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[1] In this paper we have tested the feasibility of the inverse modeling approach to derive
root water uptake parameters (RWUP) from soil water content data using numerical
experiments for three differently textured soils and for an optimal drying period. The
RWUP of interest are the rooting depth and the bottom root length density. In a first step, a
thorough sensitivity analysis was performed. This showed that soil water content
dynamics is relatively insensitive to RWUP and that the sensitivity depends on the texture
of the considered soil. For medium-fine textured soil, the sensitivity is particularly low due
to relatively high unsaturated hydraulic conductivity values. These ones allow a
‘‘compensating effect’’ to occur, i.e., vertical unsaturated water fluxes overshadowing in
some way the root water uptake. In a second step, we analyzed the well-posedness of the
solution (stability and nonuniqueness) when only RWUP are optimized. For this case, the
inverse problem is clearly ill-posed except for the estimation of the rooting depth
parameter for coarse and the very fine textured soils. In a third step, we addressed the case
where RWUP are estimated simultaneously with additional parameters of the system
(i.e., with soil hydraulic parameters). For this case, our study showed that the inverse
problem is well-posed for the coarse and very fine textured soils, allowing for the
estimation of both RWUP of interest provided that a powerful global optimization
algorithm is used. On the contrary, the estimation of RWUP is unfeasible for medium-fine
textured soil due to the ‘‘compensating effect’’ of the vertical unsaturated water flows. In
conclusion, we can state that the inverse modeling approach can be applied to derive
RWUP for some soils (coarse and very fine textured) and that the feasibility is strongly
improved if the RWUP are simultaneously optimized with additional parameters.
Nevertheless, more detailed research is needed to apply the inverse modeling approach to
real cases for which additional issues are likely to be encountered such as soil
heterogeneity and root dynamics. INDEX TERMS: 1866 Hydrology: Soil moisture; 1875

Hydrology: Unsaturated zone; 1818 Hydrology: Evapotranspiration; KEYWORDS: root water uptake, inverse

modeling, soil water content, parameter estimation
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1. Introduction

[2] The correct modeling of evapotranspiration fluxes
at different spatiotemporal scales remains an important
challenge for hydrologists. Numerous evapotranspiration
models have been developed such as those derived from
land surface energy balances [e.g., Dickinson et al., 1993;
Ducoudré et al., 1993] or found in agrohydrological simu-
lation models describing more in detail the soil water, the

soil vapor, and energy balance in the soil-crop-atmosphere
continuum [e.g., Jarvis, 1994; van Dam et al., 1997]. This
latter type of model generally contains various components
representing different physical processes such as, e.g., soil
water flow and root water uptake (RWU). The RWU
process is of paramount importance, as in relatively moist
systems most water leaves the soil through root water
uptake and plant transpiration rather than by direct evapo-
ration at the soil surface [Chahine, 1992].
[3] For modeling purposes, RWU in agrohydrological

models is often conceptualized by a macroscopic approach
in which a depth-dependent soil water sink term is defined,
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which is then added to the soil water mass conservation
equation for a representative elementary soil volume
[Whisler et al., 1968; Molz, 1981]. Actual RWU is calcu-
lated as the product of a maximum possible RWU and a
reduction function taking into account water stress, salinity
stress, or both [Homaee, 1999]. Maximum RWU is time
and depth dependent and is generally defined by some
parameters characterizing the rooting depth and the root
density distribution. These root water uptake parameters
(RWUP) have to be identified before using the agrophysical
hydrological model in predictive mode. A straightforward
method to generate RWUP is to combine a soil water and
energy transport model of the soil-plant-atmosphere system
with a vegetation growth model [see, e.g., Van den Broek
and Kabat, 1995]. However, this approach is uncommon in
the field of surface hydrology as it relies on elaborate crop-
specific parameterization schemes which depend both on
the crop phenotypology and genotypology. Hence there is a
need to evaluate the robustness of alternative RWUP
identification strategies such as the method based on
hydrological tracers [e.g., Brunel et al., 1995], or the
method based on a simplified water balance [e.g., Hupet
et al., 2002], or the use of an inverse modeling procedure
[e.g., Vrugt et al., 2001a]. This latter approach is an
estimation method in which parameters are optimized by
minimizing a predefined objective function which measures
discrepancies between observations, i.e., measurements
of a state variable (e.g., soil water contents) and the
corresponding outputs of the model. Inverse procedures
for parameter estimation have been widely used in the field
of vadoze zone hydrology [see Hopmans and Simunek,
1999] but have almost exclusively been confined to the
estimation of soil hydraulic properties from outflow experi-
ments [e.g., van Dam et al., 1994], evaporation experiments
[e.g., Romano and Santini, 1999], or infiltration and redis-
tribution experiments [e.g., Si and Kachanoski, 2000].
Quite recently, the inverse procedure was also applied to
the whole soil-plant-atmosphere system to infer RWUP
from soil water content observations by coupling appropri-
ate numerical models with a parameter optimization algo-
rithm [Musters and Bouten, 1999; Vrugt et al., 2001a,
2001b; Zuo and Zang, 2002]. This inverse approach is
becoming more popular because only a few restrictions are
imposed on the experimental conditions. In addition, it
results in effective parameter estimates for which the
uncertainty ranges can be quantified. Nevertheless, the
use of inverse techniques has some well-known limitations
which are mainly related to the nonuniqueness and insta-
bility of the optimized parameter set. Nonuniqueness leads
to several parameter sets describing the data, each yielding
equivalent minimum values for the objective function
[Gupta and Sorooshian, 1983; Duan et al., 1992]. Non-
unique parameter estimates may occur when the parameter
sensitivity is low or when the parameters are mutually
dependent. Instability is related to the fact that errors on
measurements, fixed parameters, or boundary conditions
may result in considerable changes in optimized parameter
sets. Instability generally occurs when high measurement
noise characterizes the data for the inversion and/or when
the sensitivity of the parameters to the input data is too low.
The well-posedness, the uniqueness, and the stability of the
identification of soil hydraulic properties have been exten-

sively studied by means of both experimental and numer-
ical experiments [see, e.g., Kool et al., 1985; Carrera and
Neuman, 1986; Simunek and Van Genuchten, 1996]. In
contrast, only a few studies have dealt with the identifica-
tion properties of RWUP parameters. Musters and Bouten
[1999] and Vrugt et al. [2001a, 2001b] identified RWUP for
a field experiment but did not investigate the feasibility of
the procedure by means of numerical experiments. Yet this
preliminary ‘‘testing’’ step is necessary to claim that the
inverse problem is well-posed and that the approach can be
robustly applied for identification of RWUP. Using a
combined numerical and experimental approach, Hupet et
al. [2002] identified nonuniqueness and stability problems
in the estimation of RWUP through inversion.
[4] The general purpose of this study was to investigate

numerically the feasibility of estimating RWU parameters
from soil water content observations by an inverse modeling
approach. We chose a numerical analysis since in such an
analysis everything is known, i.e., the chosen model is
correct, and all parameters and measurement errors are
known beforehand [Simunek et al., 1998]. This is obviously
an optimal situation for testing the potential and the limi-
tations of the inverse procedure. In this study, preference is
given to the use of soil water content data in the objective
function since advanced soil moisture probing technology
such as time domain reflectometry (TDR) is now readily
available to monitor this state variable with a high spatio-
temporal resolution. Furthermore, to be able to compare our
results, we chose the same state variable, i.e., soil water
content, as that used in the previous studies dealing with the
inverse estimation of RWUP [Musters and Bouten, 1999;
Vrugt et al., 2001a, 2001b]. Numerical experiments were
generated for a long dry period in three differently textured
soils. The two target RWUP of interest are the rooting depth
(RD) and the bottom relative root length density (BRLD),
which together fully characterize the maximum RWU
profile. First, we analyze the sensitivity of RD and BRLD,
as instability and nonuniqueness may be strongly related to
the sensitivity of the optimized parameters. Second, we
address the uniqueness and stability of the solution when
only RWUP are optimized. In this case, Monte Carlo
simulations are performed to test the stability of the solution
to errors in input data, to errors in some fixed parameters,
and to errors in both. Finally, we investigate uniqueness and
stability of the solution when RWUP and some additional
parameters are optimized simultaneously.

2. Material and Methods

2.1. The Forward Problem

2.1.1. Root Water Uptake Model
[5] Water flow and root water uptake were simulated

using the water transport module of the SWAP model [van
Dam et al., 1997]. Description of the one-dimensional
vertical transient water flow is based on Richards’ equation
combined with a sink term:

CðhÞ @h
@t

¼ @

@z
K hð Þ @h

@z
þ 1

� �� �
� S zð Þ ð1Þ

where C(h) = @q/@h is the soil water capacity [L�1], h is the
soil water pressure head [L], t is time [T], z is the vertical
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coordinate [L] defined as positive upward, K(h) is the
hydraulic conductivity [L T �1], and S(z) is the sink term
describing water uptake by plant roots [T�1]. In this study,
we assume the soil water relations can be described by the
closed-form Van Genuchten [1980] relations:

qðhÞ ¼ qr þ
qs � qr

ð1þ ahj jnÞm ð2Þ

KðqÞ ¼ KsS
l
e 1� ð1� S1=me Þm
h i2

ð3Þ

where qr and qs are the residual and saturated volumetric
water content, respectively []; a[L �1], n, m = (1 � 1/n) and
l[] are empirical parameters; Ks is the saturated conductiv-
ity [L T�1]; and Se = (q � qr) / (qs � qr) is the relative
saturation []. Soil water flow was simulated with
equation (1) with specified lower and upper boundary
conditions. For a dry period with no rainfall, the upper
boundary condition is governed by crop potential evapo-
transpiration (ETp). ETp is obtained by multiplying the
reference evapotranspiration (ETo) calculated according to
Allen et al. [1994] by an appropriate crop coefficient
considered here as a constant for the selected period.
Afterward, ETp is partitioned between the potential soil
evaporation (Ep) and transpiration (Tp) by

Ep ¼ ETp exp
�0:6LAI ð4Þ

where LAI( ) is the leaf area index. Potential transpiration
(Tp) is then calculated by subtracting Ep from ETp. In the
SWAP model, the maximum possible RWU rate, Smax(z),
integrated over the rooting depth, is equal to the potential
transpiration and is defined as follows:

SmaxðzÞ ¼
RLDðzÞ

R0
�RD

RLDðzÞdz
Tp ð5Þ

where RLD(z) is the root length density at depth z (L L�3)
and RD is the rooting depth (L). Note that this formulation
of the Smax function is in fact an extension of the model by
Feddes et al. [1978] and Prasad [1988] allowing a more
flexible distribution of the maximum RWU according to the
root density profile. In this study, only a linear root density
profile will be considered, requiring therefore the specifica-
tion of three parameters, i.e., the top root length density
(TRLD), the bottom root length density (BRLD), and the
rooting depth (RD). In this study, we decided to fix TRLD
equal to 1 in order to characterize the linear RWU profile
with only two parameters (BRLD and RD). The sink term
S(z, h) of equation (1) is then calculated as proposed by
Feddes et al. [1978] as follows:

Sðz; hÞ ¼ gðhÞSmaxðzÞ ð6Þ

where Smax(z) is the maximal RWU as a function of depth
[T�1] and g(h) is a dimensionless reduction function that
simulates the effects of soil water stress. The reduction
function g(h) is characterized by different pressure head

values h1, h2, h3 (low and high according to the climatic
demand), and h4. Above h1 and below h4, g(h) is zero;
between h2 and h3(l or h), g(h) is 1; and between the range
h1–h2 and h3–h4 the value of the reduction function is
linearly interpolated.
[6] The actual root water uptake given by equation (6) is

subsequently integrated over the whole rooting depth and
yields the actual transpiration rate Ta. For illustration
purpose (see Figure 1) the RWU pattern was generated with
this conceptualization for a dry period of 28 days (see
numerical runs). We used a rooting depth of 100 cm, a
TRLD of 1, and a BRLD of 0.5 corresponding to a
trapezoidal root length density pattern. Note that although
RLD patterns generally decrease exponentially with depth
for most vegetation types [Canadell et al., 1996], we chose
a trapezoidal pattern for this case study. Figure 1b illustrates
that for this conceptualization the depth over which the
RWU takes place is constant (for a period when crop growth
is neglected) and independent of the climatic demand. On
the other hand, for a certain depth the maximum possible
RWU is variable according to the climatic demand as shown
in Figures 1c, 1d, and 1e. Finally, in this RWU concep-
tualization, water stress appears as soon as the pressure
head drops below a critical value in any layer of the soil
(Figures 1d and 1e).
2.1.2. Reference Run
[7] For the identification of RWUP, a reference run was

generated for a long dry period of 28 days (without any
significant rainfall) corresponding to actual climatic con-
ditions in Belgium encountered between 6 July and
2 August 1999 in the field experiment described by Hupet
and Vanclooster [2002]. This period was characterized by a
moderate potential evapotranspiration (see Figure 1a) with a
mean value of 3.93 mm d�1. The reference run and
subsequent numerical simulations were generated for a
homogeneous soil profile, 160 cm deep with free drainage
as the lower boundary condition. The flow domain was
discretized into 40 compartments using, as suggested by van
Dam and Feddes [2000], a nodal distance of 1 cm for the
first 10 compartments and a nodal distance of 5 cm for the
remaining soil profile. The initial condition was selected as
a pressure head profile corresponding to field capacity,
considered here as the state of ‘‘equilibrium’’ reached after
3 days of water redistribution within a saturated soil profile
with zero flux as top boundary condition. We used soil
hydraulic properties corresponding to the average of those
measured within a small loamy experimental field at 28
different locations (for further details, see Hupet and
Vanclooster [2002]). The soil was assumed to be covered
with a fully developed and nongrowing maize crop charac-
terized by a LAI of 4, a crop coefficient of 1.1, and a rooting
depth of 100 cm [Girardin, 1999], and a top root length
density of 1 and a bottom root length density of 0.5. Note
that the value of this latter parameter was selected quite
arbitrarily, although it is located just in the middle of the
defined parameter space (i.e., 0–1, see below), which is an
advantage for the study under consideration. The critical
pressure heads of the water stress function were assigned to
values listed byWesseling [1991] for maize, i.e., h1 = 15 cm,
h2 = 50 cm, h3l = 600 cm, h3h = 325 cm, and h4 = 8000 cm.
To extend the results of this study, two additional reference
runs were also generated for two differently textured soils
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corresponding to a coarse and a very fine soil whose
respective soil hydraulic properties were derived from
Wösten et al. [1998] (see Table 1 and Figure 2).

2.2. The Inverse Problem

2.2.1. Objective Function
[8] Identification of RWUP by an inverse procedure is a

nonlinear optimization problem which consists in finding
the parameter vector b (containing the RWUP to be opti-
mized) by minimizing an objective function OF(b).

Considering incorporation of only soil water content
observations in the OF (hereinafter called OF), and
assuming that residuals, i.e., errors between ‘‘measured’’
and simulated soil water contents are normally distributed,
independent and homoscedastic, the unweighted maximum
likelihood OF yields

OFðbÞ ¼ Q*� Qð ÞT : Q*� Qð Þ ¼ eT :e ð7Þ

Figure 1. Spatiotemporal patterns of root water uptake illustrated for the considered RWU
conceptualization. Figure 1a shows daily ETo for the reference run, and Figure1b shows the
corresponding RWU patterns. RWU for days 9, 13, and 22 are illustrated in Figures 1c, 1d, and 1e.
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where b is the model parameter vector; Q* = Q*(zj ,ti) and
Q = Q(zj, ti, b) are the vectors containing, respectively, the
‘‘measured’’ and the simulated soil water content data
relative to depth zj and time tj; and e = Q* � Q is the vector
of residuals. In the present study, we considered a
hypothetical intensive sampling scheme where soil water
content is measured with a daily time step (n = 28) each
10 cm between 0 and 160 cm, i.e., at 10, 20,. . ., 150 cm
depth (n = 14), resulting in 420 soil water content data
points in the OF.
2.2.2. Optimization Algorithms
[9] For the minimization of equation (7), we used two

different optimization algorithms. The first one is derived
from the Gauss-Marquardt-Levenberg (GML) method,
which starts by searching mainly along the steepest gradient
of the OF surface and gradually switches to a direction
based on a first-order approximation of the OF surface.
This optimization algorithm is included in PEST [Doherty
et al., 1995], which is a nonlinear parameter estimation
program which can be linked via templates to any model.
As the GML algorithm is very efficient in terms of the
number of model calls to find the global minimum [e.g.,
Finsterle and Pruess, 1995], we used it when the number of
parameters to be optimized was small, typically in our case
for one or two RWUP. Nevertheless, it is well known that
efficiency of local optimization algorithms to find the global
minimum becomes very limited when the number of
parameters increases, e.g., in our case when RWUP are
simultaneously optimized with some soil hydraulic param-
eters. In this case, we used a second optimization algorithm
based on a global search procedure. This is the global
multilevel coordinate search (GMCS) algorithm [Huyer and
Neumaier, 1999] combined sequentially with the classical
Nelder-Mead simplex (NMS) algorithm. This global
optimization algorithm introduced in the area of unsaturated
zone hydrology by Lambot et al. [2002] is very efficient for
the complex topography of nonlinear objective functions
containing many local minima and compares favorably with
other existing global search algorithms [Huyer and
Neumaier, 1999; Lambot et al., 2002]. The GMCS-NMS
algorithm used in this study is entirely programmed in
MATLAB routines (version 5.3 [The MathWorks, 1999])
and directly linked to the SWAP model (Fortran execu-
table). Details of the programming procedure can be
obtained upon request.
2.2.3. Parameter Uncertainty
[10] Besides the optimized parameter values, it is also

desirable to determine the precision of those estimates, i.e.,
the optimized parameter uncertainty. In this study, this was

derived by two different methods. The first is used exclu-
sively when only RWUP are optimized and is based on
Monte Carlo simulations. This method generates many
optimized parameter sets from model fitting of data (in
our case produced by the reference run) corrupted with
measurement errors. Uncertainty of the optimized parame-
ters in terms of standard deviations and confidence intervals
is subsequently derived from the optimized parameter dis-
tributions obtained [Press et al., 1992; e.g., Clausnitzer et
al., 1998]. As this first method requires quite high
computing resources, we used a second method when the
number of parameters was larger. This method approxi-
mated parameter confidence intervals using classical linear
regression analysis, i.e., by assuming local linearity around
the minimum of the OF. Uncertainty of the optimized
parameters is derived from the parameter variance-covar-
iance matrix C [Kool and Parker, 1988] calculated as
follows:

C ¼ eTe

n� p
H�1 ð8Þ

where n is the number of observations, p is the number of
parameters, and H is the Hessian matrix whose elements are
defined by

Hi;j ¼
@OFðbÞ
@bi@bj

ð9Þ

Table 1. Mualem-Van Genuchten Parameters Corresponding to

the Loamy Soil of the Experimental Field (Medium-Fine) and the

Other Two Soils Considered (Coarse and Very Fine) [Wösten et al.

1998]

Coarse Medium-Fine Very Fine

�r , cm
3 cm�3 0.025 0.00 0.01

�s, cm
3 cm�3 0.366 0.392 0.538

n( ) 1.52 1.22 1.07
a, cm�1 0.043 0.003 0.0168
Ksat, cm d�1 70 5 8.235
l( ) 1.25 0.5 0.0001

Figure 2. Water retention and hydraulic conductivity
curves of the three differently textured soils.
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Approximate individual confidence intervals of the esti-
mated parameters are finally calculated as follows:

bi � t
n�p

1�a=2

ffiffiffiffiffiffiffiffi
Cj; j

p
� bi � bi þ t

n�p

1�a=2

ffiffiffiffiffiffiffiffi
Cj; j

p
ð10Þ

where Cj,j is the diagonal elements of the variance-
covariance matrix, t1�a/2

n�p is the value of the Student
distribution with (n � p) degrees of freedom, and (1 - a)
is the confidence level, i.e., in our case 0.95 for the 95%
confidence interval.
2.2.4. Parameter Sensitivity
[11] Assessment of parameter sensitivity prior to any

model calibration is of paramount importance, as efforts
must normally be concentrated on parameters to which the
model simulation results are most sensitive [Beven, 2001].
In the present work, sensitivity coefficients are calculated
for each day and each depth as follows:

�i;j ¼ bj J i; j ð11Þ

where �i,j is the ij elements of the sensitivity matrix � (size
n � p) and J is the Jacobian matrix (size n � p) whose
elements Ji,j are defined as the partial derivatives @ei/@bj and
obtained by forward difference approximation with @bj =
0.01bj. Note that such an expression for the sensitivity
coefficients allows a direct comparison between different
parameters whatever the invoked units. We also calculated
for each parameter a mean absolute space and time
sensitivity coefficient defined as

��j ¼
1

n

Xn
i¼1

�i; j

�� �� ð12Þ

2.3. The Identification Strategy

2.3.1. Sensitivity Analysis
[12] In a preliminary step we performed a thorough

sensitivity analysis for all parameters governing the trans-
port of water within the soil-plant-atmosphere system, i.e.,
RWUP (RD, TRLD, BRLD), parameters of the water stress
function (h1, h2, h3l, h3h, h4), parameters expressing the crop
development (LAI, Kc) and hydraulic parameters (qs, qr, a,
n, Ksat, l). For the three differently textured soils, mean
absolute space and time sensitivity coefficients were
calculated with equation (12) for a perturbation of 1% of
the parameters with respect to the true parameters (i.e., the
reference run). Further, as sensitivity coefficients represent
quite abstract values, we generated the water content
dynamics for each soil in four additional runs corresponding
to the bounds of the RWUP space (RD = 50 and 150 cm;
BRLD = 0 and 1).
2.3.2. Optimization of RWUP Only
[13] Where only RWUP parameters are optimized (i.e.,

one or two parameters), we investigated first the uniqueness
of the solution by visually checking the behavior (in one or
two dimensions) of the objective function calculated with
equation (7). The parameter space of the optimized param-
eters was divided into 100 discrete values while all the other
parameters were fixed at their true values. Subsequently, we
investigated instability with respect to measurement errors
on soil water content data, to measurement errors on some

fixed parameters, and to both combined. For water con-
tents, we chose five different levels of measurement
errors (normally distributed with zero mean), i.e., 0.005,
0.01, 0.015, 0.02, and 0.025 in terms of standard devi-
ation (SD), corresponding typically to TDR calibration
equations of different quality. The 0.01 error level will be
considered in the following as the most realistic, although
many studies have found larger values (e.g., 	0.015
[Hupet and Vanclooster, 2002] and 0.02 [Vrugt et al.,
2001a]). Subsequently, for each level of error and for the
three soil types, we performed 250 Monte Carlo simulations
optimizing with PEST (see section 2.2.2) separately RD and
BRLD and both parameters simultaneously. This resulted in
250 (� 3 � 3 � 5) optimized parameter sets. After visually
checking for normality of the distributions obtained,
confidence intervals were constructed with the true
distribution of the 250 parameters. Note that in our study
we assumed that the confidence intervals were well
approximated with quite a low number (i.e., 250) of Monte
Carlo simulations. Therefore we checked the validity of this
assumption for some cases by generating confidence
intervals with 5000 Monte Carlo simulations. In all
analyzed cases, confidence intervals derived with 250 and
5000 Monte Carlo simulations were very similar, validating
our assumption of constructing confidence intervals with
‘‘only’’ 250 Monte Carlo simulations. When RD and BRLD
were simultaneously optimized, the correlation coefficient
between the two parameters was also determined. Next,
instability analysis was performed considering measurement
errors on some fixed parameters. Other system parameters
such as soil hydraulic parameters and crop coefficients are
intrinsically uncertain since the scale of the modeled soil-
plant-atmosphere system is inevitably quite large, i.e., at
least that of the pedon or the lysimeter (1 to a few cubic
centimeters). In this study, we considered five different error
levels on five ‘‘fixed’’ system parameters, i.e., qs, a, n, Ksat,
and Kc. The error level expressed in terms of CV was
specified considering the likely uncertainty resulting from
the use of different methods for the determination of these
‘‘fixed’’ parameters (Table 2). Note that uncertainty levels
reported for Kc were chosen quite arbitrarily although the
selected values seem quite small and plausible for the case
of a field experiment. For the measurement error on fixed
parameters, the third level of error will be considered in the
following as the most realistic. Again 250 Monte Carlo
simulations were performed with error (normally distributed
and with zero mean) added simultaneously to the five
‘‘fixed’’ parameters, considering first that the water content
data are error-free. Subsequently, confidence intervals were
derived from the obtained distribution of optimized RWUP.
These confidence intervals represent in fact the range of
variation of the optimized RWUP due to uncertainty on

Table 2. Considered Levels of Uncertainty on the ‘‘Fixed’’

Parameters in Terms of Coefficients of Variation (CV = (s/m)100)

Level of Error qs a n Ksat Kc

1 1.25 3.33 0.4 10 0.9
2 1.9 6.66 0.8 15 1.8
3 2.5 10 2 20 2.7
4 3.8 13.33 3.2 30 3.6
5 5.1 16.66 4.0 40 4.5
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some fixed parameters. Finally, Monte Carlo simulations
were performed combining both corrupted soil water
content data and ‘‘fixed’’ parameters corresponding to a
practical case. To avoid too many simulations, we combined
the second level of error for soil water content data, i.e., that
considered as the most realistic (SD = 0.01), with the five
different levels of error for ‘‘fixed’’ parameters.
2.3.3. Optimization of RWUP Plus Additional
Parameters
[14] We finally addressed the case where RWUP plus

additional parameters are simultaneously optimized.
Uniqueness was investigated by launching the inverse
procedure on error-free data for the identification of a
gradually increasing number of unknown parameters, sys-
tematically including RD or RD and BRLD and some
additional normally ‘‘fixed’’ parameters among (qs, a, n,
Ksat), and Kc. In a first step, the optimization was performed
with PEST, i.e., with the Gauss-Marquardt-Levenberg
(GML) algorithm. As suggested by, e.g., Simunek and Van
Genuchten [1996], each optimization case was repeated
with three different initial estimates of the unknown
parameters to assess the uniqueness of the inverse problem.
The different initial estimates were selected randomly at the
bounds of the parameter space which was deliberately small
for the normally ‘‘fixed’’ parameters (true value ±2 SD for
level of error 5 in Table 2) as if prior information about
these parameters were available. For RD and BRLD, the
initial estimates were chosen randomly between the bounds
of the parameter space, namely, 50 or 150 cm for RD and 0
or 1 for BRLD. Note that we also used the GMCS-NMS
[Lambot et al., 2002] algorithm to make sure that any
nonuniqueness problems encountered were not simply
related to the use of the local optimization algorithm
(GML). This strategy to tackle nonuniqueness problems
was chosen rather than the traditional approach consisting
of a visual inspection of two-dimensional (2-D) response
surfaces of the OF, as this method is not totally reliable for
multidimensional parameter space [Simunek and Van
Genuchten, 1996]. Finally, we investigated instability
problems by launching the inverse procedure as for the
nonuniqueness analysis but with a noise of 0.01 added to
soil water content data. For that case, we used only the
GMCS-NMS algorithm and instability problems were
derived from the width of the confidence intervals of the
parameter estimates quantified with equations (8) and (10).

3. Results and Discussion

3.1. Sensitivity Analysis

[15] Results of the sensitivity analysis are presented in
Table 3 in which mean absolute space and time sensitivity
coefficients (���) are shown for the three differently textured
soils. In this table we also indicated the ranking of the
sensitivity coefficients for all parameters with the values
1 and 16 assigned to parameters affecting the most and the
least the soil water content dynamics. The results show that
soil water content dynamics are much more sensitive (1–
2 orders of magnitude) to some hydraulic parameters, i.e., qs
and n, than to RWUP. Similar results were found by Hupet
et al. [2002] for the RWU conceptualization proposed by
Hoogland et al. [1981]. Yet soil water content dynamics in
the study of Hupet et al. [2002] was completely insensitive

to the rooting depth, showing clearly that the impact of
RWUP on soil water content dynamics depends also on the
model concept adopted. Similar results showing insensitiv-
ity of soil water content dynamics to RWUP, although this
was not quantified in a classical sensitivity analysis, were
also found by Musters and Bouten [2000]. Additionally, the
results of our study show that the two parameters that
influence the gradually drying soil profile the most are qs
and n, which are also the main governing parameters during
evaporation experiments [see Simunek et al., 1998]. Visual
inspection of the space and time patterns of sensitivity
coefficients (not shown here) shows that perturbing RWUP
affects soil water dynamics over the whole soil profile,
though generally this is more apparent close to the soil
surface. It also shows that sensitivity coefficients of RWUP
increase gradually as the experiment progresses, i.e., when
the soil profile becomes drier. The relative sensitivity of the
soil water content dynamics to moisture retention curve
(MRC) parameters and RWUP may seem quite surprising
for a dry period. The sensitivity of MRC parameters
suggests that a small error in, e.g., qs will directly affect
simulated soil water content even for the case where the
temporal dynamics of soil water content are mainly driven
by RWU and where vertical water fluxes are negligible.
Note that in this case soil water content variation (@q/@t) is
much less sensitive to MRC parameters than soil water
content itself, as noted by Hupet et al. [2002]. The relative
insensitivity of soil water content to RWUP suggests that a
small perturbation of RWUP results in almost all cases in a
proportional modification of the sink term. This modifies
indirectly vertical soil water fluxes, which compensate and
mask in some way the perturbation effect of RWUP on soil
moisture. To illustrate this ‘‘compensating effect,’’ we
generated numerical runs for the loamy soil described in
Table 1 and for the same soil with hypothetical saturated
conductivities of 100 cm d�1 and 0.01 cm d�1 and with RD
set to 50, 100, and 150 cm. Results presented in Figure 3
show the temporal dynamics of soil water content at 25 cm
depth (Figures 3a, 3b, and 3c) and the accumulated RWU at

Table 3. Mean Absolute Space and Time Sensitivity Coefficients

(���) Calculated for the Different Textured Soils (Coarse,
Medium-Fine, and Very Fine)a

Parameter Medium-Fine Coarse Very Fine

qs 0.364 (1) 0.134 (2) 0.48 (2)
n 0.149 (2) 0.309 (1) 0.75 (1)
Kc 0.038 (3) 0.0315 (4) 0.029 (4)
a 0.019 (4) 0.051 (3) 0.021 (5)
RD 0.01488 (5) 0.0308 (5) 0.0296 (3)
Ksat 7.6 � 10�3 (6) 2.3 � 10�3 (11) 2.8 � 10�3 (10)
LAI 6.2 � 10�3 (7) 8.1 � 10�3 (7) 7.9 � 10�3 (6)
TRLD 2.7 � 10�3 (8) 5.8 � 10�3 (8) 5.5 � 10�3 (7)
BRLD 2.7 � 10�3 (9) 5.8 � 10�3 (9) 5.5 � 10�3 (8)
h3l 8.5 � 10�4 (10) 2.6 � 10�4 (13) 5.8 � 10�4 (12)
h4 7.4 � 10�4 (11) 9.8 � 10�4 (12) 2.38 � 10�3 (9)
l 7.2 � 10�4 (12) 3.9 � 10�3 (10) 1.2 � 10�6 (14)
qr 3.7 � 10�4b (13) 0.0158 (6) 1.1 � 10�3 (11)
h3h 1.1 � 10�4 (14) 1 � 10�4 (14) 7.4 � 10�5 (13)
h1 0 (15) 0 (15) 0 (15)
h2 0 (16) 0 (16) 0 (16)

aAlso indicated are the rankings of the sensitivity coefficients for all
parameters with the values 1 and 16 assigned to parameters affecting the
most and the least the soil water content dynamics.

bValues of the reference run were perturbed from 0 to 0.005.
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the same depth (Figures 3d, 3e, and 3f). We notice that for
the most conductive loamy soil, the perturbation of the RD
does not have a significant effect on the soil water content
dynamics at 25 cm depth (Figure 3a) in contrast to
accumulated RWU (Figure 3d). Hence vertical water fluxes
are able to mask RWU differences in the soil moisture
observations. For the other two loamy soils (Figures 3b
and 3c), the ‘‘compensating effect’’ is less marked and the
impact of the different RD on the soil water content
dynamics is more pronounced as the soil becomes less
conductive. Hence the ‘‘compensating effect’’ of the soil
plays a certain role in the insensitivity of the soil water
content dynamics to RWUP, but this insensitivity is soil
specific. In particular, for the coarse and the very fine
textured soils, values of the unsaturated conductivity are
smaller than those of the medium-fine (for h < �100 cm),
preventing therefore that vertical unsaturated flow over-
shadows the root water uptake ‘‘signal.’’
[16] We also generated four additional runs for each soil,

selecting RD and BRLD at the bounds of the parameter
space (RD = 50 and 150; BRLD = 0 and 1). Figure 4 shows
for the whole soil profile the maximum difference in terms
of soil water content between the reference run (RD = 100
and BRLD = 0.5) and these other four runs. Note that
maximum differences between the reference run and the
other four runs were systematically encountered at the end
of the 28-day simulation period. For the loamy soil
(Figure 4b), maximum differences are very small (max-
imum 0.02 cm3 cm�3) except for the first 20 cm, and the
order of magnitude of this maximum difference corresponds
to the standard deviation of a ‘‘poor’’ quality calibration
curve of a soil water measurement device. Furthermore, we

note that for the two runs with RD equal to 50 cm, the shape
of the root length density distribution has virtually no effect
on the magnitude of the maximum difference. Coarse and
the very fine textured soil behave quite similarly, with larger
maximum differences ranging between �0.06 and 0.07 cm3

cm�3. Again, in this case, the two simulation runs with RD
equal to 50 cm are very similar whatever the shape of the
root length density distribution. We also note that nearly all
the depths are informative. The largest values of the
maximum difference are observed at various depths for the
selected cases. This may seem in contradiction to the results
obtained in the sensitivity analysis where information
content was generally larger close to the soil surface. This
may be explained by the fact that during the sensitivity
analysis, in contrast to the additional runs, small perturba-
tions were induced in the close vicinity of the true
parameters. We further looked at the impact of the four
different runs on the accumulated actual transpiration
fluxes, as this kind of information might be additionally
used for the inverse procedure. Results of Table 4 suggest
that for medium-fine textured soil, RWUP have no
significant impact on the accumulated transpiration, which
is obviously consistent with the small impact of RWUP on
soil water content dynamics. For the two other soils, the
impact is much larger and particularly well pronounced
when the RD is reduced. To conclude, we can state that the
results of this sensitivity analysis are clearly not favorable
for the identification of RWUP parameters from soil water
content observations alone. Soil water content dynamics are
relatively insensitive to RWUP, i.e., to RD and BRLD, at
least compared to other parameters of the system. This
suggests implicitly that small errors on the time series of soil

Figure 3. ‘‘Compensating’’ effect of the soil according to different conductivity characteristics.
Figures 3a, 3b, and 3c show the temporal dynamics of soil water content at 25 cm depth for a medium-
fine soil with a Ksat of 100, 5, and 0.01 cm.d�1, respectively. Figures 3d–3f show for the same depth and
for the same three different Ksat cumulated root water uptake (cm3 cm�3).
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water content will have quite a large effect on the
uncertainty associated with optimized RWUP. Furthermore,
small errors on some parameters for which soil water
content dynamics are much more sensitive may well result
in very different RWUP estimates.

3.2. RWU Parameters

[17] Results obtained for the uniqueness analysis are
illustrated in Figure 5 for coarse textured soil. The response

of the logarithm of OF is presented in Figures 5a and 5b for
two different cases, i.e., for the optimization of RD alone
and RD and BRLD simultaneously, respectively. In each
figure, we can see a well-defined global minimum
corresponding to the true parameter values (RD = 100 cm
and BRLD = 0.5). Note that these results were obtained
from error-free soil water content data for a coarse textured
soil but that similar results were obtained from corrupted
soil water content data and for the two other textured soils.

Figure 4. Maximum difference between soil water content of the reference run and that of the other four
simulations run for the bounds of the parameter space. Figures 4a, 4b, and 4c are given for the coarse,
medium-fine, and very fine textured soils, respectively.
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Results of the stability analysis generated with the five
levels of error on soil water content ‘‘measurements’’ are
presented in Table 5 for the medium and coarse textured
soil. Means and individual parameter confidence intervals at
95% (CI) are presented separately for the optimization of
RD, BRLD, and both simultaneously. For the RD we
observe that the range of the confidence intervals are quite
small (6.5 < CI < 32 cm) and that the ranges increase as the
magnitude of the ‘‘measurement’’ error increases. Con-
fidence intervals for BRLD are much larger, with values
covering a large proportion of the predefined parameter
space already when considering the second level of error.
This means that small errors in soil water content
measurements have a very large effect on the stability of
optimized BRLD. Note that the difference in stability of
identifying RD and BRLD is a direct consequence of the
difference of sensitivity for these two parameters (see
Table 3). When RD and BRLD are optimized simulta-
neously, results are markedly worse. Indeed, for the second
error level, the confidence interval of BRLD (0.08–0.92) is
almost the same as the size of the initial parameter space
(0–1), meaning that uncertainty on BRLD generated by the
parameter estimation method is virtually equivalent to the
original uncertainty. Given these results, Monte Carlo
simulations for the next three error levels were not run.
Note that optimizing both parameters simultaneously
substantially increases the confidence intervals as compared
to the case when the parameters are optimized separately.

Indeed, the parameters RD and BRLD are strongly
negatively correlated (see correlation coefficients in
Table 5) meaning that a small increase of RD can be
compensated by a small decrease of BRLD and can lead to
very similar soil water content dynamics. The high
correlation between RD and BRLD is clearly not optimal
in terms of parameter estimation, as it could substantially
contribute to the nonuniqueness of the problem. For coarse
textured soil (see Table 5), the generated confidence
intervals are much smaller. For the optimization of RD or
BRLD alone, the confidence intervals are acceptable for all
considered error levels with maximum values of 9.8 cm and
0.26, respectively, for level 5. The smaller confidence
interval for the coarse soil is obviously a direct consequence
of the higher sensitivity of the soil water content dynamics
to RWUP. For the simultaneous optimization of both
RWUP, confidence intervals hardly increase while the
correlation between the two estimated parameters is also
smaller (�0.66 < r < �0.6). Results for very fine textured
soil are very similar to those obtained for coarse soil and are
therefore not presented here. This similar behavior can
probably be explained by the fact that although less
sensitive to RWUP, the range of soil water content
‘‘measurements’’ for very fine textured soil is about
0.2 cm3 cm�3 larger than for coarse textured soil, giving
less weight to the added noise (similar in terms of standard
deviation for the two soils). Before constructing the
aforementioned confidence intervals, we checked for
normality of the parameter distribution by visual inspection
of the histogram. In the vast majority of cases, distributions
of the 250 optimized parameters were close to normal.
Furthermore, we also compared true confidence intervals
produced by Monte Carlo simulations and those calculated
with equation (10). In the few cases investigated, the
confidence intervals were very similar (not presented), thus
validating the local-linearity assumption for constructing
confidence intervals. At this stage of the analysis, we can
state that measurement errors have a markedly different
impact on the stability of the optimized RWUP for different

Table 4. Differences (in Millimeters) Between Accumulated

Actual Transpiration Fluxes of the Reference Run and of the Four

Other Runs

RD = 150 cm,
BRLD = 1

RD = 150 cm,
BRLD = 0

RD = 50 cm,
BRLD = 1

RD = 50 cm,
BRLD = 0

Coarse 8.76 1.35 �32.2 �44.8
Medium 2.18 0.56 �4.8 �10.1
Very fine 12.32 2.56 �28.5 �39.5

Figure 5. Uniqueness illustrated for the estimation of (a) RD alone and (b) RD and BRLD together. The
true minimum is indicated with a marker.
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soil types. For medium textured soil, even if all 14 other
parameters are known, the small noise added to the soil
water content data will produce large uncertainties that
preclude simultaneous inverse modeling of RD and BRLD.
In contrast, solutions are much more stable with respect to
soil water content measurement errors for the other two
soils.
[18] The effect of ‘‘measurement’’ errors on some

‘‘fixed’’ parameters of the modeled system is presented in
Tables 6a and 6b for medium-fine and coarse textured soils,
respectively. For medium-fine textured soil, the confidence
interval of the optimized RD parameters increases with the
increase of the magnitude of the error. For the fifth error
level, the confidence interval is as large as the predefined
parameter space (50–150). For the third error level,
considered the most realistic, uncertainty in the optimized
RD parameter ranges from 65 to 138 cm. This is of the same
order of magnitude of uncertainties associated with
‘‘expert’’ judgment. The results are even worse for BRLD.
Indeed, at the third level of error, the uncertainty
corresponds to the size of the original parameter space
(0–1). These results suggest that irrespective of the
optimization algorithm used, the inversion will lead to
completely different estimates of BRLD parameter values if
small errors on some other system parameters are explicitly
accounted for. Such a large instability arises directly from
the relative insensitivity of the BRLD parameter compared
to other parameters (see Table 3). Given the results at the
third level of error, Monte Carlo simulations were not
generated for the fourth and fifth error levels. The impact of
error in ‘‘fixed’’ parameters was not investigated for the
simultaneous optimization of both parameters. Indeed,
previous results showed for medium-fine textured soil that
the simultaneous optimization is not feasible due to
instability problems with respect to errors in soil water
content ‘‘measurements.’’ For coarse textured soil, results
(see Table 6b) are substantially different. Indeed, for RD and
BRLD parameters optimized separately, confidence intervals
produced at the third error level seem acceptable, with
ranges of 18 cm and 0.38, respectively. We suspect that the

difference of sensitivity for the different parameters (both
RWUP and ‘‘fixed’’) explains this success. For the
simultaneous optimization of RD and BRLD, however, the
results are very poor in that the estimated confidence
intervals are very large at the third error level. A high
correlation between the two optimized parameters (�0.96 <
r < �0.9) exists in this case. Consequently, these results
suggest that simultaneous optimization of RD and BRLD
parameters, while fixing other parameters of the system at
measured values, is not recommended. Small perturbations
on fixed parameters will lead to completely different RD
and BRLD parameter estimates. Results for very fine soil
(not shown) are very similar although the estimated
confidence intervals are generally a little larger. In
conclusion, the effect of instability arising from measure-
ment errors on some ‘‘fixed’’ parameters is soil specific. For
medium-fine textured soil, only the optimization of the RD
parameter tolerates some uncertainty on the ‘‘fixed param-
eters.’’ For the other two soils, separate optimization of
RD or BRLD seems feasible, although its performance
deteriorates for BRLD at the fourth and fifth error level.
Within this context, one can speculate whether the third
error level for ‘‘fixed’’ parameters chosen as the most
realistic one in this study is underestimated. Indeed, for field
experiments where soil layering is generally more the rule
than the exception, it is really difficult (if not impossible) to
obtain at the considered scale (1 to a few cubic decimeters)
such accurate parameter estimates.
[19] The combined effect of errors on some ‘‘fixed’’

parameters of the modeled system and on soil water content
data (SD = 0.01) is presented in Tables 7a and 7b for
medium and coarse textured soils, respectively. Note that
this corresponds to a realistic case, i.e., a field or a
laboratory experiment, for which errors are encountered at
all levels. Results for very fine textured soil are very similar
to coarse textured soil and are therefore not presented here.
Results are quite similar to those obtained in the previous
step, but increased confidence intervals are found. None-
theless, they are slightly smaller than if we had simply
added the confidence intervals produced in the two previous

Table 5. Impact of Measurement Errors in Soil Water Content on the Optimized RWUP for the Medium-Fine and Coarse Textured Soilsa

Level of Error (SD)

One Parameter Two Parameters Simultaneously

Rooting Depth Root Length Density Rooting Depth Root Length Density

rcMean CIb Mean CI Mean CI Mean CI

Medium-Fine Textured Soils
0.005 99.89 96.6–103.1 0.498 0.35–0.64 99.6 87.7–111.4 0.52 0.24–0.86 �0.86
0.01 100.04 93.5–106.6 0.509 0.19–0.83 99.5 79–119.9 0.505 0.08–0.92 �0.90
0.015 99.98 89.8–110.1 0.517 0.15–0.88 . . . . . . . . . . . . . . .
0.02 100.05 87.4–112.6 0.5305 0.1–0.97 . . . . . . . . . . . . . . .
0.025 99.61 83.5–115.6 0.541 0.03–1.03 . . . . . . . . . . . . . . .

Coarse-Textured Soils
0.005 100.95 100–101.8 0.521 0.49–0.55 100.97 99.4–102.4 0.5 0.45–0.55 �0.63
0.01 100.98 99.2–102.7 0.517 0.46–0.57 100.89 98.3–103.3 0.5 0.42–0.58 �0.66
0.015 101.08 98.4–103.7 0.519 0.42–0.61 101.02 97.1–104.9 0.505 0.39–0.61 �0.60
0.02 100.83 97.1–104.4 0.529 0.41–0.65 100.82 95.5–106.1 0.508 0.36–0.65 �0.65
0.025 101.02 96.1–105.9 0.517 0.38–0.64 100.95 95.2–106.6 0.512 0.31–0.7 �0.60

aRooting depth and root length density values are expressed in cm and cm cm�3 respectively.
bBounds of the 95% confidence interval.
cCorrelation coefficient.
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steps. For medium-fine textured soil, we observe that at
the third error level the estimated confidence intervals are
quite large (60.5–136.4), illustrating the limitations of the
inverse procedure for the identification of the RD
parameter. The same reasoning holds for the identification
of the BRLD parameter for coarse textured soil, as the
confidence interval ranges between 0.23 and 0.76 (com-
pared to the original 0–1). Only the inverse modeling of the
RD parameter for very fine and coarse textured soil seems
robust to both errors in soil water contents and on the other
fixed parameters of the system. Note that these results are
consistent with the study of Musters and Bouten [1999],
who assessed the spatial variability of rooting depths of an
Austrian pine stand on a sandy soil by inverse modeling and
using soil water content data. In their study, more than one
third of the optimized rooting depths were outside the
physically reasonable range (i.e., 0.5–3 m). As stated by
Musters and Bouten [1999] and confirmed by our results,
this can be explained by errors in the other fixed parameters
of the system (e.g., soil hydraulic properties). On the other
hand, our results question the study of Vrugt et al. [2001a,
2001b], who optimized up to nine parameters related to the
maximum RWU while fixing four other parameters of the
system at measured values (i.e., qs, qr, a, and Kc). Even
though the RWUP obtained were well correlated with root
observations and soil water dynamics were quite well
reproduced, our results suggest that there is a great chance
that slightly perturbing some of the fixed parameters would
have led to quite different estimated RWUP. Nevertheless, it
is worth noting that in the study of Vrugt et al. [2001a] two
hydraulic parameters are simultaneously optimized with the

RWUP and that the parameters fixed at ‘‘measured’’ values
(qs, qr, a, Kc) are not exactly similar to those of our study,
which could explain the different results that were obtained.

3.3. RWUP and Additional Parameters

[20] Results of the uniqueness analysis are presented in
Tables 8a, 8b, and 8c. Note that only six different combi-
nations of parameters are reported here, though all the 29
possible combinations were tested. Table 8a shows that for
medium textured soil the GML algorithm reaches the true
minimum when the number of parameters is less than or
equal to four. Indeed, the three different runs launched with
different initial estimates (GML1- GML2- GML3) all led to
exactly the same true minimum. For the case where five
different parameters are optimized, identification of the true
minimum is no longer guaranteed and depends strongly on
the initial values. Generally, only one of the three runs was
successful in finding the true minimum. When all six
parameters are optimized, the optimization algorithm was
not able to find the correct minimum irrespective of the
initial estimate. Results obtained with the GMCS-NMS
algorithm are markedly different. This algorithm succeeds
in retrieving the true minimum for all tested combinations
of parameters even when the number of optimized param-
eters is large (i.e., five or six). For this optimization
algorithm, only one run was launched for each combination
of parameters, as the global search procedure uses the
bounds of the parameter space instead of specified initial
estimates. Similar results are obtained for coarse textured
soil (Tables 8b and 8c) for the optimization of only RD or
RD and BRLD together. Again, the success of the GML
algorithm is limited to four parameters, or sometimes five
depending on the chosen initial estimates. Furthermore, for
a larger number of parameters (six or seven), this algorithm
is not able the find the true minimum, which seems quite
logical as such a demanding exercise is clearly beyond the
capabilities of a local search optimization algorithm. In
contrast, the GMCS-NMS algorithm is powerful enough to
retrieve the correct minimum for all the tested combinations
of parameters, and even for the cases where six and seven
parameters are simultaneously optimized. These results
were systematically obtained with a number of optimization
runs smaller than 2500. Similar good results were also
obtained for very fine textured soil (not presented).
Therefore the results of this uniqueness analysis show that
the chosen optimization algorithm strongly conditions the
success of the optimization when the number of parameters

Table 6b. Impact of Measurement Errors in Some ‘‘Fixed’’ Parameters on the Optimized RWUP for the Coarse Textured Soilsa

Level of Error

One Parameter Two Parameters Simultaneously

Rooting Depth Root Length Density Rooting Depth Root Length Density

rcMean CIb Mean CI Mean CI mean CI

1 100.17 96.9–103.4 0.50 0.42–0.57 101.7 82.3–121.1 0.495 0.2–0.79 �0.91
2 100.10 93.8–106.4 0.50 0.37–0.63 106.1 73.3–138.8 0.462 0.08–0.85 �0.96
3 100.44 91.3–109.6 0.51 0.32–0.70 107.5 66.6–148.3 0.498 0.03–0.97 �0.90
4 101.22 83.3–119.1 0.51 0.2–0.82 . . . . . . . . . . . . . . .
5 101.17 78.9–123.4 0.51 0.14–0.88 . . . . . . . . . . . . . . .

aRooting depth and root length density values are expressed in cm and cm cm�3, respectively.
bBounds of the 95% confidence interval.
cCorrelation coefficient.

Table 6a. Impact of Measurement Errors in Some ‘‘Fixed’’

Parameters on the Optimized RWUP for the Medium-Fine

Textured Soilsa

Level of
Error

Rooting Depth Root Length Density

Mean CIb Mean CI

1 100.24 89.5–110.9 0.498 0.35–0.64
2 98.63 77.1–120.1 0.56 0.13–0.99
3 101.64 65.2–138 0.492 0.002–0.982
4 101.05 59–143 . . . . . .
5 101.5 54–149 . . . . . .

aRooting depth and root length density values are expressed in cm and
cm cm�3, respectively.

bBounds of the 95% confidence interval.
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increases. In such a context, the use of a powerful global
search algorithm such as GMCS-NMS allows finding of the
global minimum and simultaneous optimization of RWUP
and up to five additional parameters. Note that such results
may seem contradictory to the results obtained in the study
of Hupet et al. [2002]. Nevertheless, the conclusions of this
latter study concerning nonuniqueness problems were only
derived from visual inspection of scatterplots, which is
probably not totally robust. Note additionally that in the
study of Hupet et al. [2002] the RWUP of interest (A and B)
were different from those considered in this study, which
might also partially explain the different results that are
obtained.
[21] Results of the instability analysis are presented in the

rightmost columns of Tables 8a, 8b, and 8c, in terms of
confidence intervals calculated with equation (10) after the
optimization run was finished. For medium-fine textured
soil, the confidence intervals increase progressively with the
number of optimized parameters. This is a logical conse-
quence of the increasing degree of freedom caused by an
increasing number of ‘‘free’’ parameters. By increasing the
number of parameters, correlations between parameters may
be activated, leading to a widening of the individual
confidence intervals. The width of the confidence interval
produced for the case when only RD is optimized, i.e.,
12.9 cm, is very similar to the value of the true confidence
interval presented in Table 5 for the second error level. For
the case where all six parameters are simultaneously
optimized, the range of the confidence interval estimated
for RD is much larger, i.e., 44 cm, implying that the solution
is unstable. We also tested the adopted methodology by

slightly increasing the error added to the soil water content
data for the most difficult case (optimization of RD plus
five additional parameters). Two additional errors were
considered, i.e., 0.015 and 0.02, in terms of standard
deviation. For these cases, the range of the confidence
intervals increase up to 58 and 73 cm, respectively. Such
high values mean that the solution is highly unstable. For
coarse textured soil, the results are completely different.
Indeed, Table 8b shows, for the case where RD is optimized
with additional parameters, that the ranges of the
confidence intervals are very small (3.74 < CI < 4.82)
and only increase slightly with the increasing number of
parameters. This is obviously the result of a highly stable
solution, due to the higher sensitivity of soil water
dynamics to RWUP for the coarse textured soil and to
weaker correlations between RWUP and the additional
optimized parameters. In addition, the range of the
confidence intervals produced at the larger error level are
only slightly larger with values of 6.25 and 8.1 cm for the
0.015 and 0.02 error levels, respectively. For the case where
both RD and BRLD and additional parameters are
optimized, the range of the confidence intervals still remain
small, with values for RD ranging between 4.57 and 6.6 cm
and for BRLD between 0.14 and 0.196. Such small values
mean that the solution (RD and BRLD) is stable and that it
is appropriate to use the inverse procedure. These results
are consistent with the study of Vrugt et al. [2001a], who
estimated RWUP of an almond tree on a sandy soil by
inverse modeling using soil water content data. The
confidence intervals obtained in their study for RWUP are
similar to the values presented in Table 8c. By increasing
the error in the soil water content data, the performance
deteriorates only slightly. The range of the confidence
interval reaches maximum values of 12.5 cm for RD and
0.34 for BRLD for the 0.02 error level. We do not present in
Tables 8a–8c the confidence intervals of the other
optimized parameters (i.e., the soil hydraulic parameters)
as we are mainly interested in the optimization of RWUP.
Nevertheless, some of the obtained confidence intervals,
especially those of Ksat, are very large. More detailed
information for Ksat should be obtained by alternative
techniques for an accurate prediction of soil water move-
ment during periods when Ksat plays an important role (e.g.,
infiltration-redistribution events). In this framework we
could suggest using a rewetting event during or at the end
of the drying period which could help to improve the
estimation of the simultaneously optimized hydraulic
parameters. Nevertheless, the use of such a rewetting event

Table 7b. Impact of Measurement Errors in Soil Water Content

Data (Level of Error 2, SD = 0.01) and in Some Fixed Parameters

on the Optimized RWUP for the Very Fine Textured Soilsa

Level of Error

Rooting Depth Root Length Density

Mean CIb Mean CI

1 100.16 95.8–104.5 0.503 0.39–0.61
2 100.07 92.91–107.22 0.503 0.34–0.66
3 100.02 89.88–110.15 0.510 0.28–0.71
4 100.75 84.6–116.88 0.516 0.19–0.83
5 100.33 77.16–123.57 0.507 0.11–0.88

aRooting depth and root length density values are expressed in cm and
cm cm�3, respectively.

bBounds of the 95% confidence interval.

Table 7a. Impact of Measurement Errors in Soil Water Content

Data (Level of Error 2, SD = 0.01) and in Some Fixed Parameters

on the Optimized RWUP for the Medium-Fine Textured Soilsa

Level of Error

Rooting Depth

Mean CIb

1 99.37 86.32–112.4
2 101.21 75.21–127.32
3 98.33 60.54–136.54
4 103.47 55.85–151.11
5 102.34 47.01–157.02

aRooting depth expressed in cm and cm cm�3.
bBounds of the 95% confidence interval.

Table 8a. Results of the Uniqueness and Instability Analysis for

the Case Where RD is Optimized With Additional Parameters for

the Medium-Fine Textured Soil

Nb
Parameter Parameters GML1 GML2 GML3 GMCS

CI for
RD, cm

1 RD Ua U U U 12.9
2 RD-n U U U U 14.16
3 RD-n-Kc U U U U 26.54
4 RD-n-Ksat-a U U U U 42.85
5 RD-qs-n-Kc-a U NUb NU U 47.05
6 RD-qs-n-Ksat-a-Kc NU NU NU U 44–58–73

aUnique.
bNonunique.
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at the end of the drying period will inevitably require us to
consider hysteresis issues. Consequently, there is a risk of
making the inverse problem more complex and the
optimized parameters more uncertain. The results obtained
for very fine textured soil are not presented, as they are very
similar to those obtained for coarse textured soil, with the
confidence intervals broadening only a little.

4. Conclusions

[22] In this paper we have tested the feasibility of the
inverse modeling approach to derive root water uptake
parameters (RWUP) with only soil water content data. This
was performed with numerical experiments for three differ-
ent textured soils and for a long dry period during which
crop growth was considered negligible. The sensitivity
analysis showed that soil water content dynamics are
relatively insensitive to the RWUP though the sensitivity
is higher for very fine and coarse textured soils. The
insensitivity of soil water dynamics to RWUP for medium-
fine textured soil compared to the other two textured soils
can be explained by a ‘‘compensating effect,’’ i.e., by
vertical unsaturated water flows overshadowing in some
way the root water uptake ‘‘signal.’’ Visual inspection of
response surfaces (in one and two dimensions) showed that
the solution is unique when only RD, BRLD, or both are
optimized. The instability analysis showed, for medium
textured soils, that the inverse modeling approach is only
feasible for estimating RD, although the estimated con-
fidence interval is very large (60.5–136.4 cm). For coarse
and very fine textured soil, the optimization of RD is robust
to both errors in soil water contents and in the other ‘‘fixed’’
parameters of the system. These results suggest that the
inversion of soil water content data for RWUP identification
is ill-posed except for the estimation of RD for coarse and

very fine textured soil. These results are consistent with the
study of Hupet et al. [2002] and Musters and Bouten
[1999]. Finally, the well-possedness of the inversion was
studied for the case where RWUP are simultaneously
optimized with additional system parameters. For the three
differently textured soils, the solution is unique if a
powerful global optimization algorithm is used. For coarse
and very fine textured soils, the solution is quite stable,
which allows the simultaneous identification of RD and
BRLD. These results clarify some of the conclusions
presented by Hupet et al. [2002] concerning the unfeasi-
bility of the simultaneous estimation of RWUP with
additional soil hydraulic parameters.
[23] In conclusion, our study showed that the inverse

modeling approach to estimate RWUP is feasible subject to
two cautionary notes. First, the texture of the soil strongly
influences the success of the inversion. Coarse and very fine
textured soils are much more suitable for the identification
of RWUP than medium-fine soils. Indeed, for these soils the
‘‘compensating effect’’ of vertical unsaturated water flows
overshadowing the RWU is only slightly marked because
the unsaturated conductivity of these soils decreases rapidly
beyond a certain suction range. Second, the success depends
on the choice of the parameters to optimize. Indeed, this
study showed that the estimation of RWUP by fixing all the
other parameters of the system is unreliable.
[24] We further recommend studying the impact of the

sampling frequency (both temporal and spatial) of soil water
content data on the results of the inverse procedure. Indeed,
the sampling strategy adopted in this study was very
intensive in both time and space, which is hard to imple-
ment in real experiments. Similar studies should also be
tested for more pessimistic error levels both for soil water
content measurements and for fixed parameters. Indeed,
some presented results are probably dependent on the

Table 8b. Results for the Coarse Textured Soil for the Estimation of Only RD

Nb
Parameter Parameters GML1 GML2 GML3 GMCS

CI for
RD, cm

1 RD Ua U U U 3.74
2 RD-n U U U U 3.67
3 RD-n-Kc U U U U 4.12
4 RD-n-Ksat-a U U U U 4.36
5 RD-a-n-Ksat-Kc NUb NU U U 4.5
6 RD-qs-n-Ksat-a-Kc NU NU NU U 4.82 �6.25 �8.1

aUnique.
bNonunique.

Table 8c. Results for the Coarse Textured Soil for the Estimation of Only RD and Both RD and BRLD With Additional Parameters

Nb Parameter Parameters GML1 GML2 GML3 GMCS CI for RD (cm)-BRLD, cm cm�3

2 RD-BRLD Ua U U U 4.57–0.14
3 RD-BRLD-n U U U U 6.02–0.165
4 RD-BRLD-n-Kc U U U U 5.32–0.164
5 RD-BRLD-n-Ksat-a NUb U NU U 5.2–0.21
6 RD-BRLD-a-n-Ksat-Kc NU NU NU U 5.24–0.1845
7 RD-BRLD-qs-n-Ksat-a-Kc NU NU NU U 6.66-0.196

9.4–0.254
12.5–0.34

aUnique.
bNonunique.
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selection of the error levels, which remains in some way
subjective. In addition, we recommend investigating the
possibility of incorporating additional information such as
measured transpiration fluxes or the time derivative of the
soil water content in the inverse problem. Indeed, this study
showed that the RWU parameterization has a pronounced
impact on the transpiration fluxes for some soils and the
study of Hupet et al. [2002] suggested that the use of
the time derivative of soil water content could be valuable.
The use of periods including a rewetting event during or at
the end of the monotonic drying period should also be
tested, as the use of shorter periods (e.g., a week) for which
the assumption of no root growth is certainly more
representative of real cases, i.e., field or laboratory experi-
ments. We also recommend extending the methodology
adopted in this paper to multidimensional (2-D and 3-D)
root water uptake parameterizations. Indeed, such
parameterizations raise additional problems, as they contain
many more RWUP and the domain over which the soil
water dynamics is simulated is larger, which necessitates
dealing with the lateral spatial variability of the soil
hydraulic properties. We finally suggest, before applying
the inverse approach for real cases, studying the feasibility
of the inverse estimation of RWUP for multilayered soils.
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