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Abstract

 

Classification of pig carcasses in the European Community (EC) is based on the lean meat percentage of the
carcasses. The lean meat percentage is predicted from instrumental carcass measurements, such as fat and muscle
depth measurements, obtained in the slaughterline. The prediction formula for an instrument is derived from the
data of a dissection experiment. When the relationship between percentage lean and instrumental carcass
measurements differs between subpopulations, such as sexes or breeds, accuracy of prediction may differ between
these subpopulations. In particular for some subpopulations predicted lean meat percentages may be systematically
too low and for other subpopulations systematically too high. Producers or buyers that largely specialize in
subpopulations where the percentage lean is underestimated, are put at a financial disadvantage. 
The aim of this paper is to gain insight, on the basis of real data, into the effects of differences between
subpopulations on the accuracy of the predicted percentage lean meat of pig carcasses. A simulation study was
performed based on data from dissection trials in The Netherlands, comprising gilts and castrated males, and trials
in Spain, comprising different genetic types. The possible gain in accuracy, i.e.

 

 

 

reduction of prediction bias and
mean squared prediction error, by the use of separate prediction formulae for (some of) the subpopulations was
determined. 
We concluded that marked bias in the predicted percentage lean meat may occur between subpopulations when a
single overall prediction formula is employed. Systematic differences in predicted percentage lean between
subpopulations that are overestimated and underestimated may exceed 4% and for selected values of instrumental
measurements may run up to 6%. Bias between subpopulations may be eliminated, and prediction accuracy may be
markedly improved, when separate prediction formulae are used. With the use of separate formulae the root mean
squared prediction error may be reduced by 13 to 26% of the expected value when a single prediction formula is
used for all pig carcasses. 
These are substantial reductions on a national scale. This suggests that there will be a commercial interest in the use
of separate prediction formulae for different subpopulations. In the near future, when the use of implants becomes
more reliable, subpopulations will be recognized automatically in the slaughterline and use of different prediction
formulae will become practically feasible. Some possible consequences for the EC regulations and national
safeguards for quality of prediction formulae are discussed. 
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Introduction

 

A prediction formula for the lean meat percentage of
pig carcasses from a particular population, as
derived by linear regression, is unbiased. This means

that averages of predictions and true lean meat
percentages of large samples of pigs with
comparable instrumental measurements are similar.
In particular the average true lean meat percentage
and the average predicted lean meat percentage over
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all pigs in the population will be alike. Since we are
talking about averages, lean meat percentages of
some carcasses will be underestimated and others
will be overestimated. This is not necessarily a
problem, unless carcasses which are underestimated
belong to a relevant subpopulation, such as breed or
sex. When the relationship between the percentage
lean and the instrumental carcass measurements
differs between subpopulations, e.g.

 

 

 

due to
differences in conformation, unbiasedness will not
hold for the separate subpopulations. For some of
the subpopulations the average predicted percentage
lean will be too low, while for other subpopulations
it will be too high. This is a problem when producers
or buyers largely specialize in some subpopulations.
Some producers or buyers will financially be put at a
disadvantage when a single overall prediction
formula is used. For those producers or buyers the
use of separate prediction formulae for
subpopulations ensures more fair payment. 

Significant differences between sexes were reported
by Engel and Walstra (1991b and 1993), Daumas 

 

et al.

 

(1994) and Gispert 

 

et al. 

 

(1996). In France separate
equations are used for the sexes (Daumas 

 

et al.,

 

 1998).
In a recent enquiry (EUPIGCLASS, 2000) most
European Community (EC) member states
considered their pig population to be genetically
heterogeneous, with up to six genetic
subpopulations. Italy was the first country to get EC
approval for a separate prediction formula for its so
called ‘heavy pigs’ (EC, 1989b). 

In this paper we studied by simulation the extent to
which bias and accuracy of prediction may differ
when a single overall prediction formula is used
compared with the use of separate prediction
formulae for subpopulations. The simulation was
based on data from dissection trials in The
Netherlands and Spain. In 1990 a dissection trial was
carried out throughout the EC as a first step towards
harmonization of methods for pig grading. The
proposal for this trial (EC, 1989a) specifically
mentioned a possible interest in differences between
subpopulations. In The Netherlands at that time
there was an interest in differences between gilts and
castrated males (hereafter referred to a castrates).
Separate samples were taken for the two sexes. The
instrumental carcass measurements were a fat and
muscle depth measured with the Henessy Grading
Probe (HGP) (Walstra, 1986). Separate prediction
formulae were calculated for the sexes and found to
be significantly, although not markedly, different (B.
Engel, personal communication; Engel and Walstra,
1993). The Dutch data of the harmonization trial,
supplemented with recent data from Dutch

slaughterhouses, provided the basis for the start of
the simulation study. In addition, data were
simulated for two and four subpopulations, based on
recent data from dissection trials in Spain with eight
genetic types (from now on referred to as breeds).
Again, the instrumental carcass measurements were
fat and muscle depth measurements, this time
obtained with the Fat-O-Meater (FOM) (European
Commission, 1988 and 1994). Our simulation does
not exactly reflect practice and accuracy of carcasss
grading in The Netherlands and Spain. It does
however mimic a situation that might easily occur
within the EC. It is not unlikely that in some member
states differences between subpopulations are more
pronounced than in our simulation study. 

Carcasses for dissection are usually not chosen at
random, but with over-sampling of carcasses with
more extreme instrumental carcass measurements to
increase the accuracy of prediction. When
subpopulations are of interest, separate samples per
subpopulation may be taken. In each subsample, for
a more accurate comparison between
subpopulations, carcasses may be selected, say, with
over-sampling of smaller and larger fat depth
measurements. When significant differences between
separate regressions per subpopulation are found,
subsequent inference will have to take this into
account. When the use of separate formulae is not
feasible and a single overall prediction formula is
required, regression of the percentage lean on the
instrumental carcass measurements, simply ignoring
the subpopulations, is not covered by standard
regression theory. This is because the distribution of
the subpopulations over the instrumental
measurements in the sample is not representative for
the population. Therefore, in the harmonization trial,
for the Dutch dissection data, a method was
developed by Engel and Walstra (1993) to take
proper account of the subpopulations. In the present
simulation study, prediction formulae were derived
by linear regression, ignoring the subpopulations,
and by the Engel and Walstra (1993) method, to
account for the subpopulations. Carcasses for
dissection were sampled according to four different
sampling schemes, including the most commonly
used sampling schemes in the EC. In all four
schemes carcasses were selected with over-sampling
of smaller and larger fat depth measurements. The
performance of the prediction formulae, as obtained
under the different sampling schemes and by the
different statistical methods was determined.
Performance of the formulae was measured in terms
of bias and mean square prediction error for the
separate subpopulations and for the pig population
as a whole. 
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Figure 1 The separate regressions for gilts (solid line) and
castrates (dotted line) and the overall mean curve. A
random sample (comprising both sexes) of size 120 (solid
dots) is presented as well. Input parameters are based on
the Dutch data (Table 1a).
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Material and methods

 

The statistical model

 

As a first step towards simulation, we have to specify
a statistical model for the instrumental
measurements and the percentage lean of pig
carcasses. Here, the main components of this model
are introduced and illustrated for the Dutch data,
where the subpopulations of interest are gilts and
castrates. From the fat and muscle depth
measurements taken with the HGP, we used the fat
depth measurements only, since this simplifies the
presentation of the results. Later on for the Spanish
data we will consider two prediction variables, i.e.

 

 

 

fat
and muscle depth measurements, and four
subpopulations, as well. 

For each of the two sexes, a linear regression model
was assumed that relates the percentage lean 

 

y

 

 to the
fat depth measurement 

 

x

 

 of a carcass:
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for gilts (1a)
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, 
for castrates (1b). 

Here, 

 

e

 

 is a normally distributed random error term
representing variation in lean meat percentage
between carcasses with the same fat depth
measurement. The size of the error terms is
quantified by the residual variances 

 

σ

 

2
1, 

 

y. x
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2
2, 

 

y. x

 

, for gilts and castrates respectively. A linear
relationship was assumed because marked
departures from linearity within sexes or breeds
were not apparent for the Dutch and Spanish data. 

The model was completed by introducing 

 

π

 

1

 

 

 

=

 

 0·5 as
the proportion of gilts and 

 

π

 

2

 

 = 0·5 as the proportion
of castrates in the population and by assuming a
normal distribution for fat depth 

 

x

 

 with means µ

 

1

 

and µ

 

2

 

 and variances

 

 

 

σ

 

2
1

 

 and 

 

σ

 

2
2

 

 for gilts and
castrates respectively. 

In Figure 1 the separate regression lines for the sexes
are shown. For an impression of the variation around
the lines, the lean meat percentages from a simulated
random sample of 120 carcasses (the minimal sample
size for a dissection experiment as required by the
EC regulations) were shown as well. The values for
constants 

 

a

 

1

 

 and 

 

a

 

2

 

, coefficients 

 

b

 

1

 

 and 

 

b

 

2

 

, residual
variances 

 

σ

 

2
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 and 
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, y. 

 

x

 

, mean fat depths µ

 

1

 

 and µ

 

2

 

and variances 

 

σ

 

2
1

 

 and 

 

σ

 

2
2

 

, that were used to construct
Figure 1, are reproduced in Table 1a. These
parameter values were derived from the EC
harmonization trial (B. Engel, personal
communication) and a recently obtained large data

set from Dutch slaughterhouses comprising fat and
muscle depth measurements obtained with the HGP.
Although these parameter values are not an accurate
reflection of the present situation in The Netherlands,
since we lack recent information about the sexes,
they mimic a situation that might occur within the
EC. The simulated sample of 120 carcasses was easily
generated by computer employing standard
statistical software. In this paper all calculations were
performed with GenStat (Genstat Committee, 2000). 

 

A first look at prediction

 

For a quicker understanding of the impact of
subpopulations on the accuracy of lean meat
prediction, at first some simplifying assumptions will
be made. These assumptions are for illustrative
purposes only and will be dropped later on. 

For the moment, imagine a perfect separation
between the sexes on the basis of the fat depth
measurements. So, there exists a boundary value 

 

c

 

,
such that fat depth 

 

x

 

 is below 

 

c

 

 for all gilts and above

 

c

 

 for all castrates. This is formalized with the
following indicators for gilts and castrates:

 

 

p

 

1 

 

= 1, when 

 

x

 

 < 

 

c

 

 (a gilt), and 0 when 

 

x

 

 > 

 

c

 

(a castrate)

and
 

 

p

 

2 

 

= 1, when 

 

x

 

 > 

 

c

 

 (a castrate), and 0 when 

 

x

 

 < 

 

c

 

(a gilt). 
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To emphasize that 

 

p

 

1

 

 and 

 

p
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 depend on x they will be
denoted by functions 
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) and 
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2

 

(
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). 

As a further simplification, in addition to the perfect
separation between the sexes, we also temporarily
assume equal residual variances 
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 and equal regression coefficients 

 

b

 

1 

 

= 

 

b

 

2 

 

= 

 

b

 

 for
the two sexes. Now, we define the predicted lean
meat percentage for a carcass with fat depth
measurement 

 

x

 

 as follows (predictions are indicated
by a hat):
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The last expression follows from 

 

p

 

1

 

(

 

x

 

) + 

 

p

 

2

 

(

 

x

 

) = 1 (a
carcass is either from a gilt or a castrate). It is readily
checked that  

 

ŷ

 

equals a1 + bx for a gilt and a2 + bx for
a castrate. Effectively we are using separate
prediction formulae for the sexes. From the
expression on the right-hand side we see that
basically p1(x) is just an extra explanatory variable,

derived from x, with values 0 or 1 indicating whether
the carcass is from a castrate or from a gilt. Function
p1(x) is a step function that starts with value 1 for
lean pigs and at x = c steps down to value 0, as
shown by the bold solid line in Figure 2. The
unknown parameters a2, (a1-a2) and b in expression
(2) may be replaced by their least squares estimates.
Unfortunately, there is no such thing as a perfect
separation between the sexes on the basis of fat
depth measurements. However, we do know that for
small fat depth measurements a carcass is more
likely to be from a gilt and for large fat depth
measurements from a castrate. Therefore, we replace
p1(x) and p2(x) by the probabilities for a gilt or
castrate respectively, given the fat depth
measurement x. Probability p1(x) for a gilt will
decrease for increasing fat depth, as illustrated by the
solid curve in Figure 2 that is based on the parameter
values in Table 1. In the next section we will have a
closer look at these probabilities and show how they
can be calculated. With a small overlap between the

Table 1 Input parameters in the simulations

(a) Parameters for two sexes based on Dutch data and two genetic types (referred to as breeds) based on Spanish data

Based on

Dutch Spanish
data data

µ1 = mean fat depth subpopulation 1 (mm) 15·49 14·58
µ2 = mean fat depth subpopulation 2 (mm) 19·11 12·77
σ1 = s. d. fat depth x subpopulation 1 (mm) 3·15 2·75
σ2 = s. d. fat depth x subpopulation 2 (mm) 3·95 2·76
a1 = constant in regression of y on x subpop. 1 67·94 64·36
b1 = coefficient x in regression of y on x subpop. 1 –0·6531 –0·619
σ2

1,y. x = residual variance regression y on x subpop. 1 4·09 6·754
a2 = constant in regression of y on x subpop. 2 63·65 74·06
b2 = coefficient x in regression y on x subpop. 2 –0·5276 –1·022
σ2

2,y. x = residual variance regression y on x subpop. 2 5·32 6·954
π1 = proportion of subpop. 1 in the population 0·5 0·44
π2 = proportion of subpop. 2 in the population 0·5 0·56

(b) Parameters for three maternal lines and a pool of five sire lines based on Spanish data

Subpopulation (i = 1. . 4)

1 2 3 4

µi1 = mean fat depth (mm) 14·58 14·08 14·44 14·10
µi2 = mean muscle depth (mm) 53·21 54·82 54·38 59·86
σi1 = standard deviation fat depth (mm) 2·75 3·28 2·91 3·65
σi2 = standard deviation muscle depth (mm) 6·29 7·49 7·84 7·39
ρ12 = correlation fat with muscle depth 0·059 0·030 0·232 –0·197
ai = constant in regression of y on x1,x2 53·15 63·65 61·08 60·17
bi1 = coeff. x1 in regression of y on x1,x2 –0·6494 –0·8839 –0·6731 –0·9122
bi2 = coeff. x2 in regression of y on x1,x2 0·2189 0·1000 0·1087 0·1947
σ2

y. x = residual variance regression y on x1,x2 4·90 5·05 4·54 5·51
πi = proportion in the population 0·17 0·25 0·20 0·38
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sexes with respect to fat depth measurements,
function p1(x) will almost be a step function as
illustrated by the dotted line in Figure 2. The
prediction formula presented in Engel and Walstra
(1993) is essentially expression (2) but without the
simplifying assumptions:

ŷ = p1(x) ŷ1 + p2(x) ŷ 2,  (3)

where
ŷ 1 = A1 + B1 x and ŷ 2 = A2 + B2 x. 

Here, p2(x) = 1-p1(x) is the probability for a castrate
and  ̂y 1  and ŷ2 are the separate predictions for the
two sexes, for an observed fat depth measurement x.
A1, B1, A2 and B2 are the least squares estimates for a1,
b1, a2 and b2 obtained from regression of y on x for
each of the sexes separately. The two predictions for
the sexes are combined into a weighted average,
where weights are equal to the probabilities for the
sexes and depend on the observed fat depth.  For
small fat depth measurements x, the probability for a
gilt will be large and ŷ will be closer to the prediction
ŷ1  for a gilt, for large x, the probability for a castrate
will be large and ŷ will be closer to the prediction ŷ 2
for a castrate. 

A closer look at the probabilities for subpopulations
The following expression for p1(x) can be derived:

logit(p1(x)) = γ0 + γ1 x + γ2 x2. 

Here, logit(p) = log(p/(1-p)) is a log odds ratio,
commonly referred to as the logit (transformation) of
probability p. The logit ‘stretches’ probabilities from
numbers between 0 and 1 to numbers between
minus and plus infinity. For these ‘stretched’
probabilities we have a simple quadratic relationship
with fat depth x. Expressions for the constant γ0 and
coefficients γ1 and γ2 can be derived from the model
assumptions (Appendix A1). In practice γ0, γ1 and γ2
can be estimated from additional data by logistic
regression (Cox and Snell, 1989), as shown in Engel
and Walstra (1993). Logistic regression is specifically
developed for binary response variables. For the
additional data, sex coded as 1 for a gilt and 0 for a
castrate is the binary response variable and the
instrumental carcass measurements and their
quadratic and product terms (when two or more
instrumental measurements are involved) are the
explanatory variables (Engel and Walstra, 1993, Table
3 and Figure 1). Standard software for logistic
regression is widely available. Collection of the data
requires knowledge of subpopulation membership
but does not involve costly dissections. Therefore,
quite a large set of data can be collected. The
additional random sample employed for logistic
regression in Engel and Walstra (1993) comprised
134158 carcasses. We will therefore assume that γ0, γ1
and γ2 are effectively known. 

Prediction and bias between subpopulations
For the lean meat percentage y of a carcass with a
given fat depth x and unknown sex:

 y = µ(x) + e and Var(e) = σ2
y. x. 

Under the simplifying assumption of equal
coefficients of fat depth and equal residual variances
for gilts and castrates, the overall mean µ(x) and
residual variance σ2

y. x are (Appendix A2):

µ (x) = p1(x) a1 + p2(x) a2 + bx
and σ2

y. x = σ2
12, y. x + p1(x) p2(x) (a1-a2)2. 

The difference between σ2
y. x and σ2

12, y. x, where the
latter is the residual variance for known sex and the
former is the residual variance for unknown sex, will
be small when (a1 -a2) is small or when p1(x) is close
to 0 or 1, i.e. when subpopulations hardly differ or
when subpopulations can be well separated on the
basis of measurements of x. Suppose that a1 > a2.
When we compare the overall mean µ (x) with the
separate means µi(x) = ai + bx, i = 1, 2, for the sexes:
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Figure 2 Function p1 (x) as a step function for a gilt, under
assumption of a perfect separation between the sexes with
respect to fat depth x (straight line) and as a probability for
a gilt (solid curve). Input parameters are based on the
Dutch data (Table 1a). The dotted curve is added to show
that it is possible to approximate a step function, when
sexes are more separated.
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Figure 3 The overall residual standard deviation for the
parameter values based on the Dutch data (Table 1a).
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µ (x)-µ1(x) = -p2(x) (a1-a2) < 0
and µ (x)-µ2(x) = p1(x) (a1-a2) > 0. 

A prediction obtained with a single overall
prediction formula for both sexes is basically an
estimate of µ(x). So, predictions for one
subpopulation are systematically too low, while
predictions for the other subpopulation are

systematically too high. Averaged over all animals in
the population there will be no bias since:

 p1(x) {µ (x)- µ1(x)} + p2(x) {µ (x)- µ2(x)} = 0. 

When no further information about subpopulations
is available in the slaughterline, the bias between
subpopulations is unavoidable. Should such a bias
be unacceptable, the only remedy is to find
additional carcass measurements to discriminate
between the subpopulations such that p1(x) will
resemble a step function (as illustrated in Figure 2),
or to use separate prediction formulae by, for
example, reading subpopulation membership from
an implanted chip. Similar comments hold when the
simplifying assumptions are dropped. The more
general expressions for the mean and residual
variance, without the simplifying assumptions, are
(Appendix A2):

µ (x) = p1(x) µ1(x) + p2(x) µ2(x ) (4a)

and
σ2

y. x = p1(x) σ2
1, y. x + p2(x) σ2

2, y. x + p1(x) p2(x)
{µ1(x)- µ2(x)}2, (4b)

where µ1(x) and µ2(x) are the linear parts (without the
error terms e) from the regressions in expressions (1a)
and (1b). Note that prediction from expression (3) is
an estimate of µ(x) from expression (4a). 

Because µ(x) should be closer to the regression line
for gilts for low fat depth x and closer to the

Table 2 Sampling schemes S1. . S4

Rows 1, 2 and 3 for x below m-v (low), x between m-v and m + v (middle) and x above m + v (high values). Here, m and v are
the overall mean and standard deviation of fat depth x for schemes S1, S3 and S4 and the separate means µ1, µ2 and standard
deviations σ1, σ2 of x for the two subpopulations respectively for scheme S2. Selection is within subpopulations for S1 and S2 and
over subpopulations, i. e. ignoring sexes or breeds, for S3. S4 is similar to S3 except that a fixed number of each subpopulation is
selected. In rows 4, 5, 6 and 7 it is shown which calculations are performed under schemes S1, S2, S3 and S4 in the simulation:
simple linear regression on x, polynomial regression (up to degree 3), approach of Engel and Walstra (EW-method).

Selection within Selection over
subpopulations subpopulations

Sampling scheme S1 S2 S3 S4

Subpopulation 1 2 1 2 – –

Fat class
Low 24 24 24 24 48 48
Middle 12 12 12 12 24 24
High 24 24 24 24 48 48

Involving:
Simple regression yes yes yes yes
Polynomial regression yes yes yes yes
EW-method yes yes no no
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regression line for castrates for large fat depth x, it is
not a simple linear function of x. This is illustrated in
Figure 1 for the parameter values based on the Dutch
data (Table 1a). The curve for µ(x) is better
approximated by a cubic polynomial in x than by a
straight line. As illustrated in Figure 3, the overall
residual standard deviation σy. x is not constant but
depends on x. The residual standard deviation
increases when the difference between the separate
regression lines becomes more pronounced, i.e. for
small fat depth, or when there is a marked overlap
between the sexes, i.e. for intermediate values of fat
depth. 

Selection of the carcasses
In the simulation four sampling schemes were
studied, referred to as S1, S2, S3 and S4. Each sampling
scheme involved 120 carcasses. In the first two
sampling schemes (S1 and S2) separate samples of
size 60 were taken for each sex. Carcasses were
selected on the basis of fat depth in three classes. The
numbers in these classes correspond to 40, 20 and
40% of the sample size and are shown in Table 2. The
40-20-40% scheme is quite common in dissection
experiments. The boundary values for the fat depth
classes were either the same for the two sexes (S1) or
different (S2). In the former case the overall mean and
standard deviation for fat depth were used to
construct boundary values µ±σ, where (Appendix
A3):

µ = π1 µ1 + π2µ2 and σ2 = π1 σ
2

1 + π2 σ
2

2 + π1 π2 (µ1-µ2)2 (5).  

In the latter case the separate means and standard
deviations for the sexes were employed : µ1±σ1 and
µ2±σ2. In the third sampling scheme (S3) 120 carcasses
were selected employing the same fat classes as for
S1, but ignoring the sexes (Table 2). In the fourth
sampling scheme (S4) sexes were also largely
ignored, but care was taken that an equal number of
both sexes was present in the sample. 

Note that S1 and S4 are quite different sampling
schemes with respect to the distribution of the sexes
over the fat depth measurements. Schemes S3 and S4
are frequently used in practice. Although there is a
mild form of selection on the sexes under S4, it is
generally assumed that adverse effects are negligible.
The simulation study will show that this assumption
is indeed true. 

For the subpopulations based on the Spanish data,
the same sampling schemes were used, with equal
numbers in the sample for each subpopulation for
schemes S1 and S2 and an obvious modification for
unequal proportions πi for scheme S4. 

Simulation of a dissection experiment
For selection schemes S1 and S2, fat depths x were
sampled from the distributions for each sex. Those
values that fitted into the selection scheme were
accepted, until sample sizes of 60 for each sex were
reached. The corresponding lean meat percentages y
were generated according to regressions (1a) and (1b)
with the parameter values from Table 1a. For scheme
S3, first the sex of a carcass was determined with
probabilities π1 and π2, then the fat depth x was
generated according to the appropriate normal
distribution and when x fitted into the scheme, the
lean meat percentage y was generated according to
(1a) or (1b). For scheme S4, fat depth values x were
alternately generated for gilts and castrates, until 120
carcasses were found that fitted into the selection
scheme. Lean meat percentages were alternately
generated by (1a) and (1b). 

One thousand samples of size 120 were generated
according to each of the four selection schemes. Each
generated sample represents a dissection experiment,
under one of the four selection schemes, such as
might have occurred in practice. For all samples of
120 carcasses, for all four selection schemes, we
calculated an overall prediction formula by
regression of the lean meat percentage y on the fat
depth x, ignoring the sexes and an overall formula
according to polynomial regression also ignoring the
sexes, for reasons explained in the next section. For
schemes S1 and S2 we also calculated an overall
prediction formula by the method of Engel and
Walstra (1993). Which calculations that were
performed under which scheme is summarized in
Table 2. 

Polynomial regression
We concluded (Figure 1) that the overall mean µ (x) is
not a simple linear function of fat depth x but
resembles a cubic polynomial in x. However, in view
of the variation in the data (Figure 1), it is doubtful
whether departures from linearity will be noticable
in a sample of 120 dissected carcasses. So far no
marked departures from linearity in pig carcass
grading have been reported. Therefore, in the
simulation we had a particular interest in the t tests
for the coefficients of the quadratic (x2) and cubic (x3)
terms in the polynomial, as a test for lack of fit. In the
simulation both simple (straight line) regression and
polynomial regression were included. In both cases
homogeneous residual variances were assumed,
supposing that the heterogeneity of variances (Figure
3) goes unnoticed. When the coefficient of the cubic
term x3 was not significantly different from 0 it was
dropped from the polynomial regression model.
Subsequently, when the coefficient of the quadratic
term x2 was not significant it was discarded as well. 
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Table 3 Bias and mean squared prediction error (MSPE) for two sexes

Average bias and MSPE (Biasav and MSPEav) and bias and MSPE per sex (Bias1, Bias2, MSPE1 and MSPE2 for gilts and castrates
respectively) for sampling schemes S1. . S4. Results for linear regression (ignoring sexes) and the EW-method (S1 and S2 only).
Proportion of 1000 simulations with a significant coefficient for cubic term (P3) and quadratic term (P2), after the cubic term has
been removed, in the polynomial regression. Input parameters are from Table 1a and based on the Dutch data.

MSPEav MSPE1 MSPE2 Biasav Bias1 Bias2 P2 P3

Sampling scheme S1
Simple regression

Mean 5·94 5·54 6·38 –0·10 –1·16 0·96 0·04 0·04
s. d. 0·25 0·56 0·48 0·20 0·21 0·21

2·5% percentile 5·48 4·63 5·52 –0·47 –1·55 0·55
97·5% percentile 6·47 6·70 7·35 0·29 –0·74 1·38

EW-method
Mean 5·74 4·91 6·61 0·01 –0·84 0·87

s. d. 0·22 0·41 0·47 0·20 0·21 0·24
2·5% percentile 5·34 4·23 5·76 –0·38 –1·26 0·41

97·5% percentile 6·20 5·84 7·58 0·42 –0·41 1·32

Sampling scheme S2
Simple regression

Mean 5·80 5·12 6·52 –0·01 –0·98 0·96 0·03 0·13
s. d. 0·23 0·48 0·51 0·21 0·22 0·23

2·5% percentile 5·40 4·31 5·63 –0·42 –1·41 0·54
97·5% percentile 6·27 6·16 7·55 0·41 –0·56 1·41

EW-method
Mean 5·74 4·96 6·56 –0·01 –0·87 0·85

s. d. 0·22 0·43 0·48 0·21 0·22 0·23
2·5% percentile 5·34 4·22 5·70 –0·41 –1·30 0·42

97·5% percentile 6·17 5·88 7·56 0·41 –0·45 1·30

Sampling scheme S3
Simple regression

Mean 5·96 5·62 6·35 –0·13 –1·19 0·94 0·06 0·06
s. d. 0·26 0·65 0·52 0·23 0·25 0·24

2·5% percentile 5·48 4·50 5·47 –0·58 –1·67 0·47
97·5% percentile 6·48 7·01 7·47 0·30 –0·70 1·40

Sampling Scheme S4
Simple regression

Mean 5·95 5·55 6·37 –0·10 –1·17 0·96 0·04 0·06
s. d. 0·25 0·57 0·49 0·20 0·22 0·22

2·5% percentile 5·48 4·52 5·53 –0·52 –1·60 0·53
97·5% percentile 6·46 6·79 7·36 0·29 –0·74 1·38

Evaluation of performance of prediction formulae
To assess the performance of a prediction formula we
used a set of 1600 ‘standard’ carcasses with pre-
chosen values for fat depth x. These standard
carcasses are representative for the pig population
and mimic a large random sample. The number of
standard carcasses per subpopulation was
proportional to the number in the population as
reflected by proportions πi, i.e. 800 gilts and 800
castrates in the simulation based on the Dutch data.
When two instrumental variables were involved in
the simulation, e.g. a fat and a muscle depth

measurement, the standard carcasses were chosen
with pre-chosen fat and muscle depth values. Details
are presented in Appendix A4. For the four
subpopulations based on the Spanish data, the
number of standard carcasses was changed to 1521,
since this number could more conveniently be
combined with the proportions π1, π2, π3 and π4 (Table
1b). 

For each sampling scheme, for each of the 1000
simulated dissection experiments, a true lean meat
percentage y was generated for each standard carcass
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Table 4 Bias and mean squared prediction error (MSPE) for two breeds

Average bias and MSPE (Biasav and MSPEav) and bias and MSPE per breed (Bias1, Bias2, MSPE1 and MSPE2 for breeds 1 and 2
respectively) for sampling schemes S1. . S4. Results for linear regression (ignoring breeds) and EW-method (S1 and S2 only).
Proportion of 1000 simulations with a significant coefficient for the cubic term (P3) and quadratic term (P2), after the cubic term
has been removed, in the polynomial regression. Input parameters are from Table 1a and based on the Spanish data.

MSPEav MSPE1 MSPE2 Biasav Bias1 Bias2 P2 P3

Sampling scheme S1
Simple regression

Mean 11·80 10·77 12·60 –0·46 1·90 –2·29 0·03 0·05
s. d. 0·51 1·01 1·28 0·24 0·25 0·25

2·5% percentile 10·85 8·90 10·36 –0·96 1·39 –2·79
97·5% percentile 12·84 12·85 15·28 0·01 2·39 –1·80

EW-method
Mean 11·04 12·59 9·85 –0·01 2·10 –1·65

s. d. 0·41 1·16 0·94 0·25 0·26 0·27
2·5% percentile 10·28 10·44 8·23 –0·52 1·56 –2·19

97·5% percentile 11·82 14·98 11·92 0·47 2·59 –1·13
Sampling scheme S2
Simple regression

Mean 11·31 11·51 11·15 –0·27 1·98 –2·01 0·11 0·33
s. d. 0·44 1·10 1·10 0·26 0·27 0·26

2·5% percentile 10·49 9·48 9·12 –0·76 1·44 –2·49
97·5% percentile 12·22 13·85 13·32 0·25 2·49 –1·50

EW-method
Mean 11·04 12·58 9·85 –0·01 2·10 –1·65

s. d. 0·41 1·18 0·89 0·26 0·27 0·26
2·5% percentile 10·28 10·43 8·23 –0·49 1·57 –2·11

97·5% percentile 11·88 15·15 11·68 0·49 2·61 –1·12
Sampling scheme S3
Simple regression

Mean 11·57 11·99 11·25 –0·17 2·16 –1·97 0·06 0·06
s. d. 0·53 1·50 1·57 0·33 0·33 0·35

2·5% percentile 10·64 9·33 8·68 –0·84 1·51 –2·66
97·5% percentile 12·74 15·16 14·60 0·48 2·81 –1·33

Sampling scheme S4
Simple regression

Mean 11·48 12·16 10·95 –0·12 2·21 –1·92 0·05 0·05
s. d. 0·46 1·19 1·11 0·25 0·26 0·26

2·5% percentile 10·62 9·92 8·89 –0·63 1·69 –2·42
97·5% percentile 12·42 14·65 13·29 0·38 2·72 –1·39

and compared with the predicted percentage ŷ  from
the formula. The true lean meat percentages y of the
standard carcasses were simulated with the same
model and parameter values as the samples that
were used for linear regression. The differences ( ŷ -y)
and squared differences ( ŷ -y)2 were averaged over
the 1000 simulated experiments and plotted against
fat depth x to obtain an impression of the bias and
mean squared prediction error (MSPE). In addition
to these plots, differences and squared differences
were averaged over the standard carcasses to obtain
an average bias and MSPE per subpopulation and an
overall bias and MSPE over the total population.
Some details are in Appendix A4. 

Results
Two sexes from the Dutch data
Results for the simulation based on the Dutch data
are presented in Table 3. In the last column of the
table the proportions of the 1000 simulated dissection
experiments are shown where the coefficient of the
quadratic and cubic term in the polynomial
regression was significant according to a t test.
Clearly, departures from a simple straight line could
hardly be detected in any of the four sampling
schemes, since these proportions barely exceeded the
nominal significance level of 0·05. There was no
apparent gain in accuracy in the use of polynomials
(results not shown). 
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Figure 4 The bias for each of two breeds from the Spanish data (input parameters from Table 1a) for sample schemes S2 and
S4 (Figure 4a and b). A black line for breed 1 and a grey line for breed 2. Bias for separate regression lines per breed is nearly
0. The mean squared prediction error (MSPE) for each of two breeds from the Spanish data (input parameters from Table 1a)
for sample schemes S2 and S4 (Figure 4c and d) MSPEs for separate regression lines per breed are depicted as well (relatively
flat curves near the horizontal axis).
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For schemes S1 and S2, the method by Engel and
Walstra (1993), from now on referred to as the EW-
method, performed better than linear regression
ignoring sexes, with respect to overall bias (Biasav)

and mean squared prediction error (MSPEav). Also
the variation in MSPEav over the 1000 simulated
experiments, as reflected by the 2·5 and 97·5
percentile points, was lower for the EW-method.
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Figure 5 Contour plot for sampling scheme S3 of the
relative bias between subpopulations 1 and 4 for the
simulation with four subpopulations. Relative bias as a
function of fat and muscle depth measurements. Input
parameters are from Table 1b and based on the Spanish
data. Contours numbered 1 . . . 8 correspond to a relative
bias of –3, –2, . . . 4% respectively.
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However, the gain in accuracy was small and fairly
unimportant. 

In all instances the overall bias (Biasav) was
practically negligible. The average bias within the
sexes (Bias1 and Bias2) was about –1·1% for gilts and
0·96% for castrates. For small values of fat depth x
(not shown) bias may run up to about –1·5 and 1·5%
respectively. Hence, the use of a single overall
prediction formula induced a systematic difference
between the sexes of 2·1% in percentage lean, while
for selected values of fat depth this difference may
run up to 3%. When separate prediction formulae are
used this bias will vanish. 

As noted in the Introduction, linear (and
polynomial) regression under schemes S1 and S2 is
not covered by standard regression theory, because
of the selection on fat depth within sexes.
Nevertheless, for simple regression the MSPEav
under S2 was the smallest among the sampling
schemes. The average intercept and slope for the
fitted regression lines for S1, S3 and S4 were close to
the averages of the intercepts a1 and a2 and slopes b1
and b2 (Table 1) for the two sexes, i.e. fitted lines for
S1, S3 and S4 were on average in between the two
regression lines for the sexes. Under S2 there were
relatively more gilts for low fat depth and relatively

more castrates for high fat depth compared with S1,
S3 and S4. Consequently, for S2 the fitted lines had a
larger intercept, declined more steeply and tended to
be closer to the non-linear curve for the overall mean
(Figure 1) than for S1, S3 and S4. This illustrates that
for linear regression, ignoring the sexes, the
differences between the sampling schemes were
largely determined by the way lack of fit was
incorporated in the predictions through the
configurations of the instrumental measurements.
Despite the fact that there was no apparent lack of fit
in the simulated data. 

For regression under sampling schemes S3 and S4, the
schemes commonly used in dissection experiments,
the root of the MSPE was 2·4 and 2·5% for gilts and
castrates respectively. For small values of fat depth x
the root MSPE may run up to 2·5 and 3% (not shown)
for gilts and castrates respectively. When separate
prediction formulae are used, the root MSPE will be
close to 2·0 and 2·3%, the residual standard
deviations for gilts and castrates respectively, when
at least moderately sized samples, say 60 carcasses,
are collected for each sex. So, although differences
between the sexes were not marked, there was some
room for improvement with respect to bias and
MSPE. 

Two breeds from the Spanish data
For the two Spanish breeds the proportions π1 and π2
in the population differed. Consequently, the
numbers of standard carcasses for the breeds also
differed : 697 and 903 for breeds 1 and 2 respectively.
The numbers of dissected carcasses in the simulation
were still equal to 60 for each breed. The simulation
results are presented in Table 4. 

Again differences between linear regression and
polynomial regression (not shown) were small. There
was an increased probability of detecting departures
from a straight line under scheme S2. Under S3 and
S4, the sampling schemes commonly used in practice,
the probabilities were close to the nominal
significance level of 0·05. 

Differences between regression ignoring breeds and
the EW-method were more pronounced for the
Spanish breeds compared with the Dutch sexes. The
average bias (Biasav) for simple regression ignoring
the breeds was –0·5% under scheme S1. For the EW-
method the average bias was negligible, as it should
be on theoretical grounds (Engel and Walstra, 1993).
Under scheme S1, the reduction in MSPEav for the
EW-method was about 6% of the MSPE for simple
regression, with some loss of accuracy for breed 1
and a relatively larger gain in accuracy for breed 2. 
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Under S3 and S4, the average bias within each breed
was about 2·2 and –2·0% for linear regression for
breeds 1 and 2 respectively. Bias under S2 clearly
differed from the other sampling schemes. This is
illustrated in Figure 4 where bias is plotted against
fat depth for S2 and S4 (plots for S1 and S3 are similar
to S4). Under S3 and S4 bias may run up to 3·5% and –
2·5% for breeds 1 and 2 respectively for low fat
depth. So, with a single overall prediction formula,
there was an average difference between the breeds
of some 4%, which ran up to 6% for selected values
of fat depth. 

Under S3 and S4, for simple linear regression, the root
MSPE was about 3·4% for breeds 1 and 2 (square root
of MSPEav in Table 4). When separate prediction
formulae are used, the root MSPE will be close to
2·6%, the residual standard deviation for the two
breeds, when at least moderately sized samples, 60
carcasses say, are collected for each breed. In Figure 4
the MSPE per breed for simple regression for
schemes S2 and S4 is plotted against fat depth for a
single overall prediction formula and for separate
formulae based on 60 dissected carcasses each. Again
there was a marked difference between S2 and the
other schemes. Under S3 and S4 the root MSPE for
linear regression may run up to some 4% for lean
pigs. 

For simple regression, the MSPEav under S2 was the
smallest among the sampling schemes. The
explanation is the same as for the sexes in the Dutch
data. Also, for scheme S2 the probability of detecting
departures from linearity was distinctly larger than
the nominal 0·05 level. Results with the EW-method
were still superior to linear regression under S2. The
EW-method under schemes S1 and S2 performed
better than simple regression under S1. . S4 with
respect to MSPEav. Differences between S3 and S4
were minor. Apparently, there is no harm, and
perhaps some slight gain, in forcing the numbers of
animals in the sample to be proportional to the
numbers in the population. 

So, accuracy was appreciably increased by the use of
the EW-method, and markedly increased by the use
of separate prediction formulae compared with
simple linear regression under schemes S1. . S4. 

Four subpopulations from the Spanish data
In Table 1b input parameters are shown for four
subpopulations derived from the Spanish data. The
first subpopulation is also the first subpopulation in
the aforementioned study with two Spanish breeds.
The first three subpopulations are maternal lines
which are used in the majority of crosses in Spain.
The fourth subpopulation consists of five sire lines,

pooled together. Both the FOM fat and muscle depth
measurements were employed. Multivariate
normality for the lean meat percentage and
instrumental measurements was assumed within
each breed. Selection of carcasses was performed on
fat depth only in conformance with Table 2. 

To test for lack of fit, quadratic terms and a product
term were added to the regression model. Various
significance tests were performed for these
additional terms. The most powerful test was the F-
test on the quadratic terms and product term.
Although the P-values (Table 5) were larger than the
nominal 0·05 level, the power to detect departures
from linearity was low. 

The EW-method performed better than linear
regression under schemes S1 and S2, but the gain was
small. 

The relative bias between subpopulations 1 and 4
was 2·2% for S3 and S4. The relative bias may run up
to 3 to 4% for selected values of (mostly) fat and
muscle depth (Figure 5). The root MSPEav for S3 and
S4 was about 2·4%, and root MSPE ranged from 2·2 to
2·6% for the separate subpopulations. By contrast the
residual standard deviations for the separate
regressions per subpopulation ranged from 2·1 to
2·3%. The largest improvements were for S1 and S4.
Note that compared with the aforementioned study
with two Spanish breeds, the use of both a fat and
muscle depth measurement offered a considerable
reduction in the MSPE. Consequently the largest gain
in root MSPE to be made by employing a separate
formula is about 13% of its value for a single
common formula. The use of separate prediction
formulae eliminates the relative bias between the
subpopulations and increases the accuracy of
prediction as reflected by the MSPE. 

Discussion
We decided on a simulation study because this was
by far the simplest way to handle the different
sampling strategies under the four sampling schemes
that were considered. It was assumed that within
subpopulations lean meat percentages and
instrumental measurements are linearly related. This
was supported by the Dutch and Spanish data. As a
consequence, the induced relationship between
instrumental carcass measurements and lean meat
percentages over the subpopulations, i.e. for the pig
population as a whole, was not linear (Figure 1).
Serious departures from linearity in dissection
studies have not been reported so far. The sampling
schemes used in dissection experiments are similar
to schemes S3 and S4 in our study. For these schemes
we found that the probability of detecting departures
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from linearity, by testing the significance of quadratic
and cubic terms in a polynomial regression, hardly
exceeded the nominal significance level of 0·05. The
choice of model in the simulation therefore seems an
entirely reasonable one. To simplify the calculations,
multivariate normality was assumed for
instrumental carcass measurements and lean meat
percentages. Although in practice some variables,
e.g. fat depth, may be skewed, this is not expected to
interfere with our conclusions to any great extend.
Moreover, serious departures from normality suggest
marked departures from linearity in regression and,
again, such departures have not been reported yet.
The results can be expected to apply to double
regression (Engel and Walstra, 1991a and b; Causeur
and Dhorne, 1998), a cost saving alternative for
ordinary linear regression, as well. 

In Engel et al. (2003) the effect was studied of
selection of carcasses on variables which are not all
included in the final prediction formula. Here, in
schemes S1 and S2, the indicator variables for the
subpopulations are involved in the selection of the
carcasses for dissection, but not in the simple
regression for the final formula. In Engel et al. (2003),
it was shown that adverse effects of selection on
continuous variables, that are not involved in
regression later on, can be considerable. Notably, the
residual variance can be seriously inflated. Here,
only minor differences between the residual standard
deviations under the four schemes were observed
(not shown). Under schemes S1 and S2, the method
by Engel and Walstra (1993) offered an improvement
over simple regression, when differences between
subpopulations were marked. 

When a single overall prediction formula was used,
we found a bias in the predicted lean meat
percentage of 2% between gilts and castrates in the
Dutch data and of 4% between some of the Spanish
breeds. For lean pigs, the systematic differences ran
up to 3 and 6·5% for the sexes and breeds
respectively. This bias can be eliminated and the
mean squared prediction error can be markedly
reduced, either by introduction of extra prediction
variables that are able to discriminate between
subpopulations or by the use of separate prediction
formulae for the subpopulations. Our simulation
mimics conditions that might easily occur within the
EC. Although results do not completely reflect the
accuracy of the HGP and FOM as used in The
Netherlands and Spain, we concluded that for some
subpopulations it can be worthwhile to find extra
prediction variables or to use separate prediction
formulae. When the Hampshire breed was
introduced in Sweden, to reduce problems with PSE,

Hampshire crosses were found to have meatier hams
than the conventional White pigs. However, the fat
depth, as measured by the HGP, was the same for
these subpopulations. Fortunately, introduction of an
extra muscle depth measurement of the m.
longissimus dorsi largely resolved the problem
(Ingemar Hansson, personal communication). In
general, extra instrumental carcass measurements
that markedly increase discriminative power
between subpopulations are hard to find, but the use
of separate prediction formulae will become feasible
in the near future with the advance of technology for
implants. This would ensure a fairer payment for
producers who happen to specialize in
subpopulations with a sizeable negative bias and
would substantially increase the accuracy of
prediction. 

Possibly, a requirement for a minimal sample size for
subpopulations has to be included in the EC-
regulations. Otherwise, any gain in accuracy by use
of separate formulae may be lost due to the extra
variation originating from small samples of carcasses
per subpopulation. If so, what the minimum sample
size per subpopulation should be will be a point of
discussion. When several subpopulations are
considered, the total sample size required may
possibly exceed the present minimum sample size of
120 carcasses as required by the EC-regulations (EC,
1994). In the EUPIGCLASS research project
(EUPIGCLASS, 2000), the scope for indirect methods
based on imaging technology to determine the lean
meat percentage of pig carcasses is investigated.
Although such indirect techniques are too time
consuming and costly to apply in the slaughterline,
they may offer a reliable and much cheaper
alternative to the present EC reference dissection
method (Walstra and Merkus, 1996). In that case the
cost of calculating separate prediction formulae for
subpopulations would not be a serious impediment.
A need for additional practical measures can be
anticipated. For instance, suppose that use of a
separate prediction formula is proposed for a
subpopulation at the initiative of one or more
producers. It will probably have to be decided
whether the introduction of a separate formula is
acceptable. The considerations, at a national level
and in general, will include both the problem
concerning a period of transition and the estimation
of a separate formula for the remaining pigs in the
population. On a national level it is advisable for
dissection experiments to be performed under the
supervision of one or more approved agencies, that
are recognized for their technical skills, in
cooperation with certified statisticians. Otherwise,
when new formulae are proposed more frequently in
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the future, quality of sampling, use of proper
statistical methodology, proper handling of outliers
and missing data and correct and critical model
validation cannot be sufficiently guaranteed. The
increasing use of instruments that collect large
numbers of carcass measurements and the
complexity of the statistical methodology that is
required for proper handling of this data, make the
need for expert certified supervision even more
pressing. 
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Appendix
Expressions are presented for T subpopulations and, to keep notation simple, for one prediction variable x only. Generalization
to several prediction variables is straightforward.

A1. Conditional probabilities for subpopulations
 pt(x) = P(subpopulation t | x) = P(x | subp. t) πt/Σi πi P(x | subp. i) =

 {πt exp(-1⁄2(x-µt)
2/σ2

t)/σt}/{Σi +πiexp(-1⁄2(x-µi)
2/σ2

i)/σi},
so

 log(pt(x)/pT(x)) = {log(πt)-log(πT) + log(σT)-log(σt)} +
 + {µt/σ2

t-µT/σT} x + {(σ2
t-σ

2
T)/(2σ2

tσ
2

T)} x
2.

For t = 1 and T = 2: log(pt(x)/pT(x)) = logit(p1(x)) = γ0 + γ1x + γ2x
2, where γ0 = log(π1/π2) + log(σ2/σ1) + 1⁄2 µ

2
2/σ2

2- 
1⁄2 µ

2
1/σ2

1, γ1 = µ1/
σ2

1-µ2/σ2
2 and γ2 = + (σ2

1-σ
2

2)/(σ2
1σ

2
2). For more than two subpopulations, the logistic regression model can be replaced by a

multinomial logistic model (Cox and Snell, 1989). The latter model can be fitted with standard software for log-linear models
for count data (McCullagh and Nelder, 1989, §6·4·2).

A2. Means and variances for percentage lean over subpopulations
 E(y | x) = µ(x) = Σt pt(x) E(y | x, subp. t) = Σt pt(x) µt(x) = Σt pt(x) (at + btx),

 Var(y | x) = Et(Var(y | x, subp. t)) + Vart(E(y | x, subp. t)) =
  Σt pt(x) σ2

t,y. x + Σt pt(x) {µt(x)- µ (x)}2.
This yields expressions (4a) and (4b) for T = 2.

A3. Means and variances for fat depth over subpopulations
 E(x) = µ = Et(E(x | subpopulation t)) = Σt πt µt,

 Var(x) = σ2 = Et(Var(x | subp. t)) π Vart(E(x | subp. t)) = Σt πt σ
2

t + Σt πt (µt-µ)2,
where Et and Vart denote expectation and variance with respect to subpopulation membership. This yields expression (5) for
T = 2 subpopulations.

A4. Choice and use of standard carcasses
Let N be the total number of standard carcasses and nt = πtN be the number per subpopulation, t = 1. . T. For the tth subpopulation,
nt measurements xti for x were generated according to xti = Φ-1(i/(nt + 1))σt + µt, i = 1. . nt, where Φ-1 denotes the inverse of the
cumulative probability function of the standard normal distribution (the probit function). This parallels the construction of a
random sample from a normal distribution, replacing random numbers from a homogeneous distribution on the interval (0,1)
by their expected order statistics as approximated by i/(nt + 1). When two prediction variables were involved standard carcasses
were chosen to mimic a random sample from a bivariate normal distribution in parallel with the Box-Muller algorithm (Engel
et al., 2002; Appendix A1).
Differences ŷ-y between predicted and true lean meat percentages and squared differences ( ŷ-y )2 were averaged to obtain the
bias (Bias1, Bias2, . . ) and mean squared prediction error (MSPE) (MSPE1, MSPE2, . . ) per subpopulation. The overall bias (Biasav)
and MSPE (MSPEav) were calculated by averaging over all standard carcasses. In the latter case, for each new assessment of a
prediction formula, for each standard carcass, sex or breed were sampled according to the conditional probabilities (Appendix
A1) corresponding to the standard instrumental measurements. This is because overall bias and MSPE are conditional upon
(standard) carcass measurements only, while bias and MSPE per subpopulation are, evidently, conditional upon sex or breed as
well.


