
Epidemiol. Infect. (2002), 128, 293–299. # 2002 Cambridge University Press

DOI: 10.1017}S0950268801006537 Printed in the United Kingdom

Within- and between-pen transmission of Classical Swine

Fever Virus: a new method to estimate the basic reproduction

ratio from transmission experiments

D. KLINKENBERG"*, J. DE BREE", H. LAEVENS#  M. C. M. DE JONG"

" Institute for Animal Science and Health, Quantitati�e Veterinary Epidemiology, P.O. Box 65, 8200 AB

Lelystad, The Netherlands

#Department of Reproduction, Obstetrics and Herd Health, Veterinary Epidemiology Unit, School of

Veterinary Medicine, Salisburylaan 133, B-9820 Merelbeke, Belgium

(Accepted 18 June 2001)

SUMMARY

We present a method to estimate basic reproduction ratio R
!

from transmission experiments.

By using previously published data of experiments with Classical Swine Fever Virus more

extensively, we obtained smaller confidence intervals than the martingale method used in the

original papers. Moreover, our method allows simultaneous estimation of a reproduction ratio

within pens R
!w

and a modified reproduction ratio between pens R!

!b
. Resulting estimates of

R
!w

and R!

!b
for weaner pigs were 100 (95% CI 54±4–186) and 7±77 (4±68–12±9), respectively.

For slaughter pigs they were 15±5 (6±20–38±7) and 3±39 (1±54–7±45), respectively. We believe,

because of the smaller confidence intervals we were able to obtain, that the method presented

here is better suited for use in future experiments.

INTRODUCTION

Classical Swine Fever (CSF) or hog cholera is a highly

contagious pig disease [1–3], an epidemic of which can

cause huge problems like reduction in animal welfare,

and high economic losses as a result of export

limitations and mass destruction [4]. The disease is

caused by the Classical Swine Fever Virus (CSFV)

[1–3]. Transmission of the virus between pigs can be

quantified by estimating parameters from trans-

mission experiments, in which a number of pigs within

a pen are inoculated with the virus and the trans-

mission process in followed [5]. An important par-

ameter of virus transmission is the basic reproduction

ratio R
!
, defined as the number of secondary infected

individuals caused by one typical infectious individual

in an infinite susceptible population. If R
!

is smaller

than 1, then on average every infectious animal infects

less than one other animal causing the outbreak to

* Author for correspondence.

wane. If on the other hand R
!
is greater than 1, major

outbreaks can occur [6].

In 1998 and 1999 Laevens et al. did two trans-

mission experiments with CSFV; one with weaner

pigs and the other with slaughter pigs [7, 8]. In both

experiments there were 3 adjacent pens with either 15

weaner pigs or 6 slaughter pigs in each pen. In the

middle pen one pig was inoculated with CSFV and

every 2 days blood samples of all the pigs were taken

to measure viraemia. From these measurements the

infectious period of every pig was reconstructed by

assuming that a pig is infectious when it is viraemic.

Subsequently R
!

was estimated using the martingale

estimation method, based on the stochastic SIR model

[5, 9]. This model describes transmission of a virus in

a group of animals by describing the change in the

numbers of susceptible (S ) and infectious (I ) animals

in terms of these numbers and the total number of

animals (N ). In the model, infection of susceptible

animals and recovery of infectious animals are

assumed to be generated by a Poisson process with
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Table 1. Course of transmission experiments

Time (days) : 4–6 6–8 8–10 10–12 12–14 14–16 16–18 18–20 20–22 22–24

Weaner pigs

pen 1 S 15 15 15 15 13 7 4 2

I 0 0 0 0 0 0 1 5

C 0 0 0 2 6 3 2 2

N 15 15 15 15 15 15 15 15

pen 2 S 14 5 0 0 0 0 0 0

I 1 1 1 5±5 12 11±5 10 10

C 9 5 0 0 0 0 0 0

N 15 15 15 15 14±5 11±5 10 10

pen 3 S 13 13 13 13 6 3 1 0

I 0 0 0 0 0 0 3±5 8±5
C 0 0 0 7 3 2 1 0

N 14 14 14 14 13 13 13 13

Slaughter pigs

pen 1 S 5 5 5 5 5 4 4 3 1 1

I 0 0 0 0 0 0 0 0±5 1 1±5
C 0 0 0 0 1 0 1 2 0 1

N 6 6 6 6 6 6 6 6 5 5

pen 2 S 5 4 3 1 0 0 0 0 0 0

I 0±5 1 1 1 1±5 3 4±5 5 4±5 4

C 1 1 2 1 0 0 0 0 0 0

N 6 6 6 6 6 6 6 6 6 6

pen 3 S 6 6 6 6 6 6 6 2 0 0

I 0 0 0 0 0 0 0 0 0 2

C 0 0 0 0 0 0 4 2 0 0

N 6 6 6 6 6 6 6 6 6 6

Division of the virus transmission process in 2-day time periods, stratified by pen. Time starts at day of inoculation. S is the

number of susceptible animals at the start of the interval ; I is the number of infectious animals ; C is the number of new cases

and N is the total number of animals, where 0±5 is an animal present for only 1 of 2 days in a certain category.

rates β SI}N and αI, where β and α are the

transmission and recovery parameter, respectively.

The R
!

is estimated from the number of animals

ultimately infected during the experiment, when no

susceptible or no infectious animals remain. The sum

of the fractions of infectious periods remaining when

the last susceptible animal is infected is used if

relevant. Laevens et al. [7, 8] used only the data of the

middle pen to estimate R
!

because in the other pens

transmission was not solely caused by infectious

animals in the same pen. The estimates obtained were

81±3 (.. 109, i.e. 95% CI ®132–295) and 13±7 (..

13±7, i.e. 95% CI ®13±2–40±6) for weaner and

slaughter pigs, respectively. This meant that despite

the fact that the infection process took place very

quickly and all animals were infected, the estimated

R
!
s were not significantly greater than 1. Since some

aspects of the data were not used for the estimation

(infection times and infectious periods of all animals

known for all three pens), searching for an alternative

estimation method would be worthwhile, using as

much information from the data as possible. Hope-

fully this will lead to a smaller confidence interval.

In an attempt to obtain an R
!

estimate with a

smaller confidence interval, we did separate esti-

mations of β, the infectivity parameter, and α, the

recovery parameter, which are used to calculate R
!

(R
!
¯β}α). For β estimation, the infection process

was partitioned into intervals with known numbers of

infection cases (C ) and susceptible (S ) and infectious

(I ) animals. These sets of (S, I, C ) were used to

construct a likelihood function, which we maximized

to get a maximum likelihood estimator for β. For α

estimation, the lengths of the infectious periods were

used to fit a generalized linear model.

MATERIALS AND METHODS

We used the data obtained in the transmission

experiments of Laevens et al. (for more detail see [7,
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8]). In both experiments there were 3 adjacent pens

with equal numbers of pigs : 15 weaner pigs in one

experiment and 6 slaughter pigs in the other. One of

the pigs in the middle pen was inoculated with CSFV

and every 2 days blood samples were taken from all

animals, which were tested for viraemia. From these

data the infectious period of each pig was recon-

structed, assuming that the animal is infectious when

it is viraemic.

By assuming a latent period of 6 days (infected but

not yet infectious) [2], we were able to reconstruct the

entire virus transmission process in the three pens.

These reconstructions enabled us to estimate the

parameters, by using the following stochastic SIR

model [6], incorporating both within- and between-

pen transmission:

rate (S!S®1)¯ (β
w
I
w
}N

w
β

b
I
b
}N

b
)S (1)

rate (I! I®1)¯αI . (2)

In this model, β
w

is the within-pen transmission

parameter defined as the expected number of new

infections in the same pen per day per typical

infectious animal in a fully susceptible population.

Likewise, β
b

is the between-pen transmission par-

ameter defined as the expected number of new

infections in other pens per day per typical infectious

animal in a fully susceptible population. The par-

ameter α represents the recovery rate per infectious

animal. Because there are two transmission para-

meters β
w

and β
b
, we also make a distinction between

a within-pen reproduction ratio R
!w

and a between-

pen reproduction ratio R
!b

. R
!w

is defined as the

expected number of secondary infected animals caused

by one typical infectious animal in the same pen. R
!b

is defined as the expected number of secondary

infected pens caused by one typical infectious pen,

considering a pen as infected when at least one pig is

infected. Estimates for R
!w

and R
!b

can be calculated

as follows:

R
!w

¯
β
w

α
(3)

R
!b

¯R!

!b
[E (I

tot
)¯

β
b

α
[E (I

tot
) . (4)

In this equation, E (I
tot

) is the expected number of

animals ultimately infected within one pen. E (I
tot

) can

under our model assumptions easily be determined if

R
!w

is known [10], but will not be further discussed in

this paper. R!

!b
is the expected number of secondary

infected pens caused by one typical infectious animal.

R!

!b
, being independent of E (I

tot
), is the parameter that

will be estimated in this paper. For notational

convenience, we have introduced the vectors β
!
¯

(β
w
, β

b
), logβ

!
¯ (logβ

w
, logβ

b
), R

!

!
¯ (R

!w
, R!

!b
), and

logR
!

!
¯ (logR

!w
, logR!

!b
). Because infection and re-

covery are independent processes, R
!

!
was calculated

from separate estimations of β
!

and α.

In order to estimate transmission parameters β
!
, the

infection process has been divided into time intervals

of two days, the intervals between two subsequent

samplings. For each interval, the number of sus-

ceptible pigs at the start of the interval (S ), the

number of infectious pigs (I ) and the number of new

cases (C ) was determined (Table 1). In each time

interval k, the probability of a susceptible animal

escaping infection from the constant rate

(β
w
I
wk

}N
wk

β
b
I
bk

}N
bk

) is, according to the Poisson

distribution, e−(βwIwk/Nwk+
β
bIbk/Nbk). Therefore, the

probability of getting C
k

cases, with S
k

susceptibles

and i
k
as the fraction of infectious pigs (I

k
}N

k
) in the

same pen and j
k
as the fraction of infectious pigs in the

other pens is, according to the binomial distribution:

prob(C
k
ri
k
, j

k
, S

k
)

¯
E

F

S
k

C
k

G

H

(1®e−β
wjk−

β
bjk)Ck (e−β

wjk−
β
wjk)Sk−Ck . (5)

The probabilities for all time intervals have been used

to make up the log-likelihood function, which may be

written as:

logL (β
w
, β

b
)¯3

k

[C
k
log(eβ

wjk+
β
bjk®1)

®S
k
(β

w
i
k
β

b
j
k
)] , (6)

where log(Sk

Ck

) has been omitted because it plays no

role. Maximising this function results in maximum

likelihood estimators for β
w

and β
b
.

Three methods were used to derive confidence

intervals for β
w
. After comparing several features (e.g.

mathematical background, practical value), a decision

was made as to which method should be used for

interval estimation of β
b
, R

!w
and R!

!b
. The first

method, which we shall refer to as the construction

method, is based on the likelihood ratio and on the

equivalence of testing and construction of a confidence

interval. The test used here is derived from the

observation that the likelihood ratio for testing one

value of β
w

(H
!
: β

w
¯β

!
) against another value of β

w

(H
A
: β

w
¯β«!β

!
) is a monotonic and decreasing

function of each C. It allowed us to construct a critical
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Fig. 1. Shaded area is the 95% confidence area for ∆ logβ
!
.

region for the C by using the probability function of

C itself, without invoking any approximate prob-

ability distribution of the likelihood ratio. For details,

see the appendix. With this method confidence

intervals can be constructed for one of the two βs (β
w

or β
b
) treating the other as a constant as its estimate.

Unfortunately, the computation is almost pro-

hibitively time-consuming, and just how to construct

a confidence area for the parameter �ector β
!

or how to

determine confidence intervals for R
!
is not clear. The

second method is the likelihood ratio (λ) test as

described by Neyman and Pearson (reference in [11]),

which relies on the asymptotic chi-square distribution

of ®2logλ with, in our case, 1 degree of freedom.

This method calculates 95% confidence limits by

solving the equation ®2logλ¯ 3±84 for one of the

two βs (β
w

or β
b
) treating the other as a constant as its

estimate. This is a much faster method than the first

one; nonetheless it suffers from the same construction

difficulties with regard to simultaneous confidence

intervals. The third method is based on the asymptotic

(multivariate) normal distribution of a maximum

likelihood estimator [12]. The assumption is made

that the estimator of logβ
!

(instead of β
!
), being also a

ML-estimator, is asymptotically normally distributed

because then non-realistic (negative) values of β
w

and

β
b

cannot occur. This results in the following

covariance matrix M :

M¯®

E

F

¦# logL

¦ (logβ
w
)#

¦# logL

¦(logβ
w
) (logβ

b
)

¦# logL

¦(logβ
w
) (logβ

b
)

¦# logL

¦ (logβ
b
)#

G

H

−"

.(7)

This method is computationally fast and, since it

provides an estimate of the covariance matrix, it

obviously enables construction of confidence areas for

logβ
!

and logR
!

!
†.

† Note that, if only one transmission parameter is estimated, this
likelihood variance method is in fact the same as a generalized linear
model with response variate C, binomially distributed with index S,
and a complementary log-log LINK function, and log(I}N ) as
offset. Because in this case we want to estimate two transmission
parameters simultaneously, it is not possible to use this GLM.

The recovery}death rate parameter α has been

estimated using a generalized linear model for survival

analysis with censoring, as described by Aitken et al.

[13]. In this model for each animal two explanatory

variables T
k
and y

k
can be observed. The first one, T

k
,

is the observed length of the infectious period. The

second one, y
k
, is a censoring variable : y

k
is 1 if T

k
is

the true survival time, whereas y
k

is 0 if the true

survival time is greater than T
k
. The likelihood

function reads as follows:

L (α)¯ 0
n

k="

(αe−αTk)yk (e−αTk)"−yk ¯ 0
n

k="

αyke−αTk

¯ 0
n

k="

(αT
k
)yke−αTk5 0

n

k="

T
k

yk . (8)

The kernel of this likelihood is the same as it would be

with a set of n observations y
k

each having an

independent Poisson distribution with mean αT
k

(see

[13]). The analysis was performed in Genstat [14],

using the RSURVIVAL procedure, where y
k

denotes

the response variate, logT
k

the offset, and the model

is fitted with a log LINK function and a Poisson

distribution. The output is an estimate of logα and its

estimated variance.

The estimator of logR
!

!
is given by:

logR
!

!
¯ logβ

!
®logα . (9)

Derivation of a confidence area for logR
!

!
is done by

adding the covariance matrices for logβ
!

and logα :

var(logR
!

!
)¯ var(logβ

!
)var(logα)

E

F

1 1

1 1

G

H

. (10)

The estimated logR
!

!
s and var(logR

!

!
)s for weaner and

slaughter pigs were used to construct a confidence

area for the difference of the two logR
!

!
s, and to assess

whether R
!w

or R!

!b
differ significantly between weaner

and slaughter pigs.

RESULTS

The maximum likelihood estimation method used to

estimate transmission parameters β
w

and β
b
produced

point estimates of 8±52 and 0±656 for weaner pigs and

1±85 and 0±402 for slaughter pigs, respectively. Three

methods were used to determine 95% confidence

intervals for β
w
. With the construction method based

on the likelihood ratio λ, the intervals for β
w

obtained

were (4±77–14±1) and (0±704–3±63) for weaner pigs and

slaughter pigs, respectively. With the logλ method the

intervals were (4±78–14±1) and (0±709–3±79), respect-

ively, and the likelihood variance method produced
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intervals of (4.98–14.6) and (0±817–4±18). Because the

construction method does not assume specific distri-

butions based on asymptotic features, we believe that

the estimated confidence intervals from this method

would be the most precise. The logλ method, which is

much faster than the numerical method, performed

quite well, while the likelihood variance method

resulted in slightly upwards shifted intervals. How-

ever, we decided to use this last-mentioned method for

further calculations, because the obtained covariance

matrices for β
!

together with the variances for α can be

used to estimate covariance matrices for R
!

!
.

The covariance matrices M of logβ
!

thus calculated

were:

Mweaner ¯
E

F

0.0752 ®0.00128

®0.00128 0.0438

G

H

(11)

Mslaughter ¯
E

F

0.175 ®0.0132

®0.0132 0.118

G

H

. (12)

To compare the estimated logβ
!
s of weaner and

slaughter pigs, the difference of the two was calculated

(∆ logβ
!
), together with the accompanying covariance

matrix, MweanerMslaughter. The 95% confidence area of

this difference in Figure 1 shows that this area does

not cross the line ∆ logβ
w
¯ 0 and therefore the logβ

w
s

of weaner and slaughter pigs differ significantly. This

is not the case for the logβ
b
s. Estimation of recovery

parameter α resulted in a logα for weaner pigs of

®2±47 with variance 0±0231 and for slaughter pigs of

®2±13 with variance 0±0433.

Estimation of logR
!

!
resulted in these vectors and

covariance matrices :

logR
!

!weaner
¯

E

F

4.61

2.05

G

H

and covariance matrix
E

F

0.0983 0.0218

0.0218 0.0669

G

H

(13)

logR
!

! slaughter
¯

E

F

2.74

1.22

G

H

and covariance matrix
E

F

0.218 0.0300

0.0300 0.162

G

H

. (14)

This means that the estimated R
!w

and R!

!b
for weaner

pigs were 100 (CI 54±4–186) and 7±77 (CI 4±68–12±9),

and for slaughter pigs 15±5 (CI 6±20–38±7) and 3±39 (CI

1±54–7±45), respectively. Testing whether logR
!

!weaner

0·5 1 1·5 2·52
∆ log R0w3

1·5

1

0·5

∆ log R!0b
2

Fig. 2. Shaded area is the 95% confidence area for ∆ logR
!

!
.

differs from logR
!

! slaughter
has been done by calculating

the difference and accompanying covariance matrix,

and subsequently plotting the 95% confidence area

(Fig. 2). It illustrates that the confidence area does not

cross the line ∆ logR
!w

,¯ 0, but does cross the line

∆ logR!

!b
¯ 0. Therefore, the conclusion is that R

!w

differs between weaner and slaughter pigs, but R!

!b

does not.

DISCUSSION

The maximum likelihood method presented in this

paper resulted in a much smaller confidence interval

of R
!w

than the martingale method [7, 8]. This was

probably due to the more extensive use of the data, by

dividing the virus transmission process into intervals

with known numbers of new cases and susceptible and

infectious pigs. Also, the maximum likelihood method

uses data from all the pens, in contrast with the

martingale method, which only uses the data of the

middle (the primarily infected) pen. We are convinced

that the method presented here is more suitable to be

used in data analysis of future experiments.

Three different methods were used to calculate

confidence intervals for β
w
: a construction method

based on the likelihood ratio λ, the logλ method, and

the likelihood variance method. The construction

method is not based on asymptotic features (i.e. many

data points), and is in this sense a reliable method.

However, its disadvantages were that the calculation

time was long, it was impossible to construct a

confidence area for two parameters (β
w

and β
b
)

simultaneously, and it was not possible to use the

results to construct intervals for R
!
. The other two

methods are based on asymptotic features of the

®2logλ and of the likelihood function itself. Both of

these methods are fast. The advantage of the logλ

method is that it uses the likelihood ratio, just like the

construction method, and that the results are very

similar. The advantage of the likelihood variance

method, however, is that it allows derivation of
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confidence areas for β
w

and β
b

simultaneously and

that the estimated variances can be used to obtain

variances of the logR
!

!
estimates. That is why this

likelihood variance method is used to estimate

variances for β
b
and logR

!

!
as well.

With the maximum likelihood method presented in

this paper, the R
!w

and R!

!b
appeared to be significantly

greater than 1 for both weaner and slaughter pigs.

This conclusion could not be made from the mar-

tingale estimation, but was expected because of the

large outbreak in both experiments (all animals

infected) and the ability of the virus to cause CSF

epidemics.

A more surprising result was the significant

difference between the two age groups: the R
!w

of

weaner pigs is larger than the R
!w

of slaughter pigs.

This can be due to several causes, which should be

judged by the fact that the R!

!b
s do not differ. First, the

resistance to infection in younger pigs could be lower

(higher susceptibility). Second, the smaller volume of

younger pigs could be responsible for a higher virus

concentration in the animals and consequently a

higher virus excretion (higher infectiousness). Third,

weaner pigs might have more intensive contacts with

each other, which is the most probable cause, because

the first two mentioned would also result in higher

R!

!b
s. However, it is also possible that the R!

!b
s do

differ, but that this was not observed in these

experiments.

From an epidemiological point of view, the

difference between the groups can be important

because virus transmission in units with younger pigs

logλ¯ log

A

B

0
m

j="

0
nj

k="

E

F

S
j
® 3

k−"

l=!
Cjk

C
jl

G

H

(1®e−β«ijk)Cjk(e−β«ijk)Sj−
Σ
k

l="

Cjl

0
m

j="

0
nj

k="

E

F

S
l
® 3

k−"

l=!
Cjk

C
jl

G

H

(1®e−β
!
ijk)Cjk (e−β

!
ijk)Sj−

Σ
k

l="

Cjl

C

D

¯ 3
m

j="

3
nj

k="

A

B

C
jk

E

F

log
1®e−β«ijk

1®e−β
!
ijk

G

H


E

F

3
k

l="

C
jl
®S

j

G

H

(i
jk
(β«®β

!
))

C

D

¯ 3
m

j="

3
nj

k="

A

B

C
jk

E

F

a
jk
 3

nj

l=k

b
jl

G

H

®S
j
b
jk

C

D

, (17)

(weaner pigs in a sow herd) will be quicker than in

units with older pigs (in a finishing herd). Therefore it

is important to know whether this difference exists

with other CSF strains as well. If the difference is

mainly due to more intensive animal contacts, this is

to be expected.
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APPENDIX

Here a numerical method is derived to construct

confidence intervals (CI) for the transmission para-

meters β
!
. To keep the derivation more orderly, it is

shown here for only one transmission parameter β, as

if there were only within-pen transmission. When the

other parameter is kept constant, as in the examples in

the text, the derivation is similar. The log-likelihood

equation with one parameter β is, analogous to (6) :

logL(β)¯3
k

[C
k
log(eβik®1)®S

k
(βi

k
)] . (15)

Now, with the equivalence of testing and CI

construction in mind, a test is suggested of H
!
: β¯β

!
,

against H
A
: β¯β«!β

!
. Then, letting β« tend to β

!
, a

test will be obtained to test β
!

against any β«!β
!
.

This test can be used to construct an upper limit of a

confidence interval. A similar procedure is followed

for the lower limit.

The test, Φ, is based on the likelihood ratio (λ) [15] :

Φ¯
1

2
3

4

1 if logλ& d

0 if logλ! d
, (16)

where d is determined by Eβ
!

(Φ)¯ 0±05 (for a 95%

CI). H
!
is rejected when Φ¯ 1 and H

!
is not rejected

when Φ¯ 0. In (16), logλ is :

where a
jk

¯ log "−e
−β«i

jk

"−e
−β

!
i
jk

and b
jk

¯ i
jk
(β«®β

!
).

Observe that logλ is monotonically decreasing in

every C
jk

:

¦ logλ

¦C
jk

¯ a
jk
 3

nj

l=k

b
jl
% 0

5β« 3
nj

l=k

i
jl
log[1®e−β«ijk]%β

!
3
nj

l=k

i
jl
log[1®e−β

!
ijk] ,
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which is true since g
jk
(β)¯β3

nj

l=k
i
jl
log[1®e−βijk] is

a monotonic and increasing function of β.

Hence, logλ can be used to construct a test for

β«!β
!
.

The test is constructed for any β«!β
!
(upper limit)

by letting β« tend to β
!

(β« #β
!
), which results in :

a
jk
 3

nj

l=k

b
jl
¯

A

B

Log[1®e−β«ijk] 3
nj

l=k

i
jl
β«

C

D

®
A

B

Log[1®e−β
oijk] 3

nj

l=k

i
jl
β
!

C

D

E (via Taylor expansion)

(β«®β
!
)

E

F

i
jk

eβ
!
ijk®1

 3
nj

l=k

i
jl

G

H

¯ (β«®β
!
)r

jk
, (18)

where r
jk

¯
E

F

ijk

e
β
!
i
jk−"

 3
nj

l=k

i
jl

G

H
. Hence, logλ becomes:

logλ¯ 3
m

j="

3
nj

k="

[C
jk
((β«®β

!
)r

jk
)®S

j
i
jk
(β«®β

!
)] , (19)

which determines the form of the test for the upper

limit (since all other factors are independent of β
!
) :

Ψ¯

1

2
3

4

1 if 3
m

j="

3
nj

k="

C
jk
r
jk

% d

0 if 3
m

j="

3
nj

k="

C
jk
r
jk

" d

(20)

For the case β«"β
!
(lower limit), the derivation is the

same, except for the inequality signs in formula (20),

which are switched.

The test is used for an iterative search of that β
!
for

which holds:

E (Ψ)¯ 0±025, and

3
m

j="

3
nj

k="

C
jk

r
jk

¯ d .
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