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Abstract

Survival data were simulated under the Weibull model in a half-sib family design, and about 50% of the records
were censored. The data were analysed using the proportional hazard model (PHM) and, after transformation to
survival scores, using a linear and a binary (logit) model (LIN and BIN, respectively), where the survival scores are
indicators of survival during time period t given survival up to period t – 1. Correlations between estimated and
true breeding values of sires (accuracies of selection) were very similar for all three models (differences were smaller
than 0·3%). Daughter effects were however less accurately predicted by the LIN model, i.e. taking proper account of
the distribution of the survival data yields more accurate predictions of daughter effects. The estimated variance
components and regressions of true on estimated breeding values were difficult to compare for the LIN models,
because estimated breeding values were expressed as additive effects on survival scores while the simulated true
breeding values were expressed on the underlying scale. Also the differences in accuracy of selection between sire
and animal model breeding value estimates were small, probably due to the half-sib family design of the data. To
estimate breeding values for functional survival, i.e. the component of survival that is genetically independent of
production (here milk yield), two methods were compared: (i) breeding values were predicted by a single-trait linear
model with a phenotypic regression on milk yield; and (ii) breeding values were predicted by a two-trait linear
model for survival and milk yield, and breeding values for survival corrected for milk yield were obtained by a
genetic regression on the milk yield breeding value estimates. Both methods yielded very similar accuracies of
selection for functional survival, and are expected to be equivalent. 

Keywords: animal models, breeding value, survival. 

Introduction
Breeding value estimation of longevity suffers from
two major difficulties: (i) the records of animals still
alive, which include the selection candidates, are
censored; (ii) the allocation of cows to contemporary
groups is difficult: two cows born in the same herd in
1996 and 1997 which lived for 4 and 3 years,
respectively, experienced for most of their lives the
same herd management, while a contemporary
grouping based on herd-year (-season) of birth
would allocate them to different groups. The use of
the proportional hazard model (PHM) solves both
these difficulties: it takes account of censored
records, handles temporary fixed effects, i.e. at
different times a cow is allocated to different

contemporary groups, and takes full account of the
distribution of longevity data (Ducrocq and Sölkner,
1998a). However, because of computational
problems, approximate linear models are often
applied to survival data or only a single-trait, sire
PHM is used, while (multitrait) animal model
estimates of breeding values (EBV) are used for other
traits. There are no theoretical limitations to the use
of single-trait animal PHM. The multivariate
distribution of combined analyses of linear traits and
longevity by PHM requires some approximation
(Ducrocq, 1999). 

Multivariate survival EBV are desirable for several
reasons. Culling for production affects survival rates,
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such that only genetic improvement of the
component of survival that is genetically
independent of milk yield is required (assuming a
continuous improvement of milk yield). The latter
component of survival is often termed functional
survival or functional herd life (Ducrocq, 1987) and is
obtained in single trait survival analyses by a
phenotypic regression of survival or herd life on
production, usually expressed as a within-herd
deviation. Alternatively, a multitrait analysis of
survival and production would yield EBV for
functional survival. Whether genetic or phenotypic
regression on production is most appropriate is
currently debated in the literature (e.g. Visscher et al.,
1999). Another benefit of multivariate survival
analyses is that accurate survival EBV are only
available late in life while selection of young animals
is important for genetic gain. We therefore want to
include the information from other traits (e.g.
functional type traits) to improve the accuracy of
survival EBV of young animals. Also, yield is an
important cause of culling, which might cause
selection bias in the available survival data. A joint
(linear and non-linear) evaluation of yield and
survival may correct this bias. 

Madgwick and Goddard (1989) suggested a
multitrait analysis of survival scores, where a
survival score in lactation 2 indicates whether the
cow survived lactation 2 or not, given that she lived
up to lactation 2 (otherwise the survival score of
lactation 2 is missing). This approach can also handle
some temporary fixed effects, because a cow can be
allocated to different groups for each lactation, i.e.
each survival score. A drawback of this approach is
that survival is modelled by many survival score
traits, and the model may be overparametrized.
Following the developments of test-day models for
daily milk records, Veerkamp et al. (2001) suggested
the use of random regression models (RRM) for
survival scores to avoid this overparameterization. A
theoretical derivation showed that RRM for survival
scores approximated a PHM analysis when the time-
interval for each survival score was small. Here we
will use the repeatability model, where a genetic
correlation of 1 between survival scores is assumed.
The use of a RRM can relax this assumption, and is a
potential extension to the work presented here. 

The first aim of this simulation study was to compare
the accuracy of survival EBV using PHM and using a
repeatability model, where the repeatability model
either accounted for, or ignored, the binary nature of
the survival score data. The latter resulted in a linear
model for survival analysis. A second aim was to
compare EBVs from sire and animal models using
the PHM, binary and linear repeatability models. A

third aim was to compare multitrait prediction of
‘genetic’ functional survival, i.e. the component of
survival that is genetically independent of milk
yield, with the commonly used prediction of
‘phenotypic’ functional survival where a phenotypic
regression on milk yield is included in a single trait
survival analysis. 

Methods
The single-trait data sets: DATAS
Survival data were simulated using a three-step
procedure. In step 1, data were simulated on an
underlying linear scale (xij), which affects the hazard
of an animal by a factor of exp(xij), where the hazard
at time t denotes the instantaneous culling rate at
time t conditional upon survival up to t. In step 2, the
underlying linear data were transformed to survival
times using the Weibull model (yij

*); and in step 3, the
survival times were censored in case the animal was
still alive at the end of our 40-month trial, which
resulted in the observed survival times (yij) and an
indicator of censoring (wij). The data on the
underlying scale, xij, were sampled using the model:

xij = h(ij) + si + dij

where xij = survival of daughter j of sire i on the
underlying linear scale (xij is called linear because all
the included effects affect xij linearly); h(ij) = herd
effect of the herd of daughter j of sire i, and si = sire
effect; dij = a within-sire deviation that reflected
genetic effects (dam plus Mendelian sampling) and
environmental effects. There were 20 herd effects
sampled from N(0, σh

2), where σh
2 is the variance of

the herd effects, and each daughter was randomly
allocated to one of the herds. In order to simplify the
analyses, the fixed herd effect was not time-
dependent, although time-dependent effects (such as
herd ✕ month) could have been simulated and
analysed by all models that were considered. There
were 100 sire effects, si, sampled from N(0, σs

2) and
each sire had 50 or 100 daughters whose within-sire
deviation, dij, was sampled from N(0, σw

2), i.e. the
data set contained either 5000 or 10000 records, and
σs

2 (σw
2) is the variance of the between- (within-) sire

effects, with σs
2 = 0·05 (as estimated by Ducrocq and

Sölkner, 1998) and σw
2 = 0·2. The simulated daughter

effects are partly genetic (variance is 3 ✕ σs
2 = 0·15)

and partly due to the environment of the daughter
(variance is 0·2 – 0·15 = 0·05). Details regarding data
simulation are given in Table 1. 

The Weibull model was used to simulate uncensored
survival times, yij

*, from the linear predictor, xij, by
the following algorithm. The survival times, t, were
assumed to be expressed in months after first
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Table 1 Parameters of the simulated data sets DATAS and DATAM

DATAS and DATAM
Length of experiment 40 months
No. of sires 100
No. of daughters per sire 50 or 100
No. of herds 20
Variance of herd effects (σh

2) 0·25
Weibull parameters λ = 0·04, ρ = 2
Variances of survival: sire (σs

2) 0·05
daughter (σw

2) 0·2

DATAM
Variances of milk yield: sire (σMs

2) 0·1
daughter, (σMw

2) 0·9
Correlation between survival and yield (r) 0 or –0·3†
Fraction culled for yield, month of culling 0·2, 11

† Correlation is the same for sire and daughter effects.

calving. For every month, t, the probability, pij,t, was
calculated that animal ij was culled during month t
given that it lived up to month t, which is:

S(t – 1; xij) – S(t; xij)
pij,t = —————————

S(t – 1; xij)

= 1 – exp[–λρ(tρ – (t – 1)ρ)exij] (1)

where S(t, xij) = the survivor function of the Weibull
regression model, i.e. S(t, xij) = exp[–(λt)ρexij], with λ
and ρ being the scale and shape parameters of the
Weibull distribution, respectively. The derivation of
equation (1) is given in the Appendix. Whether the
animal actually survived month t or not was
simulated by sampling a uniformly distributed
variable uij,t for every month t, and the earliest month
where uij,t < pij,t resulted in culling of animal ij such
that its survival time was yij* = t. Note that the above
algorithm generates discrete survival times, and
would not be efficient when very small units of time
are used. The shape parameter, ρ, was set to 2 (as
estimated by Ducrocq and Sölkner, 1998), and the
scale parameter , λ, was assumed to be 0·04 (based on
calculations aiming for about 50% of the records to
be censored). 

It was assumed that our experiment lasted only 40
months, after which the records from daughters that
were still alive became censored. For every daughter
a random month of first calving, zij, was sampled
between months 1 and 40. The daughters that were
still alive at the end of the experiment had censored
records with survival times, yij = 40 – zij, while
daughters that were culled before month 40 had
uncensored records with yij = yij*. The censoring
variable wij takes the value 1 for uncensored records
and 0 otherwise. For example, if a daughter lived for

30 months after first calving, yij* = 30, and she first
calved in month 20, zij = 20, her actual survival time
would be yij = 40 – 20 = 20. This record is censored
since the daughter is still alive at month 40, so wij = 0.
The result was that about 50% of the records were
censored. 

The survival times, yij, and censoring indicators, wij,
were transformed on a monthly basis to binary
survival scores. For instance, if a daughter survived
for 3 months but was culled in the next
month : yij = 3, wij = 1, and her survival scores are
Yij = [0 0 0 1]. If another daughter had a censored
record and the experiment ended in her 6th month
when she was still alive, yij = 6, wij = 0 and Yij = [0 0 0
0 0 0]. 

The multitrait data set: DATAM
Linear survival and milk production were simulated
in a multitrait manner. Pairs of records of linear
survival and milk yield,

x(yM)ij,

were simulated. First, sire effects

s(sM)i

were sampled from

σs
2 rσsσMsMVN[rσsσMs σMs

2 ]
where sM is the sire effect for milk yield, σMs

2 is the
associated sire variance, and r is the between-sire
correlation of the linear survival trait with milk
production. Second, residual effects

d(dM)ij

were sampled from

σw
2 rσwσMwMVN[rσwσMw σMw

2 ]
where dM is the residual effect for yield (contains
dam effect and Mendelian sampling effect, and
environmental effect of yield), σMs

2 is its variance,
and r is the residual correlation, i.e. the within- and
between-sire correlations were assumed equal. This
assumption implies that the genetic and
environmental correlations between these traits are
also approximately equal. Finally, the herd effect is
added to xij. Herd effects for milk yield were all set to
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zero in the simulation, but were included as fixed
effects in the linear mixed model for the analysis of
milk yield. In a linear model, estimation of random
effects is based on the difference between records
and fixed effect estimates, which do not depend on
the actual level of the fixed effects, and hence, the
true herd levels do not affect the random effect
estimates. Putting the above terms together, the
linear survival and milk production were simulated
by:

x  h (ij)  s d(yM)ij = ( 0 ) + (sM)i + (dM)ij.

The transformation from a linear survival trait to
actual survival times was the same as in DATAS,
except that after 10 months of lactation the milk
production records of daughters became available
and the daughters with the lowest 20% milk
production were culled in month 11 (if they had not
been culled already). Parameters for the two data
sets are provided in Table 1. The assumption of a
zero correlation between milk yield and involuntary
culling follows the definition of functional survival,
which is the component of survival that is
uncorrelated with milk yield. However, true
involuntary culling may be expected to show a
negative correlation with milk yield because milk
yield is negatively correlated with fertility and health
traits. To account for this, some data sets were
simulated with a correlation of r = –0·3 between sMi
and si. 

True breeding values for functional survival were
obtained from:

TBVFSi = ai – bg aMi, 

where ai (= 2si) and aMi (= 2sMi) are the true breeding
values of sire i for survival and milk yield, and bg = r
σs/σMs, i.e. bg = 0 or –0·212 when r = 0 or –0·3,
respectively (Table 1). 

Analysis of DATAS
DATAS was analysed using PHM, linear and binary
models. For the linear and binary models, the
survival data were transformed to survival score
data, as described above. The binary model (BIN)
used the logit-link function, ln(pij,t/(1 – pij,t)), where
pij,t is the probability of failure in month t given
survival up to month t. Hence, E(Yij,t) = pij,t, where
the expectation is conditional upon survival up to
month t. If the time classes are sufficiently small, the
probability, p, of failure in any class is small and
ln(p/(1 – p)λ) ≈ ln(p). The probability of
instantaneous failure is pij,t = λρ(λt)ρ-1exp(xij) δt,
where t is the actual time at the midpoint of time

class k, and the baseline hazard function is λ(t) =
λρ(λt)ρ-1. The binary model now becomes

E(Yij,t) = pij,t

BIN-S: Logit(pij,t) ≈ µ + b ✕ ln(t) + h(ij) + si

BIN-AM: Logit(pij,t) ≈ ln(pij,t) = µ + b ✕ ln(t) + h(ij) + ai

where BIN-S (BIN-AM) denotes the binary sire
(animal) model; µ = overall mean; b = ρ – 1 = the
regression of ln(p) on ln(t). The binary model for Yij,t
therefore contains an overall mean, a regression on
log-time, a fixed herd and a random sire effect, si
(BIN-S), or a random animal effect aij (BIN-AM). In
the case of BIN-AM, Var(a) = A σa

2, where a = vector
of aij effects, A = relationship matrix between the
animals, and σa

2 = additive genetic variance, which is
estimated from the data. 

The linear models (LIN) are similar to the binary
models except that the binary nature of the Yij,t data
is ignored and effects are introduced on the original
scale instead of the log-scale:

LIN-S: E(Yij,t) = µ + b ✕ ln(t) + h(ij) + si

LIN-AM: E(Yij,t) = µ + b ✕ ln(t) + h(ij) + ai

where the regression on ln(t) reflects the ‘mean
survival score curve’, h(ij) = fixed herd effect; and
si = random sire effect. 

The proportional hazard models were analysed
using the SURVIVAL_KIT package (Ducrocq and
Sölkner, 1998b), choosing the Weibull model with
fixed herd and random normally distributed sire
(PHM-S) or animal (PHM-AM) effects. 

Analysis of DATAM with selection on milk yield
For the prediction of functional survival EBV by
phenotypic regression, we performed the following
linear single-trait animal model analysis with
regression on milk production:

LIN-AM1: E(Yij,t) = µ + b ✕ ln(t) + b2 ✕ yMij + h(ij) + aij

where b2 = phenotypic regression coefficient on milk
production. The EBV of functional survival are
obtained as the estimates of aij. 

Next we predicted the genetic component of survival
that is genetically independent of milk yield, a – bg
aM, with a (aM) = additive genetic value of survival
(milk yield) and bg = genetic regression coefficient.
The following bi-variate animal model analysis was
performed to predict a and aM:
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Table 2 Correlation between true and estimated breeding values
of the sires for functional survival in the single-trait data set
DATAS†

Analysis‡ Sire model Animal model

50 daughters per sire
LIN 0·687 0·687
BIN 0·689 0·690
PHM 0·689 0·690

100 daughters per sire
LIN 0·804 0·805
BIN 0·805 0·806
PHM 0·805 0·807

† Results averaged over 50 replicated DATAS data sets;
standard errors varied between 0·005 and 0·007.
‡ LIN = linear model; BIN = binary model; PHM =
proportional hazard model.

Yij,t  µ  ln(t)  h a d ε ij, tLIN-AM2: (yMij) = (µM) + b1( 0 ) + (hM)(ij) + (aM)ij + (dM)ij + ( 0 )
with

a
Var(aM) = G ✕O A

and G = 2✕2 genetic correlation matrix of the 2 traits;
similarly

d
Var(dM) = R ✕O I

and R = 2 ✕ 2 environmental correlation matrix of
the daughter effects; εij,t = sampling deviation of
individual survival scores Yij, t from the average
survival of animal ij(Var(ε) = Iσc

2). In this model of
analysis, the estimation of the variance components
in R is problematic because of the structure of the
survival score data. In particular element R11, i.e.
Var(d), cannot be separated from Var(ε). For the same
reason, Cov(d,dM), i.e. element R12, cannot be
estimated either. This problem is solved by the
following reparameterization. Consider the
regression of the permanent environmental
component of survival, d, on the permanent
environmental effect of milk yield, dM:

d = br dM + de = d* + de, 

where br = regression coefficient of d on dM;
de = residual of this regression; d* = br dM. It follows
that d* is orthogonal to de, and the correlation
between d* and dM is 1. Because of the structure of
the survival score data, we cannot distinguish the
permanent environmental effect of survival that is
independent of milk production, de, from the
sampling deviation, ε. In our model of analysis, the
combined effect of de and ε will be estimated by ε,
and, consequently, d* will be estimated by d. This
reparameterization results in a correlation of 1
between d and dM, and setting the correlation
between d and dM to 1 makes R11 and R12 estimable
and results in Var(d) estimating the residual variance
of survival that can be explained by milk yield. The
correlation between d and dM was set to 0·99 rather
than 1·0, because otherwise R–1 could not be
computed. There are more elegant ways to
parameterize LIN-AM2, but in this way it could be
programmed in the ASREML package (Gilmour et
al., 2000). 

The EBV for functional survival of the animals are
obtained from:

EBVFSi = âi – b̂g âMi ,  

where âi (âMi) = estimated breeding value of sire i
for survival (milk production); and b̂g =
Covg(a;aM)Est/Vg(aM)Est, and Covg(a;aM)Est = within
replicate estimate of genetic covariance; and
Vg(M)Est = within replicate estimate of genetic
variance of milk production. 

In each of the 50 replicated DATAS and 10 replicated
DATAM data sets, variance components were
estimated using ASREML (Gilmour et al., 2000) for
the LIN and BIN models and the SURVIVAL_KIT
(Ducrocq and Sölkner, 1998b) for the PHM models.
The latter also explicitly estimated the Weibull shape
parameter ρ. Within each replicate, accuracies of
selection were obtained by calculating the correlation
between true (simulated) and estimated sire effects
(Yadzi et al., 2000). 

Results
Table 2 shows the accuracies of selection of the 100
sires when breeding values were predicted by LIN,
BIN or PHM. When used as sire or animal models,
LIN, BIN and PHM gave very similar accuracies of
selection. The animal model EBV seemed only
marginally more accurate than the sire model EBV.
Also, the linear model EBV were slightly less
accurate than binary- and PHM-EBV, which were
equally accurate. These differences were however
very small. 

Table 3 gives estimates of the sire and animal
variances from the sire and animal models,
respectively. The sire effects of LIN are expressed on
the scale of the survival scores instead of on the
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Table 3 Estimates of sire and animal variances obtained from
analysis of the single-trait data set DATAS with 100 daughters per
sire (the simulated sire variance was 0·05, which results in an animal
variance of 0·2†)

Analysis‡ Sire model Animal model

LIN 2·9 ✕ 10-5 3·6 ✕ 10-5

BIN 0·048 0·274
PHM 0·045 0·221

† Results averaged over 50 replicated DATAS data sets;
standard errors varied between 1·2 ✕ 10-6 and 1·8 ✕ 10-6 for
LIN, and between 0·0014 and 0·0073 for BIN and PHM.
‡ LIN = linear model; BIN = binary model; PHM =
proportional hazards model.

underlying linear scale, which results in much
smaller sire variances. The Appendix shows that the
average culling probability of the daughters of a sire
(conditional on survival up to the previous month)
may be approximated by:

pi ≈ mi (1 + si), 

with mi = the average ‘baseline’ culling probability
conditional on survival up to the previous month,
where averaging is over the months that the
daughters of sire i actually lived, and the term
‘baseline’ denotes that these conditional culling
probabilities are due to the baseline hazard, i.e. they
are calculated under the assumption that xij = 0. Note
that the values of mi differ between sires, because the
months that a daughter actually lived (and thus was
a candidate for culling) depends on the longevity of
the daughters of the sire, and thus on si. The sire
variances of the LIN model equal the variances of the
conditional culling probabilities of the sires, pi:

Var(pi) ≈ [E(mi)]2 σs
2 + 2Cov(mi;si)E(mi) + Var(mi) (2)

which reduces to m2σs
2 when all survival scores, mi,

are equal to m, i.e. when the baseline hazard is a
straight line (ρ = 1); and the approximation is from a
first order Taylor series expansion of mi and (1 + si)
around their means. The sire variances of the LIN
model were indeed accurately predicted by m2σs

2 in
simulated data sets with ρ = 1 (result not shown).
Note that the term Cov(mi;si) is usually negative:
sires with low si (longer living daughters) obtain a
higher mi, because their daughters reach ages where
the baseline hazard (the average culling) is large and
vice versa. When mi was calculated by averaging the
conditional culling probabilities, pij,t, of equation (1),
with xij set to 0, we obtained E(mi) = 0·0312;
Var(mi) = 7·39 ✕ 10–6; and Cov(mi;si) = –0·000302.
Substitution of these values in equation (2) results in

Var(pi) = 3·71 ✕ 10–5, which is somewhat larger than
the LIN sire variance of 2·9 ✕ 10–5 in Table 3. A
possible explanation for this difference is that the
average of within-sire means yields an overestimate
of the sire variance. 

For normally distributed traits, we would expect the
variance of animal effects to be four times larger than
the variance of sire effects. There are two reasons
why, for these analyses, this is not the case: (i) the sire
model treats all survival scores of sire i as
independent records, while the animal model
accounts for the fact that survival scores of daughter
j of sire i are correlated, and that the better survivors
among the daughters of sire i have more survival
scores; (ii) the animal model averages the culling
probabilities first within daughters, which gives
equal weight to the average culling probabilities of
short and long lifetimes (in the sire model, longer
lifetimes result in more survival scores and thus
more weight). When the baseline hazards were first
averaged per daughter before being averaged per
sire, the terms of equation (2) were E(mi) = 0·023,
Var(mi) = 5·04 ✕ 10–6, and Cov(mi;si) = –0·000239,
which gives a sire variance of 2·1 ✕ 10–5. The animal
variance is 4 ✕ 2·1 ✕ 10–5 = 8·4 ✕ 10–5, which should
be compared with the estimate of 3·6 ✕ 10–5 in Table
3. Apparently the estimates of the daughter effects
have also affected the estimate of the animal variance
in the LIN animal model analysis, and biased this
estimate downwards. 

Estimated sire variances from the BIN and PHM sire
models were close to the simulated sire variance of
0·05 (Table 3), because here both the simulated and
modelled sire effects were expressed on the same
scale, i.e. the underlying scale. The animal model
estimates were also reasonably close to their
expectation of 0·2 (= 4 ✕ 0·05), although the BIN-AM
estimate, in particular, was somewhat too large,
possibly due to difficulties with variance component
estimation of binary animal models (Engel and Buist,
1998). 

Table 4 shows the regression of true on estimated sire
effects, i.e. Cov(si ; ŝi)/Var(ŝ i),  where ŝ i  = estimate of
the sire effect. In normal linear model analyses this
regression equals 1. In the LIN model, the estimates
of the sire effects, si, are however expressed on the
scale of the culling probabilities while the true sire
effects, si, are expressed on the underlying scale, such
that their regression deviates from 1. For the BIN and
PHM models, the regressions of true on estimated
sire effects are close to their expectation of 1, because
here both the true and estimated sire effects are
expressed on the same (underlying) scale. 
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Table 5 The correlation between true and estimated breeding values
of the sires for functional survival in the two-trait data set DATAM
with 100 daughters per sire†

Analysis‡ r = 0§ r = –0·3

LIN-AM1 using
phenotypic regression 0·720 0·708

LIN-AM2 using
genetic regression 0·720 0·707

† Results averaged over 10 replicated DATAM data sets.
‡ LIN-AM1 = single-trait linear animal model with regression
on milk production; LIN-AM2 = bi-variate linear animal
model for milk production and survival and genetic regression
is used to predict functional survival.
§ r = the correlation between survival and milk yield for the
between- and within-sire effects.

Table 5 shows the accuracies of selection for
functional survival of the 100 sires when breeding
values were predicted by a single-trait model using
phenotypic regression (LIN-AM1) or a bi-variate
model using genetic regression (LIN-AM2). Note
that in the data set with zero genetic and
environmental correlations between milk production,
yMij, and the linear survival trait, xij, a relationship
between actual survival, yij, and milk production is
introduced by the culling for production. The
accuracies of selection are very similar for
phenotypic and genetic regression. 

Discussion
Single and multitrait, sire and animal model
breeding value estimation of survival were
compared. Only marginal differences in accuracies
were observed between the linear and non-linear
animal and sire models, which is expected because
the LIN model is an approximation of BIN, which is
an approximation of PHM (Veerkamp et al., 2001).
The high accuracies of LIN models are encouraging,
because the LIN models are much more easily
extended to large scale multitrait animal model
evaluations, which are needed to predict total profit
EBVs of animals, than are non-linear models.
Meuwissen et al. (2000) used unrealistically high sire
and daughter variances, which exaggerated the non-
linearities of the model, and found that the linear
model was about 4% less accurate than PHM and
BIN. The latter two models were equally accurate.
However, Table 2 shows that these differences are
much smaller when more realistic (smaller) variances
are used. Note, though, that the simulated data sets
were perfectly designed (equal numbers of progeny
per sire, no dam relationships, no overlapping
generations, limited environmental effects), which
favours accurate predictions for all models and limits
any differences in accuracy between models. Further
research is needed to compare the models under

more challenging circumstances, and also to compare
the models for possible estimation biases, and their
ability to estimate genetic trends (e.g. due to selection
for milk) and to deal with various environmental
factors. 

Because the sum of genetic and permanent
environmental effects of animals, si + dij, were
simulated, the accuracy of daughter EBVs could not
be obtained by calculating the correlation between
daughter genetic effects and their EBVs. However,
the correlation between si + dij and EBVij was 0·113
and 0·159 for the linear and binary model,
respectively. Note that this correlation would be
0·8 = (4 ✕ 0·05)/(0·05 + 0·2), when the EBVs had an
accuracy of 1. The figures of 0·113 and 0·159 suggest
rather low accuracies of selection for females, as
expected by Ducrocq (1999), although they were also
low because ±50% of the daughters had only a
censored record. In contrast to the accuracies of
selection of sires, the accuracies of selection of
females are substantially increased when taking
proper account of the distribution of the survival
data, which may be partly due to LIN-EBVs and
si + dij being expressed on different scales, i.e. the
non-linear scale transformation reduces the
correlation. Although the accuracies of survival EBVs
of females are rather low, their prediction is still
needed in order that a total merit index for each cow
can be calculated. 

The animal models were as accurate as the sire
models in predicting sire EBVs (Table 2). This result
is expected when traits are normally distributed and
bulls have unrelated mates as assumed here.
However, in the case of survival data the sire model
is inconsistent in assuming a normally distributed
sire effect but a Weibull distributed residual, while
part of this residual will be due to genetic effects of
dams and Mendelian sampling that are also

Table 4 Regression of true on estimated sire effects in the single-
trait data set DATAS with 100 daughters per sire†

Analysis‡ Sire model Animal model§

LIN 44·9 92·8
BIN 1·02 0·90
PHM 1·06 0·97

† Results averaged over 50 replicated DATAS data sets;
standard errors varied between 1·0 and 4·2 for LIN, and
between 0·012 and 0·016 for BIN and PHM.
‡ LIN = linear model; BIN = binary model; PHM =
proportional hazard model.
§ Animal model breeding value estimates were divided by 2
in order to obtain estimates of sire effects.
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normally distributed (given normally distributed sire
effects) (Korsgaard et al., 2000). Such extra variation,
e.g. due to dam or Mendelian sampling effects, is
referred to as ‘overdispersion’ (Louis, 1991;
Tempelman and Gianola, 1996). The latter model was
also used for the simulation of the data, except that
here a normally distributed environmental effect was
also assumed. Meuwissen et al. (2000) did find
improved accuracies of about 3% when using animal
models compared with sire models, but they used
unrealistically high variance components in their
simulations. In the case of more realistic parameter
estimates, these additional normally distributed
within family effects are small relative to the error
due to Weibull sampling (their variances are 0·2 and
π2/6 = 1·645, respectively). Treating the combination
of these residual effects as one residual due to
Weibull sampling, as in the sire model, has
apparently only a marginal effect on the accuracy of
predicting EBV (Table 2). Although the animal model
analyses more closely resembled the simulated data,
i.e. they did contain normally distributed within
family effects, the accuracies of EBV were very
similar to those of the sire models. 

Although the accuracy of LIN-EBVs was competitive
with those of BIN and PHM models, they are
expressed on different scales, i.e. on the scale of
culling probabilities versus the underlying scale. The
transformation between the scales is complicated by
the fact that the additive effect of a sire on culling
probabilities depends on the baseline hazard, which
depends on the part of hazard function that the
daughters experience on average, which in turn
depends on the longevity of the daughters and thus
on the sire effect. In the case of the LIN animal
model, the estimate of the animal variance was
smaller than expected. Further research is needed
into why this happens, and whether the estimate of
the animal variance increases when maternal
relationships between the daughters are included in
the analysis. 

The environmental effect of daughters on survival
scores was not fitted in the single trait models,
because it cannot be separated from the error due to
the Weibull sampling. In the analysis of survival
scores, the variance due to a permanent
environmental effect on these scores involves
estimation of the covariance between successive
scores. However, this is not possible because the
second score is only known when the first score is 0
(the animal survived), i.e. in pairs of first and second
score observations, the first score is always 0 such
that this covariance cannot be estimated (Visscher et
al., 1999). Following Visscher et al. we therefore
assumed that the covariance between successive

survival scores was zero, i.e. a permanent
environmental effect was not fitted in the analyses. If
this permanent environmental effect was fitted, the
resulting accuracies of selection were very variable
(result not shown). 

In the multitrait analysis LIN-AM2, a permanent
environmental effect of survival scores was fitted,
because it could be estimated through the
environmental correlation with milk production by
setting this correlation to 1·0. Thus, the residual of
the survival scores is split into two effects: (1) the
permanent environmental effect, which is predicted
from the environmental effect of milk yield; and (2)
an error which is orthogonal to this permanent
environmental effect. This is similar to writing
B = b ✕ A + e, where A and B are two traits, b is a
regression coefficient, and (b ✕ A) has a correlation of
1 with A. Note that splitting B into a term with a
correlation of 1 with A (b ✕ A) and an orthogonal
residual is possible, irrespective of the correlation
between A and B, and enables the common
environmental variance to be estimated. 

Phenotypic and genetic regression on milk
production gave almost identical selection accuracies
(Table 5). This is in agreement with selection index
results for two linear traits (Kennedy et al., 1993). The
optimal linear selection index weights for
improvement of genetic functional survival, i.e. ai-
bgaMi, are 1 and –bp for survival (yi) and milk
production (yMi), respectively, where bp is the
phenotypic regression coefficient of survival on milk.
Note that the breeding goal is orthogonal to milk
yield, i.e. Cov(yMi; ai-bgaMi) = Cov(aMi; ai-
bgaMi) = Cov(aMi;ai) – bgVar(aMi) = 0, i.e. the breeding
goal is predicted by the component of survival that is
orthogonal to yMi, i.e. yi-bpyMi. This explains the result
that genetic functional survival is equally accurately
predicted from a single trait analysis of functional
herd-life with phenotypic regression on production
as from a bi-variate prediction of survival and
production, followed by a genetic regression of the
bi-variate EBV. Although, this result holds always for
linear traits as shown by Kennedy et al. (1993), a
sensitivity analysis is needed to determine whether
the results of Table 5 also hold with different
parameters, e.g. different correlations between the
genetic and between the environmental effects. 

We attempted multitrait analyses of production and
survival, where the model for survival contained a
phenotypic regression on production, but this gave
inconsistent results. The inconsistencies occurred
because one of the y-variates, i.e. yMi is
simultaneously used as an explanatory variable, i.e.
as a x-variate. These inconsistent results will
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disappear if selection and regression was for another
trait, e.g. predicted profitability of the cow. A
phenotypic regression on within-herd deviations of
milk yield will not remove these problems because
the model for survival also contains a herd effect,
which would fit any across-herd differences in bp yMi.
Since herd effects for milk yield were zero in the
simulations, the actual milk yields also represented
within-herd deviations. 

Despite the equivalence of the bi-variate model for
survival and production, and the single-trait survival
model with a phenotypic regression on survival,
multitrait models still have an advantage in that they
can use the information from early predictors of
survival, such as functional type traits. Hopefully the
latter will substantially improve the accuracy of the
survival breeding values of young animals that are
eligible for selection. 
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Appendix
The culling probability in time period t–1 to t conditional on
survival up to t–1
The culling probability during a finite time period t–1 to t
given that the animal survived up to time t–1, pij,t, equals
the fraction of the animals that are culled in this time period
divided by the fraction of the animals that live up to this
time period. The latter is given by the survivor function:

S(t – 1, xij) = exp[–(λ(t – 1))ρ exij],

with λ and σ being the scale and shape parameters of the
Weibull model, respectively, and xij = the underlying linear
effect of the jth survival record of the ith sire. Because the
fraction of the animals that is culled in the period t–1 to t is:
S(t–1,xij)- S(t,xij), it follows that:

S(t – 1; xij) – S(t; xij)
pij,t = —————————

S(t – 1; xij)

S(t; xij)
= 1 – ——————

S(t – 1; xij)

exp[–(λt)ρ exij]
= 1 – —————————

exp[–(λ(t – 1))ρ exij]

=1 – exp[–λρ(tρ – (t – 1)ρ)exij],

which equals equation (1) in the main text.

If the time period t-1 to t is sufficiently small, the
conditional culling probability simplifies to:

pij,t ≈ 1 – [1 – λρ[tρ – (t – 1)ρ]exij]

≈ λρ[tρ – (t – 1)ρ]exij.

Ducrocq, V. and Sölkner, J. 1998b. The Survival Kit — a 
Fortran  package  for  the  analysis of survival data. 
Proceedings of the sixth world congress on genetics applied to 
livestock production, Armidale, vol. 27, pp. 447- 448. 
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This equation may be used to approximate the average
additive effect of a sire. Let us assume that the number of
daughters is sufficiently large such that the average effect of
daughters and herds is approximately zero, i.e. the effect on
the linear scale simplifies from 
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periods that the daughters of sire 
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small, the additive effect of sire 

 

i

 

 on the conditional culling
probabilities may be approximated by E(

 

m

 

i

 

)

 

s

 

i

 

.


	Single and multitrait estimates of breeding values for survival using sire and animal models
	T. H. E. Meuwissen1, R. F. Veerkamp1, B. Engel1 and S. Brotherstone2
	1Institute for Animal Science and Health, ID-Lelystad, Box 65, 8200 AB Lelystad, The Netherlands ...

	Abstract
	Survival data were simulated under the Weibull model in a half-sib family design, and about 50% o...
	Keywords: animal models, breeding value, survival.
	Introduction
	Methods
	The single-trait data sets: DATAS
	The multitrait data set: DATAM
	Analysis of DATAS
	Analysis of DATAM with selection on milk yield

	Results
	Discussion
	References
	(Received 10 September 2001—Accepted 21 March 2002)
	Appendix






