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[1] Methane fluxes were measured at five sites representing oligotrophic peatlands along
a European transect. Five study plots were subjected to elevated CO2 concentration
(560 ppm), and five plots to NH4NO3 (3 or 5 g N yr�1). The CH4 emissions from the
control plots correlated in most cases with the soil temperatures. The depth of the water
table, the pH, and the DOC, N and SO4 concentrations were only weakly correlated with
the CH4 emissions. The elevated CO2 treatment gave nonsignificantly higher CH4

emissions at three sites and lower at two sites. The N treatment resulted in higher methane
emissions at three sites (nonsignificant). At one site, the CH4 fluxes of the N-treatment
plots were significantly lower than those of the control plots. These results were not in
agreement with our hypotheses, nor with the results obtained in some earlier studies.
However, the results are consistent with the results of the vegetation analyses, which
showed no significant treatment effects on species relationships or biomass
production. INDEX TERMS: 1055 Geochemistry: Organic geochemistry; 1040 Geochemistry: Isotopic

composition/chemistry; 0330 Atmospheric Composition and Structure: Geochemical cycles; 0322

Atmospheric Composition and Structure: Constituent sources and sinks; KEYWORDS: elevated CO2,

N deposition, methane, European peatlands
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1. Introduction

[2] Peatlands are generally considered to be sinks for CO2

and sources for CH4 [Gorham, 1991; Bartlett and Harriss,
1993]. The fluxes and balances of these two biogenic
greenhouse gases are tightly interconnected in the biospher-
ic carbon cycle [Mosier, 1998]. The climatic net effect of
the fluxes from an individual mire or peatland area may
vary from warming to cooling depending on the mire type,
weather conditions and timescale under consideration

[Korhola et al., 1996; Laine et al., 1996]. During the
industrial period, the greatest increase in biogenic green-
house gases has been in the concentration of methane,
�145%. In the anticipated climatic change, the contribution
of methane has been estimated to be �25% [Houghton et
al., 1996]. The level of global methane emissions to the
atmosphere is now about 540 Tg yr�1, of which �40%
originates from soils, and half of this is emitted from natural
wetlands [Mosier, 1998]. The emission estimate for north-
ern peatlands is about 40 Tg CH4 yr�1 [Bartlett and
Harriss, 1993].
[3] The characteristics of peatlands vary due to regional

and local environmental factors [Overbeck, 1975; Gore,
1983; Succow and Jeschke, 1990], and these differences
are also reflected in their methane emissions. Important
regulating factors are temperature, the water level and
nutrient status [Moore and Dalva, 1993; Nykänen et al.,
1998; Bellisario et al., 1999]. The rate of primary produc-
tion and CH4 fluxes have been shown to correlate across
different types of wetland [Whiting and Chanton, 1993]. In
recent decades the human impact on wetlands has been very
strong, especially in densely populated areas [Bragg et al.,
1992]. In western and central Europe, for instance, only a
small proportion of the peatlands (originally millions of
hectares) are still in a natural state [Succow and Jeschke,
1990]. Various human activities have either increased soil
CH4 emissions (e.g., rice paddies [Cole et al., 1996]) or
decreased them (e.g., as a result of peatland drainage
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[Roulet and Moore, 1995; Nykänen et al. [1998]). Some
drained wetlands have been restored, and the development
of a mire vegetation and peat accumulation have started on
top of the old dry peat [Grosvernier et al., 1995, 1997;
Tuittila et al., 2000b]. However, the reestablishment of
biogeochemical soil processes takes a considerable period
of time, and restored drained areas may therefore have
lower CH4 emissions even though the water table is at the
same depth as that in corresponding virgin sites [Nykänen et
al., 1998; Tuittila et al., 2000a].
[4] Global change can affect methane emissions in several

ways. Climate warming may increase methanogenesis, but
the reduction in soil moisture predicted by some scenarios
would nevertheless depress emissions [Manabe and Wether-
ald, 1986; Mitchell, 1989; Roulet et al., 1992]. Increased
nitrogen deposition may cause a shift toward more fertile
mire types, with higher CH4 emissions, while in some sites
it may lead to a decrease in CH4 production or oxidation
[Crill et al., 1994; Aerts and de Caluwe, 1999].
[5] Elevated atmospheric CO2 has been shown to increase

photosynthesis and plant biomass production in the short
term [Eamus and Jarvis, 1989], but less so in the longer term
[Tissue and Oechel, 1987; Jauhiainen and Silvola, 1999]. In
addition to the peaty organic matter itself, fresh plant litter
and root exudates are important substrates for methane
production in peatlands [Schütz et al., 1991]. Thus the link
between the atmospheric CO2 concentration and methano-
genesis via photosynthesis is theoretically obvious. In some
recent experiments a doubling of the CO2 concentration
increased methane emissions by as much as 145% [Hutchin
et al., 1995]. A decrease in methane oxidation has also been
observed at elevated CO2 concentration [Ineson et al., 1998].
As concluded by Megonigal and Schlesinger [1997], this
would mean a dramatic increase in the CH4 load, since soils
account for�40% of globally emitted CH4, and soil methane
oxidation plays an important role in the global CH4 balance
[Whalen and Reeburgh, 1990; Mosier, 1998]. Saarnio et al.
[1998], in contrast, found only a small effect of doubled CO2

concentrations on methane emission from mire microcosms
kept at temperatures prevailing in boreal mires.
[6] In order to test the effects of elevated CO2 concen-

tration and nitrogen deposition on methane emissions from
mires in real field conditions, methane fluxes were mea-
sured in five experimental sites representing mires along a
European transect.
[7] Our hypotheses were that (1) an elevated CO2 con-

centration increases methane emissions; (2) the CO2 effect
increases with increasing temperature; and (3) the effect of
N application on CH4 emissions depends on the nutrient
status and level of N deposition on peatlands. We tested
these hypotheses in the BERI project [Hoosbeek et al.,
1996], in which we studied the responses of mire vegetation
and biogeochemical soil processes to elevated CO2 and N
during three successive growing seasons.

2. Material and Methods

2.1. Study Sites

[8] Experimental sites were established in Switzerland
(CH), Finland (FIN), the Netherlands (NL), Sweden (SE)

and the United Kingdom (UK) (Figure 1). The aim was to
find as similar sites as possible in all the countries: an
ombrotrophic to slightly minerotrophic mire habitat with a
vegetation cover of Sphagnum magellanicum/S. papillosum
and Eriophorum vaginatum/E. angustifolium. For practical
reasons (electricity and CO2 supply), the Dutch group had
to use peat + vegetation sods, transported from the mire site
and installed outdoors close to the laboratory. The locations
and some physical and chemical characteristics of the sites
are shown in Table 1.
2.1.1. Swiss Site (CH)
[9] The Swiss site (La Chaux-des-Breuleux) is situated in

the Jura in the subalpine zone. The mire has developed on
impermeable marl deposits in the bottom of a shallow
valley. The site is mostly open with some scattered trees
(Pinus uncinata, Picea abies, Betula carpatica). The mire
is mainly ombrotrophic, with some minerotrophic influen-
ces from the surrounding pasture. The mire has been
drained and peat was mined up until the end of World
War II. Since then, vegetation has reestablished itself
through natural regeneration [Grosvernier et al., 1995],
and a layer of young, poorly decomposed peat about 30
cm thick has formed. A mosaic of lawn, hummocks and
hollows has now developed well with Eriophorum vagi-
natum, Carex nigra, Calluna vulgaris and Vaccinium oxy-
coccus. The dominant mosses are Sphagnum fallax and
Polytrichum strictum, with P. commune and Aulacomnium
palustre in places.
2.1.2. Finnish Site (FIN)
[10] The site is situated in the Salmisuo mire, near

Ilomantsi, within the transition region of the southern and
middle boreal zone. The Salmisuo mire complex is an
eccentric bog with some minerotrophic strips, and the site
is located in the northernmost, slightly minerotrophic part of
the mire. According to the Finnish mire classification
system, the site is a low-sedge, Sphagnum papillosum pine
fen consisting of hummock, lawn and hollow microsites
[Ruuhijärvi, 1983]. The site is almost open, with only a few
small scattered pines (Pinus sylvestris) on hummocks. All
the study plots are situated in the lawn surface, which
represents intermediate moisture conditions. Dominating
moss species are Sphagnum papillosum, S. balticum S.
angustifolium and S. magellanicum, and the most important
vascular plants Eriophorum vaginatum, Carex pauciflora,
C. lasiocarpa, Andromeda polifolia and Vaccinium oxy-
coccus. The site has been described in more detail by
Saarnio et al. [1997].
2.1.3. Dutch Site (NL)
[11] The peat sods that were used in Wageningen origi-

nated from the Dwingeloo State Forestry, in the province of
Drenthe in the north of the Netherlands. The peat in this
small mire (<1 ha) has developed in a depression formed by
a late glacial brook system. Up to 1955 the site was used for
peat cutting and, for this reason, the vegetation nowadays
consists of a mosaic of secondary successional stages. The
peat sods consist of Sphagnum magellanicum rich carpets,
the other mosses being S. papillosum, S. fallax, Aulacom-
nium palustre and Calliergon stramineum. The dominant
vascular plants are Erica tetralix, Vaccinium oxycoccus,
Eriophorum angustifolium and Drosera rotundifolia. The
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mire and experimental plots have been described in more
detail by Heijmans et al. [2001].
2.1.4. Swedish Site (SE)
[12] The Swedish site (Kopparås mire) is situated in the

boreonemoral zone in the middle of the province of Små-
land in southern Sweden. The underlying acidic mineral soil
material is derived mainly from gneiss. The mire is largely
open, with scattered Pinus sylvestris trees. The mire is
mostly minerotrophic, with sporadic smaller ombrotrophic
areas, and its surface slopes slightly toward the SSW. All
the study plots are situated in a lawn habitat dominated by
Eriophorum angustifolium, Calluna vulgaris, Andromeda
polifolia, Narthecium ossifragum and Scirpus caespitosus.
The predominant peat mosses are Sphagnum magellanicum,
S. papillosum and S. rubellum.
2.1.5. British Site (U.K.)
[13] The British site is situated in the Roudsea Wood

National Nature Reserve, North West of England, on the
northern edge of Morecambe Bay. The reserve contains an
extensive area of open ombrotrophic raised bog that has
been partially drained in the past. The drainage ditches have
been blocked for over a decade and the mire surface is
gradually recovering. The vegetation corresponds to an
M18 Erica tetralix - Sphagnum papillosum raised mire of
the UK National Vegetation Classification [Rodwell et al.,
1991]. Sphagnum papillosum is the predominant Sphagnum
species in the study area. The lawn also contains Eriopho-
rum vaginatum, Calluna vulgaris, Andromeda polifolia and
Erica tetralix as major species, with small amounts of

Figure 1. The location of the experimental sites: 1 = SE,
2 = FIN, 3 = UK, 4 = NL, 5 = CH.
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Scirpus caespitosus, Rhynchospora alba, Eriophorum
angustifolium and Narthecium ossifragum.

2.2. Experimental Design

[14] Twenty circular plots (diameter 1 m) were selected to
represent lawn surface with homogeneous vegetation. The
plots for the four different treatments with five replicates
were selected randomly in blocks, apart from the NL site
where 20 monoliths were randomly assigned to the different
treatments without blocking. The treatments were CO2

enrichment (CO2), an ambient air control for the CO2

treatment (AIR), nitrogen addition (NITROGEN) and a
control for the nitrogen treatment (CONTROL). At the
FIN and SE sites every block included one plot of each
treatment, the distance between the blocks being 5–20 m.
At the UK and CH sites, the plots for the CO2 and
NITROGEN treatments with their controls were located in
two separate areas with minor ecological differences (e.g.,
in the water table). At the NL site the peat + vegetation
monoliths were placed in plastic containers (1.1 m diameter,
60 cm deep) inserted into the soil. At the FIN, SE and UK
sites the water table of the measuring plots followed that of
the surrounding mire. In the peat monoliths of the NL site,
the water levels were allowed to fluctuate between 5 and 20
cm below the moss surface. The CH4 measuring points of
the CH site had 80 cm deep collars that blocked lateral
drainage, resulting in a somewhat higher water level at the
CH4 measuring points compared to the surrounding mire.
[15] For the CO2 and AIR treatments, the plots were

enclosed with miniFACE rings (5-cm-diameter tube) with
70 vertical venting pipes (18 cm long). Ambient air was
vented by means of fans to these rings via pipes. CO2 from
tanks was added to the air flow in the five rings in order to
enhance the CO2 concentration to 560 ppm. The CO2

concentration was controlled by sucking sample air from
the middle of the rings to an IRGA, and regulating the CO2

supply by PC-controlled mass-flowmeters (for more detail
see Miglietta et al. [2001]). The nitrogen plots were not
enclosed within a miniFACE ring. Nitrogen was added by
spraying NH4NO3 onto the plots every 3 weeks (snow-free
period) to give a total addition of 3 g N (5 g in the NL site)
m�2 yr�1. These N additions resulted in at least a doubling
of the annual atmospheric N deposition, which varies from
0.4 g N m�2 yr�1 (Finland) to 3.9 g N m�2 yr�1

(the Netherlands) [Berendse et al., 2001]. The CONTROL
plots were sprayed with the same amount of deionized water
(2000 mL) at the same time as the nitrogen treatment.

2.3. Methane Measurements

[16] The study sites were equipped with boardwalks to
prevent disturbance of the soil and vegetation during
sampling. At the CH, NL, SE and UK sites, permanent
plastic collars (diameter 19 cm) with a groove for a water
seal were installed on every plot. For methane sampling,
water was added to the groove and cylindrical plexiglass
chambers of the same diameter (height 28 cm) were fitted
onto the collars. Four 10-mL samples were taken at intervals
of 5–8 min with a plastic syringe after careful pumping to
mix the air in the chamber and tubing (inner diameter 1 mm,
length 1.5 m) between the chamber and syringe. The gas in

the syringe was immediately transferred to a preevacuated
glass flask (9 mL).
[17] At the FIN site, 60 � 60 cm aluminium collars with a

groove for a water seal were used because the other
measuring systems needed collars of this shape and size.
Aluminium chambers (60 � 60 � 20 cm) were fitted onto
the collars and four gas samples (40 mL) were taken with
syringes during the 20-min measuring period. In order to
compare the performance of the different chambers, the FIN
site also had small chambers similar to those in the other
sites on the CONTROL plots. Glass flasks were not used
since the methane concentrations in the syringe samples
were analyzed within 24 hours. The samples from all the
sites were analyzed with a gas chromatograph using a FI
detector. The gas chromatographs used were Shimadzu 14A
(FIN), Packard 428 (SE), ATI UNICAM 610 (UK), HP
5710A (NL) and Perkin-Elmer F22 (CH).
[18] The depth of the water level and the air and peat

temperatures were measured at the time of sampling.
Methane fluxes were measured during the snow-free period
(1996–1998 at the FIN, NL and SE sites, 1997–1998 at the
UK site, and only during summer 1998 at the CH site)
weekly at the FIN site and approximately every 3 weeks at
the other sites. Methane fluxes were calculated by linear
regression of the CH4 concentrations over time. Only rates
having r2 >= 0.9 were accepted.

2.4. Vegetation Analyses

[19] Plant species composition and abundance were mea-
sured by the point-quadrat method [Buttler, 1992]. A
homogeneous subplot (25 � 37.5 cm) was chosen on every
plot. For counting, a Plexiglas plate with 150 holes was
placed over the subplot. A thin pin was pushed down
through the holes and contacts with the plant species were
counted. At the end of the experiment (between late July
and early September 1998 depending on the site), the
vascular plants on the point quadrat areas were harvested.
The species were separated, dried (70�C) and weighed. The
amount of living belowground biomass was determined
from core samples taken from the peat. The vegetation
studies have been described in more detail by Mitchell et al.
[2000], Berendse et al. [2001], Heijmans et al. [2001] and
Hoosbeek et al. [2001]. The cover of the most abundant
plant species on the different sites is shown in Table 2. The
number of shoots of Carex and Eriophorum species grow-
ing in the methane measurement collars were counted on the
CH, NL and UK sites.

2.5. Nutrient Analyses

[20] For the analysis of soil water chemistry, samples
were taken at the beginning of the growing season in
1996 and in spring, summer and autumn in 1997. DOC,
pH and major cations and anions were analyzed at the
Wageningen Agricultural University according to Buurman
et al. [1996]. The sampling method and soil water chemistry
are described in more detail by Mitchell et al. [2000].

2.6. Statistical Treatments

[21] Factors causing differences in CH4 emissions among
different sites were evaluated using data from the CON-
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TROL plots. Dependence of the CH4 flux on the water table
(WT) and on temperature at a depth of 15 cm (T) was
calculated by multiple regression. For the UK site, the peat
temperature at a depth of 15 cm was calculated as an
average of measurements made at depths of 10 and 20
cm. Q10 values (10–20�C) of the log-transformed CH4

emission were calculated in order to compare the tempera-
ture dependence at the different sites. CH4 emissions
corrected to a common temperature were used when testing
the effect of certain physical and chemical characteristics at
the different sites.
[22] On the basis of previous studies, elevated CO2 was

expected to influence methane emission particularly in
warm climatic conditions [cf. Saarnio and Silvola, 1999;
Saarnio et al., 2000]. Therefore the summer time data
(weeks 23–32 in 1997 and 1998) were used when testing
the effects of the CO2 and N treatments on CH4 emission.
Three covariates, soil temperature at a depth of 15 cm (T),
depth of the water table (WT), and the number (CH, NL and
UK sites) or biomass (FIN and SE sites) of shoots of Carex
and Eriphorum species, were tested in the analysis of
covariance. If any of the covariates were statistically sig-
nificant, the analysis was repeated using only this (these)
covariate(s). If none of the covariates were statistically
significant, the effect of the treatment (CO2 enrichment or
nitrogen addition) on the CH4 flux was tested using the t-
test. In all analyses, p < 0.05 was used as the criterion for
statistically significant effects.

3. Results

3.1. Methane Emissions in the CONTROL Plots

[23] The average CH4 emissions (mg CH4 m
�2 h�1) of all

the CONTROL plot measurements were 6.5 (NL), 4.3 (CH),
2.8 (SE), 2.5 (FIN, large chambers) and 0.45 (UK). In all
the sites the CH4 emissions were highest in the middle of
summer, although especially in the UK site the annual
variation was very small (Figure 2). Typically the summer
time fluxes varied between 6 and 15 mg CH4 m

�2 h�1 in the
NL site, 2 and 7 in the FIN, SE and CH sites and 0.5 and 1
in the UK site.

[24] The dependence of the CH4 fluxes on soil tempera-
ture and moisture varied considerably among the sites. In
the analysis of regression, WT and T (at a depth of 15 cm)
were significant variables (p < 0.001) only in the NL and
FIN sites. r2 was 53% for WT and 57% for T in the NL site,
and 4% and 41% in the FIN site, respectively. In the
multiple regression, the combined r2 of WT and T was
68% and 50% for the NL and FIN sites, respectively. The
Q10 values (peat temperature 10–20�C at a depth of 15 cm)
calculated from linear regressions of the log-transformed
CH4 efflux of the CONTROL plots were 6.5, 3.4, 1.5 and
1.1 for the NL, FIN, SE and UK sites, respectively. In the
SE and UK sites, however, temperature was not a statisti-
cally significant variable. Q10 was not calculated for the CH
site because of the limited number of measurements with a
small temperature range (�2�C).
[25] The differences in the CH4 flux between the sites

could only be partly explained by the physical and chem-
ical characteristics of the sites. The temperature explained
68% of the variation in the flux rates among the different
sites (Figure 3a). A rise in the pH tended to increase
emissions and a rise in the DOC, total N and SO4 concen-
trations to decrease it. In all cases, however, r2 was low
(Figures 3b–3f).
[26] The small and large chambers gave similar results

with low and medium flux rates, except that variability was
much higher with small chambers (Figure 4). However, at
higher flux rates smaller chambers yielded higher flux rates.

3.2. Effects of the Treatments on Methane Emissions

[27] The CH4 emissions, temperatures and water tables
with their standard errors are shown in Figure 5, and the
results of the analysis of covariance in Table 3. At the CH
site, CH4 fluxes from the enhanced CO2 treatment plots
(�x = 6.6 mg CH4 m�2 h�1) were 23% higher and those
from the NITROGEN treatment (�x = 4.1 mg CH4 m

�2 h�1)
43% lower than from the corresponding control plots. None
of the covariates or treatment effects were statistically
significant.
[28] At the FIN site, CH4 emission from the enhanced

CO2 plots (�x = 4.6 mg CH4 m
�2 h�1), as well as from the

Table 2. Cover of the Most Important Vascular Plant and Moss Species and the Total Covers of Those Plant Groups in the Different

Sitesa

FIN SE UK NL CH

Vascular Plants
Total cover,% 23 40 40 13 8
Most abundant species

(cover% in parentheses)
Eriophorum vaginatum (9) Eriophorum

angustifolium (18)
Eriophorum
vaginatum (14)

Erica tetralis (5) Carex nigra (3)

Andromeda polifolia (7) Drosera rotundifolia (6) Erica tetralis (13) Vaccinium oxycoccos (4) Eriophorum
vaginatum (3)

Mosses
Total cover,% 100 95 79 98 147
Most abundant species

(cover% in parentheses)
Sphagnum balticum (63) Sphagnum

magellanicum (81)
Sphagnum
papillosum (79)

Sphagnum
magellanicum (96)

Sphagnum fallax (89)

Sphagnum papillosum (35) Sphagnum
papillosum (10)

Sphagnum papillosum (1) Polytrichum
strictum (58)

aCover percentages have been estimated by the point-intercept and classical vegetation releves methods [Mitchell et al., 2000]. At the Swiss site,
Polytrichum overtops Sphagnum, resulting in a total cover of over 100%.
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NITROGEN plots (�x = 3.5 mg CH4 m�2 h�1), were 14%
(elevated CO2) and 7% (N addition) higher than from the
corresponding control plots. In the case of the CO2

treatment, WT and T were significant covariates and the
treatment effect was slightly above the 0.05 significance
level (p = 0.085). In the case of the N treatment, none of
the covariates and treatment effects were statistically
significant.
[29] At the NL site, CH4 emissions from the CO2 plots

(�x = 11.0 mg CH4 m
�2 h�1) were 4% lower and those from

the NITROGEN plots (�x = 8.7 mg CH4 m�2 h�1) 28%
higher than those from the corresponding controls. In the
elevated CO2 plots, the number of Eriophorum shoots was a
significant covariate, but the treatment effect was statisti-
cally nonsignificant. In the NITROGEN plots, the treatment
effect and covariates were nonsignificant.
[30] At the SE site, CH4 emission from the CO2 plots (�x =

3.0 mg CH4 m�2 h�1) was 4% higher and that from the
NITROGEN plots (�x = 3.4 mg CH4 m–2 h–1) 7% higher
than that from the corresponding control plots. None of the

Figure 2. CH4 fluxes, peat temperature (at a depth of 15 cm in the NL and CH sites, 10 cm in the other
sites) and depth of the water table in the CONTROL plots at the different sites, calculated as weekly
averages (S.E.).
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covariates (T was not included in the test because it was not
measured on a plot-specific level) or treatment effects were
significant.
[31] At the UK site, CH4 emission from the CO2 plots

(�x = 0.99 mg CH4 m
�2 h�1) was 33% lower and that from

the NITROGEN plots (�x = 0.47 mg CH4 m�2 h�1) 2%
lower than that from the corresponding control plots. The
number of Eriophorum shoots was a significant covariate in
the N experiment (T was not included in the test because it
was not measured on a plot specific level). The CO2 effect

Figure 3. CH4 fluxes of the CONTROL plots (averages of all measurements) compared with the
different site characteristics. Water table depth and temperature are averages of the same data as in Figure
2. The pH, and the DOC, total N and SO4 concentrations were measured on the soil water [Mitchell et al.,
2000]. CH4 fluxes are standardized to a common reference temperature of 14�C in Figures 3b–3f.
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was nonsignificant, but after the covariate correction, the
treatment effect was statistically significant in the NITRO-
GEN plots.

4. Discussion

4.1. CONTROL Plots

[32] In the FIN and SE sites, which were located in
natural peatlands, the CH4 fluxes were typical for slightly
minerotrophic mires in the boreal and nemoral regions
[Bubier et al., 1993; Saarnio et al., 1997; Nykänen et al.,
1998]. Because the other sites were former drained or peat-
cutting areas, their CH4 emissions are probably not fully
comparable with those from natural peatlands [cf. Nykänen
et al., 1998; Tuittila et al., 2000a]. However, they do
represent the prevailing conditions in Central Europe, where
most of the peatlands are more or less disturbed. Therefore
our experimental design can be expected to give represen-
tative results, since both treatments were compared to
control plots in corresponding conditions at every site.
[33] The Q10 values of the methane fluxes varied consid-

erably among the sites. The large variation is understand-
able, because methane is the end product of a series of
processes. Temperature and other limiting factors can exert
an effect on the individual phases. Furthermore, during the
growing season when the temperature varies, other changes
also occur that affect CH4 fluxes, for example, changes in
the water table and the number of vascular plant shoots. In
this study the other Q10 values fell within the range (1.3–
28) presented in the review of Segers [1998], apart from the
Q10 of the UK site which was exceptionally low (1.1). The
UK site seemed to be very insensitive to changes in
environmental conditions (Figure 2). One possible reason

for this may be the history of the site. Also Nykänen et al.
[1998] reported that the effects of variations in the water
table or temperature on CH4 fluxes were very small in some
drainage areas. Another possibility could be a high SO4

concentration [Bartlett et al., 1987]. The UK site is located
very close to the coast, and most of the marine-derived
sulphur deposition in coastal areas takes place during the
summer and autumn [Steudler and Peterson, 1984]. The SE
site also had a high SO4 concentration, and the Q10 value at
this site was rather low (1.5). The CH4 emissions, however,
were markedly higher than at the UK site.
[34] The average CH4 flux rates of the different sites

correlated rather well with the corresponding peat temper-
atures (Figure 3a). In contrast, differences in water table
depths did not explain the differences in the CH4 fluxes
among the study sites (Figure 3b). The water table has been
shown to explain quite well the CH4 fluxes from different
habitats or from individual habitats during the seasons
[Bubier et al., 1993; Nykänen et al., 1998]. One probable
explanation for the lack of correlation between water table
and emission in our study is that, apart from the CH site, the
range in average water table was very small (which was
deliberate, and due to the criterion applied for site selec-
tion). The explanatory power of the other physical and
chemical factors was also rather low. Increasing methane
emissions with increasing pH have been reported by some
researchers [e.g., Dunfield et al., 1993; Valentine et al.,
1994], but not in all cases [Moore and Knowles, 1990].
[35] Comparison of the small and large chambers shows

that the sampling method has some effect on the methane
flux results. There are at least two possible reasons for the
differences. If bubbling occurs during sampling as a result
of movements of the collar in the peat, this will have a
greater effect on the CH4 concentration in small chambers.
Another reason could also be the use of transparent (small)
and opaque (large) chambers. In the transparent chambers
the temperature increases more during sunshine. On the
other hand, if the plants close their stomata in the opaque
chambers, this may decrease gas transport through the
plants. However, the role played by stomata in CH4 emis-
sions is not clear [cf. Kelker and Chanton, 1997; Bellisario
et al., 1999]. Anyway, the sampling method had only a
small effect on the Q10 value. At the FIN site, Q10 was 3.4
with large chambers and 3.7 with small chambers.

4.2. Effects of the Treatments

[36] Three of the sites had higher, and two lower CH4

fluxes in the CO2 plots than in their controls (AIR), but
none of the differences were statistically significant. This
was somewhat surprising and not in agreement with our
expectations, which were based on two earlier studies
showing a strong stimulation of CH4 fluxes by elevated
CO2. Doubling of the CO2 concentration increased methane
fluxes by 80% in brackish marsh soils [Dacey et al., 1994],
and by 145% in cores from an ombrotrophic mire [Hutchin
et al., 1995]. Such effects of elevated CO2 on methane
fluxes are most probably related to the response of plants to
elevated CO2 concentrations [cf. Hutchin et al., 1995;
Megonigal and Schlesinger, 1997]. The CO2 concentration
in the soil is usually so high that an increase in the

Figure 4. Comparison of the CH4 fluxes measured
simultaneously with small and large chambers in the FIN
CONTROL plots.
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atmospheric concentration from 360 to 560 is hardly likely
to have any direct effects on methanogenic bacteria [cf.
Wang and Adachi, 1999]. In our study, elevated CO2

concentration had only a small effect on the plants. Under

elevated CO2 the Sphagnum biomass production increased
slightly in the FIN and NL sites, but it decreased in the CH
and SE sites. None of these differences were statistically
significant [Berendse et al., 2001]. Similarly, the above-

Figure 5. Average CH4 flux, peat temperature and water table depth (mean, S.E.) in the plots with
different treatments at the different sites during 15 June to 15 August in 1997 and 1998. All acceptable
CH4 results are included (compare Table 3). The temperature was measured at a depth of 10 cm, except at
15 cm in the NL and CH sites. At the SE and UK sites the temperature was measured at one point in the
middle of the sites, but at the other sites in the separate plots.
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ground biomass of the vascular plants on the CO2 plots was
higher than that on the AIR plots in the CH, FIN and NL
sites, but lower in the other sites (nonsignificant [Berendse
et al., 2001]). The belowground biomass of the plants was,
however, significantly higher (10–20%) in the CO2 plots
than in the AIR plots at the end of the experiment [Berendse
et al., 2001]. An increased ratio of belowground to above-
ground biomass is a typical phenomenon under elevated
CO2 concentrations [cf. Eamus and Jarvis, 1989]. Theoret-
ically this should be reflected in the CH4 emission, but a
treatment period of three growing seasons may have been
too short to cause any significant effects.
[37] When Saarnio et al. [1998] studied peat cores in

growth chambers at an elevated CO2 concentration in
conditions typical of boreal mires, the increase in methane
emission was also smaller than that found in previous
studies. The reason for the different results was assumed
to be the difference in temperatures [Saarnio et al., 1998].
In the experiment of Saarnio et al. [1998], the effect of CO2

increased when the temperature was kept unnaturally high
at the end of the growth experiment. In our study the
different sites were therefore compared using the summer
data of 1997 and 1998 (Figure 5), when any effect would
have been the most obvious. The CH4 emissions in the FIN
site support the assumption concerning the role of temper-
ature; the increase in CH4 emission caused by elevated CO2

was highest in the middle of summer [Saarnio et al., 2000].
However, the results of this experiment do not in general
support this assumption. A small increase occurred at the
cooler sites (CH, FIN, SE,), while at the warmest site (NL)
the CO2 plots had lower CH4 emissions than their controls
(Figure 5).
[38] Like the CO2 treatment, the N treatment had no clear

effects on CH4 emissions. In the UK site the NITROGEN
and CONTROL plots had almost the same CH4 emission
rates, but the covariate-corrected emissions were signifi-
cantly lower in the NITROGEN plots. Theoretically, in-
creased nitrogen supply can have various effects on CH4

emissions. A possible direct negative effect is decreased
methane production due to suppression by nitrate. Another
possibility is inhibition of methane oxidation by the nitro-
gen compounds [Steudler et al., 1989; Adamsen and King,
1993; Crill et al., 1994], leading to higher emissions.

Indirect effects would most likely occur via the vegetation.
For example, increased biomass production may result in
more substrate being available for methanogens. On the
other hand, fertilization may also decrease the root/shoot
ratio of the plants [Eamus and Jarvis, 1989], thereby
suppressing emissions. In line with this, Granberg et al.
[2001] found that the effect of nitrogen addition on methane
emission from a similar peatland to those used in this study,
was negative at high sedge cover but insignificant at low
sedge cover. Interestingly, the UK site that showed a
negative effect of N addition had a comparatively high
abundance of sedges (Table 2). However, the SE site also
had a lot of sedges but no significant N effect.
[39] In our study the N treatments decreased Sphagnum

production significantly in the CH and NL sites and
nonsignificantly in the SE and UK sites, but increased it
nonsignificantly in the FIN site [Berendse et al., 2001]. The
aboveground biomass of the vascular plants on the NITRO-
GEN plots was higher in the FIN, UK and NL sites but
lower in the other sites, but none of these differences was
significant [Heijmans et al., 2001; Berendse et al., 2001].
However, at the end of the experiment the standing dead
and litter biomass were higher in the NITROGEN plots than
in the CONTROL plots at the FIN, CH, NL and SE sites
[Berendse et al., 2001]. In the experiment of Aerts and de
Caluwe [1999], the addition of N increased CH4 emission
on a low-fertility peat soil, but there were no effects in the
high-N, eutrophic peat. In the 6-year fertilization experi-
ment carried out by Nykänen et al. [2002], the addition of
nitrogen increased CH4 emission only in the poorest Sphag-
num fuscum site. This was concluded to be due to the
secondary effect of increased coverage of Eriophorum
vaginatum in the N-treated plots. Taken together, the results
of previous studies suggest that an increased N load may
result in decreased methane emissions at high sedge cover
[Granberg et al., 2001], in increased emissions in very
nutrient poor peatlands [Aerts and de Caluwe, 1999; Nykä-
nen et al., 2002], but often in small and insignificant effects
[Saarnio and Silvola, 1999; Granberg et al., 2001]. On the
basis of this, it is understandable that the effects of increased
N on methane flux were small at most of our sites.
[40] CO2 exchange (NEE and respiration) was measured

only in the FIN site, where only small treatment effects were

Table 3. Results of the Analysis of Covariancea

CO2 Air Water Table Peat Temperature Shoots/Biomass Treatment (p-Value)

CH 6.58 5.36 n.s. n.i. n.s. n.s. (0.32)
FIN 4.52b 4.05b 0.017 0.029 n.s. n.s. (0.09)
NL 11.15b 11.25b n.s. n.s. 0.021 n.s. 0.97)
SE 3.00 2.88 n.s. n.i. n.s. n.s. (0.65)
UK 0.99 1.48 n.s. n.i. n.s. n.s. (0.12)

Nitrogen Control Water Table Peat Temperature Shoots/Biomass Treatment (p-Value)

CH 4.12 7.27 n.s. n.i. n.s. n.s. (0.45)
FIN 3.53 3.31 n.s. n.s. n.s. n.s. (0.12)
NL 8.67 6.78 n.s. n.s. n.s. n.s. (0.32)
SE 3.35 3.13 n.s. n.i. n.s. n.s. (0.77)
UK 0.35b 0.60b n.s. n.i. <0.0005 0.04

aThe analysis includes only those CH4 results for which concurrent WT and T data (if included) were available (cf. Figure 5). Abbreviations: n.s. =
nonsignificant, n.i. = not included.

bCovariance-corrected mean of the CH4 flux.
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found. [Saarnio et al., 2003]. No treatment effects were
found when the decomposition rates of peat samples from
the FIN site were measured in the laboratory after the
experiment (data not presented). However, indirect evidence
for a CO2 effect on belowground processes came from the
observed increase in bacterial biomass in the living Sphag-
num at all five sites [Mitchell et al., 2003].
[41] In conclusion, an increased CO2 and N supply for 3

years had little or no effects on the abundance of the plant
species, biomass production or on the biological and
biogeochemical processes of the plants and soil. This minor
response of the vegetation probably explains why the
treatments had no clear effects on the methane emissions.
Thus it appears that elevated CO2 concentrations do not
cause fast, dramatic increases in methane emissions in
boreal and nemoral peatlands. However, the methane
emissions clearly depend on the temperature, moisture,
nutrient status and vegetation of peatlands [e.g., Segers,
1998]. An increase in nutrient deposition and greenhouse
gases would very probably cause changes in these regula-
tory factors in the long term. Longer time periods and
larger changes in the vegetation are probably needed to
bring about significant changes in CH4 fluxes [cf. Verville
et al., 1998]. At the NL site, for instance, changes in the
biomass ratio of vascular plants and mosses occurred on
the NITROGEN plots in the third year especially [Heij-
mans et al., 2001]. Thus experiments of longer duration are
needed.
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