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escape transitions of a coil-to-flower type
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Abstract. – We analyze exact analytical partition functions for Gaussian chains near surfaces
and interfaces. These partition functions contain the possibility of conformational first-order
phase transitions. Such transitions occur when chains are tethered in space and exposed to a
local perturbing field. Then the chain can partially escape from the field: the chain transforms
from the confined coil to an inhomogeneous flower conformation. The flower consists of a
strongly stretched stem and a very weakly deformed crown. A generic phase diagram including
one binodal and two spinodal lines is found for three related systems. The height of the barrier
between stable and metastable states as well as the dynamics of barrier crossings is discussed.

Introduction. – Phase transitions have always drawn much interest in (materials) science,
and in polymer physics in particular. One of the most studied examples is the adsorption
of a macromolecule onto solid surfaces [1–3]. Recently, escape transitions that occur upon
squeezing a polymer chain by a cylinder (piston) received much attention [4–9]. Phase transi-
tions in macromolecules near a liquid-liquid interface were also studied intensively in the past
decade [10–12]. These transitions are of interest from a fundamental point of view because of
the appearence of polymer flowers as an interesing new state of polymer matter. At the same
time, the interest is motivated by a large number of practical applications. These include
polymer chromatography, stabilization of colloids in suspensions, adhesion and lubrication, to
mention just a few. Atomic force microscopy (AFM) offers unique possibilities to study the
coil-to-flower transitions.

Much effort, typically from a theoretical point of view, has been put into studying con-
formational phase transitions in the various systems and geometries as mentioned above. In
this letter we would like to show the connection between these problems and treat all of them
on one and the same fundamental physical level. We introduce exactly solvable models per-
taining to the escape transitions at liquid-liquid and liquid-solid interfaces, and demonstrate
their equivalence.

Exactly solvable models provide an invaluable tool for a deeper understanding of the
intricate physics of phase transitions. Their number is very limited in spite of enormous
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Fig. 1 – Schematic presentation of the three models used in this study. All three cases have a chain
grafted at a (variable) position z = z0 as indicated by the black dot. The chains on the left (labels
1, 2 and 3) are in the (perturbed) Gaussian conformation. The chains on the right (labels 1′, 2′ and
3′) are in the flower (step + crown) conformation. Other details are in the text.

efforts in this field. In polymer physics, one could mention the Zwanzig-Lauritzen model
of two-dimensional β-structure formation [13] and some closely related models of directed
polymer adsorption [14, 15]. Another inherently related set consists of the DNA melting
model [16, 17]. More relevant for the present paper is the model of adsorption of an ideal
chain on surfaces of different geometry [18]. All of these models refer to phase transitions at
a level of a single macromolecule where the number of monomeric units N of the chains is
assumed to be very large. Earlier, we have shown that a model of adsorbing polymer chain
with an external end-force applied to one of its ends admits an exact analytical analysis. This
system has continuous and discontinuous phase transitions [19–21].

It is worth noting that even a closed expression for the partition function does not provide
any clue to whether metastable states exist at all, and if so, what their properties are. To
answer these questions, one has to choose an appropriate order parameter, s, and calculate
the Landau free energy, Φ(s), so that the partition function can be represented as an integral
over the states with different values of the order parameter: Q =

∫
ds exp [−βNΦ(s)], β being

the inverse temperature. If the Landau free energy as a function of the order parameter has
two minima, the lower minimum is associated with the thermodynamically stable state, while
the other minimum corresponds to the metastable state. At the transition point, both minima
are of equal depth. The lifetime of the metastable state is determined by the height of the
barrier separating the local minimum from the global one.

The functional form of the Landau free energy has always been postulated on very general
grounds as an expansion in powers of the order parameter [22]. The only example of an exact
analytical calculation that we know of is the model of an adsorbing polymer chain to which
an external end-force is applied to one of its ends [20]. This system exhibits a first-order
phase transition. Nevertheless, to our surprise, metastable states are in this particular case
absent. In this letter, we draw attention to three related models for which the exact solutions
in terms of the Landau function are identified as well. For all present cases a first-order
phase transitions will be shown. Associated with these first-order transitions there are well-
defined metastable states. In fact, we demonstrate that all three models are mathematically
equivalent. The models are presented in fig. 1 and are described as follows.

An isolated Gaussian polymer chain is fixed by one end at a distance z0 from a liquid-liquid
interface modeled as an external step potential with magnitude u. If the chain is fixed at a large
distance from the interface, it exists in a coil conformation (cf. left side of fig. 1). However,
if the distance z0 is moderate, and the penalty implemented by the potential u is sufficiently
large, the chain partially escapes into the other half space forming an inhomogeneous flower
conformation with a stretched stem and a coiled crown.

An isolated Gaussian chain is compressed by a planar piston (cylinder) and tethered by
one end to the surface a distance z0 from the edge of the confinement. The separation between
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the piston and the underlying planar surface is H. Here again two distinct states exist: a
(compressed) coil (when H is sufficiently large) and a flower (at small H). The analogy
between this model and the previous one was pointed out by Sevick and Williams [8].

An isolated Gaussian polymer chain is fixed by one end at a distance z0 from an adsorb-
ing solid surface characterized by the adsorption parameter c. Once again, the coil state is
transformed into a flower with the crown now being adsorbed (into a pancake) onto the solid
surface. Eisenriegler and coworkers already pointed to the existence of a first-order phase
transition in this system but did not analyze this transition [2].

We obtain exact solutions for the characteristics of these models for the simple case of ideal
Gaussian chains. In fact, situations for which a polymer chain undergoes an abrupt transition
from a homogeneous conformation (be it a coil, a compact globule, or an adsorbed state) into
an inhomogeneous flower state are more abundant. Not all of them are strictly equivalent to
the three cases mentioned above. In particular, excluded-volume effects (especially important
in compressed or globular states) shift the position of the transition point and some quanti-
tative characteristics of each of the two states. However, all the main features of the escape
transition can be investigated in the Gaussian approximation for related systems as well.

Landau free energy. – In order to choose the appropriate order parameter it is instructive
to visualize a continuous transformation from an initial coil (cf. left side of fig. 1) to the flower
state (cf. right side of fig. 1). As a response to the presence of the external field (model 1),
the confinement H (model 2) or the presence of an adsorbing surface (model 3), the ideal coil
conformation is perturbed. Before the coil can escape from the unfavorable state, it must be
stretched to reach the more favorable region. Then a seed crown is formed. This crown grows
subsequently at the expense of the stem until the equilibrium flower state is reached. In this
process, it is the chain stretching parameter that grows continuously. For the deformed coil,
the parameter refers to the chain as a whole, while for the flower it refers only to the stem.
Hence, the order parameter, s, is defined as follows:

s =

{
(z0 − zN )/Na , for the coil state ,

z0/na , for the flower state ,
(1)

where a is the segment length, zN is the coordinate of the free end, and n is the number of
segments comprising the stem, i.e., the number of segments between the grafting point and
the first contact with the z = 0 boundary. This boundary is indicated in fig. 1; it is the
position of the step in the segment potential (model 1), the edge of the confining cylinder
(model 2), the position of the adsorbing surface (model 3).

With this choice, the Landau free energy of the deformed coil is obtained from the Green’s
function Gcoil =

√
3/(2πN) exp

[−3(z0 − zN )2/(2Na2)
]

of a stretched Gaussian chain and
expressed as a function of s:

Φcoil(s) =
3
2
s2 − 1

2N
ln

(
3

2πN

)
+ ∆Φ , (2)

where ∆Φ = u, ∆Φ = (πa/H)2/8 and ∆Φ = 0, for models 1, 2 and 3, respectively. The
deformation-dependent contribution is the same for all three models. The parameter ∆Φ
reflects the effect of the external perturbation of the coil. This is given by the magnitude of
the external potential (model 1), or by the compression ratio H/a as known for a Gaussian
chain in a slit (model 2) or is identical to zero (model 3). The Landau function for the flower
conformation is written as

Φfl = − 1
N

ln (GstemQ) , (3)
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where Q is the partition function of the crown, and

Gstem (z0, 0) =
3√
6π

z0

n3/2a
exp

[
− 3z2

0

2na2
+ n∆Φ

]
(4)

is the Green’s function of a subchain of n segments starting at z0, ending at the z = 0 boundary,
and making no other contacts with the outer region. The partition function of the crown
needed for model 1 was calculated in [10] to be Q1 = exp [−u(N − n)/2] I0 (u(N − n)/2),
where I0 is the modified Bessel function. In model 2, the crown is just an ideal coil anchored
at an impenetrable surface, its partition function being Q2 = (6π (N − n))−1/2. Finally, in
model 3, the crown is a subchain anchored at an adsorbing surface, so its partition function
is given by Q3 = exp

[
c2a2(N − n)/6

]
erfc

(
−ca

√
(N − n)/6

)
.

Exact expressions for the Landau free energy as a function of the order parameter (and
hence, the exact complete partition functions in integral form) are easily available. However,
it is much more instructive to use asymptotic expressions of the partition functions for large
values of N and discard the terms of the order 1

N ln N . Then, the Landau function simplifies to

Φ1(s, u) =




3
2s2 + u , s ≤ z0

Na ,

3
2

z0
Nas + u z0

Nas , s ≥ z0
Na ,

(5)

Φ2(s,H) =




3
2s2 + π2a2

8H2 , s ≤ z0
Na ,

3
2

z0
Nas + π2a2

8H2
z0

Nas , s ≥ z0
Na ,

(6)

Φ3(s, c) =




3
2s2 , s ≤ z0

Na ,

3
2

z0
Nas − c2a2

6 + c2a2

6
z0

Nas , s ≥ z0
Na ,

(7)

for models 1, 2, and 3, respectively. The branch of the coil (cf. eq. (2)) and that of the flower
(cf. eq (3)) meet at the point s0 = z0/Na.

The equivalence of the first two models is immediately obvious upon substituting u ↔
(π2a2)/(8H2). The equivalence of models 1 and 3 is also clear upon substituting u ↔ (c2a2)/6
and downshifting both branches of the Landau free energy of model 1 by the constant u.

From eqs. (5)-(7) it follows that the coil branch of the Landau function does not change
by itself, but the position of the matching point of the two branches is a function of z0/Na.

Phase diagram. – Taking model 1 as an example, it is clear that within a certain range
of the two governing parameters z0/Na and u there are two minima of the Landau function.
The minimum at s = 0 corresponds to the coil state. The second minimum describing the
flower state is found at sfl =

√
2u/3. The binodal condition occurs when the two minima are

equally deep. This leads to
z∗0
Na

=
√

u∗/6 . (8)

In the thermodynamic limit, N → ∞, this defines the line of the first-order phase transi-
tions. With an increase in the reduced grafting distance z0/Na, or with the decrease in the
potential magnitude u, the flower state becomes metastable. Once the position of the min-
imum of the flower state sfl coincides with the barrier position z0/Na, the metastable state
disappears. This gives the equation of one of the spinodal line branches:

z∗∗0

Na
=

√
2u∗∗

3
= 2

z∗0
Na

. (9)
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To visualize metastable flower states more clearly it is instructive to find the number of
segments belonging to the stem in the region between the binodal and the spinodal lines.
From eqs. (1) and sfl =

√
2u/3 it follows that n = z0/(asfl) = (z0/a)

√
3/(2u). Along the

binodal line this gives n∗ = N/2. Along the spinodal line it is found that n∗∗ = N . This
means that at the spinodal point the crown vanishes. We conclude that a metastable flower
has more that one half of its segments in the stem, and the smaller the crown is, the closer
we are to the spinodal.

The second spinodal branch describes the situation in which the coil state becomes unsta-
ble. The height of the barrier counted from the coil state minimum is just (3/2)kTz2

0/(a2N).
Equating this to kT , we find

z++
0 =

(
2
3
N

)1/2

a = 2Rg , (10)

where Rg = a
√

(N/6) is the gyration radius. The physical meaning of this spinodal branch is
very transparent: the coil state becomes unstable once it can easily “touch” the energetically
favorable region.

The phase diagram has in the N → ∞ limit a very simple form once the coordinates
(z0/Na,

√
u) are used: it consists of two straight lines defined by eqs. (8), (9), while the

spinodal branch of eq. (10) degenerates into z∗∗0 /Na = 0. Obviously, finite N effects are
very important in view of practical applications. The coordinates that are more convenient
to account for the finite size of a macromolecule turn out to be

(
z0/Rg,

√
uN

)
. The binodal

line equation with finite-size corrections has the form z∗0/Rg =
√

u∗N + ln 2/
√

u∗N . The two
branches of the spinodal are z∗∗0 /Rg = 2

√
u∗∗N and z++

0 /Rg = 2. Due to finite N effects
each of these lines is broadened: for the binodal line, the thickness is ∼ (uN)−1/2, while for
the spinodal lines, the thickness is of order unity. For the escape transition of a compressed
chain, the coordinates would be (z0/Rg, a

√
N/H), while for the adsorption problem these are

(z0/Rg, ca
√

N).

Barrier heights separating stable and metastable states. – The analytical expressions for
the Landau function allow us to describe the free-energy barrier separating the two minima.
The barrier height counted from the coil state minimum is simply

∆coil =
3
2

z2
0

Na2
=

(
z0

2Rg

)2

= Fstr . (11)

The barrier height counted from the flower state minimum, when
√

2u
3 ≥ z0

Na , is given by

∆fl =
3
2
N

(√
2u

3
− z0

Na

)2

=
(√

Fstr −
√

Fconf

)2

, (12)

where Fconf = uN . The barrier height as counted from the metastable (upper) minimum
controls the lifetime of the metastable state. It follows from eq. (11) that the metastablity
of the coil state is, e.g., in model 2, not affected by H, as long as one does not cross the
binodal line (this is valid only for Gaussian chains). The decay rate of the metastable flower is
determined by the difference exp

[
− [

π
√

3Rg/2H − z0/2Rg

]2]
and increases with separation

H, while the decay rate of the metastable coil is associated with exp
[
− [z0/2Rg]

2
]
.
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A more accurate estimate for the characteristic decay time of the metastable states can
be obtained from the Fokker-Plank equation formalism. Assuming that the slowest mode is
associated with the relaxation of the order parameter and all the other degrees of freedom
equilibrate quickly, we write a 1-dimensional Fokker-Plank equation for the probability density
P (s, t) with NΦ(s) the Landau function playing the role of the effective potential:

∂

∂t
P (s, t) =

∂

∂s
D(s)

[
∂P (s, t)

∂s
+ P (s, t)N

∂Φ(s)
∂s

]
. (13)

Here D(s) is the diffusion coefficient along the configuration space path described by the
order parameter s. The conventional diffusion coefficient Dz associated with the change in
the end-to-end distance of a free-draining chain is Dz = kT (Nζ)−1, where ζ is the friction
coefficient per segment. Since the time required for a certain displacement is invariant with
respect to changing the dynamic variable, (ds)2/D(s) = (dz)2/Dz which leads to D(s) =
kTN−3ζ−1. The two branches of the Landau function Φ(s) are given by eqs. (2) and (3).

As follows from the standard analysis of the Fokker-Plank equation [23,24], the mean first
passage time τcoil required by the chain initially in the coil state to go to the top of the barrier is

τcoil =
N3ζ

kT

z0/Na∫
0

ds exp [NΦcoil(s)]

s∫
−∞

dq exp [−NΦcoil(s)] . (14)

Using the standard approximation of the internal integral by the coil partition function
we obtain the final result as: τcoil = π

3 τRouseerf(z0/(2Rg))erfi(z0/(2Rg)), where τRouse =
N2a2ζ/kT is the Rouse fundamental relaxation time, and erfi is the error function on the
imaginary axis. For z0 � Rg one obtains

τcoil
∼= 2

√
πRg

3z0
τRouse exp [∆coil] . (15)

The spinodal region corresponds to z0 ∼ Rg, with τcoil on the order of the Rouse fun-
damental relaxation time. Similarly, one obtains the mean first passage time for the chain
initially in the flower state τfl. Apart from a near vicinity of the spinodal, the expression
reduces to

τfl
∼=

√
8π

3
z0τRouse

N2a

1

u2 − 3
2

(
z0
Na

)2 exp [∆fl] . (16)

Near the spinodal line the lifetime vanishes as τfl
∼= 2

√
πN/3τRouse

(√
u −√

u∗∗).
Experimental investigations of conformational transitions on surfaces (model 2 and 3) are

in principle feasible by Atomic Force Microscopy (AFM) measurements. It is well documented
that such apparatus is sensitive enough to register stretching forces of individual polymer
chains [25–27]. Moreover, in such apparatus the time by which the chain is confined can be
varied. This gives interesting possibilities to measure barrier crossings events implying the
occurrence of hysteresis effects. The experiments will not be easy. For example, it is important
to work with energetically homogeneous surfaces, i.e. in model 3 [28], or with well-defined
geometries (model 2) [29].

Conclusions. – Conformational transitions of single macromolecules near interfaces are
of interest for tuning material properties. They can, at least in principle, be investigated
by AFM experiments. Results of such experiments will give a deep understanding in phase
transitions in finite-size systems. Indeed, the polymer system may be a very interesting
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model to investigate finite-size effects in phase transitions in general. We have shown that
it is possible to give a unified picture of a number of systems in which conformational phase
transitions occur. The point which makes this possible is the strong analogy between the
structure of not only the partition function but also the Landau free energy as a function of
the order parameter. The identification of the stretching function as the order parameter in
the systems is the key that allows us to accurately analyse the lifetime of metastable states
and gives an insight into the existence of hysteresis effects.
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