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Abstract 

A new ordination method, called co-correspondence analysis, is developed to relate 
two types of communities (e.g. a plant community and an animal community) 
sampled at a common set of sites in a direct way. The method improves the simple, 
indirect approach of applying correspondence analysis (reciprocal averaging) to the 
separate species data sets and correlating the resulting ordination axes. Co-
correspondence analysis maximizes the weighted covariance between weighted 
averaged species scores of one community and weighted averaged species scores of 
the other community. It thus attempts to identify the patterns that are common to both 
communities. Both a symmetric descriptive and an asymmetric predictive form are 
developed. The symmetric form relates to co-inertia analysis and the asymmetric, 
predictive form to partial least squares regression. In two examples the predictive 
power of co-correspondence analysis is compared with that of canonical 
correspondence analyses on syntaxonomic and environmental data. In the first 
example carabid beetles in roadside verges are shown to be more closely related to 
plant species composition than to vegetation structure (biomass, height, roughness, 
among others), and in the second example bryophytes in spring meadows are shown 
to be more closely related to the species composition of the vascular plants than to the 
measured water chemistry. 

 

Key words: community data; correspondence analysis; canonical correspondence 
analysis; co-inertia analysis; gradient analysis; ordination; partial least squares; 
species-environment relationships 
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Introduction 

Are carabid beetles in roadside verges more closely related to vegetation structure 
than to plant species composition or is the reverse true? To answer such a question 
from field data we need quantitative methods, one to predict the beetle community 
(that is, the incidences and abundances of each of the beetle species) from a set of 
variables characterizing vegetation structure (biomass, height, roughness, among 
others) and another to predict the beetle community from the plant community. (The 
word ‘community’ is used here to mean an assemblage of taxa.) The plant community 
can be thought of as a bio-assay of the environment (Persson 1981, Prentice and 
Cramer 1990). A related question is then: is the beetle community better predicted 
from the measured environmental variables than from the plant community? The data 
on beetles, plants, vegetation structure and environment that we consider are all from 
a common set of sites. 

For relating a biological community to a set of (environmental) predictor variables, 
we have at our disposal methods of multivariate direct gradient analysis (ter Braak 
and Prentice 1988): canonical correspondence analysis for community data showing 
unimodal responses (ter Braak 1986) and redundancy analysis for data with linear 
responses (Jongman et al. 1995, Legendre and Legendre 1998). These methods are 
part of the computer program CANOCO (ter Braak and Šmilauer 2002). Canonical 
correspondence analysis (Table 1) is the method of choice (ter Braak and Prentice 
1988, Jongman et al. 1995) when the community data show unimodal responses, have 
a strong qualitative (presence/absence) nature, and/or are sum-constrained (which 
means that the total abundance per site is fixed or determined by the sampling 
method). This method works to predict the beetle community from the variables on 
the vegetation structure or the environment but not to predict the beetle community 
from the plant community data. The reasons are two-fold: (1) canonical 
correspondence analysis breaks down when the number of predictor variables, the 
individual plant species in our case, is larger than the number of sites, and (2) the 
method uses linear combinations -weighted sums (Jongman et al. 1995) - of the 
predictor variables, which does not work well when the community data in the 
predictor role show a unimodal structure, a strong qualitative nature and/or are sum-
constrained, i.e. when the predictor community is better analyzed by a correspondence 
analysis technique than by a linear technique such as principal components analysis 
(ter Braak and Juggins 1993, ter Braak et al. 1993, Frisvad and Norsker 1996). 

A possible approach is to analyze the community data sets separately by (detrended) 
correspondence analysis (or another suitable indirect gradient analysis method) and 
correlate the first few axes from these analyses by calculating pairwise correlations 
(Hájek et al. 2002). This method is correlative instead of predictive. It can be made 
predictive by applying a (detrended) correspondence analysis solely to the community 
data in the predictor role and taking the first few resulting axes as predictor variables 
in a canonical correspondence analysis of the community data in the response role. 
This is a two-step (indirect) approach, which works fine if the major pattern of 
variation in the predictor community is important for the response community. This 
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need not to be the case. We therefore need a more generally applicable one-step 
(direct) approach that integrates the two steps of the analysis. With a one-step method 
the most important relationships are expressed in the first few axes so that one can be 
sure one does not miss something important. The new method need to integrate two 
correspondence analyses in a predictive fashion. Before we describe our new method, 
it is instructive to briefly discuss two related methodologies. 

Co-inertia analysis (Dolédec and Chessel 1994) is a general eigenvector framework to 
relate two data sets in a symmetric way, i.e. neither set takes the response or predictor 
role. The ordination axes of co-inertia analysis maximize covariance. The strong 
points of co-inertia analysis are that it can deal with large numbers of variables in 
either set and that it includes, by way of pre-processing and row and column 
weighing, both methods related to principal components analysis (linear response) and 
methods related to correspondence analysis (unimodal response). To the best of our 
knowledge co-inertia analysis has, however, never been used to relate two 
correspondence analysis tables. The reason perhaps is that it is not immediately clear 
how to carry out such a co-inertia analysis because each correspondence analysis 
implies its own site weights (the site’s total abundance of the species in the analysis) 
whereas co-inertia analysis requires common site weights. In this paper we overcome 
this difficulty and we show how to relate two correspondence analysis tables in the 
co-inertia framework. 

Partial least squares (PLS) (Martens and Naes 1992) is a methodology for multivariate 
linear regression, popular in chemometrics, that can handle large numbers of predictor 
variables without much loss of predictive power. As in co-inertia analysis the 
ordination axes of PLS maximize covariance, but the constraints used in the 
maximization differ. We consider PLS the predictive counterpart of unweighted co-
inertia analysis (de Jong and ter Braak 1994). ter Braak and co-workers proposed 
PLS-extensions of existing ecological methods (Table 1). The PLS-extension of 
canonical correspondence analysis, called CCA-PLS, can handle large numbers of 
predictor variables (ter Braak and Verdonschot 1995). CCA-PLS maximizes the 
covariance between weighted averaged species scores and linear combinations of the 
predictor variables. Because CCA-PLS takes linear combinations of the predictor 
variables, it is not the method we are looking for. Weighted averaging calibration 
(Table 1) predicts an environmental variable from community data by averaging 
indicator values of the species present a site (e.g. Persson 1981, Jongman et al. 1995). 
When the indicator values (the species scores of this method) for a particular 
environmental variable are unknown, they can be estimated from training data by 
weighted averaging regression (ter Braak and van Dam 1989, Birks et al. 1990, Fritz 
et al. 1991). The PLS-extension of weighted averaging regression and calibration 
(WA-PLS, ter Braak and Juggins 1993, ter Braak et al. 1993) uses ideas from PLS to 
estimate the indicator values. WA-PLS is popular in palaeoecology for reconstructing 
palaeoenvironments from fossil assemblages (Birks 1998). WA-PLS is called 
correspondence analysis partial least squares by Frisvad and Norsker (1996). The 
community data take the role of response variables in CCA-PLS and the role of 
predictor variables in WA-PLS (Table 1). These methods can be applied by using 
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existing computer programs for PLS (Martens 1986, Wise and Gallagher 2000, Wold 
2002) by pre-processing the community data before it enters PLS and by post-
processing the results of PLS (ter Braak et al. 1993, ter Braak and Verdonschot 1995). 
It can thus be expected that the new method proposed in this paper can formally be 
expressed as a PLS with particular pre- and post-processing steps. The pre- and post-
processing steps are, however, not simply those applied to the community data in 
CCA-PLS and WA-PLS: we must first solve the problem of differences in implied 
site weights. 

Here we propose a new ordination method, called co-correspondence analysis, to 
relate one community data set to another in a direct way (Table 1). Our starting point 
is the reciprocal averaging approach to correspondence analysis (Hill 1973, ter Braak 
and Prentice 1988). We resolve the problem of different sets of site weights, noted 
above, by posing an explicit maximization criterion for co-correspondence analysis: 
the (possibly weighted) covariance between weighted averaged species scores of one 
community with weighted averaged species scores of the other community. The 
weighted averages in the maximization criterion replace the linear combinations used 
in co-inertia analysis, PLS, and principal component analysis. This replacement 
makes the new method a correspondence analysis type of method, suited for unimodal 
data. We define a symmetric, descriptive form, which fits in the framework of co-
inertia analysis, and an asymmetric, predictive form, which is a weighted form of 
PLS. Predictive co-correspondence analysis relates to correspondence analysis just as 
non-weighted PLS relates to principal component analysis. 

We demonstrate the use of co-correspondence analysis in two examples and compare 
its predictive power with that of canonical correspondence analysis on, among others, 
environmental data. In the first example we show that carabid beetles in roadside 
verges are more closely related to plant species composition than to vegetation 
structure or environmental data, and in the second that bryophytes in spring meadows 
are more closely related to the species composition of the vascular plants than to the 
measured water chemistry. 

Theory 

Notation and computation 

Let Y1 = {y1ik}[i = 1 … n; k= 1 … p] and Y2 = {y2il}[i = 1 … n; l = 1 … q] be n × p 
and n × q matrices containing the abundances of each of p and q species of 
community 1 and 2 at each of n sites, respectively.  In the theory and examples that 
follow later on, one data set (Y1) is designated as the community in the “response 
role” and the other (Y2) as the community in the “predictor role”. We then call the 
species in Y1 and Y2 response species and predictor species, respectively. By denoting 
summation across an index by a +, the site (row) weights are y1i+ and y2i+ and the 
species weights are y1+k and y2+l. These weights are also collected in the diagonal 
matrices R1 = diag ({y1i+}), R2 = diag ({y2i+}), K1 = diag ({y1+k}) and K2 = diag 
({y2+l}). To keep the formulae as simple as possible, we preprocess each abundance 
table by dividing its values by the grand total, so that y1++ = 1 and y2++ = 1. This does 
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not change the results of the analyses in this paper. 

In addition, R0 will contain user-defined site weights in the combined analysis of Y1 
and Y2. In predictive co-correspondence analysis, a logical choice is to make R0 equal 
to R1, whereas in the symmetric analysis, one can make R0 = (R1 + R2)/2. These 
choices are justified in the Discussion. In the general case, R0 = diag({ri0}) with ri0 >0 
and r+0 = 1. The results of the analysis are sets of scores for species and sites. We 
denote the vectors of species scores for the two sets by u1 and u2, and the vectors of 
site scores derived from these by x1 and x2. The superscript T denotes the transpose of 
a vector or matrix, Ip the p × p identity matrix and 1p a column vector of p ones. 

Computations were carried out in MATLAB (MATLAB 2000) using the 
PLS_Toolbox version 2.1 (Wise and Gallagher 2000) and in Canoco for Windows 4.5 
(ter Braak and Šmilauer 2002). The extra MATLAB functions for the methods 
presented in this paper and the example data are available as Ecological Archive. 

 

Co-correspondence analysis: definition 

Correspondence analysis of community data is a method that assigns scores to species 
and sites that have certain optimality properties. Weighted averaging is one of the key 
concepts herein (Jongman et al. 1995). When looking for optimal species scores, we 
derive site scores from the species scores by the method of weighted averaging. 
Correspondence analysis assigns species scores so as to maximize the variance of 
these site scores under the constraint that the assigned species scores have unit 
variance. (The method is symmetrical in that ‘species’ and ‘site’ can be interchanged 
in the optimization criterion). For mathematical reasons, the variances are weighted 
with each site and each species receiving a weight proportional to its abundance total. 

When the species can be subdivided in two sets (for example, beetles and plants) and 
the object is to relate these two sets, there are other ways to assign species scores, 
simply because we can calculate two sets of site scores, one from each species set. 
Instead of aiming at maximum variance we can now aim at maximum covariance 
between the sets of site scores, as is done in co-inertia analysis (Dolédec and Chessel 
1994) and in PLS (Martens and Naes 1992, ter Braak and de Jong 1998). More 
precisely, co-correspondence analysis seeks vectors of species scores u1 and u2 that 

(1) maximize     01 2xRxT  with 11
1

11 uYRx −= and 22
1

22 uYRx −= , 

with R0 an n × n diagonal matrix with user-defined weights for the sites, and 

subject to the constraints that the species scores have zero mean and unit variance: 

(2)  0    11 =uK1T
p , 0    22 =uK1T

q  and  1    111 =uKuT ,  1    222 =uKuT .  
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In words, what is maximized   )  ( 01 2xRxT is the covariance between the two sets of 
site scores with common site weights; the covariance is maximized by finding the 
appropriate vectors of species scores u1 and u2. Note however that what is maximized 
is formally not a covariance, because it is not guaranteed that the site scores x1 and x2 
have zero mean. Yet, their mean will be close to zero if R0 ≈ R1 ≈ R2; and if, for 
example, R0 = R1, then the R0–weighted mean of x1 is zero and adding a constant to 
x2 would not change the criterion. Equations (1) and (2) are chosen to give a close link 
with standard correspondence analysis. Specifically, if Y1 = Y2 and we choose R0 = 
R1, then the Eqs (1) and (2) specify a correspondence analysis. By applying the 
Lagrange multiplier method (Magnus and Neudecker 1988) as in ter Braak and de 
Jong (1998), the maximization problem (1) - (2) leads to the transition formulae of co-
correspondence analysis (with λ the Lagrange multiplier, which turns out to be an 
eigenvalue): 

 

(3) *
21

1
11 xYKu T−=λ with 20

1
1

*
2 xRRx −=  

(4) )( 111
1

11 uuYRx −= −  with  ∑
=

+
−
++=

p

k
kyy

1
11

1
11 uu   

(5) *
12

1
22 xYKu T−=  with 10

1
2

*
1 xRRx −=  

(6) )( 222
1

22 uuYRx −= −  with ∑
=

+
−
++=

q

l
lyy

1
22

1
22 uu . 

 

The required optimal species scores are the centered ones, 11 uu − and 22 uu − . Apart 
from terms like 0

1
1 RR −  which account for differences in weights among the sets, all 

equations are weighted averages: 

 the species scores of one set are obtained as weighted averages of the other set’s 
site scores (Eqs (3) and (5)) and 

 the site scores are weighted averages of the species scores of their own set, as 
required by Eq. (1).  

By comparison, the transition formulae of canonical correspondence analysis (ter 
Braak 1986) mix weighted averaging equations with equations from multiple 
regression. 

As in correspondence analysis (Jongman et al. 1995) and canonical correspondence 
analysis (ter Braak 1986), the transition formulae can be solved by an iteration 
algorithm, which starts with arbitrary site scores and then applies the transition 
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formulae in turn (ignoring λ). In contrast with the iteration algorithm of canonical 
correspondence analysis (ter Braak 1986), centering and standardization should be 
applied to each set of species scores, and not to the site scores, as is evident from Eq. 
(2) and Eqs (4) and (6). The MATLAB function COCA-trans in the digital 
supplement gives all details. The algorithm yields the scores for the first ordination 
axis of co-correspondence analysis. 

The transition equations can be condensed to an eigenvalue problem. Solving for the 
dominant eigenvalue λ yields the scores for the first ordination axis. The maximum 
covariance in Eq. (1) is the square root of λ. In the next two subsections we consider 
two different ways of extracting further ordination axes. In the first way the analysis is 
fully symmetrical in Y1 and Y2, whereas it is asymmetric in the second, yielding 
symmetric and predictive co-correspondence analysis, respectively. Despite the 
theoretical differences, the results of two methods need not be very different in 
practice (Burnham et al. 1996). 

Symmetric co-correspondence analysis as a form of co-inertia analysis 

In symmetric co-correspondence analysis the eigenvalue problem of the previous 
subsection is solved not only for the first, dominant eigenvalue, but also for 
subdominant eigenvalues, giving rise to further ordination axes. The resulting species 
scores of different axes are orthonormal, i.e. 111 UKUT = IA and 222 UKUT = IA with A 
axes arranged in columns (A = min(n, p, q)-1; see ter Braak and de Jong 1998). This 
analysis fits in the framework of co-inertia analysis (Dolédec and Chessel 1994) for 
relating two data tables, each represented by a statistical triplet consisting of the data 
table itself and column and row weights. Together the two statistical triplets define an 
eigenvalue problem. By straightforward (but tedious) algebra, it can be shown that 
symmetric co-correspondence analysis is the co-inertia analysis of the statistical 
triplets (Q1, K1, R0) and (Q2, K2, R0) with 

(7) T
pn11KYRQ −= −− 1

11
1

11  and T
qn11KYRQ −= −− 1

22
1

22 . 

Each Qs simply contains the residuals (o-e)/e with o = the observed abundance and e = 
(row total × column total) / (grand total), the expected abundance under row-column 
independence in the original abundance table Ys (s=1,2), when treated as a 
contingency table. Therefore symmetric co-correspondence analysis can be carried 
out by any computer program that can perform co-inertia analysis, such as ADE-4 
(Thioulouse et al. 1995) as outlined in Appendix A. To the best of our knowledge this 
form of co-inertia analysis has not been used before.  

For comparison, separate correspondence analyses are based on the statistical triplets 
(Q1, K1, R1) and (Q2, K2, R2). These triplets cannot be used in a co-inertia analysis 
because of the differences in site weights between the sets if R1 ≠ R2. The analysis of 
the previous section shows that the weighted averaging properties of correspondence 
analysis can be retained by replacing R1 and R2 by a single set of weights R0, which 
can be chosen by the user. This is not the first paper to combine a double-centered 
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table, such as Q1 in Eq. (7), with non-standard row and column weights. Thioulouse et 
al. (1995) did so in their multivariate analysis of local and global spatial patterns. 
Their analysis derives from maximization of the local (or global) spatial 
autocovariance, which is - like our criterion (1)- not a real covariance. 

For further comparison, the simplest form of co-inertia, based on two principal 
components analyses, uses the triplets (Y1, Ip, In) and (Y2, Iq, In) and equals 
interbattery factor analysis (Tucker 1958, ter Braak 1990). It leads to transition 
formulae in which, compared to Eqs (3) - (6), weighted averages are replaced by 
weighted sums (with centering of site scores rather than species scores). Also for 
comparison, canonical correspondence analysis is formally the co-inertia of the 
triplets (Q1, K1, R1) and (Z, 1

1 )( −ZRZT , R1) with Z being the matrix containing the 
environmental data. To facilitate the comparison of the variance explained by co-
correspondence analysis with that of a canonical correspondence analysis of Y1 with 
respect to Z we choose in the examples R0  = R1, although this destroys (strictly 
speaking) the symmetry of the method. For further arguments on this choice, see the 
Discussion section. 

Predictive co-correspondence analysis as a form of partial least squares (PLS) 

Partial least squares regression (PLS) works with ordination axes (called components 
or latent variables in this context) that maximize the covariance between linear 
combinations of response variables and of predictor variables, subject to particular 
constraints (Martens and Naes 1992). PLS differs from co-inertia analysis in two 
ways. First, PLS is less general than co-inertia analysis in that it does not use row and 
column weights. Second, the constraints used in PLS for the second and higher axes 
differ from those used in co-inertia analysis. Rather than requiring that the species 
scores be uncorrelated to those of previous axes, PLS requires that the site scores 
derived from the predictor variables be uncorrelated with the previously derived site 
scores. (There are actually two slightly different versions of multivariate PLS, 
NIPALS and SIMPLS (ter Braak and de Jong 1998) which need not concern us here). 
This simple difference from co-inertia analysis makes PLS asymmetric in the two data 
sets; PLS is a true regression method, and its main use is predictive: to predict one set 
of variables from the other set. In contrast, co-inertia analysis is symmetric in the two 
sets.  

The question arises whether we might find a way to define a predictive version of co-
correspondence analysis by placing it in the PLS framework instead of in the co-
inertia framework. For this we must take account of the row and column weights. But 
there is a general mathematical trick to carry out a weighted analysis by a computer 
program that does not use weights (Seber 1977). The trick is to multiply each row of 
the data matrix by the square root of the row weight and, similarly, each column of 
the data matrix by the square root of the column weight. By applying this trick we 
obtain that predictive co-correspondence analysis of Y1 with respect to Y2 is PLS of 
the response matrix Y with respect to the predictor matrix X with 
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(8) 2/1
11

2/1
0 KQRY =  and 2/1

22
2/1

0 KQRX = , 

in which Q1 and Q2 are derived from the original data Y1 and Y2 by Eq. (7). If R0 = 
R1, then Y contains the chi-square residuals eeo /)( − (Legendre and Legendre 
1998). By applying non-centered SIMPLS to these Y and X we obtain, for axis a, 
species score vectors denoted by qa and ra in de Jong (1993) and ter Braak and de 
Jong (1998). The species scores u1a and u2a for axis a are obtained by the 
backtransformation 

(9) aa qKu 2/1
11
−= and aa rKu 2/1

22
−= . 

The first axis so obtained is the same as in co-inertia analysis and maximizes Eq. (1) 
subject to (2). For axis a>1, the additional constraint is that axis a, derived from Y2, is 
orthogonal to the previous axes, i.e. 

(10) 0202 =b
T

a xRx  for a >  b with aa 22
1

22 uYRx −= . 

This constraint makes the difference with symmetric co-correspondence analysis. 

Fitted values for the response variables are obtained in PLS by regression of Y on the 
A ordination axes t1, … tA, derived from X (i.e.  ta = Xra). The values so obtained, Ŷ  
say, must be backtransformed to obtain fitted values for the original abundance data 
Y1. The backtransformation is 

(11) 1
2/1

1
2/1

011 )ˆ(ˆ K11KYRRY T
pn+= −− . 

If for a new site i the abundances of predictor species are known (and the assigned 
weight is ri0), we can similarly obtain predicted values for the response species. 

For completeness we note that symmetric co-correspondence analysis can by obtained 
by calculating the singular value decomposition of XYT , with Y and X from Eq. (8). 
The transformations of Eq. (9) have to be applied to the left (qa) and right (ra) singular 
vectors to obtain the species scores u1a and u2a. The singular values are the square 
root of the eigenvalues. 

Number of ordination axes and crossvalidatory fit 

If q > n (more predictor species than sites as is common in ecological data sets), the 
response data can be fitted without error by taking as many PLS-axes as there are 
sites, even if there is no relation between the two sets of data. Such fit has no 
predictive value. The number of axes to use is therefore an essential ingredient of 
PLS: the selected number minimizes the prediction error as estimated by cross-
validation methods (Martens and Naes 1992). We applied leave-one-out 
crossvalidation, that is, PLS is carried out n times, leaving out in turn one of the sites 
and applying the obtained PLS model to the left-out site to predict its response species 
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from the predictor species. The selected number of axes is the number that minimizes 
the sum of squared prediction errors. We report in the example the crossvalidatory fit 
as 100(1- sspa/ssp0) with sspa the sum of squared prediction errors using a PLS axes 
and ssp0 the sum of squared prediction errors under the null model, in our case the 
row-column independence model for Y1. With transformation (8) and R0 = R1, the 
sums of squares of the elements of Y and YY ˆ− are the total inertia and the residual 
inertia of Y1, respectively. The crossvalidatory fit calculated on the transformed data 
is thus in terms of inertia. It can be negative when the model fits so badly that the null 
model predicts the data better. 

There is a detail that deserves attention. When leaving out a site, the species totals 
and, thus, the weights K1 and K2 change (the site weights change proportionally). In 
our examples we use these modified weights to transform the data by Eqs (7) and (8). 
The left-out site is given a weight proportional to ri0 = y1i+ in the complete data set. If 
a species occurs only once, it receives weight 0 in one of the analyses of n-1 sites. 
Without modification of the weights, ssp0 is simply the total inertia of Y1, but with 
modification it is somewhat larger. 

An alternative approach to select the number of axes is to test the statistical 
significance of each ordination axis using permutation tests. By applying the 
permutations to the rows of Y from Eq. (8), for fixed X, we do not need to worry 
about differential weights, because the rows and columns of these matrices have equal 
weight in the analysis. The test statistic we use is the F-ratio based on the fit by the 
first axis to the response data (ter Braak and Šmilauer 2002). The second axis was 
tested by treating the first axis as covariable (i.e. by analyzing residuals of Y and X 
after fitting the first axis) so that the second axis of the original data becomes the first 
axis of the residualized data, and so on for further axes. Strictly speaking, this 
approach does not test the significance of SIMPLS axes, but of NIPALS-PLS axes 
(ter Braak and de Jong 1998).  

In the examples we obtained the crossvalidatory fit of canonical correspondence 
analysis and CCA-PLS by using SIMPLS. The fit of CCA-PLS was obtained by 
transforming the species data Y1 as in Eq (8) with R0 = R1 and centering and 
standardizing (autoscaling) the environmental variables in the R1-metric, followed by 
premultiplication by the square root of R1 and submitting the transformed data to non-
centered SIMPLS. The fit of canonical correspondence analysis was obtained by 
making the transformed environmental variables also orthonormal (ter Braak and de 
Jong 1998) by a singular value decomposition. The explained inertias of the axes so 
obtained were the same as those obtained with CANOCO (ter Braak and Šmilauer 
2002). 

Ordination diagrams 

In symmetric co-correspondence analysis, ordination diagrams can be made in the 
usual way: by jointly plotting the species scores and site scores (u1 with x1 and u2 
with x2) for the first A axes (typically A = 2 for easy visual inspection). As in 
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correspondence analysis, the interpretation of such diagrams can proceed by the 
centroid principle and the biplot rule (ter Braak and Verdonschot 1995, ter Braak and 
Šmilauer 2002). According to Eqs (1) and (2), sites are at the center of the species 
they contain; the diagram so conveys information on the species they are likely to 
contain (the centroid principle). The u-scores and x-scores together also form 
correspondence analysis biplots for Y1 and Y2. The interpretation of such biplots is 
described in full in ter Braak and Verdonschot (1995: p. 273). In brief, the 
correspondence analysis biplot displays for each particular species the approximate 
share that species has in the abundance at each site, with share defined as ysik/ysi+ (s = 
1, 2 indicating the community) and, conversely, for each particular site the 
approximate share that site has in the abundance of each species, with share defined as 
ysik/ys+k. 

Symmetric co-correspondence analysis puts emphasis on the association among 
species from different communities. The measure of association is the R0-weighted 
covariance between species calculated on the basis of Q-matrices in Eq. (7); it is a 
covariance between relative abundances. For the optimal representation of this 
association in a biplot, the u-scores of each axis must be multiplied by the quarter root 
of the eigenvalue of the axis (this result follows from the above mentioned singular 
value decomposition, see also ter Braak 1990). This is important only when the 
multipliers differ strongly among axes. To retain the biplot interpretation for Y1 and 
Y2, the x-scores must be divided by the same multipliers, but we do not recommend to 
do so. The rescaled u-scores and original x-scores together form a Benzécri plot, an 
excellent compromise of conflicting aims in biplots (Gabriel 2002). In such a plot, 
distances among sites and among species represent chi-square distances and points of 
different items allow, for all practical purposes, a biplot interpretation (Gabriel 2002). 

Predictive co-correspondence analysis puts emphasis on the regression of transformed 
Y1 on transformed Y2, and thus on the matrix of fitted values 1Y


 (Eq. (11)) and the 

rank A matrix of regression coefficients (ter Braak 1990). The fit of the response 
community to the predictor community ( 1Y


) can be displayed in a correspondence 

analysis biplot of u1 and x2 (instead of with x1) and the matrix of regression 
coefficients by a biplot of u1 and u2 (see de Jong 1993: (37)). To infer also about the 
predictor community (Y2) one should not use u2 with x2, but the loadings of the 
predictor species with x2 (the coefficients of the R0-weighted regression of Q2 on the 
site scores x2). Together with the u-scores of the response species, the loadings of the 
predictor species form a biplot of their association (the covariance based on the Q-
matrices). In this biplot, distances among species represent chi-square distances. For 
completeness, we remark that in predictive co-correspondence analysis (and SIMPLS) 
the loadings of the response species (with respect to x2) are equal to their u-scores, 
and that the predictor site scores x2 are by default R0-normalized. In the examples, 
with A = 2 and large numbers of species, the differences between u-scores and 
loadings of the predictor species were not very large  (r >0.97). 

Since we made the distinction between u-scores and loadings, it is instructive to note 
why the diagrams suggested above for symmetric co-correspondence analysis (u1 with 
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x1 and u2 with x2) are biplots (Thioulouse et al. 1995): given the u-scores, the x-scores 
are optimal. For example, the scores x1 (Eq. (1)) are equal to the regression 
coefficients of the K1-weighted regression of T

1Q  on the species scores (u1) in the 
diagram, because the u-scores are orthonormal in symmetric correspondence analysis 
(and other forms of co-inertia analysis). 
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Tests on Real Data 

Carabid beetles and vegetation in Dutch roadside verges 

Raemakers et al. (2001) studied the relation between carabid beetles and vascular 
plants along roadside verges in the Netherlands. Roadside verges contribute 
considerably to the amount of natural area in a highly cultivated country as the 
Netherlands. The ultimate aim of the research is to develop management methods that 
increase the ecological value of roadside verges. Here we analyze the ‘moist’ subset 
of their data, comprising 30 sites with 91 carabid beetle species and 173 plant species. 
The beetle counts were log(y+1)-transformed. The abundances of the plant species 
were on a 1-9 van der Maarel scale (Jongman et al. 1995).  

Both data sets are highly structured as judged from the eigenvalues and lengths of 
gradient (Table 2) obtained from separate ordinations by correspondence analysis 
(CA) and detrended correspondence analysis (DCA).  Table 2 also shows the largest 
three eigenvalues of symmetric co-correspondence analysis (CO-CA) but these cannot 
be compared directly with those of CA and DCA (if Y1 = Y2, for example, the CO-CA 
eigenvalues are the square of the CA-eigenvalues; see also equation (12) in Dolédec 
and Chessel (1994)). The gain of directly relating beetles and plants by CO-CA over 
relating them through two separate analyses is expressed in terms of correlation 
coefficients in Table 3. The correlation between the axes of the separate analyses is 
high for the first axis (almost 0.9) but only moderate (<0.6) for subsequent axes 
(Table 3). CO-CA finds an even higher correlation on the first axis and correlations 
close to 0.90 for the second and third axes. High correlations on subsequent, 
unimportant axes may be meaningless. Therefore a further comparison is made in 
terms of the variance in the beetle data that is explained by ordination axes that are 
derived from the plant data. When such axes are obtained by CA or DCA and two of 
them are used for prediction, the percentage variance explained is about 15-16%, 
whereas the first two plant-derived axes of CO-CA explain 19% (Table 3, last 
column). CO-CA for relating beetles to plants thus achieves for these data a small 
improvement over the indirect method of relating the results of two separate analyses. 

Figure 1 displays the ordination diagram of symmetric CO-CA. Selected beetle and 
plant species are displayed by their species scores (u1 and u2). Sites points are 
weighted averaged species scores. The multipliers for the u-scores to turn Figure 1 
into a Benzécri plot are 0.7 and 0.6 for axes 1 and 2, respectively.  For the optimal 
representation of beetle-plant association the aspect-ratio of Figure 1 (width : height) 
should thus be changed from 1 : 1 to 1: 0.85 (= 0.6/0.7 = the quarter root of the ratio 
of the second to the first eigenvalue). This change does not really influence the global 
interpretation of Figure 1: beetles and plants in corresponding positions with respect 
to the origin in each figure are positively associated, with stronger associations for 
species far from the origin. Symmetric and predictive CO-CA yield always the same 
first axes. In this example, the second axes are also nearly the same (r =0.98). 

Raemakers et al. (2001) also classified the vegetation samples in eight syntaxonomic 



Co-correspondence analysis, Ter Braak and Schaffers 

 

15 

 

 

units, characterized the environment by 13 variables representing soil and 
microclimate (acidity, moisture content in spring and summer, organic matter content, 
sandiness, availability of nitrate, ammonium and mineral N, soluble P and K, degree 
of nitrification, exposure to sun and a temperature index) and characterized the 
vegetation structure at each site by nine variables, including total biomass, maximum 
and average vegetation height, and roughness. Nearly all the quantitative variables 
were log-transformed to make their distributions less skew. Separate canonical 
correspondence analyses (CCA) of the beetle data with respect to these three data sets 
explained, in two dimensions, 19%, 18% and 13% of the beetle variance, which can 
be compared with the 19% explained by CO-CA. In four dimensions these figures are 
27, 28, 22 and 28%, respectively, and in the maximum dimension in each analysis 33, 
51, 34 and 100%. Clearly, comparing these statistics has little meaning because the 
numbers of predictor variables differ. To place the analyses on equal footing we 
applied leave-one-out crossvalidation to determine the optimal dimension for each 
(Figure 2). In the crossvalidation we used predictive CO-CA. All percentages are low, 
but that is inherent to data that are largely qualitative (presence versus absence), rather 
than quantitative. CO-CA has a local maximum (7.8%) for two axes and a global 
maximum (8.7%) at seven axes. We retain the two-dimensional solution to keep the 
model as simple as possible. When using CO-CA, the plants thus predict 7.8% of the 
beetle inertia.  With the optimal dimension in brackets, the syntaxa predict 8.1% using 
CCA (2), the environmental variables predict 4.8% using CCA (2) and 3.1% using 
CCA-PLS (1), whereas vegetation structure gives negative percentages and thus has 
no predictive value for the beetle community using either CCA or CCA-PLS. In 
conclusion, the vegetation either expressed as abundances of individual species or as 
syntaxonomic units, predicted the beetle data better than the environmental 
measurements, and vegetation structure had no predictive value for the beetle data in 
this study.  

The first two axes of CO-CA were significant (P<0.001), whereas subsequent axes 
were not (P>0.60). In Figure 1 the horizontal axis is positively correlated with the 
moisture content variables and organic matter (all r ≈ 0.6), the vertical is negatively 
correlated with acidity (r = -0.43). The CCAs with respect to the syntaxonomic data 
and the environmental data also showed two significant axes each (P=0.002 and 0.01 
for the syntaxonomic data and P=0.001 and 0.038 for the environmental data), 
whereas further axes were not (P>0.08). With the structure variables none of the CCA 
axes was significant (P>0.30). The number of significant axes thus agreed in this 
study with the optimal dimension chosen by leave-one-out crossvalidation. 

The use of individual plant species to predict the beetle community avoids the, 
sometimes debatable, classification of sites into syntaxonomic units. But, because the 
analyses showed that there is not much to be gained by using all plant species to 
predict the beetle community, we may equally well conclude that it is sufficient in this 
case to summarize the plant species composition into syntaxomonic units, and also 
that it is unlikely that a modification of the vegetation classification would result in a 
better fit to the beetle community. 
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Bryophytes and vascular plants in Carpathian spring meadows 

Hájek, Hekera and Hájková (2002) explored data on the community composition of 
bryophytes and vascular plants in 70 spring meadows in the Western Carpathians and 
environmental correlates expressed as 14 water-chemical variables and one variable 
represented slope. We log-transformed all concentration variables. The data are also 
analyzed in case study 2 of Lepš and Šmilauer (2003). For practical purposes we 
limited the data to species that occur 5 or more times, giving 30 bryophyte species and 
123 vascular plants.  The data contain a very strong first gradient as judged by DCA 
(5.2 SD for the bryophytes and 3.0 SD for the vascular plants), whereas the second 
gradient is  ~2.5 SD for both data sets. The first axes of the two analyses are strongly 
correlated (r ≈ 0.9) whereas the second axes are not (r ≈ 0.1) (Hájek et al. 2002). 
Correspondence analyses show clearly arched configurations of species and sites 
points for these data. Figure 3, based on predictive CO-CA of the bryophytes against 
the vascular plants, illustrates that CO-CA also suffers from the arch effect. We have 
not yet implemented a detrended version.  

For predictive purposes, detrending may not be necessary. Figure 4 shows that the 
bryophytes are better predicted by the vascular plants (28% with 5 CO-CA axes) than 
by the environmental variables (17% with 2 CCA axes and 18% with 4 CCA-PLS 
axes). In terms of crossvalidatory fit, the arched two-dimensional CO-CA (Figure 3) 
accounts already for 25% of the bryophyte inertia. Only these two axes are significant 
(P = 0.001), whereas subsequent axes are not (P > 0.10). In the CCA the first two 
axes are significant (P=0.001 and 0.04), whereas the third is not (P =0.52).  

Discussion 

No direct quantitative method existed so far for predicting one biological community 
from another. Co-correspondence analysis fills this gap. It fits in the weighted 
averaging family of methods for ecological gradient analysis (Table 1; ter Braak and 
Prentice 1988), of which weighted averaging, (detrended) correspondence analysis 
and canonical correspondence analysis are the most widely applied (Birks et al. 1996). 
Within this family it has a well-defined domain of application; it is the direct 
ordination method for relating one community data set to another (Table 1). It 
improves upon the indirect method of correlating the ordination axes of separate 
(detrended) correspondence analyses of the data sets, the main improvement being 
that co-correspondence analysis can be used in a predictive way, as our examples 
show.  

Co-correspondence analysis combines the ecological method of weighted averaging 
and the chemometric method of partial least squares, and derives data-analytic 
strength from both. By maximizing the covariance between the weighted averaged 
species scores of one community with those of the other community, co-
correspondence analysis attempts to identify the ecological gradients that are common 
to both communities. To further clarify the logic of the method, let us assume for a 
moment that these ecological gradients coincide with particular environmental 
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variables. If measured, these could be used to predict one community (or both) 
through canonical correspondence analysis. But, what if in a future application the 
environmental measurements were missing and we want to infer about the first 
community from the second one? The data on the second community could then be 
used to infer about the environmental data – a calibration problem (ter Braak and 
Prentice 1988) - and the inferred environmental data could then be entered to 
canonical correspondence analysis to predict the first community. Herein, the 
calibration problem could be solved with WA-PLS (Table 1). This method of 
predicting one community from another thus consists of two steps. Clearly, co-
correspondence analysis is a one-step method: it integrates the calibration method of 
WA-PLS with the constrained ordination method of canonical correspondence 
analysis. The second (predictor) community is used as a multivariate bio-assay for the 
true underlying gradients. In practice, the environmental basis of the ecological 
gradients is not precisely known – that is why environmental measurements may yield 
worse predictions than the second community’s data, as in our examples. 

Here we resolved the problem of differences in implied site weights (see Introduction) 
by working from first principles: the maximization of the weighted covariance 
between weighted averaged species scores. This resolved the weight problem in a 
versatile way. Rather than being implied, the weights for use in the covariance 
(denoted by R0) can be chosen freely by the user. As the choice influences the results 
of the analysis, this brings up a new problem: which weights to choose? In the 
examples we chose to use the implied weights of the community in the response role 
(R0 = R1) in order to facilitate the comparison with canonical correspondence 
analysis. This is also the logical choice in regression (Seber 1977) - and thus in 
predictive co-correspondence analysis and canonical correspondence analysis - when 
these site weights are indicative for the precision of the abundance data of the 
response species. This is typically the case for count data and presence/absence (1/0) 
data with low incidence probability (Jongman et al. 1995). With this choice, the 
scores of the response species are (proportional to) weighted averages of site scores 
derived from the predictors (Eq. (3)), precisely as in canonical correspondence 
analysis (ter Braak 1986). This choice thus makes co-correspondence analysis closest 
to a (canonical) correspondence analysis of the response species. In symmetric co-
correspondence analysis, a symmetric choice has perhaps more appeal, e.g. R0 = 
(R1+R2)/2. We propose the term co-correspondence analysis to default to predictive 
co-correspondence analysis using SIMPLS and R0 = R1. 

Co-correspondence analysis inherits not only the good properties from 
correspondence analysis, but also the bad ones, most notably the arch effect (Jongman 
et al. 1995, Legendre and Legendre 1998). The arch effect – the effect that the second 
axis’ scores show a systematic, often parabolic, relation with the first axis’ scores 
(Figure 3) - may hamper ecological understanding of the underlying gradients. The 
proposed remedy, detrending (Hill and Gauch 1980), can in principle be applied in co-
correspondence analysis, but we have not yet attempted to apply it. Detrending is no 
panacea - it may flatten out some real variation (Minchin 1987) - and is therefore 
rather controversial (Legendre and Legendre 1998). Moreover, detrending is not 
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necessary for prediction purposes as we showed in our second example. 

The transformation in Eq. (8) is akin to one of the ecologically meaningful 
transformations for ordination of species data proposed by Legendre and Gallagher 
(2001).  Their idea was to transform the community data in such a way that the 
Euclidean distance between sites after transformation is identical to the chi-square 
distance between the sites before transformation. The transformation that achieves this 
is )/( 222

*
2 kiikik yyyy ++= . Pinel-Alloul et al. (1995) applied this transformation to 

phytoplankton and fish data that were used as predictors in a canonical 
correspondence analysis of a zooplankton community. This analysis implies row 
weights }{ 1 +iy . The resulting transformation is almost identical to X (and also Y) in 
Eq. (8) with R0 = R1 (there is a small difference in the implied centering of Y2). What 
makes their method really different from ours is that Pinel-Alloul et al. (1995) used 
forward selection (instead of PLS) to overcome the problem that the number of 
predictor species was greater than the number of sites. Selection of predictor species 
has four disadvantages: (1) it complicates the formal statistical testing of the 
association between the communities, (2) it does not aim to preserve (chi-square) 
distances among sites in the predictor space,  (3) it destroys the logic of the original 
transformation because the total abundance of the selected species is not equal to that 
of all predictors species, and (4) it does not use all the information available in the 
predictor set. In particular, their method does not have the weighted averaging 
properties (3) – (6) of our method. 

Co-correspondence analysis may help in the search for good indicators for 
biodiversity (Noss 1990). Not all species groups are equally easy to sample or 
identify. One could try to predict a difficult species group from an easy one. The 
building of the prediction model with co-correspondence analysis requires 
representative training data for both species groups from a common set of sites, but 
from there only the easy group need to be sampled and identified. Co-correspondence 
analysis may help in the search for the most suitable indicators. 
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Appendix A. How to carry out symmetric co-correspondence analysis in ADE-4 
(Thioulouse et al. 1995).  

1. Divide the data matrices by their overall totals, yielding new data matrices Y1 and 
Y2. Calculate and save the row totals (R1 and R2) and column totals (K1 and K2) of 
Y1 and Y2. 

2. Decide on R0, for example, R0 = (R1+R2)/2 or R0 = R1. 

3.  Calculate the chi-square residuals as indicated in and below Eq. (7), either in a 
spreadsheet or in ADE-4, yielding the data matrices Q1 and Q2.  

4. Carry out two non-centered principal component analyses via the ‘PCA’ section, 
one on Q1 using row weights R0 and column weights K1 and one on Q2 using row 
weights R0 and column weights K2. In each analysis, save all axes with non-zero 
eigenvalues. 

5. Carry out the co-inertia analysis via the ‘CoInertia’ section. From this menu, first 
choose ‘Matching two statistical triplets’ and specify as input files the two output 
files with extension ‘.ncta’ of step 3. This yields an output file with extension 
‘.iita’. Secondly, choose ‘Coinertia analysis’ with as input file the iita-file to run 
the actual analysis. 
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Table 1. Overview of gradient analysis methods based on weighted averaging. 

The community data consist of incidences or abundances (≥0) of a set of species at a 
set of sites. The environmental variables, measured at the same set of sites, are 
quantitative and/or qualitative (0/1). The methods use weighted averages of species 
scores, appropriate for unimodal data, and linear combinations of environmental 
variables, appropriate for linear data (ter Braak and Prentice 1988). 

 

Method Abbreviation Response 
variables 

Predictors 

Correspondence analysis CA Community data - 

Canonical correspondence 
analysis 

CCA Community data Environmental 
variables 

CCA partial least squares CCA-PLS Community data Many environment 
variables  

Weighted averaging 
calibration 

WA Environmental 
variable  

Community data 

WA partial least squares WA-PLS Environmental 
variable(s) 

Community data 

Co-correspondence analysis CO-CA Community data  Community data 
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Table 2. Eigenvalues of the first three axes of separate CAs and DCAs and of 
symmetric CO-CA of beetles and plants. The total inertia (sum of all eigenvalues 
of CA) is 4.99 for beetles and 5.65 for plants. The sum of all eigenvalues of CO-
CA is 0.94. 

   Axis   

 Method 1 2 3 

Beetles CA  0.50  0.36 0.32 

 DCA  0.50  0.32 0.21 

 Length of gradient 3.22  2.74 2.57 

Plants CA 0.57 0.53 0.42 

 DCA 0.57  0.41 0.27 

 Length of gradient 3.44 2.99 2.88 

Beetles-plants CO-CA 0.25 0.13 0.08 

 

Table 3. Correlation coefficients between beetle-derived and plant-derived site 
scores of the first three axes of separate CAs and DCAs and of symmetric CO-
CA (%fit = the percentage fit of the beetle data by the first two plant-derived 
axes). Site weights are beetle-based. 

Method  Axis  %fit 

 1 2 3  

CA 0.88 0.27 0.46 15 

DCA 0.89 0.53 0.07 16 

CO-CA 0.96 0.94 0.88 19 
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Legends to Figures 

 
Figure 1. Biplot based on symmetric co-correspondence analysis of 
carabid beetles (left:u1 and x1) and plants (right: u2 and x2) in 
roadside verges showing ~19% of the total variance of each data set. 
The species displayed (triangle) have a more than average fit and 
occur five or more times in the data. Symbols of sites indicate their 
syntaxonomic unit. Scores of species and sites are scaled according 
to Eqs (1) and (2). The syntaxonomic units are (approx. from left to 
right) Molinio-Arrhenatheretea / Koelerio-Corynephoretea (black rectangle), 
Tanaceto-Artemisietum / Arrhenatheretalia (squares), Arrhenatheretum 
medicaginetosum (gray circles), Arrhenatheretum elatiorus (stars), Galio-
Alliarion / Arrhenatherion (gray rectangle), Galio-Alliarion / Alopecurion 
(diamond), Valeriano-Filipenduletum (open circle), Molinietalia 
(Calthion)(down triangle). The carabid beetles shown are: ACUPPARV = 
Acupalpus parvulus, AMARAAEN = Amara aenea, AMARABIF = Amara bifida, 
AMARALUN = Amara lunicollis, ANISOBIN = Anisodactylus binotatus, BEMBIPRO = 
Bembidion properans, BRADYHAR = Bradycellus harpalinus, CALATFUS = Calathus 
fuscipes, CALATMEL = Calathus melanocephalus, CARABGRA = Carabus granulatus, 
CARABMON = Carabus monilis, DYSCHGLO = Dyschirius globosus, HARPAAFF = 
Harpalus affinis, HARPARUF = Harpalus rufibarbis, LORICPIL = Loricera 
pilicornis, PTEROANT = Pterostichus anthracinus, PTEROMEL = Pterostichus 
melanarius, PTEROMIN = Pterostichus minor, PTERONIG = Pterostichus niger, 
PTERONIH = Pterostichus nigrita, PTEROSTR = Pterostichus strenuus, TRECH-SP 
= Trechus species. The plant species shown are: Achimill = Achillea 
millefolium, agrocapi = Agrostis capillaris, agrostol = Agrostis 
stolonifera, alopprat = Alopecurus pratensis, bellpere = Bellis perennis, 
bracruta = Brachythecium rutabulum, callicus = Calliergonella cuspidata, 
cardprat = Cardamine pratensis, cerafont = Cerastium fontanum, festrubr = 
Festuca rubra, glechede = Glechoma hederacea, heraspho = Heracleum 
sphondylium, holclana = Holcus lanatus, lotucorn = Lotus corniculatus, 
phalarun = Phalaris arundinacea, phraaust = Phragmites australis, planlanc = 
Plantago lanceolata, poa prat = Poa pratensis, poa triv = Poa trivialis, 
ranubulb = Ranunculus bulbosus, rhytsqua = Rhytidiadelphus squarrosus, 
senejaco = Senecio jacobea, tanavulg = Tanacetum vulgare, trifdubi = 
Trifolium dubium. 

 

Figure 2. Crossvalidatory fit of the beetle data set against the number of ordination 
axes for different predictor data sets (plants: closed squares; syntaxa: open squares; 
environment: triangles; vegetation structure: circles) and methods (predictive CO-CA: 
solid; CCA: long dash; CCA-PLS: short dash). 

 

Figure 3. Biplot based on predictive co-correspondence analysis of bryophytes (left) 
against vascular plants (right) in Carpathian spring meadows, showing 30% and 21% 
of the total variance in the bryophyte data and vascular plant data, respectively. The 
species (triangles) are positioned in the graph according to their loadings with respect 
to normalized site scores (circles) derived from the vascular plants (x2). Only vascular 
plants with more than average fit are shown. Full names of bryophytes and vascular 
plants are given in Hájek et al. (2002). 
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Figure 4. Crossvalidatory fit of the bryophyte data set against the number of 
ordination axes for different predictor data sets (higher plants: squares; environment: 
triangles) and methods (predictive CO-CA: solid; CCA: long dash; CCA-PLS: short 
dash).  
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Figure 1. Biplot based on symmetric co-correspondence analysis of carabid 
beetles (left:u1 and x1) and plants (right: u2 and x2) in roadside verges showing 
~19% of the total variance of each data set. The species displayed (triangle) have 
a more than average fit and occur five or more times in the data. Symbols of sites 
indicate their syntaxonomic unit. Scores of species and sites are scaled according 
to Eqs (1) and (2).  
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Figure 2. Crossvalidatory fit of the beetle data set against the number of 
ordination axes for different predictor data sets (plants: closed squares; syntaxa: 
open squares; environment: triangles; vegetation structure: circles) and methods 
(predictive CO-CA: solid; CCA: long dash; CCA-PLS: short dash). 
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Figure 3. Biplot based on predictive co-correspondence analysis of bryophytes 
(left) against vascular plants (right) in Carpathian spring meadows, showing 
30% and 21% of the total variance in the bryophyte data and vascular plant 
data, respectively. The species (triangles) are positioned in the graph according 
to their loadings with respect to normalized site scores (circles) derived from the 
vascular plants (x2). Only vascular plants with more than average fit are shown. 
Full names of bryophytes and vascular plants are given in Hájek et al. (2002). 
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Figure 4. Crossvalidatory fit of the bryophyte data set against the number of 
ordination axes for different predictor data sets (higher plants: squares; 
environment: triangles) and methods (predictive CO-CA: solid; CCA: long dash; 
CCA-PLS: short dash).  
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