Projectnr.: 71.316.24 Development and Validation of HPLC-methods for the official control of <u>Coccidiostatics</u> and <u>Antibiotics used as Eeed Additives</u> (SMT4-CT98-2216)

Co-ordinator: Dr. J. de Jong

FINAL REPORT

Report 2002.007

December 2002

CANFAS - 2nd collaborative study for the determination of nicarbazin in a premixture by HPLC

J. de Jong, J.J.M. Driessen, M.J.H. Tomassen, H.J. Keukens*

Business Unit Analysis and Development

*LRVV Wageningen, the Netherlands

State Institute for Quality Control of Agricultural Products (RIKILT) Bornsesteeg 45, 6708 PD Wageningen P.O box 230, 6700 AE Wageningen Phone +31 317-475400 Fax +31 317-417717 Copyright 2002, State Institute for Quality Control of Agricultural Products (RIKILT). Take-over of the content is allowed only with clear acknowledgement of sources

MAILING LIST

INTERNAL: Director Authors Program leaders (4x) Marketing and communication (2x) Library (3x) J.A. van Rhijn

EXTERNAL:

Participants
Mrs. D. Ramaekers, European Commission, M&T program, DG Research
F. Verstraete, European Commission, DG SANCO
A. Thalmann, LUFA Augustenberg
H.J. Keukens, LRVV
B. Stoisser, BFL, Vienna, Austria
S. Ready, Eli Lilly, UK
Secr. CEN/TC 327 Animal Feedingstuffs; ISO/TC34/SC10, O.J.M. Kolsteren, NEN
AOAC - Methods Committee on Feeds, Fertilisers and Related Agricultural Topics, M.R. Coleman (chair) and L. Wetzler (secretary)
AAFCO Laboratory Methods and Services Committee, N. Thiex
H. Campbell, Canadian Food Inspection Agency
P. de Vries, Pre-Mervo
H. van der Voet, Biometris, Wageningen UR

1

CON	TENT	S	page
SUM	MARY	,	3
1	INTR	ODUCTION	5
2	PAR	TICIPANTS	6
3	MAT	ERIALS	7
	3.1	Samples for collaborative study	7
		3.1.1 Sample composition	7
		3.1.2 Sample homogeneity	7
		3.1.3 Sample logistics	8
	3.2	Reference standard	8
4	MET	HODS	9
	4.1	Method of analysis	9
		4.1.1 HPLC- conditions	9
	4.2	Method for statistical evaluation	9
5	RES	JLTS	11
	5.1	Statistical evaluation	11
	5.2	Recoveries	20
	5.3	Remarks	21
6	CON	CLUSIONS	22
ACK	NOWL	EDGEMENTS	23

APPENDICES

- Appendix 1 letter with instructions, sent with the samples (with four annexes) and e-mails with additional information
- Appendix 2 composition and homogeneity of the premixture
- Appendix 3 sample codes
- Appendix 4 nicarbazin reference standard profile
- Appendix 5 results of individual participants

SUMMARY

This report describes the results of a 2nd collaborative study of an HPLC method for the coccidiostat nicarbazin in one premixture. The collaborative study forms part of the EU-project "Development and Validation of HPLC-methods for the official control of Coccidiostats and Antibiotics used as Feed Additives (CANFAS-SMT4-CT98-2216).

The results of the first collaborative study showed that the reproducibility of the method was not satisfactory for the premixture (the HORRAT ratio for the premixture was too high). During the evaluation meeting it was decided that a new small collaborative study had to be organised with a modified method in which the sample weight and the extraction volume are doubled compared to the original method. In the modified method the calibration method is also more strict described stating that the concentration of the premixture extract should be in the middle of the calibration curve.

The principle of both the original and the modified method is as follows: samples are extracted by heating in a waterbath, mechanical shaking and sonoration using an acetonitrile/methanol mixture. The mixture is transferred in a volumetric flask. After settlement of the solids, an aliquot is filtered and assayed using a reverse-phase isocratic method, which measures the 4,4'dinitrocarbanilide (DNC) moiety at a wavelength of 350 nm.

For the collaborative study 1 premixture with declared content of 0,75 % nicarbazin was prepared. The premixture was sent to the participants as a single sample. The participants were asked to analyse the premixture in duplicate.

Results were reported by 17 laboratories. Statistical evaluation was performed according to ISO 5725.

During the first collaborative study satisfactory results for recovery, blind blank feed and feedingstuffs were obtained. The results of the second collaborative study show that with the modified method for premixtures acceptable results are obtained for repeatability.

Statistical evaluation of the data with regard to reproducibility shows that it is very important to follow the method strictly. If only the results are taken into account of the laboratories that applied the method in sufficient detail, a Horrat ratio < 2 is obtained. It can be concluded that the reproducibility of the modified method is satisfactory, provided that it is followed strictly. The following points seem to be of special importance:

- Weight of the premixture (1 g)
- Range of the calibration curve (1 10 mg/kg)
- Quality (correlation coefficient) of the calibration curve

The final method can be recommended for adoption as an official method and, together with the results of the collaborative studies, it will be sent to the European Commission (CEMA), CEN and ISO.

1 INTRODUCTION

Within the framework of the EU-project "Development and Validation of HPLC-methods for the official control of Coccidiostats and Antibiotics used as Feed Additives (CANFAS-SMT4-CT98-2216), a method was developed for nicarbazin. Nicarbazin is a coccidiostat which is registered for broiler feeds with contents ranging between 40 - 50 mg/kg or 100 - 125 mg/kg. The method was developed and validated by RIKILT, Wageningen, The Netherlands (see report H.J. Keukens, Development of Liquid Chromatographic Methods for the Determination of Nicarbazin in concentrates, premixtures and broiler feed, 01-11-1999). Subsequently, the method for feeds and premixtures was subjected to between-lab validation by the Universität Hamburg, Institut für Angewandte Botanik, Germany (see report H.-A. Putzka, 17-01-2000) and Istituto Superiore di Sanità, Roma, Italy (see report G. Brambilla, 26-01-2000).

Prior to the first collaborative study, a kick-off meeting was organised (Brussels, 13-14/6/2000) and participating laboratories were given the opportunity to familiarise themselves with the method, using feed samples with stated contents of nicarbazin. Also prior to the production of the materials for the collaborative study, separate batches of the materials were produced for stability testing, indicating that nicarbazin is stable at room temperature for 4 months. The results of the first collaborative study (see report "CANFAS - Collaborative study for the determination of nicarbazin in feedingstuffs and premixtures by HPLC", J.J.M. Driessen, Y.P. van Adrichem, M.J.H. Tomassen and J. de Jong, RIKILT-Report 2002.012) showed that the reproducibility of the method was not satisfactory for the premixture (the HORRAT ratio for the premixture was too high). During the evaluation meeting it was decided that a new small collaborative study had to be organised with a modified method.

The modifications of the method are:

- the sample weight is increased to 1 gram (double compared to original method).
- the extraction volume is increased to 200 ml (double compared to original method).
- the calibration method is more strictly described, stating that the concentration of the premixture extract should be in the middle of the calibration curve
- excessive dilution is avoided (higher concentrations of calibration curve)

The handling of the premixture prior to the subsampling (mixing) is described in the method. For the collaborative study 1 premixture with declared content of 0,75 % nicarbazin was prepared. The premixture was sent to the participants as a single sample. The participants were asked to analyse the premixture in duplicate.

Before the sample was shipped, the between-sample homogeneity was checked with satisfactory results (see par. 3.1.2).

Apart from the samples, a letter with instructions, reporting forms, etc. was sent to the participants (see Appendix 1).

This report describes the results of the collaborative study.

2 PARTICIPANTS

The following laboratories/persons participated in the collaborative study.

- CCL-Nutricontrol, Veghel, The Netherlands; R. Margry, J.G.P. van der Palen
- IEEB, Bordeaux, France; J.P. Antalick, T. Gron
- INETI/DTIA, Lisbon, Portugal; I. Felgueiras, C. Saldanha
- Istituto Superiore di Sanita, Lab. Med. Veterinaria, Roma, Italy; G. Brambilla, C. Cartoni, M. Fiori.
- Istituto Zooprofilattico Sperimentale della Lombardia e dellémilia Ronagna, Reparto Chimico, Brescia, Italy; E. Faggionato, A. Baiguera
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy; C. Testa, N. Rubattu, A. Serra
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy; G. Biancotto, B. Allegretta
- Istituto Zooprofillatico Sperimentale delle regioni Lazio e Toscana, Roma, Italy; A. Ubaldi, A. di Lulio.
- Laboratorio Nacional de Sanidad y Produccion Animal M.A.P.A., Santa Fe, Spain; R. Checa-Moreno, A. Ariza-Avidad
- Laboratory of the Government Chemist, Teddington, United Kingdom; J. Cowles
- LUFA-ITL Kiel, Kiel, Germany; H. Wehage, H. Graepel
- Masterlab, Putten, The Netherlands; K. van Schalm, A. Schaaf
- Pre-Mervo Kwaliteitsdienst, Utrecht, The Netherlands; C. Schreuder, C.J.J. van Wijk
- Rijksontledingslaboratorium, Tervuren, Belgium; K. Haustraete, A. Fontaine, M. Lekens, R. van Sandt.
- RIKILT, Wageningen, The Netherlands; H.J. van der Kamp, H.C.H. Kleijnen
- Staatliche Landwirtschaftliche Untersuchungs- und Forschungsanstalt (LUFA), Augustenberg, Germany; A. Thalmann, K. Wagner
- Universität Hohenheim, Landesanstalt für Landwirtschaftliche Chemie, Stuttgart, Germany; K. Schwadorf, A. Eschle

3 MATERIALS

3.1 Samples for collaborative study

3.1.1 Sample composition

Specifications of the premixture, which was produced for the collaborative study, are given in Table 1.

Table 1: Specifications of the samples

Type of feed / premixture	Declared content	Unit	Subcontractor	Date of production
Premixture for broiler feed	0.75	%	Trouw Nutrition, Putten (NL)	September 2001

The premixture was based on inorganic support material and contained regular contents of vitamins, minerals and trace elements. The composition of the premixture is enclosed in Appendix 2.

The composition of the premixture was the same as the product used in the first collaborative trial and in the stability trial (see Report on homogeneity and stability studies of samples for the collaborative studies for nicarbazin, J.J.M. Driessen and J. de Jong, RIKILT, Wageningen, NL, 12/10/2000).

The premixture was prepared in a quantity of about 3 kg by Trouw Nutrition, Putten, the Netherlands. TNO-Voeding, Zeist, the Netherlands, performed the subsampling with an automatic sample device that resulted in about 30 PE bottles containing about 100 g of premixture each. The bottles were stored at room temperature prior to forwarding them to the participants.

3.1.2 Sample homogeneity

The homogeneity of the samples was studied by RIKILT by random selection of 10 subsamples, applying the HPLC-method developed in CANFAS (see Annex 1 of Appendix 1). The results of the homogeneity determinations of the premixture are attached in Appendix 2. Table 2 gives a summary of these results.

Table 2: Results of homogeneity tests for nicarbazin in the premixture

Results	Declared	Measured	Homogeneity resu	lts
Product	content (%)	content (%)	Between sample CV (%)	Within sample CV (%)
Premixture	0,75	0,73	6,2	5,2

According to the Project Plan the CV's for homogeneity should not exceed 2 times the CV's for repeatability ($CV_{hom} \le 2 CV_r$). Based on previous results of within-lab validation (see Second Annual Report CANFAS, J. de Jong, 12-08-2000) the maximum limit for CV_{hom} was set to 7 % for the premixture.

The between- and within-sample CV's fulfil this requirement. Thus, it is concluded that the samples are sufficiently homogeneous.

3.1.3 Sample logistics

The sample codes are given in Appendix 3. The premixture was sent as a single sample and was labelled as such. The samples were sent to the participants by courier service on 13 December 2001 together with a letter with instructions (Appendix 1). During transport no special precautions were taken with regards to the temperature of the samples.

3.2 Reference standard

The reference standard was supplied by Mr. S. Ready, Eli Lilly, Liverpool (UK). The specifications of the reference standard (Lot Nr. X47623) are described in Appendix 4. The participants were instructed by e-mail to set the purity of the reference standard at 100 % (See appendix 1)

4

4 METHODS

4.1 Method of analysis

The method of analysis is included as annex 1 to Appendix 1. The participants were instructed to use this method without any modifications. A mistake was discovered in the formula for calculation of the nicarbazin content in premixtures. The participants were informed about the mistake and the correct formula was send to them by e-mail (see Appendix 1).

4.1.1. HPLC-conditions

Various types of HPLC-columns were used (the column which is recommended in the method is a Nova-Pak C-18 300 x 3,9 mm with a particle size between 5 and 10 μ m).

The mobile phase described in the method is Acetonitrile-Water 65/35. Two laboratories used a different mobile phase.

The HPLC conditions (Column and mobile phase) used by the participants are shown in Table 3.

4.2 Method for statistical evaluation

Statistical evaluation was performed according to ISO 5725 Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method (First edition, 1994-12-15).

The scrutinity of results for consistency and outliers was checked by

- a) Graphical consistency techniques: Mandel's h plot for between-laboratory variability, Mandel's k plot for within-laboratory variability
- b) Numerical outlier techniques: Cochran's test of the within-laboratory variability, Grubbs' test (single and double) for between-laboratory variability

Whenever necessary and appropriate, laboratories which showed consistently high within-cell variation and/or extreme cell means across many levels and/or Cochran or Grubbs' outliers were contacted to try to ascertain the cause of the discrepant behaviour.

The Horwitz equation and the HORRAT ratios form the basis for the evaluation of the reproducibility of the method. The HORRAT ratios are given in Table 5. The HORRAT ratios should be lower than 2 (see W. Horwitz and R. Albert, J.A.O.A.C. 74 (1991) 718-744).

Table 3: HPLC-conditions

Partner	Column	Mobile phase
13	Not reported	Not reported
15	Inertsil ODS-2; 5 μm; 250 mm	As described in the method
16	Waters Spherisorb ODS 1; 5 µm; 250 x 4 mm	As described in the method
19	Chromspher C18; 200 mm x 3,0 mm	As described in the method
20	Alltima C18; 5 µm; 250 x 4,6 mm	As described in the method
21	Supelcosil LC18; 5 µm; 250x4,6 mm with Supelguard LC18 (20x4,6 mm)	Acetonitrile - ammonium acetate buffer (0,01 M, pH 4,6) Gradient elution
23	Not reported	Not reported
24	Waters C18; 5 µm; 250 mm x 4,6 mm	As described in the method
25	Lichrocart Lichrospher 100 RP18; 5 µm; 250 mm	Acetonitril 80 % /water = $70:30$ (v/v)
26	Luna C18 (2); 5 µm; 250 x 4,6 mm	As described in the method
29	Nova Pak C18; 4µm; 250 x 4,6 mm	As described in the method
30	Kromasil; 150x4,6 mm	As described in the method
31	Bondapak C18; 300mm x 3,9 mm	As described in the method
33	As described in the method	As described in the method
35	Merck C18; 5 µm; 250 mm	As described in the method
38	Lichrospher; 5 μm; 250 x 4,6 mm	As described in the method
39	Lichrospher RP18; 5 µm; 125 x 3 mm (Merck 51232)	As described in the method

5 RESULTS

For each participant the reported results for the samples, the completed questionnaire and representative chromatograms are annexed in Appendix 5.

5.1 Statistical evaluation

The results reported by the participants are given in Table 4. Figure 1 demonstrates the Mandel h and k plots of these results.

According to the Project Plan, the rsd_r-values should be ≤ 10 %. The rsd_r value is 5,0 % and consequently it can be concluded that the repeatability is satisfactory.

The Horwitz equation and the HORRAT ratios form the basis for the evaluation of the reproducibility (see W. Horwitz and R. Albert, J.A.O.A.C. 74 (1991) 718-744). The HORRAT ratio is given in Table 5. The HORRAT ratio should be lower than 2. A HORRAT ratio of 3,21 is obtained. In the evaluation meeting it was concluded that it should be possible to obtain a rsd_R (reproducibility) of approximately 7 %. The rsd_R obtained is 13,4 %.

In order to exclude that the high rsd_R and HORRAT ratio is caused by the fact that some laboratories did not strictly follow the method all the participants were asked to send the following information:

- Weight, extraction volume and additional dilution factor for the premix
- Areas/heights and concentration of the premix sample extract
- Preparation of the stock standard solution(s), incl. weight and volume
- Characteristics of the calibration curves, incl. areas / heights, correlation coefficients, etc.

Laboratory 23 responded that they could not recover their raw data. A summary of the raw data of the other labs is given in Table 6.

The results of the evaluation of the information from the laboratories is as follows:

- Lab 13 weighed 0,5 g of the premixture and extracted with 100 ml extraction solvent. While the increase of the weight from 0,5 to 1 g was an important issue in the improvement of the method (see chapter 1, Introduction), the results of lab 13 cannot be taken into account.
- Lab 15 followed the method in sufficient detail.
- Lab 16 diluted the extracts 20 times and measured concentrations in the final extracts of 1,675 and 1,7605 µg/ml. Although this concentration is rather low compared to what is described in the procedure (ca. 5 µg/ml, see par. 6.2.1 of the procedure), the results can be taken into account because of the perfect linearity of the calibration curve, also in the lower range.
- Lab 19 prepared a more concentrated stock standard solution, containing 296,8 µg/ml nicarbazin, instead of a stock standard solution of 100 µg/ml (see par. 6.4.1.1 of the procedure) and did not check the solubility according to par. 9.2 of the procedure. While the dissolution of the nicarbazin is a very critical step in the method, the test on solubility should have been performed to give proper evidence of dissolution. Moreover, this lab also applied a 1-point calibration. Consequently, the results cannot be taken into account.

- Lab 20 dissolved the stock standard solution in DMF instead of acetonitrile methanol (500 + 500 V / V). This procedure was also followed by lab 20 in the first collaborative study and at that occasion it was shown that the use of DMF leads to acceptable results (see report "CANFAS Collaborative study for the determination of nicarbazin in feedingstuffs and premixtures by HPLC", J.J.M. Driessen, Y.P. van Adrichem, M.J.H. Tomassen and J. de Jong, RIKILT-Report 2002.012). Consequently, the results of lab 20 can be taken into account.
- Lab 21 applied two different dilution steps for the 2 duplicates, viz. 1 : 25 and 1 : 5, leading to concentrations in the final extracts of 1,48 and 7,45 μ g/ml resp. Both results can be taken into account because of the perfect linearity of the calibration curve, also in the lower range.
- Lab 24 followed the method in sufficient detail.
- Lab 25 followed the method in sufficient detail.
- Lab 26 followed the method in sufficient detail.
- Lab 29 applied a dilution of a factor 50, leading to concentrations in the final extracts of 1,030 and 1,005 µg/ml. Moreover, the correlation coefficient of the calibration curve of this lab (0,98035) was unacceptably low. For these reasons, the results of lab 29 cannot be taken into account.
- Lab 30, like lab 19, prepared a more concentrated stock standard solution of 207 µg/ml. This lab was contacted and asked about the results of the check on solubility, see par. 9.2 of the procedure. Lab 30 replied that they had not performed the check on solubility but that they did not expect any problems because they had applied heating and sonoration and had not observed any problems. They also argued that the final concentration is lower than in the extract of a premixture containing 2,5 % nicarbazin. However, while the dissolution of the nicarbazin is a very critical step in the method, the test on solubility should have been performed to give proper evidence of dissolution and so the results cannot be taken into account.
- Lab 31 followed the method in sufficient detail.
- Lab 33 weighed 2 g of the premixture and extracted with 100 ml extraction solvent. According to the procedure 1 g premixture should be extracted with 200 ml extraction solvent (see par. 6.2.1). It is not clear whether the method can be successfully applied when the ratio of premixture to extraction volume is increased 4-fold. There is a clear risk of incomplete extraction and so, the results of lab 33 cannot be taken into account.
- Lab 35 diluted the extracts 25 times and measured concentrations in the final extracts of 1,51 and 1,39 µg/ml. This lab prepared a 3-point calibration curve (0, 4,36 and 10,90 µg/ml). While the calibration curve has a perfect linearity, the results can be taken into account.
- Lab 38 weighed 0,5 g of the premixture and extracted with 100 ml extraction solvent.
 Besides, lab 38 used a calibration curve of 0,5 5,4 µg/ml (in stead of 1 10 µg/ml, see par.
 6.4.1.2 of the procedure) as was used for the first collaborative study. While the increase of the weight from 0,5 to 1 g and the increase of the concentrations of the calibration solutions were important issues in the improvement of the method (see chapter 1, Introduction) the results of lab 38 cannot be taken into account.

 Lab 39 diluted the extracts 25 times and measured concentrations in the final extracts of 1,691 and 1,551 µg/ml. The results can be taken into account because of the perfect linearity of the calibration curve, also in the lower range.

According to the evaluation of the raw data, the results of 10 laboratories can be taken into account. The results of the statistical evaluation are given in Table 7. Figure 2 shows the new Mandel h and k plots.

The repeatability (rsd_r = 5,7 %) is satisfactory. The new value for the rsd_R is 8,6 % with a corresponding HORRAT ratio of 2,04 %. The rsd_R includes a contribution from the between-sample heterogeneity (see Table 2). This contribution S(hetero) can be calculated by the following formula:

 S^{2} (hetero) = 0,5 x (S^{2} (between-sample)_{hom} - S^{2} (within-sample)_{hom})

Correction of the rsd_R for the between-sample heterogeneity by means of the following formula

$$S^{2}_{R, \text{ corrected}} = S^{2}_{R, \text{ uncorrected}} - S^{2}(\text{hetero})$$

yields a final value for the rsd_R (corrected) of 8,2 % with a corresponding HORRAT ratio of 1,95 (see Table 8). Consequently it can be concluded that the reproducibility of the modified method is satisfactory.

The improvement of the reproducibility clearly shows that it is important to apply the new method strictly. Especially the following points seem to be very critical:

- Weight of 1 g of the premixture (in 200 ml) instead of 0,5 g (in 100 ml)
- Shift of the calibration curve and sample extract to higher concentrations (1-10 µg/ml instead of 1-5 µg/ml)
- Quality of the calibration curve.

On the other hand the preparation of the stock standard solution seems to be less critical because statistical evaluation of the results of 12 labs (labs 19 and 30 that prepared a more concentrated stock standard solution and the 10 labs that applied the method in sufficient detail) yields slightly better results for repeatability (rsd_r = 5,6 %) and reproducibility (rsd_R = 7,9 %, not corrected for between-sample homogeneity) than for 10 labs. However, no final conclusions can be drawn about this point. While the preparation of the stock standard solution has been identified as a critical factor in previous parts of the project, the results of labs 19 and 30 should not be taken into account.

	Result (mg/kg)				
Lab	NIC 750	00 mg/kg			
13	8829	9148			
15	6908	8317			
16	6706	6572			
19	7043	7350			
20	7534	7554			
21	7450	7500			
23	7300	7100			
24	6600	7000			
25	7950	7950			
26	6387	6416			
29	10050	10300			
30	7580	6960			
31	7740	7235			
33	8100	8700			
35	7486	6768			
38	6441	5886			
39	8430	7664			

 Table 4:
 Nicarbazin in a premixture for broiler feed, results of all participants

Summary of all results

Number of all participating labs	17
m (mg/kg)	7557
rsd _r (%)	5,0
rsd _R (%)	13,4

Table 5: Horrat ratios of the Nicarbazin collaborative study (results of all participants)

Mean (mg/kg)	Predicted	Established	Horrat ¹	Conclusion
-	rsd _R	rsd _R		
7557	4,17	13,4	3,21	Reproducibility NOT OK >

 1 = Horrat is the ratio between the established rsd_R and the predicted rsd_R

Overview of the raw data supplied by the participants of the collaborative study Table 6:

	Sam	Sample preparation	ation	Premix san	nple extract		Stock standard	Stock standard and standard solutions			
Part-	Weight	Extraction	Additional	Height/area	Concentration	Stock	Range standards	Height/area standards	7 2	Calcu-	Conclusion
ner	premix (g)	volume	dilution	Sample	Sample					tation ¹	method
	,		tactor		(mg/m)						compliance
13	0,5	100	10	1,6535	± 4,4 (C)	10,0 mg	1-2-3-4-5-10	0,3463 – 0,7997 –	0,9996	¥	Not OK
				1,7133	± 4,6 (C)	in 100	L	1,1178 – 1,4995 –	<u>0</u>		
						m		1,8727 – 3,7658			
15	1,000	200	10	196,0	3,454	10,07	1-2-3-4-5-10	58 - 116 - 168 - 227 -	0,9999	Š	ð
	1,000	200	10	235,8	4,159	mg in		285 - 565			
						100 ml					
16	1666'0	200	20	140834	1,675	11,16	1,16 - 3,48 -	95587 - 290936 -	66666'0	Ş	ý
	1,0716	200	20	150182	1,7605	mg in	5,80-11,60	488782 - 979283			
						100 ml					
19	1,2865	250	5	1680999	7,25	29,68	8,904	2065016	Not	ð	Not OK
	1,2550	250	ۍ	1711655	7,38	mg in			applicable		
<u></u>						100 mj					
ຊ	1,0077	200	5	737,6	7,59	10,3 mg	1-2-3-4-5-10	107 - 204 - 303 -403 -	7666'0	ð	ý
	1,0178	200	ъ С	756,9	7,69	in 10 ml		488 - 1010			
 _						DMF					
21	1,00	200	5	608,6	7,45	10,0 mg	1-2-4-5-10	81,09 - 162,44 -	1,000	ð	ð
	1,00	200	25	120,6	1,48	in 100		326,92 - 409,23 -			
						m		816,32			
24	1	200	10	800,9	3,3	11,6 mg	1,16-2,32-5,80-	277 - 554 - 1425 - 2852 0,9999	66666'0	Q	ð
				860,8	3,5	in 100	11,6				
						E					
_ 	- colculatio	n of the re	cuite hy me	calculation of the recults by means of the right formula	ht formula						

¹ = calculation of the results by means of the right formula

(C) = calculated by authors

15

ional Height/area Concentration Stock Range on Sample (ug/ml) 10 mg in 2,5 171065 7,73 10 mg in 2,5 181287 8,18 100 ml 7,5 171065 7,73 10 mg in 2,5 181287 8,18 100 ml 7,5 181287 8,16 9,9 mg 0,9 171699 7,75 3,5612 ml 0,9 274072 3,5612 1,00 ml 3,96 0,9 274072 3,5612 ml 0,9 mg 0,9 274072 3,5612 ml 0,0 3,96 0,9 274072 3,5612 ml 0,0 3,96 0,9 27407 3,5612 ml 0,0 3,96 11403 1,030 1,000 0,9 0,9 10937 1,005 1,005 ml 0,9 610916 7,23 (C) ml 0,9		Sam	Sample preparation	ation	Premix san	Premix sample extract		Stock standard a	Stock standard and standard solutions			
volume dilution Sample Jample Jamp	1 .	Weight	Extraction	Additional	Height/area	Concentration	Stock	Range standards	Height/area standards	Ŗ²		Conclusion
200factor (ug/m)		premix (g)	volume	dilution	Sample	Sample						method
20051710657,7310 mg in 7,5 - 10,02.5 - 5,0 - 1812875309 - 112061 - 8,180,99980K200102740723,51239,9 mg 3,56120,991.9829777754 - 154745 - 3,55120,99980K200102778473,5512in 1003,96 - 4,95 - 9,9028425 - 314811 - 3,8666 - 7659930,99980K20050114031,030Not0,5 - 1 - 2 - 3 - 56450 - 11592 - 234140,99980K20056176,82 (C)in 1003,96 - 4,95 - 9,9028425 - 314811 -0,99990K20056178,46 (C)m10,5 - 1 - 2 - 3 - 56450 - 11592 - 234140,99990K20056176,82 (C)20,7 mg1,0 - 2,07 - 4,14 -98 - 189 - 380 - 474 -0,99990K20056176,82 (C)m1005,18 - 10,359299290K20056536217,74 (C)9,98 mg0,999 - 1,996 -82472 - 168898 -0,999990K20056536217,74 (C)9,98 mg0,999 - 1,996 -82472 - 168898 -0,999990K200201146501,5111 mg in0 - 4,36 - 10,900,999990K200251335081,5111 mg in0 - 4,26 - 10,900,999990K200251335081,5111 mg in0 - 4,26 - 10,900,999990K200251335081,51 <td>1</td> <td></td> <td></td> <td>factor</td> <td>-</td> <td>(Im/grl)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>compliance</td>	1			factor	-	(Im/grl)						compliance
181287 8,18 100 ml 7,5 - 10,0 164821 - 221866 1,076 200 10 274072 3,5123 9,9 mg 0,99 - 1,98 - 2,97 77754 - 154745 - 0,99988 0K 1,127 200 10 274072 3,5123 9,9 mg 0,99 - 1,98 - 2,990 28660 - 765993 0K 1,127 200 10 277847 3,5612 ml 0,5 - 1 - 2 - 3 - 5 6450 - 11592 - 23414 0,99989 0K 1,00 200 5 617 6,82 (C) 10037 1,005 reported 286660 - 765993 0K 0K 1,1165 200 5 617 6,82 (C) 1003 5,18 - 10,35 929 0K 1,11165 200 5 617 6,82 (C) 1000 5,18 - 10,35 929 0K 1,11165 200 5 665 165928 0,9999 0K 1,11165 200 5 765 8,46 (C) 100 5,18 - 10,355 929 0K		1	200	5	171065	7,73	10 mg in	2,5 - 5,0 -	5309 - 112061 -	0,9998		ş
1,076 200 17 17 54 154745 0,9998 0K 1,076 200 10 274472 3,5123 9,9 mg 0,99 1,98 2,97 7754 154745 0,9998 0K 1,127 200 10 277847 3,5612 m100 3,96 4,95 9,90 08860 765993 0K 1,0 200 50 11403 1,030 1,030 3,96 4,95 9,90 0 0 98860 765993 0K 0 98666 765993 0K 0 98666 765993 0K 0 99 0K 0 99 0K 0 98 10 0K 0K<					181287	8,18	100 ml	7,5 – 10,0	164821 - 221866			
1,076 200 10 274072 3,5123 9,9 mg 0,99-1,98-2,97 77754-154745- 0,9998 0K 1,1/127 200 10 277847 3,5512 in 100 3,96-4,95-9,90 228425-314811- 0,9908 0K 1,02 200 50 11403 1,030 Not 0,5-1-2-3-5 6450-765933 0,9999 0K 0,9806 200 5 617 6,82 (C) 20,7 mg 1,002 209 1982 23444 0,9999 0K 1,1165 200 5 613 1,005 5,18-10,35 929 284451 0,9999 0K 1,1165 200 5 653621 7,74 (C) 9,98 mg 0,9928 0K 0,9999 0K 1,100 200 5 65501 7,74 (C) 9,98 mg 0,9999 0K 0K 1,0065 200 229472 168989 0,9999 0K 0K 05991 0K 1,000 200<					171699 180875	7,75 8,16						
1,127 200 10 277847 3,5612 in 100 3,96 - 4,95 - 9,90 228425 - 314811 - 34811 1,0 200 50 11403 1,033 Not 0,5 - 1 - 2 - 3 - 5 64560 - 11592 - 23414 0,9999 0K 0,9806 200 5 617 6,82 (C) 20,7 mg 1,0 - 2,07 - 4,14 - 98 - 189 - 380 - 4/4 - 0,9999 0K 1,1165 200 5 610 16 7,23 (C) 1010 5,18 - 10,35 929 929 0K 1,100 200 5 610 916 7,23 (C) 10100 5,18 - 10,35 929 0K 0,9999 0K 1,000 200 5 610 916 7,23 (C) 10100 299 - 3,992 - 256014 - 336999 - (C) 0,9999 0K 1,000 200 200 929 846 (C) 10100 2,18 - 10,35 929 0K 9398 - 10,99 929 1,000 200 200 929 92 473332 - 847853 0,9999 0K 1,0005 200		1,076	200	10	274072	3,5123	9,9 mg	0,99 - 1,98 - 2,97 -	77754 - 154745 -	8666'0		X
II.0 Z00 50 11403 I.030 Not 0,5 - 1 - 2 - 3 - 5 56450 - 11592 - 23414 0,9804 0K 0,9806 200 5 617 6,82 (c) 20,7 - 4,14 - 98 - 189 - 380 - 474 - 0,9999 0K 1,1165 200 5 617 6,82 (c) 20,7 - 4,14 - 98 - 189 - 380 - 474 - 0,9999 0K 1,1165 200 5 610916 7,23 (c) in 100 5,18 - 10,35 929 0,9999 0K 1,000 200 5 653621 7,74 (c) 9,98 mg 0,998 - 1,996 82472 - 168898 - 0,9999 0K 1,000 200 5 653621 7,74 (c) 9,998 - 1,996 423332 - 847853 0,9999 0K 1,000 200 200 294 - 33699 - 1,090 0K 0,09999 0K 1,0005 200 27 10.03322 0,9999 - 1,090 0K 0,09999 0K 1,00065 200 27 10.010 0.436 - 3.24 - 3.24 <td></td> <td>1,127</td> <td>200</td> <td>10</td> <td>277847</td> <td>3,5612</td> <td>in 100</td> <td>3,96 - 4,95 - 9,90</td> <td>228425 - 314811 -</td> <td></td> <td></td> <td></td>		1,127	200	10	277847	3,5612	in 100	3,96 - 4,95 - 9,90	228425 - 314811 -			
1,020050114031,030Not $0.5 - 1 - 2 - 3 - 5$ $6450 - 11592 - 23414$ 0.9804 $0K$ 0,98062005 617 $6,82$ (C) 207 mg $1,0.2,07 - 4,14 98 - 189 - 380 - 474 0,9999$ $0K$ 1,11652005 617 $6,82$ (C) 207 mg $1,0.2,07 - 4,14 98 - 189 - 380 - 474 0,9999$ $0K$ 1,11652005 617 $6,82$ (C) 207 mg $1,0.2,07 - 4,14 98 - 189 - 380 - 474 0,9999$ $0K$ 1,11652005 653621 $7/74$ (C) $9,98$ mg $0,998 + 1996 82472 - 168898 0,9999$ $0K$ 1,0002002025 610916 $7,23$ (C) $n100$ $2.994 - 3,992 256014 - 336999 (C)$ 2,01002002025 $17/4$ (C) $9,98$ mg $0,998 - 3,992 256014 - 336999 (C)$ 1,00652002025 $17/4$ (C) $9,990 - 9,980$ $423332 \cdot 847853$ $0,9999 (C)$ 1,00652002025 144650 $1,51$ 11 mg in $0,436 - 10,90$ $0 - 421600 - 1044799$ $0,99999 (C)$ 1,0076520025 $1,390$ $0,67$ $1,318643$ $0,9999 0K$ 1,0076520025 $1,390$ $0,67$ $1,318643$ $0,9999 0K$ 1,0076520020025 $1,391$ $0,91691$ $0,9999$ $0K$ 1,00765200 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>۳</td> <td></td> <td>386860 - 765993</td> <td></td> <td></td> <td></td>							۳		386860 - 765993			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1,0	200	50	11403	1,030	Not	0,5-1-2-3-5	6450 - 11592 - 23414	0,9804		Not OK
					10937	1,005	reported		- 44948 - 89828			
1,116520057658,46 (C)in 1005,18 - 10,359299291,0020056536217,74 (C)9,98 mg0,998 - 1,996 -82472 - 168898 -0,9999 0K1,0020056109167,23 (C)in 1002,994 - 3,992 -255014 - 336999 -(C)2,010020254968?No dataConform method,10: 3186430,9999 ?2,010020254968?No dataConform method,10: 3186430,9999 ?1,0065200251446501,5111 mg in0 - 4,36 - 10,900 - 421600 - 10447990,9999 ?1,0055200251446501,5111 mg in0 - 4,36 - 10,900 - 421600 - 10447990,9999 ?1,0056200251446501,5111 mg in0 - 4,36 - 10,900 - 421600 - 10447990,9999 ?1,0058200251,335081,39100 ml0 - 4,36 - 10,900 - 421600 - 10447990,9999 ?0,5031100254,771,18mg in2,16 - 3,24 -2,2, -4,6 - 8,6 - 13 -0,99870K0,5033100254,771,18mg in2,16 - 3,24 -2,2, -4,6 - 8,6 - 13 -0,99870K1200253912491,69110,7 mg1,07 - 2,14 - 3,21 -2,9924 -1,000001200253912491,69110,7 - 2,14 - 3,21 -2491924 -1,00000K1<		0,9806	200	5	617	6,82 (C)	20,7 mg	1,0-2,07-4,14-	98 - 189 - 380 - 474 -	66666'0	¥	Not OK
1,0020056536217,74 (C)9,98 mg0,998 · 1,996 · 82472 - 168898 - 0,99990,99990K1,002,02,994 · 3,992 · 256014 - 336999 - (C)10:3186430,9999 · (C)0,9999 · (C)2,010020254968?No dataConform method,10:3186430,9999 · (C)1,006520251446501,5111 mg in0-4,36 - 10,900 - 421600 · 10447990,9999 ?1,0058200251,39100 ml0-4,36 - 10,900 - 421600 · 10447990,9999 ?1,0058200251,39100 ml0-4,36 - 10,900 - 421600 · 10447990,9999 ?0,5031100251,39100 ml0-4,36 - 10,900 - 421600 · 10447990,9999 ?0,5031100254,771,18mg in2,16 - 3,24 - 2,2,-4,6 · 8,6 · 13 · 0,99870K0,5033100254,771,18mg in2,16 - 3,24 - 2,2,50,99870K1200253912491,69110,77 mg1,07 - 2,2, -4,6 · 8,6 · 13 · 0,99870K1200253912491,69110,77 mg2,14 · 3,21 · 248862 · 491924 · 1,00000K120025391011,551in 10004,28 · 5,25 · 10,7740078 · 984405 · 1,00000K		1,1165	200	5	765	8,46 (C)	in 100	5,18 - 10,35	929			-
1,0020056536217,74 (C)9,98 mg0,998 - 1,996 -82472 - 168898 -0,99990K2,06109167,23 (C)in 1002,994 - 3,992 -255014 - 336999 -(C)(C)2,010020254968?No dataConform method,10: 3186430,99990K1,0065200251446501,5111 mg in0 - 4,36 - 10,900 - 421600 - 10447990,99992K1,02781,335081,39100 ml0 - 4,36 - 10,900 - 421600 - 10447990,99990K0,5031100 255,271,30100 ml0 - 4,36 - 10,900 - 421600 - 10447990,99990K0,5033100 255,271,30100 ml0 - 4,36 - 10,900 - 421600 - 10447990,99990K0,5033100255,271,30100 ml0 - 4,36 - 10,900 - 421600 - 10447990,99990K1,027825033100 ml0 - 4,36 - 10,900 - 421600 - 10447990,99990K0,5033100255,271,300 - 4,36 - 10,900 - 421600 - 10447990,99990,5033100254,771,180.654 - 1,082,2,-4,6 - 8,6 - 13 - 0,9990K0,5023100254,771,182,16 - 3,24 - 2,2, 2,4,6 - 8,6 - 13 - 0,9990K1200253312491,69110,7 mg1,07 - 2,14 - 3,21 - 2,4,6 - 8,6 - 13 - 0,9990K1200253312491,691<							ш					
2,010020254687,23 (C)in 1002,994 - 3,992 -255014 - 336999 -(C)2,010020254968?No dataConform method,10: 3186430,9999?2,010020254968?No dataConform method,10: 3186430,9999?1,0055200251446501,5111 mg in0 - 4,36 - 10,900 - 421600 - 10447990,9999?1,0078200255,271,305,420.54 - 1,0900 - 421600 - 10447990,9999?0,5031100255,271,305,420.54 - 1,0900 - 421600 - 10447990,9999?0,5033100255,271,18mg in2.16 - 3,24 -2,2, -4,6 - 8,6 - 13 -0,9987OK1200254,771,18mg in2,16 - 3,24 -2,2, 51,000OK1200253912491,69110,7 mg in2,14 - 3,21 -24862 - 491924 -1,0000OK \star 2591011,551in 1004,28 - 5,25 - 10,7740078 - 984405 -1,0000OK		1,00	200	5	653621	7,74 (C)	9,98 mg	0,998 - 1,996 -	82472 - 168898 -	0,9999		ž
Z,0I00 20254968? ni $4,990 \cdot 9,980$ $423332 \cdot 847853$ $0,9999$? Z,0 20 254968 ?No dataConform method, 10 : 318643 $0,9999$? $1,0065$ 200 25 $1,51$ $11 mg in$ $0 - 4,36 - 10,90$ $0 - 421600 \cdot 1044799$ $0,9999$? $1,0278$ 133508 $1,39$ $100 ml$ $0.4,36 - 10,90$ $0 - 421600 \cdot 1044799$ $0,9999$? $1,0278$ 133508 $1,39$ $100 ml$ 25 $5,27$ $1,30$ $5,42$ $0,54 - 1,08 - 2,2, -4,6 - 8,6 - 13 - 0,9999$ OK $0,5031$ 100 25 $5,27$ $1,18$ $mg in$ $2,16 - 3,24 - 2,2, -4,6 - 8,6 - 13 - 0,9987$ OK $0,5023$ 100 25 $4,77$ $1,18$ $mg in$ $2,16 - 3,24 - 2,2, -4,6 - 8,6 - 13 - 0,9987$ OK 1 200 25 $4,77$ $1,18$ $mg in$ $2,16 - 3,24 - 2,2, -4,6 - 8,6 - 13 - 0,9987$ OK 1 200 25 391249 $1,691$ $10,77 mg$ $1,07 - 2,14 - 3,21 - 2,2,5 - 3,91924 - 1,0000$ OK 1 200 25 29101 $1,551$ $10,07 - 2,14 - 3,21 - 2,2,5 - 4,91924 - 1,0000$ OK 1 200 25 29101 $1,551$ $1,07 - 2,14 - 3,21 - 2,2,5 - 10,7$ $1,0000$ OK 1 200 25 29101 $1,551$ $1,07 - 2,14 - 3,21 - 2,2,5 - 10,7$ $1,0000$ OK					610916	7,23 (C)	in 100	2,994 - 3,992 -	255014 - 336999 -	0		
2,0100 20 254968 ?No dataConform method,10: 3186430,9999?1,0065 277008 1,5111 mg in $0.4,36 - 10,90$ $0421600 \cdot 1044799$ $0,9999$?1,0078251446501,39100 ml $0.4,36 - 10,90$ $0421600 \cdot 1044799$ $0,9999$ $0K$ 1,02781335081,39100 ml $0.4,36 - 10,90$ $0421600 \cdot 1044799$ $0,9999$ $0K$ 0,5031100255,271,305,42 $0,54 \cdot 1,08 - 2,2, \cdot 4,6 \cdot 8,6 \cdot 13 \cdot 0,9987$ $0K$ 0,5023100254,771,18mg in2,16 - 3,24 - 2,2, \cdot 4,6 \cdot 8,6 \cdot 13 \cdot 0,9987 $0K$ 0,5023100253912491,691 $10,7 \cdot 2,14 \cdot 3,21 \cdot 2,4,6 \cdot 8,6 \cdot 13 \cdot 0,9987$ $0K$ 1200253912491,691 $10,7 \cdot 2,14 \cdot 3,21 \cdot 2,48862 \cdot 491924 \cdot 1,0000$ $0K$ 1200253912491,691 $10,7 \cdot 2,14 \cdot 3,21 \cdot 2,48862 \cdot 491924 \cdot 1,0000$ $0K$ \star 2591011,551in 1004,28 \cdot 5,25 \cdot 10,7740078 \cdot 984405 - 1,0000 $0K$							Ш,	4,990 - 9,980	423332 - 847853			
1,0065200251446501,5111 mg in $0-4,36-10,90$ $0-421600-1044799$ $0,9999$ $0K$ 1,02781335081,39100 ml $0-4,36-10,90$ $0-421600-1044799$ $0,9999$ $0K$ 1,02781335081,39100 ml 25 $5,27$ $1,30$ $5,42$ $0,54-1,08 2,2,-4,6-8,6-13 0,9987$ $0K$ 0,503110025 $4,77$ $1,18$ $mg in$ $2,16-3,24 2,2,5$ $0,9992$ $0K$ 0,502310025 $4,77$ $1,18$ $mg in$ $2,16-3,24 2,2,5$ $0,9124 0,9987$ $0K$ 120025391249 $1,691$ $10,7mg$ $1,07-2,14-3,21 248662-491924 1,0000$ $0K$ 120025391249 $1,691$ $10,7mg$ $1,07-2,14-3,21 248662-491924 1,0000$ $0K$ 120025391249 $1,691$ $10,7mg$ $1,07-2,14-3,21 248862-491924 1,0000$ $0K$ 120025391249 $1,691$ $10,7mg$ $1,07-2,14-3,21 248862-491924 1,0000$ $0K$ 120025391249 $1,691$ $10,7mg$ $1,07-2,14-3,21 248862-491924 1,0000$ $0K$ 120025391249 $1,691$ $10,7-2,14-3,21 248862-491924 1,0000$ $0K$	1	2,0	100	20	254968	ż	No data	Conform method,	10: 318643	0,9999	<u>~.</u>	Not OK
1,0065200251446501,5111 mg in0-4,36 - 10,900-421600 - 10447990,99990K1,02781335081,39100 ml 25 $5,42$ $0,54$ - 1,08 $\mathbf{2,2,-4,6-8,6-13}$ $0,9987$ $\mathbf{0K}$ 0,5031 10025 $5,42$ $0,54$ - 1,08 $\mathbf{2,2,-4,6-8,6-13}$ $0,9987$ $\mathbf{0K}$ 0,5023 10025 $4,77$ 1,18 $\mathbf{mg in}$ $\mathbf{2,16-3,24-}$ $2,2,5$ $0,9987$ $\mathbf{0K}$ 1200253912491,69110,7 mg $\mathbf{1,07-2,14-3,21}$ $\mathbf{248662-491924-}$ 1,0000 $\mathbf{0K}$ 1200253912491,691 $\mathbf{10,7 mg}$ $\mathbf{1,07-2,14-3,21-}$ $\mathbf{248662-491924-}$ 1,0000 $\mathbf{0K}$ 1200253912491,691 $\mathbf{10,7 mg}$ $\mathbf{1,07-2,14-3,21-}$ $\mathbf{248662-491924-}$ $1,0000$ $\mathbf{0K}$ 120025391249 $1,691$ $\mathbf{10,7 mg}$ $\mathbf{1,230148-2453851}$ $1,0000$ $\mathbf{0K}$					277008			no data				
1,0278 1,32508 1,39 100 ml 133508 1,39 100 ml 25 5,27 1,30 5,42 0,54 - 1,08 - 2,2, -4,6 - 8,6 - 13 - 0,9987 0K 0,5031 100 25 4,77 1,18 mg in 2,16 - 3,24 - 2,2,5 0,9987 0K 0,5023 100 25 4,77 1,18 mg in 2,16 - 3,24 - 22,5 0,9987 0K 1 200 25 391249 1,07 1,07 2,14 - 3,21 - 248862 - 491924 - 1,0000 0K 1 200 25 391249 1,691 10,7 mg 1,07 - 2,14 - 3,21 - 248862 - 491924 - 1,0000 0K 1 200 25 39121 1,551 in 100 4,28 - 5,25 - 10,7 740078 - 984405 - 1,0000 0K		1,0065	200	25	144650	1,51	11 mg in	0 - 4,36 - 10,90	0 - 421600 - 1044799	66666'0	¥	Я
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	1,0278			133508	1,39	100 ml					
0,5023 100 25 4,77 1,18 mg in 2,16 - 3,24 - 22,5 1 200 25 391249 1,691 10,7 mg 1,07 - 2,14 - 3,21 - 248862 - 491924 - 1,0000 0K 1 200 25 391249 1,691 10,7 mg 1,07 - 2,14 - 3,21 - 248862 - 491924 - 1,0000 0K 259101 1,551 in 100 4,28 - 5,25 - 10,7 740078 - 984405 - 1,0000 0K		0,5031	100	25	5,27	1,30	5,42	0,54 - 1,08 -	2,2,-4,6-8,6-13-	0,9987	ð	Not OK
1 200 25 391249 1,691 10,7 mg 1,07 - 2,14 - 3,21 - 248862 - 491924 - 1,0000 0K 25 391249 1,691 10,7 mg 1,07 - 2,14 - 3,21 - 248862 - 491924 - 1,0000 0K 259101 1,551 in 100 4,28 - 5,25 - 10,7 740078 - 984405 - 1,0000 0K		0,5023	100	25	4,77	1,18	mg in	2,16 - 3,24 -	22,5			
1 200 25 391249 1,691 10,7 mg 1,07 - 2,14 - 3,21 - 248862 - 491924 - 1,0000 0K 259101 1,551 in 100 4,28 - 5,25 - 10,7 740078 - 984405 - 1,0000 0K 1 10,51 in 100 4,28 - 5,25 - 10,7 740078 - 984405 - 1,0000 0K							50 ml	5,40				
1,551 in 100 4,28 - 5,25 - 10,7 740078 - 984405 - ml 1230148 - 2453851	_	1	200	25	391249	1,691	10,7 mg	1,07 - 2,14 - 3,21 -	248862 - 491924 -	1,0000		У Х
	_				259101	1,551	in 100	4,28 - 5,25 - 10,7	740078 - 984405 -			
	_			`			lm I		1230148 - 2453851			

¹ = calculation of the results by means of the right formula
 (C) = calculated by authors

Table 7:Nicarbazin in a premixture for broiler feed; results after elimination of the laboratoriesthat did not follow the method in sufficient detail or did not send raw data.

	Result	: (mg/kg)
Lab	NIC 75	00 mg/kg
15	6908	8317
16	6706	6572
20	7534	7554
21	7450	7500
24	6600	7000
25	7950	7950
26	6387	6416
31	7740	7235
35	7486	6768
39	8430	7664

Summary of all valid results

Number of valid labs*	10
M (mg/kg)	7308
rsd, (%)	5,7
rsd _R (%)	8,6

* Laboratories 13, 19; 29, 30, 33 and 38 did not follow the method in sufficient detail; lab 23 did not send raw data. Results of these laboratories are not taken into account.

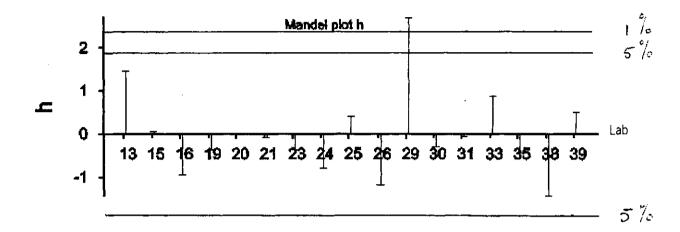


 Table 8:
 Horrat ratios of the Nicarbazin collaborative study after elimination of laboratories that did not follow the method in sufficient detail and the lab that did not send raw data

Mean ¹ (mg/kg)	Predicted	Established ²	Horrat ³	Conclusion
	rsd _R	rsd _R		
7308	4,193	8,2	1,95	Reproducibility OK

¹ = Laboratories 13, 19, 29, 30, 33 and 38 did not follow the method in sufficient detail; lab 23 did not send raw data. Results of these laboratories (italic figures) are not taken into account.

- ² = Corrected for the contribution of between-sample heterogeneity
- 3 = Horrat is the ratio between the established rsd_R and the predicted rsd_R

Figure 1: Mandel h and k plots of the results reported by the participants (all results)

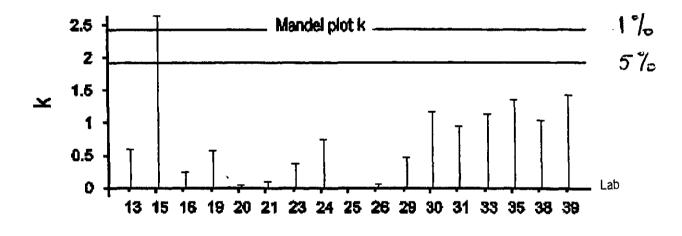
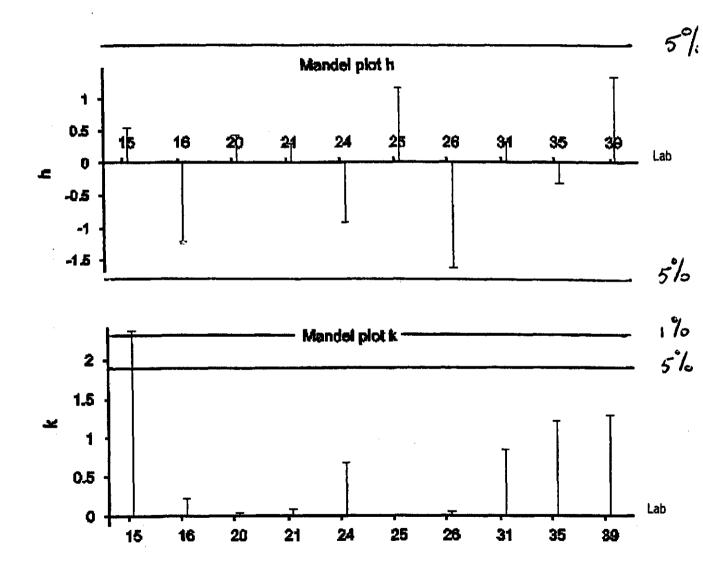



Figure 2: Mandel h and k plots of the results reported by the participants after elimination of laboratories 13, 19, 29, 30, 33 and 38 that did not follow the method in sufficient detail and lab 23 that did not send raw data

5.2 Recoveries

Table 9: Recoveries

Partner	Spiking level (mg/kg)	Recovery 1 in %	recovery 2 in %	recovery average in %
13	Not reported	100		100
15	100	98	98	98
16	116	99	100	100
19	75	93		93
20	200	100	100	100
21	100	98	100	99
23	Not reported	Not reported		
24	100	96	108	102
25	2,5 - 5 - 7,5 - 10 - 12,5	85	85	85
26	100	98		98
29	100	101	101	101
30	Not reported	Not reported		
31	100	97		97
33	125	101		101
35	20000	100	101	101
38	86,4	89	91	90
39	25000	101	102	102

Mostly, recoveries were close to 100 %. The lowest recovery reported was 85 % (lab 25). The results correspond to the results of within- and between-lab validation of the method (task 1 and 2 of the project) where recoveries >85 % were measured.

•

.

•

Table 10:	Remarks	made	by the	partners
-----------	---------	------	--------	----------

Partner	Remarks
13	Not reported
15	No remarks
16	No remarks
19	Weight of sample was 1,25 g in 250 ml extraction solution
20	Nicarbazin stock solution in DMF
21	No remarks
23	Not reported
24	No remarks
25	No remarks
26	We experienced no problems with the method. The extract of the premix was diluted 10
	and 20 times, because the level was unknown and to try and ensure that we did not have to repeat the work because the response was outside the range of the top calibrant standard.
29	We used a folded filter to filter the whole extract and then proceeded the microfiltration step?
30	No remarks
31	I think the use and the purity of the reference standard has to be mentioned in the method. Nicarbazin is analysed as dinitrocarbanilide (DNC). On the reference standard profile (Ely Lilly) is mentioned "69,9 % DNC", while in practice nicarbazin is calculated following the method. We calculated with a purity of 100 %, because it is assumed that nicarbazin is added to the sample with the same purity as the reference standard.
33	No remarks
35	No remarks
38	No remarks
39	No remarks

6 CONCLUSIONS

The results of the second collaborative study show that with the modified method for premixtures acceptable results are obtained for repeatability (rsdr). Evaluation of the experimental conditions applied by the laboratories showed that a number of laboratories did not follow the method in sufficient detail. Statistical evaluation of the data shows that this is very important: if the results of all laboratories are taken into account the reproducibility is unsatisfactory (rsd_R of 13,4 %; Horrat ratio of 3,21). If only the results are taken into account of the laboratories that applied the method in sufficient detail, an rsd_R of 8,2 % and a Horrat ratio of 1,95 is obtained.

The draft report, containing the evaluation of which laboratories applied the method in sufficient detail, was sent to the participants and the scientific officer for comments. No comments were received before the deadline of one month.

Consequently, it can be concluded that the reproducibility of the modified method is satisfactory and that the modified method is suitable for premixtures, provided that it is followed strictly. The following points seem to be of special importance:

- Weight of the premixture (1 g)
- Range of the calibration curve (1 10 mg/kg)
- Quality (correlation coefficient) of the calibration curve

From the results of the first collaborative study it was already concluded that the repeatability and reproducibility of the method for feedingstuffs was acceptable. The results obtained for the recovery and for the blind blank samples were also satisfactory.

The final method can be recommended for adoption as an official method and together with the results of the collaborative studies it will be sent to the European Commission (CEMA), CEN and ISO.

ACKNOWLEDGEMENTS

۰.

Financial support from the European Commission, DG Research, Standards, Measurements and Testing Programme (SMT) is gratefully acknowledged.

Eli Lilly and Company, Mr. S. Ready, is thanked for supplying the nicarbazin reference standard. Dr. H. van de Voet, Biometris, Wageningen University and Research Centre, is thanked for statistical advice.

APPENDIX 1

Letter with instructions, sent with the samples (with four annexes) and e-mails with additional information

.

.

Participants CANFAS collaborative study Nicarbazin

Dear colleague,

As agreed at the CANFAS evaluation meeting June 19th, 2001 at Tervuren a second round of collaborative study for nicarbazin in a premixture has to be organised. We appreciate your willingness to participate very much. Together with this letter you will find:

- 1 sample of premixture labeled with the text "additive: NICARBAZIN" and with a sample code. The sample contains nicarbazin in the range between 0.5 and 3%.
- the modified method of analysis (annex 1). <u>By participation you agree with</u> application of this method!
- the reporting form (annex 2). This form will also be send to you by E-mail as an Excel 5.0 file. We strongly prefer to get the results back in electronic form by Email; you are asked to use the e-mail address mentioned in the right margin of this letter.
- instructions for handling (storage) of the samples (annex 3).
- a questionnaire (annex 4). We kindly ask you to give us information about the experimental conditions, recoveries, etc.. On this form you can also give your remarks about the method.

The sample must be analysed in *duplicate*.

For recovery purposes we ask you to use a sample from your own collection. Because the reference standard that was sent to you in May 2000 by mr. Towell (Eli Lilly) has expired you receive together with the premixture a new Eli Lilly reference standard of nicarbazin, lot number X47623, that has to be used at the analyses.

The deadline for reporting the results is January 25, 2002.

We wish you and your colleagues the best with the collaborative study. If you have any questions, do not hesitate to contact us.

Kind regards,

DATE 13 December 2001

CANFAS collaborative nicarbazin (71316.24)

ENCLOSURE(S)

OUR REFERENCE 01/0030595

HANDLED BY Ing. J.J.M. Driessen

DIRECT ITELEPHONEI LINE +31 317 47 55 74

_{E-MAIL} j.j.m.driessen@rikilt.w

RIKILT

State Institute for Qua Control of Agricultural Products P.O.Box 230 6700 AB Wageningen The Netherlands

visitors' Address Building no. 123 Bornsesteeg 45 6708 PD Wageningen

TELEPHONE +31 317 47 54 00

+31 317 41 77 17

CHANNER OF COMMERCE REGISTR 09098104 to Arnhom

THE INTERNET www.sikiit.wagoningon

dr. J. de Jong CANFAS co-ordinator

ing. J.J.M. Driessen co-ordinator CANFAS collaborative studies

CANFAS/NIC/03102001/H.KEUKENS

Animal feeding stuffs and premixtures - Determination of NICARBAZIN - High-performance liquid chromatographic method.

1 SCOPE

This operating procedure specifies a method for the determination of the nicarbazin content in animal feeding stuffs and premixtures (maximum concentration 2.5 % nicarbazin) using high performance liquid chromatography. The limit of quantitation (LOD) determined in the pre-validation study was 20 mg/kg.

2 PRINCIPLE

Samples are extracted by heating in a waterbath, mechanical shaking and sonoration using an acetonitrile/methanol mixture. For feeding stuffs, also water is added. The mixture is transferred in a volumetric flask. After settlement of the solids, an aliquot is filtered and assayed using a reverse-phase isocratic method which measures the 4,4'dinitrocarbanilide (DNC) moiety at a wavelength of 350 nm.

3 REAGENTS

Use only reagents of recognised analytical grade. Use water complying with at least grade 3 in accordance with ISO 3696.

- **3.1** Acetonitrile, HPLC grade
- 3.2 Methanol, HPLC grade

3.3 Extraction solvent. Mix 500 ml of acetonitrile (3.1) with 500 ml of methanol (3.2). Mix well using a magnetic stir plate and stir bar.

3.4 Eluent for liquid chromatography. Mix 650 ml acetonitrile (3.1) with 350 ml of purified water. Mix well using a magnetic stir plate and stir bar and degas (e.g. with helium) before use.

3.5 Nicarbazin reference standard.

4 APPARATUS

Using laboratory apparatus and, in particular, the following:

4.1 High performance liquid chromatography system consisting of the following:

4.1.1 An autosampler or manual injector set to inject a volume of 20 μl.

4.1.2 A pump set to deliver a constant eluent flow rate of 1,0 ml/min

•

4.1.3 A column, length 300 mm, internal diameter 3.9 mm, packed with a stationary phase consisting of C-18 material. The particle size should not be smaller than 5 μ m and not greater than 10 μ m. (A Nova-Pak column is recommended, but also other columns can be used providing that a satisfactory separation of DNC is achieved).

4.1.4 A detector allowing the measurement of absorbance of UV light at a wavelength of 350 nm, with integrator/recorder.

4.2 Mechanical shaker (e.g. Gyratory shaker, wrist action shaker)

4.3 Micro filters for sample filtration, 0.2 - 0.5 µm

4.4 Mill to prepare laboratory samples with a maximum particle size of 1 mm

4.5 Ultrasonic bath

4.6 Waterbath, 50 °C

4.7 Disposable centrifuge tubes of 50 ml with a screw cap

5 PREPARATION OF THE SAMPLES

5.1 Test samples

The milling and mixing of compound feed samples prior to assay is obligatory. Grind feed samples through a mill (4.4) equipped with a 1 mm screen. After milling, mix the entire sample thoroughly. Store the sample at room temperature in subdued light. Premix samples are not milled.

5.1.1 Mixing of the test samples before weighing

The container should be filled to a maximum of 50 % of the total volume. Bring the container in a horizontal position and rotate bottom and top of the container in circles moving the container up and down along the virtual centre of the container for 30 seconds. Put the container in an upright position and wait a few seconds for settlement of the generated dust.

5.2 Spiked feed samples; 100 mg/kg

Transfer 2.5 ml of the stock standard solution (6.4.1.1) in the sample tube or flask. Evaporate to a small volume (less than 0.5 ml) with a gentle stream of nitrogen, add 2.5 g blank feed, mix thoroughly and wait 10 minutes before starting the extraction procedure by adding water for swelling (see 6.2.2).

6 PROCEDURE

6.1 General

Complete each assay within one working day.

6.2 Extraction

6.2.1 Premixtures

Weigh to the nearest 0.001 g, approximately 1.0 g of the test sample directly into a wide neck volumetric flask of 200 ml.

Add 80 ml of extraction solvent (3.3), close the flask and mix manually by swirling.

Put the flasks in a waterbath of 50 °C for 15 minutes with intermediate swirling at 8 minutes.

Mix thoroughly 15 minutes using a mechanical means (4.2).

Put the flasks in an ultrasonic bath (4.5) and sonorate for 15 minutes.

Cool down to room-temperature, adjust to volume with HPLC eluent (3.4) and mix.

Allow sample solids to settle (minimum 30 minutes).

If additional dilutions are required, dilute the samples with HPLC eluent (3.4) to a final nicarbazin concentration of ca 5 $\mu g/ml.$

Filter an aliquot of the final dilution through a micro filter (4.3) for analysis by HPLC.

6.2.2 Animal feeding stuffs

Weigh to the nearest 0.01 g, approximately 2.5 g (see remark 9.1) of the test sample into a 50 ml disposable centrifuge tube (4.7) or directly into a wide neck volumetric flask of 100 ml.

Add 5 ml of water. Take care that the whole sample is wetted.

Wait at least 10 minutes.

Add 35 ml of extraction solvent (3.3), close the tube or flask and mix manually by swirling.

Put the tubes or flasks in a waterbath of 50 °C (4.6) for 15 minutes with intermediate swirling at 8 minutes.

Mix thoroughly 15 minutes using a mechanical means (4.2).

Put the tubes or flasks in an ultrasonic bath (4.5) and sonorate for 15 minutes.

Transfer the sample extract if necessary quantitatively in a 100 ml volumetric flask with HPLC eluent (3.4), adjust to volume and mix.

If additional dilutions are required, dilute the samples with HPLC eluent (3.4) to a final nicarbazin concentration which falls within the standard curve levels.

Filter an aliquot of the final dilution through a micro filter (4.3) for analysis by HPLC.

6.3 Determination

6.3.1 Inject 20 μ I of the sample extract on to the column of the liquid chromatograph (4.1) and measure the area/height of the DNC peak.

6.3.2 Determine the nicarbazin concentration of the extract by reference to the mean of a calibration curve prepared as described in 6.4 and analysed before and after the sample extracts.

6.4 Calibration

6.4.1 Preparation of nicarbazin standard solutions

6.4.1.1 Nicarbazin stock standard solution, 100 µg/ml

Dissolve 10 mg, weighed to the nearest 0.1 mg, of nicarbazin reference standard (3.5) in 100 ml extraction solvent (3.3). To aid with dissolution, sonoration for approximately 5 minutes is recommended. Mix well. This solution is stable for 24 hours when stored in subdued light at ambient or refrigerated storage conditions (see remark 9.2).

6.4.1.2 Nicarbazin working standard solutions for feedingstuffs containing 50-250 mg/kg nicarbazin and for premixtures

Prepare a range of calibration working standards containing 0, 1, 2, 3, 4, 5 and 10 µg/ml nicarbazin by diluting the stock standard solution (6.4.1.1) with HPLC eluent (3.4). Working standards must be prepared daily.

6.4.1.3 Nicarbazin working standard solutions for feedingstuffs containing 20-50 mg/kg nicarbazin Prepare a range of calibration working standards containing 0; 0.25; 0.5; 1; 2 and 2.5 μg/ml nicarbazin by diluting the stock standard solution (6.4.1.1) with HPLC eluent (3.4). Working standards must be prepared daily.

7 EXPERSSION OF RESULTS

Calculate the nicarbazin content of the test sample by the equation:

$$W_{\rm E} = \frac{100 \, \rm x \, c}{\rm M}$$

Where:

 W_{E} is the numerical value for the nicarbazin content of the test sample in mg/kg

С is the numerical value of the nicarbazin concentration of the sample extract in $\mu g/ml$

- is the numerical value of the mass of the test sample, in g М
- F is the dilution factor introduced to prepare final sample extracts fitting with the standard curve levels

8 RECOVERY

The recovery obtained for compound feeds should be higher than 90 % at spike levels between 20 and 200 mg/kg.

9 REMARKS

9.1 Homogeneity

For relatively inhomogeneous compound feed samples, the weighed sample amount should be increased to 10 gram with simultaneous up-scaling of the volume of extraction solvent used.

Page 4 of 5

9.2 Solubility

The solubility of the nicarbazin reference standard in extraction solvent is critical. The nicarbazin concentrations in the prepared stock solutions must be monitored by use of a cuvet spectrophotometer as follows. Prepare a solution of 10 μ g/ml by diluting the prepared stock standard solution (6.4.1.1) with acetonitrile. Record a UV-Vis spectrum between 220 and 450 nm using a mixture of methanol/acetonitrile (5:95 v/v) as a reference solution. The maximum absorbance measured between 340 and 350 nm should be within a margin of +/- 5 % of the default value. The default value should be established in your own laboratory by preparing a stock standard solution in duplicate and monitoring the UV-Vis spectra as described above. The default value is the mean result of the duplicates.

9.3 Method characteristics

Precision, repeatability and reproducibility data will be included in the final version of the method description that will be prepared after completion of the collaborative study.

CANFAS COLLABORATIVE STUDIES - 2ND ROUND - NOVEMBER 2001

ANNEX 2 - Report form

			IFAS	
-				the official control of /e <u>s</u> (SMT4-CT98-2216)
Subtitle: Lab-name:	Task 4 COLL	ABORATI		2nd round
Contact person:			e-mail: fax: telephone:	
Date of analysis:				
Analyte:		IICARBAZI	N interesting station]
Product:	Premixture			_
	Unit Sample code	Result 1 (mg/kg)	Result 2 (mg/kg)	
				J

CANFAS COLLABORATIVE STUDIES DECEMBER 2001 - NICARBAZIN

Annex 3 - Instructions for handling of the premixture sample

1. Storage

Store the sample at room temperature until analysis

۰.

2. Milling (see par. 5.1)

• The sample must not be milled

3. Mixing of the test sample before weighing (see par. 5.1)

Bring the container in a horizontal position and rotate bottom and top of the container in circles moving the container up and down along the virtual centre of the container for 30 seconds.

Put the container in an upright position and wait a few seconds for settlement of the generated dust.

CANFAS COLLABORATIVE STUDIES DECEMBER 2001 - NICARBAZIN

Annex 4 - Questionnaire

Laboratory:
Contact person:
Date(s) of analysis:
Dilution factor of the sample:
Premixture:
Chromatographic conditions:
Column:
As described in the method
• Other:
Mobile phase:
As described in the method
Other:
Flow-rate: ml/min
• Injection volume:
Retention time of nicarbazin: min
Chromatograms: Please include representative chromatograms of:

•

1

• Premixture

Please indicate the nicarbazin peak with an arrow

Recovery results:

- Percentage recovery: %
- Single / duplicate determinations: single duplicate
- If duplicate, please give both percentages: % and %
- Spiking level: mg/kg

CANFAS COLLABORATIVE STUDIES DECEMBER 2001 - NICARBAZIN

Remarks /Comments (if necessary, continue on another page) ;		
•••••••••••••••••••••••••••••••••••••••		
•••••••••••••••••••••••••••••••••••••••		
*		

Please complete this questionnaire and return it together with representative chromatograms to:

Ing. J.J.M. Driessen RIKILT P.O. Box 230 6700 AE Wageningen The Netherlands Fax +31-317-417717

Thank you for your cooperation !

Oorspronkelij	jk bericht
Van:	Driessen, ing. J.J.M.
Verzonden:	vrijdag 18 januari 2002 11:43
Aan:	Antalick, J; Biancotto, Giancarlo; Brambilla, Gianfranco; Checa-Moreno, Ramon; Cowles, John; Faggionato,
	Elena; Felgueiras, Ilidia; Fontaine, André; Haustraete, Karel; Henk van der Karnp; Margry, Rob; Nunes Costa, José; Schreuder, Cor; Schwadorf, Klaus; Testa, Cecilia; Thalmann, Alfred; Ubaldi, Alessandro; Van Schalm, Klaas; Wehage, Hubert
CC:	Jong, Dr. J. de
Onderwerp:	Additional information 2nd coll. study Nicarbazin
Urgentie:	Hoog

Dear participant,

Our covering letter 30595 of December 13th, 2001 concerning the second interlaboratory study for nicarbazin in a premixture lacks an instruction for the calculation of the results with respect to the reference standard. In the calculations the reference standard should be regarded as 100% pure.

Those who sent already their results: please take note of this information; when the results have to be reconsidered send me please the corrected results.

~

We apologize for this inconvenience and for the confusion it might have caused.

Best regards, Jaap Driessen Coordinator CANFAS collaborative study Date: Mon. 07 Jan 2002 12:20:28 +0100 From: "Tomassen, ing. M.J.H." < M.J.H.Faassen-Tomassen@RIKILT.DLO.NL> Subject: CANFAS - collaborative study Nicarbazin "rob.margry@ccl-nutricontrol.nl" <rob.margry@ccl-nutricontrol.nl>, To: "jp.antalick@ieeb.fr" <jp.antalick@ieeb.fr>, "Ilidia.Felgueiras@mail2.ineti.pt" <Ilidia.Felgueiras@mail2.ineti.pt>, "g.brambi@iss.it" <g.brambi@iss.it>, "efaggionato@bs.izs.it" <efaggionato@bs.izs.it>, "aubaldi@rm.izs.it" <aubaldi@rm.izs.it>, "ctesta@sardegna.izs.it" <ctesta@sardegna.izs.it>, "biancobina@izsvenezie.it" <biancobina@izsvenezie.it>, "bioguim@moebius.es" <bioguim@moebius.es>, "jose.costa@Iniv.min-agricultura.pt" <jose.costa@Iniv.min-agricultura.pt>. "'thalmann@lufa.bwl.de™ <thalmann@lufa.bwl.de>, "wehage@lufa-itl.de" <wehage@lufa-itl.de>, "Klaas.van.Schalm@nutreco.com" <Klaas.van.Schalm@nutreco.com>. "CSchreuder@premervo.nl" <CSchreuder@premervo.nl>, "karel.haustraete@cmlag.fgov.be" <karel.haustraete@cmlag.fgov.be>, "schwadorf@lachemie.uni-hohenheim.de" <schwadorf@lachemie.uni-hohenheim.de>, "Kamp, H.J. van der" <H.J.vanderKamp@RIKILT.DLO.NL> Cc: "J.dejong@rikilt.wag-ur" <J.dejong@rikilt.wag-ur>, "jrc@lgc.co.uk" <jrc@lgc.co.uk>

Dear participant,

Thanks to John Cowles we found out an error in the calculation of the nicarbazin content of the test sample (annex 1, the modified method of analysis, page 4, paragraph 7).

The formula given is fine for animal feeds where the volume of extractant is 100 ml, but for premixes the factor has to be 200, because the volume of extractant is 200 ml.

so, the fomula has to be: WE = $200 \times c \times f / M$

For those who have already sent in their results: Will you please check if you used the correct factor (200). Will you please confirm if you used factor 200. If you used the wrong factor, will you please send the new results calculated with factor 200? Please send the results to Jaap Driessen.

Thanks in advance,

Kind regards, Marinka Tomassen.

Composition and homogeneity of the premixture

۰.

CANFAS, 2nd coll. Andry Najaar 2001 Samenstelling premix met nicerbarin (0,75%)

Inclusion percentage :

0.250%

Calculated analysis:

Name	Per kg premix		Per kg end product	
	. . .			
Bushelweight	+1.211	kg	+0.003 kg	
Vitamin A	+3600000.000	ĪĔ	+9000.000 IE	
Vitamin D3	+800000.000	IE	+2000.000 IE	
Vitamin E	+4800,000	ĨĒ	+12.000 IE	
Vitamin K3	+400.000	mg	+1.000 mg	
Vitamin B1	+200.000	ng	+0.500 mg	
Vitamin B2	+1600.000	mg	+4.000 mg	
Pantothenic acid	+4000.000		+10.000 mg	
		mg		
Niacin	+8001.000	mg	+20.003 mg	
Biotin	+12000.000	mcg	+30.000 mcg	
Sitamin B12	+6000.000	mcğ	+15.000 mcg	
Tolic acid	+600.000	mg	+1.500 mg	
Vitamin B6	+1000.000	mg	+2.500 mg	
Cholin Chlorid	+120001.000	mg	+300.003 mg	
Iron	+14001.000	mg	+35.003 mg	
Copper	+4000.000	mg	+10.000 mg	
Zinc	+20001.000	mg	+50.003 mg	
Manganese	+28000.000	ng	+70.000 mg	
Cobalt	+200.000	mg	+0.500 mg	
Iodine	+320.000	mg	+0.800 mg	
Selenium	+80.100	mg	+0.200 mg	
Cd Max.	+1.504	mg	+0.004 mg	
Pb Max.	+39.049	ng	+0.098 mg	
Apocarothenester	+800.000	ng	+2.000 mg	
Antiox E310, 320, 321	+20000.000	mg	+50.000 mg	
Crude protein	+80.538	g	+0.201 g	
Crude protein Crude fat	+0.265	g	+0.001 g	
Crude fiber	+19.183	g	+0.048 g	
Ash	+759.000	g	+1.898 g	
Moisture content	+14.798	ບລຸດທຸດທຸດທຸດທຸດທຸດ ທຸດ	+0.201 g +0.001 g +0.048 g +1.898 g +0.037 g +0.000 g +0.000 g +0.000 g +0.000 g +0.000 g +0.000 g +0.000 g +0.000 g +0.042 g +0.042 g +0.042 g +0.042 g +0.042 g +0.042 g +0.042 g +0.048 g +0.000 g +0.0000 g +0.00000 g +0.0000 g +0.0000 g +0.0000 g +0.0000 g +0.0000 g +0.00000 g +0.00000 g +0.00000 g +0.00000 g +0.00000000000000000000000000000000000	
Lysin	+0.012	g	+0.000 g	
Methionin	+0.005	g	+0.000 g	
Methionin+Cystin	+0.011	g	+0.000 g	
Threonin	+0.010	g	+0.000 g	
Tryptophan	+0.004	g	+0.000 g	
foleucin	+0.010	g	+0.000 g	
Carch Ewers	+16.622	g	+0.042 g	
Sugar	+0.097	g	+0.000 g	
Sugar/Starch	+16.727	g	+0.042 g	
Calcium Total	+226.463	g	+0.566 g	
Phosphorus Total	+0.021	g	+0.000 g	
Potassium Total	+0.031	g	+0.000 g	
Sodium Total	+1.049	g	+0.003 g	
Chlorid Total	+30.688		+0.077 g	
oP'97 plv oP'97 leg	+0.006	g	+0.000 g	
oP'97 leg	+0.006	g	+0.000 g +0.007 kcal	
OE slk	+2.640 }	cal	+0.007 kcal	
OE leg	+3.783 k	cal	+U.UU9 KCal	
V.LysPLV	-0.358	g	-0.001 g	
V.MetPLV	-0.143	ġ	+0.000 ĝ	
V.M+CPLV	-0.432	ាជាជា	+0.000 ğ -0.001 g	
V.ThrPLV	-0.360	ĝ	-0.001 g	
V.TryPLV	-0.070	q	+0.000 g	
Liters	+1.033 1	./kg	+0.003 l/kg	
HOUDBAARHEID: zie eti	ket of geleided	locume	nt.	

VERWERKING: zie FARMIX-instruktie "Veilig werken met voormengsels."

7.59

mica basine

3 kg + 90f Carlipam.

ontv 28/09

CANFAS

Development and Validation of HPLC-methods for the official control of <u>C</u>occidiostats and <u>An</u>tibiotics used as <u>Feed Additives</u> (SMT4-CT98-2216)

Homogeneity test 2nd collaborative study

Additive :

J.

9/0

Product :

Nicarbazin Premixture: 0.75%

	Date of determinatio	on: C	October 9 th , 200)1	
				Duplicate	
	Sample		Content	average	
			(%)	%	
	314201-a		0,735	0,74	7
	314201-b		0,746		
	314211-a		0,698	0,73	
	314211-b		0,755		
	314219-a		0,779	0,73	1
	314219-b		0,681		
	314204-a		0,680	0,70	
	314204-b		0,713		
	314216-a		0,619	0,64	1
	314216-b		0,659		
	314221-a		0,701	0,71	1
	314221-b		0,711		
	314215-a		0,744	0,73	
	314215-b		0,716		
	314228-a		0,672	0,70	
	314228-b		0,726		
	314222-a		0,752	0,71	
	314222-b		0,662		
	314206-a		0,723	0,74	1
	314206-b		0,764	·	1
Har		01/			
Homogeneity		OK			
Crtiterion : CV _{between} = < 7%	6				
Average				0,73	
SD (between samples))			0,046	
CV (between samples))			6,2%	Result Grubb's test
Grubb's test, single lov	/ Nor			2,143	no outlier
Grubb's test, single up				0,989	no outlier
Grubb's test, double io	wor			0,2330	no outliers
Grubb's test, double to				0,7284	no outliers
Grubb's test, double up	pper			0,7204	no outliers
Repeatability					
••••					
SD (within samples)		-	(sd _r)	0,038	
CV (within samples)		(CV (%))	5,2	

1.011

Sample codes

•

•

Sample codes supplied to the participants in the nicarbazin collaborative study 2nd round

Lab	Sample
13	134229
15	154225
16	164223
19	194232
20	204218
21	214213
23	234214
24	244208
25	254220
26	264217
29	294226
30	304224
31	314212
33	334203
35	354230
38	384202
39	394210

•

Nicarbazin reference standard profile

۰.

CONFIDENTIAL DISTRIBUTION TO LILLY PERSONNEL ONLY

ELI LILLY AND COMPANY PRODUCT DEVELOPMENT OPERATIONS DIVISION

REFERENCE STANDARD PROFILE

<u>Effective Date</u>: October 29, 2001
 <u>Expiry Date</u>: October 28, 2004

* Supersedes Date: October 9, 1998

<u>Name</u>: Nicarbazin <u>Lot Number</u>: X47623 <u>Defined Potency</u>: 69.6% 4,4'-Dinitrocarbanilide on an "as is" basis; 27.0% 4,6-Dimethyl-2-pyrimidinol on an "as is" basis

- * <u>Handling</u>: Refer to current MSDS for handling and caution information. <u>Storage</u>: Tightly closed amber glass bottle at room temperature, 15 to 30 C.
- * Evolution: Lot X47623 was reevaluated in September 2001.

Tests

- (x) HPLC Assay (QA322A)
- (x) HPLC Assay (Method AM-AA-CA-J063-AB-755)

HPLC Scan, High/Low (Conditions of Method B00271)

*HPLC Scan, High/Low (Conditions of Method B05511)

- *HPLC Scan, High/Low (Conditions of Method AM-AA-CA-J063-AB-755) Elemental Analysis
- (x) *X-ray Pattern (USP 24, 941)
- (x) *IR Spectrum (USP 24, 197K)

<u>Results</u>

69.6% 4,4'-dinitrocarbanilide, 98.2% of theory vs. previous nicarbazin standard; RSD=0.51% (n=6)

27.1% 4,6-dimethyl-2-pyrimidinol, 93.1% of theory, vs. previous nicarbazin standard; RSD=2.36% (n=4)

0.80% total related substances detected (n=3)

0.35% total related substances detected (n=3)

1.07% total related substances detected (n=3)

C: Theory=53.52%; Found=52.90%

H: Theory=4.26%; Found=4.21%

N: Theory=19.71%; Found=19.88%

O: Theory=22.51%; Found=20.70%

(n=1)

Pattern compares favorably to the previous standard pattern for this lot; material is crystalline (n=1)

The FT-IR spectrum compares favorably with that of the previous spectrum for this lot (n=1)

Compound: 093760 Revision: 11

Page 2 Nicarbazin

(x)	1H NMR Spectrum (Method RP1, DMSO-d6)	The 1H spectrum is consistent with the structure and compares favorably to previous spectra (n=1)
	Mass Spectrum	Spectrum compares favorably to previous spectrum (n=1)
	DTA (Method RP7)	The thermograms show an endotherm at 270 C followed by an exotherm at 292 C (n=3)
	TGA (Method RP9)	The thermogram shows no weight loss until 134.6 C where a loss begins which results in a continuous loss through decomposition (n=1)
	Water, KF (GP0032)	0.12 % (n=2)
	*LOD (Method B00272)	1.19 % (n=2)
	Residue on Ignition (QA322A)	0.07 % (n=1)

Note: (x) indicates the standard material is approved for use as a reference for the test.

4,4'dinitrocarbanilide is compound 015595. 4,6-dimethyl-2-pyrimidinol is compound 023948.

* Revised September 13, 2001

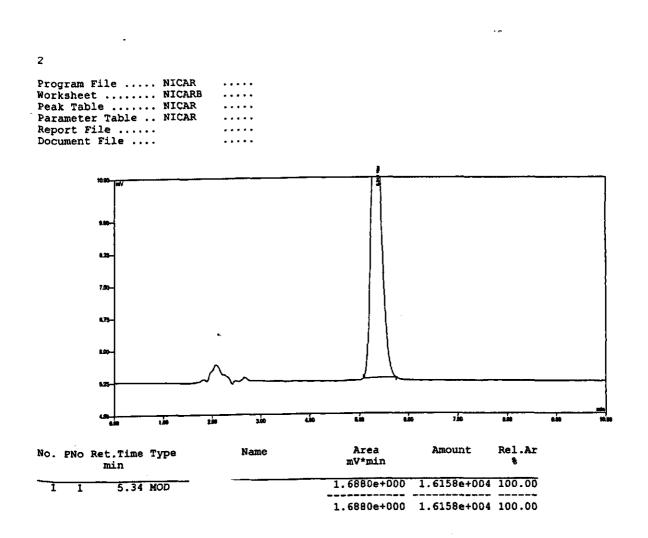
Beverly J. Krabel

Revision 11

Table with results and chromatograms

of partner 13

•.


ANNEX 2 - Report form

		<u>CAN</u>	FAS	
	· · · · · · · · · · · · · · · · · · ·			
Development an	d Validation o	of HPLC-m	ethods for t	he official control of
<u>C</u> occidiostats ar	nd <u>An</u> tibiotics	used as <u>F</u>	eed <u>A</u> dditiv	e <u>s</u> (SMT4-CT98-2216)
Subtitle:	Task 4 COLL	ABORATIV	E STUDY - 2	2nd round
Lab-name:				
Contact person:			e-mail:	
			fax:	
Date of analysis:			telephone:	
,,				
Analyte:		IICARBAZIN		
Product:	Premixture			
		Desuit 4	Result 2	,
	Unit	Result 1 (mg/kg)	(mg/kg)	
	Sample code			
	134229	8829	9148	

5

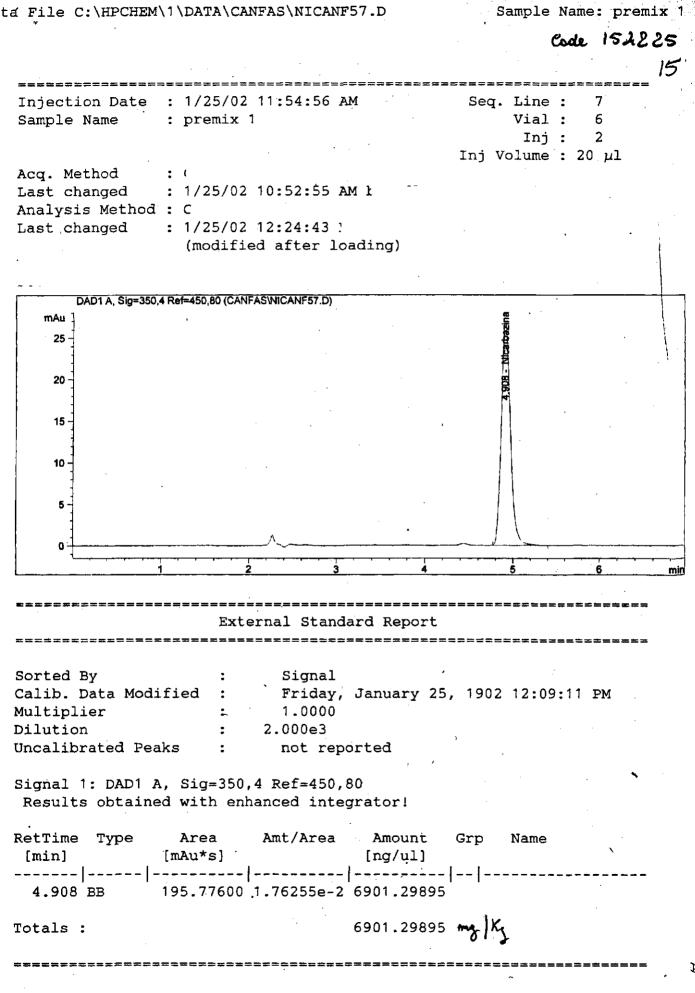
•

Channel 2

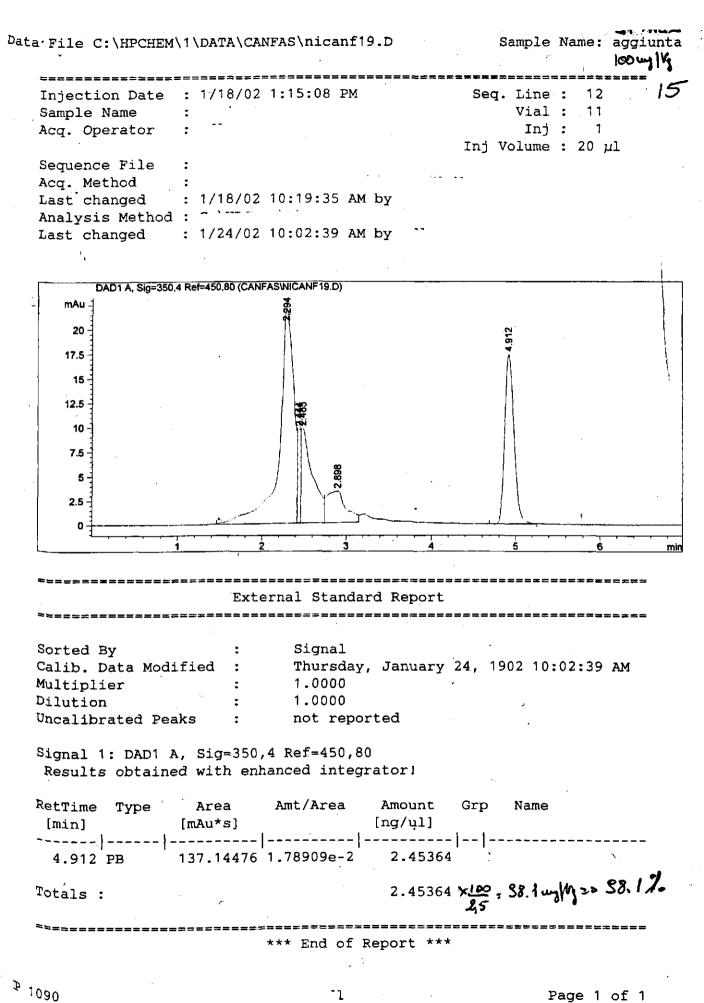
-

Table with results, questionnaire (page 1) and chromatograms

of partner 15


۰.

ANNEX 2 - Report form


)evelopment an	d Validation o	of HPLC-me	ethods for t	he official control of
<u>Coccidiostats ar</u>	nd <u>An</u> tibiotics	used as <u>F</u>	eed <u>A</u> dditiv	e <u>s</u> (SMT4-CT98-2216)
Subtitle: Lab-name:	Task 4 COLL	ABORATIV	E STUDY - 2	2nd round
Contact person:			e-mail:	
			fax:	
Date of analysis:	25,01,2002		telephone:	
Analyte:		IICARBAZIN]
Product:	Premixture			
	Unit Sample code	Result 1 (mg/kg)	Result 2 (mg/kg)	
	154225	6908	8317	

CANFAS COLLABORATIVE STUDIES DECEMBER 2001 - NICARBAZIN	•
Annex 4 - Questionnaire	:
Laboratory: 1	•••••
Contact person:	
X	•
Date(s) of analysis:	
Dilution factor of the sample: Premixture: 18 in 200 me + 1200 me + 6.00 me - D.2 Free	2000 A 000
Chromatographic conditions:	
Column:	
 □ As described in the method → Sother: Tue enisic obs-2. 5 µm x 250 mm 	
Mobile phase:	
As described in the method	:
• 🖸 Öther:	
Flowrate:	•
hjection volume:	•
Retention time of nicarbazin: A.S min	
Diomatograms: Please include representative chromatograms of:	
Premixture	
Please indicate the nicarbazin peak with an arrow	
	1
ecovery results:	ł
Parcantaga recovery %	:

- Single / duplicate determinations: I single X duplicate If duplicate, please give both percentages: 98.2 % and 98.2/%

1090

-1

Table with results, questionnaire (page 1) and chromatograms

of partner 16

٠.

CANFAS COLLABORATIVE STUDIES - 2nd round - December 2001

ADDITIVE: NICARBAZIN

Annex 4 - Questionnaire

Laboratory:

Contact person:

Person(s) doing analysis of this collaborative study:

Date(s) of analysis: December 20., 2001

Chromatographic conditions:

- Column:

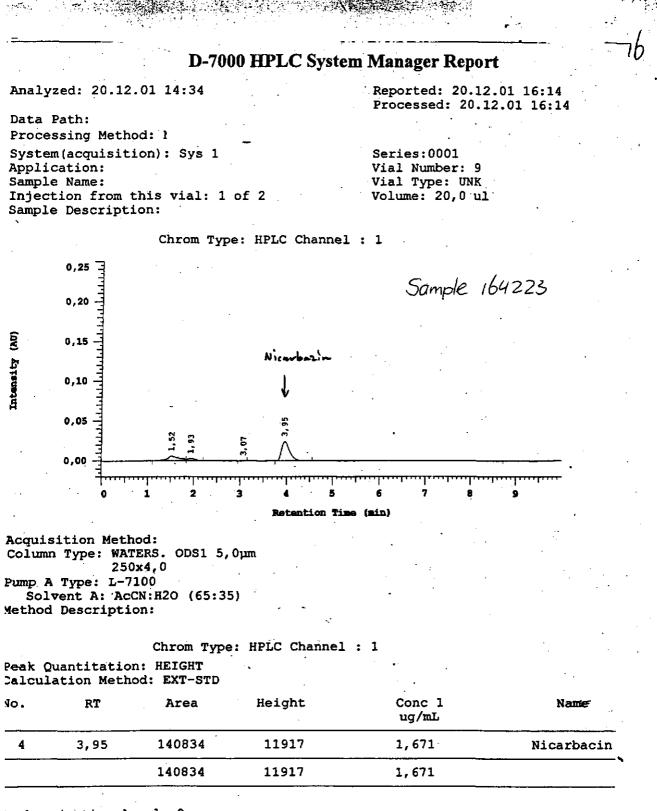
 - x Other: Waters-Spherisorb ODS1, 5 μm, 250 x 4 mm
- Mobile phase:
 - x As described in the method
 - Other:

- Flow-rate: 1 mi/min
- Injection volume: 20 µl
- Retention time of olaquindox: about 4 min

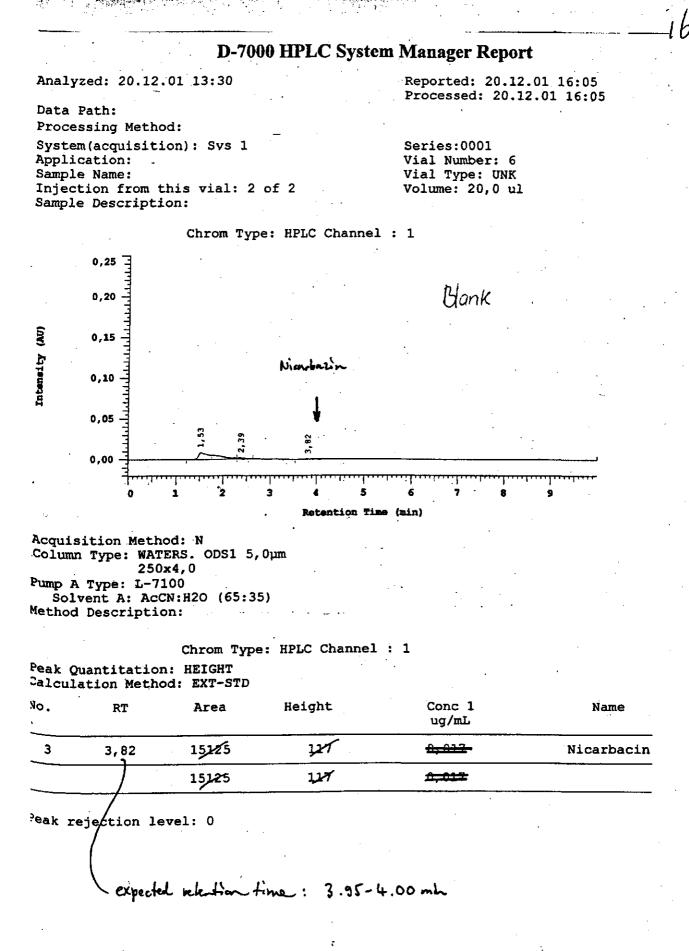
Chromatograms: Please include representative chromatograms of:

- Blind positive feed samples
- Blind blank feed sample

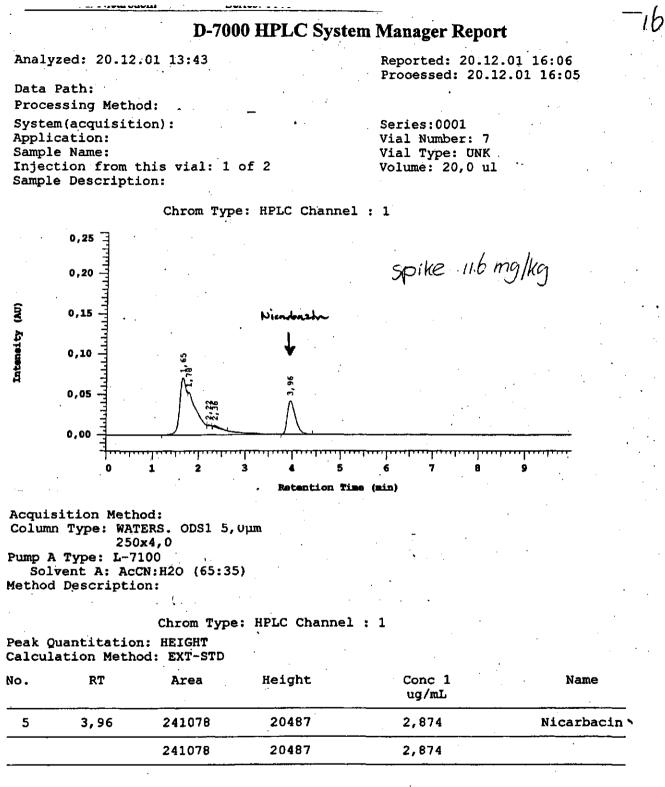
Please indicate the olaquindox peak with an arrow


Recovery results:

- Percentage recovery: 99.4 %
- Single / duplicate determinations:


 I single x duplicate
- If duplicate, please give both percentages: 99.02 and 99.73 %
- Spiking level: 116 mg/kg

ANNEX 2 - Report form


			IFAS		
/ • • • • • • • • • • • • • • • • • • •					
-				the official control of	
<u>Coccidiostats ar</u>	nd <u>An</u> tibiotics	used as <u>F</u>	eed <u>A</u> dditiv	es (SMT4-CT98-2216))
Subtitle:	Task 4 COLL	ABORATI	/E STUDY - ;	2nd round	
Lab-name: Contact person:			e-mail:		
Sontact person.			fax:		
Data of analysis	D 00 0001		telephone:		
Date of analysis:	Dec. 20, 2001				
Analyte:		IICARBAZI	Ň]	
Product:	Premixture				
	1 Junit	Result 1	Result 2]	
	Unit Sample code	(mg/kg)	(mg/kg)		
· · · · · · · · · · · · · · · · · · ·	164223	6706	6572	1	

Peak rejection level: 0

1/1 Page Indicator

Peak rejection level: 0

Page Indicator 1 / 1

Table with results, questionnaire (page 1) and chromatograms

of partner 19

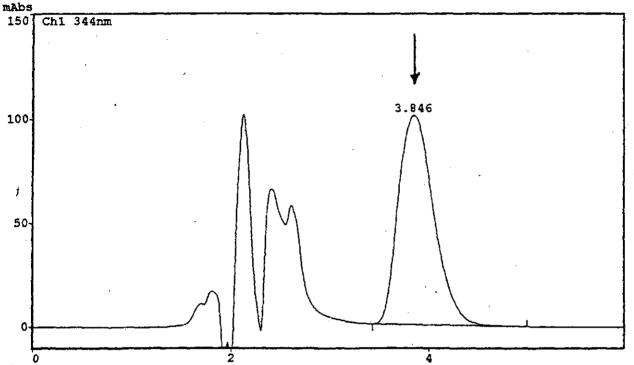
٨

ANNEX 2 - Report form

		<u>CAN</u>	FAS	
		**		
Development an	d Validation o	f HPLC-me	ethods for	the official control of
<u>Coccidiostats ar</u>	nd <u>An</u> tibiotics	used as <u>F</u>	eed <u>A</u> dditiv	ve <u>s</u> (SMT4-CT98-2216)
Subtitle:	Task 4 COLL	ABORATIV	E STUDY - :	2nd round
Lab-name:				1
Contact person:		-	e-mail:	
			fax:	
Date of analysis:	23-01-2002		telephone:	L
Analyte:	i de la composición de N	ICARBAZIN]
Product:	Premixture			
		Result 1	Result 2	1
	Unit	(mg/kg)	(mg/kg)	
	Sample code		.	4
	194232	7043	7350	2

CANFAS COLLABORATIVE STUDIES DECEMBER 2001 - NICARBAZIN

1(


Annex 4 - Questionnaire

Laboratory:	
Contact person:	
Date(s) of analysis:21.12	
Dilution factor of the sample:	
• Premixture:	
Chromatographic conditions:	
Column:	
• As described in the method	
• B Other:ChronspherC.	DI. DT. 92
Mobile phase:	
 As described in the method 	
• 🗆 Other:	
• Flow-rate:	
• Injection volume:\$	
• Retention time of nicarbazin: .3.9 min	
Chromatograms: Please include represent	ative chromatograms of:
Premixture	

Please indicate the nicarbazin peak with an arrow

Recovery results:

- Percentage recovery: .٩.3.. %
- Single / duplicate determinations:
 single □ duplicate
- If duplicate, please give both percentages: % and %
- Spiking level:}\$.... mg∕kg

min

19

Table with results, questionnaire (page 1) and chromatograms

of partner 20

ANNEX 2 - Report form

		<u>CAN</u>	FAS	:	
Development an	d Validation of	HPLC-m	ethods for t	he official c	ontrol of
<u>C</u> occidiostats a	nd <u>An</u> tibiotics ı	used as <u>F</u>	eed <u>A</u> dditiv	e <u>s</u> (SMT4-C	Г98-2216)
Quilitities	Teek (COUL		C OTUDY (امحد مع	
Subtitle: Lab-name:	Task 4 COLLA	BURATIV		na rouna	
Contact person:			e-mail:		
•			fax:		
_ /			telephone:		
Date of analysis:	23-01-2002				
Analyte:	NI	CARBAZIN	l en la compañía de l		
•	······································			ł	
Product:	Premixture				
		Result 1	Result 2		
	Unit	(mg/kg)	(mg/kg)		
	Sample code				
	204218	7534,4	7554,4		

CANFAS COLLABORATIVE STUDIES DECEMBER 2001 – NICARBAZIN

Annex 4 – Questionnaire

Laboratory:

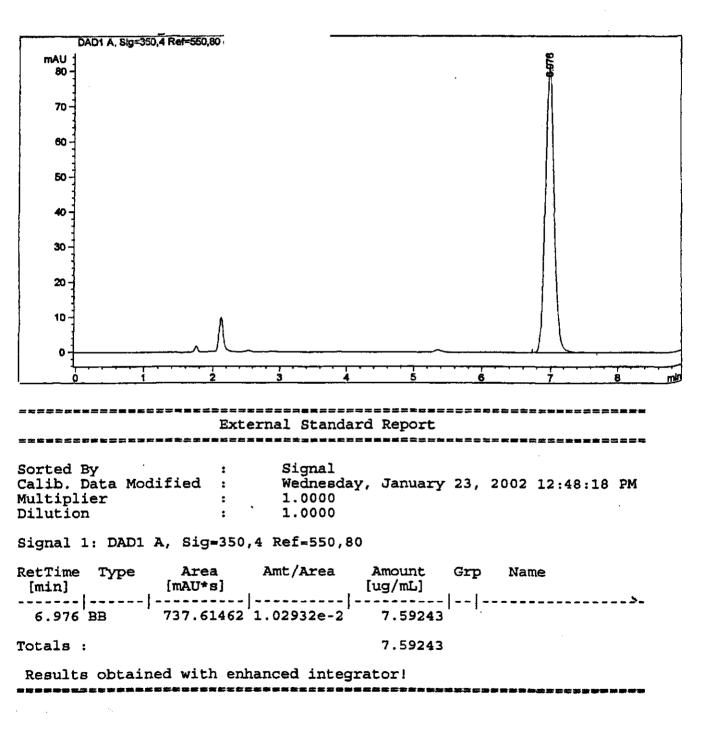
Contact person:

Date of analysis: 23/01/2002

Dilution factor of the sample:

• Premixture: 1:5

Chromatographic conditions:


- Column:
 - \Box As described in the method
 - ✓ Other: Alltima C18 250x4.6 mm, 5 μm
- Mobile phase:
 - **As described in the method**
 - DOther
- Flow rate: 1.0 ml/min
- Injection volume: 20 µl
- Retention time of nicarbazin: min

Chromatograms: Please include representative chromatograms of:

- Premixture
- Nicarbazin working standard solution

Recovery results:

- Percentage recovery: 100.02 %
- Duplicate determination: 99.92 % and 100.13 %
- Spiking level: 200 mg/Kg

Table with results, questionnaire (page 1) and chromatograms

of partner 21

٠

ANNEX 2 - Report form

<u>CANFAS</u>

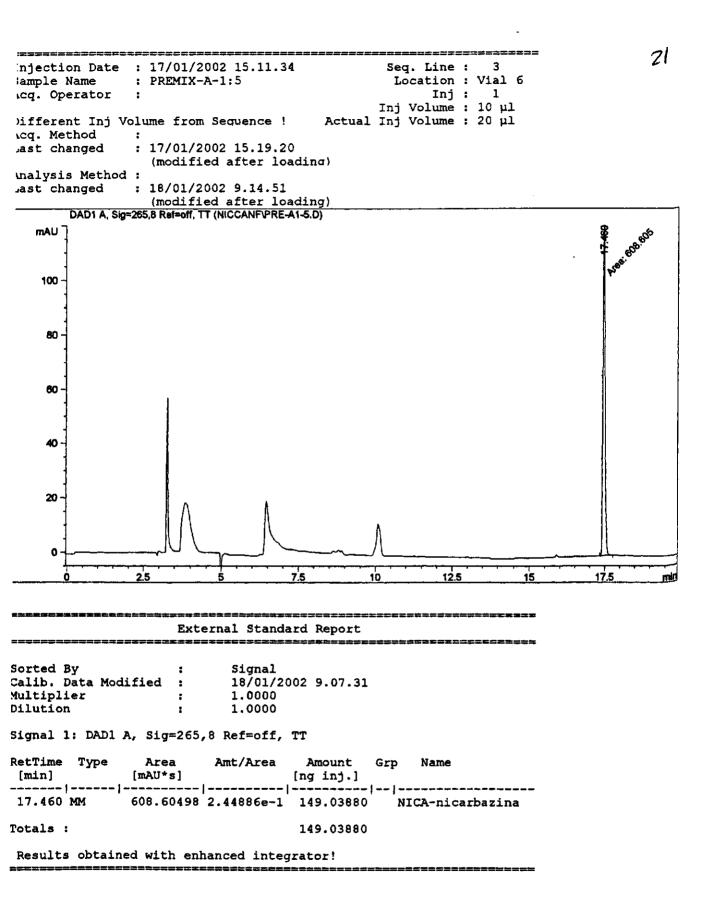
Development and Validation of HPLC-methods for the official control of <u>C</u>occidiostats and <u>An</u>tibiotics used as <u>F</u>eed <u>A</u>dditive<u>s</u> (SMT4-CT98-2216)

Subtitle: Lab-name:	Task 4 COLL	ABORATIVE	STUDY - 2	2nd round I
Contact person:		f	e-mail: ax: elephone:	
Date of analysis:	17-01-2002	ı	elepitorie.	
Analyte:	N	IICARBAZIN]
Product:	Premixture			
	Unit Sample code	Result 1 (mg/kg)	Result 2 (mg/kg)	
	214213	7450	7500	

CANFAS COLLABORATIVE STUDIES DECEMBER 2001 - NICARBAZIN

Annex 4 - Questionnaire

Laboratory:		
Contact person:	······································	•••••
Date(s) of analysis:	1 2002	
Dilution factor of the sample:		
• Premixture: <u>1:5</u>	(dilution with elucul for	v lifuid durous Toprephy)
Chromatographic conditions:		
• Column:		
 ■ As described in the describ	ne method -1 LC-18 (25au × 4,6u w 12) +	SUREL GUARD LC-18 (20m × 46 mm)
Mobile phase:	, i i i i i i i i i i i i i i i i i i i	. 1.5
	e method 1 - Ammonium Acedate B	effex 0017 144,6 (with ELUTION
Flow-rate:	in GRADIENT	ELUTION ACCOR
Injection volume:		
Retention time of nicarbazin:	At. 4 min	


Chromatograms: Please include representative chromatograms of:

Premixture

^{Please} indicate the nicarbazin peak with an arrow

Recovery results:

- Percentage recovery: 7.9, 9 %
- Single / duplicate determinations: D single & duplicate
- If duplicate, please give both percentages: 98.. % and 99.6 %
- Spiking level: 100 mg/kg

Table with results, questionnaire (page 1) and chromatograms

of partner 23

-

۹.

· .

ANNEX 2 - Report form

<u>CANFAS</u>

Development and Validation of HPLC-methods for the official control of <u>Coccidiostats and Antibiotics used as Feed Additives</u> (SMT4-CT98-2216)

Subtitle:	Task 4 COLLABORATIVE STUDY - 2nd round					
Lab-name:	D-24116 Kiel					
Contact person:			e-mail: fax: telephone:			
Date of analysis:	21-01-2002			une a <u>rana ana ana ana ana ana</u>		
Analyte:		IICARBAZIN				
Product:	Premixture					
	Unit Sample code	Result 1 (mg/kg)	Result 2 (mg/kg)			
	234214	7300	7100			

4

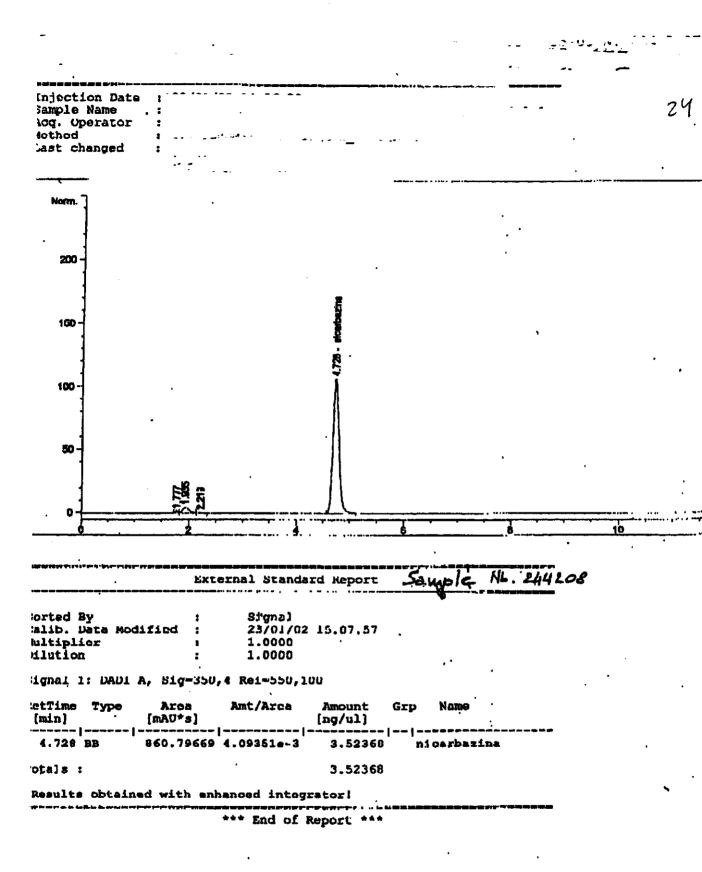
Table with results, questionnaire (page 1) and chromatograms

of partner 24

. .

•

Ń


.

		<u>CAN</u>	FAS	
-				he official control of e <u>s</u> (SMT4-CT98-2216)
4 7 - 11 - 1 2 - 12 - 12 - 12 - 12 - 12 - 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, p. 2. 1. 1. 2. 1. 2. 0. 1. 0. 1. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0	
Subtitle:	Task 4 COLL	ABORATIV	E STUDY - 2	2nd round
Lab-name: Contact person:			e-mail:	
			fax: telephone:	
Date of analysis:	23rd Jan 2002			
Analyte:	N	ICARBAZI		
Product:	Premixture			
	Unit	Result 1 (mg/kg)	Result 2 (mg/kg)	
	Sample code			
	244208	6600	7000	

Annex 4 - Questionnaire

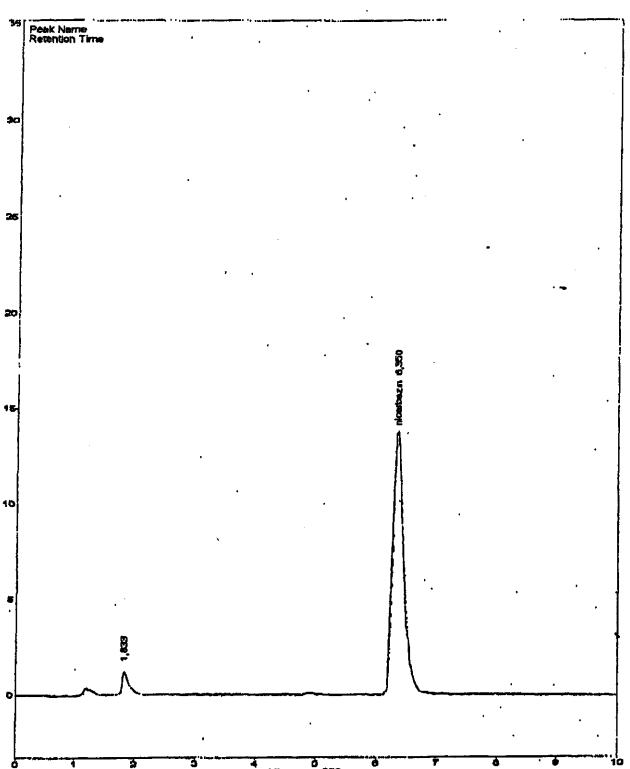
	Laboratory:
ł	Contact person:
1	Date(s) of analysis: 23 January 2002
-	
I	Dilution factor of the sample;
•	Premixture: 2000
2	trunatographic conditions:
	Column:
	 As described in the method X Other:
٠	Mobile phase:
	XAs described in the method
	• D Other:
٠	Flow-rate:
•	Injection volume:
٠	Retention time of nicarbazin: . I. I. min
CI	romatograms: Please Include representative chromatograms of:
•	Premixture
Pla	ease indicate the nicarbazin peak with an arrow
Ke	covery results:
•	Percentage recovery: I. K
٠	Single / duplicate determinations: 🗆 single 🗶 duplicate
•	If duplicate, please give both percentages:

• Spiking level: .1.99... mg/kg

1

Table with results, questionnaire (page 1) and chromatograms

of partner 25


٠

Δ.

		CAN	IFAS	· · · · · · · · · · · · · · · · · · ·	
Development	d Validation a				control of
Development an Coccidiostats an					
Subtitle: Lab-name:	Task 4 COLL	ABORATI	/E STUDY - 2	2nd round]	
Contact person:			e-mail: fax:		
Date of analysis:	00-01-1900		telephone:		
Analyte:		IICARBAZI	N]	
Product:	Premixture				
	Unit	Result 1 mg/kg	Result 2 mg/kg		
	Sample code 254220	7950	7950		

Annex 4 - Ouestionnaire Laboratory: Contact person: '..... 23/4/2002 Date(s) of analysis: Dilution factor of the sample: Premixture: ------Chromatographic conditions: Column: C As described in the method . prouver: Lichtercally 250-6 Lichtrospher 100 RT 18 (5 jum) . Mobile phase: □ As described in the method
✓ Other:H, 0 / ACN 80% 30/20 1/v Retention time of nicarbazin: .635. min Chromatograms: Please include representative chromatograms of: Premixture Please Indicate the nicarbazin peak with an arrow Recovery results: Percentage recovery: .85.. % Single / duplicate determinations: D single, & duplicate Spiking level: mg/kg 25-5-75-10-125

1

ð 350 nm

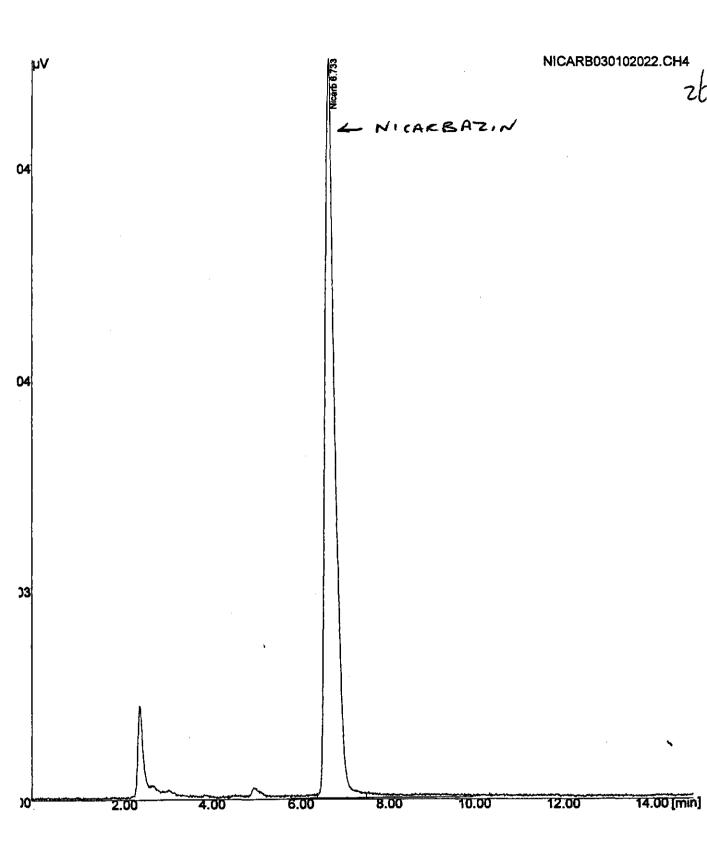
m ▲ U

P. 002

.

25

Table with results, questionnaire (page 1) and chromatograms


of partner 26

•

		<u>CAN</u>	FAS	
•				he official control of e <u>s</u> (SMT4-CT98-2216)
Subtitle: Lab-name:	Task 4 COLL		· · · · · · · · · · · · · · · · · · ·	nd round
Contact person:			e-mail: fax: telephone:	
Date of analysis:	3-1-2002			
Analyte:	neall an ann an Aonaich Anns Anns Anns Anns Anns Anns Anns Anns	IICARBAZII	V	
Product:	Premixture			
	Unit Sample code	Result 1 (mg/kg)	Result 2 (mg/kg)	
	264217	6387	6416	

Annex 4 - Questionnaire	
Laboratory:	
Contact person::	
Date(s) of analysis: 03/01/2002	
Dilution factor of the sample: Premixture:	10 and 20 times dilution
Chromatographic conditions:	
Column:	
 As described in the method BOther: LUNA CIS (2)) Sun 250 mi x 4.6 mm
• Mobile phase:	
• St As described in the method	·
• 🗅 Other:	
• Flow-rate:	
 Injection volume:µl 	
• Retention time of nicarbazin:	
Chromatograms: Please include representa	tive chromatograms of:
• Premixture	
Please indicate the nicarbazin peak with an arrow	
Recovery results:	
• Percentage recovery:	· · · · · · · · · · · · · · · · · · ·
 Single / duplicate determinations:) duplicate
If duplicate, please give both percentages:	-

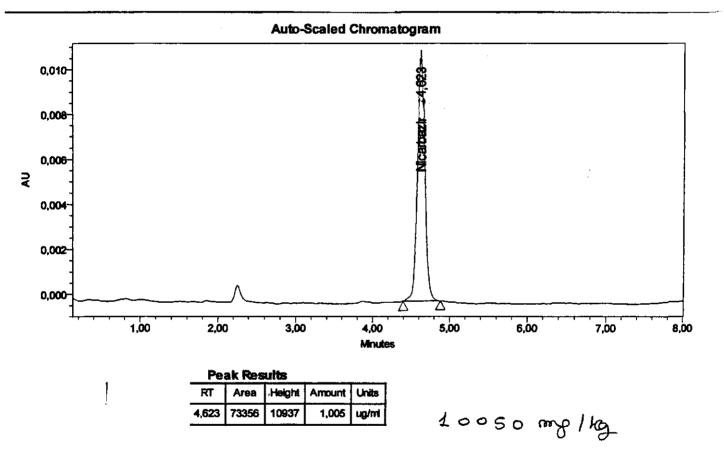
1

Table with results, questionnaire (page 1) and chromatograms

of partner 29

۰.

`


		CAN	FAS	
•				he official control of e <u>s</u> (SMT4-CT98-2216)
Subtitle:	Task 4 COLL	ABORATIV	E STUDY - 2	and round
Lab-name: Contact person:				
	<u>.</u>		e-mail: fax:	
Date of analysis:	14.01.02		telephone:	
Analyte:	N	ICARBAZIN		
Product:	Premixture			
	Unit Sample code	Result 1 (mg/kg)	Result 2 (mg/kg)	
	294226	10050	10300	

Annex 4 - Questionnaire

Laboratory:	***********
Contact person: .	
Date(s) of analysis	
Dilution factor of the sample:	
• Premixture:	
Chromatographic conditions:	
Column:	
 As described in the method 	
• 12 Other: Nava - Pak Cpg. 4,6×2	somm, Yum
Mobile phase:	
EAs described in the method	
• 🗇 Other:	
• Flow-rate:	
• Injection volume:	
• Retention time of nicarbazin: 4.6.2 min	
Chromotograme: Plazza include representative chromotograme	4
Chromatograms: Please include representative chromatograms o	
• Premixture	
Please indicate the nicarbazin peak with an arrow	

Recovery results:

- Percentage recovery: %
- * Single / duplicate determinations: □ single □ duplicate
- If duplicate, please give both percentages: المربكة and المربكة &

.

Table with results, questionnaire (page 1) and chromatograms

of partner 30

. .

٠.

ς.

		<u>CAN</u>	FAS	
				he official control of e <u>s</u> (SMT4-CT98-2216)
Subtitle: Lab-name:	Task 4 COLL	ABORATIV	E STUDY - 2	and round
Contact person:			e-mail:	
			fax: telephone:	
Date of analysis:	08-02-2002		telephone.	
Analyte:	N	IICARBAZIN		
Product:	Premixture			
	Unit Sample code	Result 1 (mg/kg)	Result 2 (mg/kg)	
	304224	7580	6960	

Annex 4 - Questionnaire	: :
la barrata a construction de la construction de	
Laboratory:	142842988 8 1448823844444458468466666666
Contact person:	,
	,
Date(s) of analysis: $07/41/02$	
Dilution factor of the sample:	
• Premixture:	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Chromatographic conditions:	
• Column:	
D As described in the method	
· Kother	
Mobile phase:	•••
KAs described in the method	
•	, , , , , , , , , , , , , , , , , , , ,
Flow-rate:	
 Injection valume: .2.0µl 	
Retention time of nicarbazin: Sr. H. min	
· ·	
Chromatograms: Please include representative chromatograms of:	·*
* Promixture	
Please indicate the nicarbazin peak with an arrow	
Recovery results:	
	•
Percentage recovery: %	
Single / duplicate determinations: 🗆 single 📋 duplicate	
If duplicate, please give both percentages: % and %	
Spiking level: me/ke	
	·.

•

:

1

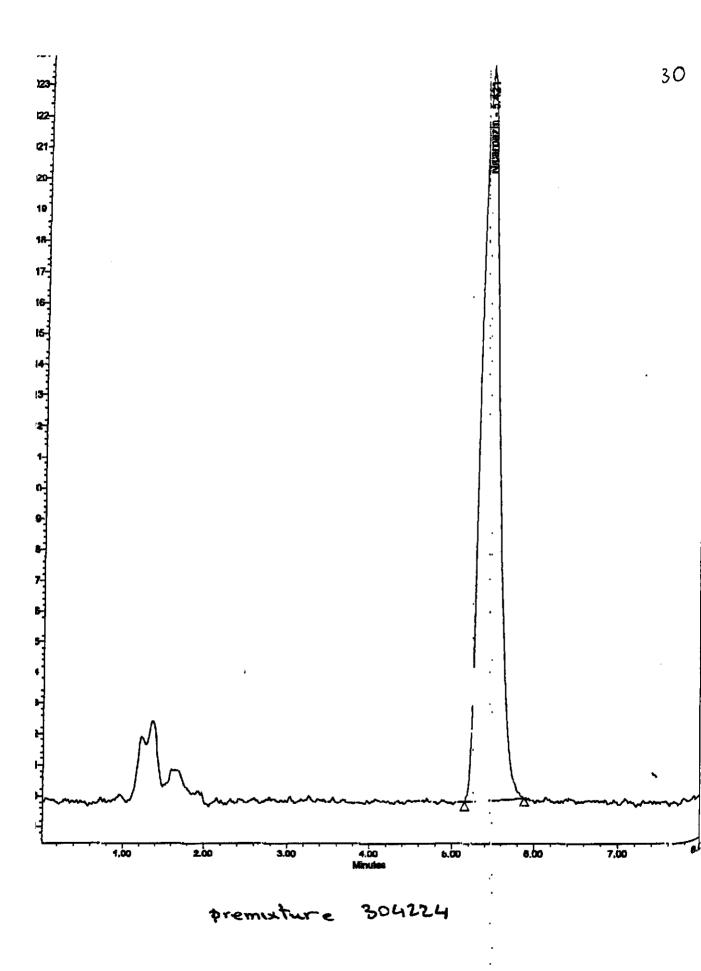


Table with results, questionnaire (page 1) and chromatograms

of partner 31

		CAN	IFAS		
-				the official contro /e <u>s</u> (SMT4-CT98-2	· · · · · ·
Subtitle: Lab-name:	Task 4 COLL	ABORATIV	E STUDY -	2nd round	
Contact person:			e-mail: fax:		
Date of analysis:	07-01-2002		telephone:		J
Analyte:	N.	IICARBAZI	N		
Product:	Premixture				
	Unit Sample code	Result 1 (mg/kg)	Result 2 (mg/kg)		
	314212	7740	7235]	

Annex 4 - Ouestionnaire Laboratory: Contact person: **** Date(s) of analysis: 0.7 - 0.1 - 2.002Dilution factor of the sample: .5 Premixture: Chromatographic conditions: Column: □ As described in the method . © Other: Baschapack C12 ; 300 × 3,9 Mobile phase: . X As described in the method Other: Flow-rate: ml/min Retention time of nicarbazin: .5,2. min Chromatograms: Please include representative chromatograms of:

Premixture

Please indicate the nicarbazin peak with an arrow

Recovery results:

- Percentage recovery: 4,7. %
- Single / duplicate determinations: ¥ single □ duplicate
- If duplicate, please give both percentages: % and %

31

Table with results, questionnaire (page 1) and chromatograms

of partner 33

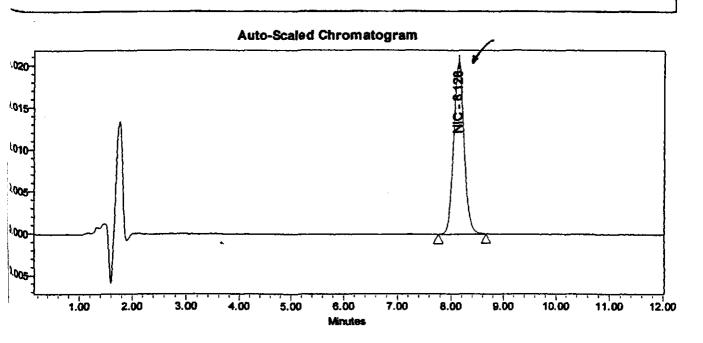
ANNEX 2 - Report form

<u>CANFAS</u>

Development and Validation of HPLC-methods for the official control of <u>Coccidiostats and An</u>tibiotics used as <u>Feed Additives</u> (SMT4-CT98-2216)

Subtitle: Lab-name:					
Contact person:			e-mail: fax: telephone:	······	
Date of analysis:	18-12-2001		•	·······	
Analyte:		IICARBAZIN]	
Product:	Premixture				
	Unit Sample code	Result 1 (mg/kg)	Result 2 (mg/kg)]	
	334203	8100	8700)	

Annex 4 - Questionnaire


Contact person:	Laboratory:	
Dilution factor of the sample: • Premixture:	Contact person:	******
Dilution factor of the sample: • Premixture:		
Dilution factor of the sample: • Premixture:		
Dilution factor of the sample: • Premixture:	Date(s) of analysis:	·
 Premixture:		
 Premixture:	Dilution factor of the sample:	
Chromatographic conditions: Column: As described in the method Other: Mobile phase: As described in the method Other: Flow-rate:	·····	E mill 40 mil
 Column: As described in the method Other: Mobile phase: X As described in the method Other: Flow-rate:		
 Column: As described in the method Other: Mobile phase: X As described in the method Other: Flow-rate:	Chromatographic conditions:	
 As described in the method Other: Mobile phase: X As described in the method Other: Flow-rate:		
 Other:		
 Mobile phase: X As described in the method Other:	•	
 As described in the method Other:	• 🗆 Other:	
 Other:	Mobile phase:	
 Other:	• X As described in the method	
• Injection volume:		
• Injection volume:	• Flow-rate:	
	•	
■ Rechuch under of nicardazin. الاستان المعالية Rechuch under of nicardazin. الاستان المعالية المعالية المعالية		
•		
Chromatograms: Please include representative chromatograms of		

• Premixture

Please indicate the nicarbazin peak with an arrow

Recovery results:

- Percentage recovery: API.. %
- Single / duplicate determinations: Single
 duplicate
- If duplicate, please give both percentages: % and %
- Spiking level: ./2.5.... mg/kg

Peak Results							
Γ	SampleName	Name	RT	Area	Height	Amount	Units
1	7221/01	NIC	8.128	277473	20546	0.874	mg/kg

Table with results, questionnaire (page 1) and chromatograms

of partner 35

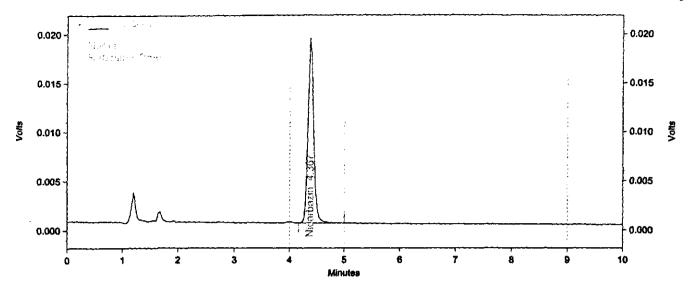
÷

ANNEX 2 - Report form

Г

	CANFAS			
Development and	d Validation of	of HPLC-m	ethods for t	the official control of
<u>C</u> occidiostats ar	nd <u>An</u> tibiotics	used as <u>F</u>	eed <u>A</u> dditiv	/es_(SMT4-CT98-2216)
Subtitle:	Task 4 COLL		E STUDY - 2	?nd round
Lab-name:				
Contact person:			e-mail:	
			fax: telephone:	
Date of analysis:	03-01-2002			
A	A CARACTER AND A CARA			1
Analyte:		NICARBAZIN		1
Product:	Premixture			
		Result 1	Result 2	1 .
	Unit	(mg/kg)	(mg/kg)	
	Sample code			
	354230	7486	6768	

Annex 4 - Questionnaire


Laboratory:	
Contact person:	,
Date(s) of analysis:3.1.1.	.07
Dilution factor of the sample:	
•	
• Premixture:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Chromatographic conditions:	
Column:	
•	ne method
• Other:	C_{18} zso mm \leq form
Mobile phase:	- • • • • • • • • • • • • • • • • • • •
• As described in th	e method
• 🗆 Other:	
• Flow-rate:	in
Injection volume:	
Retention time of nicarbazin:	h, ha min
	-
Chromatograms: Please inclu	de representative chromatograms of:

• Premixture

Please indicate the nicarbazin peak with an arrow

Recovery results:

- Percentage recovery: \$20,1.%
- Single / duplicate determinations: □ single 💢 duplicate
- If duplicate, please give both percentages: 20% and 00% %
- Spiking level: 20000 mg/kg 99.5 101.2

· ---

٠

.

CANFAS COLLABORATIVE STUDIES - Nicarbazin

Annex 4 - Questionnaire

Laboratory:

Contact Person:

Date(s) of analysis: 23/01/2002

Chromatographic conditions:

- Column:
 - As described in the method
 - X Other: Lichrospher 250 x 4 mm 5 µm
- Mobile phase:
 - □ As described in the method
 - X Other: Isocratic AcCN/Water (65:35)
- Flow-rate: 1,0 ml/min
- Injection volume: 10 µl
- Retention time of nicarbazin: 9 min

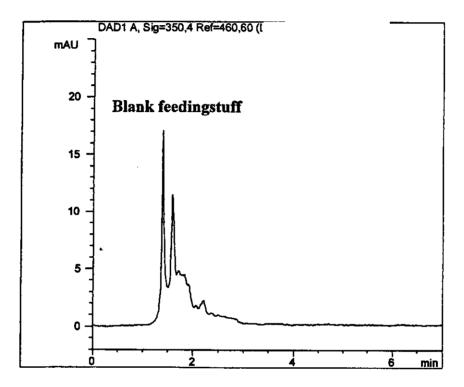
Chromatograms: Please include representative chromatograms of:

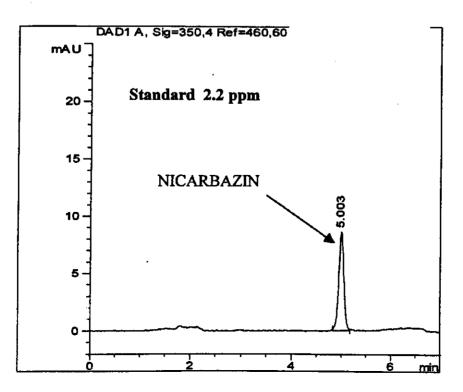
- Blind positive feed samples
- Blind blank samples

Please indicate the nicarbazin peak with an arrow

Recovery results:

- Percentage recovery: 90 %
- If duplicate, please give both percentages: 89% and 91%
- Speaking level: 86.4 mg/Kg (2 mL 108 ppm NCBZ in 2.5 g feedingstuff)


CANFAS COLLABORATIVE STUDIES - NICARBAZIN


Remarks / Comments (if necessary, continue on another page):

Detection limit: 4 mg/Kg

Determination Limit: 8 mg/Kg

Representative chromatograms:

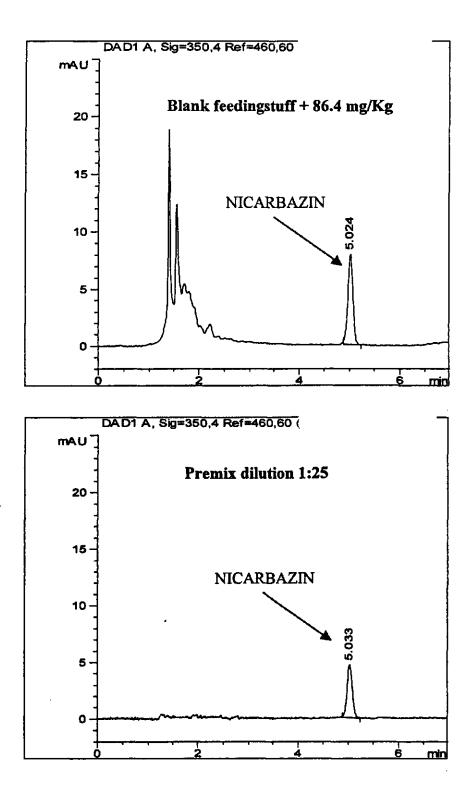


Table with results, questionnaire (page 1) and chromatograms

of partner 39

.

		<u>CAN</u>	FAS	
Development and	d Validation o	of HPLC-me	ethods for t	he official control of
<u>C</u> occidiostats an	d <u>An</u> tibiotics	used as <u>F</u> e	ed <u>A</u> dditiv	e <u>s</u> (SMT4-CT98-2216)
Subtitle:	Task 4 COLL	ABORATIV	E STUDY - 2	2nd round
Lab-name:				
Contact person:			e-mail:	
			fax:	
Date of analysis:	14-1-2002		telephone:	
-	•			
Analyte:		IICARBAZIN		
Product:	Premixture			
	Unit	Result 1 (mg/kg)	Result 2 (mg/kg)	
	Sample code			
	394210	8430	7664	

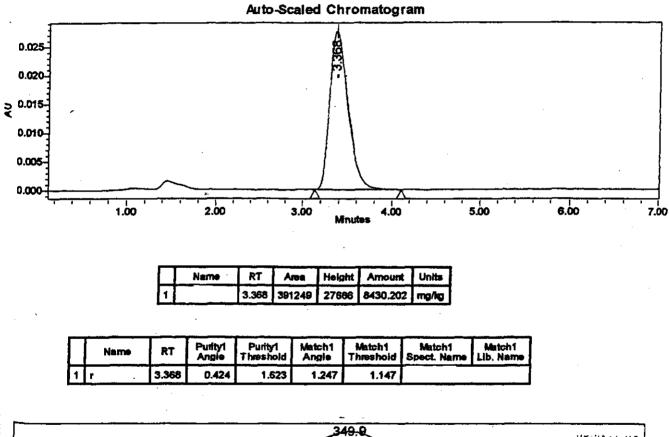
Annex 4 - Questionnaire

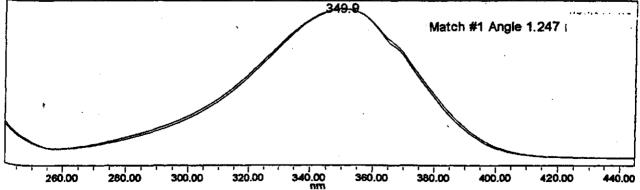
Laboratory:	
Contact person:	
Date(s) of analysis:	<u>602</u>
Dilution factor of the sample:	
• Premixture:	LUMETRIZ FLASE OF 200 M(+ 25 x)
Chromatographic conditions:	
Column:	
 As described in the method 	,
• Other:	LICHROSPHER RP-18 5 HM MERCH
Mobile phase:	51232
As described in the method	
• 🖸 Other:	
Flow-rate:	
 Injection volume:µl 	
• Retention time of nicarbazin: 3	
Chromatograms: Please include represen	tative chromatograms of:
Premixture	
Please indicate the nicarbazin peak with an arro	ow
·····	

Recovery results:

- Percentage recovery: 101. %
- Single / duplicate determinations:

 single


 duplicate
- If duplicate, please give both percentages: (9.1. % and 19.2.%
- Spiking level: 25000 mg/kg


۱

Sample Information

SampleName	20011218.106 1
Vial	11
Injection	1
Injection Volume	25.00 ul
Channel	996
Run Time	7.0 Minutes

Sample Type	Unknown
Date Acquired	1/14/02 1:26:10 PM
Acq Method Set	
Processing Method	
Date Processed	1/14/02 4:28:23 PM

