Environmental and human risks of pesticide use in Thailand and Sri Lanka. Results of a preliminary risk assessment

This research is sponsored by the European Union (Contract no: ICA4-CT-2001-10031) and the Dutch Ministry of Agriculture, Nature Management and Fisheries (DLO Research 404 Programme 'International Co-operation'). Additional support was obtained from the Department for International Development (DFID) Aquaculture and Fish Genetics Research Programme of the United Kingdom.

Environmental and human risks of pesticide use in Thailand and Sri Lanka. Results of a preliminary risk assessment

Results of a preliminary risk assessment

Van den Brink, Paul J.¹ Sureshkumar, (Suresh) N. ⁷ Daam, Michiel A.² Domingues, Inês² Milwain, Garry K.³ Beltman, Wim H. J.¹ Perera, M. Warnajith P.^{4,2} Satapornvanit, Kriengkrai ^{5,6,3}

¹ Alterra, Wageningen, The Netherlands;
² University of Aveiro, Aveiro, Portugal;
³ University of Stirling, Stirling, UK;
⁴ University of Peradeniya, Kandy, Sri Lanka;
⁵ Asian Institute of Technology, Bangkok, Thailand;
⁶ Kasetsart University, Bangkok, Thailand;
⁷ NARA, Colombo, Sri Lanka.

Alterra-rapport 789 MAMAS Report Series No. 3/2003

Alterra, Green World Research, Wageningen, 2003

ABSTRACT

Brink, P.J. van den, N. Sureshkumar, M.A. Daam, I. Domingues, G.K. Milwain, W.H.J. Beltman, M.W.P. Perera, K. Satapornvanit, 2003. *Environmental and human risks of pesticide use in Thailand and Sri Lanka; Results of preliminary risk assessment*. Wageningen, Alterra, Green World Research. Alterra-rapport 789. 88 pp.; 4 figs.; 8 tables; 29 refs.

Currently, a major difficulty facing the establishment of sustainable management plans in complex agricultural systems in the tropics, is the lack of sufficient relevant information on important ecological, hydrological and land-use processes that underpin the various values generated by natural resources. By applying baseline information from two study sites in Thailand and Sri Lanka, the MAMAS project aims to develop cost-effective tests and other environmental diagnostic tools that can ultimately be used in an Integrated Risk Assessment Model, leading to the development of policy guidelines for the management of agrochemical use in aquatic systems in Asian countries. The initial stage of the project involved a situation analysis which was followed by a preliminary risk assessment as described in this report. The preliminary risk assessment aimed to gather further information on the environmental characteristics of the study sites, in order to estimate potential risks (to both human health and the environment) through pesticide exposures. The information gathered within the MAMAS project was used to model the exposure concentration of the pesticides towards aquatic communities and residues present in food items. This exposure assessment was compared with estimated safe concentrations for the environment and human health. Both the environmental and the human health assessment indicated large potential risks. These risks were not only present for the farm channels located next to the crop but also for larger aquatic systems like cascade tanks present in Sri Lanka. The next phase of the project will consist of performing chemical measurements, bioassays and biomonitoring (the Triad approach). Data obtained will be used to validate the procedures used in the Preliminary Risk Assessment.

Keywords: pesticides, Sri Lanka, Thailand, tropics, environment, human health, risk assessment, aquatic ecosystems, fish

ISSN 1566-7197

This report can be ordered by paying $\in 18$,- into bank account number 36 70 54 612 in the name of Alterra, Wageningen, the Netherlands, with reference to Document10. This amount is inclusive of VAT and postage.

© 2003 Alterra, Green World Research,

P.O. Box 47, NL-6700 AA Wageningen (The Netherlands). Phone: +31 317 474700; fax: +31 317 419000; e-mail: info@alterra.nl

No part of this publication may be reproduced or published in any form or by any means, or stored in a data base or retrieval system, without the written permission of Alterra.

Alterra assumes no liability for any losses resulting from the use of this document.

Contents	5
----------	---

Pre	face	7
Abł	previations	9
Sun	nmary	11
1	Introduction	13
2	Background of risk assessment 2.1 Environmental risk assessment 2.2 Human risk assessment	15 15 17
3	Data gathered in Participatory Community Appraisal and House-Hold surver relevant for Preliminary Risk Assessment 3.1 Thailand 3.2 Sri Lanka	ys 19 19 21
4	 Scenarios, pesticide entry assumptions and pesticide properties for the calculation of the Predicted Environmental Concentrations 4.1 Scenarios 4.1.1 Thailand 4.1.2 Sri Lanka 4.2 Pesticide entry assumptions 4.2.1 Thailand 4.2.2 Sri Lanka 4.3 Defining pesticide characteristics 	25 25 27 30 31 31 31
5	 Procedures for the calculations of the Predicted Environmental Concentration No Effect Concentration and Dietary Exposure Risk assessment 5.1 Predicted Environmental Concentration 5.1.1 First tier PEC calculation 5.2 Second tier PEC calculation 5.2.1 First tier NEC calculation 5.2.2 Second tier NEC calculations 5.3 Dietary Exposure Risk assessment 	n, 35 35 36 37 37 39 40
6	 Results of first and second tier environmental risk quotients 6.1 Predicted Environmental Concentrations 6.1.1 Thailand 6.1.2 Sri Lanka 6.2 No Effect Concentration 6.3 Environmental risk quotients 6.3.1 Thailand 6.3.2 Sri Lanka 	43 43 43 43 43 43 43 43 44
7	Results of dietary exposure risk assessment	45

	 7.1 ADI and ARfD levels 7.2 Results dietary exposure risk assessment 7.2.1 Thailand 7.2.2 Sri Lanka 	45 45 45 45
8	Discussion, conclusions and recommendations	47
Ref	ferences	51
Ap	pendices	
1	Summary Report of Participatory Community Appraisal (PCA) findings and outputs from Thailand and Sri Lanka	55
2	PCA Data from Thailand and Sri Lanka of relevance to PRA (E - Environmental Risk Assessment; H - Human Health Risk Assessment)	63
3	Type of Household (HH) data collected in Thailand and Sri Lanka.	67
4	TOXSWA scenario parameters for Thailand and Sri Lanka	71
5	Pesticide properties for calculation of second tier PEC	73
6	First and second tier PEC's for crop-pesticide combinations in Thailand and Sri Lanka.	75
7	Results of NEC calculations for all pesticides evaluated in Thailand and/or Sri Lanka (NED = Not Enough Data)	81
8	Second tier PEC / NEC risk quotients for crop-pesticide combinations in Thailand and Sri Lanka	83
9	Acceptable daily intake (ADI) and acute reference dose (ARfD) levels cal- culated for the different pesticides to be used in the human risk assessment.	85
10	Results of dietary risk assessment for Thailand and Sri Lanka. For the individual diet items the NEDI (mg/kg BW/day) are given, the total NEDI is compared to the ADI and ARfD	87

Preface

The Preliminary Risk Assessment (PRA) described in this report is part of the project: Managing Agrochemicals in Multi-Use Aquatic Systems (MAMAS). The MAMAS project is largely financed by the European Union INCO-DEV program. The Alterra contribution is also part of the DLO Research Programme International Co-operation (North-South program) sponsored by the Dutch Ministry of Agriculture, Nature Management and Fisheries. Additional support was obtained from the Department for International Development (DFID) Aquaculture and Fish Genetics Research Programme of the United Kingdom. The team consists of seven partners and is coordinated by the Institute of Aquaculture at the University of Stirling (UK). The other partners include: Alterra Green World Research (The Netherlands), University of Aveiro (Portugal), University of Peradeniya (Sri Lanka), Asian Institute of Technology (AIT, Thailand), Kasetsart University (Thailand) and National Aquatic Resources research and development Agency (NARA, Sri Lanka). The preliminary risk assessment was performed in November 2002 at Alterra, Wageningen, The Netherlands. All authors of this report contributed to this risk assessment, but without the input of the people participating in the project and performing the participatory community appraisals and household surveys conducting the assessment would have been impossible. The authors would like to thank Dave Little, Graeme Taylor, Donald Baird (University of Stirling), Theo Brock (Alterra), Amadeu Soares and António Nogueira (University of Aveiro), Sarath Kodithuwakku (University of Peradeniya), Amararatne Yakupitiyage (AIT) and Sunil Siriwardena (NARA) for their invaluable contribution to the report. We want to thank F. A. Cader (AbC), Sampath Abeyarathne (AbC), W. D. N. Wickramarchchi (NARA), M.M.S.D. Kumara (NARA), Kumudu Mahawatte (AbC), S.A.M Azmy (NARA), P.L.S. Panawala (NARA), Keola Soutthanome (AIT), Wijittra Sansud (AIT) and Rattanaporn Anantasuk (AIT) for their help with the participatory community appraisals and household interviews.

Abbreviations

ADI	Acceptable daily intake (mg/ kg body weight/ day)		
ARfD	Acute Reference Dose		
BCF	Bioconcentration Factor		
DT50	Half-life for transformation		
EC50	50% Effect Concentration. Concentration that causes an effect (e.g. immobilisation, reproduction) among 50% of the test organisms of a		
	given species over a specified period.		
HC5	Hazardous Concentration 5%. 5 th percentile of a Species Sensitivity		
	Distribution		
Kd	Sorption coefficient (L/ Kg)		
Koc	Sorption coefficient for organic carbon (L/Kg)		
Kom	Sorption coefficient for organic matter (L/kg)		
Kow	Octanol Water Partition coefficient		
LC50	50% Lethal Concentration. Concentration that kills 50% of the test organisms of a given species over a specified period.		
NEC	No Effect Concentration		
NEDI	National Estimated Daily Intakes (mg/ kg body weight/ day)		
NOEC	No Observed Effect Concentration. Highest concentration tested		
	without observed effects on the individuals of a test.		
OFC	Other Field Crops		
PEC	Predicted Environmental Concentration (µg/L)		
PRA	Preliminary Risk Assessment		
S	Solubility (mg/L)		
SSD	Species Sensitivity Distribution		
TER	Toxicity Exposure Ratio		
TOXSWA	TOXic Substances in Surface WAters model		

Summary

Currently, a major difficulty facing the establishment of sustainable management plans in complex agricultural systems in the tropics, is the lack of sufficient relevant information on important ecological, hydrological and land-use processes that underpin the various values generated by natural resources. By applying baseline information from two study sites in Thailand and Sri Lanka, the MAMAS project aims to develop cost-effective tests and other environmental diagnostic tools that can ultimately be used in an Integrated Risk Assessment Model, leading to the development of policy guidelines for the management of agrochemical use in aquatic systems in Asian countries. The initial stage of the project involved a situation analysis which was followed by a preliminary risk assessment as described in this report. The preliminary risk assessment aimed to gather further information on the environmental characteristics of the study sites, in order to estimate potential risks (to both human health and the environment) through pesticide exposures. The information gathered within the MAMAS project was used to model the exposure concentration of the pesticides towards aquatic communities and residues present in food items. This exposure assessment was compared with estimated safe concentrations for the environment and human health. Both the environmental and the human health assessment indicated large potential risks. These risks were not only present for the farm channels located next to the crop but also for larger aquatic systems like cascade tanks present in Sri Lanka. The next phase of the project will consist of performing chemical measurements, bioassays and biomonitoring (the Triad approach). Data obtained will be used to validate the procedures used in the Preliminary Risk Assessment.

1 Introduction

Environmental degradation of tropical ecosystems and its linkage to rapid economic growth and sustainable development has become a major focus for researchers and funding agencies alike. The relevance of this topic to the needs of the Asian region, home to the World's largest and most dense rural populations is clear. There is an urgent need to de-couple economic growth from environmental degradation in this fast-growing region of the World. Asia's wetlands are under particular pressure and their status is of concern to many national and international bodies and environment agencies (e.g. UNEP, EU) and conventions (RAMSAR). Although it is generally agreed that there is an urgent need for guidelines for good land-use practices that reduce or negate the use of pesticides and nitrate fertilisers, little is currently known of the status of their use or abuse and the fate and impact of the pollutants entering them. The MAMAS project (Managing Agrochemicals in Multi-Use Aquatic Systems) has a multidisciplinary approach to the issue of diffuse pollution from agrochemicals, the use of which is increasing as agriculture intensifies within the region. Vital deliverables of this project include information and approaches that can improve strategic planning, integrate sustainable management and tools at the catchment level, and these will be developed for two different but complementary areas of rural Asia. Currently, a major difficulty facing the establishment of sustainable management plans in complex agricultural systems in the tropics is a lack of information on relevant ecological, hydrological and land-use processes that underpin the various values generated from natural resources. By applying baseline information from two study sites in Thailand and Sri Lanka, the MAMAS project aims to develop costeffective tests and other environmental diagnostic tools that can ultimately be used in an Integrated Risk Assessment Model, leading to the development of policy guidelines for the management of agrochemical use in aquatic systems in Asian countries. The initial stage of the project involved a situation analysis which was followed by a preliminary risk assessment. An important part of the situation analysis was to identify the communities and institutions that are stakeholders in terms of policies and issues relating to pesticide use within the study areas or nationally. The preliminary risk assessment aims to gather further information on the environmental characteristics of the study sites, in order to estimate potential risks (to both human health and the environment) through pesticide exposures. After training, field deployments will commence to monitor effects. The information gathered will allow modelling of the distribution, persistence and bio-availability of contaminants, and effect monitoring to link fate with effects. The output will be a user-friendly decision-support system (DSS). The DSS, and its implications for decision making, will be discussed and disseminated at a participative workshop on completion of the project, following which a set of policy recommendations will be drafted. The report presented here gives an overview of the outline of the project together with the results of the preliminary risk assessment.

2 Background of risk assessment

2.1 Environmental risk assessment

Agricultural pesticides are, as the name indicates, chemicals deliberately released into the environment to control pests that harm crops. This mode of application implies that they may reach non-target areas. Aquatic ecosystems, for instance, have been reported to become contaminated by pesticides due to spray drift, drainage, run-off, atmospheric deposition and/or accidental spills (Capri and Trevisan, 1998). Since aquatic ecosystems include key species related to the target organisms of pesticides, undesirable side effects on aquatic plants and animals may ensue (Hurlbert, 1975; Hill et al., 1994). Consequently, authorities have set criteria to protect aquatic life from pesticide stress. As an example, the European Union adopted the Uniform Principles, a registration procedure for the placing of plant protection products on the European market in which also water quality criteria are incorporated (EU, 1997; see also Table 1). The basis of these principles is the adoption of a tiered approach. The risk assessment starts with a worst-case approach which can be followed by more realistic assessments when risks are indicated.

Tiered risk assessment approach

Ideally, when assessing the ecological risks of a new pesticide, one investigates its fate and effects under realistic field conditions, taking into account good agricultural practice and the spatial and temporal variability of the ecosystems potentially under stress. The time, costs and logistics necessary for this approach, however, make it impossible to evaluate all active ingredients and formulated products in this way. Therefore, a tiered approach has been adopted in Europe and elsewhere. The first, relatively simple, tier of aquatic risk assessment is based on the estimation of a PEC/NEC ratio. In this ratio, the calculated concentration of the pesticide in surface water (Predicted Environmental Concentration; PEC) is compared with the expected No Effect Concentration (NEC). If the PEC does not exceed the NEC, no effects of the pesticide on the aquatic community are expected.

Tier	Compartment	Criteria	
	and organisms		
First tier	Terrestrial		
	Birds and other	short-term PEC $\leq 0.1 \text{ x LD50}$	
terrestrial non-		long-term PEC \leq 0.2 x NOEC	
	target	$BCF \le 1$	
invertebrates		unless	
Honeybees		maximum application rate $\leq 50 \text{ x LD50}$ unless	
	Beneficial	maximum application rate may not cause effects or death for	
arthropods mo		more than 30% of test organisms in a laboratory test	
	-	unless	
Earthworms short-term PEC		short-term PEC \leq 0.1 x LD50	
1		long-term PEC \leq 0.2 x NOEC	
		unless	
	Soil micro-	maximum application rate may not cause inhibition of nitrogen	
	organisms	or carbon mineralization of larger than 25% after 100 days in	
		the laboratory	
		unless	
	Surface water		
	Fish, <i>Daphnia</i>	Short-term PEC \leq 0.01 LC50 or EC50 fish or <i>Daphnia</i>	
	and algae	Short-term PEC \leq 0.1 EC50 algae	
		Long-term PEC \leq 0.1 NOEC fish or <i>Daphnia</i>	
		$BCF \le 1000$ for readily biodegradable active substances	
		BCF \leq 100 for not readily biodegradable active substances	
Second tier		unless it is clearly established through an appropriate risk	
		assessment that under field conditions no unacceptable impact	
		on the viability of exposed species (predators) occurs - directly	
		or indirectly - after use of the plant protection product	
		according to the proposed conditions of use	

Table 1. EU criteria as set for the impact of pesticides on non-target species

The first tier PEC is calculated with the help of a simplified standard scenario for a standard freshwater system (stagnant; water depth 30 cm overlying sediment of 5 cm depth) on the basis of the recommended dose used for pest control and the expected drift percentage and runoff or drainage fractions (FOCUS, 2001). The NEC is based on concentration-effect relationships studied in the laboratory with a limited number of "standard" species, viz., an alga, *Daphnia* and fish (Figure 1). These species have been chosen because of their ease of handling and rearing in the laboratory. Their test procedures are highly standardised and well described in, for instance, OECD guidelines (Organisation for Economic Co-operation and Development; OECD, 1993). The standard test species are regarded as convenient surrogates for sensitive indigenous species of aquatic ecosystems, despite a general awareness of the uncertainty associated with the extrapolation from one species to another. To protect sensitive indigenous aquatic populations, the NEC is usually calculated by multiplying the toxicity value of the most sensitive standard test species by an assessment factor (e.g. a factor of 1/100 for acute EC50s or a factor of 1/10 for chronic NOEC's in the uniform principles; for more details see Table 1).

Figure 1. Standard test species as used for the aquatic risk assessment of pesticides

In the first tier, the PEC is based on an 'extreme worst case loading' scenario. If, based on this PEC compared with the NEC, the use is considered safe, no further risk assessment is required. If however, the result indicates that use is not safe, it is necessary to do a second tier assessment.

The above-mentioned first tier in the risk assessment procedure is considered conservative, partly because of the higher dissipation rate and the generally lower bioavailability of pesticides in the field compared with the standardised test conditions in the laboratory, and partly because of the worst case conditions adopted in the standard scenario to calculate the PEC. Therefore, if the first tier indicates potential risks it is possible to use more realistic exposure scenarios and include ecologically more relevant data in an advanced risk assessment procedure. This advanced risk assessment procedure can be regarded as the second tier, e.g. the "unless" procedure described in Table 1. The more realistic exposure scenarios take into account agronomic and climatic conditions relevant to the crop (FOCUS, 2001), for which simulation models are used to calculate the PEC. This second tier for effects does not consist of well-defined rules like the first one, but has to be tailormade, depending on the degree of uncertainty in the risk remaining after the first tier. This may range from, for instance, more information on the susceptibility of indigenous species, a better estimation of the half-life of the chemical in water to a semi-field experiment using man-made ecosystems like microcosms and mesocosms (Campbell et al., 1999). Possible concepts and tools that can be used to calculate second tier NEC's are the Species Sensitivity Distribution concept (Posthuma et al., 2002), effect models like PERPEST (Van den Brink et al., 2002a) or results from semi-field experiments (Brock et al., 2000a,b). Experiments on an ecosystem level are frequently requested and performed to demonstrate that the actual risks of a particular pesticide are acceptable when used under normal agricultural practice.

2.2 Human risk assessment

The risks for the human health effects of pesticide residue exposure due to dietary uptake consists of the comparison of some kind of exposure parameter with an intake amount considered safe. The exposure parameters are defined as IEDI

(International Estimated Daily Intakes) and NEDI (National Estimated Daily Intakes). These Estimated Daily Intakes are based upon a defined diet and calculated residue levels in these diets. The WHO defined 5 regional food diets based upon the FAO food balance sheets (Middle Eastern, Far Eastern, African, Latin American and European diet). Two intake amounts are used to describe the effect side of the equation, the ADI (Acceptable Daily Intake) and the ARfD (Acute Reference Dose). The ADI is defined as: "an estimate of the amount of a substance, expressed on a body weight basis, that can be ingested daily over a lifetime without appreciable health risk" and can be considered as a chronic threshold level. The ARfD is defined as: "an estimate of the amount of a substance in food and/or drinking water, normally expressed on a body weight basis that can be ingested in a period of 24h or less, without appreciable health effects" and can be considered as an acute threshold level. (Van Raaij, 2001; Van Raaij and Ossendorp, 2002). In this report we will calculate NEDI levels based upon a hypothetical diet representative for Thailand and Sri Lanka and the PEC's calculated within the environmental risk assessment. We will only consider intake due to exposure via the water into account (eating of fish and aquatic macrophytes and drinking of the water), no intake via the crops is considered. These NEDI values will be compared with chronic ADI and acute ARfD values to evaluate chronic and acute risks for human health.

3 Data gathered in Participatory Community Appraisal and House-Hold surveys relevant for Preliminary Risk Assessment

The initial stage of the project involved a situation analysis. An important part of the situation analysis is to identify the communities and institutions that are stakeholders in terms of policies and issues relating to pesticide use within the study areas or nationally. Participatory Community Appraisals (PCA) have been carried out in the sampled communities. The vulnerability context in each community is described in terms of trends, shocks and seasonality based on analysis of separate focus group interviews of men and women. Also wealth ranking is carried out in each community using a modified methodology described by Pretty et al (1995) to identify social groups. Timelines and historical profiles are used with focus groups to reconstruct the context, identify critical events and trace local and external activities over time. A small-scale sample survey of assets and strategies is carried out with a limited number of households in each community to establish their livelihoods profile.

Preliminary data on land-use, hydrology and types of surface water is collected by the research partners in Sri Lanka and Thailand in the target areas of concern. Special attention is paid to the crops present and the actual pesticide use in these crops (e.g. application rates and methods). This chapter will list all data from the Participatory Community Appraisals (PCA) and Household surveys (HH-surveys) carried out in Thailand and Sri Lanka, relevant to the Preliminary Risk Assessment (PRA)

3.1 Thailand

Taking into account the diversity of agricultural systems in Thailand, the Thailand MAMAS team selected two study sites; a commercial mono-crop of tangerines and a more diverse mixed vegetable farming area. Sarakru sub-district in Nong Sua District of Pathumthani province was selected for the mono-crop study site, and Kokprajadee sub-district in Nakornchaisri district of Nakhon Pathom province was selected for the mixed crop site. Three villages from each study site were selected for both PCA and household survey. Twenty households in each village were interviewed as part of the household survey, i.e. 60 households in each study site.

Mixed crop study site

Three villages were selected for investigation in Kokprajadee Sub-district of Nakhornchaisi District in the Nakhornpathom Province of central Thailand. Village selection was primarily based on a high proportion of households having diversified to intensive production of a wide variety of fruit and vegetables in the area and the use of canals and ponds as a source of food-fish through fishing and aquaculture.

The people in the communities are educated to primary level. Farm and general labouring, Government work, aquaculture, and farming are occupations evident in

the area. In the case of the latter, farming can be split into livestock, fruit and vegetables of which the prominence of each varies between villages. The proportion of people involved in labouring and aquaculture also differs between village communities.

Various main canals in the area, with branching sub-canals, supply irrigation water to the farming systems. Water is frequently pumped from sub-canals to farm canal systems, which surround the crops, particularly outwith the rainy season. Water is however pumped from these farm systems back to the sub-canal systems during the rainy season to prevent flooding. A degree of water exchange between farms that share common same sub-canals is therefore expected. However within farms water supplies can be separate for fishponds and crops. Irrigation water supplies are variable, being dependent on rainfall, the tidal status and canal gate operations.

In the past, rice formed the main crop in the area however incomers introduced fruit & vegetable farming in the early 1980's and production of a variety fruit and particularly vegetables now predominates. Rice production has a minor contribution, whilst roseapple and longbean are prominent in selected areas of two villages.

Culture of the Giant Freshwater Prawn (*Macrobrachium rosenbergii*) was introduced but was suppressed due to resulting declines in water quality, however fish culture continued in two of the selected villages. One saltwater shrimp farm exists in the one of the villages. Fish are additionally caught from farm canals, sub-canals and main canals for personal consumption or small-scale local sale. Some other aquatic plants and animals are collected from local canals for consumption.

Canal and road improvements, electricity and tap water inputs and the introduction of government credit schemes have aided development business and livelihoods in the area. Small general stores and agriculture supply shops, a school and temple are present in the area.

Fruit and vegetables are sold at Talad Thai, Kokprajadee and Nakhonpathom Markets and to wholesalers in Bangkok, whilst cultured fish are sold at Saphapla Market, although some agricultural produce and caught fish are consumed within households. Food items are additionally purchased from informal markets and mobile traders that have become established in response to local development.

Mono crop study site

Three villages were selected for investigation in Salakru Sub-district of Nong Sua District in Pathumthani Province of central Thailand. Village selection was primarily based on the three villages' high production levels of tangerines within the District and the use of various canal systems in supplying food-fish, through both culture and fishing activities.

The majority of the community is educated to primary level and farming is the main occupation, followed by general labouring, aquaculture and government related work.

The Ni River is to the north of the study area and there are two main canals (Canals 13 and 33) from which various sub-canals branch to supply irrigation water to the farming systems. Water is frequently pumped from sub-canals to farm canal systems, which surround the crops, particularly out the rainy season. Water is however pumped from these farm systems back to the sub-canal systems during the rainy season to prevent flooding although in the case of tangerine farms this is commonly done frequently throughout the year for purposes of stimulation of crop development. Therefore a high degree of water exchange between farms that share common sub-canals is expected. A proportion of the drainage water collects in another main canal (Canal 32).

In the past, rice formed the main crop in the area however tangerine farming was later introduced from incomers and now forms the vast proportion of high intensity agricultural production in this area. Recently however, an unidentified disease has been having significant constraints on tangerine production. Longan, sweetcorn, mango and mushrooms are however additionally produced.

In one of the three villages pond fish culture has appeared whilst cage fish culture is apparent in Canal 13. Fish are however caught from farm canals, sub-canals and main canals for personal consumption. Some other aquatic plants and animals are collected from local canals for consumption.

Small general stores and agriculture supply shops, a school, public health office and temple are present in the area, whilst the development of the road network and other communication links over the years has improved business development.

Tangerines and other crops are sold in large markets which include Talad Thai, Si Mun Muang and Pak Klong and Nakhonpathom. Cultured fish are sold at large markets including Saphan Pla, Nongkar and Nakhonpathom and also the Kianthai Company. A small proportion of agriculture produce and fish cultured or caught are consumed within households. Small informal markets and mobile traders have become established and prospered in the area in response to development and are an additional source of food and other households consumables.

3.2 Sri Lanka

Two main research sites were selected within a large irrigation systems, Mahawelli H system, that is located in the North Central Province of Sri Lanka, in the dry zone of the country. They are Kalankuttiya and Meegalewa tanks. These two tanks are located along same cascade. Kalankuttiya tank is perennial tank and fed by both Mahaweli and drainage water whereas Meegalewa tank is fed by only drainage water. (See figure 2)

Figure 2. Overview of water flow of the two main research sites (Kalankuttiya and Meegalewa tanks) and selected communities for Sri Lanka.

Water drainage pattern was used as main site selection criteria. Cropping pattern, land use pattern and livelihood activities also considered for the site selection. Five communities were selected along the cascade representing both catchments and the command areas of the selected tanks (Appendix I, II and III). The selected communities for the research are :

- 1 Mulannatuwa Located in the Kalankuttiya tank catchment area and away from the tank
- 2 Medellewa- Located in the Kalankuttiya tank catchment area and closer to the tank
- 3 Ihala Kalankuttiya- Located in between two tanks closer to Kalankuttiya tank
- 4 Kuratiyawa- Located in between two tanks closer to Meegalewa tank
- 5 Weliyawa Located in the command area of the Meegalewa tank

The main income generation activity of all the communities is farming. Employment in the armed forces and in garment factories are some other major livelihood activities.

The major portion of drainage water of Medellewa and Mulannatuwa flows to the Kalankuttiya tank. Kalankuttiya tank provides water for the cultivation activities of Kuratiyawa and Ihala kalankuttiya. The major portion of these two communities' drainage water flows to Megalewa tank. Megalewa tank provides water for the cultivation activities of Weliyawa. Water is sufficiently available during the Maha season and hence the majority of the farmers cultivate paddy, which demands lot of water whereas water is not sufficiently available during the Yala season and hence some of the farmers cultivate Other Field Crops (OFC's) during the Yala season. Application of pesticides was found to be higher in cultivation.

Fish is one of the important animal protein sources of these communities. The major sources of fish consumed in these communities are the Kalankuttiya and Megalewa tanks. Consumption of aquatic plants was insignificant when compared with the other food items.

The majority of the farmers are aware of the safety methods of pesticide application. However, the majority of the farmers generally ignore safety procedures. Interestingly most of the farmers are aware of the hazardous nature of the pesticides. Most of the farmers are willing to reduce the total amount of pesticides that they apply.

4 Scenarios, pesticide entry assumptions and pesticide properties for the calculation of the Predicted Environmental Concentrations

To be able to calculate Predicted Environmental Concentrations (PECs) in the tiered approach the scenarios for each of the two tiers have to be defined. The scenario is a 'description' of the characteristics of the environment in each country within which pesticide concentrations in surface waters are to be determined. Furthermore, assumptions have to be made considering the entry of pesticides into the water body. For the 2nd tier calculations the pesticide properties are needed to simulate their fate in the water body.

4.1 Scenarios

For each country one scenario was developed for the first tier and two scenarios were developed for the second tier, all of them representative for the study sites.

4.1.1 Thailand

There are 2 study locations in Thailand, one in each of Pathumthani and Nakhonpathom provinces In Thailand the Pathumthani site is characterised by monocrop, tangerine farm systems. The Nakhonpathom site is characterised by mixed produce, mostly vegetables and fewer fruits where season has little influence over the types of crops grown in each system. Similarities and differences in hydrological characteristics and cropping patterns of are further summarised in Table 2.

The Thai farming systems at both sites are characterised by strips of land on which crops are grown surrounded by water which itself either flows in or is pumped in from the main or sub-canals which canalises and supply the water ("ditch-and-dike systems", Table 2). The farm canal system is usually a closed water system and the water within the system is lost through transpiration, evaporation, surface and groundwater seepage, although during the rainy season water may be pumped back from these systems to the sub-canals to prevent flooding (Fig. 3). Additional to seasonal differences on hydrology, within the mono-crop sites water is additionally pumped to and from the farm during periods of the year for crop stimulation purposes (Fig. 3) which adds another degree of variation between these two study sites. The farm canal system and 20m sections of sub-canals themselves (approximate one farm width) were decided as the main focus of impact of pesticides in the aquatic environment due to both being sources of fish consumed locally, the former being the area of work and the latter being utilised for other domestic purposes such as washing clothes.

Table 2: Thailand site characteristics	s (2 sites),	scenarios and	basic assum	ptions
--	--------------	---------------	-------------	--------

Characteristics	Site 1	Site 2	
System type	Mono-crop Tangerine	Mixed crop Fruit and vegetables	
Cropping pattern	3 tree stages. 3 rd stage bears fruit	Continuous with short 1-2 month cycles	
	1-2 times / year		
	Water supplied through main & sub-canals to farms		
Hydrology	Cyclical pumping in & out of	Pump in during dry season & sometimes	
	farm – to stimulate tree	out during wet season to prevent	
	development & crop production	flooding	
Scenario	Scenario 1: Wet Season (both) Scenario 2: Dry Season (both)		
	Sub-canal impact zone 20m (distance between farms)		
Assumptions	Farm canal depth: (Wet) 0.75m ; (Dry) 0.5m		
-	Soil & water temp. (Wet) 30 °C; (Dry) 33 °C		
	Simulation time (wet) 240 days. Simulation time (dry) 120 days		

Figure 3. Diagrammatic representation of agricultural systems of the mono- and mixed cop study sites in Thailand. The farm canal system and sub canal are the areas of impact.

The two sites do not differ in the most sensitive scenario parameters for the first tier scenario: water depth, and the second tier scenarios: flow rate (Westein et al., 1998). Therefore the scenarios defined here cover both sites. In the first tier one scenario is defined. In the second tier two scenarios are defined. One for the wet season and one for the dry season. The main scenario parameters differing between the seasons affecting the pesticide fate are the water depth and the temperature.

Tier 1 scenario

The first tier scenario comprises a stagnant water body with no sediment layer below is. The water depth is defined as 0.5 m; being a realistic low value for the ditches in the farming systems considered.

Tier 2 scenarios

The scenarios in the second tier are representative for both study sites. One scenario represents the conditions in the dry season, the other scenario represents the conditions in the wet season (Table 3). Both scenarios represent a stagnant water body, assuming that under worst case conditions the water in the ditch is not replenished during the season. The sediment layers in the scenarios represent sediments with low organic matter contents. These are worst case conditions regarding the low amount of organic matter available for sorption of pesticides. The low organic matter content has not been verified because data are not available.

Tish assessment for Thanana.			
Parameter	Dry season	Wet season	
Water layer			
Flow rate (m/d)	0 (stagnant)	0 (stagnant)	
Water depth (m)	0.5	0.75	
Temperature (°C)	33	30	
Suspended solids (g/L)	50	50	
Org. matter content suspended	0.5	0.5	
solids			
Sediment			
Thickness (m)	0.05	0.05	
Bulk density (kg/m3)	800	800	
Porosity (-)	0.5	0.5	
Tortuosity (-)	0.5	0.5	
Mass ratio organic matter (-)	0.085	0.085	

Table 3. Scenario parameters for estimation of Predicted Environmental Concentrations (PECs) in the second tier risk assessment for Thailand.

4.1.2 Sri Lanka

There are 5 study locations in the Mahaweli H system of Sri Lanka. In Sri Lanka the types of crops grown are largely rice, OFC's and vegetables, mostly comprising onion and chilli where seasonality and water availability have more influence on which crop and the area size on which the crops are grown. Additionally, the slope gradient is an important factor in the irrigation cascade system of the Sri Lankan sites influencing water availability and therewith affecting the potential accumulation of pesticides in tanks downhill. Similarities and differences in hydrological characteristics and cropping patterns of sites in each country are further summarised in Table 4.

The Sri Lankan farming system at each site is characterised by rice production on water-inundated land of no more than 1 hectare (2.5 acre) per household during the rainy season (Maha) and production of Other Field Crops on raised bed strips surrounded by water within the plot during the dry season (Yala) of around half an acre (Table 4). However rice may also be grown during Yala alongside OFC's if water availability permits. In each case, water is supplied from reservoirs or tanks via distribution channels and smaller field channels, which connect to plots. Water is issued to channels by the Mahaweli Development Authority and farmer organizations through the operation of gates although the amount of water issued is dependent upon its availability. During Yala water availability is reduced and is

commonly issued to farmers for 3 days in every 10 days, which operates in a rotational pattern between plots. The farm plot canal system is usually a closed water system and the water within the system is lost through transpiration, evaporation, surface and groundwater seepage although seepage water also collects in drainage channels (Fig. 4). During Yala the tendency for farmers to pump and 'recycle' water from the drainage channels is increased due to scarcity. Drainage water eventually collects in downstream reservoirs / tanks (Fig. 4). The farm plot canals and tanks themselves were decided as the main focus of impact of pesticides in the aquatic environment due to the former being the area where farm workers operate and the latter being the main source of bathing water and fish consumed by local communities.

Table 4: Sri Lanka site characteristics (5 sites), scenarios and basic assumptions Characteristics Sites 1-5 Maha 'wet' season: rice, Yala 'dry' season: chilli, onion and vegetables System type Cropping pattern Maha - rice (3 to 3 ¹/₂ or 4 months Yala – chilli, onion)1-3 month cycle) cycle) 1 ha cultivated per farm $\frac{1}{2}$ ha cultivated per farm Water flow: distribution channels – farms – drainage channels Hydrology Also pump from drainage channels to farm during dry season. Scenario Scenario 1: Wet Season (all) Scenario 1: Dry Season (all) Tank impact zone 20 ha & 1.5m deep Farm plot canal depth: 0.10 m (Wet & Dry) Assumptions Soil & water temp. 28 °C (Wet) & 30 °C (Dry) Simulation time (Wet) 120 days & (Dry) 240 days

Figure 4. Diagrammatic representation of agricultural systems of the rice and OFC study sites in Sri Lanka. The farm canal system and tank are the areas of impact

In the first tier, a single scenario is defined. In the second tear two scenarios are defined, one for the wet season and one for the dry season. The main scenario parameters differing between the seasons affecting the pesticide fate are the water depth and the temperature.

Tier 1 scenario

The first tier scenario comprises a stagnant water body with no sediment layer below is. The water depth is defined as 0.1 m; being a realistic low value for the field drainage channels in the farming systems considered.

Tier 2 scenarios

One scenario represents the conditions in the dry season, the other scenario the conditions in the wet season. Both scenarios represent a stagnant water body, assuming that under worst case conditions the water in the field drainage channels is not replenished during the season. The sediment layers in the scenarios represent sediments with low organic matter contents. These are worst case conditions regarding the low amount of organic matter available for sorption of pesticides. The low organic matter content has not been verified because data were not available.

Parameter	Dry season	Wet season
Water layer		
Flow rate (m/d)	0 (stagnant)	0 (stagnant)
Water depth (m)	0.1	0.1
Temperature (°C)	30	28
Suspended solids (g/L)	50	50
Org. matter content suspended	0.5	0.5
solids		
Sediment		
Thickness (m)	0.05	0.05
Bulk density (kg/m3)	800	800
Porosity (-)	0.5	0.5
Tortuosity (-)	0.5	0.5
Mass ratio organic matter (-)	0.085	0.085

Table 5. Scenario parameters for estimation of Predicted Environmental Concentrations (PECs) in the second tier risk assessment for Sri Lanka.

Dilution factor calculation for tank scenario in Sri Lanka

The second tier PECs of the Sri Lankan scenarios are also extrapolated to the tank or reservoir (see Figure 4). This Tank-PEC is used to calculate the PEC/NEC ratios and the human exposure for Sri Lanka.

The Tank-PEC can be calculated from the second tier PEC for the farm canal system using a dilution factor. So it is assumed that (part) of the water from the farm plots will enter the tank.

Only a scenario for the Yala season is defined, because then the dilution factors will be low. In the Maha (wet) season the dilution is higher because of the higher rainfall intensity, which will lead to lower PECs than calculated for the Yala season. The following assumptions are made:

- The total land extent in this irrigation block is 1000 plots of 1 ha = $1 \ 10^7 \ m^2$.
- in Yala farmers are allowed to cultivate 0.5 ha (extent of cultivation depend on irrigation water availability), so total cultivatable area in this irrigation block during Yala season is 500 ha = $5 \ 10^6 \text{ m}^2$
- the volume of water flowing from plots to the tank = $5 \ 10^6$ (cultivated area in m²) *0.1 (water height) *0.1 (channel area) = $5 \ 10^4 \ m^3$ (in the plot, bed area is 90% and cannel area is 10%)
- Via surface flow, only 1/3 of water in the plot ends up in the tank (due to evaporation, transpiration etc.). Hence, the volume of water entering the tank = 5 $10^4 \text{ m}^3 * 1/3 = 16667 \text{ m}^3$
- In the Yala season farmers get water 3 days out of 10 days. Therefore total water volume goes to the tank via surface ware flow is $16667 * 3/10 = 5000 \text{ m}^3$
- So farmers get water every 10 days and every 10 days a volume of 5000 m³ goes to the tank from the 500 ha that is cultivated in Yala.
- therefore, the daily volume of water entering the tank = $5000 / 10 = 500 \text{ m}^3$
- from the 500 ha. cultivated area 60% is onion, 20% is chilli and 20% is rice and vegetables
- The size of the tank is 20 ha; the average tank depth is 1.5 m, so volume of the tank is 20000 $m^2 * 1.5 m = 30.000 m^3$
- The volume of water coming from different crop areas (m³) is
- Onion: $60\% * 500 \text{ m}^3 = 300 \text{ m}^3$
- Chilli: $20\% * 500 \text{ m}^3 = 100 \text{ m}^3$
- Rice: $10\% * 500 \text{ m}^3 = 50 \text{ m}^3$
- Vegetable: $10\% * 500 \text{ m}^3 = 50 \text{ m}^3$
- Therefore dilution factor is = volume of water in the tank / the volume of water coming from the plot channel:
- DF $_{Onion}$ = 30000 / 300 = 100
- DF $_{Chilli}$ = 30000 / 100 = 300
- DF $_{\rm Rice}$ = 30000 / 50 = 1000
- DF $_{\rm Vegetable}~=30000$ / 50 ~=1000

4.2 **Pesticide entry assumptions**

Pesticides may enter surface waters via spray drift, runoff, drainage or atmospheric deposition. In this preliminary risk assessment only the entries via spray drift are taken into account. For the other entry routes additional data on soils and field practices are needed, the data for which are not yet available. Also, spray drift is considered to be one of the main entry routes causing peak concentrations in surface waters. Point sources, e.g. via spills, are not considered in a risk assessment procedure because it is assumed that good agricultural practice is followed. Nevertheless, point sources are in the daily practice a main risk to be considered.

4.2.1 Thailand

Spray drift (% of pesticide and hence active ingredient, which directly reaches the surface water) was taken as 100% for boat application methods and 30% for knapsack spraying. The pesticide is diluted with irrigation water sprayed on the crops that are on the strips of land. The irrigation is done with a boat that sprays the water like a fan behind it, reaching land and water alike.

4.2.2 Sri Lanka

Spray drift was taken as 100% for applications by knapsack, because the small field canals are that close to the crop and are that small that the water surface is sprayed fully.

4.3 Defining pesticide characteristics

In the Tier 2 calculations pesticide properties are needed. Transformation, sorption and volatilization are the main processes affecting the fate of pesticides in surface waters. The parameters needed to simulate these processes with TOXSWA are listed here. It is indicated how the values have been obtained. Appendix IV lists the parameter values of the pesticides considered in this study.

(A) Transformation

- 1. Half-life for transformation in water at 20 °C (days)
- 2. Half-life for transformation in sediment at 20 °C (days)
- 3. Activation energy for transformation (J/mole)

The half-life estimates used for the simulations with TOXSWA model, were obtained from Tomlin (1997), Arthur et al. (1996) and Tomlin (2000). When available, the DT50 of the water-sediment study was used, but if the data were not available, the hydrolysis, photolysis and degradation times in water at pH 7 were used. As a last choice the DT50 of soil was used. If soil DT50 was not available, a value for DT50 water and sediment of 10,000 days was used. Using molar enthalpy the transformation rate can be calculated for the temperature considered in the scenario. For the activation energy of transformation, the default value of 55,000 J/mole was used for all pesticides (Beltman et al., 1999).

(B) Sorption

- 4. Suspended Solids
- Sorption coefficient, K_{om} (organic matter) (L/kg)
- Freundlich exponent (-)

- 5. Sediment
- Sorption Coefficient, K_{om} (organic matter) (L/kg)
- Freundlich exponent (-)

The sorption coefficient K_{om} for suspended solids and for sediment were both taken from the sorption coefficient for soil from the three references listed under (A). If not available the K_{om} was calculated from the K_{oc} using the equation below,

 $K_{om} = 1.7 * K_{oc}$

If both K_{om} and K_{oc} were unavailable, the default value of 1,000 L/kg was used. The Freundlich exponent was set at the default value of 0.9.

(C) Volatilisation Part:

- 6. Saturated gas pressure
- Saturated gas pressure (Pa)
- Temperature at which the saturated gas pressure is measured (°C).
- Molar enthalpy of vaporization (J/mole).

Saturated gas pressure was obtained from the three main references (A). The conversion from m Hg to Pa is 1 m Hg = 133322 Pa and 1 mm Hg = 133.322 Pa. If the references did not have a value for saturated gas pressure, the value was set at 1 E-15 Pa. The temperature at which the saturated gas pressure was measured is needed as well. With this temperature and the molar enthalpy the saturated gas pressure can be calculated for the temperature considered in the scenario. For the molar enthalpy of vaporization the default value of 95,000 J/mole was used (Beltman et al., 1999).

- 7. Solubility
- Solubility in water (g/L).
- Temperature at which the solubility is measured (°C).
- Molar enthalpy of solution (J/mole).

Solubility in water was obtained from the three main references as listed under (A). With the temperature at which the solubility is measured and the molar enthalpy the solubility can be calculated for the temperature considered in the scenario. For the molar enthalpy of solution, the default value of 27,000 J/mole was used (Beltman et al., 1999).

8. Molecular mass (g/mole).

Molecular mass was also found in the three main references (see (A)). When not available the molecular mass data was set at 100 g/mole.

The results of determining the pesticide parameters for all pesticides that are were found in the Household surveys of Thailand and Sri Lanka are listed in Appendix V. The values are used in calculation of the second tier PEC.

5 Procedures for the calculations of the Predicted Environmental Concentration, No Effect Concentration and Dietary Exposure Risk assessment

5.1 Predicted Environmental Concentration

All calculations are done for all combinations of crop and pesticide that were found in the household surveys held in Thailand and held in Sri Lanka.

5.1.1 First tier PEC calculation

This involved a preliminary estimation of the risks posed by each pesticide to the aquatic environment. The total use of each pesticide on each crop during the crop cycle is used to very simply calculate a first tier PEC. These PECs allow the identification of pesticide-crop combinations that may cause the highest risks.

PEC = Dose * Number of applications * Drift fraction 10 * Volume of water body

PEC (mg/m³ = μ g/L)

Predicted Environmental Concentration calculated from instantaneous input of accumulated pesticide loading during the crop cycle.

Dose (g a.i. /ha)

The recommended dose is used assuming good agricultural practice by the farmer. By using the recommended dose we exclude effects of temporal (between years) and spatial variation (between farms) on the risk assessment. The loading of active ingredient for one application is calculated from the recommended dose of the formulated product accounting for the % of active ingredient of the pesticide product. (concentrations of active ingredients of solid form were provided as an expression of weight per weight (W/W) whilst liquid forms were expressed as weight per volume (W/V), where in the latter case 1% = 10g / 1000 mL therefore this was taken into consideration in calculations.

The actual field doses applied by farmers were used for Thailand because recommended doses were not available, whereas recommended doses were used in the calculations for Sri Lanka.

Number of applications (-)

For Thailand the highest number of applications in a crop during its crop cycle, found in the Household survey is used. For vegetable crops a crop cycle of 45 days was assumed, for fruit also periods of 45 days were assumed. By using the highest

values, we consider the worst case situation that may occur. For Sri Lanka, the results of the Houshold survey were not available yet, the number of applications is based on expert judgement. A crop cycle takes 120 days.

Drift fraction (-)

These are the drift percentages indicated in Section 4.2 divided by 100. The drift fraction depends on the application method used in the crop.

10

This factor is added to change from g/ha to mg/m^2 .

Volume of water body (m³)

The volume is calculated assuming a length of 1 m, a width of 1 m and a water depth depending of the country that is considered. For Thailand it is 1 m x 1 m x 0.5 m = 0.5 m^3 . For Sri Lanka it is 1 m x 1 m x 0.1 m³ (see Section 4.1).

The first tier PECs calculated for Thailand and Sri Lanka are listed for each croppesticide combination in Appendix VI.

5.1.2 Second tier PEC calculation

The second tier PEC was calculated to obtain a more realistic estimate of the concentrations of pesticide in surface waters. The first tier PEC was calculated assuming all loadings enter instantaneously the water body, causing a peak concentration that is the PEC. In calculation of the second tier PEC the processes that determine the fate of the pesticide in surface water are taken into account and a realistic application scheme is considered. The difference between the first tier PEC and the second tier PEC was due to the dissipation processes between applications resulting in lower PECs. The second tier PEC was the result of stacking the individual applications. For the calculations the TOXSWA model was used.

Second tier PEC calculations for the risk assessment involved the input of data relating to pesticide use, pesticide properties and various environmental parameters to the TOXSWA model. For Thailand only the pesticide-crop combinations from the first tier assessment which revealed the highest PEC values were selected for calculation of a second tier PEC. For Sri Lanka for all pesticide-crop combination a second tier PEC was calculated. From the second tier PEC of the farm canal system in Sri Lanka also a second tier PEC for the tank was calculated using a dilution factor, calculated as described in Section 4.1.2.3.

As described, two scenarios were developed for each country, representing the dry season and wet season. However, for calculation of the second tier PEC the dry season scenarios were chosen as the worst case scenarios for both Thailand and Sri Lanka. Calculations for the wet season have not been done. Concentrations will be highest in the dry season because the water depths are smallest and in reality in the dry season the replenishment of the water is minimal. The values entered for each
parameter in TOXSWA for Sri Lanka and Thailand are shown in Appendix IV. The parameter values used for the pesticides used in TOXSWA are given in Appendix V. The drift deposition on the water surface for each application is calculated with:

Drift deposition on water surface $(mg/m^2) =$ Dose (g a.i./ha) * Drift fraction (-) / 10

For explanation of Dose, Drift fraction and the factor 10 see Section 5.1.1.

The number of applications and the time interval between applications are extracted from the Household surveys. For Thailand a period of 45 days is simulated, being the crop cycle period in which the series of pesticide applications occur. For Sri Lanka a period of 120 days is simulated, being a realistic period for the crops grown there.

The second tier PECs for Thailand and Sri Lanka are listed in Appendix VI. For Sri Lanka also the tank-PECs (see Section 4.1.2.3) calculated from the second tier PECs are presented.

5.2 No Effect Concentration

The preliminary risk assessment is based on the estimation of a PEC/NEC ratio. For the calculation of the ratio the second tier PEC's calculated according to the procedures as described in the previous paragraph were used. The procedure for the NEC calculation is addressed below.

5.2.1 First tier NEC calculation

The calculation of the NEC is based on laboratory toxicity data (LC50/ EC50/ NOEC's) gathered for a limited number of 'standard species': viz. algae, *Daphnia* and fish. These species have been chosen because of their ease handling and rearing in the laboratory. A list of standard test species was derived from the OECD (1993, Table 6).

Tuble of Dianual (use spears (OLOD), Teeo)			
Crustacea	Daphnia magna		
	Daphnia sp		
Algae	Chlorella vulgaris		
	Scenedesmus subspicatus		
	Selenastrum capricornutum		
Macrophytes	Lemna minor		
	Lemna gibba		
Fish	Brachydanio rerio		
	Cyprinus carpio		
	Gasterosteus aculeatus		
	Lepomis macrochirus		
	Oncorhynchus mykiss		
	Oryzias latipes		
	Pimephales promelas		
	Poecilia reticulata		

Table 6. Standart test species (OECD, 1993)

The toxicity data for the standard test species listed above were obtained from the quick-search Ecotox database of the US-EPA (internet reference 1). Only toxicity data from laboratory tests were used. Furthermore, values obtained from laboratory tests with non-reported endpoints or endpoints that were not considered relevant were excluded (Table 7). Toxicity values from laboratory tests with a duration that is considered out of range were also deleted (Table 7).

Table 7. Relevant endpoints and duration for laboratory toxicity tests

Species group	Toxicity measure	Relevant endpoints	Relevant duration of test (days)
Daphnia / fish	EC50	Mortality 1 - 4	
		Behaviour	
		Intoxication	
	NOEC	See EC50+	> 4
		Reproduction	
Macrophytes	EC50	Growth	2-14
		Population	
	NOEC	See EC50	> 8
Algae	EC50	Growth	1 - 4
		Population	
	NOEC	See EC50	1 - 4

When more than one EC50 or NOEC values were found for the same species, the geometric mean was calculated. If no EC50 or NOEC data was available within one of the three species groups, the database of the RIVM was used (De Zwart, 2002). If toxicity values were still missing for the most relevant species groups for a certain pesticide (i.e. insecticide and acaricide: *Daphnia* and fish; herbicide and plant growth regulator: algae and macrophytes; fungicide: *Daphnia*, fish, algae and macrophytes), the Pesticide Manual (Tomlin, 2000) was checked. For all pesticides a NOEC or EC50 value was obtained for at least one species within the most relevant species group(s). Because of the uncertainties associated with the extrapolation from one species to another and to protect sensitive indigenous aquatic populations, the NEC is calculated by multiplying the toxicity value by an assessment factor (EU, 1997. Table 8).

Table 8. Assessment factors for extrapolation of toxicity values for standard test species to NEC (EU, 1997)

Short term exposure 0.01 x acute EC50 fish, Daphnia 0.1 x acute EC50 algae and macrophyte Long-term exposure 0.1 x chronic NOEC fish, Daphnia, algae and macrophyte

After application of the assessment factors, the lowest NEC for each pesticide was taken and listed in Appendix VII.

5.2.2 Second tier NEC calculations

The NEC calculation in the first tier of the risk assessment procedure is often considered conservative because of the limited amount of species tested and the lack of ecological realism Brock et al., 2000a;b). Therefore, if the first tier indicates potential risks, European guidelines offer the possibility to include more ecologically relevant data in a higher tier risk assessment procedure.

For the type of risk assessment proposed here, using SSD (Species Sensitivity Distributions) or models, e.g. PERPEST, are useful tools for estimating a more realistic NEC (Campbell et al., 1999).

The SSD concept is based on the assumption that the sensitivities of a set of species can be described in a statistical distribution (Posthuma et al., 2002). The available ecotoxicological data for all species tested are considered as a sample from this distribution and are used to estimate the parameters of the SSD. The variance in sensitivity among the test species and the mean are used to calculate a concentration expected to protect most species (e.g. 95%). This concentration (HC5, Hazardous Concentration 5%) is supposed to prevent effects on ecosystems and is validated for a limited number of compounds (Versteeg et al., 1999; Van den Brink et al., 2002a; Schroer et al., 2003). By including more species and taking into account the (modelled) sensitivity between them, a more realistic NEC can be calculated.

The PERPEST model is a model that predicts the ecological risk of herbicides and insecticides in freshwater ecosystems by using relevant (toxicity) characteristics of the compound and the results of all microcosm and mesocosm experiments published in the open literature (see Brock et al., 2000a;b for the review). PERPEST searches for analogous situations in the database allowing the model to predict effects of pesticides for which no effects on a semi-field scale have been published (Van den Brink et al., 2002b). By using this model, an (modelled) ecological more realistic NEC can be obtained.

The second tier NEC was calculated for substances having a PEC/NEC ration higher than 10.000 using the RIVM data base (De Zwart, 2002). HC5 values were based on toxicity values of arthropods for insecticides and acaricides, primary producers for herbicides and plant growth regulators and all available data for fungicides (Maltby et al., 2002). Since EC50 values are far more available than NOEC's, the first were used for the HC5 calculation. A safety factor of 10 was used to extrapolate the HC5 based on EC50 data to a NEC. HC5 values were only calculated when at least 6 toxicity values were available. When less than 6 toxicity values were available, the PERPEST model was used.

5.3 Dietary Exposure Risk assessment

In predicting pesticide residue intake, long term food consumption habits should be taken into account, to permit valid comparisons with the Acceptable Daily Intake (ADI). The ADI is an estimate of the amount of a substance, expressed on a body weight basis, that can be ingested daily over a lifetime without appreciable health risk. The ARfD (Acute Reference Dose) is an estimation of the amount of pesticide that can be ingested in 24 hours without health risk. For the human risk assessment, the ADI and ARfD of the pesticides were compared to the NEDI's (National Estimated Daily Intakes) based on the three main entry routes: drinking water, eating fish and water-plants. This comparison was made to estimate acute and chronic health risks. Consumers are considered to be adequately protected providing the intake of pesticide residues does not exceed the acceptable daily intake (ADI) and/or Acute Reference Dose (ARfD).

The calculation of the pesticide intake (NEDI's) for the three entry routes are described below. In calculating the NEDI, it is necessary to convert the consumption to mg (pesticide) /Kg (body weight) /day. Therefore it is assumed that a person weighs on average 60 kg, as is stated on the web-page of the World Health Organisation (WHO, internet reference 2). The assumptions are based on an average person and not a worst-case.

Drinking water

The daily amount of pesticide intake via drinking water was calculated by multiplying the second tier PEC with the average daily consumption of water. Therefore, it was assumed that all water that's consumed is taken from the surrounding agricultural water (worst case). On the web-page of the South-East Asia regional office of the WHO (internet reference 3), it is stated that the average consumption of water in Thailand is 5 litres per day. Because no other values (for Sri Lanka) could be found, this amount was used for further calculations.

Eating fish

The amount of pesticide consumed via eating of fish was calculated by multiplying the amount of fish eaten per day with the concentration of the pesticide in the fish. The amount of fish eaten per day was obtained from the 'far eastern' diet of the GEMS/Food regional diets on the WHO web-page (internet reference 4). In this calculation the amount of fish and meat eaten a day were added to get a realistic worst-case diet (e.g. people just eat fish, which is quite common in Asia). It was assumed that a person eats 81.7 g fish a day (34.7 g fish + 47 g meat). The concentration of the pesticide in the fish was calculated using second tier PEC's and bio-concentration factors (BCF) values for the different pesticides:

concentration in the fish = concentration in the environment (PEC) * BCF

The BCF's were calculated from the Kow using the following relation as determined by Weith et al. (1979):

 $\log BCF = 0.85 \text{ Kow} - 0.70$

Kow values were obtained from the pesticide manual (Tomlin, 2000). When they were not available in the manual, they were obtained from the Environmental Science web-page (internet reference 5) or The Alternate crops & systems Lab web-page of the USDA (United States Department of Agriculture; internet reference 6).

Eating macrophytes

The amount of pesticide consumed via eating of macrophytes was calculated by multiplying the amount of macrophytes eaten per day with the concentration of the pesticide absorbed to the macrophytes. The daily consumption of macrophytes was estimated from the 'far eastern' diet of the GEMS/Food regional diets (internet reference 4) by assuming that half of the vegetables eaten a day consists of macrophytes (i.e. 179/2 = 89.5 g/ person/ day). The concentration of pesticides absorbed to waterplants was calculated from the following formulas:

concentration of pesticide absorbed to plants = concentration in the environment (second tier PEC) *Kd

The relation between solubility and Kd as estimated by Crum et al. (1999) was used to calculate the Kd:

 $Kd = 3.20 - 0.65 \log S$

The Solubility (S) were taken from the pesticide manual (Tomlin, 2000). As the concentration of pesticide absorbed to plants is given in Kg (pesticide) /Kg (macrophytes dry weight) and the amount of macrophytes eaten per day is given in wet weight, a weight conversion factor had to be found. Based on the work of Van Lieverloo (2002) it was assumed that dry weight is 8.33% of the wet weight.

Sum of NEDI's and comparison with ADI's and ARfD's

Important to note that for all calculations, the numbers had to be recalculated taking into account the body weight (dividing the result by 60 Kg) so the of the NEDI could be expressed in mg/kg body weight / day. The 3 NEDI's calculated (drinking water, fish and macrophytes) were summed and compared with the ADI and ARfD's for each pesticide. The ADI's and ARfD's were obtained from the JMPR (Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues) reports as published on their web-site (internet reference 7). If not available, the ADI list as provided by the Commonwealth of Australia (internet reference 8) was consulted, after that the pesticide manual was checked. If still not available chronic US-EPA RfD values as found on (internet reference 9) were used as ADI's. For fenobucarb no entry was found for the ADI and the 5% lower limit of the log-normal distribution fitted through all available ADI's was used as a worst case estimation. Only for 6 chemicals an ARfD could be found. The others were estimated using the 95% log-normal upper limit of the 6 ADI to ARfD extrapolation factors available. The 95% upper limit of this distribution was 47 so an extrapolation factor of 47 was used to convent ADI's to ARfD's

6 Results of first and second tier environmental risk quotients

6.1 Predicted Environmental Concentrations

6.1.1 Thailand

The PEC's for the Thailand scenario are listed in Appendix VI. For each pesticide, the pesticide-crop combination yielding the highest first tier PEC, also a second tier PEC was calculated. From the Appendix it is clear that PEC varied highly between crops (e.g. for methamidophos between 123 and 28929 μ g/L and for carbendazim between 41 and 1125 μ g/L. In most cases the second tier assessment lowered the PEC considerably, for profenofos even up to a factor of 10.

6.1.2 Sri Lanka

The PEC's calculated for the farm canal system varied little between pesticides (Appendix VI). For carbofuran the lowest first tier PEC was calculated (120 μ g/L), for carbaryl the highest one (2250 μ g/L). The second tier PEC's differed even less between pesticides (120 μ g/L for carbofuran and 1078 μ g/L for carbaryl). The differences between the first and second tier PEC's as calculated for the Sri Lanka scenario were relatively small. The largest difference of a factor of 2.4 was calculated for the carbaryl – chilli combination. For no pesticide – crop combination was an increase in PEC recorded between the first and second tier assessment.

6.2 No Effect Concentration

The NEC values of all pesticides are listed in Appendix VII. The magnitude of the NEC varies from <0.1 ng/L (fenoxycarb) to >1 mg/L (gibberellic acid). In general, the insecticides / acaricides were most toxic to aquatic life, followed by fungicides and herbicides / plant growth regulators

6.3 Environmental risk quotients

6.3.1 Thailand

The risk quotients calculated from the second tier PEC and the first tier NEC indicate a potential risk for all pesticides in the Thailand scenario (Appendix VIII). The highest potential risks are indicated for various insecticides and the fungicide carbendazim, the lowest ones for the herbicide glyphosinate and the fungicides propineb and metalaxyl. On a crop level, Chinese kale, guava, drumstick moringa and rose-apple were the crops posing the highest risks.

6.3.2 Sri Lanka

For the farm channel system of the Sri Lanka scenario it was indicated that, as for Thailand, the concentrations of all pesticides exceed the NEC (Appendix VIII). Especially the risks posed by insecticides carbaryl, chlorpyrifos and dimethoate were very high (> 10000 risk quotients were calculated) while for the herbicide glyphosate a relatively low one was calculated (3.4). Even for the larger tank system, for most pesticides risks are indicated with highest values for the onion crop because for this crop the lowest dilution factor was used (§5.1.2.4)

7 Results of dietary exposure risk assessment

7.1 ADI and ARfD levels

Appendix IX lists the ADI and ARfD levels used for the dietary exposure risk assessment. For most chemicals an ADI could be found in the annual reports of the JMPR. For all compounds except fenobucarb an ADI could be found in one of the literature sources, the one for fenobucarb was estimated to be the 5% level of the log-normal distribution of all ADI values found (worst case estimate). Only for 5 chemicals an ARfD could be found, for all other chemicals the ARfD was calculated using an extrapolation factor.

7.2 Results dietary exposure risk assessment

7.2.1 Thailand

Appendix X displays the results of the human risk assessment due to dietary exposure via water and food (fish and aquatic macrophytes). For three chemicals an extremely high exceedence (> 10000) of the ADI by the NEDI is indicated (chlorfenapyr, prothiofos and dicrotophos). For all three pesticides the source is different: chlorfenapyr exposure is high due to macrophyte intake, exposure to prothiophos is high due to fish intake and dicrotophos exceeds the ADI because of exposure through drinking water. For a number of chemicals the NEDI also exceed the ARfD, indicating acute risks of the defined diet. The highest exceedences are indicated for the same chemicals as above although one should keep in mind that the ARfD levels of these chemicals are all based on extrapolation. For fipronil and mevinphos risks are indicated based on ARfD levels as set by the JMPR (Appendix X).

7.2.2 Sri Lanka

Also for the Sri Lankan scenario a high exceedence of the ADI is indicated for some pesticides although the absolute value is always below 1000 (Appendix X). The highest exceedence is indicated for fenobucarb, alachlor and chlorpyrifos. It must be noted that the ADI of fenobucarb is based on a worst case extrapolation from all other available ADI's so a large uncertainty of the actual risks remains. Chlorpyrifos is the chemical with the largest exceedence of the ARfD level that is set by the JMPR, indicating acute risks from the defined diet. When the tank is considered as a source for fish, macrophytes and water all NEDI levels drop below the (extrapolated) ARfD levels (Appendix X) and only few exceed the ADI (alachlor, fenobucarb and chlorpyrifos).

8 Discussion, conclusions and recommendations

The data gathered in the Participatory Community Appraisal (PCA) and House Hold (HH) surveys were used to support the Preliminary Risk Assessment (PRA). Data on pesticide dosage, application intervals, system characteristics and composition of diet were sufficient for the purposes of the PRA. The difference between Thailand and Sri Lanka was the source of the pesticide dosages. For Thailand the PECs were calculated with dosages obtained from HH surveys, for Sri Lanka the recommended dosages were used. The variation in applied dosages between farmers was sometimes very high (e.g. the amount of carbendazim used in tangerine differed by a factor 32 between the lowest and the highest dose). The major drawback of these applied dosages was that it was not verified whether those amounts were really applied on the fields. For the risk analysis the use of a standard dose approach is therefore recommended e.g. the dose recommended by the company or extension services or used for the registration of the pesticide on the local market. When doing so, the variations between years and between farmers does not influence the results and a risk assessment of the pesticide given the dose used in normal or good agricultural practice is obtained. The data from the HH surveys can be compared with the recommended dose, to quantify the degree and give insight into the reasons for overdosing. For Sri Lanka data on pesticide use as indicated in the HH surveys were not available at the time of study, but will be gathered in future to allow this comparison.

Another major source of uncertainty of the current PRA was that the pesticide properties used for the assessment were obtained from databases originating from Europe and North-America. It is questionable whether these are representative for Asian circumstances. It can be argued that the breakdown of the pesticide is different under warmer and eutrophic conditions compared to the sediment water system used to establish the DT50 for registration purposes in Europe. The same can be argued for the toxicity of the chemicals towards tropical species although Maltby et al (2002) could not demonstrate differences in sensitivity between temperate and tropical species for a few pesticides (chlorpyrifos, fenitrothion and carbofuran). Brock et al. (2000a; 2000b) also could not find any systematic differences in threshold levels derives from semi-field experiments performed in temperate and more warmer conditions although the extent and types of secondary effects caused by exceedence of these safe threshold levels may be influenced considerably by temperature (Van Wijngaarden et al., 2003). It is important, however, that more insight is obtained in the differences in fate and effects of pesticides under temperate and tropical conditions, e.g. using microcosm or mesocosms.

In Thailand, for all active ingredients, the highest second tier PECs as calculated for the farm canal exceed the first tier NEC (Appendix VIII). The highest TER was calculated for the use of mevinphos in the drumstick tree, the crops rose-apple, guava and Chinese kale generally yielded the highest TERs. When using the second tier NECs the TERs were lowered by maximum a factor of 25 (methamidophos) but the PEC still exceeded the NEC considerably (Appendix VIII).

For Sri Lanka the same results are reported for the farm channels; for all active ingredients, the highest second tier PECs as calculated for the farm canal exceeded the first tier NEC (Appendix VIII). For the tank for several cases the highest second tier PECs as calculated for the tank did not exceed the first tier NEC (e.g. Glyphosate). Even when compared with the second tier NEC, however, the second tier PEC considerably exceeded the safe concentrations for some compounds (carbaryl, chlorpyrifos and dimethoate). In general, the highest TERs were reported for all three major crops (onion, chilli and rice)

The environmental PRA for sites in both countries indicates that significant effects of pesticide exposure could be expected on aquatic life. The predicted effects are so large that it is to be expected that the species inhabiting the local aquatic ecosystem present in the farm channels and tanks are highly resilient to high pesticide exposure or have a large opportunity to reinvade the systems rapidly. The biomonitoring programme performed later in this project will give further consideration to these ideas.

The human risk assessment indicated that for sites in Thailand the ADI is likely to be frequently exceeded, even up to a factor of 36000 times. These high exceedence values again indicate significant risks of pesticide exposure via the diet leading to problems for human health. It is worth noting that no single food item causes the exceedences and that the risk is not associated with a single crop. The PCA indicated that in both the mono-crop and the single-crop sites, fish and aquatic macrophytes are regularly obtained from the farm channels for human consumption. This indicates that while the assumptions made in the human risk assessment may be unrealistically worst-case for water consumption, this is not true for the consumption of fish and macrophytes.

Compared to Thailand, lower excedences of the ADI are reported (up to a factor of 1000) for Sri Lanka. The exceedence of the ADI is caused by the consumption of water and fish, rather than by consumption of macrophytes, which are rarely eaten in Sri Lanka (Appendix II). Even when dietary items are obtained from the tank, the ADI of a few pesticides could be exceeded. This is of particular importance because the fish caught in the tanks are a more important part of the protein source of their diet for poorer people within the districts studied.

For both countries high risks of pesticide use are indicated both for the environment and human health. These indicated risks are extremely high for farm channels but also exist for the Sri Lankan tank scenarios. These risks were also reflected by farmers, with most expressing a belief that pesticides are harmful to both the environment and human health (Appendix I). It is, however, essential for the formulation of the Decision Support System, that the results from this Preliminary Risk Assessment are validated using chemical measurements, bioassays and biomonitoring (the Triad approach). For this biomonitoring programme it is recommended that scenarios are defined for worst case conditions, e.g. no flow of water. By monitoring it should be possible to gain insight into realistic worst case conditions, e.g. what is a realistic low value for replenishment of the water bodies? In other words, are the scenarios as described in Chapter 4 fully reflective of the Thai and Sri Lankan situations? By performing chemical analysis, a degree of validation of the PECs as calculated with TOXSWA using these scenarios can be obtained. In this way a more refined risk assessment can be carried out after the monitoring programme. On the other hand, possible effects indicated by the PRA can be validated using bioassays and biomonitoring. It is important that these bioassays and sampling of invertebrates are carried out in a systematic standardised fashion. To validate dietary risk assessment, the formulas describing sorption of pesticides to the food items as stated in Section 5.3 should be verified by actual measurements of pesticides in fish and aquatic macrophytes present in the systems of concern. Also the composition of the diet itself needs to be refined using approaches that reveal seasonal and intrahousehold variation.

References

Adriaanse, P.I. (1996). Fate of pesticides in field ditches: the TOXSWA simulation model. Winand Staring Centre, Report 90, Wageningen, the Netherlands.

Beltman, W.H.J. & P.I. Adriaanse (1999) Users Manual for TOXSWA 1.2.; simulation of pesticide fate in small surface waters., Winand Staring Centre, Techn. Doc. 54, Wageningen, the Netherlands

Brock, T.C.M., J. Lahr and P.J. Van den Brink (2000a). Ecological risks of pesticides in freshwater ecosystems. Part 1: Herbicides. Alterra report 088, Wageningen, the Netherlands.

Brock, T.C.M., R.P.A. Van Wijngaarden and G.J. Van Geest (2000b). Ecological risks of pesticides in freshwater ecosystems. Part 2: Insecticides. Alterra report 089, Wageningen, the Netherlands

Campbell, P.J., D.S.J. Arnold, T.C.M. Brock, N.J. Grandy, W. Heger, F. Heimbach, S.J. Maund and M. Streloke (1999). Guidance document on higher-tier aquatic risk assessment for pesticides (HARAP). SETAC-Europe Publication

Capri, E. and M. Trevisan. (1998). Prediction of environmental concentrations (PECs) by mathematical model application in Europe. Pesticide Outlook 9: 26-30.

Crum, S.J.H., A.M.M. Van Kammen-Polman and M. Leistra (1999). Sorption of nine pesticides to three aquatic macrophytes. Archives of Environmental Contamination and Toxicology 37: 310-316

De Zwart, D. (2002). Observed regularities in species sensitivity distributions. In: The use of Species Sensitivity Distributions in Ecotoxicology, Posthuma L., T.P. Traas and G.W. Suter (eds.) Lewis Publishers, Boca Raton, Fl, USA.

EU (1997). Council Directive 97/57/EC of September 21, 1997; Establishing annex VI to Directive 91/414/EEC Concerning the placing of plant protection products on the market. Official journal of the European Communities L265: 87-109.

FOCUS (2001). FOCUS Surface water scenarios in the EU evaluation process under 91/414/EEC. Report of the FOCUS Working Group on Surface Water Scenarios, EC Document Reference SANCO/4802/2001-rev.1.

Hill, I.A., F. Heimbach, P. Leeuwangh and P. Matthiesen, eds. (1994). Freshwater field tests for hazard assessment of chemicals. Lewis, Boca Raton, FL, USA.

Hornsby, A.G., R.D. Wauchope and A.E. Herner (1996). Pesticide properties in the environment. Springer, New York, USA.

Hurlbert, S.H. (1975). Secondary effects of pesticides on aquatic ecosystems. Residue Reviews 57: 81-148.

Maltby, L, T.C.M. Brock, N.N. Blake and P.J. Van den Brink. (2002). Addressing interspecific variation in sensitivity and the potential to reduce this source of uncertainty in ecotoxicological assessments. Report on project PN0932 for DEFRA, UK.

OECD (1993). OECD guidelines for the testing of chemicals. Organisation for Economic Co-operation and Development, Paris, France.

Posthuma L., T.P. Traas and G.W. Suter (2002). The use of Species Sensitivity Distributions in Ecotoxicology. Lewis Publishers, Boca Raton, Fl, USA.

Pretty, J, I. Guijt, J. Thompson and I. Scoones (1995). A trainers guide for participatory learning and action. IIED Participatory Methodology Series, IIED, London, UK.

Schroer, A.F.W., D. Belgers, T.C.M. Brock, A. Matser, S.J. Maund and P.J. Van den Brink. (Subm.). Comparison of laboratory single species and field population-level effects of the pyrethroid insecticide lambda-cyhalothrin on freshwater invertebrates

Tomlin, C.D.S. (1997). The pesticide manual. Eleventh edition. British Crop Protection Council, Farnham, UK.

Tomlin, C.D.S. (2000). The pesticide manual. Twelfth edition. British Crop Protection Council, Farnham, UK.

Van den Brink, P.J., L. Posthuma and T.C.M. Brock (2002a). The value of the Species Sensitivity Distribution concept for predicting field effects: (non-)confirmation of the concept using semi-field experiments. In: The use of Species Sensitivity Distributions in Ecotoxicology, Posthuma L., T.P. Traas and G.W. Suter (eds.) Lewis Publishers, Boca Raton, Fl, USA.

Van den Brink, P.J., J. Roelsma, E. H. Van Nes, M. Scheffer and T.C.M. Brock (2002b). PERPEST model, a case-based reasoning approach to predict ecological risks of pesticides. Environmental Toxicology and Chemistry 21(11): 2500-2506.

Van Lieverloo, R.J. (2002) Effects of 2,4 D on macrophytes (in Dutch). Internal Alterra report, Wageningen, the Netherlands

Van Raaij, M.T.M. and B.C. Ossendorp (2002). The 'Acute Reference Dose' and acute exposure to pesticides. National and international developments (in Dutch). RIVM report 601900001/2002, Bilthoven, the Netherlands.

Van Raaij, M.T.M. (2001). Guidance document for setting an Acute Reference Dose in Dutch national pesticide evaluations. RIVM report 620555 002, Bilthoven, the Netherlands.

Van Wijngaarden, R.P.A., T.C.M. Brock and M.T. Douglas (2003). Comparison of responses to chlorpyrifos by microcosm communities under varying experimental conditions. Abstract for a platform presentation. 13^{th} annual meeting of SETAC Europe, 27/04/03 - 01/05/03, Hamburg, Germany.

Veith, G.D., D.L. de Foe and B.V. Bergstedt (1979). Measuring and estimating the bioconcentration factor of chemicals in fish. J. Fish. Res. Board Can. 36: 1040-1048

Versteeg D.J., S.E. Belanger and G.J. Carr (1999). Understanding single-species and model ecosystem sensitivity: data based comparison. Environ. Toxicol. Chem. 18: 1329-1346.

Westein, E., M.J.W. Jansen, P.I. Adriaanse & W.H.J. Beltman (1998). Sensitivity analysis of the TOXSWA model. DLO Winand Staring Centre, Report 153, Wageningen, the Netherlands.

Internet references

- 1. http://www.epa.gov/ecotox/
- 2. http://www.who.int/fsf/Chemicalcontaminants/1999JMPRSec2_4.pdf
- 3. http://w3.whosea.org/cntryhealth/thailand/index.htm (under 'Health Env')
- 4. http://www.who.int/fsf/Documents/diets2.pdf
- 5. http://esc.syrres.com/interkow/interkow.exe?CAS=77-06-5&submit=Submit+CAS
- 6. http://wizard.arsusda.gov/acsl/textfiles/
- 7. http://www.fao.org/ag/agp/agpp/pesticid/jmpr/pm_jmpr.htm
- 8. http://www.health.gov.au/tga/docs/pdf/adi.pdf
- 9. http://www.ecologic-ipm.com/Table1.pdf

Appendix 1 Summary Report of Participatory Community Appraisal (PCA) findings and outputs from Thailand and Sri Lanka

Thailand, Nakhon chaisi (mixed crop site)

	VILLAGE 2	VILLAGE 3	VILLAGE 4	
Village Map				
Village Characteristics	Surrounded by 2 Canals	4 canals in village flow to main canal	3 canals supply water to the village	
	Water flows around the village	Water flows generally north-so rainfall, tidal status and gates o	outh but direction changeable; peration.	
Land Use	Main land use: fruit and vegetable farm	ing (more vegetables produced)	and pond-fish culture.	
	Rose-apple and long-bean are promine	nt in some areas.	Crops & fishponds are equal land areas.	
	More fish culture.	Rice production has minor contribution. One saltwater shrimp farm.		
Education	Most people educated to primary class	4	1	
Status	Higher % of higher educated people	1		
Occupation	Most do general & farm labouring	1/3 of communities are ve	getable farmers. Some rice	
Status	followed by farming and government work.		, labourers and government	
		More fish culturers	More fruit farmers	
Timeline	Rice was the main crop however low p 1980's). <i>M. rosenbergii</i> culture lasted sho road improvements, credit schemes, tai	rices. Newcomers introduced fr rt time due to pollution and fish pwater & electricity connections	uit & vegetable farming (early culture succeeded. Canal and made	
	Most households within worse-off	Approx equal proportions in	Most households in middle	
Well-heing	group and least in better-off group	each well-being group	well-being group and equal	
Ranking	group and reast in petter on group	cuch wen being group	proportion in better and worse-off groups	
	Better-off group: own more land, higher incomes and more occupations. Worse-off own less or land, less income and mostly on & off-farm labour work			
Activity Matrix	K			
Better-off	Males and females mainly involved in farm management and going to Better-off & worse-off			
groups	markets. Males do more social type of activities and females have less activities including housework & assisting neighbours on farms possible. Males involved			
Worse-off	Males and females share activit	ies; visiting markets, farm	agricultural related work	
groups	management, labour work. Women m	ainly do labour and household	and social activities.	
	WORK		Females involved in housework, purchasing	
<u> </u>	1		1000 & Tarini management	
Seasonal Calen Weather	uar Summer: Feb-April / Painy Sacon: M	av-Oct / Winter: Nov Feb		
Hydrology	High water flow and turbidity in reiny	ay-Oct / Willer, NUV-Feb	r	
Veretable	Vegetables grown throughout the year	1-2 month cycles crop rotation	1	
production	vegetables grown unoughout the year,	Highest vegetables prices	Highest veg prices: March-	
Production		May-Oct (but crops more	May & Oct & highest	
		vulnerable to damage)	pesticide application Mav-	
		·	Nov.	
Fruit	Main fruit: Guava, mango &		Main fruit: Guava &	
production	roseapple, frequent harvesting.		roseapple, frequent	
	Highest price & labour use in Aug.		harvesting. Pesticide	
	Most pests Feb-April.		applied every 10 days.	
			Highest price & labour use	
Fich Culture	Fich are cultured extensively in forme as	nal systems for newsonal some	ntion	
risii Culture	rish are cultured extensively in farm ca	nai systems for personal consum	ipuon	

	Pond culture throughout the year (commercially mainly & personal consumption) harvest every 8-10 months. Prices lowest Aug Sent & highest Oct-Dec			
Sub / Main	Rarely catch fish	Fish caught in main and sub-	Fish rarely caught but are available all year	
Health	Colds & Dengue fever occur sometime	s during the year	uvuluble uli jeui	
Consumption N	Matrix	8		
Main food items	Main foods: Rice, eggs, freshwater fish, fruit, vegetables (Chinese cabbage / kale). Mainly purchased from informal markets. Fish also from farm & sub-canals. Other aquatic animals collected.	Main foods: Rice, freshwater fish & vegetables (Chinese kale / cabbage). Fish mainly from farm & sub-canals & ponds. From informal markets, mobile traders & groceries.	Main foods: Rice, meat, freshwater fish & vegetables. Vegetables (Chinese cabbage / kale, water mimosa & long bean) from own farm, groceries & informal markets. Fish purchased and caught from canals.	
	Mostly either crop or fish producers.	Most have fruit, vegetable farm	ıs & fish ponds.	
Bio-resource Maps	Fruit & vegetable farmers pump water into their farms but don't usually pump out. Those with fishponds pump out when harvesting (once/yr).	Water is pumped from canals and sometimes flows out the farm system. Crops are sold at similar markets or wholesalers (Bangkok) who also provide agro-inputs. Waste vegetables are fed to fish.	Water pumped in from canals but only pumped out during rainy season.	
	Fruit & veg sold at Talad Thai, Kogg	hajadee & Noakhonpathom ma	arkets. Fish sold at Saphapla	
	market. Some produce is consumed w. 2) are applied to crops. Water supplies purchased.	ithin the household. Agrochemic can be separate for fishponds &	cals purchased locally (village & crops. Most food items are	
	Almost all crops were both sold and co	nsumed		
Agricultural Input Costs	Labour & farm management & pesticides (particularly worst-off) were highest costs	Perceptions of cost distribution varied between groups.	Males thought fertiliser as the highest cost and females, labour & management. Pesticides were considered a higher cost by males than females	
	Chinese kale & cabbage were indicated	as having the highest costs of pe	esticide use	
Agrochemical	Chinese kale was indicated to receive the	highest amounts of agrochemi	cals.	
Use Level	Also high applications to Guava, rose-a	pple, Chinese cabbage & long be	ean	
	Additionally Grape	Additionally Mango & celery	Taiwan cabbage	
Decisions & Responsibiliti es in Agrochemical Use	Both male & female household heads took decisions and carried out activities relating to agrochemical purchase, storage, preparation & application	Better-off group: male & female household heads take decisions but male head does the activity. Labourers also do spraying Worse-off group: Male HH head takes decisions, male & female heads do activity.	Both male & female HH heads take decisions, but also worse-off group sons & daughters. Decisions relating to application taken by HH heads. Heads mainly responsibility for doing activities but also sons & daughters.	
Perceptions of	Agrochemical Use			
Necessity	Over 50% claimed pesticides were impuseful.	portant but also claimed other p	est prevention methods were	
Health & Environment	Over 50% thought pesticides were environment if used correctly.	e not harmful to health or	All females & some males thought pesticides harmful to environment & health indicating concern.	
Desired Outcome	Most wanted to continue with present level of use if affordable & cost was main factor for those who wanted to reduce application	50% wanted to continue with present level of use if remaining affordable (both groups). Some better-off people wanted to increase pesticide use.	All wanted to reduce pesticide use with human health given as the main reason.	

Thailand, Nong Saeo (mono-crop site)

	VILLAGE 6	VILLAGE 7	VILLAGE 1	
Village Map				
Village Characteristics	Main canal 13 flows through centre of the village from North to South. Village 2 is to the north and east and village 4 is to the south.	Main canal 13 is to the north of the village and canal 33 to the east. Sub-canals from canal 33 feed water to farms. Village 2 is to the south and village 10 to the east	Canal 33 irrigates farms through sub- canals, which then drain into canal 32 to the east. The Ni River is to the north side. Village 7 is to the north and village 2 to the east.	
Land Use	Main land use i	on each village is tangerine farmi	ng	
	Longan and sweetcorn also produced	Mango and Mushrooms also produced	Longan and mushroom also produced	
	Pond-fish culture is prominent and cage culture in canal 13.	Few fish ponds apparent.	The presence of fish farming was not established.	
	Groceries, public health office, temple, school and agricultural supplies shop are also present.	A temple is also present in the village.	A factory is also present in the village.	
Education Status	Most people educated to primary class 4 and below, followed by middle school grades 1-3. Few people have Bachelor degrees.	Most people educated to primary class 4 -6, followed by middle school grades 1-3. Few people have Bachelor degrees.		
	Little difference	in education status between villa	ges	
Occupation Status	Most are involved in farm work, followed by general labouring, aquaculture and gov't related work.	Most (49%) of the community are tangerine farmers, followed by labourers on and off tangerine farms, chicken farmers, gov't work, mat making and only 1% mushroom farming and fish farming. onl1/3 of communities are vegetable farmers. Some rice farmers, cow and pig farmers, labourers and gov't work.	Most are tangerine farmers, followed by labourers on tangerine farms, general labouring,	
Timeline	Rice was the main crop however low prices. The canal system was constructed, rice production intensified, incomes increased. Fish losses occurred in the canals. Roads were constructed and incomers introduced tangerine farming. Sub-canals were constructed and farmers started pumping water from them. Fish stocks declined thought due to increased agrochemical use. Rice farming declined and aquaculture increased. Disease in tangerines is now causing economic loss and relocation. Government has introduced a loan system.			
		taken from canal 13. Mobile food & agriculture supply shops started & became important resources.	spread from village 10	
Well-being	Most households lie between the wors	e-off and better-off groups.		
Ranking	Better-off group: own more land, tang income sources. Worse-off own less of labour work	erine farmers, lease land, higher i r no land, less income and mainly	ncomes and have more a do on & off-farm	
Activity Matrix				

Better-off	Government work or responsibilities	Well-being comparisons	Better-off males
groups	only applied to better-off males &	were not possible from the	mainly managed own
0	cockerel fighting more prominent	data available however for	farms, laboured,
	activity for them. Females work on	males religious activities.	housework and visiting
	tangerine farms, do housework &	visiting markets, farming &	markets. Females main
	prepare food mostly.	sending children to school	activities similar
Worse-off	Worse-off males revealed a greater	were most important	including cooking and
droups	number of main activities and	Females indicated managing	excluding labour work
groups	additionally are involved morece in	own farms housework and	For males own
	other off farm labour Famile	visiting markets as most	tangerine farm work
	activities similar to better off but	important	raligious activities &
	have a greater number of major	important.	carpentry were the
	nave a greater number of major		main activities
	fooding fish		Females did on and off
	reeuing fish.		farm work housework
			and market visits were
			main activities
a 1			main activities.
Seasonal			
Calendar			
Weather	Summer: Feb-April / F	ainy Season: May-Oct / Winter:	Nov-Feb
Hydrology	High water flow & turbid	ity in rainy season and lowest dur	ring summer
Tangerine	3 phases planting & budding, flowerin	g and fruiting. Year 1: land prepa	ration (Jan-April),
Production	planting (May-Aug), plant maintenance	e, fertilising, pesticide application	by spraying every 7-10
	days. Year 2: Maintenance and sprayin	g frequency continues, water pur	nped in and out of farm
	periodically to promote tree maturation	n. Year 3: Maintenance less frequ	ent, pesticide spraying
	continues and harvesting sometimes to	wice per year (Nov-Dec & Feb-M	larch). High prices Feb-
	March & Aug.		
Other Crop	Leaf curl: Jan-Feb. Insecticide &	Long-bean & cucumber	Fungus problem July-
Production	nematicides applied (every 10 days	planted when higher rainfall	Feb & leaf disease
	July-March, every 7 days May-June).	& soil Ph increases.	(insects & worms),
	Pesticide granules applied Sept-		May-June.
	March. Highest labour use: Jan, June		
	& Oct-Nov. High production costs		
	April & Aug.		-
Fish Culture	Fish are cultured extensively	in farm canal systems for persona	al consumption
	Cage fish nursing March-June. Stock	No mentioned	No mentioned
	fingerlings to tangerine canals (Feb-		
	April & Sept-Oct). Cage & pond		
	tablefish culture & sales all year.		
Sub / Main	Fishing more important to worse-off	Fish caught in canals	Fish easier caught
canal fishing	group. Fish caught in main canal in	throughout the year,	from sub-canal & main
	rainy season (abundant), sub-canal	although which canals, not	canal during summer
	throughout the year,Fish easier	distinguished.	low water levels but
	caught from sub-canal & main canal		very few people do this
	during summer low water levels.		due to having no time.
Health	Colds & diaorreahia occur	Few health issues except	No specific health
	sometimes during the year	colds during rainy season	issues.
Consumption			
Matrix			
Main food items	Main food items indicated were rice, v	egetables, aquatic plants, fish and	fruit.
	Fruit had a higher status of	Distinguishes between	Markets, groceries &
	importance amongst the better-off	better-off and worse-off	mobile shops were the
	group in comparison with the	groups were not made.	main food sources.
	worse-off group. Vegetables and	Morning glory, Ivy gourd,	Egg plant, water
	meat were also important to all other	Chinese kale (males),	mimosa and morning
	than worse-off males. Both groups	cabbage & long-bean	glory were taken from
	purchased these items from traders	(females) were important	farm canals. Markets,
	and markets but also caught fish and	vegetables some of which	mobile shops and farm
	collected plants from the wild.	came from own farms and	canals were sources of
	Aquatic plants were collected from	canals. Fish (snake head,	fish. Durian, tangerine,
	tangerine canals and the local	catfish, Nile tilapia, Silver	santol, mango,
	environment. Vegetables were	barb) came from informal	jackfruit & rose apple

	purchased by both groups although being less important to the worse- off group. The better-off group tended towards purchasing and females tended to be more involved in food collecting.	markets, farms canals or irrigation canals. Guava, cocnut & rose-apple were fruits from own farms.	were fruits taken from own farms. Freshwater snails, turtles & frogs were collected from the local environment.
Bio-resource Mans	Mostly either crop or fish producers.	Fruit, veg & fish farmers	Tangerine & fish farmers
Maps	Farmers pump water into & out of farms. Tangerine & longan (sold at Talad Tait market) are the main crops grown but other fruit & vegetables are grown (own consumption). Agrochemicals and fertilisers are commonly applied to tangerines, longan, sweetcorn and vegetables of which some of these foods are consumed within the household. These agricultural inputs are mostly obtained from the from local and distant sources are stored in outbuildings or within the household. Fish come from a variety of sources including markets, mobile traders, local pond or cage aquaculture or from catching in either of the main, sub, or farm- canal systems. 'Talad Tai' market, 'Nongkar' market and the Kianthai company were common places for taking and selling cultured fish. Commercial farm canal and pond aquaculture, was most apparent amongst better-off groups whilst cage aquaculture in the main canal was most apparent for worse-off groups, however fish cultured from all types of systems were both sold and consumed.	Water sometimes exchanges between farm canals and fishponds in farms. Fish cultured in ponds are sold at Saphan Pla & Nakhonpathom markets, fruit (mango, rose-apple) & vegetables grown are sold at Pak Klong, Nakhonpathom & Si Mun Muang markets, although both also consumed. Fish grown in farm canals are consumed. Pesticide from village 2 is applied to vegetables. Water / fish from main & sub- canals is used in households. Farm vegetable & household waste is fed to fish.	farmers Tangerines are sold at Talad Tai, Si Mun Muang markets & consumed. Other fruits are grown & fish which are consumed. Pesticide is applied to tangerines & mushrooms. Water / fish from main & sub- canals is used in households. Farm vegetable & household waste is fed to fish.
Agricultural	Almost all cro	ps were both sold and consumed	Sood was the highest
input Costs	crops grown pesticide was the lowest input cost however for tangerines alone pesticides and fertilisers were indicated to be the highest input costs. Input costs were more evenly distributed amongst seed, fertilizer and labour and management inputs by the better-off male group.	attributed the highest input costs overall for all crops by males and fertiliser and labour and management costs by females.	input cost for each group except for better-off males who indicated pesticide as the highest cost. For tangerine alone fertiliser and pesticide had the highest input costs.
Agrochemical Use Level	Tangerine was indicated all groups as having the highest pesticide input, by far, of all crops produced.	Tangerine was not indicated by either group, however Chinese kale was the crop indicated to receive the most pesticide.	Tangerine was indicated all groups as having the highest pesticide input, by far, of all crops produced.
	Longan, long-bean and banana also received high levels of pesticide.	Long-bean and Taiwan cabbage were also indicated to receive much pesticide (females) and guava and rose-apple (males).	Longan, long-bean, cucumber and mushroom were indicated to receive high levels of pesticide.

D • • • •			11/ 00		
Decisions &	Male household heads or farm	Both better-off and worse-	Worse-off group		
responsibilities	owners undertake the majority of	off groups indicated male	indicated mainly male		
in	decisions on the purchase, storage	and female household heads	and female household		
Agrochemical	and preparation of agrochemicals,	to share decision making and	heads to make		
Use	and when and where they should be	undertaking of activities	decisions and		
	applied. Better-off females indicated	related to pesticides.	undertake activities		
	other family members involvement		related to pesticides		
	in these decisions. Decisions on how		and occasionally		
	often crops should be sprayed with		labourers. Within the		
	agrochemicals, varied between		better-off groups		
	groups and included agrochemical		additionally more		
	salespeople. Tangerine Farmers'		family members were		
	Association members neighbours		involved in pesticide		
	and other family members but		decision making and		
	worse-off males indicated male		activities		
	household heads to take decisions		uotivitios.		
	on frequency of pesticide use Fither				
	male or female household heads				
	ware involved posticide activities				
	however better off groups noted				
	other family members and labourers				
	involvement				
D <i>i</i> ! C	involvement.				
Perceptions of					
Agrochemical					
Use					
Necessity	Most claimed pesticides were importa	int but also claimed other pest pr	revention methods were		
		useful.	-		
Health &	Most participants claimed pesticides to	be harmful to both health, expr	essing concern.		
Environment					
Desired	The majority of participants future desires were to reduce their level of pesticide use for reasons				
Outcome		given below:			
	Reasons for desired strategies were	Reasons for desired	Reasons for desired		
	firstly adverse health effects	strategies were firstly adverse	strategies were firstly		
	followed by environment and costs.	health effects followed by	costs followed by		
		costs and environment.	adverse effects on		
			health and the		
			environment.		

Sri Lanka

Characteristic	Variations among Five Communities				
	Medellewa	Mulannatuwa *	Kuratiyawa	Ihala Kalankuttiya	Weliyawa
Location of	Kalankuttiya	Kalankuttiya	Sharing	Sharing	Megalewa
the community	catchment	catchment	Kalankuttiya command area	Kalankuttiya command area	command area Closer to
	Closer to	Away from	and Megalewa	and Megalewa	Meegalewa
	Kalankutiya tank	Kalankutiya tank	catchment.	catchment.	tank
	-	-	Closer to	Closer to	
			Meegalewa tank	Kalankuttiya	
			-	tank	
Irrigation	From Kalawewa	From Kalawewa	From	From	From
water flow	- Mulannatuwa	- Mulannatuwa	Kalankuttiya	Kalankuttiya	Meegalewa
	main cannel	main cannel	Tank	Tank	Tank
	304 (D2)	304 (D2)	308 (D2 and D3)	308 (D1)	309 (D2)

Drainage water flow	To Kalankuttiya tank	To Kalankuttiya tank	To Megalewa tank	To Megalewa tank	To Rajangana tank
Drainage water	Not practiced	Not practiced	Practiced	Practiced	Not practiced
reuse / re-					
Water availability	High in <i>Maha</i> low in <i>Yala</i>	Low	High in <i>Maha</i> low in <i>Yala</i>	High in <i>Maha</i> low in <i>Yala</i>	Available throughout the year
Cropping pattern	<i>Maha</i> – Paddy	<i>Maha</i> – Paddy and OFC to a	<i>Maha</i> – Paddy	<i>Maha</i> – Paddy and OFC to a	Maha – Paddy
	<i>Yala –</i> OFC, Paddy	higher degree <i>Yala</i> – OFC	<i>Yala</i> – OFC, Paddy	lesser degree <i>Yala</i> – OFC, Paddy	<i>Yala</i> – Paddy
Major Income generation activities	Farming	Farming	Farming	Farming and fishing	Farming
Farming as major income generation activity	64%	61%	78%	56%	70%
Availability of other income generation activities	High	High	High	High	Low
Major secondary income generation activity	Government and private sector employments	Animal husbandry	Government and private sector employments	Trading and shop keeping	Government and private sector employments/ labour works
Animal husbandry	Not much practiced	Broiler chicken	Broiler chicken and cattle	Broiler chicken	Cattle
Crop marketing facilities	Easy access to town centre	Poor access to town centre	Poor access to town centre	Easy access to town centre	Easy access to town centre
Educational status	Majority schooled up to grade 08	Majority schooled up to grade 08	Majority schooled up to grade 08	Majority schooled up to grade 08	Majority schooled up to G.C.E. O/L
Well-being ranking	Most households h	pelongs to worse off	group and some are	belongs to better of	f group
Seasonal calendar	All most all the farmers cultivate during main two cultivation seasons (i.e. <i>Yala</i> and <i>Maha</i>). Majority of the farmers cultivate paddy during <i>Maha</i> season and OFC (Chilli and Onion etc.) during the <i>Yala</i> season.				
	OFC cultivation is low (compare with the other communities)	OFC cultivation is high (compare with the other communities)	OFC cultivation is low (compare with the other communities)	OFC cultivation is high (compare with the other communities)	OFC cultivation is very low (compare with the other communities)
Consumption	Rice is the staple f	ood	Duced :- 41-	Droad :- th	Duood l
matrix	Bread and vegetable are the second most important food	Bread and vegetable are the second most important food	Bread is the second most important food	Bread is the second most important food	Bread and vegetable are the second most important food
Bio resource map	Paddy, Chilli, Onion and Vegetable are cultivated in all the communities. All those crops are cultivated for the purpose of consumption and selling. Pesticide is the most important input need for cultivation of Chilli and Onion				
Activity matrix	Visit to paddy field is the most important primary activity of all the communities. Female tend to do more household activities than males.				

Farmers perception on	None of the farmers indicated that there is no effect of agrochemicals on environment and human health. Farmers in all the communities indicated that they are willing to reduce the total
the necessarily	amount of pesticides that they apply.
of	
agrochemicals	
on plant	
protection	

* In this community, the agricultural fields are located in the Mahaweli system H and settlements are located outside Mahaweli system H.

Appendix 2 PCA Data from Thailand and Sri Lanka of relevance to PRA (E - Environmental Risk Assessment; H - Human Health Risk Assessment)

Thailand

	Risk	Study Sites and Data Results	
Data Type	Туре	Nakhon chaisi (Mixed crop site)	Nong saeo (mono-crop site)
Hydrology	Ε	Water flow direction in main and sub-canals is variable being dependent upon rainfall, tidal regime and irrigation gate operation. Water is pumped from sub-canals to farms throughout the year and usually only pumped out of farms during the wet season to prevent flooding. Water may can from	Main Canal number 13 flows in a southerly direction through one of the three villages supplying irrigation water to farms whilst main Canal number 33 supplies irrigation water to the other two villages through feeder sub- canals. Irrigation and effluent water commonly mixes in sub-canals which act as irrigation supplies and drainage ditches. Village farm drainage water was indicated to eventually collect in Canal numbers 13 and 32.
Cropping Pattern & Land Use	Η&Ε	fooding. Water may seep from farms back to sub-canals. Many different types of vegetables and few fruits are grown through the year, which have 1-2 month production cycles. Pesticides applied every few days throughout the year, insecticides more in summer, fungicides in wet season & herbicides all year. More fish culture in one village and shrimp farming in another.	Tangerine is the primary crop grown in each village, although mushroom, longan, sweetcorn, longbean, cucumber & mango are also grown amongst villages. Tangerine production follows 3 phases: planting & budding, flowering and fruiting, although all stages are apparent on farms simultaneously. Year 1: land preparation (Jan- April), planting (May-Aug), plant maintenance, fertilising & pesticide application every 7-10 days. Year 2: Maintenance and spraying frequency continues & water pumped in and out of farm periodically to promote tree maturation. Year 3: Maintenance less frequent, pesticide spraying continues and harvesting, sometimes twice per year (Nov-Dec & Feb- March). Leaf curl, insects, fungus & nematodes cause pest problems at stages of the year. Extensive fish culture occurs in farm canals
Occupatio ns	Н	Farming is the main occupation whilst worse-off people are more involved in farm labour work. Village 2 has more fish culturers	Largest proportion of communities is involved in farming, followed by on and off-farm labouring. Additionally Government, craft, livestock farming & auaculture work exist
Activities & Pesticides	Н	Both males and females do farm work whilst farm labour work is most significant for worse-off groups. 'Pesticide related' decision-making and activities lie mainly with male & female household heads & occasionally sons & daughters. Farm labourers also undertake pesticide related 'activities'.	Within better-off groups variation occurs between male and female activities although activities are both on and off-farm, work and social. Worse-off groups revealed more activities and labour work including fish husbandry in both genders. Pesticide related decision-making mostly lies with household heads although other family members may be involved. In aspects of application other advisors may be involved. Those involved in handling pesticides varied although family members and labourers are involved.

Consumpti on & Pesticide Use	Η&Ε	Rice, vegetable (Chinese kale / cabbage, Longbean), water plants (water mimosa) & freshwater fish are major food items. Some fish and aquatic animals taken from farm / sub-canals. All crops produced are both consumed and sold. Vegetables sometimes fed to farm canal fish. Chinese kale / cabbage, guava & roseapple have highest pesticide applications. Pesticide is a relatively high cost to farmers.	Main food items indicated were rice, vegetables, aquatic plants, fish and fruit although fruit & vegetables were less important to the worse-off groups. Markets groceries and mobile shops were common food sources, although fish and other aquatic fauna and flora were also obtained from local canals and ponds.
Education, Awareness & Pesticide Use	Η&Ε	Largest % of communities have the lowest education level. Most think that pesticides are important but they also use other pest control methods. Most perceive that pesticides pose no health or environmental risk if use 'correctly', whilst some think they are harmful nevertheless. Males show less awareness & concern than females of potential adverse environmental & health effects of pesticides. Economics is an important factor in decision making over pesticide use as most want to continue with the present use level if affordable. However all Village 4 participants wanted to reduce levels for human health reasons.	Larger proportions of the communities are educated to primary school level, where community proportion declines with increasing education level. Most participants claimed pesticides to be harmful to health and environment expressing concern. The majority of participants also wanted to reduce their pesticide use for reasons of which priorities varied between villages although overall health, followed by economics and environment were the apparent priorities. It would appear that the majority deem pesticides as important in crop protection but that other pest control methods are additionally used

Sri Lanka

Data Type	Risk	Study Sites and Data Results		
51	Туре	Kalankuttiya and Meegalewa tanks		
Hydrology	Е&Н	Water is scared resource for the most of the selected communities for both domestic and irrigation purposes. For They depend on the Mahaweli scheme* and rainfall. Generally the community members are depending on ground water for drinking purposes (Wells, tube wells) and they use surface water for irrigation purposes.		
Water	H & E	Multi-use of the water is prominent in these communities such as drinking, bathing, laundry, cooking and washing food, cleaning houses and vehicles, animal husbandry purposes and home garden irrigation and irrigation purposes. Since the study site is a part of the cascade, irrigation water is used continuously. The community members are depending on following ground water sources for their drinking water consumption. About 55.1% of them use own wells whereas another 43.3% use open access private wells as their drinking water source.		
		Both Mahaweli water and rainwater are used for farming depending on the availability. Most were dependants on Mahaweli water for irrigation. The majority (92.6%) of the community members uses the distribution channel as the main source of irrigation water. Other water sources were seasonal tanks, perennial tanks and main channels.		
Cropping Pattern & Land Use	H & E	Depend on rainfall pattern and water availability there are two main cropping seasons. They are Yala (May to September) and Maha (October to April) seasons. Water availability and the rainfall intensity is high in the Maha compare to Yala and farmers face water scarcity problems in this season. Cropping pattern and land use vary with the main cropping seasons.		

Rice is mainly grown in the Maha season and less in the Yala. About 91.8 %, and 75.3% the community members cultivate paddy in Maha and Yala seasons respectively. Other field crops (OFC), Vegetables, Chilli and onion are the mostly grown crops in the Yala season. About 13.4% of the community members cultivated Chilli and about 33 % of the community members cultivated big onion in Yala. Comparatively rice consumes less pesticide whereas Chilli and onion need lot of pesticides.

Occupations H Farming is the main occupation in the study site. Lot of part time farmers in the study sites together with pluriactive community members.

H Though male and female are involved in farming mainly male farmers are involved in pesticide spraying. Almost all the farmers use sprayers to apply pesticides.

o H The staple food in this area is rice and most of the farmers grow their requirement in their fields. Flour based food products are also popular. Other field crops (OFC), Vegetables, Chilli and onion are the mostly grown crops in the Yala season. Most of the cases they grow crops for both to sell and to consume.

H & E Almost all the respondents (93.8%) were aware of recommended pesticide dosages. However only 55.7% practiced recommended levels. A considerable portion of the respondents used more than recommended pesticide amounts (35.1%). The reasons for deviating from recommended dosages are: over dosages reduces the risk (23.7%), profit would increase with over dosage (5.2%) and as a preventive method (6.2%).

Most of the respondents (91.8%), were aware of safety methods of pesticide application. However only (27.8%) practice them. The majority (78.4%) cleaned equipments used in pesticide application, by rinsing the tank several times with water on land. However, another 14.4% cleaned their equipments by immersing and rinsing the tank in farm ditches. Few farmers immersed their equipments in tanks and drainage channels. Most of the farmers threw their empty bottles into the field (41.2%) and another considerable portion of the farmers brought them home (38.1%) thinking that they can reuse them for domestic purposes. Few farmers (2.1%) threw them into the water bodies.

Most farmers them (44%) indicated that application of agrochemicals was the only method of controlling pests. Another 39% stated that pesticides and other methods could be used effectively for pest management. Only 17% respondents' viewpoint was pesticides are not needed for controlling pests.

An interesting finding was that most of the farmers (49%) were willing to reduce the total quantity of pesticides. Another 40% would continue to apply agrochemicals if they remain affordable. Few respondents' (7%) willingness was to apply more agrochemicals if cost would be manageable.

Interestingly every farmer knew that agrochemicals have bad effects on environment and human health. Half of the respondents said pesticides cause health and environment hazards. Another 45% were said that better management of agrochemicals would not cause health and environment hazards. Though the farmers were aware of health and environmental hazards caused by agrochemicals, some respondents' (5%) viewed that farmers are careless when they apply agrochemicals.

Activities & H Pesticides Consumptio H n & Pesticide Use Education, H Awareness & Pesticide Use

Appendix 3 Type of Household (HH) data collected in Thailand and Sri Lanka.

Thailand

HH Category	Data Type					
General Info	HH ID, Respondent name, HH member ID, village & house No well-being					
	rank & average income.					
Profile	Age, education level & occupation.					
Activities	HH member ID, activity type					
Consumption	Food type Collection (where method who when frequency & quantity)					
Water Use	Purpose who frequency & source					
Crops Grown	Snecies farm area inorganic & organic fertiliser (type quantity) organic					
crops crown	fertiliser origin production quantity product destinations & percentages					
Aquatic Animal	Spacies type & source water source water area feed type & quantity No					
Production	Cycles / year production quantity destinations of product & percentages					
Farming / Fishing	Mixed grane: (Spacing activity type month of accurrance & frequency) Desential					
Calondars	Crare: (Species, Activity type, month of occurrence & frequency). Perennial					
Calendars	A guaged ture & fiching (spacing activity month of accumence & frequency)					
Form Conal Water Volume	Aquaturiure & IIsming: (species, acuvity, month of occurrence & frequency). Water system form couple (ID, longth, width & donth)					
Water Management 8	Water system, farm size, eanal ID, high water denth low water denth incide and					
Water Management &	water system, farm size, canal 1D, nigh water depth, low water depth inside and					
	outside the farm, sediment removal & frequency)					
Pesticide Application	Crop type & area, pesticide use, period of application and frequency, interval					
	between application & watering crops and application strategy (crop specific or					
	whole farm)					
Type of Pesticide &	Crop type, pesticide ID, dose (liquid or solid), application method, application					
Dosages	strategy (crop specific or whole farm), storage duration before use.					
Pesticide Application	Apply curatively, preventatively or both.					
Strategy						
Pesticide Purchase	Where from and what type of facility.					
Pesticide Application	Reasoning behind application (fixed, depending on pest density, weather					
Criteria	dependent & other).					
Pesticide Equipment	Rinse, immerse or other.					
Cleaning						
Pesticide Storage &	Pesticide ID, place of storage, place of preparation, place of accidental spills,					
Preparation	use of left over pesticide.					
Pest Identification	Description of methods used for identifying pests.					
Farmer Training &	Training (formal, informal, who received, topic, provider, duration, when &					
Knowledge	frequency)					
Health	Symptoms, who, frequency of occurrence, protective measures, type of					
	treatment received.					
Testing & Treatment for	Who					
Pesticide Poisoning						
Suicide Attempts Using	Who					
Pesticide						
Animal / Plant deaths	Where (canal, pond), when (year) & cause (pesticide or not sure)					
from Pesticide Poisoning						
Stakeholder Relations	Stakeholder type & description of relationship.					
Information Sources	Information type, source & rank of usefulness.					
Pesticide Advertising	Type of advertising & rank of the influence it has over choice of purchase.					
Influence						
Farmer Organisations	Membership of farmer organisation & rank of benefit.					
Choice of Pesticide	Ranking of factors influencing choice of pesticide supplier (convenience, stock					
Supplier	variety, price, reliability, advice, discount or other).					
Choice of Product	Ranking of factors influencing choice of pesticide product (efficiency of					
choice of Freduct	product discount brand name advertising advice or other)					
Pesticide Supplier's Terms	Description of pesticide supplier's terms & conditions					
& Conditions	2 compton of produce supplier s terms & conditions.					
Poor Quality Pesticide	Product type & details crop type pest type when used & where purchased					
Products	from.					
Aims Goals & Needs	Future aims, need for information & type					
mins, Gouis & INCCUS	r ature anno, need tor miterination & type.					

Sri Lanka

HH category	Data type					
General Info	Respondent name, Well being Group, Well being Number, Household					
	Number, Village, Irrigation block, Settler / Non settler, Generation					
Profile	Relationship to Household head, Age, sex, education level, Ethnic group,					
	Religion, Employment status (Local, Foreign), Average Income Per month					
Activities	Farmer organisations and benefits getting from it.					
Consumption	Type of Food (Rice, Vegetables, Fruits, Tin fish, Dried fish, Inland Fish, Marine					
	tish, Meat Aquatic Plants Other) Buy or Grow / Catch (who, where, how					
1 1/ 11	much, now often)					
water Use	Accessibility and Distance to water Resources – Type of water Sources (Agro					
	Common Woll, Canal Tank)					
	Accessibility and Distance to Water Resources (Drinking Water Other					
	Domestic nurpose Ferming)					
	Ownership Access Distance from house Distance from Farm Water					
	availability problem (Describe the severity of the scarcity) Water quality					
	availability problem (Describe the type of pollution) When does the problem occur					
	(months or season)					
	Domestic Usage - Washing clothes Washing food Cleaning house vehicles					
	Household surroundings. Giving water to animals. Washing animals. Rathing					
	Cooking, Drinking, Home garden irrigation. (Who does it. Water Source Period					
	How often)					
	Irrigation Water Usage- Water Source (Seasonal Tank, Perennial tank Main					
	Canal, Distribution canals, Agro wells. Drainage cannel, other). Name of the					
	water source, Farm size (cares) Water Pumping, Natural Water Distribution,					
	Water Availability					
	Severity of the water availability problem- severity, When occurs, Reason					
Crop Grown	Crops Cultivation (Maha / Yala) - Type of Crop (Paddy, chillies, Big Onion),					
	Area, Tenure, Yield, Production Level, Total Produced, Quantity Consumed,					
	Sold, Average market Price					
Aquatic Animal	Type of the fisherman, Full time fisherman / Part time Fisherman / Full time					
Production	farmer Part time farmer Average catch per month (Kg- all species or-					
	distinguish between species if possible)					
Farming/ Fishing	Type of Crop: Management practice (Land preparation, Seeds / Sowing,					
Calendars	Weeding Operations, Insecticide application, Herbicide application, Fungicide					
	application, Fertilizer application, Irrigation (Water Use), Harvesting, Threshing,					
	Winnowing, Drying, Transport)					
Livestock information	Type of Animals (Cattle, Buffalo, Goats, Poultry, Swine, Sheep) Type of					
۸	Froducts, For Market of Home Consumption, water Source, Food Source.					
Agricultural Inputs	Fertilizer, Buying place, Quantity, Advise on fertilizer use, reasons, Source of the advice. Advise Advise of the recommended level Decage. Actual decage					
Trme of Desticide 8	the advice. Awareness of the recommended level, Dosage, Actual dosage,					
Type of Pesticide &	Réasons Ways of the improvement of fertilizer supply (Quality, Affordability, Credit					
Dosages Desticide Application	Availability					
Storage	Availability Pesticide usage: Pest identification Buying place Paving methods Volume					
Pesticide Purchase	Quantity Advise on nesticide use reasons Source of the advice Awareness of					
Pesticide Application	the recommended level Dosage Actual dosage Reasons					
Criteria	Ways of the improvement of fertilizer supply (Quality Affordability Credit					
Pesticide Equipment	Availability					
Cleaning	Factors influencing the purchasing decision of Pesticide Criteria used to select					
Pesticide Storage &	Pesticide Product					
Preparation	Pesticide application for different crops (Pest type, Pesticide common name,					
Pest Identification	Brand name, Company, Type (Organic or inorganic) Active ingredient Storage					
	duration before application, Time of application, Safety period					
	Pesticide Storage, Preparation & Disposal, Where,					
	How Biological factors Influencing the Application of Pesticide					
	Awareness, Label information, Colour code, Safety method (Awareness and					
	practice)					
	Cleaning of pesticide applicator					
	Actual dilution by farmer, Field dosage, Application method, Frequency,					

Farmer Training &	Interval between application and watering, Type of training, Where, what, how often, how long and duration				
Health	Pest Pesticides poisoning, Protective measure, Symptoms & treatments				
Testing & Treatment for	Examination for Pesticide Poisoning, Treatment for Pesticide Poisoning,				
Pesticide Poisoning	Suicide Attempts by Pesticide Poisoning,				
Suicide attempting Using	Suicide attempting Using Pesticide				
Pesticide	1 0 0				
Animal/Plant deaths from Pesticide Poisoning	Type of animals/plants, place of found and time				

Appendix 4 TOXSWA scenario parameters for Thailand and Sri Lanka

	Country	Sri Lanka		Thailand		Comments
	Location	Farm Canals		Farm Canals		
	Crop Type	OFC's	Rice Mixed Fruit & Ve		& Vegetables	
	TOXSWA Scenarios	Scenario1:	Scenario 2:	Scenario 1:	Scenario 2:	Worse case scenarios
	Parameters	Yala (Dry)	Maha (Wet)	Dry	Wet Season	considered in each
		Ũ		Season		case
	Slope	0.0001	0.0001	0.0001	0.0001	Assumed vertical slope
	-	(lowest				-
		value)				
	Bottom width	1 m	1 m	1 m	1 m	For 1 m ³ water
	Suspended solids					
	- concentration	50	50	50	50	Assumed from local
	(g/m ³)					knowledge
	- mass ratio organic	0.5	0.5	0.5	0.5	Assumed to be low
	matter					
	Water Layer					
	Segments					
	 length water body 	1	1	1	1	For 1 m ² water surface
	(m)					
	- No. segments	1	1	1	1	Insignificant
	Macrophytes	0	0	0	0	Assumed worst case
	Sediment Segments	1	1	1	1	Assumed 1
	- thickness (m)	0.05	0.05	0.05	0.05	Assumed depth
	 bulk density 	800	800	800	800	Assumed low bulk
	(kg/m ³)					density
	- porosity	0.5				Default – insignificant
	- tortuosity	0.5				Default – insignificant
	- mass ratio	0.085	0.085	0.085	0.085	Assumed low organic
		0		-		matter
	Flow velocity water	0	0	0	0	Assumed no flow
	body	0.10	0.15	0.50	0.75	
	water depth water	0.10	0.15	0.50	0.75	Assumed lowest from
	Douy (III)	20	9.0	0.0	20	A second second second second
	l'emp. (water &	30	28	33	30	Assumed average of
	sediment °C)	1	1	1	1	seasonai tenip.
	Dispersion	1	1	1	1	Dummy value when
gy	(m^2/d)					now is zero
olo	(III~/U) Dispersion length in	0	0	0	0	Accumed no
ydr	sodimont (m)	0	0	0	0	Assumed 110
H	Unward soonade &					uspersion in seument
	concentration of					
	pesticide in incoming					
	water					
	- seepage (mm/d)	0	0	0	0	Assumed no upward
	10 ()					seepage
	- conc. (mg/L)	0	0	0	0	Assumed no upward
						seepage
	Initialisation					
	Segments	Water	Water layer	Water	Water layer	Assumed pesticide
	-	layer	-	layer	-	stays in water
	- position (m)	0.00-1.00	0.00-1.00	0.00-1.00	0.00-1.00	Insignificant
	- initial conc. (μg/L)	0	0	0	0	

	Total time	120	120	45 or 180 days	45 or 180 days	Depending on length of crop season
tion	Calculation time step	600 seconds	600 seconds	600 seconds	600 seconds	Default
Simula	Output time	0.5 days	0.5 days	0.5 days	0.5 days	Default
	Segment	1 selected	1 selected	1 selected	1 selected	Assumed only 1 segment
	Position (m)	0.00-1.00	0.00-1.00	0.00-1.00	0.00-1.00	1 m depth in segment
	Output	Choose 'Áll'	Choose 'Áll'	Choose 'Áll'	Choose 'Áll'	Default
Appendix 5 Pesticide properties for calculation of second tier PEC

Active ingredient name	Molecular Mass	Psat	Temp. Psat	S	Temp. S	DT50- water	DT50- sedim.	*Kom
	(g/mole)	(mPa)	(°C)	(g/L)	(°C)	(d)	(d)	(L/kg)
Abamectin	873.1	2E-07	22.5	0.005000	20	56	10000	2860
Alachlor	269.77	1.90E-03	25	0.240000	22.5	149	22	117
Azoxystrobin	403.4	1.10E-10	25	0.006000	20	213	10000	246
2,4-D sodium salt	221	1.00E-03	20	0.890000	25	10000	10000	26
Benomyl	290.3	1.00E-08	25	0.002000	25	0.1	10000	1000
Captan	300.61	1.10E-05	25	0.005100	22.5	1	1	75
Carbaryl	201.23	1.60E-04	24	0.120000	30	14	14	34
Carbendazim	191.19	6.50E-08	20	0.008000	20	90	10000	76
Carbofuran	221.25	8.00E-05	22.5	0.351000	25	50	50	13
Carbosulfan	380.5	4.10E-05	25	0.000300	25	7.6	10000	1000
Chlorfenapyr	407.6	1.00E-15	20	1.000000	20	10000	10000	1000
Chlorfluazuron	540.7	1.00E-08	20	0.000010	20	42	10000	1000
Chlorpyrifos	350.62	2.70E-03	25	0.001400	25	1.5	94	3470
Cypermethrin	416.3	1.90E-07	20	0.000004	20	14	10000	2137
Dicrotophos	237.2	9.30E-03	20	1.000000	20	20	20	1000
Difenoconazole	406.3	3.30E-08	25	0.015000	25	145	10000	1000
Diflubenzuron	310.69	1.20E-07	25	0.000080	20	10	10000	104
Dimethoate	229.2	1.10E-03	25	23.800000	20	21	10000	17
EPN	323.3	4.10E-05	23	0.00000092	24	15	10000	96700
Fenobucarb	301.3	1.70E-06	25	0.006000	22.5	75	16	571
Fipronil	437.2	3.70E-07	25	0.001900	25	28	10000	1000
Glyphosat	169.1	1.00E+00	25	12.000000	25	30	10000	3200
Lufenuron	511.2	4.00E-06	25	0.000060	25	70	10000	22
Malathion	330.3	5.30E-03	30	0.145000	25	1	10000	1000
Mancozeb	330	1.00E+00	25	0.006000	25	70	10000	1143
MCPA	200.6	2.30E-05	25	0.734000	25	35	10000	29
Metalaxyl	279.3	7.50E-04	25	8.400000	22	56	10000	27
Methamidophos	141.1	2.30E-03	20	200.000000	20	23.5	10000	5
Methomyl	162.2	6.70E-03	25	58.000000	25	30	10000	12
methyl parathion	263.2	2.00E-03	20	0.060000	25	58	10000	141
Mevinphos	224.15	1.70E-02	20	600.000000	22.5	20.5	10000	17
Omethoate	213.2	3.30E-03	20	1000.000000	25	4	10000	13
Paraquat dichloride	186.3	1.00E-05	25	620.000000	20	7	10000	10000
Profenofos	373.6	1.24E-04	25	0.028000	25	8	10000	13965
Propanil	218.1	5.33E-03	25	0.130000	20	1	10000	149
Propineb	289.8	0.0001	22.5	0.010000	20	1	10000	1000
Prothiofos	345.2	6.00E-04	22.5	0.000070	20	280	10000	1000
Tetradifon	356	3.20E-08	20	0.000078	20	52	10000	455
Zineb	275.8	1.00E-05	20	0.010000	22.5	37	10000	571

* K_{om} , sorption coefficient for organic matter, can be used for sorption to suspended solids and for sorption to sediment.

Appendix 6 First and second tier PEC's for crop-pesticide combinations in Thailand and Sri Lanka.

PEC's of crop-pesticide combinations are based on dosages collected in household surveys in case of Thailand and on recommended dosages in case of Sri Lanka. The second tier PEC is only calculated for pesticide-crop combination yielding the highest first-tier PEC.

Pesticide name	Crop name	Load	Number of applications	Application Interval	Spray drift	1 st tier PEC	2 nd tier PEC
		g a.i./ha.		days	-	µg/L	µg/L
Abamectin	Chinese leek(Kui chai)	9.1	6	7	1	11	
Abamectin	Chinese leek(Kui chai)	12.5	6	7	1	15	
Abamectin	For all crops	12.7	6	7	1	15	
Abamectin	Amaranth (Pak Khom) Chinese cabbage (Kwang	10.9	9	5	1	20	
Abamectin	tung)	9.0	15	3	1	27	
Abamectin	Lettuce (Pak kad horm)	13.5	15	3	1	41	
Abamectin	Chinese kale (Ka na)	18.0	15	3	1	54	
Abamectin	For all crops	78.9	6	7	1	95	
Abamectin	Chinese kale (Ka na)	208.3	9	5	1	375	195
Carbendazim	Holy basil Chinese cabbage (Kwang	68.5	3	14	1	41	
Carbendazim	tung)	187.5	15	3	1	563	
Carbendazim	Roseapple	500.0	6	7	1	600	
Carbendazim	Lettuce (Pak kad horm)	281.3	15	3	1	844	
Carbendazim	Roseapple	753.3	6	7	1	904	
Carbendazim	Chinese kale (Ka na)	375.0	15	3	1	1125	734
Carbendazim	Guava	992.1	5	10	1	992	
Carbendazim	Guava	1250.0	5	10	1	1250	841
Carbendazim	Roseapple	95.5	6	7	1	115	
Carbosulfan	Roseapple	100.8	6	7	1	121	24.0
Chlorfenapyr	For all crops	48.4	6	7	0.3	17	
Chlorfenapyr	For all crops	70.7	6	7	1	85	
Chlorfenapyr	Amaranth (Pak Khom)	60.4	9	5	1	109	99
Chlorfluazuron	Lettuce (Pak kad horm)	10.6	2	24	1	4.2	
Chlorfluazuron	For all crops	16.7	9	5	1	30	14
Cypermethrin	Roseapple	19.1	6	7	1	23	
Cypermethrin	Roseapple	100.0	5	10	1	100	
Dicrotophos	For all crops	233.4	6	7	1	280	
Dicrotophos	For all crops	1157.9	6	7	1	1389	
Dicrotophos	Chinese kale (Ka na)	1432.3	9	5	1	2578	740
Difenoconazole	For all crops	88.4	6	7	1	106	80
Diflubenzuron	Roseapple	100.0	5	10	1	100	24
Dimethoate	Roseapple	2260.8	6	7	1	2713	984
Fipronil	Amaranth (Pak Khom)	30.2	9	5	1	54	20
Glyphosate	For all crops	2891.6	6	7	0.3	1041	428
Glyphosate	Grass	393.4	1	183	0.3	24	
Glyphosate	Grass	761.9	1	365	0.3	46	

Thailand (mixed crop site)

Glyphosate Lappate	Grass Drumetick Moringe (Me	1326.7	1	243	1	265	
(methomyl) Lannate	rum)	133.3	3	15	1	80	
(methomyl)	Chinese kale (Ka na)	578.7	9	5	1	1042	
Mancozeb	Lettuce (Pak kad horm)	50.8	2	24	1	20	
Mancozeb	Chinese leek(Kui chai)	60.9	6	7	1	73	
Mancozeb	Roseapple	100.8	6	7	1	121	61
Mancozeb	Amaranth (Pak Khom)	72.4	9	5	1	130	60
Malathion	Guava	5389.6	6	7	1	6468	1067
Metalaxyl	For all crops	1096.5	6	7	1	1316	788
Methamidophos	Holy basil	205.5	3	14	1	123	
Methamidophos	angled gourd	480.0	6	7	0.3	173	
Methamidophos	Roseapple	229.2	6	7	1	275	
Methamidophos	Roseapple	565.2	6	7	1	678	
Methamidophos	Roseapple	800.0	5	10	1	800	
methamidophos	Guava	3600.0	5	10	1	3600	
methamidophos	Guava	3896.1	6	7	1	4675	
Methamidophos	Roseapple	24107.1	6	7	1	28929	11040
Methomyl	For all crops	116.3	6	7	0.1	14	
Methomyl	Roseapple	20.2	6	7	1	24	
Methomyl	Guava	82.8	5	10	1	83	
Methomyl	Roseapple	160.0	5	10	1	160	
Methomyl	Guava	396.8	5	10	1	397	
Methomyl	Roseapple	400.0	6	7	1	480	
Methomyl	Guava	500.0	5	10	1	500	
5	Drumstick Moringa (Ma						
Mevinphos	rum)	533.3	3	15	1	320	142
Phosphorus acid	For all crops	1754.4	6	7	1	2105	
Profenofos	For all crops	242.2	6	7	0.3	87	
Profenofos	For all crops	166.7	9	5	1	300	
Profenofos	For all crops	333.3	6	7	1	400	
Profenofos	For all crops Chinese cabbage (Kwang	1204.8	6	7	0.3	434	
Profenofos	tung)	250.0	15	3	1	750	
Profenofos	Lettuce (Pak kad horm)	375.0	15	3	1	1125	
Profenofos	Chinese kale (Ka na) Drumstick Moringa (Ma	500.0	15	3	1	1500	166
Propineb	rum)	136.1	3	15	1	82	
Propineb	For all crops	233.3	6	7	1	280	
Propineb	Roseapple	933.3	5	10	1	933	184
Prothiofos	Guava	892.9	5	10	1	893	710

	Crop		Number of	Application	Spray	1st tier	2 nd tier
Pesticide name	name	Load	applications	Interval	drift	PEC	PEC
		g a.i./ha.		days	-	µg/L	µg/L
Abamectin	Longan	22.50	15	2	1	9.0	6.7
Abamectin	Tangerine	0.77	5	12	1	1.8	
Abamectin	Tangerine	6.79	10	3	1	4.1	
Abamectin	Tangerine	14.63	15	2	1	5.9	
Abamectin	Tangerine	8.12	15	4	1	6.5	
Abamectin	Tangerine	6.75	7	9	1	12	
Abamectin	Tangerine	9.33	7	26	1	48	8.0
Captan	Tangerine	8.01	7	4	1	6.4	
Captan	Tangerine	8.01	15	4	1	6.4	
Captan	Tangerine	97.15	7	26	1	505	19
Carbaryl	Tangerine	26.98	15	4	1	22	6.3
Carbendazim	Longan	312.50	15	2	1	125	107
Carbendazim	Longbean	195.31	5	6	1	234	
Carbendazim	Longbean	195.31	7	9	1	352	205
Carbendazim	Tangerine	173.61	30	2	1	69	
Carbendazim	Tangerine	125.00	7	9	1	225	
Carbendazim	Tangerine	757.27	15	2	1	303	
Carbendazim	Tangerine	757.27	10	3	1	454	
Carbendazim	Tangerine	260.42	7	9	1	469	
Carbendazim	Tangerine	260.42	7	9	1	469	
Carbendazim	Tangerine	1437.77	10	3	1	863	
Carbendazim	Tangerine	773.99	7	9	1	1393	
Carbendazim	Tangerine	1174.78	5	6	1	1410	
Carbendazim	Tangerine	5639.10	7	4	1	4511	3603
Carbendazim	Tangerine	5639.10	15	4	1	4511	0000
Carbofuran	Coconut	245 45	30	2	0.3	29	20
Carbofuran	Coconut	245 45	30	2	0.3	29	20
Cypermethrin	Tangerine	2 10.10 46 40	15	24	0.0	37	
Cypermethrin	Tangerine	46 40	7	4	1	37	
Cypermethrin	Tangerine	187 50	7	4	1	150	58
Cypermethrin	Tangerine	187.50	15	4	1	150	00
Dicrotophos	Tangerine	165.07	30		1	66	
Dicrotophos	Tangerine	165.07	7	2	1	132	62
Dimethoate	Longan	1041.67	, 15		1	417	02 267
Dimethoate	Tangarina	83 33	15 30	2	1	33	201
Dimethoate	Tangerine	83.33	50 7	2 Q	1	150	
Dimethoate	Tangerine	378 40	15	5 9	1	150	
Dimethoate	Tangerine	201 08	13	2 1	1	163	
Dimethoate	Tangerine	267.65	, 20	4	1	291	
Dimethoate	Tangerine	555 56	20	5 9	1	221 999	
Dimethoate	Tangerine	200.00	10	2	1	240	
Dimethoate	Tangerine	200.00	10	0	1	240	
Dimethoate	Tangerine	204.00	10	0	1	24J 202	
Dimethoate	Tangerine	378.49 200 00	ן די	4	1	203 203	
Dimethoate	Tangerine	200.00 555 50	ן די	9	1	200	
Dimethoate	Tangerine	000.00	ן די	4	1	444	
Dimethoate	Tangerine		/	4	1	4ðU 400	
Dimethoate	Tangerine		15	4	1	480	
Dimetnoate	Tangerine	1238.39	15	2	1	495	

Dimethoate	Tangerine	694.44	15	4	1	556	
Dimethoate	Tangerine	694.44	7	4	1	556	
Dimethoate	Tangerine	312.50	7	9	1	563	
Dimethoate	Tangerine	312.50	7	9	1	563	
Dimethoate	Tangerine	1009.70	10	3	1	606	
Dimethoate	Tangerine	854.70	7	4	1	684	
Dimethoate	Tangerine	1258.97	10	3	1	755	
Dimethoate	Tangerine	1009.70	15	4	1	808	
Dimethoate	Tangerine	1142.86	7	4	1	914	
Dimethoate	Tangerine	367.65	7	13	1	956	
Dimethoate	Tangerine	1653.44	10	3	1	992	
Dimethoate	Tangerine	1666.67	10	3	1	1000	
Dimethoate	Tangerine	1258.97	15	4	1	1007	
Dimethoate	Tangerine	1258.97	7	4	1	1007	
Dimethoate	Tangerine	848.74	15	6	1	1018	
Dimethoate	Tangerine	848.74	5	6	1	1018	
Dimethoate	Tangerine	1428.57	7	4	1	1143	
Dimethoate	Tangerine	1428.57	15	4	1	1143	
Dimethoate	Tangerine	2083.33	10	3	1	1250	
Dimethoate	Tangerine	500.00	7	13	1	1300	
Dimethoate	Tangerine	1653.44	15	4	- 1	1323	
Dimethoate	Tangerine	1653.44	7	4	1	1323	
Dimethoate	Tangerine	1666 67	7	4	1	1333	
Dimethoate	Tangerine	2401.96	10	3	1	1441	
Dimethoate	Tangerine	1804 51	7	4	1	1444	
Dimethoate	Tangerine	1804 51	15	4	1	1444	
Dimethoate	Tangerine	848 74	7	9	1	1528	
Dimethoate	Tangerine	4000.00	15	2	1	1600	
Dimethoate	Tangerine	2203 70	7	2	1	1763	
Dimethoate	Tangerine	2401.96	15	4	1	1022	
Dimethoate	Tangerine	1666 67	5	4	1	2000	
Dimethoate	Tangerine	1142.86	10	0	1	2000	
Dimethoate	Tangerine	1938 30	10	9	1	2037	
Dimethoate	Tangerine	641.02	10	9 19	1	2209	
Dimethoate	Tangerine	4000 00	10	10	1	2300	
Dimethoate	Tangerine	4000.00	20	5	1	2400	
Dimethoate	Tangerine	2003.33		0	1	2000	
Dimethoate	Tangerine	0033.10	10	ა ი	1	3020	
Dimethoate	Tangerine	0000.10	30 7	ა ი	1	3020	
Dimethoate	Tangerine	2083.33	1	9	1	3730	
Dimethoate	Tangerine	1000.07	15	12	1	4000	
Dimethoate	Tangerine	2203.70	10	12	1	5289 7704	
Dimethoate	Tangerine	1487.32	1	26	1	10004	
Dimethoate	Tangerine	2673.80	1	26	1	13904	0000
Dimethoate	Tangerine	7407.41	15	12	1	17778	2066
EPN	Longbean	260.42	5	6	1	313	
EPN	Longbean	260.42	7	9	1	469	45
Mancozeb	Tangerine	408.16	7	4	1	327	
Mancozeb	Tangerine	1135.48	15	2	1	454	
Mancozeb	Tangerine	408.16	10	6	1	490	
Mancozeb	Tangerine	600.00	10	6	1	720	
Mancozeb	Tangerine	1135.48	7	4	1	908	
Mancozeb	Tangerine	600.00	7	9	1	1080	
Mancozeb	Tangerine	5600.00	15	2	1	2240	

Mancozeb	Tangerine For all	5600.00	20	3	1	3360	1705
Methamidophos	crop For all	200.00	7	4	1	160	
Methamidophos	crop For all	200.00	15	4	1	160	
Methamidophos	crop	200.00	5	6	1	240	112
Methamidophos	Guava	218.18	30	2	1	87	48
Methamidophos	Guava	218.18	30	2	1	87	
Methamidophos	Tangerine	62.82	10	3	1	38	
Methamidophos	Tangerine	62.82	7	13	1	163	
Methamidophos	Tangerine	454.55	7	4	1	364	
Methamidophos	Tangerine	454.55	15	4	1	364	
Methamidophos	Tangerine	1406.25	10	3	1	844	
Methamidophos	Tangerine	2819.48	15	2	1	1128	
Methamidophos	Tangerine	2819.48	15	2	1	1128	
Methamidophos	Tangerine	3450.66	15	2	1	1380	
Methamidophos	Tangerine	3656.25	15	2	1	1463	
Methamidophos	Tangerine	1406.25	5	6	1	1688	
Methamidophos	Tangerine	2819.48	10	3	1	1692	
Methamidophos	Tangerine	2819.48	10	3	1	1692	
Methamidophos	Tangerine	750.00	7	13	1	1950	
Methamidophos	Tangerine	3450.66	10	3	1	2070	
Methamidophos	Tangerine	621 76	7	17	1	2010	
Methamidophos	Tangerine	3656 25	10	3	1	2114	
Methamidophos	Tangerine	1406 25	10	9	1	2531	
Methamidophos	Tangerine	2656 25	7	5	1	2005	
Methamidophos	Tangerine	2010.23 2010.40	5	4	1	2202	
Methamidophos	Tangerine	2810.48	5	6	1	2283	
Methamidophos	Tangerine	2019.40	5	0	1	3363 4141	1090
Methamul	Tangerine	04JU.00	J 7	0	1	4141 970	1929
Methomyl	Tangerine	347.22	10	4	1	210 117	140
Drofonofoc	Tangerine	59.25	10	0	1	417 91	140
Protemotos	Tangerine	JZ.JJ	10	3	1	31 25	
Protenoios	Tangerine	43.40	15	4	1	30	
Profenotos	Tangerine	43.40	1	4	1	30	
Profenotos	Tangerine	55.84	1	4	1	45	
Profenotos	Tangerine	55.84	5	6	1	b/ 104	
Profenotos	Tangerine	206.68	10	3	1	124	
Profenotos	Tangerine	52.35	1	13	1	130	
Profenotos	Tangerine	260.42	10	3	1	150	
Profenotos	Tangerine	206.68	15	4	1	165	
Profenotos	Tangerine	206.68	7	4	1	165	
Protenotos	Tangerine	260.42	7	4	1	208	
Protenotos	Tangerine	260.42	5	6	1	313	
Profenofos	Tangerine	651.04	10	3	1	391	
Profenofos	Tangerine	260.42	15	12	1	625	
Profenofos	Tangerine	390.63	7	9	1	703	
Profenofos	Tangerine	390.63	7	9	1	703	
Profenofos	Tangerine	651.04	5	6	1	781	
Profenofos	Tangerine	651.04	7	9	1	1172	
Profenofos	Tangerine	2467.11	7	4	1	1974	
Profenofos	Tangerine	2467.11	15	6	1	2961	378
Tetradifon	Tangerine	65.28	7	4	1	52	
Tetradifon	Tangerine	65.28	10	6	1	78	

Tetradifon	Tangerine	201.43	7	4	1	161	
Tetradifon	Tangerine	147.45	10	12	1	354	93
Zineb	Tangerine	26.67	7	13	1	69	
Zineb	Tangerine	1135.48	15	2	1	454	
Zineb	Tangerine	833.33	10	3	1	500	
Zineb	Tangerine	833.33	7	4	1	667	
Zineb	Tangerine	833.33	15	4	1	667	
Zineb	Tangerine	1135.48	7	4	1	908	
Zineb	Tangerine	833.33	5	6	1	1000	
Zineb	Tangerine	2742.86	7	4	1	2194	
Zineb	Tangerine	5035.88	10	3	1	3022	
Zineb	Tangerine	3888.89	7	4	1	3111	
Zineb	Tangerine	5035.88	15	4	1	4029	
Zineb	Tangerine	5035.88	7	4	1	4029	
Zineb	Tangerine	2742.86	10	9	1	4937	
Zineb	Tangerine	3888.89	10	18	1	14000	1947

Sri Lanka

Pesticide	Crop		Number of	Application	Spray	1st tier	2 nd tier	Dilution	2 nd tier
name	name	Load	applications	Interval	drift	PEC	PEC	factor	tank PEC
		g a.i./ha.		days	-	µg/L	µg∕L	-	µg/L
Alachlor	Onion	380	1		1	380	379	100	3.79
Alachlor	Rice	380	1		1	380	379	1000	0.38
Captan	Onion	650	1		1	650	649	100	6.49
Captan	Rice	650	1		1	650	649	1000	0.65
Carbaryl	Chilli	850	3	14	1	2550	1038	300	3.46
Carbaryl	Onion	850	2	14	1	1700	1005	100	10.05
Carbofuran	Chilli	120	3	14	1	360	233	300	0.78
Carbofuran	Rice	120	1		1	120	120	1000	0.12
Chlorpyrifos	Chilli	400	2	14	1	800	383	300	1.28
Chlorpyrifos	Onion	400	1		1	400	382	100	3.82
Dimethoate	Chilli	380	3	7	1	1140	722	300	2.41
Dimethoate	Onion	380	2	7	1	760	594	100	5.94
Dimethoate	Rice	380	2	7	1	760	594	1000	0.59
Fenobucarb	Chilli	500	2	21	1	1000	657	300	2.19
Fenobucarb	Onion	500	1		1	500	493	100	4.93
Fenobucarb	Rice	500	1		1	500	493	1000	0.49
Glyposate	Chilli	340	2	21	1	680	376	300	1.25
Glyposate	Onion	340	2	21	1	680	376	100	3.76
Glyposate	Rice	340	2	21	1	680	376	1000	0.38
Mancozeb	Chilli	280	1		1	280	276	300	0.92
Mancozeb	Onion	280	1		1	280	276	100	2.76
Mancozeb	Rice	280	1		1	280	276	1000	0.28
MCPA	Chilli	600	2	21	1	1200	810	300	2.70
MCPA	Onion	600	2	21	1	1200	810	100	8.10
MCPA	Rice	600	2	21	1	1200	810	1000	0.81
Propanil	Chilli	360	1		1	360	359	300	1.20
Propanil	Onion	360	1		1	360	359	100	3.59
Propanil	Rice	360	1		1	360	359	1000	0.36

Appendix 7 Results of NEC calculations for all pesticides evaluated in Thailand and/or Sri Lanka (NED = Not Enough Data)

Active ingredient name	Cass-number	Pesticide type	NEC 1 st tier	NEC 2 nd tier
			(µg/L)	(µg/L)
Abamectin	71751-41-2	insecticide, acaricide	0.0034	NED
Alachlor	15972-60-8	herbicide	0.46	
Bispyribac-sodium	125401-75-4	herbicide	63	
Captan	133-06-2	fungicide	1.3	
Carbaryl	63-25-2	insecticide, plant growth	0.0042	0.043
Carbendazim	10605-21-7	regulator fungicide	0.56	
Carbofuran	1563-66-2	insecticide, nematocide	0.40	
Carbosulfan	55285-14-8	insecticde	0.015	
Chlorfenapyr	122453-73-0	insecticide, acaricide	0.061	
Chlorfluazuron	71422-67-8	insecticide	0.0091	
Chlorpyrifos	2921-88-2	insecticide	0.0038	0.0067
Cypermethrin	52315-07-8	insecticide	0.0012	0.00088
Diafenthiuron	80060-09-9	insecticide, acaricide	0.0070	
Dicrotophos	141-66-2	insecticide, acaricide	3.4	
Difenoconazole	119446-68-3	fungicide	0.50	
Diflubenzuron	35367-38-5	insecticide	0.33	
Dimethoate	60-51-5	insecticide, acaricide	0.026	0.033
EPN	2104-64-5	insecticide, acaricide	0.0010	0.010
Fenobucarb	3766-81-2	insecticide	1.0	
Fenoxycarb	72490-01-8	insecticide	0.00016	
Fipronil	120068-37-3	insecticide	0.46	
Gibberellic acid	77-06-5	plant growth regulator	1430	
Glyphosate	1071-83-6	herbicide	100	
Glyphosate- isopropylammonium	38641-94-0	herbicide	32	
Glyphosate-trimesium	81591-81-3	herbicide	107	
Malathion	121-75-5	insecticide, acaricide	0.018	0.0066
Mancozeb	8018-01-7	fungicide	0.22	
MCPA	94-74-6	herbicide	4.3	
Metalaxyl	57837-19-1	fungicide	120	
Methamidophos	10265-92-6	insecticide, acaricide	0.33	8.4
Methomyl	16752-77-5	insecticide, acaricide	0.080	
Mevinphos	26718-65-0 and 7786347	insecticide, acaricide	0.0019	0.023
Omethoate	1113-02-6	insecticide, acaricide	0.21	
Oxadiazon	19666-30-9	herbicide	0.56	
Phosalone	2310-17-0	insecticide, acaricide	0.0069	
Profenofos	41198-08-7	insecticide, acaricide	0.011	0.10
Propanil	709-98-8	herbicide	0.50	
Propargite	2312-35-8	acaricide	0.72	
Propineb	12071-83-9	fungicide	19	
Prothiofos	34643-46-4	insecticide	0.14	
Tetradifon	116-29-0	acaricide	9.0	
Zineb	12122-67-7	fungicide	2.0	

Appendix 8 Second tier PEC / NEC risk quotients for croppesticide combinations in Thailand and Sri Lanka

Pesticide name	Crop name	PEC/1st tier NEC	PEC/2nd tier NEC
	Drumstick Moringa (Ma		
Mevinphos	rum)	74737	6174
Malathion	Guava	59278	161667
Abamectin	Chinese kale (Ka na)	57353	No value
Dimethoate	Roseapple	37846	29818
Methamidophos	Roseapple	33455	1314
Profenofos	Chinese kale (Ka na)	15091	1660
Prothiofos	Guava	5069	
Chlorfenapyr	Amaranth (Pak Khom)	1616	
Carbosulfan	Roseapple	1600	
Chlorfluazuron	For all crops	1516	
Carbendazim	Guava	1502	
Carbendazim	Chinese kale (Ka na)	1311	
Mancozeb	Roseapple	276	
Mancozeb	Amaranth (Pak Khom)	271	
Dicrotophos	Chinese kale (Ka na)	218	
Difenoconazole	For all crops	159	
Diflubenzuron	Roseapple	72	
Fipronil	Amaranth (Pak Khom)	42	
Propineb	Roseapple	10	
Metalaxyl	For all crops	6.6	
Glyphosate	For all crops	4.3	

Thailand (mixed crop site)

Thailand (mono-crop site)

Pesticide name	Crop name	PEC/1st tier NEC	PEC/2nd tier NEC
Dimethoate	Tangerine	79462	62606
Cypermethrin	Tangerine	48583	66250
EPN	Longbean	44700	4470
Profenofos	Tangerine	34364	3780
Dimethoate	Longan	10269	8091
Mancozeb	Tangerine	7750	
Carbendazim	Tangerine	6434	
Methamidophos	Tangerine	5845	
Abamectin	Tangerine	2344	
Abamectin	Longan	1976	
Methomyl	Tangerine	1850	
Carbaryl	Tangerine	1490	
Zineb	Tangerine	974	
Carbendazim	Longbean	365	
Methamidophos	For all crop	339	
Carbendazim	Longan	190	
Methamidophos	Guava	145	
Carbofuran	Coconut	49	
Dicrotophos	Tangerine	18	
Captan	Tangerine	15	
Tetradifon	Tangerine	10	

Pesticide	Crop				
name	name	Channel		Tank	
		PEC/1st tier	PEC/2nd tier	PEC/1st tier	PEC/2nd tier
Carbaryl	Chilli	947143	<u>94140</u>	894	80
Carbaryl	Onion	247145	24140	9303	
Chlornyrifos	Chilli	100789	57164	2335	101
Chlorpyrifos	Onion	100703	57015	1005	570
Dimethoate	Chilli	97760	91870	1003	570 73
Dimethoate	Onion	27703	18000		180
Dimethoate	Rico	22040	18000	220	100
Mancozah	Chilli	1955	10000	23 19	10
Mancozeb	Onion	1255		4.2	
Mancozob	Dico	1255		13	
Alachlor	Onion	12JJ 894		1.3	
Alachlor	Dico	024 991		0.2	
Dropphil	Chilli	024		0.82	
Propanil	Onion	/10 710		2.4	
Propanil	Dino	/10 710		1.2	
Fiopaini Fanabusanb	Chilli	/10 657		0.72	
Carbofuran	Chilli	007		2.2 1 0	
Carboruran	Onion	JOJ 400		1.9	
Captan	Dino	499		5.U 0.F0	
Captan	Rice	499		0.50	
Fenobucarb	Onion Disc	493		4.9	
Fenoducard	RICE	493		0.49	
Carbofuran	Rice	300		0.30	
MCPA	Chilli	188		0.63	
MCPA	Onion	188		1.9	
MCPA	Rice	188		0.19	
Glyphosate	Chilli	3.8		0.013	
Glyphosate	Onion	3.8		0.038	
Glyphosate	Rice	3.8		0.0038	

Sri Lanka

Active ingredient	Cas number	Pesticide type	ADI	Acute RfD
			(mg/kg/day)	(mg/kg)
Abamectin	71751-41-2	insecticide, acaricide	0.002	0.094 *****
Alachlor	15972-60-8	herbicide	0.0005 *	0.024 *****
Captan	133-06-2	fungicide	0.1	4.7 *****
Carbaryl	63-25-2	insecticide, plant growth	0.008	0.2
		regulator		
Carbendazim	10605-21-7	fungicide	0.03	1.4 *****
Carbofuran	1563-66-2	insecticide, nematocide	0.002	0.009
Carbosulfan	55285-14-8	insecticide	0.01	0.47 *****
Chlorfenapyr	122453-73-0	insecticide, acaricide	0.02 *	0.94 *****
Chlorfluazuron	71422-67-8	insecticide	0.005 *	0.24 *****
Chlorpyrifos	2921-88-2	insecticide	0.01	0.1
Cypermethrin	52315-07-8	insecticide	0.05 *	2.4 *****
Dicrotophos	141-66-2	insecticide, acaricide	0.000002 ***	0.000094 *****
Difenoconazole	119446-68-3	fungicide	0.01 *	0.47 *****
Diflubenzuron	35367-38-5	insecticide	0.02	0.94 *****
Dimethoate	60-51-5	insecticide, acaricide	0.02	0.94 *****
EPN	2104-64-5	insecticide, acaricide	0.00001	0.00048 *****
Fenobucarb	3766-81-2	insecticide	0.00010 ****	0.0047 *****
Fipronil	120068-37-3	insecticide	0.0002	0.003
Gibberellic adic	77-06-5	plant growth regulator	5 *	235 *****
Glyphosate	1071-83-6	herbicide	0.3	14 *****
Glyphosate-	38641-94-0	herbicide	0.3	14 *****
isopropylammonium				
Malathion	121-75-5	insecticide, acaricide	0.3	14 *****
Mancozeb	8018-01-7	fungicide	0.03	1.4 *****
MCPA	94-74-6	herbicide	0.01 *	0.47 *****
Metalaxyl	57837-19-1	fungicide	0.08	3.8 *****
Methamidophos	10265-92-6	insecticide, acaricide	0.004	0.19 *****
Methomyl	16752-77-5	insecticide, acaricide	0.02	0.02
Mevinphos	26718-65-0 and	insecticide, acaricide	0.0008	0.003
-	7786347			
Profenofos	41198-08-7	insecticide, acaricide	0.01	0.47 *****
Propanil	709-98-8	herbicide	0.2 *	9.4 *****
Propineb	12071-83-9	fungicide	0.007	0.33 *****
Prothiofos	34643-46-4	insecticide	0.0001 *	0.0047 *****
Zineb	12122-67-7	fungicide	0.005 *	0.24 *****

Appendix 9 Acceptable daily intake (ADI) and acute reference dose (ARfD) levels calculated for the different pesticides to be used in the human risk assessment.

* = http://www.health.gov.au/tga/docs/pdf/adi.pdf

** = Pesticide manual 12th edition

*** = cRfD from http://www.ecologic-ipm.com/Table1.pdf

**** 5% level of all other observations (log-normal distribution)

***** based on extrapolation factor being the 95% of existing ARfD/ADI (47)

Appendix 10 Results of dietary risk assessment for Thailand and Sri Lanka. For the individual diet items the NEDI (mg/kg BW/day) are given, the total NEDI is compared to the ADI and ARfD

Thailand (mixed crop site)

Pesticide	Crop	NEDI	NEDI	NEDI	NEDI	NEDI/	NEDI
	•	Fish	Macr.	Water	Total	ADI	/ARfD
Prothiofos	Guava	1.27E+01	7.87E-01	5.91E-02	14	135694	2887
Chlorfenapyr	Amaranth	3.42E-01	6.89E+02	8.22E-03	690	34479	734
Dicrotophos	Chinese kale	7.56E-05	4.11E-06	6.17E-02	0.062	30873	657
Abamectin	Chinese kale	2.91E-01	8.52E-01	1.63E-02	1.16	580	12
Methamidophos	Roseapple	6.27E-04	8.75E-06	9.20E-01	0.92	230	4.9
Fipronil	Amaranth	1.33E-02	2.53E-03	1.63E-03	0.017	87	5.8
Chlorfluazuron	For all crops	3.19E-01	9.55E-04	1.15E-03	0.32	64	1.4
Carbosulfan	Roseapple	3.54E-01	1.03E-02	2.00E-03	0.37	37	0.78
Profenofos	Chinese kale Drumstick	2.68E-01	3.75E-03	1.38E-02	0.29	29	0.61
Mevinphos	Moringa	4.95E-05	7.88E-07	1.18E-02	0.012	15	4.0
Difenoconazole	For all crops	8.05E-02	2.70E-03	6.64E-03	0.090	9.0	0.19
Dimethoate	Roseapple	1.06E-03	2.77E-04	8.20E-02	0.083	4.2	0.089
Carbendazim	Guava	4.39E-03	4.29E-02	7.01E-02	0.12	3.9	0.083
Carbendazim	Chinese kale	3.83E-03	3.74E-02	6.12E-02	0.10	3.4	0.073
Propineb	Roseapple	3.00E-05	8.11E-03	1.53E-02	0.023	3.4	0.071
Diflubenzuron	Roseapple	1.31E-02	2.42E-02	1.98E-03	0.039	2.0	0.042
Metalaxyl	For all crops	6.58E-03	4.37E-04	6.57E-02	0.073	0.91	0.019
Malathion	Guava	6.31E-02	8.27E-03	8.89E-02	0.16	0.53	0.011
Mancozeb	Roseapple	2.23E-04	3.65E-03	5.06E-03	0.0089	0.30	0.0063
Mancozeb	Amaranth	2.19E-04	3.59E-03	4.97E-03	0.0088	0.29	0.0062
Glyphosate	For all crops	5.08E-06	1.92E-04	3.57E-02	0.036	0.12	0.0025

Thailand (mono-crop site)

Pesticide	Crop	NEDI	NEDI	NEDI	NEDI	NEDI/	NEDI
		Fish	Macr.	Water	Total	ADI	/ARfD
EPN	Longbean	2.25E-01	9.30E-03	3.73E-03	0.24	23761	495
Dicrotophos	Tangerine	6.36E-06	3.46E-07	5.19E-03	0.0052	2599	55
Cypermethrin	Tangerine	6.45E+00	4.16E-01	4.86E-03	6.9	137	2.9
Profenofos	Tangerine	6.10E-01	8.54E-03	3.15E-02	0.65	65	1.4
Zineb	Tangerine	6.74E-03	8.59E-02	1.62E-01	0.25	51	1.1
Methamidophos	Tangerine	1.09E-04	1.53E-06	1.61E-01	0.16	40	0.86
Abamectin	Tangerine	1.19E-02	3.48E-02	6.64E-04	0.047	24	0.50
Abamectin	Longan	1.00E-02	2.94E-02	5.60E-04	0.040	20	0.43
Carbendazim	Tangerine	1.88E-02	1.84E-01	3.00E-01	0.50	17	0.36
Tetradifon	Tangerine	2.09E-01	9.61E-02	7.74E-03	0.31	16	0.33
Dimethoate	Tangerine	2.23E-03	5.82E-04	1.72E-01	0.17	8.7	0.19
Mancozeb	Tangerine	6.26E-03	1.03E-01	1.42E-01	0.25	8.4	0.18
Methamidophos	For all crop	6.35E-06	8.86E-08	9.32E-03	0.0093	2.3	0.050
Dimethoate	Longan	2.88E-04	7.52E-05	2.23E-02	0.023	1.1	0.024
Methamidophos	Guava	2.72E-06	3.80E-08	4.00E-03	0.0040	1.0	0.021

Carbendazim	Longbean	1.07E-03	1.04E-02	1.71E-02	0.029	1.0	0.020
Carbofuran	Coconut	1.04E-04	9.04E-05	1.63E-03	0.0018	0.91	0.20
Methomyl	Tangerine	4.82E-05	2.34E-05	1.23E-02	0.012	0.62	0.62
Carbendazim	Longan	5.56E-04	5.43E-03	8.88E-03	0.015	0.50	0.011
					0.0006		
Carbaryl	Tangerine	3.82E-05	5.49E-05	5.22E-04	1	0.077	0.0031
Captan	Tangerine	1.26E-03	1.76E-03	1.62E-03	0.0046	0.046	0.0010

Sri Lanka (farm channel)

Pesticide	Crop	NEDI	NEDI	NEDI	NEDI	NEDI/	NEDI
	-	Fish	Macr.	Water	Total	ADI	/ARfD
Fenobucarb	Chilli	4.20E-02	2.55E-03	5.48E-02	0.10	985	21
Fenobucarb	Onion	3.15E-02	1.92E-03	4.11E-02	0.075	739	16
Fenobucarb	Rice	3.15E-02	1.92E-03	4.11E-02	0.075	739	16
Alachlor	Onion	4.36E-02	2.65E-03	3.16E-02	0.078	156	3.3
Alachlor	Rice	4.36E-02	2.65E-03	3.16E-02	0.078	156	3.3
Chlorpyrifos	Chilli	1.03E+00	6.06E-02	3.19E-02	1.1	112	11
Chlorpyrifos	Onion	1.03E+00	6.05E-02	3.18E-02	1.1	112	11
Carbaryl	Chilli	6.34E-03	9.10E-03	8.65E-02	0.10	13	0.51
Carbaryl	Onion	6.13E-03	8.81E-03	8.38E-02	0.10	12	0.49
MCPA	Chilli	4.79E-02	4.15E-03	6.75E-02	0.12	12	0.25
MCPA	Onion	4.79E-02	4.15E-03	6.75E-02	0.12	12	0.25
MCPA	Rice	4.79E-02	4.15E-03	6.75E-02	0.12	12	0.25
Carbofuran	Chilli	1.24E-03	1.08E-03	1.94E-02	0.022	11	2.4
Carbofuran	Rice	6.39E-04	5.56E-04	1.00E-02	0.011	5.6	1.2
Dimethoate	Chilli	7.78E-04	2.03E-04	6.02E-02	0.061	3.1	0.065
Dimethoate	Onion	6.40E-04	1.67E-04	4.95E-02	0.050	2.5	0.054
Dimethoate	Rice	6.40E-04	1.67E-04	4.95E-02	0.050	2.5	0.054
Captan	Onion	4.23E-02	5.88E-02	5.41E-02	0.16	1.6	0.033
Captan	Rice	4.23E-02	5.88E-02	5.41E-02	0.16	1.6	0.033
Mancozeb	Chilli	1.01E-03	1.66E-02	2.30E-02	0.041	1.35	0.029
Mancozeb	Onion	1.01E-03	1.66E-02	2.30E-02	0.041	1.35	0.029
Mancozeb	Rice	1.01E-03	1.66E-02	2.30E-02	0.041	1.35	0.029
Propanil	Chilli	6.23E-02	2.99E-03	2.99E-02	0.10	0.48	0.010
Propanil	Onion	6.23E-02	2.99E-03	2.99E-02	0.10	0.48	0.010
Propanil	Rice	6.23E-02	2.99E-03	2.99E-02	0.10	0.48	0.010
Glyphosate	Chilli	4.46E-06	1.69E-04	3.13E-02	0.032	0.11	0.0022
Glyphosate	Onion	4.46E-06	1.69E-04	3.13E-02	0.032	0.11	0.0022
Glyphosate	Rice	4.46E-06	1.69E-04	3.13E-02	0.032	0.11	0.0022

Pesticide	Crop	NEDI	NEDI	NEDI	NEDI	NEDI/	NEDI
	r	Fish	Macr.	Water	Total	ADI	/ARfD
Fanobucarb	Onion	3 15E 04	1.09日 05	411F04	0.00	71	0.16
Fenobucarb	Chilli	1 40E 04	9.51E-00	4.11E-04	0.00	7.4 9.9	0.10
Fenoducard	Chilli	1.40E-04	8.31E-00	1.83E-04	0.00	3.3	0.070
Alachlor	Onion	4.36E-04	2.65E-05	3.16E-04	0.00	1.6	0.033
Chlorpyrifos	Onion	1.03E-02	6.05E-04	3.18E-04	0.01	1.1	0.11
Fenobucarb	Rice	3.13E-05	1.90E-06	4.08E-05	0.00	0.73	0.016
Chlorpyrifos	Chilli	3.44E-03	2.03E-04	1.07E-04	0.00	0.37	0.037
Alachlor	Rice	4.37E-05	2.65E-06	3.17E-05	0.00	0.16	0.0033
Carbaryl	Onion	6.13E-05	8.81E-05	8.38E-04	0.00	0.12	0.0049
MCPA	Onion	4.79E-04	4.15E-05	6.75E-04	0.00	0.12	0.0025
Carbaryl	Chilli	2.11E-05	3.03E-05	2.88E-04	0.00	0.042	0.0017
MCPA	Chilli	1.60E-04	1.38E-05	2.25E-04	0.00	0.040	0.00085
Carbofuran	Chilli	4.15E-06	3.62E-06	6.50E-05	0.00	0.036	0.0081
Dimethoate	Onion	6.40E-06	1.67E-06	4.95E-04	0.00	0.025	0.00054
Captan	Onion	4.23E-04	5.88E-04	5.41E-04	0.00	0.016	0.00033
Mancozeb	Onion	1.01E-05	1.66E-04	2.30E-04	0.00	0.014	0.00029
MCPA	Rice	4.79E-05	4.15E-06	6.75E-05	0.00	0.012	0.00025
Dimethoate	Chilli	2.60E-06	6.79E-07	2.01E-04	0.00	0.010	0.00022
Carbofuran	Rice	6.39E-07	5.56E-07	1.00E-05	0.00	0.0056	0.0012
Propanil	Onion	6.23E-04	2.99E-05	2.99E-04	0.00	0.0048	0.00010
Mancozeb	Chilli	3.38E-06	5.54E-05	7.67E-05	0.00	0.0045	0.000096
Dimethoate	Rice	6.36E-07	1.66E-07	4.92E-05	0.00	0.0025	0.000053
Propanil	Chilli	2.08E-04	9.99E-06	1.00E-04	0.00	0.0016	0.000034
Captan	Rice	4.24E-05	5.89E-05	5.42E-05	0.00	0.0016	0.000033
Mancozeb	Rice	1.03E-06	1.68E-05	2.33E-05	0.00	0.0014	0.000029
Glyphosate	Onion	4.46E-08	1.69E-06	3.13E-04	0.00	0.0011	0.000022
Propanil	Rice	6.24E-05	3.00E-06	3.00E-05	0.00	0.00048	0.000010
Glyphosate	Chilli	1.48E-08	5.62E-07	1.04E-04	0.00	0.00035	0.0000074
Glyphosate	Rice	4.51E-09	1.71E-07	3.17E-05	0.00	0.00011	0.0000023

Sri Lanka (tank)