CORE

Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Huub Kooijman, ${ }^{\text {a* }}$ Anthony L. Spek, ${ }^{\text {a }}$ Arkadij Sobolev, ${ }^{\text {b }} \boldsymbol{+}$
Hugo Jongejan ${ }^{c}$ and Maurice C. R. Franssen ${ }^{\text {c }}$
${ }^{\text {a }}$ Bijvoet Center for Biomolecular Research, Department of Crystal and Structural Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, ${ }^{\mathbf{b}}$ Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia, and ${ }^{\text {C Laboratory of Organic }}$ Chemistry, Wageningen University,
Dreijenplein 8, 6703 HB Wageningen, The Netherlands
+ Visiting scientist at Wageningen University.

Correspondence e-mail:
h.kooijman@chem.uu.nl

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.046$
$w R$ factor $=0.095$
Data-to-parameter ratio $=8.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Methyl 5-[(S)-2-methylbutyl] 4-[2-(difluoro-methoxy)phenyl]-2,6-dimethyl-1,4-dihydro-pyridine-3,5-dicarboxylate

The crystal structure of the title compound, $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{NO}_{5}$, contains two diastereomers, related by a pseudo-glide plane. Owing to the addition of the difluoromethoxyphenyl moiety, the dihydropyridine ring is somewhat deformed from planarity. The packing involves a two-dimensional network created by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

In order to investigate the stereochemical course of the Candida rugosa lipase mediated kinetic resolution of 3-acyl-oxymethyl-4-aryl-1,4-dihydropyridine-3,5-dicarboxylates, a derivative containing a second chiral centre of known configuration was prepared. This would allow the determination of the relative configuration of the chiral centre at C^{4} (labelled C3 and C25 in Fig. 1). The enzymatically prepared carboxylic acid (1) was esterified to (S)-2-methyl-1-butanol, giving the title compound, (2), whose crystal structure has been determined. However, since the starting material was not entirely stereochemically pure, there was a risk that the two diastereomers would preferentially crystallize together. This indeed proved to be the case, as is shown in Fig. 1. Later, compound (2) was prepared in stereochemically pure form. Unfortunately, we could not obtain crystals suitable for a structure determination from this material.

Received 27 March 2002 Accepted 11 April 2002 Online 19 April 2002

The asymmetric unit contains two molecules, which are diastereomers with configuration (R, S) and (S, S) at (C3,C9) and (C25,C31), respectively. These configurations have been assigned with reference to the known (S)-configuration of atoms C9 and C31. The diastereomers have adopted conformations which are related by an inversion operation, with the exception of the 2-methylbutyl moiety. This is illustrated in Fig. 2, which displays a fit of molecule (1) and the inverted molecule (2). In the crystal, the molecules are related by a pseudo- c-glide plane, with the exception of the 2-methylbutyl moiety. The unit cell displays a pseudo-monoclinic geometry, with the pseudo-glide plane parallel to the a and c axes. The best-fit between the molecules is obtained by a rotation of -176° over the rotary-inversion axis $[-0.018,-1.000,0.042]$, combined with a shift of $7.226 \AA$ (i.e. $0.48 c$) in the direction

(a)

(b)

Figure 1
View of the title compound, with the atom-numbering scheme. H atoms have been omitted for clarity. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. (a) molecule (1), the (R, S)stereoisomer; (b) molecule (2), the ($(, S, S$-stereoisomer.

Figure 2
Fit of molecule (1) [configuration (R, S), green] on the inverted molecule (2) [configuration (R, R), red; NB this configuration is not present in the crystal]. H atoms have been omitted for clarity.

Figure 3
$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonded chains (parallel to c) of alternating diasteromers, linked into a two-dimensional network by soft $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (parallel to a).
[0.002, $-0.096,-1.000]$. The unit weight r.m.s. fit is $0.31 \AA$, with the largest deviations for atoms C9, C10 and C12 of molecule (1).

Addition of the difluoromethoxyphenyl moiety to the dihydropyridine ring results in a slight deformation from planarity towards a sofa conformation in both diastereomers. The relevant asymmetry parameters (Duax \& Norton, 1975) are $\Delta C_{s}[\mathrm{~N} 1]=2.2(4)^{\circ}$ for molecule (1) and $\Delta C_{s}[\mathrm{~N} 2]=1.8(4)^{\circ}$ for molecule (2); all other asymmetry parameters are at least 10°. The total puckering amplitude (Cremer \& Pople, 1975) of the dihydropyridine ring is 0.177 (3) \AA in molecule (1) and 0.173 (3) \AA in molecule (2). The phenyl rings show total puckering amplitudes of 0.029 (3) and 0.019 (3) for molecules (1) and (2), respectively. For these rings, all asymmetry parameters are less then 5°. Hydrogenation of the pyridine N atom apparently has no influence on its hybridization $\left(s p^{2}\right)$ or the planarity of this part of the six-membered ring. The bond distances in the dihydropyridine rings indicate delocalization of the formal double bonds of the $\mathrm{C}=\mathrm{C}-\mathrm{N}-\mathrm{C}=\mathrm{C}$ fragment (see Table 1).

Crystal packing involves the formation of chains, parallel to the c axis, consisting of molecules connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (see Fig. 3 and Table 2). Each chain consists of an alternation of both diastereomers. The unitary graph set is $D D$, the binary graph set is $C_{2}^{2}(12)$ (Bernstein et al., 1995). Two neighbouring chains are connected by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds linking the $\mathrm{F}_{2} \mathrm{OCH}$ moiety to the $\mathrm{O}=\mathrm{C}$ acceptor of the carboxylate moiety. These hydrogen bonds form links between equal stereoisomers. Both types of hydrogen bond together create a two-dimensional network of hydrogen-bonded molecules, with main axes a and c.

Experimental

The title compound was prepared from $284 \mathrm{mg}(0.808 \mathrm{mmol})$ of 4 -[2-(difluoromethoxy)phenyl]-5-(methoxycarbonyl)-2,6-dimethyl-1,4-di-hydro-3-pyridinecarboxylic acid, (1), by reaction of its acid chloride with 0.262 ml (2.41 mmol) of (S)-2-methyl-1-butanol, using the
method of Sobolev et al. (2002). The crude product was flash chromatographed on silica gel with ethyl acetate/petroleum ether (b.p. 313-333 K, 1:3), purified again on silica gel with petroleum ether (b.p. 313-333 K)/chloroform/isopropyl alcohol (20:5:2) and crystallized from ethanol to give $276 \mathrm{mg}(81 \%)$ as pale-yellow crystals: m.p. 406$407 \mathrm{~K} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 0.83\left(t, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $0.85\left(d, 3 H, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.95-1.16\left(m, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.19-1.40(m$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.60-1.76(m, 1 \mathrm{H}, \mathrm{CH}), 2.28\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.30\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.59\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.77\left(d d, 1 \mathrm{H}, J=10.8,6.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.89(d d, 1 \mathrm{H}, J$ $\left.=10.8,6.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.25(s, 1 \mathrm{H}, \mathrm{CH}), 5.60($ br $s, 1 \mathrm{H}, \mathrm{NH}), 6.46(d d$, $\left.1 \mathrm{H}, J_{\mathrm{H}-\mathrm{F}}=75.6,75.8 \mathrm{~Hz}, \mathrm{OCHF}_{2}\right), 6.95-7.13(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.35(\mathrm{dd}$, $1 \mathrm{H}, J=2.2,7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$. MS $m / z: 423$ ($M^{+}, 9$), 352 (10), 336 (5), 308 (9), 284 (6), 281 (15), 280 (100), 211 (4), 210 (36); HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{O}_{5}$: 423.1857, found 423.1853. Crystals suitable for X-ray analysis were obtained by recrystallization from hexane containing a small amount of methanol.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{NO}_{5}$	$Z=2$
$M_{r}=423.45$	$D_{x}=1.330 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P 1$	MoKa radiation
$a=8.2340(16) \AA$	Cell parameters from 367 reflections
$b=8.7827(18) \AA$	$\theta=1.6-25.0$
$c=14.9145(18) \AA$	$\mu=0.11 \mathrm{~mm}^{-1}$
$\alpha=89.9299(11)^{\circ}$	$T=150 \mathrm{~K}$
$\beta=78.697(11)^{\circ}$	Needle, colourless
$\gamma=89.906(7)^{\circ}$	$0.3 \times 0.1 \times 0.1 \mathrm{~mm}$
$V=1057.6(3) \AA^{\circ}$	
Data collection	
Nonius KappaCCD area-detector	3257 reflections with $I>2 \sigma(I)$
diffractometer	$R_{\text {int }}=0.084$
φ scans, and ω scans with κ offsets	$\theta_{\text {max }}=27.5^{\circ}$
Absorption correction: none	$h=-10 \rightarrow 10$
21160 measured reflections	$k=-11 \rightarrow 11$
4617 independent reflections	$l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.095$
$S=1.02$
4617 reflections
549 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0468 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.17 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

N1-C1	$1.381(4)$	$\mathrm{N} 2-\mathrm{C} 23$	$1.372(4)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.374(5)$	$\mathrm{N} 2-\mathrm{C} 27$	$1.371(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.354(4)$	$\mathrm{C} 23-\mathrm{C} 24$	$1.362(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.532(5)$	$\mathrm{C} 24-\mathrm{C} 25$	$1.522(5)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.521(5)$	$\mathrm{C} 25-\mathrm{C} 26$	$1.520(5)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.360(4)$	$\mathrm{C} 26-\mathrm{C} 27$	$1.356(4)$
C7-O2-C8-C9	$-159.7(3)$	$\mathrm{C} 29-\mathrm{O} 7-\mathrm{C} 30-\mathrm{C} 31$	$-170.7(3)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-57.5(4)$	$\mathrm{O} 7-\mathrm{C} 30-\mathrm{C} 31-\mathrm{C} 32$	$-60.9(3)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$173.1(4)$	$\mathrm{C} 30-\mathrm{C} 31-\mathrm{C} 32-\mathrm{C} 33$	$174.9(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N $1-\mathrm{H} 1 \cdots \mathrm{O}^{\text {i }}{ }^{\text {a }}$	0.96 (4)	2.13 (4)	3.080 (4)	171 (4)
N2-H2 . O 1	0.88 (4)	2.19 (4)	3.060 (3)	171 (4)
C19-H19...O4 ${ }^{\text {ii }}$	1.00	2.20	3.155 (5)	159
$\mathrm{C} 41-\mathrm{H} 41 \cdots \mathrm{O} 9^{\text {ii }}$	1.00	2.24	3.160 (4)	153

Symmetry codes: (i) $x, y, 1+z$; (ii) $x-1, y, z$.
Owing to the absence of significant anomalous dispersion, the absolute configurations could not be determined reliably. The configuration of C9 and thereby also that of C31 was set equal to S, consistent with the starting materials used. The measured reflections reduced to 9040 unique reflections with an $R_{\text {int }}$ of 0.074 . After merging of the Friedel pairs, the 4617 reflections reported above remained. H atoms of the $\mathrm{N}-\mathrm{H}$ moieties were located in a difference Fourier map and their coordinates and isotropic displacement parameters were refined. All other H atoms were included at calculated positions, riding on their carrier atoms. Isotropic displacement parameters of H atoms bonded to C atoms were coupled to the equivalent isotropic displacement parameter of their carrier atoms by a fixed factor of 1.5 (methyl H atoms) or 1.2 (other H atoms).

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: PLATON.

This work was supported in part (ALS) by the Council for the Chemical Sciences of the Netherlands Organization for Scientific Research (CW-NWO).

References

Bernstein, J., Davis, R. E., Shimoni, L., \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Duax, W. L. \& Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sobolev, A., Franssen, M. C. R., Vigante, B., Cekavicus, B., Zhalubovskis, R., Kooijman, H., Spek, A. L., Duburs, G. \& de Groot, A. (2002). J. Org. Chem. 67, 401-410.
Spek, A. L. (2002). PLATON. Utrecht University, The Netherlands. URL: http://www.Cryst.Chem.uu.nl/platon/.

