.98 0.72 0.73

11 11.61 13.79 14.70 0.84 0.79 0.94

12 6.75 8.56 8.50 0.79 0.80 1.01

13 41.66 42.98 60.12 0.97 0.69 0.72

14 10.44 11.65 13.34 0.90 0.78 0.87

15 12.84 15.00 23.25 0.86 0.55 0.65

16 11.61 12.43 18.18 0.93 0.64 0.68

17 5.69 6.79 7.27 0.84 0.78 0.94

18 11.30 15.25 16.72 0.74 0.68 0.91

19 14.18 15.01 22.31 0.95 0.64 0.67

20 27.55 28.95 38.01 0.95 0.73 0.76

21 10.12 12.22 13.00 0.83 0.78 0.94

22 14.27 15.48 18.35 0.92 0.78 0.84

23 11.12 12.60 14.44 0.88 0.77 0.87

24 4.46 6.44 5.56 0.69 0.80 1.16

In fact, only three locally optimal designs seem to perform as well as ξ∗rf (θC), namely the

locally optimal designs for trees no. 9, 10 and 22.

The efficiency of the D-optimal designs for different X ’s can be seen in figure 4.2.

The efficiency decreases very quickly to zero as the X shortens. By using shorter X ’s we

have to accept estimators for θ with high variability.

The D-optimal unrestricted designs (n = 12) and D-optimal replication-free designs

(n = 12, n = 20) for θC can be seen in table 4.5 for each X . As mentioned before, n = 20

was used to find out whether a higher n would compensate for a smaller X .

Figure 4.3 shows |V (θ, ξ)|1/3 for the designs in table 4.5. From that we see that for each

experimental region the D-optimal and the D-optimal replication-free designs are clearly

better than the equidistant design. Further, by changing the experimental regions we

obtain different values of |V (θ, ξ)|1/3, and a larger experimental region seems essential to
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Table 4.4: E(ξ∗rf (θk), ξ∗rf (θi))
1/3, k 6= i; in the diagonal E(ξ∗

rf (θC), ξ∗rf (θi))
1/3 in X = [1, 144].

ξ∗(θk) θi

1 2 3 4 5 6 7 8 9 10 11 12

1 0.86 0.72 0.91 0.65 0.62 0.90 0.66 0.79 0.90 0.81 0.67 0.67

2 0.75 0.44 0.94 0.42 0.38 0.71 0.43 0.40 0.63 0.58 0.34 0.34

3 0.94 0.92 0.70 0.55 0.51 0.84 0.55 0.60 0.79 0.72 0.50 0.50

4 0.50 0.28 0.37 0.90 0.99 0.81 1.00 0.91 0.87 0.95 0.97 0.98

5 0.38 0.21 0.28 1.00 0.81 0.69 0.99 0.83 0.76 0.87 0.95 0.96

6 0.83 0.58 0.77 0.82 0.78 0.96 0.82 0.79 0.97 0.96 0.74 0.74

7 0.49 0.30 0.37 1.00 0.99 0.81 0.89 0.88 0.87 0.95 0.95 0.96

8 0.74 0.33 0.54 0.88 0.87 0.90 0.88 0.95 0.97 0.95 0.94 0.96

9 0.87 0.51 0.72 0.85 0.82 0.98 0.85 0.91 1.00 0.97 0.84 0.84

10 0.72 0.43 0.59 0.92 0.89 0.97 0.92 0.88 0.98 0.98 0.86 0.86

11 0.46 0.18 0.30 0.97 0.98 0.75 0.97 0.94 0.84 0.91 0.84 1.00

12 0.37 0.14 0.24 0.97 0.98 0.68 0.97 0.88 0.77 0.86 0.98 0.79

13 0.93 0.53 0.76 0.77 0.75 0.94 0.77 0.92 0.97 0.90 0.81 0.82

14 0.50 0.24 0.35 0.99 0.99 0.80 0.99 0.94 0.87 0.94 0.99 1.00

15 0.72 0.69 0.81 0.72 0.67 0.97 0.73 0.58 0.88 0.89 0.56 0.56

16 0.97 0.69 0.89 0.72 0.69 0.96 0.73 0.82 0.95 0.88 0.71 0.71

17 0.49 0.19 0.32 0.96 0.96 0.77 0.95 0.96 0.86 0.91 1.00 1.00

18 0.21 0.28 0.22 0.89 0.84 0.64 0.89 0.42 0.60 0.80 0.56 0.56

19 0.74 0.59 0.75 0.80 0.75 0.99 0.80 0.67 0.93 0.94 0.65 0.65

20 0.86 0.43 0.66 0.81 0.79 0.91 0.81 0.97 0.96 0.91 0.87 0.88

21 0.40 0.27 0.32 1.00 0.99 0.71 1.00 0.81 0.77 0.89 0.92 0.93

22 0.57 0.25 0.39 0.97 0.96 0.84 0.97 0.98 0.91 0.95 0.99 1.00

23 0.48 0.30 0.36 1.00 0.99 0.80 1.00 0.87 0.86 0.95 0.94 0.95

24 0.25 0.11 0.17 0.93 0.95 0.52 0.93 0.70 0.59 0.74 0.87 0.89

ξ∗(θk) θi

13 14 15 16 17 18 19 20 21 22 23 24

1 0.94 0.76 0.85 0.99 0.60 0.59 0.89 0.88 0.66 0.71 0.66 0.45

2 0.58 0.46 0.76 0.81 0.27 0.44 0.73 0.44 0.43 0.40 0.43 0.27

3 0.79 0.62 0.85 0.96 0.42 0.53 0.85 0.67 0.55 0.56 0.56 0.36

4 0.78 0.99 0.71 0.58 0.94 0.89 0.78 0.80 1.00 0.98 1.00 0.88

5 0.65 0.94 0.58 0.44 0.94 0.90 0.65 0.68 1.00 0.94 0.99 0.95

6 0.90 0.87 0.96 0.93 0.64 0.77 0.99 0.79 0.83 0.81 0.83 0.59

7 0.76 0.98 0.71 0.58 0.91 0.91 0.78 0.77 1.00 0.96 1.00 0.88

8 0.96 0.98 0.79 0.79 0.91 0.74 0.86 0.98 0.89 0.96 0.88 0.69

9 0.98 0.93 0.91 0.93 0.77 0.76 0.96 0.93 0.85 0.88 0.85 0.62

10 0.90 0.96 0.90 0.82 0.78 0.85 0.95 0.84 0.93 0.91 0.93 0.71

11 0.76 0.99 0.63 0.53 1.00 0.83 0.71 0.81 0.97 0.99 0.96 0.87

12 0.67 0.95 0.57 0.44 0.99 0.83 0.64 0.73 0.97 0.96 0.96 0.92

13 0.97 0.88 0.85 0.94 0.76 0.67 0.91 0.98 0.78 0.85 0.78 0.56

14 0.79 0.90 0.68 0.57 0.97 0.86 0.76 0.82 0.99 0.99 0.99 0.87

15 0.74 0.74 0.86 0.90 0.45 0.73 0.99 0.55 0.73 0.65 0.74 0.50

16 0.96 0.82 0.91 0.93 0.64 0.66 0.94 0.88 0.73 0.76 0.73 0.50

17 0.80 0.99 0.65 0.57 0.84 0.81 0.73 0.85 0.96 0.99 0.95 0.84

18 0.38 0.70 0.64 0.34 0.46 0.74 0.65 0.29 0.89 0.64 0.90 0.84

19 0.80 0.81 0.99 0.89 0.54 0.78 0.94 0.64 0.81 0.74 0.81 0.57

20 0.99 0.92 0.81 0.88 0.83 0.68 0.88 0.95 0.81 0.89 0.81 0.60

21 0.65 0.94 0.62 0.47 0.89 0.93 0.68 0.67 0.83 0.93 0.99 0.94

22 0.85 1.00 0.72 0.64 0.98 0.83 0.80 0.89 0.97 0.92 0.96 0.82

23 0.75 0.98 0.70 0.56 0.91 0.91 0.77 0.75 1.00 0.96 0.88 0.89

24 0.48 0.83 0.43 0.29 0.89 0.84 0.49 0.52 0.93 0.85 0.92 0.69
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Figure 4.2: Efficiency of ξ∗(θC) for several experimental regions with respect to ξ∗(θC) for X =

[1, 144].

minimize |V (θ, ξ)|1/3. By increasing the number of points in the replication-free design we

manage to decrease the D-criterion value. In X48 and larger the 20-point replication-free

design has a lower |V (θ, ξ)|1/3 value than the D-optimal design from the X immediately

larger. For the smaller X ’s the increase by 8 points does not compensate the loss from

shortening the X .

4.4 Discussion

D-optimal designs provide an economic and efficient way to estimate unknown parameters

of a growth curve. The trees of our sample had growth curves of the same family but

with different parameters. We wanted to see if a common D-optimal design could be

used to estimate the diameter growth parameters for all trees in a given forest since

it would not be practical to use one design per tree. We took the average of the 24

parameters from the sample and found that under parameter mis-specification it provided

a robust compromise design to use with all trees. This design performed better than the

equidistant design, often used in practice. The result agrees with previously published

work (Rasch et al, 1995b). Further, we saw that although replication-free designs are

not as efficient as unrestricted designs they are better suited to the problem and are

still better than equidistant designs. The experimental region should also be adequate

to the curve. By shortening the experimental region we may loose too much information

about the parameters and decrease the efficiency substantially. In general, increasing

the replication-free design size in short experimental regions compensated the loss of
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Table 4.5: Designs (D-optimal at θC , equidistant and D-optimal replication-free at θC) for each

experimental region.

Experim. D-optimum Equidistant Replication-free Replication-free

region (n = 12)a (n = 12) (n = 12) (n = 20)

ξ∗(θC) ξeq ξ∗rf (θC) ξ∗rf (θC)

X144 {9.52,41.36,144} {12,24,· · · ,144} {8-11,39-43,142-144} {7-12,38-44,138-144}

X72 {7.79,34.39,72} {6,12,· · · ,72} {6-9,32-35,69-72} {5-11,30-36,67-72}

X60 {6.76,30.39,60} {5,10,· · · ,60} {5-8,29-32,57-60} {4-10,27-33,55-60}

X48 {5.59,26.11,48} {4,8,· · · ,48} {4-7,24-27,45-48} {3-9,22-28,43-48}

X36 {3.97,20.79,36} {3,6,· · · ,36} {2-5,18-22,34-36} {1-7,17-24,32-36}

X24 {1.74,14.32,24} {2,4,· · · ,24} {1-4,12-16,22-24} {1-6,10-18,20-24}

aall with 4 replications per support point.

efficiency, except for our two shortest intervals. A few remarks should be made about the

fitting of a theoretical curve to growth data. The assumptions made in section 2 might

be non-realistic in some confounded aspects: the type of curve could be wrong, leading to

lack of fit; the errors could be heteroscedastic and they could be substantially correlated

at little time lag, degrading the quality of ordinary least squares (OLS) estimators and

making the asymptotic variance formulae (4.2) for these estimators invalid when OLS is

applied. An analysis of the residuals was performed visually and numerically, to see if

these assumptions were violated in our case. We did not detect heteroscedasticity. The

residuals were however highly autocorrelated. In order to check for the consequences

of autocorrelated errors, we calculated the efficiencies presented in table 4.3 for first

order autoregressive errors with serial correlations (using OLS-estimators as before). The

resulting efficiencies showed a rapid degradation of the quality of the compromise design

with respect to the equidistant design as the serial correlation coefficient ρ increased. To

have a better impression of how the optimal compromise design would change when serial

correlation is present, we recalculated the replication-free compromise design for several ρ

values between 0.1 and 0.9, still using the OLS estimators. The design points obtained for

ρ > 0 are still in the neighbourhood of the compromise design points obtained for ρ = 0.

However, as the serial correlation is increased, the intervals between the resulting design

points increases proportionally. For ρ ≤ 0.6 we recommend to modify the unrestricted

compromise design by spacing the replicate design points with 10ρ years in between.

For higher values of ρ the equidistant design is a better option, since the space between

consecutive design points becomes irregular.

We think that a good solution, not covered in this study, might require a model for

the series of increments, instead of a model for growth curve measurements. In the latter
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Figure 4.3: D-optimality criterion to the power 1/3 in different experimental regions, for designs:

replication free 20 (∗); replication free 12 (4); D-optimal (�) and equidistant (�).

model one should also think carefully about what has to be estimated: background pa-

rameters, or function(s) of the realization of the stochastic process (cf. Cambanis, 1985;

Fedorov, 1996).

Finally, the average parameter vector (θC) here merely serves as a tool to determine

a compromise design; it is not intended to be an interesting population parameter to

be estimated again later on. A type of problem not considered here would be to design

estimation of a population parameter under constraints that the design is not too bad for

individual trees. Constraint optimization is discussed e.g. in Cook and Fedorov (1995).
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Process-Based Models for Forest Tree and Stand Growth Simulation. Edições Salamandra,

Lisboa, Portugal, 271 -289.



44



Chapter 5

A spatial statistical analysis of

cork oak competition in two

Portuguese silvopastoral
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This study considers competition between cork oaks at three plots in

two representative Portuguese stands. It uses spatial point pattern

functions to describe densities and quantify differences between stands.

Relations between cork oak characteristics and indices measuring inter-

tree competition are modelled. Tree competition has a significant effect

on tree crown characteristics. In particular, cork oaks with much com-

petition have smaller and more elongated crowns. A standard model

to relate crown diameter with diameter at breast height was improved.

R2 increased from 0.53 to 0.63 by including a crown shape parameter

and competition indices.
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5.1 Introduction

The object of this study is the cork oak (Quercus suber L.) in two Portuguese stands

(montados). Worldwide, cork oak forests cover approximately 2.5 million ha, mainly in

seven countries: Portugal (which contains 30% of the world’s cork oaks), Algeria (21%),

Spain (20%), Morocco (16%), France (5%), Italy (4%) and Tunisia (4%). In these stands

the main product is cork, a thick and continuous layer of suberised cells, produced by the

meristematic cork cambium (or phellogen), which makes up the external envelope of the

stem and branches.

In Portugal, cork oaks are grown in silvopastoral agroforestry systems, called monta-

dos. In a montado cork oak trees grow in a low density and are sometimes inter-mixed

with a small number of other tree species. Cattle or sheep graze in the same area. Tree

density in montados is usually below 100 trees ha−1.

Competition between trees influences the availability of nutrients and light and affects

shape and size of crowns (Deleuze et al., 1996). On the other hand, crown condition

and shape are obviously related to tree health and growth (Dawkins, 1958; Ottorini et

al., 1996; Moravie et al., 1999; Gill et al., 2000). Most literature refers to relationships

between tree growth and crown or tree growth and competition.

The aim of this study is to explore relations between crown size, tree size, crown shape

and inter-tree competition for cork oaks. Crown diameter is strongly related to diameter

at breast height. We explore the use of competition indices and crown shape parameters

to explain differences in crown diameter. Such relationships allow us to estimate crown

size using diameter at breast height and spatial information.

5.2 Data description

Cork and cork oaks

A cork oak has a life span of 300–400 years. Cork oak trees are economically viable for

less than 150 years however, as cork growth intensity decreases with age, leading to cork

that is too thin. The cork of the first harvest has a hard and irregular structure. The

cork from the second harvest is more even, but only mature cork obtained at the third

and following debarking on trees of 40 years of age or older reaches a perfect quality. A

mature cork oak tree can produce more than 50 kg of cork in a single stripping.

During the first 40 years, a farmer has to make several investments before having any

profits. Any decision during this period may have consequences on production in later

years. To allow cork harvest, the management of cork oak stands includes thinning, shape

pruning, understorey clearing and soil fertility improvement. Cork production is the main

driving force of this system, whereas other products are efficiently used as well.
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In Portuguese cork oak stands, much attention focuses on maintenance of cork quality.

Production of cork is an important economic activity. Cork quality depends on the number

and size of pores, the absence of defects such as insect galleries and the absence of great

wood inclusions (Ferreira et al., 2000). The value of cork for industrial purposes highly

depends on cork thickness. The highest value is associated with thicknesses between 29

and 40 mm. Cork quality is likely to be affected by environmental and local characteristics

of the stand, such as tree density and competition. As producing large amounts of high

quality cork is a lengthy and uncertain process, competition is an important topic to

study.

In Portugal mainly two types of montados occur: adult montados that were regener-

ated in the past by natural regeneration or seeding, and new plantations with cork oak

usually planted along lines. The first type is at the moment the most important as con-

cerns cork production. Most of the new plantations are not yet ready for debarking. The

adult stands are greatly variable in terms of stand structure and stand density and go

from more or less regularly distributed to aggregated stands.

Study sites

Two montados are analyzed in this study. They are located approximately 60 km and

90 km east of Lisbon, respectively. The first, MI, is located in Herdade do Vale Mouro,

near the village of Coruche. The second, MII, is located in Herdade Os Ruivos, near the

village of Mora. They cover different spatial structures as occurring in montados that

were selected by the local Association of landowners as representative in the Coruche

region, which is important for cork production.

In MI we measured 1 plot of a 200 × 200 m2 size. It contains 389 cork oaks, of which

353 occur at production age and 36 are debarked for the first time. This plot is located

in a flat terrain at an altitude of approximately 100 m. In MII we measured 2 plots of

a 140 × 150 m2, plot MII,A and plot MII,B, respectively. Plot MII,A contains 141 cork

oaks and 9 trees of other species, whereas plot MII,B contains 145 cork oaks and 3 trees

of other species. The plots at MII are located at approximately 130 m of altitude, on a

slightly uneven terrain. Difference in altitude within the plots is smaller than 1.5 m. The

two montados were originally seeded with accorns and there has been grazing since the

trees were large enough. The initial tree density is unknown. Age of these trees is hard

to assess, as no written records are available. MI has an uneven-aged structure, and the

older trees are approximately 140 years of age. The MII montado is closer to an even-aged

stand, and the older trees are between 90 and 100 years. The soil is fertilized every 4 to

5 years and seeded to allow grazing.

Trees were measured shortly after cork extraction, during the month of July. Measured
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variables were coordinates of tree location, diameter at breast height (d) without cork, to-

tal height (h), crown radius (cα), mean crown diameter (dc) and basal area (g)(Table 5.1).

Crown radius was determined visually by stretching a tape from the tree bark to the edge

of the projection of the crown on the horizontal plane, and using a compass to determine

each direction. The crown was measured in 4 directions in MI, a procedure commonly

applied in sampling practices, and in 8 directions in MII to test the effect of sample size

on crown modelling.

Table 5.1: Variables measured in cork oak plots.
Variable Description Units

x Horizontal coordinate of tree m

(azimuth 30◦ for MI and 221◦ for MII,A and MII,B )

y Vertical coordinate of tree m

(azimuth 120◦ for MI and 131◦ for MII,A and MII,B )

d Diameter at breast height cm

h Total height m

cα Crown radius in direction α, m

α = k · π/4 (MII,A and MII,B)

α = π/6 + k · π/2 (MI )

dc Mean crown diameter (obtained from cα) m

g Individual-tree basal area (obtained from d) m2

5.3 Methods

Point patterns

A key factor governing tree competition is the frequency of small inter-tree distances for

the same overall density. Competition is stronger with many small inter-tree distances,

that occur more frequently in aggregated point processes than in random or regular point

processes. Point processes are stochastic processes, whose realisations consist of point

events in time or space called point patterns. To identify the point process underlying

tree positions, a window W is defined for each plot, given by the plot boundaries. Let

N(dω) denote the number of trees at an area of size dω. Then the intensity λ(ω) at ω is

defined as

λ(ω) = lim
|dω|→0

{E [N(dω)] / |dω|} (5.1)

(Diggle, 1983), i.e. the number of trees in each window divided by the area of that window.
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To compare the point pattern with a completely random spatial pattern (CSR), second

order characteristics are applied. The nearest-neighbour distance distribution function

G(r) is defined as G(r)=P [distance from an arbitrary tree to the nearest other tree is

at most r]. For any distance r the empirical Ĝ(r) uncorrected function is the number of

trees with at least one neighbour within distance r, divided by the total number of trees.

Similarly, the empty space function is given by F (r)=P [distance from an arbitrary point

to the nearest tree is at most r]. The uncorrected F̂ (r) function is the ratio of the total

area of the window which is covered by circles of radius r centered in each tree, and the

area of the window. In this study we focus on the J(r)-function based on the uncorrected

G(r) and F (r) functions (Van Lieshout and Baddeley, 1996; Baddeley et al, 2000), defined

as

J(r) =
1 − G(r)

1 − F (r)
(5.2)

for which edge correction is not necessary. For the CSR process, J(r) = 1, whereas

J(r) < 1 suggests clustering, and J(r) > 1 suggests regularity. To compare the actual

point pattern with CSR, for MII,A 100 simulations are made of CSR processes with the

same intensity as in MII,A and Ĵ (s)(r) are calculated for s = 1, · · · , 100, using maximum

and minimum of Ĵ (s)(r) as envelopes. These were plotted together with the estimated

Ĵ(r) and the average Ĵ(r) of the simulations. The same analysis was done for the two

plots MI and MII,B.

Crown shape

Tree crown shape is largely determined by its vegetative growth characteristics and by

competition (Biging and Gill, 1997). Ellipses are usually applied to graphically represent

the cross-sections of tree crowns, usually based on 4 measured crown radii. To improve

upon this, we measured 8 radii in MII,A and in MII,B. In MI, measurements were made

into the 4 directions π/6 + k · π/2 for k = 0, . . . , 3, and in MII,A and MII,B into the 8

directions k · π/4, k = 0, . . . , 7 clockwise from the north. For analytical purposes we

described tree crowns as a polygon Π with 120 vertices, obtained from the original 4 or

8 crown radii. For every αj with 0 ≤ αk−1 ≤ αj ≤ αk ≤ 2π the radius is estimated by

weighted linear interpolation

ĉ(αj) =
(αj − αk−1)

(αk − αk−1)
· cαk

+
(αk − αj)

(αk − αk−1)
· cαk−1

(5.3)

where k = 1, . . . , 8 (with α0 = α8), j = 1, . . . , 120 and cαk
are the measured crown radii.

The estimated radii ĉ(αj) equal the weighted average of the two closest measured radii,
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with weights inversely proportional to the absolute difference between angles. Such a

crown representation is exact on the measured radii and can be applied on any number of

measurements. In addition, no parametric shape is forced to the crown, whereas the final

shape is smooth and has the same number of vertices regardless of the initial number of

measured radii.

Shape parameters were calculated on the approximating polygons Π. A shape param-

eter is a function S(Π) → R1 that is invariant to any translation, rotation or re-sizing of

polygon Π (Glasbey and Horgan, 1995, p.170). In this study, the area, perimeter, maxi-

mum diameter dc max and minimum diameter dc min of each polygon Π were calculated,

as well as length (l) and breadth (b) as defined in Glasbey and Horgan (1995, p.153). The

following shape parameters were used:

• compactness ct = 4π ·area/(perimeter)2. The compactness parameter compares the

area of Π with the area of a circle with the same perimeter. Values for ct vary

between 0 for a line segment and 1 for a circle.

• elongation el = l/b. The elongation parameter measures the length of Π as compared

to its breadth. As el corresponds to fitting the vertical projection of Π into a

rectangle with the same length and breadth, it varies between 1 and +∞.

• eccentricity ec = dc max/dc min. The eccentricity parameter also measures the elon-

gation of Π, comparing largest with smallest Π diameter. The ec parameter varies

between 1 (when all diameters are equal) and ∞.

Competition indices

In this study competition effects between trees are modelled in terms of crown size and

shape. Competition at the crown level is assumed to depend on the distance to neigh-

bouring trees, as well as on their number and size. Therefore ten competition indices were

selected from the literature (Moravie et al., 1999), and were adapted to properly measure

aspects of competition. We used all trees in the plots to calculate the competition indices,

therefore also trees from other species and border trees, i.e. trees within 10 m of the plot

border.

Most indices involved local tree density, inter-tree distances and size of neighbours

(Table 5.2). Distance independent indices were computed for search radii of 10, 15, 20

and 30 m around each tree. Correlation coefficients between crown shape and tree size

parameters, d, h and dc were computed, and bivariate plots were made to check for

non-linear relationships.

To check for the influence of autocorrelation in the significance of correlation coeffi-

cients a size permutation test was performed. Observed tree sizes were randomly allo-
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Table 5.2: Competition indices used in this study (Moravie et al., 1999). The index i refers to

the subject tree, j refers to a competitor, % is a size measure, such as d, h or g, and rij is the

distance between tree i and tree j. Distances used were r=10, 15, 20 and 30 m (also ∞ for CI10).

Index Expression Reference ρ̂(CI, dc)

Distance independent indices

CI1 Number of trees (competitors) within

r meters, (Nc)

-0.34

CI2 Number of competitors within r me-

ters such that %j > %i

-0.55

CI3 Sum of size of trees within r meters,
∑Nc

j=1 %j

Steneker and Jarvis

(1963)

-0.25

CI4 Sum of basal area of bigger trees within

r meters
∑Nc

j=1 gj1(%j>%i)

-0.38

CI5 Size ratio, %i

%i+
∑Nc

j=1 %j

Daniels et al. (1986) 0.55

Distance dependent indices

CI6 Distance to nearest tree (NN) 0.28

CI7 Distance to NN such that %j > %i 0.51

CI8 Difference in size with nearest tree

%NN − %i

-0.46

CI9 Size ratio proportional to distance
∑Nc

j=1
%j

%i

1
rij

Daniels et al. (1986),

Tomé and Burkhart

(1989)

-0.54

CI10 Size difference proportional to distance
∑Nc

j=1
%j−%i

rij

-0.68
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cated to the observed tree locations and correlation coefficients between tree size and the

competition indices were re-calculated. This was repeated 100 times, and the simulated

correlations were compared with the observed one. The observed correlation coefficient

was significant if its absolute value exceeded 95% of the simulated absolute correlations.

Directional crown parameters

Preferential growth direction may influence crown shape, as for example, isolated trees

may have a preferential southern growth direction, where the crown intercepts most sun-

light. For trees in a stand, crown competition from a preferential growth direction may

affect trees more than competition from another direction. Analysis of the crown shape

parameters alone is unlikely to reveal a preferential growth direction. A preferential

growth direction could be found by analyzing summary statistics of crown radii of iso-

lated trees. A tree with crown cα,i is isolated from trees with crowns cα,j at distances rij

if rij ≥ max
α

cα,i + max
α

cα,j for all j. According to this definition, 9 isolated cork oaks

occur in MII,A.

Crowns well exposed to the south are expected to have larger crowns as compared to

crowns that are poorly exposed to the south direction. To test this for MII,A, let
c5π/4

cπ/4

and cπ

c0
represent the ratio between crown radius directions south-west and north-east, and

between crown radius directions south and north, respectively, and
c5π/4−cπ/4

c5π/4+cπ/4
, the relative

difference between crown radius directions SW and NE . Scatter plots and correlations

are used to study the relations between these parameters and crown size or tree size.

Modelling the crown diameter

For the relationship between dc and d, Dawkins (1963) used a linear relation in tropical

high forest trees. This linear relation is reportedly weak for trees from other forests (see

for example De Gier, 1989). However the Portuguese National Forest Inventory currently

uses a linear regression equation to estimate crown cover in cork oak montados (DGF,

1990). In this study the following relationships are explored:

• dc = b0 + b1 · d

• dc = b0 + b1 · d + b2 · h

• dc = b0 + b1 · d + b2 · d2

• dc = b0 + b1/d

To improve upon that basic relationship we introduced spatial information such as

competition indices into this model. Linear regression models for dc with crown shape
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measures, crown directional parameters and competition parameters as explanatory vari-

ables were determined. A first selection was made to eliminate indices strongly correlated

with d. Stepwise regression with forward and backward elimination was then applied to

remove non-significant contributors, using the S-Plus software. The procedure calculates

the Cp statistic for the current model, as well as for reduced and augmented models. It

adds or drops the term that mostly reduces Cp (MathSoft, 1997).

Data reduction

To investigate effects of crown measurement intensity, the crown data in MII,A were re-

duced from 8 to 4 and a 120-vertex polygon was fitted to both the full 8-radii data (Π8) and

the reduced 4-radii data(Π4). Two sets of Π4 were obtained for each crown, corresponding

to measurements on orthogonal directions. Shape parameters S(Π8) were compared with

shape parameters S(Π4). The average of the ratios for every tree in MII,A between S(Π4)

and S(Π8) was used to measure its similarity, i.e. its logarithmic transformation should

be close to zero. Let ∆ = log [S(Π8)/S(Π4)]. The hypothesis H0 : E(∆) = 0 was tested

using Wilcoxon signed rank test (α = 0.05).

5.4 Results

Description of the Plots

Summary statistics for the three plots in the two montados are given in table 5.3. Average

d equals 32 cm at MI, 40 cm at MII,A and 37 cm at MII,B. The tallest cork oaks occur at

MII,A (h = 10.9 m), where trees are on average 1.6 m higher than at MI (h = 9.3 m) and

1.4 m higher than at MII,B (h = 9.5 m). In MII,A tree height is more variable than in the

two other plots, as the standard deviation is 2.8, whereas in MI it is 2.0 and in MII,B it

is 2.2. Average dc is 7.0 m at MI, 8.1 m at MII,A and 7.4 m at MII,B. This indicates that

cork oaks are largest in stem diameter, tallest and with the largest crown diameter in plot

MII,A and are smallest in stem diameter, shortest and with the smallest crown diameter

in plot MI. Cork oaks in MI are more variable in d and dc than in MII,A and MII,B. Plot

MII,B is similar to plot MII,A in terms of tree sizes.

Point patterns

The windows WI , WII,A and WII,B for plots MI, MII,A and MII,B are given in Figure 5.1.

Clearly, cork oaks are unequally spaced in MII,A and MII,B, and more regularly spaced

in MI. Numbers of trees equal |WII,A| = 145, |WII,B | = 146 and |WI | = 380, leading

to process intensities equal to λII,A = λII,B = 69 trees ha−1 and λI = 95 trees ha−1.
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Figure 5.1: Tree locations in MI, MII,A and MII,B (from top to bottom). The X-axis values

increase in the 30o azimuth in MI, and in the 221o azimuth in MII,A and MII,B. The window

(inner frame) defines the process area.
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Table 5.3: Summary statistics of variables measured in the cork oak plots.
x y d h dc

MI

Min 0.3 0.7 13.5 4.4 2.1

Mean 32.0 9.3 7.0

Max 203.9 202.4 78.0 14.9 15.9

Std Dev. 13.0 2.0 2.8

MII,A

Min -16.7 0.8 18.7 4.3 2.8

Mean 40.4 10.9 8.1

Max 140.1 149.2 71.3 19.8 14.0

Std Dev. 11.5 2.8 2.3

MII,B

Min -0.7 1.9 17.8 3.8 2.2

Mean 37.1 9.5 7.4

Max 149.7 137.3 82.8 17.7 14.7

Std Dev. 11.5 2.2 2.1

The median inter-tree distances are approximately 6 m for all three plots, and they are

larger than 4 m for 75% of the trees in the three plots. The Ĵ(r) function for the three

plots, as well as the CSR envelopes and average, is shown in Figure 5.2. The Ĵ(r) function

calculated for plot MI has values greater than 1 for r ≤ 10 m falling outside the upper CSR

envelope. It shows that MI has a more regular pattern. For MII,A Ĵ(r) is approximately

equal to 1 for r ≤ 5 m, and decreases for r > 5 m. Both for small and large values of

r, Ĵ(r) values are inside the CSR envelopes, showing no significant deviation from CSR.

Plot MII,B has more pronounced tree aggregation than plot MII,A. The observed Ĵ(r)

values are greater than 1 for r ≤ 5 m and for r ≥ 7 m they are smaller than 1. Some

values are outside the CSR envelopes, suggesting that the underlying spatial process is

aggregated. This result is likely to be related to the two large open areas observed in

Figure 5.1. According to the farmer, initially the seeds did not develop in those areas,

and the exposure to grazing on a later stage made natural regeneration impossible (pers.

comm.). This type of open area is very common in Portuguese montados.

Crown shape

Figures 5.3 to 5.5 show the tree crowns in the plots, described as polygons. Clearly visible

overlaps of crowns on these maps have been observed in the field. Differences in tree crown

shape range from almost circular crowns to highly elongated crowns. Elongated crowns

occur in trees that are close to other trees, whereas isolated trees display a more regular,

round crown. Summary statistics of crown shape parameters from MII,A are given in
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Figure 5.2: Empirical uncorrected J-function for MI, MII,A and MII,B (from top to bottom).
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Table 5.4. Values for compactness were on average 0.7, and the average elongation (el) is

1.2. Average eccentricity (ec) is 1.5, and in general ec < 2. Two cork oaks were removed

from the data-set because their crown diameter in one direction was close to 0, thus

yielding very large ec values.

Table 5.4: Descriptive statistics of shape parameters for the crown in MII,A.

Variable min mean max variance

ct 0.4 0.7 0.9 0.01

el 1.0 1.2 1.9 0.03

ec 1.1 1.5 4.0 0.23

Crown shape parameters are uncorrelated to d (|ρ̂| < 0.15) and h (|ρ̂| < 0.10), but dc

was correlated to ec (ρ̂ = −0.4) and to a lesser extent also to ct and el (|ρ̂| < 0.3). Crowns

with a round shape may have a larger size than those that are elliptically shaped.

Competition indices

Competition indices in table 5.2 were computed using d, h or basal area to compare tree

sizes, for different fixed values of r. Tree size (d and h) had a high correlation with indices

CI2, CI4, CI5 and CI7 to CI10, which account for the relative size of neighbours. For

example, d was uncorrelated with the distance to the closest tree (CI 6, ρ̂ ≤ 0.1), but it was

highly correlated with the distance to the closest bigger tree (CI 7, ρ̂ = 0.62). This was

also observed for h. Correlations with dc were between |ρ̂| = 0.25 for CI3 and |ρ̂| = 0.68

for CI10. In general, indices with the number and/or distance to bigger neighbours had

higher correlations with dc (Table 5.2).

The size-permutation test showed that the correlation coefficients between h and the

competition indices were all non-significant. Indices correlated with d were CI2, CI5,

CI7 and CI9 (α = 0.05). All indices were correlated with dc, the observed correlation

values largely exceeding the simulated ones. Correlations at the highest significance level

occur for values of r up to 20 m.

Correlation is also present between competition indices and crown shape (|ρ̂| ≈ 0.4)

in MII,A. Compactness had the highest correlation with CI2, CI3, CI4, CI5, CI6 and

CI9 (0.3 ≤ |ρ̂| ≤ 0.4). Elongation was poorly correlated with all competition indices but

eccentricity was highly correlated with CI9 (|ρ̂| = 0.46). Trees subject to competition are

generally less compact, more elongated and have eccentric crowns.
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Figure 5.3: Map of tree crowns for MI based on 4 crown measurements.
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Figure 5.4: Map of tree crowns for MII,A based on 8 crown measurements.
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Figure 5.5: Map of tree crowns for MII,B based on 8 crown measurements.

Directional crown growth

The comparison of minimum, average and maximum crown radii of isolated trees and

non-isolated trees is shown on figure 5.6. The size of the crown radii is more variable

in the case of non-isolated trees. The summary statistics were calculated for each crown

radius separately. Both groups of trees display some elongation towards the north-south

direction. Seventy per cent of the trees in MII,A have a larger crown radius into the

south direction than into the north direction. Also, the crown radius into the south is

25% larger than the radius into the north for half of the trees. Correlations between the

directional crown parameters and dc were all very low, and bi-variate plots showed no

structural relations.

Models for crown diameter

Figure 5.7 shows the relationship between dc and d for the three plots. A linear dependency

is present for the observed values of dc and d. Model dc = b0 + b1 · d (R2 = 0.53)

fitted the data from all three plots better than dc = b0 + b1/d (R2 = 0.47). Model

dc = b0 + b1 · d + b2 · d2 brought an improvement of at most 0.002 to the R2 obtained for

the simple linear model.

The variable h also did not improve the linear model dc = b0 + b1 · d much, as it

resulted in an increase of R2 with only 0.02. Therefore, the linear model dc = b0 + b1 · d
was selected. The slope is larger for MI than for MII,A and MII,B. The predicted values
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Figure 5.6: Comparison of average, minimum and maximum crown radii for isolated trees, and

average and maximum crown radii for non-isolated trees, in MII,A. The minimum radii of non-

isolated trees are zero.

of dc are larger in MII,A than in MII,B, for all d. MI has larger dc than the two plots in

MII for d ≥ 32 cm (Table 5.5 and Figure 5.7). A similar comparison was made between

isolated and non isolated trees, by fitting the same model to each of the two groups of

trees. The 9 isolated cork oaks in plot MII,A have larger predicted crown values for the

same d than non-isolated trees in the same plot. However, the small sample size of isolated

trees does not allow us to conclude that there is any difference in crown size between the

two groups.

Table 5.5: Estimated parameters for a linear relationship dc = b0 + b1 · d in the three plots.
Parameter MI MII,A MII,B

b0 0.97 2.25 2.15

b1 0.19 0.15 0.14

R2 0.73 0.53 0.58

Bi-variate plots of dc against correlated competition indices and against correlated

crown shape parameters (not shown), indicate that the relationships are approximately

linear. We obtained one improved model for mean crown diameter. Table 5.6 shows the

two linear models for dc. The first is the same model as in table 5.5. The second model

equals

dc = 4.24 + 0.14 · d − 1.58 · ec + 0.12 · CI6 (R2 = 0.63) (5.4)

It adds information on competition (CI6) and on crown shape (ec) to the first model. This

model is significantly better than the first model. It predicts larger crowns in trees with
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Figure 5.7: Relationship between diameter at breast height (d) and crown diameter (dc), for the

three plots MI (top), MII,A (middle) and MII,B (bottom). The fitted regression lines are those

specified in Table 5.5.
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a larger distance to their nearest neighbour. The predicted values and 0.95 confidence

intervals for dc can be found in Table 5.7. Here we used the approximately minimum,

median and maximum observed values of the explanatory variables. The table shows that

for the same d and ec we expect more than 1 m increase in dc if the distance to the nearest

neighbour increases from the minimum (2 m) to the maximum (14 m) observed value in

MII,A. This model also predicts more eccentric crowns to be smaller in size (negative sign

in the relationship). Very eccentric crowns (ec = 2) are expected to be 1.5 m smaller in

diameter than non-eccentric crowns (ec = 1).

Table 5.6: Regression models for dc according to a stepwise regression procedure, for MII,A.

Variable Coeficient Std. Error t value Pr(> |t|) R2

intercept 2.25 0.49 4.60 0.00 0.53

d 0.15 0.01 12.51 0.00

intercept 4.24 0.82 5.16 0.00 0.63

d 0.14 0.01 12.88 0.00

ec -1.58 0.33 -4.79 0.00

CI6 0.12 0.05 2.30 0.02

Table 5.7: Confidence intervals (95%) for dc = f(d, ec, CI6), for MII,A.

Confidence interval for dc

ec CI6 d=18 d=40 d=70

1 2 (4.66, 6.02) (7.78, 8.87) (11.66, 13.15)

1 6 (5.28, 6.35) (8.47, 9.14) (12.29, 13.48)

1 14 (5.97, 7.57) (9.09, 10.42) (13.03, 14.65)

1.4 2 (4.14, 5.27) (7.27, 8.11) (11.10, 12.45)

1.4 6 (4.73, 5.63) (7.97, 8.38) (11.70, 12.80)

1.4 14 (5.32, 6.94) (8.43, 9.82) (12.36, 14.05)

2 2 (3.21, 4.30) (6.33, 7.16) (10.12, 11.52)

2 6 (3.73, 4.73) (6.88, 7.57) (10.65, 11.94)

2 14 (4.25, 6.11) (7.33, 9.02) (11.26, 13.24)

Analysis of plots MI and MII,B

Comparison of the crown shape parameters obtained for the two plots reveal similar values

of ct and el to those found in MII,A. In plot MII,B we find crowns slightly more eccentric

than in plot MII,A, ec = 1.7, whereas plot MI has less eccentric crowns (ec = 1.3). We

found higher correlation between ct and dc in MII,B (ρ̂ = 0.36) and MI (ρ̂ = 0.41) than

those found in MII,A. Correlations with d and h were low, as for MII,A.
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Correlations between the competition indices and tree size were higher in MII,B than

in MII,A, whereas MI had similar correlations values as in MII,A.

The model dc = b0 + b1 · d for plot MI has an R2 of 0.73, whereas for plot MII,B R2

is 0.58. The addition of variables CI6 and ec improved the initial model in both plots.

Results were R2 = 0.75 for MI and R2 = 0.64 for MII,B.

Data reduction

Six tests were performed in total, two tests each for compactness, elongation and ec-

centricity. The average ratios between the shapes obtained with the reduced data and

the shapes obtained with the 8 measurements were equal to 0.94 for compactness, 1.05

for elongation and 1.2 for eccentricity. The Wilcoxon signed rank test rejected the null

hypothesis for compactness and eccentricity, but not for elongation (α = 0.05).

5.5 Discussion

Three parameters were used to analyse crowns in terms of their compactness, elongation

and eccentricity, using crown radii measurements. Shape parameters are applied on images

of objects. Crown radii were interpolated towards 120 points of a polygon using a linear

interpolation procedure weighted by angular differences. Other interpolation methods

might have been applied as well. The resulting shapes however were more realistic than

if we had joined the measured radii for example with straight lines. Also, parametric

functions such as splines and trigonometric linear regression functions force a particular

shape to the crown. Functions that fit a larger variety of crown shapes need a larger

number of crown measurements, and add random noise. These were therefore avoided.

When the 8 crown measurements were reduced to 4, two of the three calculated shape

parameters were significantly different from the previously obtained.

Trees under competition had more elongated, less round crowns than isolated trees.

This agrees with findings of Brisson (2001), that in forests of sugar maple isolated trees

have the most symmetrical crown, whereas trees under competition are more asymmet-

rical and display crowns more developed away from the main competitive pressure of

neighbouring trees. We found correlations indicating that eccentric crowns tend to be

smaller, whereas round crowns tend to be larger. But since we had a small number of

isolated trees, we could not find a significant difference in the sizes of the two groups of

trees.

Ledermann and Stage (2001) hypothesize that stand-average competition indices rep-

resent the underground situation, while distance-dependent indices represent the above-

ground environment. We found large correlations between crown diameter and indices
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involving the number and size of neighbours, also in distance-independent indices. In-

dices weighting the size of competitors with their distance to the subject tree have a

confounding effect with the subject tree’s size, and result in increased estimated corre-

lation values. The random allocation of tree sizes to the observed tree locations yields

correlation values under the independence of tree size and tree location. The correlations

observed in the montados can be compared with percentage points in the simulated dis-

tribution. All correlations between dc and the competition indices were significant at the

α = 0.05 level.

Larger competition effects are found in aggregated and random point patterns, for the

same overall density, because inter-tree distances can be very small. Competition might

be reduced by reducing tree density and by planting trees according to a regular pattern,

since both result in larger minimum tree distances (Smith et al., 1997). Larger crowns

for the same d are observed in the plot with a regular pattern, MI, than in the plots with

random or aggregated patterns (MII,A and MII,B). A more extensive study should be

performed to research the effect of point patterns on crown size, and to see if decreasing

tree competition would increase cork production.

The linear model dc = b0 + b1 · d fitted the data at least as well as the other tested

models. A quadratic function or more complex functions might better explain variation

in crown diameter for a different range of dc and d. However, the chosen model is more

appealing because of its simplicity and the good fit for the observed values of crown

diameter.

This study should be envisaged as a preliminary analysis aiming at defining the

methodologies to be used in data collection in the future, and for the characterization

of the structure of adult montados to be used in the initialization module of the SUBER

model (Tomé et al., 1999). The SUBER model is to provide the landowners with a forecast

of the consequences of different silvicultural practices - thinnings, fertilisation, debarking

levels, grazing, etc - in the future yield of the stands, based on spatial characteristics and

tree size distribution of their stands.

5.6 Conclusions

In this study we explored relations for cork oaks. Competition indices accounting for the

relative size of neighbouring trees were the most correlated to crown size. The crown of a

cork oak has a different shape and size when it is under competition, in particular if it is

close to larger trees. It is more elongated and eccentric, and less round. Ultimately this

may have an effect on crown size, given by its mean diameter. A model for crown diameter

was obtained using d, crown shape and distance to the nearest neighbour as explanatory

variables. The resulting model explains 63% of the variation in crown size, and is an
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improvement on the model currently used by the Portuguese National Forest Inventory.

Increasing inter-tree distances and decreasing density is likely to result in larger trees. In

particular, regular patterns help increase minimum inter-tree distances for a given density.
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Chapter 6

Comparison of three sampling

methods in the management of

cork oak stands

Maria João Paulo, Margarida Tomé and Albert Otten

Submitted to Forest Ecology and Management

In this study we compare three sampling methods to estimate several

variables in cork oak stands. The first method is to sample circular

plots with fixed area. In the second method we sample circular plots

with fixed number of trees. The third method consists in sampling

zigzags each consisting of trees close to fixed points in a pre-defined

path. This latter method, commonly used by Portuguese farmers, lead

in most situations to estimators with larger biases and standard errors

than the other two methods.

67



68 Chapter 6. Sampling methods for cork oaks stands

6.1 Introduction

Cork oak is Portugal’s second most important forest species. It occupies an area of 640 000

ha and is the second most exported forest product. Portugal contributes to approximately

52% of the world’s cork supply.

Cork oaks are grown specifically for the production of cork in cork oak stands known

as montados, silvopastoral systems where cork production is associated with cattle and

sheep breeding and grazing. The cork oak grows in poor soils and adapts to difficult

conditions, such as high temperatures and lack of rain for lengthy periods. They are often

grown in areas threatened by desertification. Their economic value plays an important

role in the ecological protection of large areas.

Extraction of cork takes place every 9 to 11 years in adult trees. Before extraction,

farmers sample the montado to estimate the value of cork. This depends upon quantity

and quality of cork. The quality of cork is defined by its thickness, the number and size

of pores, and several other characteristics. Each cork segment is rated, based on visual

assessment, into one of 7 quality classes, where class 1 is the best quality and class 7 (called

refugo) is the worst. The yield estimate(s) helps farmers to set a price for their cork, and

in the choice of management alternatives. A commonly used sampling procedure followed

by farmers is to define a polygonal transept (zigzag, see Figure 6.1) with a convenient

starting point and covering the whole montado, and to sample every tree that crosses the

transept.

Figure 6.1: Example of zigzag sampling in montados (left) and in the circular plots (right).

In this study we compare the results of zigzag sampling with two other sampling

methods - cluster sampling with fixed plot radius, cluster sampling with a fixed number

of trees (and variable plot radius). Cluster sampling with fixed area is a widely used

sampling method in extensive inventories to estimate stand variables such as tree density
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and basal area. A number of plots are randomly selected, and all trees in each plot are

measured. The trees in the stand have an equal probability of being selected and the

usual estimator of the population total is unbiased, if boundary effects are negligible.

In their article from 1992, Jonsson et al. recommend the use of an alternative method

for forest inventory, namely to measure a fixed number of trees nearest to the center of

the plot. They claim the method is more efficient than the fixed circular plot size method,

and is more accurate than other low-cost alternative methods. Furthermore, the authors

show that for simulated forests the estimators they propose have a bias smaller than 10%,

under the condition that the variables of interest are independent of the underlying point

process.

The objective of this study is to extend the simulation to forests where the diameters

at breast height are not spatially independent, and to extend the sampling methods to the

three types mentioned above. Furthermore, we consider the estimation of some typical

cork oak characteristics. The sampling methods are compared in terms of the bias and

precision of the estimators and sampling costs.

6.2 Sampling in montados

In cluster sampling, a simple random sample of n primary units over an area is selected,

followed by taking actual samples at a number of mk, k = 1, . . . , n secondary units in

each of the n primary units. In this study, the primary units are circular plots, and the

secondary units are the trees in each plot. Although we actually measure the secondary

units, it is the primary units that are selected. We assume throughout this text that the

primary units are randomly sampled.

The trees can be sampled around each plot centre in two different ways: 1) sample all

trees within a fixed distance r from each plot centre, or 2) sample a fixed number m of

closest trees to each plot centre. Both methods can be described as cluster sampling, but

in method 1 trees are selected into the sample with equal probabilities, and in method

2 they are selected with unequal probability. Table 6.1 lists the variables used in the

remainder of this chapter.

Cluster Sampling with equal inclusion probabilities

For cluster sampling with equal selection probabilities we use a fixed radius r from the

center of the circular plots. A sample taken with this method will be referred to as

Rk,r with k = 1, . . . , n. For each primary unit (plot) in the sample we can determine

the area (A), the number of cork oaks, and for each tree, the tree diameter at breast

height without cork (d), the cork quality (cq) and thickness (ct). These statistics can be
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Table 6.1: List with variables.
Variable

or index Description

n Sample size, number of primary units in the sample

k Index for plots, k = 1, . . . , n

m Number of trees in plot

M Total number of trees in a stand

r Plot radius

R, Rr Plot with fixed radius

T, Tm Plot with fixed number of trees

Z Zigzag plot

A Area

i, j Indices

x1, x2 Spatial coordinates

d Diameter at breast height (1.3 m) without cork

ct Cork thickness

cq Cork quality

hstem Stem height

hcork Maximum cork stripping height

N Stand tree density (number of trees divided by area)

G Stand basal area (total basal area in stand divided by area)

g Tree basal area (without cork, at 1.3 m)

Vl Stand cork volume in quality class l, divided by area

vl Tree cork volume in quality class l

CI Competition index

Y A population total divided by area

z A standard normal deviate

µ Mean value

σ2 Variance

s2 Sample variance

se Standard error

∆ Distance

L Path length (b=between plots, w=within a plot)

c1, c2, c3 costs

α, β, γ Constants
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combined to estimate the population density (N , number of trees divided by the area),

basal area (G, the total cross-sectional area at breast height divided by the stand area,

expressed here in m2ha−1), and cork volume in each quality class (Vl in class l divided

by area). Cork volume was used instead of its weight, the latter being the usual quantity

associated with cork value (price). Tree density (N) is estimated as N̂ = 1
n

∑n
k=1

1
Amk,

where mk is the number of cork oaks in plot k, and A is the (fixed) plot area. The

estimator for the stand basal area is Ĝ = 1
n

∑n
k=1 ( 1

A

∑mk

i=1 gki), where gki is the basal

area of tree i in plot k: g = π(d/2)2. For the cork volume in class l we use the estimator

V̂l = 1
n

∑n
k=1 ( 1

A

∑mk

i=1 vki,l); since the cork sample from each tree is assigned one single

quality class, the contribution vki,l from one tree is either its whole cork volume vki, or

zero.

Cluster Sampling with unequal inclusion probabilities

When a fixed number m of trees is sampled at each primary sampling unit each tree is

associated with a different probability of being selected (unequal probability sampling).

The Horvitz-Thompson approach to obtain the unbiased estimator for the population

total is to divide the measurements performed on the observed trees by their inclusion

probabilities (c.f.r. Thompson, 1992). In practice it is impossible to calculate these

inclusion probabilities since they depend on the unobserved locations of all trees in the

surrounding area, and even if the locations of all trees were known, the calculation of the

inclusion probabilities would be cumbersome. This is because for a given tree, a joint area

of overlapping convex simplices is needed. The calculations are far more complicated than

those for the nearest neighbour Dirichlet cell (for the latter c.f.r. Ripley, 1981). For locally

random patterns the probability of inclusion in a single plot can be approximated by m

divided by the local tree density. The resulting estimators are approximately unbiased if

the variable of interest takes (spatially) independent values for different trees.

Samples (plots) with m trees are denoted by Tk,m, k = 1, . . . , n. For the observed

local tree density in plot k we take (m− 1)/Ak, for the same reason as in Jonsson, i.e., in

Poisson processes this is an unbiased estimator of the intensity. Then the estimator for

the population tree density becomes N̂ = 1
n

∑n
k=1

1
Ak

(m − 1), where Ak is the plot area

defined by the distance to tree m. The estimators for the stand basal area and for cork

volume are Ĝ = 1
n

∑n
k=1(

m−1
m

1
Ak

∑m
i=1 gki), and V̂l = 1

n

∑n
k=1(

m−1
m

1
Ak

∑m
i=1 vki,l), with g

and vl defined as before.

Zigzag sampling

The sampling method followed by some farmers consists in defining a zigzag transept

covering the whole montado, and sampling every tree that crosses that path. Here we
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adapt the method so that it can be applied to smaller areas. Starting from a randomly

selected point, we define a single path (primary unit) with a constant number of vertices

covering the whole plot, and at each vertex we sample the closest tree (secondary units).

The total area A corresponding to the sample unit is determined by the sum of the areas

of the circles around each vertex in the path, with radius given by the distance to the

closest tree. Some trees and area parts could be counted more than once here. Sample

size is set at n zigzag paths by choosing n starting points in the stand area. We name

these plots Z. The estimators for tree density, basal area and cork volume are then defined

as in T plots, with m equal to the total number of trees measured in each zigzag.

Assumptions in sampling primary units

In many practical situations the proportion of total sampled area (or sampled number

of trees) is very small. In that case sampling of plots can be considered as sampling

with replacement. Here we consider only this situation. Thus no attempt is made here

to construct sampling of primary units without overlap, and the variance formulae for

sampling with replacement are assumed to be satisfactory. Let n be the number of primary

units in the sample, and y a variable of interest. Then the variance of the above estimators

using cluster sampling (for both methods) and zigzag sampling can be estimated with

v̂ar(Ŷ ) = s2/n. Here Ŷ = 1
n

∑n
k=1 Ŷk, and Ŷk are the estimators for the primary units,

and s2 is the sample variance of the Ŷk, s2 = 1
n−1

∑n
k=1 (Ŷk − Ŷ )2. In our simulation

experiment we do not sample many plots in one simulated stand. Instead, we simulate

the same type of stand repeatedly and sample only one plot per stand. The variability

between plots and hence s2 obtained from these plots reflects then the variability in large

scale stands. By large scale we mean that dependencies of characteristics of different plots

in the same stand become negligible at plots distances which are still small compared to

the stand size. For the simulated stand types we estimate the standard error at an actual

sample size of n plots from one large stand as s/
√

n. The value of n will be chosen to

meet certain requirements, such as fixed costs.

6.3 Simulated stands

To test the three sampling methods we simulated cork oak stands using information

obtained in the analysis of a 200 × 200 m2 plot in Herdade do Vale Mouro (MI). The

spatial characteristics of MI were analysed in Paulo et al. (2002). In MI the trees had a

regular point pattern and tree density was equal to 95 ha−1. The diameter at breast height,

d, was not randomly distributed with respect to tree positions; a negative correlation was

present between the sizes of neighbouring trees. For cq or ct we found no evidence against
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complete randomness.

Since the performance of the estimators derived from a fixed number of sampled trees

is likely to depend on the spatial tree distribution as well as the spatial distribution of the

measured variables we simulated stands from different underlying point processes, and

different degrees of spatial correlation for d. Tree coordinates were generated either as

random patterns, clustered or regular. Tree density was set to 100 ha−1 to be similar

to the tree density observed in MI. Further, diameters were generated according to the

marginal distribution of d found in MI, which was approximately a shifted lognormal with

parameters µ = 3.3 and σ = 0.4, and dmin = 3 cm (observed mean is 32 cm and observed

standard deviation is 13 cm). The marginal distributons observed for cq and ct in MI

were used similarly. For ct this distribution was approximately normal with mean µ = 31

mm and standard deviation σ = 7.5 mm. In MI the cork samples were classified into

classes 3 to 7. The probabilities for cq used in the simulations were derived from observed

frequencies of cork in each quality class in MI. The probabilities are 0.04, 0.12, 0.28, 0.34,

and 0.22 for classes cq = 3, 4, 5, 6 and 7, respectively. Generated d values were either

randomly assigned to trees, or according to a penalty function in order to keep trees at

some distance from neighbouring trees, this distance increasing with tree size. We call

such a distribution of d values, among tree locations, regular, because large trees tend

to exhibit a regular point pattern. Cork characteristics cq and ct were always assigned

independently of tree locations and diameters.

Toroidal edge correction was performed to reduce edge effects. With this method

the study area is regarded as a torus, so that points on opposite edges are considered

to be close (Ripley, 1981). In a rectangular area of size P1 by P2 the distance between

tree i, with coordinates (x
(i)
1 , x

(i)
2 ), and tree j, with coordinates (x

(j)
1 , x

(j)
2 ), becomes

∆ij =
√

(∆x1)2 + (∆x2)2, with ∆x1 = min
{

|x(i)
1 − x

(j)
1 |, P1 − |x(i)

1 − x
(j)
1 |
}

and similarly

for ∆x2.

In each simulated stand circular plots were sampled from the stand centre according

to the three methods. R plots were sampled with fixed radius r ∈ {20, 25, 30, 35, 40}, for

T plots we used a fixed number of trees m ∈ {13, 20, 28, 38, 50}. The m values correspond

to the expected number of trees of the R plots (for the fixed tree density of 100 ha−1).

Z samples of trees in each generated stand were obtained for a fixed number of trees

(m = 14) by creating a spiral transept, with a maximum radius of 56 m, where the closest

tree to each vertex is sampled, the distance between vertices increasing with their distance

to the center of the stand. The path was pre-defined and equal for every simulated stand.

Generation of tree location and size distribution

Six types of stands were simulated (see Table 6.2). For types I-V 250 stands with a size
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Table 6.2: Simulated stand types.
Type Point pattern Diameter (d)

spatial distribution

I random random

II moderately regular regular

III very regular very regular

IV regular random

V random regular

VI clustered regular

of 160 × 160 m2 were generated independently, with a fixed number of trees, M = 256,

corresponding to a tree density of 100 ha−1. For type VI 250 stands were generated with

a fixed number of trees and with a larger area that was posteriorly reduced by removing

the stand borders. Tree coordinates (x1, x2), and diameters d were generated for each

tree. The simulation details for each type of stand are as follows:

I. Tree positions were generated from a uniform distribution, and for all trees diameters

d were generated independently of tree positions, di = dmin+eµ+σzi , i = 1, 2, . . . , M ,

where the zi are i.i.d. standard normal deviates.

II. For this stand type the joint distribution of positions and diameters was based on

the minimization of a competition index depending on diameter and distance of tree

pairs, inspired in the Metropolis-Hastings algorithm with a (Gibbs-type) penalty

function:

(a) Generate coordinates x
(0)
1 and x

(0)
2 from a uniform distribution for M trees in

a fixed size area.

(b) Generate tree diameters as for stand type I.

(c) For each tree i in turn, i = 1, 2, . . . , M , generate new candidate coordinates

x
(1)
1 and x

(1)
2 , keeping d. Calculate index CI = α

∑M
j=1,j 6=i didj/∆2

ij , both at

the original location of i, (x
(0)
1 , x

(0)
2 ), and at the new location for i, (x

(1)
1 , x

(1)
2 ).

If CI(1) < CI (0) then accept the new location for tree i. Otherwise accept the

new location with probability p = e−[CI(1)−CI(0)].

(d) repeat step (c) 1000 times.

Probability p of accepting the new location is partly determined by α, a constant

controlling the scale of CI .

After many cycles through step (c), the pattern obtained resembles the pattern

observed in MI: the spatial tree pattern and nearest-neighbour distance distributions
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are quite similar. The similarity of nearest-neighbour distributions was judged with

QQ-plots. The d values displayed a similar correlation value with CI as the observed

in MI. The resulting point pattern is more regular than in I, and so is the combination

of the tree locations (point pattern) and the diameters (marks of the point pattern).

III. Stands as in II, but with a more regular pattern were simulated, by increasing

the value of α (and so increasing the rejection probability of the new point). The

resulting pattern tends to be more regular than in II, both for the tree pattern and

for the combination of tree locations (point patterns) and diameters (marks of the

point patterns).

IV. Stands as in II were produced by using CI = β
∑m

j=1,j 6=i 1/∆ij which does not

depend on the diameters. Here β is again a constant determining the rejection

probability of the new tree location. In this case the generated trees tend to be

regularly spaced, but tree diameter is independent of the diameters of other trees.

V. The following procedure was used to simulate stands with a random point pattern

for tree locations and a regular diameter distribution:

(a) Generate tree coordinates x1 and x2, from a uniform distribution.

(b) Generate tree diameters as for stand type I.

(c) Perform 200 random permutations of d. Each permutation corresponds to one

assignment of the d values to trees in the stand.

(d) For each permutation calculate CI =
∑m

i=1

∑m
j=1 didj/∆2

ij .

(e) Choose the permutation with minimum CI .

VI. Clustered patterns of trees, with a regular diameter distribution. The point pattern

was obtained by generating a parent process uniformly distributed over an area

of 500 × 500 m2, and then generating children clustered around each parent. Each

cluster had 20 children and a 60 m radius. The number of parents was fixed to 97, to

obtain a tree density of 100 ha−1 as before. To avoid an edge effect we discarded the

stand border (of a width equal to the cluster radius) after which the point density at

the inner area was in average 100 ha−1 as wished. To obtain a regular distribution

of diameters over tree positions we proceeded as in (V) for the inner area of the

generated stand.

6.4 Data

We applied the three sampling methods on available data from two cork oak montados,

one in Herdade da Machoqueira do Grou (HG), and the other in Herdade do Vale Mouro
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(MI). Both farms are located in Central Portugal, close to the village of Coruche. In

montado MI one plot of a 200× 200m2 size was measured in July 1998, shortly after cork

extraction. Measured variables were coordinates of tree location, d, hstem, hcork, ct and

cq. It is a very homogeneous plot, but small in size to test the three sampling methods. To

overcome this, we can regard the total sampling area as a grid of rectangles, all identical

to the measured plot. The initial plot forms a border with mirrored copies of itself, thus

extending the total area available. Sample R plots with a radius r ∈ 20, 30, 40 m, T plots

with m ∈ 12, 27, 48 (corresponding to a tree density of 95 ha−1) and Z plots are defined

in this extended area. This is equivalent to assuming a toroidal surface for MI. Figure 6.2

shows the plot in MI, with an example of 14 circular sample plots. Sampling was done

repeatedly (250 times each plot, with replacement) in order to obtain precise estimates of

biases and standard deviations.
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Figure 6.2: Circular sample plots in MI. Trees are marked as points, sampled trees have small cir-

cles around them, plot centres are marked with squares. A toroidal-type of surface was assumed,

hence the high frequency of overlapping plots.

Montado HG is one of several management units with cork oaks in Herdade da Ma-

choqueira do Grou. HG has 308 ha in total and is a mixed stand with cork oak, Pinus

pinea and occasionally also Pinus pinaster. It is very heterogeneous in terms of tree den-

sity. The sampling took place after cork extraction, in 1998. The stand was divided in 7

distinct strata according to species composition and tree density, the year of harrowing,

and cq. Two random circular plots with a radius greater or equal than 40 m were sam-

pled from each stratum. Table 6.3 summarizes the plots (restricted to r=40 m) within
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the seven strata in the montado.

Table 6.3: Main characteristics of the plots in HG.
Stratum Year of cork oak size Plot Cork oaks cork oak

harrowing quantity (ha) number in plot1 density (ha−1)

1 93/94 high 47.4 1 27 54

2 79 157

2 93/94 high 28.1 3 15 30

4 35 70

3 93/94 medium 48.5 5 21 42

6 40 80

4 94/95 medium 48.7 7 40 80

8 28 56

5 94/95 high 78.6 9 26 52

10 31 62

6 94/95 medium 34.7 11 35 70

12 32 64

7 94/95 low 21.3 13 17 34

14 21 42
1 Circular plots with 40 m radii.

Every cork oak inside each plot was measured for tree coordinates, d, hstem and hcork.

A smaller number of trees was also sampled for ct and cq. As in MI, R plots, T plots with

m ∈ 8, 19, 33 (corresponding to a tree density of 65 ha−1) and Z plots were posteriorly

re-sampled from the measured plots in HG.

Stratified sampling

To obtain the final estimate of a population characteristic Y for HG we weighted each

estimate, Ŷk from plot k, with the area fraction of the corresponding stratum (h). If we

have a total number q of strata in the montado, then the weight corresponding to each

stratum h is wh = Ah/
∑q

h=1 Ah. Clearly
∑q

h=1 wh = 1, and thus Ŷ =
∑q

h=1 whȲh (with

Ȳh the mean of the Ŷk ’s in stratum h). Similarly, we have var(Ŷ ) =
∑q

h=1 w2
hσ2

h/nh,

with nh as the number of plots in stratum h. Since in the case of HG we have nh = 2,

h = 1, . . . , 7, the σ2
h become very imprecise to estimate. We therefore simplify offering

unbiasedness by estimating one σ2 for all strata, and thus in HG the estimated var(Ŷ )

becomes v̂ar(Ŷ ) =
∑7

h=1 w2
hs2/2, where s2 is pooled over strata.
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6.5 Model for cork volume

In the simulated stands cork volume of a tree was generated from d and ct (generated)

values, because cork quantity is correlated with tree diameter. First a model was obtained

for plot MI, and then used to generate volumes in the simulated stands. In MI we had

direct measurements of d and ct, and accurate estimates of cork volume per tree, obtained

from ct and the measured debarked surface area of each tree. The model obtained in the

ln-scale for MI was

v/m3 = eγ1(d/cm)γ2(ct/mm)γ3 (6.1)

Here γ1 = −13.97, γ2 = 2.20 and γ3 = 1.09. An R2 = 0.84 and σ̂2 = 0.134 were obtained

for this model (in the ln-scale). Therefore this expression was used to generate cork

volume from d and ct in the simulated stands (in MI the volumes have been obtained

directly from tree measurements).

Since measurements of cork quantity (volume or weight) are very difficult to obtain,

most of the time these have to be estimated from other tree measurements. In HG there

were no measurements of cork quantity (volume or debarked area) for individual trees.

Therefore, we cannot calibrate model (6.1) to use in HG. The measurements performed

in HG include stripping height (maximum height of the stem which was debarked) and

height of fork (height at which the stem divides in two or more main branches). The

latter should be taken into account because branched trees have a larger surface and thus

produce more cork. An alternative model to estimate individual volumes was used instead

of (6.1):

v = πctd(h1 +
√

2h2) (6.2)

where h1 = min(hstem, hcork) and h2 = max(0, hcork − hstem). This expression derives

from the fact that the diameter of two branches above the fork (d1 and d2) relate to the

diameter below the fork (d0) as d0 ≈
√

d2
1 + d2

2 (the stem volume is more or less equally

distributed by the 2 branches). If we further assume that d1 ≈ d2 then d1 + d2 ≈
√

2d0,

which can be used when d1 and d2 are unknown. In MI, where volume measurements are

available, model (6.1) fitted the data better than model (6.2).

6.6 Comparison of the methods

From here on we refer to the estimated single plot standard deviation as s, and to the

estimated standard error (s/
√

n) of an estimator as se. Means and standard deviations

were calculated for Ŷk, k = 1, 2, . . . , 250, for all characteristics, stand types and sample

plot sizes considered. We compared the bias and s of the plots obtained with the three
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sampling methods from all simulated stand types. Bias in T-estimators was estimated

through paired comparison with the R-estimators for similar plot size - the R-estimators

being unbiased, and highly correlated with the T-estimators. The standard error of the

estimated bias was also calculated. Usually the F-test is used to compare standard devi-

ations of two independent samples (normality assumed). But since the samples obtained

from the simulated stands with the three different methods are in principle dependent,

the F-test is slightly conservative, so the Pitman test was also used. The test uses the

fact that for two variables Y1 and Y2 (dependent or not), cov(Y1 +Y2, Y1 −Y2) = σ2
1 −σ2

2 ,

so that under H0 : σ2
2 = σ2

1 we have ρ(Y1 + Y2, Y1 − Y2) = 0 for the correlation. Since

t = ρ̂
√

n − 2/
√

1 − ρ̂2 H0∼ tn−2 (normality assumed), for the two-sided alternative hy-

pothesis we reject H0 if |t| ≥ tα/2,n−2. The standard error is a usual measure to describe

the precision of estimators, and is associated with sample size. The standard deviations

can be compared immediately when procedures are used at the same sample size of n

plots. To present a fair comparison of the three methods, we also compare them at the

same fixed total costs, thus at different n values. Then in the (estimated) standard error

se = s/
√

n both s and n are varying with the method.

Determination of sampling costs

To define the cost of sampling, we divide the costs into two components: travelling costs

corresponding to moving inside and between plots, and costs of measuring the variables

of interest for each tree. All costs are expressed as time units. To determine the time

of sampling in cork oak stands under the usual conditions we will assume that distances

between plots R or plots T are covered by car, at a speed of 4 km·h−1. This low speed

is chosen to reflect the poor accessibility in montados. We also assume that the distances

inside each plot are covered by foot, at a speed of 2 km·h−1. We consider a further 3

minutes to measure each tree. To calculate the travelled path length inside the simulated

R and T plots, Lw, we assume the forester follows a number of ring shaped paths inside

the circular plot until he has measured all trees in the plot. The minimum path length,

for a different number of equal width rings, is then used. In Poisson forests the within

plot path length is approximately proportional to m, the number of trees in the plot. In

Z plots the total path length between nodes can be calculated precisely. We further add

to this the distance travelled by the forester from each node to the sampled tree (and

back). In HG the path length travelled inside each plot can be easily determined because

the trees were sequentially numbered. To estimate the average distance between visited

plots, Lb, we assume that the plots are randomly located in a stand with fixed area. Then

with a reasonable travelling strategy, Lb depends on area and sample size, approximately

as Lb =
√

Astand/n. In HG Astand = 308 ha, and for MI and for the simulated stands we
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consider Astand = 370 ha, as found in another montado. After the simulations, average

values of Lw (all plots) and m (R-plots) are known. The total time needed for a sample

size of n plots takes the form

tTot = c1

√

Astand

√
n + n(c2Lw + c3m) (6.3)

with c1 = 1/4 h·km−1, c2 = 1/2 h·km−1, and c3 = 0.05 h. We note that time is

not proportional to sample size. Since a fixed total sampling time is considered for each

method, the corresponding number of plots, not rounded, can be found by solving equation

(6.3).

6.7 Results for the simulated stands

Standard deviation and standard error

In the following text we refer to the standard deviation of R, T and Z plots respectively

as s1, s2 and s3. The R and T estimators obtained for samples with similar plot size

were highly correlated, with correlations between 0.85 and 0.95, for all variables. Z and R

estimators, on the other hand, had correlations often lower than 0.1. In the comparison of

R and T samples the Pitman test was therefore used. In the case of the dependent samples,

relative differences of less than 6% between s values were already significant. Standard

deviations for R and T plots were very similar, with s2 up to 6% larger than s1, except

in the exceptional situation of volume estimation in the least frequent quality classes,

for the smallest T plots. We observed that s1 and s2 were the highest for the clustered

stands, and minimal for the most regular point patterns. As expected, they decreased

with plot size, as Figure 6.3 shows. In general however, the ratio s2/s1 did not change

with plot size, nor with point pattern nor with diameter distribution. In the comparison

between R and Z samples, relative differences between s values were significant when

greater or equal to 10%. Standard deviation s3 was larger than s1 for more than 10%

in most cases, with a larger difference in regular patterns and for regular d distributions.

The ratio s3/s1 was maximal (2.50) in the regular (type III) stands, and minimal in the

clustered stands with value approximately 0.80. The standard errors were compared for

the different sampling methods, and for three different forest types, for a variable number

of plots, corresponding to a constant time. The sampling time was set to 30 hours, and a

stand of 370 ha was assumed. Sample size (not rounded, see Table 6.4) was determined

as described in the previous section. The resulting standard errors are also displayed in

Figure 6.4 for variables N and G, and for the most extreme types of stand considered.

These figures show that, for the given sampling time, the standard errors of R and T

estimators are approximately the same for random and regular point patterns, regardless
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Table 6.4: Results from simulated stands: standard error of estimators for the different methods

with a fixed cost of 30 hours, and based on a stand area of 370 ha.

Stand type I
Method n E(m) Total length average distance St. dev. St. error

within plot between plots N̂ Ĝ N̂ Ĝ

R20 38.3 12.9 120 310 27.3 3.7 4.4 0.60

R30 18.0 28.4 270 450 18.0 2.3 4.2 0.54

R40 10.3 50.3 510 600 12.8 1.8 4.0 0.57

T13 37.5 13 150 310 29.0 3.8 4.7 0.62

T28 18.0 28 300 450 19.0 2.4 4.5 0.57

T50 10.3 50 520 600 13.4 1.8 4.2 0.57

Z 27.4 14 600 370 30.9 4.3 5.9 0.83

Stand type III
Method n E(m) Total length average distance St. dev. St. error

within plot between plots N̂ Ĝ N̂ Ĝ

R20 38.8 12.6 130 310 18.4 3.0 2.3 0.40

R30 17.9 28.4 280 460 10.6 1.8 2.0 0.38

R40 10.2 50.3 530 600 8.0 1.3 1.9 0.37

T13 37.2 13 160 320 17.2 2.8 2.2 0.40

T28 18.0 28 300 450 10.5 1.9 2.2 0.36

T50 10.3 50 530 600 8.2 1.3 1.9 0.36

Z 27.7 14 590 370 35.6 5.3 7.1 1.09

Stand type VI
Method n E(m) Total length average distance St. dev. St. error

within plot between plots N̂ Ĝ N̂ Ĝ

R20 39.9 12.4 110 310 51.9 5.4 8.2 0.86

R30 18.4 27.8 260 450 42.3 4.1 9.9 0.95

R40 10.4 49.6 500 600 37.5 3.7 11.6 1.15

T13 37.2 13 160 320 53.8 5.8 8.8 0.94

T28 18.0 28 310 450 43.3 4.3 10.2 1.02

T50 10.3 50 530 600 37.0 3.5 11.5 1.10

Z 27.1 14 630 370 39.5 4.5 7.6 0.87
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Figure 6.3: ln(s(N̂)) vs ln(r) (left) and ln(s(Ĝ)) vs ln(r) (right), obtained from simulations for

Rr plots (solid lines) and for Tm plots (dotted). Different stand types are shown with different

symbols: type I (◦); type II (�); type III (.); type IV (∗); type V (O); type VI (�).

of plot size. For these patterns Z plots yield comparatively too large standard errors. For

clustered patterns Z plots and smallest R and T plots have the lowest standard errors.

Bias

Standard error of the bias estimates in T estimators, obtained by paired comparison with

the R estimators, was always lower than 6% of the Ŷ value. The estimated precision

of bias estimates was therefore satisfactorily low. In the T plots no significant bias was

found for the N and G estimators, for the simulated stand types. For the V estimators,

a bias of up to 15% was observed, in the smaller plots. The bias was negligible in the

larger plots. The magnitude of the bias was not noticeably affected by the point pattern

or d distribution.

Bias estimates of Z estimators had an estimated precision of less than 20% of µ. A

negligible bias was found for random patterns (stand types I and V). In the clustered

patterns (stand type VI) biases were present of a magnitude up to 15% for all estimators.

In regular patterns (stand types II, III and IV) bias was highest: between 30% and 50% in

moderately regular patterns (II), between 20% and 30% in regular patterns with a random

d distribution (IV), and between 45% and 80% in the very regular patterns (III). Biases

were positive in sign for the regular patterns and negative for the clustered patterns. The

bias in Z plots was affected both by the point pattern and by the combined distribution

of d and tree locations.
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Figure 6.4: ln(se(N̂)) and ln(se(Ĝ)) obtained from simulations for three different point patterns

(horizontal axis). Results are shown for different sampling methods, R plots are shown with solid

lines, T plots are shown with dotted lines and black filled symbols: R20 and T13 (◦), R30 and

T28 (O), R40 and T50 (�), and Z (�). The number of plots in all situations was chosen for fixed

costs, equal to 30 hours.

6.8 Results for the montados

The standard errors of the estimators obtained in HG and in MI, for constant times of

30 hours and based on a stand area of 308 ha and 370 ha respectively, are displayed in

Figure 6.5. In MI estimators of N and G have lower standard errors in smaller R and T

plots, and largest standard errors in Z plots. On the other hand V3 and V4 (with small

frequencies), have lowest standard errors in the largest plots. In HG standard deviations

were estimated from 14 plots, thus ŝe provides a very crude impression. In HG the lowest

standard errors for N and for G are obtained with the Z plots. The Z plots were not used

to estimate cork volume for this data set because the number of cork samples in these

plots was too low.

Since the values of the variables under study were not completely known in HG, bias

could not be evaluated for this data set. In the MI data set larger bias was observed in

T12 estimators, about 15% for the N and G estimators, and 20% for the V3 estimators,

which had a low observed frequency. For Z plots yet larger bias was observed (up to 65%

for the N and G estimators, and 30% for the V estimators).
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Figure 6.5: ln(se) obtained in data-sets MI (left) and HG (right), by each method (horizontal

axis). The estimators are for mean tree density (�,ha−1), mean basal area (◦,m2ha−1), and mean

volume (4, ., O, /, and �, by increasing order of quality, 0.1m3). The number of plots in all

situations was chosen for fixed costs, equal to 30 hours, and for a stand area of 370 ha in MI and

308 ha in HG. Standard deviations were estimated from a sample of 250 (re-sampled) plots in

MI and a sample of 14 plots in HG.

6.9 Discussion

The results in this study agree with those in Jonsson et al (1992). In their article they

report biases smaller than 10% in T plots sampled from simulated forests. The main

purpose of this study was to compare the sampling methods for a fair number of different

point patterns and spatial distributions of diameters. In order to obtain good estimates

for the standard deviations and biases of the estimators, we focused our analysis on

simulated stands. Underlying stationary isotropic processes were assumed. We did not

try however to exhaust all patterns that are likely to be found in practice. In fact there

may be montados where point pattern, tree density, and diameter size distribution vary

considerably in space, but those more complex situations were not simulated. Data was

used to illustrate the diversity of situations arising in reality: the plot in MI illustrates a

homogenous stand, whereas HG exemplifies the difficulties that may arise in stands with

an inhomogeneous or non-stationary point pattern.

The total number of simulations (250) was limited by computer time, we think how-

ever that for practical purposes the resulting precision of the simulations is satisfactory.

Further, stands were simulated with a fixed number of trees to facilitate the storage of

the simulations in a matrix format, thus allowing very fast computations. This results

in an (unintentional) loss of randomness. This loss can be neglected in the present situ-
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ation because the sampling plots are small compared to the stand size. In fact the loss

of variability can be illustrated in the case of the tree density estimator in type I stands.

The standard deviation of the tree density in the R40 plots is expected to be 14.1 (from

a Poisson count with parameter 50.3 for an area of 0.503 ha). The observed value is 12.8

(Table 6.4), corresponding to a variability loss of less than 10%, but in close agreement

with the theoretical conditional value, which is 12.7. Since the simulated stands of type

II had some similarities with MI, the sampling results both for the simulations and data

were compared. Lower variability and lower biases were found for the estimators obtained

from sampling the simulated stands.

The comparison between standard errors obtained with different sampling methods

depends of course on sample size. It seemed reasonable then to use variable sample

sizes for each method, corresponding to a fixed amount of costs. The sampling times

(used as sampling costs) used here were merely illustrative. Other costs could have been

considered, such as extra time for setting R plots, or for taking cork samples. For example,

the path length within plots (when walking from tree to tree) was calculated based on

a hypothetical rule according to which the forester samples the trees following a path

inside rings in the circular plots, which yield the values shown in Table 6.4. For trees in a

regular square grid, the distance between trees in an optimal path would be
√

A/m, which

is approximately equal to the distances calculated with our path in the simulations. For

random tree positions the expected nearest neighbour distances are 0.5
√

A/m. A path

along nearest neighbours is nearly never possible. If the optimal path is used to visit

trees (solution of the travelling salesman problem), then the expected average distance

between trees in the path is asymptotically (for A → ∞ and A/m fixed) converging to

0.7124
√

A/m (Jonhson and McGeoch, 1997), that is, about 70% of the distance obtained

with our non-optimal path. For the travelling between plots in the stand we considered an

average distance equal to
√

A/n. Here also a reduction of up to 70% could be obtained. If

different costs were to be assumed then different sample sizes would have been obtained,

with consequences for the standard errors of estimators and for the choice of the most

cost-effective method.

6.10 Conclusions

Methods R and T produce very similar estimates for the types of forest considered in this

study. The single plot standard deviations (s) obtained with the two methods differed

very little, for equivalent plot sizes, and the biases observed in T estimators were in most

cases lower than 10%. Method Z produced estimators with a large bias in all non-random

point patterns. For the Z method s was considerably larger than the s obtained by the

other two methods, except in clustered forests and in the HG data set, which is very



86 Chapter 6. Sampling methods for cork oaks stands

heterogeneous.

Although s decreases with an increase in plot size, this is not necessarily true for the

standard errors (se) of estimators when the number of plots depends on a fixed amount of

costs. For a fixed amount of costs, in regular and random patterns the standard errors were

lowest for R and T estimators obtained with large plot sizes, and highest for Z estimators.

In MI (which has a moderately regular point pattern) unexpectedly standard errors were

not always lowest for the large plot sizes. In clustered forests standard errors were lower

for R and T estimators obtained with small plot sizes and lowest for Z estimators. This

was also observed to some degree in the HG data set.

The choice between R and T can safely be based on practical convenience. The Z

method is clearly disadvantageous since it produces estimators with large biases and in

all but clustered patterns also large standard errors.
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Chapter 7

General conclusions

In this thesis it has been shown how the use of current mathematical statistical methods

can help to improve the modelling and estimation of cork oak and eucalyptus stand and

trees’ characteristics. The improvement of information in stand management of cork oak

and eucalyptus stands is valuable for decision making and may help to increase production.

Optimisation of long term volume yield in eucalyptus stands depends upon a prior

distribution of the volume growth parameters, on the ages of measurement and on the error

distribution of the volume observations. For the considered prior and error distribution,

the long term volume yield significantly increases if individual optimised cutting time

is used instead of a common optimised cutting time. The main gain is obtained from

optimising fixed measurement times and individual cutting times. Only a small additional

increase is obtained by optimising individually the second measurement time as well.

D-optimal designs are more economical and efficient for estimation of individual diam-

eter growth of cork oaks. A replication-free compromise design, D-optimal for the average

of the sample’s growth parameters, performed better than the equidistant design. Since

in practical situations the residuals obtained with fitting parametric curves to empirical

data are often autocorrelated, this situation was also analysed. For an autocorrelation up

to 0.6 a compromise design is still recommended, obtained by spacing with 10ρ years the

replicate design points from the unrestricted design. For higher autocorrelation values

the equidistant design is a better option.

Spatial relations between cork oak trees were explored in relation with competition

indices based on size and distance of neighbouring trees. Those accounting for the relative

size of neighbours were significantly correlated to crown size of subject trees. The crown

of a cork oak differs in shape and size when it is under competition. A crown of a tree

87
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close to larger trees is more elongated. This may have an effect on crown size in the

end. Crown diameter was modelled using stem diameter, crown shape and distance to

the nearest neighbour as explanatory variables. An increase in inter-tree distances and

a decrease density is likely to result in larger trees. In particular, regular patterns help

increase minimum inter-tree distances for a given density.

Three sampling methods were compared to estimate tree density, basal area and cork

volume: cluster plots with fixed radius (method R), cluster plots with a fixed number of

trees (method T), and sampling trees standing in a zigzag path (method Z). Methods R

and T produced similar estimates. Bias of T estimators was negligible, and their standard

errors were equivalent to those produced by R estimators. A choice between R and T can

therefore be based on practical convenience. Method Z, often used in Portuguese cork oak

farms, yields estimators with a larger bias and larger standard errors. Bias and standard

error depended strongly on the spatial pattern of the trees and on independence. Largest

bias and largest standard errors occurred for regular point patterns with a conditional

size distribution. In clustered patterns the observed standard errors were smaller than

those obtained by R and T estimators, but biases were larger than for T estimators.



Samenvatting

In dit proefschrift worden moderne wiskundig statistische methoden toegepast op pro-

blemen binnen hedendaagse Portugese bosbouw systemen. Hier bestaat behoefte om

via betere beslissingen ten aanzien van het bosbeheer de productie te optimaliseren. Er

wordt achtereenvolgens aandacht besteed aan het gebruik van Bayesiaanse methoden,

groeikrommen, optimale proefopzetten, ruimtelijke analyse van patronen van kronen van

kurkeiken en aan steekproefmethoden. Vier onafhankelijke vraagstellingen staan centraal

aangaande opstanden van kurkeik en eucalyptus.

De eerste vraagstelling richt zich op optimalisering van de omlooptijd van eucalyptus-

bossen die dienen ten behoeve van pulpproductie. Opvolgende rotaties en meer in het bij-

zonder hun groeikrommen worden beschouwd als onafhankelijke realisaties van hetzelfde

genererende proces. Het doel is om de lange-termijn volumeproduktie, gecorrigeerd voor

kosten van herplanten, te optimaliseren. Op lange termijn is de totale financiële opbrengst

gedeeld door de totale tijd een economisch belangrijk gegeven. Een Bayesiaanse aanpak is

gevolgd, onder de veronderstelling van Shumacher groeikrommen en met gebruik making

van prior informatie t.a.v. de parameters. Deze is gebaseerd op een groot aantal waarge-

nomen groeikrommen. In het geval van bekende of adequaat geschatte groeikrommen was

de winst aanzienlijk in het optimaliseren van individuele kaptijdstippen, vergeleken met

het kiezen van één vast kaptijdstip. In deze studie is uitgegaan van de veronderstelling dat

twee volumemetingen worden verricht ter ondersteuning van de keuze van het kaptijdstip

van een rotatie. De eerste meting op een vast tijdstip, tweede echter op een tijdstip dat af-

hankelijk is van het resultaat van de eerste meting. Een belangrijk probleem is het vinden

van een optimale strategie voor het kiezen van dat tweede meettijdstip. Dit proefopzet-

probleem is volledig verstrengeld met het kaptijdstip-probleem. Naar beide werd tegelijk

geoptimaliseerd, met behulp van numerieke methoden. De winst van een geoptimaliseerd

variabel tweede tijdstip was gering, vergeleken met een optimaal vast tijdstip.

Het tweede onderzoek behandelt het schatten van groeikrommen van de stamdiameter

van individuele bomen in kurkeik opstanden. Aanbevolen wordt om een lokaal D-optimale

proefopzet te gebruiken in de keuze van tijdstippen waarop de diameter moet worden ge-

meten. De keuze is dan zo dat de parameters van de groeikrommen zo goed mogelijk

geschat worden. Om praktische redenen wordt bij een groep bomen het gebruik van een

gemeenschappelijk compromis van meettijdstippen aanbevolen. In de beschikbare test-

gegevens gaf een dergelijke aanpak betere resultaten bij individuele groeicurves dan het

gebruik van een equidistante proefopzet.
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Het derde onderzoek betreft ruimtelijke modellering en het gebruik van ruimtelijke

statistische methoden bij kurkeik-opstanden. De analyse betrof de ruimtelijke correlatie

tussen kroonvorm, kroonomvang en stamdiameter in paren naburige bomen. Er werd een

significante correlatie gevonden tussen de omvang van een boom en de competitiedruk

van naburige bomen. Vooral grotere bomen bleken binnen de opstand een regelmatige

ruimtelijke distributie te hebben. De ruimtelijk invloeden tussen naburige bomen zijn van

belang en de opstand kan er aanzienlijk voordeel bij hebben als hier ten aanzien van het

beheer rekening mee wordt gehouden.

Het vierde onderzoek richt zich op drie steekproefmethoden die men kan gebruiken in

kurkeik montado’s (agroforestry systeem) voor het schatten van dichtheid, grondvlak en

het kurkvolume. De schattingen zijn voor de producenten zowel van economisch belang

ls om keuzes te maken ten aanzien van het bosbeheer. De veelgebruikte zig-zag methode

is vergeleken met twee andere bemonsteringsmethoden op gesimuleerde gegevens. Vanuit

diverse beginpunten is een beperktere zigzag bemonsterd om een eerlijke vergelijking te

kunnen maken. Deze methoden bemonsteren rond startpunten ofwel alle bomen binnen

een bepaalde straal, ofwel een vast aantal van de meest naburige bomen. De simulaties

zijn gebaseerd op moderne ruimtelijke simulatiemethoden en vertegenwoordigen een breed

scala van in de praktijk optredende ruimtelijke positie- en diameterpatronen. Onder de

meeste omstandigheden bleek de zigzag-methode te moeten worden afgeraden, omdat het

onzuivere schatters oplevert die tevens een grotere variantie hebben dan de schattingen

die met alternatieve methoden worden bepaald.

Het gebruik van moderne statistische methoden blijkt waardevol te zijn voor het verbe-

teren van schattingsmethoden en steekproefmethoden zoals die gebruikt worden in kurkeik

en eucalyptus bossen. Adequate steekproefmethoden zijn essentieel om kwalitatief goede

informatie te verkrijgen.
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