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ABSTRACT
Climate models contain numerous parameters for which the numeric values are uncertain. In the context of climate
simulation and prediction, a relevant question is what range of climate outcomes is possible given the range of parameter
uncertainties. Which parameter perturbation changes the climate in some predefined sense the most? In the context of the
LORENZ 63 model, a method is developed that identifies effective parameter perturbations based on short integrations.
Use is made of the adjoint equations to assess the sensitivity of a short integration to a parameter perturbation. A key
feature is the selection of initial conditions.

1. Introduction

Complex numerical models are used to make expectations for
the Earth’s future climate. The reliability of these expectations
is unknown. One contributing factor is the existence of uncertain
model parameters which leads to uncertainties in the outcome of
the simulations. Ideally one would like to quantify these uncer-
tainties. In IPCC (2001), it is stated that a systematic evaluation
of the effect of parameter uncertainties on the simulation of the
present climate and the transient climate response is urgently
needed. A direct approach, perturbing parameters and making
additional climate simulations, is infeasible due to computational
constraints. Many expensive simulations are required since the
simulated climate is bound to be more sensitive to some parame-
ter changes than to others. It would therefore be of great practical
use to be able to identify effective parameter perturbations a pri-
ori on the basis of short integrations. However, it is not at all
clear that this is possible. Some previous studies shed light on
this issue.

Corti and Palmer (1997) presented evidence that sensitivi-
ties based on short-term integrations are relevant for changes
in long-term statistics. They calculated for a quasi-geostrophic
atmospheric model perturbations to initial conditions that max-
imize the projection of the perturbations after 5 days on to a
particular pattern, the NAO or PNA in their case. Next they av-
eraged these optimal perturbations of 2000 initial conditions.
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This averaged perturbation was put on the right-hand side of the
equation as an additional time-invariant forcing. The probability
density function (PDF) of the amplitude of the PNA pattern was
determined for the reference and the perturbed forcing from a
long integration. The result was that the PDF of the PNA pattern
changed a lot due to the forcing perturbation and more so than
with a forcing perturbation in the direction of the PNA pattern
itself. This result suggests that in order to find parameter or forc-
ing perturbations to which the climate is sensitive, use can be
made of the sensitivity of short-term evolutions to such pertur-
bations. In our terminology, forcing terms refer to parameters in
the tendency equations that are not multiplied by state variables.

Lea et al. (2000) also worked on the idea that short-term evo-
lutions can be used for a sensitivity analysis of the climate. In
the LORENZ 63 model (Lorenz, 1963) a brute-force method was
used to assess the effect of changes in parameter r on the cli-
mate mean. The climate sensitivity was then measured in terms
of �z̄∞/�r , where z̄∞ is the average value of the variable z over
a time interval of length τ , as τ → ∞. They found that an in-
termediate time scale τ - exists for which adjoint calculations to
determine �z̄τ∗/�r , ensemble averaged over a set of initial con-
ditions, gives a reasonable estimate of �z̄∞/�r . This result is
another indication that it makes sense to try to identify effective
parameter perturbations on the basis of short-term integrations.

Hall (1986) showed the potency of using the adjoint equations
to determine climate sensitivities by determining the sensitiv-
ity of the global mean surface air temperature for variation in
different model parameters of an atmospheric model with pre-
scribed sea surface temperatures. Using 10-d integrations, the
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sensitivities estimated with the use of adjoints agreed to within
20% with the sensitivities obtained directly by rerunning the
model. A question remains as to whether this 10-d estimate pro-
vides a reasonable estimate for the sensitivity of the temperature
averaged over a 30-yr period. Also, it is not clear whether the ad-
joint equations yield useful sensitivities for longer integrations,
since the atmosphere is a chaotic system, for which the evolution
depends sensitively on small changes in the initial condition.

In this paper we develop an efficient method that can identify
parameter perturbations on the basis of short-term integrations
that cause, with high probability, large changes in the simulated
climate. In this way, estimates can be obtained of the range of
possible climate outcomes given the uncertainties in model pa-
rameters. Changes in the probability of certain types of circula-
tion that have a great influence on a regional climate are the main
focus. The method is developed in the context of a simple numer-
ical model used as a climate metaphor, namely the LORENZ 63
model, and, motivated by the studies mentioned above, is based
on the effect of parameter perturbations on short-term evolutions.

In Section 2 the modified LORENZ 63 model and its character-
istics are described. In Section 3 we describe the methods that we
used to identify effective parameter perturbations in the LORENZ

63 model. (Effective parameter perturbations are the parameter
perturbations that change model simulations the most.) Section
4 contains our conclusions and a discussion.

2. LORENZ63 model

We take the LORENZ 63 model (Lorenz, 1963) as a climate
metaphor. It is described by three differential equations, describ-
ing the time evolution of state variables x, y and z and contains
three parameters, σ ′, r′ and b′. Following Palmer (1999), two
additional parameters cx

′ and cy
′ are introduced to break the

symmetry of the solution:

ẋ = −σ ′x + σ ′ y + c′
x ,

ẏ = −xz + r ′x − y + c′
y,

ż = xy − b′z.
(1)

For certain parameter settings, the model solution consists of ir-
regular transitions between two unstable equilibria, which might
be thought of, in meteorological terms, as representing blocked
or zonal flow regimes. If the parameters in the model are set
at their standard values, (σ ′, r ′, b′, c′

x , c′
y) = (10, 28, 8

3 , 0, 0) =
(σ0, r0, b0, cx0, cy0), the two regimes are equally populated. To
characterize their population, we determine from a long simu-
lation the probability density function (PDF) along the vector
connecting the two regimes. Prior to this, the time series is low-
pass filtered with a running mean of one time unit. The resulting
PDF clearly shows the existence of equally populated regimes,
see Fig. 1.

A parameter γ , measuring the asymmetry, is introduced. Its
value is obtained by integrating the PDF over the left half of its
domain, subtract it from 0.5 and multiply by 2. A value of 0 cor-

Fig 1. Probability density function of low-pass filtered time series of
the projection onto the vector connecting the two regimes, for the
LORENZ 63 model with standard parameter values.

responds to a symmetric PDF, which is obtained for the standard
values, values of ±1 are limiting values corresponding to the
population of one regime only. Changes in the population of the
regimes are of interest, since regime behaviour in climate models
has a large influence on regional climates. When compared with
blocked or zonal flows, more blocked flows near Europe causes
dryer and warmer periods in summer or dryer and colder periods
in winter for Western Europe and more wet and stormy weather
to the north and south of the blocking (Oortwijn and Barkmeijer,
1995).

We assume that the model parameters are uncertain within
±5% of their standard values (cx

′ and cy
′ can vary by ±1).

For mathematical convenience, this is accomplished by choosing
a new set of parameters, (σ0 + 0.5σ, r0 + 1.4r , b0 + 2

15 b, cx0 +
cx , cy0 + cy), where the parameters σ , r, b, cx, cy can vary be-
tween [ − 1, 1].

3. Finding the effective parameter
perturbations

The question we wish to address is the following: what is the
maximum value of γ possible, given the specified uncertainties
in the parameters of the LORENZ 63 model. Or, in meteorological
terms, does a model allow a climate solution with more blocked
flows, leading to more frequent cold spells in winters in Europe
for instance. One approach to determine this maximum value of
γ , is by the use of the direct method (Dickinson and Gelinas,
1976).

3.1. The direct method

The direct method is a ‘brute-force’ method; random parameter
perturbations are drawn from a uniform distribution on a five-
dimensional unit-sphere in parameter space, centered around the
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Fig 2. Probability density function of asymmetry γ of randomly
chosen parameter perturbations (solid line), together with an idealized
PDF (dashed line).

standard values ((σ0, r0, b0, cx0, cy0) = (10, 28, 8
3 , 0, 0)). Note

that because of the special choice of the parameters, points on
this unit-sphere correspond to parameter perturbations that lie
within the specified range of 5% uncertainty. For each of these
random perturbations, γ is estimated from a long integration (80
000 time units). The length of 80 000 time units allows γ to
be estimated to within an absolute error of about 0.001. A total
of 50 000 random parameter perturbations were evaluated. The
values of γ obtained are displayed in the form of an estimate of
the probability density function of γ in Fig. 2 (solid line). The
PDF estimate was obtained by dividing the range of γ , [ − 0.10,
0.10] into 100 bins, counting the number of occurences in each
bin and finally dividing by the total number of draws.

The PDF of γ is centered around zero, is uni-modal and is
bounded from below by −0.08 and above by 0.08. The max-
imum is found at zero, which means that the most probable
climate solution, given the uncertainties in the parameters, has
equal probabilities for both regimes. However, climate solutions
are possible with 8% more occurences of one regime. The PDF
indicates that the chance of picking a parameter perturbation that
leads to such an asymmetric solution is small. Most parameter
perturbations lead to fairly symmetric solutions. This means that
many draws are needed to estimate the range of possible values
of γ . Therefore it would be of great practical use to be able to
draw effective parameter perturbations, that is perturbations that
most effectively change γ , a priori, also since long simulations
are computationally demanding. Ideally one would like to draw
effective parameter perturbations only, as indicated by the ideal-
ized PDF in Fig. 2 (dashed line). We wish to determine these on
the basis of short model simulations. That this might be possi-
ble is based on the notion that systematic changes in short-term
evolutions change long-term statistics.

3.2. The adjoint method

3.2.1. Effective parameter perturbations and short-term in-
tegrations. To follow up on this idea, we choose two sets of
effective parameter perturbations from the tails of the distribu-
tion of γ in Fig. 2, which we call EP+ and EP−, and investigate
the effect of these perturbations on short model evolutions in
order to find a means to detect these effective parameter per-
turbations a priori on the basis of short model evolutions alone.
Our short integrations take 2 time units. This is sufficiently long
for a regime transition to take place as well as sufficiently short
for the linear approximation to still be accurate enough in most
cases. For a realistic atmospheric model, this range would be
3–5 d (Oortwijn and Barkmeijer, 1995).

In Fig. 3 two short-term evolutions of 2 time units, for unper-
turbed parameters, referred to as a reference orbit are plotted.
In Figs. 3a and c we also plotted the end points of additional
evolutions from the same initial condition but with randomly
perturbed parameters (grey and black points). In Figs. 3b and c
the end points of orbits with the selected perturbed parameters
EP+ (black) and EP− (grey) are plotted. The two regimes are
indicated by the large grey and black dot. The black points in
Figs. 3a and c are calculated using the non-linear equations (1),
whereas the grey points in Figs. 3a and c, and EP+ and EP− in
3(b) and (d) are calculated using a linear approximation of the
equations around the reference orbit, referred to as the tangent
linear equations.

Using the tangent linear equations, a cheap method exists to
calculate the parameter perturbation yielding the largest devia-
tion at the end of the reference orbit. The method is based on
a singular-value decomposition (SVD) of the linear mapping of
the parameter perturbation on to the changes in the end point of
the reference orbit. The first right singular vector corresponds
to the parameter perturbation and is mapped on to the first left
singular vector, which corresponds to the direction of largest
change of the end point of the reference orbit. The correspond-
ing singular value equals the length of the left singular vector.
The method is described in the appendix and is very similar to
the procedure for finding the perturbation to the initial condi-
tions yielding the largest change at the end of the reference orbit
(Barkmeijer, 1996).

The linearly evolved random parameter perturbations (grey
points) in Figs. 3a and c form an ellipsoid centered around the
end point of the reference orbit (black line). The deviation of
the black cloud from the grey one is an indication of the limited
accuracy of the linearized solution. This accuracy depends on
the magnitude of the deviations from the reference orbit (δ g,
see the appendix) which grow in time, for some reference orbits
faster than for others.

Focussing on the effective perturbations EP+ and EP−, we
observed that for some reference orbits they do not lie in distinct
areas of the cloud (Fig. 3b), but that for others EP+ and EP− are
clearly separated and lie on the end points of the first left singular
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Fig 3. The black line is a reference orbit of 2 time units in the 3-D state space of the LORENZ 63 model. The two regimes are indicated by the large
grey and black dot. In (a) and (c) the grey and black points are respectively the linearly and non-linearly evolved random parameter perturbations, all
from the same initial condition. In (b) and (d) the grey and black points are EP− and EP+, respectively. In (b) EP− and EP+ do not lie in distinct
area’s. In (d) EP− and EP+ are clearly separated and lie on the ends of the first left singular vector. Note also that the change induced by the
parameter perturbations is not directed along the vector connecting both regimes, but instead is almost perpendicular to it.

vector, as shown in Fig. 3d. Thus for reference orbits like this
one, the first right singular vector is likely to be an effective
parameter perturbation.

The only problem is how to select orbits such as in Fig. 3d
without any knowledge of EP+ and EP−. By shifting reference
orbits in time one timestep after another and examining the be-
haviour of EP+ and EP−, we discovered that the separation along
the first singular vector takes place just after an episode when
the first singular value has grown to very large values. As an
illustration of this, we have plotted the first singular value for
subsequent reference orbits in time in Fig. 4. Every now and
then the singular value exceeds 8000 and comes down again
below 220. At this moment, EP+ and EP− are separated along
the first left singular vector, and the first right singular vector is
likely to be an effective parameter perturbation. This empirical
finding gives us a recipe to draw potentially effective parameter
perturbations a priori:

(1) shift the reference orbit in time;

(2) select a reference orbit according to the evolution of the
first singular value (after a period of extensive growth);

(3) determine for that reference orbit the first singular vector
using the adjoint method, use this as a parameter perturbation.

For the computation of the first singular vector and the value
corresponding to a reference orbit, one needs to calculate this
reference orbit (this is a non-linear integration of 2 time units),
the tangent linear and the adjoint equations (both at the cost
of twice that of a non-linear integration of 2 time units). This
is a total cost of five times a non-linear integration of 2 time
units. In Fig. 4 it is shown that on average the first singular value
exceeds 8000 four times per 200 shifts of the reference orbit
in time. So on average one needs to shift the reference orbit
in time 50 times before finding a suitable initial condition. So
the total cost to find an effective parameter perturbation is 50
× 5 × 2 = 500 time units of a non-linear integration, which
is only a fraction of the 80 000 time units needed for one long-
term non-linear climate integration. Since this method of finding
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Fig 4. A plot of the first singular value which measures the maximum
change possible in the end state of the reference orbit. The reference
orbit has a duration of 2 time units and is shifted in time in discrete
steps of 0.1 time unit.

effective parameter perturbations has so little computational cost
compared with one long-term non-linear integration, it is relevant
to use this method to select effective parameter perturbations a
priori instead of perturbing at random and making a long-term
integration for each of these perturbations.

3.2.2. Effectiveness of the adjoint method. To evaluate the
effectiveness of the parameter perturbations determined from
the first singular value of selected initial conditions as described
above, we made long integrations of 80 000 time units for a total
of 50 000 parameter perturbations and calculated γ for each one
of these, as we did with the direct method. The PDF of γ is
shown in Fig. 5a.

The solid line is the PDF of γ of randomly chosen parameter
perturbations, the dashed line is the PDF of γ of the potentially
effective parameter perturbations. It is quite clear that the adjoint
method applied to specially selected initial conditions draws al-
most no parameter perturbation that leads to a symmetrical PDF
of the LORENZ 63 model (γ = 0) and has a much higher proba-
bility to draw effective parameter perturbations than the random
method does. In Fig. 5b the cumulative distribution of both the di-
rect (solid line) and adjoint (dashed line) method are shown. This
is the probability to draw a parameter perturbation that yields |γ |
≥ x. For example, the probability to draw parameter perturba-
tions that gives an asymmetry higher than 6%, that is |γ | ≥ 0.06
with the direct method is 7.7%, whereas with the adjoint method
this probability is 17.8%, which is 2.29 times as high. This re-
sult is proof that sensitivities based on short integrations contain
valuable information on the sensitivity of long-term statistics to
parameter perturbations, at least for the LORENZ 63 model.

Inspecting the PDF of the adjoint method in Fig. 5a again,
it seems that there are two groups of parameter perturbations,
one more effective than the other. These perturbations might be
related to two sets of reference orbits from which they were

a

b

Fig 5. (a) Probability density function of the asymmetry γ . The solid
line is the PDF of randomly chosen parameter perturbations, the dashed
line is the PDF of parameter perturbations calculated with our adjoint
method. (b) Cumulative distribution of both the direct (solid line) and
adjoint (dashed line) method. This is the probability to draw a
parameter perturbation that yields |γ | ≥ x.

calculated that lie on different areas of the attractor. In Fig. 6
the 25 000 initial values of the reference orbits are plotted that
were used to calculate the perturbations (we used both the first
singular vector and the opposite signed first singular vector as
parameter perturbations to obtain 50 000 draws).

We can divide the initial values broadly into two sets. Set 1
contains the initial conditions in the centre part, set 2 contains
the two groups of initial values at the left- and right-hand sides
of the attractor. We made separate PDFs of γ of these two sets
(see Fig. 7). The dashed line is the same PDF as in Fig. 5a, for
all the initial conditions, the dotted dashed line is the PDF for set
1 and the dotted line for set 2. The reference orbits with initial
values from set 1 yield more effective parameter perturbations
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Fig 6. Initial conditions of the reference orbits just after an episode
when the first singular value has grown to very large values.

Fig 7. Probability density function of the asymmetry γ . The dashed
line is the PDF of parameter perturbations of the adjoint method (as in
Fig. 5a), for all initial conditions shown in Fig. 6. The dotted dashed
line is the PDF for the set of initial conditions in the centre part in Fig.
6 (set 1) and the dotted line is the PDF for the set of initial conditions
on the left- and right-hand sides of the attractor in Fig. 6 (set 2).

than set 2. Unfortunately, this is an observation after the fact and
cannot be used to make the adjoint method more effective.

We performed an extra experiment to make sure that the ini-
tial conditions, selected after the reference orbit passed through
a sensitive area on the attractor, yield effective parameter pertur-
bations. For this, we took the first singular vector as a parameter
perturbation for reference orbits 0.1 time unit apart irrespective
of the value of the first singular value. For 50 000 perturbations γ

was calculated on the basis of 80 000 time unit long trajectories.
This gave us the PDF of γ shown in Fig. 8a with a dotted dashed
line. Clearly this method is not optimal for drawing effective
parameter perturbations. Although this method still gives fewer
ineffective parameter perturbations than the random method, it

a

b

Fig 8. Probability density functions of the asymmetry γ . The solid line
in (a) and (b) is the PDF for the direct method (as in Figs. 2 and 5a). In
(a) and (b) the dotted dashed line is the PDF of γ taking as parameter
perturbations the first singular vector of arbitrary initial conditions. The
dotted PDF in (b) is the PDF where parameter perturbations correspond
to first singular vectors with very large corresponding singular values
only.

also gives less effective ones. Furthermore, the peaks of the PDF
correspond to smaller values of γ than the two highest peaks of
the dashed PDF based on the selection of specific initial condi-
tions.

In another experiment to verify the effectiveness of our adjoint
method, we took only first left singular vectors as our parame-
ter perturbations, with very large corresponding singular values
(greater than 8000). Again, for 50 000 perturbations γ was cal-
culated on the basis of 80 000 time unit long trajectories. This
gave us the dotted PDF in Fig. 8b. This is hardly an improvement
of the previous PDF in Fig. 8a. Although there are fewer param-
eter perturbations drawn that give a value γ close to 0, there are
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Fig 9. PDF of the percentages of the length of the projection of the
singular vector on to the (cx, cy)-plane compared with the length of the
singular vector, drawn with the adjoint method.

also no parameter perturbations that give a value |γ | greater than
0.06.

Another interesting aspect is the contribution of the forcing
parameters cx and cy to the asymmetry of the model. To illustrate
this, we project the first singular vector on to the (cx, cy)-plane
and calculated the percentage of this length compared with the
total length of the first singular vector. We did this for all the sin-
gular vectors drawn with the adjoint method, which were used
as parameter perturbations. We plotted a PDF of these percent-
ages in Fig. 9. The solid line represents the percentages of all the
singular vectors drawn with the adjoint method, the dashed line
represents the percentages of the singular vectors that cause an
asymmetry higher than 6%. The solid line has two large peaks,
one around 45% and one around 92%. The dashed line has one
peak around 92%. This does indicate that the forcing parameters
cx and cy play an important role in causing asymmetry, however,
it is also possible to cause a large asymmetry with a contribu-
tion of cx and cy of for instance 60%, so it is useful to take all
parameters into consideration when making perturbations.

To conclude, the adjoint method yields effective parameter
perturbations for specific initial conditions that can be selected
a priori based on the history of the behaviour of the first singular
value.

4. Conclusions and discussion

In this study we set out to develop an efficient method to identify
parameter perturbations that cause large changes in the simu-
lated climate. The method is based on the sensitivity of short
integrations to parameter perturbations. These sensitivities can
be calculated efficiently using the adjoint method (Errico, 1997).
The method is developed in the context of the LORENZ 63 equa-
tions. It turns out that for specific initial conditions, the parameter
perturbations that give rise to the largest changes in the short term

also tend to be effective in changing the long-term climate statis-
tics as measured by the asymmetry of the PDF. A priori selection
of these special initial conditions is possible. They tend to oc-
cur just after the trajectory has passed through a very sensitive
area where small parameter perturbations can cause the largest
changes in the short-term evolution. We do not know why this
is, but we do know that parameter perturbations for reference
orbits with the largest short-term sensitivities are not effective in
perturbing the climate solution.

Since this method of selecting parameter perturbations within
the specified uncertainties has a higher probability of drawing
effective parameters than the direct method, it is more likely that
a good estimate of the largest changes possible in the simulated
climate can be obtained with this method when only making a
few long-term integrations. One provision must be made; ad-
joint equations of the model under consideration are needed to
determine the short-term sensitivities efficiently. Only a few cli-
mate integrations can be made for realistic models due to com-
putational constraints. It pays to identify potentially effective
parameter perturbations a priori; probably more so for higher-
dimensional systems. It is well known that for atmospheric mod-
els most perturbations to initial conditions are rather ineffective
since they decay in most of the dimensions in the state space.
For similar reasons, most parameter perturbations are bound to
be ineffective. There are a relatively low number of unstable
directions.

The customary adjoint equations for estimating sensitivities of
short-term trajectories to changes in the initial conditions need
to be expanded to include the effect of changes in parameters
as well. A first step in this direction was taken by Barkmeijer
et al. (2002) who included the effect of changes of the forcing
terms in the right-hand side of the tendency equations. The most
effective changes to the forcing terms for a given reference orbit
were called forcing singular vectors.

In this study we have shown the relevance of short-term sen-
sitivities for the sensitivity of long-term statistics for parame-
ter changes. Also Corti and Palmer (1997) presented evidence
that sensitivities based on short-term integrations are relevant for
long-term statistics. In their study, they ensemble averaged over
2000 initial conditions the perturbation to the initial condition
that changed the projection of the end point of a 5-d integration
on to the PNA pattern the most and put their averaged pertur-
bation as a forcing perturbation on the right-hand side of the
equations. Although they noted a large change in the PDF of the
PNA pattern due to this forcing, a question remains as to whether
this is the maximum change possible given the size of the forc-
ing perturbation. To answer this question in the context of the
LORENZ 63 model, we performed a similar analysis. We deter-
mined parameter perturbations that maximize the projection of
the end points of the perturbed reference orbit on to the vector
connecting both regimes. For a total of 50 000 initial conditions,
we determined the mean parameter perturbation. This mean per-
turbation was scaled to correspond to the specified uncertainty
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of 5%. This perturbation yields an asymmetry γ of only 5% of
the maximum γ possible, indicating that just averaging optimal
perturbations will not necessarily yield an effective parameter
perturbation. In contrast, our results indicate that the initial con-
dition of the reference orbit matters.

Lastly, so far the method has only been tested in the context
of the LORENZ 63 model. A natural next step is to evaluate the
method in the context of a more realistic atmospheric model.
Work along these lines is under way.
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6. Appendix: the tangent linear equations

Usually, the tangent linear equations are derived for deviations
in the state space variables only. Here we include perturbations
in model parameters as well. For this purpose, we introduce the
vector q, which consists of the vector x = (x, y, z) in state space
and the vector α = (σ , r, b, cx, cy) in parameter space, so

q =
(

x

α

)
, q̇ =

(
ẋ

α̇

)
=

(
F1(x, α)

F2(α)

)
=

(
F1(x, α)

0

)
= F(q).

The tangent linear equations are derived as follows:

q̇ = F(q) ⇒ ˙(qr + δqr) = F(qr + δqr)

≈ F(qr) + Jδqr + O(|δqr|2)

⇒ q̇r + ˙δqr ≈ F(qr) + Jδqr

⇒ ˙δqr ≈ Jδqr

where J is the Jacobi matrix, qr denotes the reference orbit and
where

J = ∂F(q)

∂q

∣∣∣∣∣
qr

=




∂F1(x, α)

∂x
∂F1(x, α)

∂α
∂F2(α)

∂x
∂F2(α)

∂α




∣∣∣∣∣∣
qr

=

 ∂F1(x, α)

∂x
∂F1(x, α)

∂α

0 0




∣∣∣∣∣∣
qr

the tangent linear equations of the LORENZ 63 model (1) read as

δ̇x = −σ ′ · (δx − δy) − (x − y) · δσ ′ + δc′
x ,

δ̇y = (r ′ − z′) · δx − δy − x · δz′ + x · δr ′ + δc′
y,

δ̇z = y · δx + x · δy − b′ · δz − z · δb′,
˙δσ ′ = 0,

˙δr ′ = 0,

˙δb′ = 0,

˙δc′
x = 0,

˙δc′
y = 0.

For a given reference orbit of duration T the tangent linear equa-
tions project perturbations in vector q at the initial time on to
perturbations in q at the final time. Formally, this linear trans-
formation can be represented by a matrix R: δ q(T) = R(0, T) ·
δ q(0), also referred to as the tangent linear propagator. We only
wish to assess the influence of parameter perturbations on the
flow, not of perturbations in the initial conditions, which means
that δ x(0) = 0 and δ α(0) �= 0. To achieve this, projection matri-
ces P1 and P2 are introduced that project vector q into parameter
space or state space, respectively:

P1q = P1

(
x

α

)
=

(
0

α

)
, P2q = P2

(
x

α

)
=

(
x

0

)
.

Using these matrices, a forward integration of the tangent linear
equations can be rewritten as

P2 R P1δq(0) = δx(T ) ≡ Sδq(0).

When δ q(0) is limited to a hypersphere, δ x(T) lies on an ellip-
soid. Now, for the length of vector δ x(T) we can write

〈δx(T ), δx(T )〉1/2 = 〈Sδq(0), Sδq(0)〉1/2

= 〈ST Sδq(0), δq(0)〉1/2

where 〈, 〉 defines a euclidean inner product and ST is the trans-
pose of S. This length is maximized when δ q(0) is the eigen-
vector of STS with the largest eigenvalue. It corresponds to the
vector of parameter perturbations that evolves into the major axis
of the ellipsoid at time T . The square root of the eigenvalue cor-
responds to the length of the major axis and is an indication of
the sensitivity of the reference orbit to changes in the parameters.

In the literature, this vector is called the first right singular
vector, the corresponding eigenvalue the first singular value. This
terminology stems from the singular-value decomposition of S
(see for instance Press et al. 1986). An arbitrary (m × n) matrix S
can be written as S = UWVT, where U is a column-orthonormal
(m × n) matrix (containing the left singular vectors), W is an (n ×
n) diagonal matrix with positive and zero elements (the singular
values) and VT is the transpose of the orthonormal (n × n) matrix
V (containing the right singular vectors). These singular vectors
are eigenvectors of STS:

ST SV = (U W V T)T(U W V T)V

= V WU TU W V TV = V W 2V TV = V W 2

with eigenvalues equal to the squares of the singular values W.
Matrix S projects the right singular vectors on to the left singular
vectors:

SV = U W V TV = U W .

Thus the left singular vectors are the axes of the ellipsoid.
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