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Abstract 
 
Multitemporal measurements gathered by EMISAR over the Foulum (Jutland) test site and AirSAR over the 

Wageningen test site provide an unrivalled opportunity to examine the factors affecting classification of northern 

European agricultural crops using both polarimetric and multitemporal information. Data analysis, guided by physical 

principles, has been used to investigate those polarimetric features most adapted to separating different classes of crops 

(with the emphasis on C band data). This has led to a hierarchical approach in which broad classes (e.g., spring vs. 

winter crops) are successively subdivided into more specific classes using the most appropriate polarimetric features. 

This direct scheme has been linked to statistical methods in order to permit adaptivity of the decision boundaries. Its 

performance is compared with data-driven methods as a function of the temporal evolution of the crop state.  

 

1 INTRODUCTION  
Growing crops display a wide range of canopy geometries and shapes of plant components.  From the radar point of 

view, this means that different crops distribute the dielectric material of which they are made differently in space: their 

architectures vary significantly. Some crops (or at least some of their components) show strongly preferred orientations, 

such as the stalks or ears of cereals. The importance of SAR polarimetry in crop classification arises principally because 

polarisation is sensitive to orientation. Hence it provides a means to distinguish crops with different canopy 

architectures. Detailed explanation of how this occurs is not straightforward, since the polarimetric response is 

determined by both attenuation and scattering processes, and these in turn depend on the probing frequency and the 

incidence angle as well as plant properties. In addition, the scattering mechanisms can vary with depth in the crop 

canopy, particularly between the response of the canopy itself and soil response.  

Despite the recognised potential, studies in crop classification and in crop parameter retrieval have been limited for a 

number of reasons: 

• The available SAR datasets have been few in number and rarely accompanied by adequate ground data; 

• Many of the datasets came from just a few campaigns covering a fairly limited range of conditions, which are 

often not ideal for studying backscatter from crops (for example, the 1994 SIR-C mission produced data from 

April and October, times which are unsuitable for assessing crop conditions in Northern Europe); 

• Multitemporal polarimetric data have not been widely available; 

• The experimental nature of the datasets, limited in time and geographical extent, has made them of marginal 

interest in developing applications, with much greater emphasis, particularly in Europe, on exploiting 

multitemporal satellite data. 

A further issue is the immaturity of the necessary data analysis methods. The first half of the 1990�s saw numerous 

papers dealing with crop classification methods using polarimetry. Very high classification accuracies were reported. 

However, in all cases these were isolated studies with no consolidation and no extensive assessment. This strongly 

affects the significance of the conclusions of studies which attempted to assess the value of polarimetric and multi-

frequency data. 

It is against this background that the present  study is set.  It will use both thorough analysis of datasets available to the 

study team, and detailed test of classification methods to demonstrate the use of polarimetry in crop and land cover 

classification.  
 
2 SAR AND GROUND DATASETS 
This study uses an EMISAR dataset from Foulum (Denmark) and the Flevoland (NL) AirSAR dataset. These datasets 

are comparable in terms of polarimetric radar data, and complementary in terms of temporal coverage. They are suitable 

for statistical analysis of the frequency, angular, polarimetric and temporal behaviour of crop types prevailing in North 

Europe, although the lack of detailed ground data preventing rigorous interpretation and modelling. 



2.1  The Foulum Dataset 
The fully polarimetric Danish airborne SAR system, EMISAR, acquired simultaneous C-band (5.3 GHz) and L-band 

(1.25 GHz) SAR data at the Foulum agricultural test site in Jutland, Denmark on 21 March, 17 April, 20 May, 16 June, 

15 July and 16 August, 1998. The area contains spring crops: beets, peas, potatoes, maize, spring barley and oats, and 

winter crops: rye, winter barley, winter wheat, winter rape and grass. Hence this dataset is particularly well suited to 

evaluation of the classification performance of satellite systems giving monthly coverage of the area during the growing 

season. The nominal one-look spatial resolution is 2 m by 2 m (one-look), the swath-width is approximately 12 km and 

incidence angles range from 35º to 60º.  The processed data are fully calibrated using an advanced internal calibration 

system.  

2.2  The Flevoland Dataset 
The Flevoland site was visited by the NASA/JPL AIRSAR system on June 15, July 3, July 12 and July 28, 1991,during 

the Mac-Europe campaign. P, L and C-band data were acquired at incidence angles from 26° to 65°. Covariance matrix 

data, calculated on a per field basis, are available through the ERA-ORA Concerted Action European project for the 

following crop types: potato (406 fields), wheat (394 fields), sugar beet (317 fields), grass (186 fields), barley (101 

fields), and for a small numbers of fields of oats, maize, rapeseed, beans peas, alfalfa, oat, onion, flax, lucerne, grass 

and fruit trees. Classification schemes derived from the field data were also applied at the pixel level, and tested against 

the crop map provided. The dataset is well suited to assessing classification performance during the peak period of 

vegetation growth in July. 

 
3 DATA ANALYSIS  
The analysis in this paper is based exclusively on C-band data, because of its more reliable performance compared to L-

band [1]. This section summarises results from analysis of the polarimetric data from Flevoland and Foulum, and is 

aimed at selecting optimum parameters for classification.  

 

3.1.  Radar Parameters 
The following radar measurements were considered: 

• The terms in the covariance matrix (ignoring the co-cross covariance terms), including the amplitude and phase of 

the HH-VV covariance.  

• The amplitude of the HH-VV correlation coefficient. 

• Ratios of channel powers (in dB). 

• Following [2], the circular (RR, LL and LR) powers, the ratios between these powers (RR-LL, RR-RL and LL-RL), 

and the 45
o
 linear polarisations (copol, crosspol, copol-crosspol).  

• Entropy and alpha, as described in [3].  

 

3.2   Data Analysis  
3.2.1 Incidence angle variation 
The angular variation of the measurements depends on the type of measurement, the frequency, the polarisation, the 

crop type and the date. For single intensity measurements (HH, VV or HV) at C band:  

(a) The variation is of type cos(θ)  if volume scattering from the vegetation layer is the prevailing interaction 

mechanism. This is the case for: 

- HV, at dates when the crops are well developed (e.g. July dates at Flevoland). 

- HH or VV, when crops are well developed and the soil contribution is small, as occurs in July for sugar beet 

and potato.  

(b) When the soil backscatter is dominant (at early and late stages), the attenuation by the crop goes as 1/cos(θ )!", but 

the overall variation depends on the soil backscatter angular variation, which depends on surface roughness.  

(c)  When the soil-vegetation interaction is important, the angular variation may display quite different behaviour.  

(d) When there is large inter-field variability, because of differences in phenological stage or the class taxonomy 

corresponds to different canopy types, very large dispersions in inter-field backscatter can be observed. This occurs 

for most crops in June, when the growth rate is high and there is field-to-field variability in scattering mechanisms. 

The large class variance will then militate against the generality and robustness of any classification procedure. 

In summary, θσγ cos/0=  can be used to compensate for incidence angle variation only for HV backscatter at C band 

in July. For HH and VV, the incidence angle range should be restricted in the analysis (for example, by excluding data 

at low (<30°) and high (>50°) incidence angles), or by experimentally assessing the angular variations specific to the 

case where soil backscatter is significant. 



As a consequence, the data analysis and classification scheme using airborne data should be applied over small ranges 

of incidence angle, i.e. 25-35°, 35-45°, 45-55° and >55°. A problem usually encountered with airborne data is that crop 

types are not evenly distributed across the incidence angle range.  

 

3.2.2 Selection of Parameters 
Discrimination between vegetation and bare soils 
Early in the growing season, the spring crop fields are characterised by surface scattering, whereas the winter crop 

fields with vegetation display some degree of volume scattering. Late in the season, most harvested fields can be 

considered as bare soil surface. Hence, polarimetric parameters are sought which discriminate between surface and 

volume scattering.  Polarimetric parameters that are expected to have potential for discriminating between bare and 

vegetated fields are those which maximise the difference between surface and volume scattering. These are:  

- the cross-polarized backscatter coefficient HV, the entropy and the HV/VV ratio, the latter having higher 

values for volume scattering than surface scattering,  

- the correlation coefficient between HH and VV, which is higher for surface scattering.  

Fig. 1 shows HH-VV correlation versus HV in April at Foulum, and indicates that separation of winter and spring crops 

is possible using these parameters (the separating curve is discussed in Section 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Separation between broad leaves and small stems crops 
Simulations in [2] show an appreciable difference between RR and RL backscatter when crops with small stems are 

compared with crops of wide leaves. The difference was interpreted as due to cylinder scattering compared with disc 

scattering. However, small stem crops, such as wheat and barley, have stems that are predominantly vertical, whereas 

broad leaf plants like sugar beet and potatoes contain more randomly oriented scatterers, and the difference may be due 

to the plant structure. Fig. 2 shows RR-RL versus HV-VV ratios (in dB) at the Flevoland site on July 28. Wheat, barley 

and grass have a limited range of RR-RL, whereas potato and sugar beet have lower values. The separation is also clear 

on July 12, but less so on July 3 and not at all on June 15. Figure 3 shows similar observations at Foulum, where RR-RL 

for sugar beet and potato appears to be linearly related to HV-VV, while RR-RL remains in a restricted range for small 

stem crops.  

 

Fig. 2 RR-RL (dB) vs. HV-VV (dB) at Flevoland (July 12)  Fig. 3 RR-RL (dB) vs. HV-VV (dB) at Foulum (July 15) 

 

Wint er  cr ops 

Spring cr ops 

Fig. 1: HH-VV correlation versus HV for winter (red) and spring (blue) crops on April 17 at the Foulum site 
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Separation of plants with different biomass levels 
HV is a good discriminator of different biomass levels. Figs. 4 and 5 show separation between rape, barley, rye and 

wheat at Foulum using HV. At Flevoland, separation between rapeseed, barley, wheat and beans is possible. Fig. 5 

shows also that sugar beet and potato can be separated using the HH-VV correlation at this mid-July date. 

Fig. 4. HV (dB) vs. HH-VV correlation at Foulum (Jun 16)  Fig. 5. HV (dB) vs. HH-VV correlation at Flevoland (Jul. 12)  

 
Summary of the data analysis 
The analysis carried out on the two datasets indicates the following: 

1.  The incidence angle variation of the radar parameters is important and needs careful consideration when defining 

the optimum incidence angle for spaceborne SAR data, and applying classification methods to airborne SAR data. 

2.  The parameters that can be derived from polarimetric SAR data vary significantly over the April-July growth 

season, and over intervals of 9-18 days in June-July. These variations could be interpreted in terms of scattering 

mechanisms if the relevant ground data were available. However, to derive robust classification methods based on 

scattering mechanisms, the crop calendar at a given test site must be known. 

• Using an acquisition early in the growing season it is possible with a high accuracy to discriminate between 

winter and spring crops using HV or the HH-VV correlation. 

• It may be possible to discriminate between wide leaf crops and small stem crops using acquisitions later in the 

growing season (mid to late July) using RR-RL. 

• Small stem crops with different biomass level can be discriminated with HV. 

 

4 FIELD-BASED CLASSIFICATION 
Field-based classification using a maximum likelihood ISODATA classifier was applied in three contexts: 

1. Separating spring from winter crops 

2. Comparing performance at Foulum with that at Flevoland 

3. Comparing classification performance at different times for Flevoland  

 

4.1 Separating Spring from Winter Crops 
Data analysis shows that individual features cannot accurately separate spring from winter crops, but that several pairs 

of features can do this very effectively. An example using C band Foulum data from April 1998 is shown in Fig. 1. The 

curve marked on Fig. 1 is the quadratic decision boundary located by ISODATA; it can be seen that a linear decision 

boundary would give only slightly worse performance for these data. The performance for a range of feature pairs is 

shown in Table 1. Most of these pairs give good separation of the two classes, the greatest accuracy (95.1%) arising 

from the features used in Fig. 1. Addition of extra features did not improve the results. 
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Table 1: Classification results for selected pairs of parameters 

 

4.2 Comparing Classification Performance at Foulum and Flevoland 
Section 3 has shown that a relatively small number of parameters appears to be suitable for classifying the available 

crop types. Particularly important information-bearing features in early/mid-July are the HH-VV correlation coefficient, 

the HV backscattering coefficient and the RR-RL ratio. These features were used in the ISODATA algorithm for the 

Foulum 15/7/98 and Flevoland 12/7/91 datasets. The crops common to both test sites are wheat, barley, potatoes and 

sugar beet, and for comparability we restricted the dataset to just these classes. Because there are large variations in the 

number of fields per class, a maximum a posteriori (MAP) approach was used. In addition, two forms of the ISODATA 

algorithm were considered, one carrying out the classification for all four classes in a single step, and a hierarchical 

form (suggested by the approach described in Fig. 6), in which the fields are first separated into cereals and broad leaf 

crops, before subdividing each of these classes into their two constituent crop types. 

 

Table 2. Classification accuracies using single-step (S) and hierarchical (H) ISODATA schemes 

 
Site Date ISODATA type Accuracy % 

Foulum 15/7 S 89.2 

Foulum 15.7 H 93.8 

FFlleevvoollaanndd    33//77  SS  7766..77  

FFlleevvoollaanndd    33//77  HH  8844..99  

Flevoland 12/7 S 92.8 

Flevoland 12/7 H 92.1 

 

Table 2 shows the results for early and mid-July at Flevoland and for mid-July at Foulum. The key points are: (1) the 

algorithm performs well under all these circumstances; (2) the hierarchical form appears to produce better results (the 

difference between the single-step and hierarchical form for July 12 at Flevoland cannot be considered significant); (3) 

the approach is transferable between times and locations. 

 
4.3 Comparing Classification Performance at Different Times for Flevoland 
 

In this Section, we consider classification of the six main crops (wheat, barley, potatoes and sugar beet, rapeseed and 

beans) at Flevoland at all three July dates for which data are available, in order to investigate multi-temporal effects. 

Three types of ISODATA are used: single-step ML, single-step MAP and hierarchical. We also carry out ML 

classification based on the Wishart distribution. In this case, the class means and covariances were derived by averaging 

10% of the fields of each type, chosen at random. Different random selections did not greatly affect the results. The 

classification accuracies and kappa coefficients for the three dates are summarised in Table 3(a)-(c). 

 

Table 3(a). Accuracies and kappa coefficients for the four classification methods on July 3. 

 
Algorithm Accuracy (%) Kappa coefficient 

ML ISODATA 75.9 0.68 

MAP ISODATA 80.1 0.73 

Hierarchical ISODATA 81.9 0.76 

Wishart 84.3 0.79 

 

Parameter 1 Parameter 2 Spring OK (No. & 
%) 

Spring Bad (No. 
& %) 

Winter OK (No. & 
%) 

Winter Bad (No. 
& %) 

Overall  
(%) 

VV HV 524 (94.2) 32 (5.8) 395 (88.0) 54 (12.0) 92.6 

Correlation HV 524 (94.2) 32 (5.8) 432 (96.2) 17 (3.8) 95.1 

Alpha Entropy 535 (96.2) 21 (3.8) 413 (92.0) 36 (8.0) 94.2 

Correlation Entropy 539 (96.9) 17 (3.1) 392 (87.3) 57 (12.7) 92.6 

HV-HH HV-VV 512 (92.0) 44 (8.0) 421 (93.7) 28 (6.3) 92.8 

RR-RL HV-VV 506 (91.0) 50 (9.0) 428 (95.3) 21 (4.7) 92.9 

HH HV 452 (81.3) 104 (18.7) 424 (94.4) 25 (5.6) 87.1 

Entropy RR-RL 531 (95.5) 25 (4.5) 418 (93.1) 31 (6.9) 94.4 



 

Table 3(b). Accuracies and kappa coefficients for the four classification methods on July 12 

. 
Algorithm Accuracy (%) Kappa coefficient 

ML ISODATA 80.4 0.75 

MAP ISODATA 88.0 0.84 

Hierarchical ISODATA 89.5 0.86 

Wishart 79.8 0.73 

 

Table 3(c) Accuracies and kappa coefficients for the four classification methods on July 28 

 
Algorithm Accuracy (%) Kappa coefficient 

ML ISODATA 76.7 0.70 

MAP ISODATA 77.3 0.69 

Hierarchical ISODATA 75.4 0.67 

Wishart 78.5 0.72 

 
There appear to be two general features of the above results. The first is that MAP ISODATA consistently gives better 

overall accuracy than ML ISODATA; this is almost certainly because of the wide disparity between the numbers of 

fields of each crop type, and the need for a weighting to counteract this. The second is that the Wishart approach 

appears to do better under those circumstances where the classes do not seem as well separated (July 3 and 28; see 

Section 3). On July 12, where the classes separate out very well in feature space, hierarchical and MAP ISODATA 

perform markedly better than the Wishart classification. This is not easy to interpret. Work in [1] showed that Wishart 

classification tended to perform badly if there was significant variation within a single class, so that the averaged 

training statistics were not representative of many of the individual samples. It is not clear if this is the case here. 

While MAP ISODATA performs better than ML ISODATA, there is no clear indication about whether it is preferred to 

hierarchical ISODATA. On the first two dates, the hierarchical form does better, on the third date, MAP does better; in 

none of these cases is the difference dramatic.  

 

5 PIXEL-BASED CLASSIFICATION 
 
Section 4 was concerned with field-based classification, which requires a field based reference or perhaps a segmented 

image. When such information is not available, a pixel-based approach is needed. In this Section we compare three 

methods of pixel-based classification: (1) direct hierarchical classification; (2) ISODATA clustering (both single-step 

and hierarchical) followed by classification; and (3) maximum likelihood (ML) using the complex Wishart distribution. 

We also give results for an ISODATA algorithm driven by the Wishart distribution. 

The direct hierarchical classification methods are based on analysis of the field-averaged Flevoland data in the ERA-

ORA database. An initial algorithm, developed from analysis of the July 12 data, showed a systematic failure associated 

with �rapeseed� fields when applied to the July 28 image. This occurs because these fields exhibit properties more 

appropriate to surface than volume scattering; we interpret this as a sign that the fields have been harvested. Catering 

for this �bare soil� class requires the addition of an extra rule to the initial scheme, as shown in Fig. 6. The algorithm 

uses the C-band HV-VV, HV-HH and RR-RL ratios, the HH-VV correlation and HV backscatter. After identifying 

�bare soil� from the cross-pol/co-pol ratios, it separates the broad leaf and small stems crops using the RR-RL 

difference. These two main classes are then separated into subclasses by using HH-VV correlation coefficient for the 

broad leaf and HV for the small stem classes. For the broad leaf class, we define two subclasses: potatoes and sugar 

beets. For the small stem class, we define four subclasses: beans, winter wheat, barley and rapeseed.  

Four forms of pixel-based ISODATA classification are considered: 

1. Randomly initialised single step ISODATA 

2. ML ISODATA initialised using a hierarchical scheme 

3. MAP ISODATA initialised using a hierarchical scheme 

4. Hierarchical ISODATA initialised using a hierarchical scheme 

Each of these four forms of ISODATA is concerned with answering a particular question: 

1. Can a purely data driven clustering algorithm identify the main crop classes at the Flevoland site? 

2. Does the classification improve if we input prior knowledge into the initialisation?  

3. Is ISODATA adversely affected by the large differences in the prior probabilities of different classes (i.e., the large 

variation in area planted to different crops)? 

4. Can ISODATA help to optimise the thresholds used in a hierarchical scheme? 



 

 

The ISODATA algorithms use the RR-RL ratio, the HH-VV correlation and the HV power, and the number of classes is 

fixed at six. Note that each  iteration of pixel-based ISODATA assigns every pixel in the scene to one of the six classes. 

Many scene elements, such as roads, ditches and hedges, do not belong to any of the agricultural crop classes. Hence 

the final clusters formed by ISODATA represent a more general structuring of the image data. This is in contrast to 

methods trained purely on the crop data, such as direct hierarchical classification or maximum likelihood based on the 

Wishart distribution. 
The Wishart distribution is exploited in two ways:  

1. ML classification is carried out based on the Wishart distribution, with prior training on a sample dataset; 

2. Each iteration of an ISODATA algorithm uses a ML classification based on the Wishart distribution, initialised 

using a hierarchical scheme. 

The questions being addressed with these two approaches are: 

1. Does using all the information in the covariance matrix improve the classification compared to selecting  features? 

2. Can the Wishart approach be improved by using ISODATA to sharpen up the clusters? 

Because we are dealing with pixel data but comparing with a ground cover map, some additional radiometric and 

geometric processing is necessary. In order to smooth the data, they were first filtered using methods developed at DTU 

[4]. Geometrical correction was applied after classification. Images were converted from slant to ground range 

geometry, and all images were superposed by means of ground control points, using the image from July 12 as a 

reference. The crop map was scanned and superposed on the July 12 ground range image using ground control points. 

This digital ground map was used for masking borders and all the parts of the images outside the ground truth map. 

 

5.1  Classification Results 
July 12 
Fig. 7 shows the classification from July 12 using the direct hierarchical method described in Fig. 6, with the crop map 

below it. Table 4 indicates the accuracy of the decision separating the broad leaf and small stem crops, and shows how 

effective the RR-RL ratio is for this task. After the subsequent decisions, the overall accuracy is 73%, with a kappa 

coefficient of 0.66. Detailed examination indicates that there are no large-scale misclassifications of any of the crop 

types, but a systematic error is that the boundaries of many of the sugar beet fields are misclassified as potatoes. Some 

barley fields at the top of the image are classified as rapeseed, and some sections of wheat fields together with one 

whole rapeseed field are assigned to the bare soil class. 
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Fig. 6. Direct Hierarchical Classification Scheme  



 
Table 4. Accuracy of the broad leaf - small stem separation for the July 12 image. 

 
 No. of fields Well classified 

Small Stems 174 165 (95%) 

Broad Leaves 217 212 (98%) 

 

A summary of the performance of the pixel-based classification approaches for July 12 is given in Table 5. The direct 

hierarchical approach gave the best results. It is not improved by using ISODATA to refine the decision boundaries; on 

the contrary, hierarchical ISODATA performs marginally worse. In addition, hierarchical ISODATA misclassifies most 

of the barley fields, while the errors in the direct hierarchical method are less organised, many of them consisting of 

edges of sugar beet fields being classified as potatoes, rather than wholesale misclassification of a particular crop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Top: Classification for July 12 using direct hierarchical algorithm; bottom: ground truth. Classes are: potatoes 

(sienna), sugar beet (red), rapeseed (blue), wheat (yellow), barley (pale yellow) and bare soil (green). The other classes 

have been masked. 



Wishart ML gave results only slightly better than the completely unsupervised ISODATA with a random initialisation. 

Both of these approaches were out-performed by ISODATA initialised with the direct scheme, with ML performing 

better than MAP. Wishart ISODATA performed very badly. 

 
Table 5. Overall accuracies and kappa coefficients for Flevoland data from 12/7/91 

 

Algorithm Overall accuracy Kappa coefficient 

Direct hierarchical approach 72.9 0.66 

ML ISODATA (random init.) 59.1 0.49 

ML ISODATA (direct init.) 69.6 0.62 

MAP ISODATA (direct init.) 66.4 0.57 

Hierarchical ISODATA  72.8 0.65 

Wishart ML 59.4 0.49 

ML ISODATA (Wishart, direct init.) 50.0 0.33 

 
July 28  
The overall summary for July 28 is given in Table 6. Accuracies are much reduced compared to 12 July, as expected 

from the data analysis of Section 3. Much more separation is seen in feature space on July 12, and simple thresholds on 

the features are seen to be much more capable of accurately separating classes. From the analysis, it is not clear that a 

hierarchical decision tree will provide a viable approach on July 28, but it still proves to be the most effective of all the 

methods considered. Unlike July 12, attempts to improve the decision boundaries by allowing ISODATA to search for 

thresholds led to a marked decline in performance. The only ISODATA approach that gave reasonable results (in fact, 

results almost as good as the direct hierarchical method) uses a single step MAP approach. Very marked is the poor 

performance of both methods that try to exploit the Wishart distribution. The results all suggest that the two root crops 

are not very well separated from each other in feature space, while the cereals and rapeseed have more integrity. 

 

Table 6. Accuracies and kappa coefficients for Flevoland data from 28/7/91. 

 

Algorithm Overall accuracy Kappa coefficient 

Direct hierarchical method 65.3 0.55 

ISODATA (random init.) 52.7 0.41 

ML ISODATA (threshold init.) 57.6 0.46 

MAP ISODATA (threshold init.) 65.2 0.54 

Hierarchical  ISODATA (threshold init.) 55.8 0.43 

Wishart ML 48.4 0.34 

ISODATA Wishart 50.5 0.36 

 
July 3 
The results for July 3 are shown in Table 7. The poor performance of the hierarchical methods is expected, as at this 

time the different crop types show considerable overlap in feature space. The most remarkable result is the major 

improvement in the performance of the Wishart distribution methods, particularly when applied within ISODATA. 

 

Table 7. Accuracies and kappa coefficients for Flevoland data from 3/7/91. 
 

Algorithm Overall accuracy Kappa coefficient 

Direct hierarchical method 40.4 0.29 

ISODATA (random init.) 53.2 0.40 

ML ISODATA (threshold init.) 53.1 0.39 

MAP ISODATA (threshold init.) 57.9 0.45 

Hierarchical  ISODATA (threshold init.) 20.3 0.06 

Wishart ML 72.0 0.65 

Wishart ISODATA  78.6 0.73 

 
5.2  Summary of Pixel-Based Classification Results 
The essential points arising from the pixel-based analysis are that, in mid to late July, a direct hierarchical method based 

on specific polarimetric features tuned to plant characteristics (state of development, biomass, structure) provides the 

best performance, with accuracies of 73% for the main 6 crops in mid-July, dropping to 65% in late July. Similar 

methods are not applicable in early July, as the different crops do not separate out in feature space. Attempts to refine 



the decision boundaries using ISODATA do not yield better performance. This may in part be caused by the fact that 

the iterative learning in ISODATA is hampered by the presence of extraneous classes (field boundaries, ditches, etc) 

that cannot be excluded in a pixel-based approach. Methods based on the Wishart distribution performed badly in mid 

to late July but well in early July (exactly opposite to the behaviour of the hierarchical scheme). This is hard to explain, 

but may result from the classes being better represented by complex Gaussian distributions in early July. 

 
6 CONCLUSIONS 
 
The principal conclusions of this paper are: 

(a) A limited set of features carries the information needed to classify the crops present under northern European 

agricultural conditions. The most effective set of features appear to be the RR-RL ratio, the HH-VV correlation and 

the HV backscattering coefficient, together with the HV-VV and HV-HH ratios when bare soil (or harvested crops) 

needs to be catered for. These features indicate relevant biophysical characteristics of the crops.  
(b) The behaviour of these features varies markedly through the growing season, as a consequence of variation in the 

scattering mechanisms. For Flevoland, mid-July was clearly best suited to classification, with well-separated 

classes in feature space. The situation was not as good in late July, and in early July, feature-based methods were 

not effective. 

(c)   For field-based classification, ISODATA algorithms give good performance that is transferable between times and 

locations. The hierarchical form of ISODATA appears better. 
(d) In mid and late July, the most successful pixel-based classification method was direct hierarchical classification, 

which gave accuracies of around 73% in mid-July and 65% in late July.  

(e) The direct hierarchical methods were not improved by using ISODATA (either independently or to set the decision 

thresholds). This suggests that the thresholds chosen for the direct scheme were close to optimal. 

(f) Wishart ML classification performs poorly in both mid and late July, but gives an accuracy of 72% in early July, 

increasing to around 79% when combined with ISODATA. This may result from the class distributions differing 

significantly from the complex Gaussian model in mid to late July, but better following this model in early July. 
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