Mapping European Habitats to support the design and implementation of a PanEuropean Ecological Network

# Mapping European Habitats to support the design and implementation of a Pan-European Ecological Network <br> The PEENHAB project 

C.A. Mücher
S.M. Hennekens
R.G.H. Bunce
J.H.J. Schaminée


#### Abstract

Mücher, C.A., R.G.H. Bunce, S.M. Hennekens and J.H.J. Schaminée, 2004. Mapping European Habitats to support the design and implementation of a Pan-European Ecological Network;; The PEENHAB project. Wageningen, Alterra, Alterra-report 952. 124 pages. 32 figs.; 16 tables.; 36 refs.

The overall objective of the PEENHAB project to develop a methodology to identify spatially all major habitats in Europe. The Pan-European Ecological Network (PEEN) anticipates in the development of an indicative map of an ecological network for the whole of Europe. The design of such an indicative map requires information about the spatial distribution of habitats and species in Europe, as well as inside as outside protected areas. Therefore, the development of European habitat maps is a prerequisite for the further development of a pan-European ecological network. The habitat classes as given in Annex I of the Habitats Directive, better known as Natura 2000 habitats, are taken as the reference. On the basis of the Annex I habitat definitions knowledge rules were defined in a flexible manner using graphic models within a GIS environment to optimally combine existing spatial databases (such as land cover, soil data, topographic data and species distribution maps) to identify the spatial distribution of the major European habitats. At the same time a bottom-up approach is used in collaboration with the SynBioSys project. Currently, a module has been made to predict the Annex I habitats using the Map of the Natural Vegetation of Europe. Both approaches were integrated within the present PEENHAB project.


Keywords: Habitat mapping, Habitat Directive, PEEN, land cover, species ditribution maps, spatial information, GIS, CORINE, SynBioSys, indicator species.

ISSN 1566-7197

Authorized for publication by G.J.A. Nieuwenhuis

Front picture: A "Medio-European limestone beech forests of the Cephalantero-Fagion" (Annex I habitat type 9150) on steep slopes of the Swabian Jura between 430 and 825 m ., near Reutlingen/Germany (U. Bohn, May 1993)

This report can be ordered by paying $€ 34$,- to bank account number 367054612 by name of Alterra Wageningen, IBAN number NL 83 RABO 0367054 612, Swift number RABO2u nl. Please refer to Alterra-report 952. This amount is including tax (where applicable) and handling costs.
© 2004 Alterra
P.O. Box 47; 6700 AA Wageningen; The Netherlands
Phone: + 31 317 474700; fax: +31 317 419000; e-mail: nfo@alterra.wur.nl

No part of this publication may be reproduced or published in any form or by any means, or stored in a database or retrieval system without the written permission of Alterra.

Alterra assumes no liability for any losses resulting from the use of the research results or recommendations in this report.

## Contents

Summary ..... 7
1 Introduction ..... 9
1.1 Background ..... 9
1.2 Objective ..... 10
1.3 Map requirements ..... 11
1.4 Expected limitations ..... 11
1.5 Policies in relation to habitat mapping ..... 12
1.5.1 Pan European Biological and Landscape Diversity Strategy (PEBDLS) ..... 12
1.5.2 Pan-European Ecological Network (PEEN) ..... 12
1.5.3 The Habitats Directive ..... 13
1.5.4 Emerald Network ..... 14
1.5.5 Dutch Directive on Nature for People, People for Nature ..... 14
1.5.6 Dutch Convention Biodiversity International (BBI) ..... 14
1.6 Related projects ..... 15
1.6.1 SynBioSys Europe ..... 15
1.6.2 BioHab ..... 16
1.6.3 BioPress ..... 17
1.6.4 Planta Europa - Important Plant Areas in Europe ..... 17
2 Habitat classifications and concepts ..... 19
2.1 Concepts and definitions ..... 19
2.2 Existing classifications ..... 20
2.2.1 The Habitats Directive ..... 21
2.2.2 CORINE Biotopes classification ..... 23
2.2.3 Palaearctic Habitat classification ..... 24
2.2.4 The EUNIS Habitat classification ..... 24
2.2.5 Phytosociological plant communities in Europe ..... 26
2.2.6 The Map of Natural Vegetation of Europe ..... 26
2.2.7 CORINE land cover classification ..... 26
2.3 Links between CORINE land cover and various habitat classifications ..... 29
2.3.1 Relationship EUNIS Habitat classification and Habitats Directive ..... 29
2.3.2 Relationship CORINE biotopes and CORINE land cover ..... 30
2.3.3 Relationship EUNIS Habitat classification and CORINE land cover
2.3.4 Relationship Habitats Directive and CORINE land cover ..... 31 ..... 32
3 Data sources ..... 35
3.1 Administrative and topographical data ..... 35
3.2 Biogeographic data ..... 36
3.2.1 BRME ..... 36
3.2.2 DMEER ..... 37
3.2.3 The Environmental Classification of Europe (EnC) ..... 37
3.3 Digital Elevation Models ..... 39
3.4 Soils ..... 40
3.4.1 European Soil Database 1:1M ..... 40
3.4.2 FAO-UNESCO soil map of the world ..... 41
3.4.3 Integration of both soil databases ..... 42
3.5 Land cover ..... 44
3.5.1 CORINE ..... 44
3.5.2 PELCOM ..... 45
3.5.3 GLC2000 ..... 46
3.5.4 Compilation European Land Cover Database ..... 47
3.6 Atlas Florae Europaeae (AFE) ..... 54
3.7 The Map of the Natural Vegetation of Europe ..... 56
3.8 CORINE biotopes site database ..... 57
4 Methodology ..... 61
4.1 Introduction ..... 61
4.2 Methodological aspects ..... 62
4.2.1 Habitat description ..... 63
4.2.2 Decision rules or filters ..... 64
4.2.3 Core data sets to identify habitat type 9150 ..... 65
4.2.4 Predicting Natura 2000 habitats using the map of the Natural Vegetation of Europe ..... 68
4.2.5 Data infrastructure and graphic modeller ..... 70
5 Results ..... 73
5. 1 Validation ..... 74
6 Conclusions and outlook ..... 77
References ..... 79
Appendices
1 Level I and II of Annex I Habitats Directive ..... 83
2 European Vegetation Survey Formations ..... 85
3 The CORINE Biotope classification for the first and second level ..... 87
4 Nomenclature of the CORINE land cover database ..... 89
5 Legend Potential Natural Vegetation (PNV) Map ..... 91
6 Legend Digital Map of Ecological Regions (DMEER) ..... 93
7 FAO-UNESCO Soil Units ..... 95
3 Abiotic soil conditions ..... 97
9 Recoding of PELCOM and GLC2000 into the CORINE land
cover nomenclature ..... 99
10 Overview of published volumes of the Atlas Florae Europaeae (AFE) ..... 101
11 List of indicator species for each Annex I habitat type ..... 103
12 List of related CORINE land cover classes and indication of mapping possibility for each Annex I habitat type ..... 109
13 Summary of Annex I habitat types per country (EU15) ..... 115
14 Explanation of the Data Sheets for the Mapping Units ..... 123

## Summary

The Pan-European Ecological Network (PEEN) anticipates in the development of an indicative map of an ecological network for the whole of Europe. The design of such an indicative map requires information about the spatial distribution of habitats and species in Europe, as well as inside as outside protected areas. Information about the spatial distribution of species is being collected by many international organisations. However, there are no explicit maps about the spatial distribution of habitats in Europe. Therefore, the development of a European habitat maps is a prerequisite for the further development of a pan-European ecological network.

The overall objective of the present PEENHAB project to develop a methodology to identify spatially all major habitats in Europe in order to produce an indicative map of a Pan-European Ecological Network. The definitions of the habitats as given in Annex I of the Habitats Directive, better known as Natura 2000 habitats, are taken as the reference. On the basis of the Annex I habitat definitions knowledge rules were defined using graphic models within a GIS environment to optimally combine existing spatial databases (such as land cover, soil data, topographic data and species distribution maps) to identify the spatial distribution of the major European habitats. At the same time a bottom-up approach is foreseen in collaboration with the SynBioSys Europe project. The compiled distribution maps of the top-down approach will be confronted with distribution maps of the relevant vegetation types, based on original data (vegetation relevés) representing the vegetation types in question. Currently, a module has been made to predict the Annex I habitats using the Potential Natural Map of Europe and the attached database attribute "diagnostically important species". Both approaches are being combined within the present PEENHAB project.

The methodology has been demonstrated for Annex I habitat type 9150 "MedioEuropean limestone beach forest of the Cephalanthero-Fagion" resulting in a 250 m resolution map with the spatial distribution of the calcareous beech forests in Europe. A validation, as a visual comparison exercise, has been performed using publications of Annex I forest habitat maps of France. This validation suggests a good match between the classification result and the reference data. A more quantitative validation has been performed using the CORINE biotopes database. Of the 44 Biotopes sites with "Beech forests on limestone (41.16)" across Europe $73 \%$ of the biotopes sites were identified by our habitat classification. Uncertainties in the habitat mapping approach are especially foreseen in the case of weak Annex I habitat descriptions, uncertainties in the core data, or if spatial distribution maps are not available for the specific indicator species. In 200425 major habitat types will be mapped for pan-Europe using the habitat mapping methodology as described in this report.

## 1 <br> Introduction

### 1.1 Background

The highly industrialised and expanding society and its associated modern management techniques in agriculture and forestry, have caused dramatic declines in the quality and extent of habitats. These trends are widely recognised and forced national and international bodies to adapt their nature conservation policies with the establishment of ecological networks and the improvement of the environmental and spatial conditions are part of the policies designed to maintain and improve biodiversity. The development of a Pan-European Ecological Network (PEEN) and the development of the Natura 2000 network (the Habitats and Birds Directive) are the most important policy initiations at the European scale. For the sole protection of primary nature conservation areas, the development of the Natura 2000 network (EU Council Directive, 1992) is very significant, but at the same time, it does not guarantee the maintenance of biodiversity in the wider countryside. Biodiversity of the countryside and the environmental conditions that sustain it, are important for a number of reasons (pers. comm. Bunce, de Blust):

Although many species, may have their primary habitat in protected areas, they also often depend on the countryside in various ways (e.g. during migration, dispersion, foraging).

Because spatial relationships are operating on the landscape scale, the environmental pressures influencing biodiversity of the rural areas also affects the habitat quality of the protected areas (e.g. agricultural drainage affects surrounding wetlands).

There is a clear demand by society to have biodiversity within ones reach, in the wider countryside, as well as in designated nature areas, as indicated by local nature trails, walks and interpreter centres.

There is therefore a need to develop additional policy instruments for nature conservation outside protected areas, that are equally appropriate to those applied in the protected areas. One such policy instrument is the development of a PanEuropean Ecological Network (PEEN) which can now also anticipate towards restricting potential losses of biodiversity due to climate change (van Opstal, 1999). Ecological networks are important for nature conservation because they are generally recognised by politicians and the public as a valid spatial planning tool to protect threatened species and their habitats. "Since the endorsement of the Pan-European Biological and Landscape Diversity Strategy (PEBLDS) by 54 European countries in 1995, the setting up of a Pan-European Ecological Network (PEEN) has become one of the priorities of European Nature Conservation. PEEN is to be a physical network to conserve a full range of ecosystems, habitats, species and their genetic diversity and landscapes of European importance (van Opstal, 1999). PEEN is to be based on existing initiatives and European directives, its backbone being Natura 2000
(EU Council Directive, 1992) and the Emerald Network" (van Opstal, 1999). The PEEN concept is designed to strengthen the ecological coherence in Europe as a whole with a common set of criteria consisting of core areas, corridors, buffer zones and nature development areas. For the design a spatially coherent ecological network in Europe, it is necessary not only to take the Natura 2000 sites into consideration but also to get a broad overview of the natural and semi-natural habitats in Europe both inside and outside protected areas.

One of the major goals of the PEEN project is to develop an indicative map of the Pan-European Ecological Network for the whole of Europe (van Opstal, 1999). The design of such an indicative map together with an established pan-European ecological network in the end, requires information about the spatial distribution of habitats and species in Europe, as well as inside as outside protected areas. Information about the spatial distribution of species is being collected by many international organisations (e.g. Birdlife International). However, there are no explicit maps about the spatial distribution of habitats in Europe. Therefore, the development of a European habitat map is a prerequisite for the further development of a pan-European ecological network. Furthermore, provision of European figures on the extent of habitats and biodiversity is fundamental for general policy formulation for the maintenance and enhancement of biodiversity across Europe.

### 1.2 Objective

The overall objective of this project to develop a methodology to identify spatially all major babitats in Europe in order to produce a indicative map of a Pan-European Ecological Network. The definitions of the habitats as given in Annex I of the Habitats Directive (European Commission, 1999) are taken as the reference. On the basis of these habitat definitions ecological knowledge rules will be defined within a GIS environment to optimally combine existing spatial databases (such as land cover, soil data, topographic data and species distribution maps) to identify the spatial distribution of the various habitats. Therefore, a flexible spatial data infrastructure needs to be developed to exploit existing and new spatial information and in which the (ecological) knowledge rules are explicitly defined.

Before maps of European habitats can be produced the following objectives have to be met within the project:

1. Identification, availability and processing of core spatial data sets.
2. Establishment of decision rules for each habitat based on the available spatial data sets and their description in Annex I. Additional knowledge from experts is also needed here.
3. Establishment of a GIS environment in which the decision rules are designed and executed to produce a set of habitat maps.
4. Validation of the developed methodology for a number of selected habitats by experts and potential end users.

This report concentrates on these four objectives.

### 1.3 Map requirements

- Coverage: pan-Europe, extending from Nova Zembla in the north to Turkey in the south and from Ireland in the west until the Urals in the east.
- Scale: A European habitat map or a set of individual European habitat maps is needed for the design of a Pan-European Ecological Network with a spatial scale of at least $1: 5 \mathrm{M}$. A scale of $1: 2,500,000(1: 2.5 \mathrm{M})$ to $1: 5,000,000(1: 5 \mathrm{M})$ is aimed at for the final European Habitat Map. At a scale of $1: 2.5 \mathrm{M}$ it means that 1 mm on the map will have a distance of 2.5 kilometres in reality. Therefore a linear feature must have a minimum width of 2.5 kilometres to become mappable and the minimum size of a mapping unit (MMU) will be 100 square kilometres ( 4 mm by 4 mm on a map of $1: 2.5 \mathrm{M}$ means 10 by 10 km in reality). Such a scale restricts the number of habitats to be delineated (for example habitat 8310 "caves not open to the public").
- Thematicy: Annex I of the Habitats Directive has three hierarchical levels. At the first level there are nine major natural and semi-natural habitat formations. At the second level there are 33 classes. At the third level there are 198 habitat classes of which 65 are priority habitats. Only at the third level the habitat classes (198 habitats) are being described (European Commission, 1999). A choice had to be made at which level of Annex I the habitats should be mapped. It was decided to produce, firstly, a European Map of the habitat formations (nine major formations of level I). Secondly, representative habitat maps will be produced at the third level of Annex I.


### 1.4 Expected limitations

- Poor definitions and descriptions of habitats with no clearly defined terms.
- Large variations in data sets. A number of data sets have been identified to provide core data to identify the habitat classes. The core datasets are: the CORINE land cover database, the Atlas Florae Europaeae database, the Digital Elevation Model, and the European Soil Database. These datasets differ in: accessibility, extent, scale, accuracy and reliability. As an example, the CORINE land cover database (scale 1:100,000) covers most of Europe, EU15, except for Sweden, and the EU access countries but still misses a large area for a true pan-European coverage. The CORINE land cover database covers $37 \%$ of pan-Europe (see paragraph 3.6.3). The same remarks apply to the European Soil database ( $1: 1 \mathrm{M}$ ).
- $\quad$ The Atlas Florae Europaeae has at this moment 12 volumes published (19721999) and covers 3720 plant species of the 12.000 plant species in Europe. The database includes currently 2109 plant species. This limits its use to identify many habitats.
- Difficulties in the translation of the soil database in ecological stand factors.


### 1.5 Policies in relation to habitat mapping

### 1.5.1 Pan European Biological and Landscape Diversity Strategy (PEBDLS)

The extent of Europe's semi-natural habitats and their associated biodiversity are in severe decline. Highly valuable and vulnerable ecosystems of international importance, e.g. coastal habitats, marine areas, wetlands, alpine meadows and other semi-natural landscapes, are under severe threat. The Pan-European Biological and Landscape Diversity Strategy presents an innovative and proactive approach to stop and reverse the degradation of biological and landscape diversity in Europe. It addresses all biological and landscape initiatives under one European approach (Council of Europe, 1996).

The strategy seeks to conserve ecosystems, habitats, species with their genetic diversity and landscapes of European importance through the development of the Pan-European Ecological Network within 10 years (Opstal, 1999). The PEBDLS provides a consistent framework to implement the Convention on Biological Diversity (Convention on Biological Diversity, 1996) having the following objectives:

1. To reduce substantially and, if possible, eliminate the current threats to Europe's biological and landscape diversity,
2. To increase the resilience of Europe's biological and landscape diversity,
3. To strengthen the ecological coherence of Europe as a whole.
4. To ensure full public involvement in the conservation and protection of all (semi-) natural ecosystems and species that are endemic in Europe and/or characteristic for Europe.

One way to protect those ecosystems/habitats is the identification and protection of Natura 2000 sites (Habitats and Birds Directives) in Europe and another is to set-up a Pan-European Ecological Network..

### 1.5.2 Pan-European Ecological Network (PEEN)

The concept of the Pan-European Ecological Network was presented ten years ago. The establishment of a Pan-European Ecological Network (PEEN) has become one of the priorities of European Nature Conservation. The legal framework, the PanEuropean Biological and Landscape Diversity and Strategy (PEBLDS), has enforced the setting up of the PEEN project. PEEN can be explained as a physical coherent network in which a range of ecosystems, habitats, species with their genetic diversity and landscapes of European importance are being enforced and conserved (van Opstal, 1999).

EU members and the candidate countries can contribute important building blocks to this network by designating Natura 2000 sites (EU Council Directive, 1992). Natura 2000 sites are special, legally protected zones that are designated under the provisions of the EU Habitats and Birds Directives. Non-EU countries that have
signed and ratified the Convention on the Conservation of European Wildlife and Natural Habitats (the Bern Convention) can grant sites a protected status using this convention. Together with Natura 2000, these areas form the Emerald Green Network. Other European countries that are members of the Council of Europe can designate protected areas using the Pan-European Biological and Landscape Diversity Strategy (PEBLDS). The PEBLDS has been accepted as a policy instrument by all European countries and the UN (http://www.biodiversity-chm.nl).

The intended network does not only cover core areas, but also includes corridors, buffer-zones and nature development areas. The core areas are needed to conserve ecosystems, habitats, species and landscapes of European importance. Corridors, or stepping stones, are needed to improve the coherence in the fragmented natural areas. Restoration areas or nature development areas are needed to restore damaged nature elements. Buffer zones are needed to support and protect the network from adverse external influences (Opstal, 1999). The concept of an ecological network relies strongly on the scientific experience that areas which are too fragmented or isolated, do not support viable populations in the long run and therefore a network is needed that can support viable populations again not only by increasing their habitats again but also by improved interchange of the different genetic pools of the same species (Bouwma et al., 2002).

### 1.5.3 The Habitats Directive

The dramatic decline in the populations of many species is primarily due to the deterioration of their natural habitats which are necessary for their survival. In a few decades, the intensification of many human activities, in e.g. agriculture, forestry, industry, energy, transport and tourism, has led to fragmentation and/or loss of many habitats. Today, half of our mammal species and third of reptile, fish and bird species are endangered!. As for plants, 3000 species are endangered in Europe. Many of their habitats are severely damaged or have largely disappeared. Heathland, steppes and peat bogs have shrunk by 60 to $90 \%$, according to the current Member States. Since the beginning of the century, $75 \%$ of the dunes in France, Italy and Spain have disappeared. Moreover, the abandonment of traditional forms of agriculture and pastoralism have led to a general impoverishment of biodiversity and the variety of European landscapes.

To encourage better management of Europe's natural heritage, the Community has gradually started a nature conservation policy within the member states. In 1992 the Maastricht Treaty reaffirmed the obligation to incorporate environmental protection into all European Union policies. Community legislation compromises two Directives: the "Birds" Directive and the "Habitats" Directive, which are concerned with the protection of natural habitats, fauna, flora and the creation of a European network of protected sites (Natura 2000 sites).

The Habitats Directive was adopted in 1992 (European Commission, 1999) the year of the United Nations Conference on Environment and Development in Rio de

Janeiro, and is the main community instrument to safeguarding biodiversity. Each Member State is responsible for identifying and designation of Special Areas of Conservation (SAC) which are important for the protection of the species and habitats in the long-term. The EU has a special responsibility for the conservation of habitats which are in danger of disappearing (e.g. posidonia beds, lagoons and alluvial forests). The Natura 2000 network (EU Council Directive, 1992) will include a sample of all habitats of Community Interest, especially the priority habitats (source: Natura 2000, managing our heritage, CR-99-96-875-EN-C). The Natura 2000 network covers already more than $15 \%$ of the Community territorial space.

### 1.5.4 Emerald Network

The Emerald network is a network of Areas of Special Conservation Interest (ASCIs), which is to be established in the territory of the Contracting parties and Observer States to the Bern Convention, including, among others, Central and Eastern European countries and the EU member States. For EU member States the Emerald network sites are those of the Natura 2000 network. The Emerald network has its legal basis in the Bern Convention, in particular Articles 1, 2, 3, 4, 6 and 9. The idea for the establishment of the Network of Areas of Special Conservation Interest (ASCI), otherwise known as the Emerald Network, was first launched in June 1989 when the Standing Committee of the Bern Convention (Convention of Bern, 1979). This initiative was in response to an increasing need to protect natural habitats, and was made at a meeting exclusively devoted to habitat conservation within the Convention.

### 1.5.5 Dutch Directive on Nature for People, People for Nature

The Dutch Parliament adopted the Directive "Natuur voor Mensen, Mensen voor Natuur; nota natuur; bos en landschap in de 21e ceuw" (Nature for People, People for Nature, policy document on nature, forest and landscape in the $21^{\text {st }}$ century) on 13 July 2000 . This policy document (Ministerie van LNV, 2000) of the Dutch Ministry of Agriculture, Nature Management and Fisheries outlines the new nature policy for the coming decade until 2020. Although it is a strategic document it also contains a programme of goals and measures. One of the goals is that before 2020 the conditions must be in place for the long-term survival of the species and populations that were found in the Netherlands in 1982 (the year the Netherlands ratified the Bern Convention). One of the policy instruments that the Dutch Government is strongly stimulating is the establishment of ecological networks within national and international frameworks.

### 1.5.6 Dutch Convention Biodiversity International (BBI)

As a signatory to the Convention on Biological Diversity (CBD), the Netherlands has undertaken to implement its resolutions. The results can be seen in its policies for
nature, agriculture, environment, fishing, spatial planning, infrastructure, water management, economic activities and development co-operation. The principles of the Convention have been integrated into Dutch policy by the respective ministries in four national policy documents, each of which contains an explicit international component http://www.biodiversity-chm.nl). In the policy document "Nature for People, People for Nature (2000)" the Netherlands resolves to work towards international co-operation which will lead to a structural reversal of the worldwide loss of biodiversity. The Netherlands focuses its efforts on the protection of ecosystems and landscapes of international value that are of sufficient size and quality, and on the promotion of the sustainable use of biodiversity.

The International Biodiversity Policy Programme (BBI) now brings the Dutch environmental policy plans together and provides a broad overview of what the Netherlands has resolved to carry out in this respect. The BBI is therefore the logical successor to the international nature management programme (PIN), which ran from 1996 to 2000. In principle the BBI will run from 2002 to 2006. Many of the policy objectives are long-term and will not be realised, for example, until 2020; they will therefore remain on the Dutch policy agenda after 2006. For the purpose of subsidy schemes for nature projects in central and eastern Europe, the Government has issued a separate Central and Eastern European Action Plan, which should become part of the BBI.

On the European level, the Dutch government is working towards establishing a Pan-European Ecological Network (PEEN) by 2020. The PEEN will afford adequate protection to all European hot spots. The goal is to interconnect and sufficiently protect these hot spots. Those components of the Dutch National Ecological Network with international significance are obviously a part of the PEEN.

### 1.6 Related projects

### 1.6.1 SynBioSys Europe

SynBioSys Europe is an initiative of the European Vegetation Survey. It is an information system for the evaluation and management of biodiversity among plant species, vegetation types and landscapes. The project is co-ordinated by Alterra and will function as a network of distributed databases related through a webserver. GIS webmapping tools will be used for the visualisation of layers of information on plant species, vegetation and landscape data (http://www.synbiosys.alterra.nl/eu/). Hence, SynBioSys concentrates it work on three levels: species, vegetation and landscape, being explained in more detail below.

## Species

SynBioSys is developing a standard species list for the European vascular and cryptogam flora. The list will be compiled by bringing together and analysing national floras. Computerised links between the SynBioSys checklist, national floras and
vegetation tables will enable standard query routines to highlight environmental conditions for sustaining plant communities.

## Vegetation

On the vegetation level, SynBioSys Europe uses the newly completed report on European vegetation (Rodwell et al., 2002) on the basis of phytosociological alliances. This hierarchic classification comprises 15 formations, 80 vegetation classes, 233 orders and 925 alliances. For each vegetation unit the following items will be described: general description, species composition, structure and dynamics, ecology, geographic distribution, nature conservation and bibliography. A link to the EUNIS Habitat Classification is designed to help implementing the Natura 2000 and Emerald networks.

## Landscape

For the landscape typology the recently published Map of Natural Vegetation of Europe by the Bundesamt für Naturschutz, Bonn, German (Bohn et al., 2003) will be used as a basis. Within SynBioSys Europe it is assumed that each mapping unit of PNV map represents a specific landscape because the potential natural vegetation is effectively predicted from relationships between soil and climate.

### 1.6.2 BioHab

BioHab is a recently started EU project (Concerted Action 2002-2005) will build upon a European network to set-up a framework for the co-ordination of information on biodiversity and habitats. The project is being co-ordinated by Alterra. The background of the project is that there is a gap between the coarse level of remotely sensed land cover categories and the detailed information on habitats. Knowledge about the intermediate level of information is essential to link with biodiversity and assess the impact of land use changes. BioHab is based on a series of workshops addressing individual topics. One of the first workshops has summarised existing European habitat classifications and will exploit the experience of the consortium to define a series of European General Habitats designed for field mapping. The main concept behind BioHab is to develop more complete, specific and user-friendly tools in support of implementing the Habitats Directive (EU Council Directive, 1992), including Natura 2000, as well as other policy initiatives, e.g. Emerald. It is specifically designed to assist field practitioners as well as stakeholders in their work, because a good understanding in the field will ultimately ensure that the habitats are well defined and have policy relevance. The development of the original CORINE biotope classification and its replacement, EUNIS, is a clear recognition of the need for a consistent approach to habitats. The EUNIS Habitat classification has been developed to facilitate harmonised description and collection of data across Europe through the use of criteria for habitat identification. It is a comprehensive pan-European system, covering all types of habitats from natural to artificial, from terrestrial to freshwater and marine habitat types. However, it is a theoretical classification, which has not been tested in the field, but because it
presents a unique coverage of habitats in Europe, and it is the best unified approach for habitat description and will form the basis of BioHab habitat description.

### 1.6.3 BioPress

BioPress is a recently started EU project (Shared Cost Action 2002-2005) within the 5th framework and falls under the GMES (Global Monitoring of the Environment and Security) programme of the European Commission and the European Space Agency (ESA). One of the main targets of the GMES programme is to have an independent European regional monitoring system in support of the European Community. The subtitle of BioPress is: "linking pan-European land cover change to pressures on biodiversity". The GMES project is carried out by a consortium of 8 with amongst others Alterra and is co-ordinated by the Centre for Ecology and Hydrology (CEH at Monks Wood). The focus of BIOPRESS is to develop a standardised product that will link measures of historical (1950 - 2000) land cover changes in and around Natura 2000 sites to pressures on biodiversity. The characterisation of land cover changes in and around representative Natura 2000 sites will be based on visual interpretations of aerial photographs in relation to the CORINE land cover database (1950-1990). The project will also develop a panEuropean land cover change monitoring concept based on the integration of CORINE Land Cover, Earth Observation and field data and will focus on the habitats in and around the Natura 2000 sites. The idea is to develop a spatially referenced product showing the main pressures on biodiversity in relation to Natura 2000 sites (intensification, abandonment, afforestation, urbanisation) from the integration of data on land cover changes (1950-1990/2000) and other biological, environmental and socio-economic data. A state-of-the-art semi- quantitative pressure state-model called MIRABEL (Petit et al., 2001) will convert the quantified pressures into assessments of biodiversity of specific habitats.

### 1.6.4 Planta Europa - Important Plant Areas in Europe

A central question of Planta Europa is: where are the best sites for plant conservation in Europe? Are current conservation efforts (e.g. the Habitats Directive) adequate for European wild plants and their habitats? At present there is no comprehensive information on the most important plant sites across Europe, or what is being done to maintain their conservation value. The Important Plant Areas (IPA's) will make a significant contribution to the Pan-European Ecological Network (PEEN). Identifying the most significant areas for wild plant conservation across Europe ultimately depends on the availability of sound information. Thus, whatever the motivation for applying the criteria, the net result will be a list of sites across Europe identified using consistent principles that relate to objective, scientific data, and the most up to date botanical knowledge available in each country. A site qualifies as an IPA under criterion C (criterion A relates to significant population of one or more specific plant species and criterion B relates to the exceptionally rich flora in a specific biogeographical zone) if the site is an outstanding example of a
habitat type of global or European plant conservation and botanical importance. No list of habitat types of global conservation and botanical importance has yet been suggested. Habitat types of European conservation and botanical importance are defined as: all botanically based habitats listed in Annex I of the EU Habitats (European Commission, 1999) and Species Directive and all botanically based habitats listed in the Council of Europe's Bern Convention list of endangered natural habitats requiring priority action - the Emerald Network list. (Source: leaflet Planta Europa: guidelines for the selection of important sites and website: www.plantaeuropa.org.uk).

## 2 Habitat classifications and concepts

### 2.1 Concepts and definitions

Before discussing the various habitat classifications in a European context, it is necessary to have a closer look at the definition of the term habitat and other related terms. Within the European Community the term habitat has a deviating definition.

In the European Nature Information System (EUNIS) a habitat is defined as follows:
Plant and animal communities as the characterising elements of the biotic environment, together with abiotic factors (soil, climate, water availability and quality, and others), operating together at a particular scale.

While in the Dutch context a habitat is specified from the species requirements (as the living environment of a species) the authors prefer the ecotope approach in European habitat mapping. In landscape ecology the terms ecotopes and physiotopes are often being used and are closely related to each other.

By RIZA (Dutch Institute for Inland W ater Management and W aste Water Treatment) an ecotope is defined as follows:

A physically limited ecological unit, whose composition and development are deternined by abiotic, biotic and anthropogenic aspects together.

In other words, ecotopes are more or less homogeneous units on the scale of the landscape, identifiable by their similarities and differences in geomorphological and hydrological characteristics, vegetative structure and land use. The concept of the physiotope is used, in relation to the ecotope, for the unit that is homogeneous in respect of the abiotic conditions that are important to biotic aspects. In other words, if management and stage of development are the same, then the physiotope and ecotope are the same physical unit (source: RIZA, www.minvenw.nl/rws/riza/).

So, in short, the physiotope describes the abiotic environment (e.g. soil an water) and the ecotope is described by the physiotope and the vegetation structure. The vegetation structure can be derived to some degree from land cover maps and the physiotopes to some degree from amongst others soil databases and digital elevation models.

## ECOTOPE concept

## Physiotope

(e.g. derived from soil, hydrology, dtm)

## Vegetation structure

(e.g. derived from land cover)

|  | acid | oligotrophic |  |  |
| :--- | :--- | :--- | :--- | :--- |
| grassland |  |  |  |  |
| forests |  |  |  |  |
|  |  |  |  |  |

Figure 2.1 The ecotope concept
The physiotope can be described by: location, topography, geology, geomorphology, site characteristics such as acidity, humidity, organic content etc., soil type, trophic level and hydrology. In table 2.1 an example is given how an ecotope can be described in general terms.

Table 2.1 The ecotope can be described in general characteristics (Runhaar en van't Zelfde, 1996)

| Characteristics | Classes |
| :--- | :--- |
| Medium | Terrestrial, aquatic |
| Vegetation structure | Pioneer vegetation, grasslands, shrubs, forests, water |
| Salinity | vegetation etc. |
| Substrate | Salt, brackish, fresh (oligohalien, mesohalien, euhalien) |
| Humidity | Stony, etc. |
| Trophic level | Open water, wet, humid, dry |
| Acidity | Eutrophic, mesotrophic, oligotrophic |
| Dynamics | Acid, alkaline |

Concluding, this project is designed to identify and map the major ecotopes in Europe. However, in relation to the Habitats Directive and EUNIS and to avoid confusion the term habitat will be used subsequently.

### 2.2 Existing classifications

Within the PEENHAB project the habitat types as defined in (European Commission, 1999) of the Habitats Directive will be used since the backbone of PEEN consists of Natura 2000 sites which were selected according to the Habitats Directive. Furthermore, Annex I habitats are described in more detail than for example the EUNIS habitat types. However, before making a final decision on the targeted habitats one has to be aware that many other European habitat classifications exist and to acknowledge their value. There are also many regional and national habitat classifications which will not be considered within this project. Knowledge of these other European habitat classifications is an advantage in the process of European habitat mapping. Unfortunately, these classifications differ in nomenclature, criteria and approach which makes it not always easy to relate and compare them. In Figure 2.2 an overview is given of the most important European habitat classifications (classification in terms of typology and nomenclature). The

EUNIS habitat classification has been developed under the guidance of the European Environmental Agency (EEA) and will probably become the new standard, however this classification is still in progress. The EUNIS habitat classification is based upon experience from amongst others the Palaearctic habitat classification (Devilliers \& Deviliers-Terschuren, 1996) and the CORINE biotopes classification (CEC, 1991). CORINE biotopes and the Palaearctic classification are strongly related. The EUNIS habitat classifications has made formal links to the other classifications and made them available at the website (http://mrw.wallonie.be/dgrne/sibw/EUNIS). Unfortunately, the EUNIS habitat classification has not yet full descriptions for each habitat type.


Figure 2.2 Relationships between various existing habitat classifications and related databases

The major European habitat classifications will be discussed in more detail in the following paragraphs, concerning the following classifications: Annex I habitats of the EU Habitats Directive, the EUNIS habitat classification and the phytosociological alliances as well as the nomenclatures of the following databases: CORINE Biotopes, CORINE land cover and the PNV map. All these classifications are theoretical and have not been tested in the field. Experience has shown that training and standardised field recording procedures are essential to produce reliable figures and clear definitions.

### 2.2.1 The Habitats Directive

The European Commission has published an Interpretation Manual of EU habitats in 1999 for the delineation of Natura 2000 sites (European Commission, 1999). It states: "The EU Habitats Directive is a Community legislative instrument in the field of nature conservation that establishes a common framework for the conservation of wild animal and plant species and natural habitats of Community importance; it provides for the creation of a network of special areas of conservation, called Natura 2000, to maintain and restore, at favourable
conservation status, natural habitats and species of wild fauna and flora of Community interest". Animal and plant species names are clearly presented in the Directive and, despite minor misspellings or use of synonyms. In contrast, the development of a common agreed definition is essential for the different habitat types of Annex I. See table 2.4 for an overview of the Annexes in the Habitats Directive. Annex I lists today 198 European natural habitat types (European Commission, 1999), including 65 priority (i.e. habitat types in danger of disappearance and whose natural range mainly falls within the territory of the European Union). Annex I is based on the hierarchical classification of European habitats developed by the CORINE Biotopes project (CEC, 1991) since that was the only existing classification at European level.

Table 2.2 Annexes of the Habitats Directive
ANNEX I: Natural habitat types of community interest whose conservation requires the designation of special areas of conservation.

ANNEX II: Animal and plant species of community interest whose conservation requires the designation of special areas of conservation.

ANNEX III: Criteria for selecting sites eligible for identification as sites of community importance and designation as special areas of conservation

ANNEX IV: Animal and plant species of community interest in need of strict protection.

ANNEX V: Animal and plant species of community interest whose taking in the wild and exploitation may be subject to management measures.

ANNEX VI: Prohibited methods and means of capture and killing and modes of transport.
Annex I of the EU habitat classification has nine major habitat classes on the first hierarchical level, on the second level there are 31 habitat groups (see Annex I) and on the third level there are 198 classes of which 65 are priority habitats (European Commission, 1999).

The 1991 Habitat classification (EU13) was extended in 1993 with the accession of Austria, Finland and Sweden which resulted in the inclusion of a new biogeographical region (the Boreal region). In total there are now six biogeographical regions distinguished: Boreal, Atlantic, Continental, Alpine, Mediterranean and Macaronesian. With the extension of the European Community to Central and Eastern Europe (EU28) in 2004 the Pannonian biogeographical region has to be added and some 20 new habitat types have been defined and will be added to Annex I habitat list. Within the framework of the present project it is important to observe that the level of detail of the descriptions differs largely between the 198 habitat types of Annex I. The Fennoscandinavian habitats especially have a very limited or very broad descriptions of the habitats which hampers their spatial identification. Moreover, habitat classes for the Iberian Peninsula are very well presented while habitats classes from e.g. Greece are underrepresented suggesting a poor balance in national experts that were involved in the establishment of the Annex I habitat list.

The description of Annex I habitats was provided by national experts. Each habitat is described in terms of:

1. Natura 2000 code: a four digit code
2. Explicit name of the habitat
3. Definition. This is a general description in terms in terms of vegetation, syntaxa, abiotic features and origin.
4. Characteristic species. Listing of animal and plant key species including details of their occurrence on Annexes II and IV
5. Geographic distribution
6. Correspondence with other classification systems
7. Bibliographic references.

Within the present (PEENHAB) project Annex I habitat list and their definition will be used. A major reason for this is that the habitats are adequately described making it possible to define knowledge rules for the spatial identification of important habitats. Furthermore that the Natura 2000 sites are identified according to Annex I habitat list and they these Natura 2000 sites will probably form the backbone of a Pan-European Ecological Network (PEEN).

### 2.2.2 CORINE Biotopes classification

The Biotopes project, as part of the CEC work programme, was concerned with "gathering, co-ordinating and ensuring the consistency of information on the state of the environment and natural resources in the Community". A first task was to establish a network of sources of information and expertise on all aspects of nature conservation. Within this network, agreed procedures were then developed and implemented. These procedures (in particular, the selection criteria and the various standard nomenclatures developed in the biotopes project) are now accepted as a standard by many international, national and regional agencies responsible for nature protection. The CORINE Biotopes database (CEC, 1991) was developed by DG XI during 1985-1990, and maintained by EEA from 1990-1993. The database now contains details of 7741 sites of European importance for nature conservation in 13 EU Member States, and is in active preparation in 10 non-EU countries and represents now the most comprehensive European source of such information. However, there are problems with consistencies, for example dry calcareous grasslands in north-west Scotland and parts of Italy are not identical due to inconsistent definition of the word "dry".

A habitat typology is needed to describe the recognisable communities formed by the interactions between flora, fauna and the abiotic environment. The typology must cover the complete geographical and environmental range of the European Union. To obtain easily recognisable and understandable units led to the use of the phytosociological classification of vegetation (Rodwell et al., 2002) as the main reference. However, EUNIS has subsequently extended to new habitats that uses criteria which are outside the phytosociological domain.

Due to amongst other the emphasis on human-influenced habitat systems and reference to physical features the typology deviated from the phytosociological hierarchy. Within the Biotopes project of site selection only the natural, near-natural and semi-natural habitats have been considered.

The CORINE Biotopes classification has seven major habitat groups on the first level and 45 classes on the second level (see Appendix 3). In total the CORINE Biotopes classification has six levels with an enormous amount of habitat classes at the lowest levels (CEC, 1991).

### 2.2.3 Palaearctic Habitat classification

The Palaearctic habitat classification (Devilliers \& Deviliers-Terschuren, 1996) can be considered as a follow up of the CORINE Biotopes project to complete the description of existing European habitats, amongst others due to the extension of the European Community towards Eastern and Northern Europe. The setting-up of the Palaearctic classification has been sponsored by the Commission to increase the knowledge of the variability of habitats in Europe. The Palaearctic classification has been developed over the years in several stages corresponding to successive extensions of range and increase in precision (www.kbinirsnb.be/cb/databases/ cb_db_physispal_eng.htm). The higher level habitats (see amongst others Table 2.2) are directly derived from those proposed in the CORINE Biotopes project (Devilliers \& Deviliers-Terschuren, 1996).

Table 2.3 Palaearctic major habitats (first level)

| 1 | Coastal and halophytic communities |
| :--- | :--- |
| 2 | Non-marine waters |
| 3 | Scrub and grassland |
| 4 | Forests |
| 5 | Bogs and marshes |
| 6 | Inland rocks, screes and sands |
| 7 | Deserts |
| 8 | Agricultural land and artificial landscapes |
| 9 | Wooded grassland and scrubs |

### 2.2.4 The EUNIS Habitat classification

The EUNIS habitat classification is strongly related to the Palaearctic habitat classification but a novel feature of the hierarchical classification is the development of clear criteria in order to make a key for the identification of habitats analogous to keys for identification of species. These criteria are however not appropriate for field mapping because many terms used e.g. fry and montane do not have definitions that can be used in the field. The classification is based on general vegetation science with additions of abiotic features. The EUNIS habitat classification gives a more comprehensive overview of European habitats (more than 2600 terrestrial classes have been identified already) than the 198 Annex I habitats of the Habitats Directive and has a more scientific approach.

On their website it is stated mrw.wallonie.be/dgrne/sibw/EUNIS/ that: "the EUNIS Habitat classification has been developed to facilitate harmonised description and collection of data across Europe through the use of criteria for habitat identification. It is a comprehensive pan-European system, covering all types of habitats from natural to artificial, from terrestrial to freshwater and marine habitats types. It is built to link to and correspond with other major habitat systems in Europe". It cross-references to all EU Habitats Directive habitat types used for EU Member States.

With the advent of remote-sensing based land cover mapping, the possibilities in database development and to consolidate the work, the EEA has taken the responsibility to build on the Palaearctic habitat work (Devilliers \& DeviliersTerschuren, 1996) and to include new habitats that are not covered by the Palaearctic classification, such as those in the marine and urban environment. It cross-references to the Corine Land Cover classification, to some regional and national classifications, and to other systems such as the phytosociological alliances in Europe (Rodwell et al., 2002).

The EUNIS classification has four formal levels. Units at level 5, 6 and 7 have been added only to complete the linkage to the marine classification or to Annex I of the Habitats Directive.

| Table 2.4 | EUNIS major habitats (first level) |
| :--- | :--- |
| A | Marine habitat |
| B | Coastal habitats |
| C | Inland surface water habitats |
| D | Mire, bog and fen habitats |
| E | Grassland and tall forb habitats |
| F | Heathland, scrub and tundra habitats |
| G | Woodland and forest habitats and other wooded land |
| H | Inland unvegetated or sparsely vegetated habitats |
| I | Regularly or recently cultivated agricultural, horticultural and domestic habitats |
| J | Constructed, industrial and other artificial habitats |

On the first level the EUNIS habitat classification has ten major habitats. On the second level there are 54 habitats, on the third level there are 162 habitats and on the lowest level there are already more than 2400 habitats for the terrestrial environment.

The EUNIS habitat classification is being promoted by the EEA and is currently being promoted for description purposes within the European Community.

Major limitation of the EUNIS classification at present is that there is no description behind the habitat types at this hampers its application within the present project.

### 2.2.5 Phytosociological plant communities in Europe

An overview of the European phytosociological plant communities at the level of alliances is given in Rodwell et al., 2002. In an attempt to develop a more coherent picture of the vegetation across the whole of Europe, the European Vegetation Survey (EVS), a working group of the international association of vegetation science was established in 1992. Besides providing formal support for national programmes of vegetation survey, the EVS has devoted particular meetings to the understanding of the syntaxonomy and ecology of the major vegetation groups across Europe as defined by Rodwell et al, 2002.

On the first level there are 15 formations (see Appendix 2), on the second level there are 80 classes, on the third level there are 233 orders and on the fourth level there are 928 alliances. A link with the EUNIS habitat classification has been described for most phytosociological alliances. However, most alliances have several EUNIS classes (and vice versa) indicating that the links are not straightforward in many cases.

A link needs to be established also with Annex I habitat types. A linkage with the phytosociological communities in Europe of the most important habitat classifications will significantly improve the description of those habitat types, not only in terms of their species composition but also in terms of their abiotic requirements.

### 2.2.6 The Map of Natural Vegetation of Europe

The PNV map was produced in Germany by the Institute für Bundesamt für Naturschutz - BfN (Bohn et al., 2003). More than 100 geobotanists from 31 European countries co-operated on this map, its legend and the explanatory text. The database itself will be discussed in more detail in Chapter 3 (section 3.7). On the first level there are 19 vegetation formations and formation complexes based on physiognomic-ecological features, of which 14 (A to O ) represent the main macroclimatic zones and belts in a sequence from north to south/southeast, or altitudinal sequence (See also Appendix 5). The last five formations ( P to U ) represent azonal vegetation types, which are characterised by dominant site factors, such as salinity or water logging (Bohn et al., 2003).

### 2.2.7 CORINE land cover classification

The CORINE (Co-ordination of Information on the Environment) programme was initiated by the EU in 1985. A number of databases have been created with the aim to provide information on the status and changes of the environment. One of these databases is the CORINE land cover database (CEC, 1994) next to the CORINE Biotopes database (CEC, 1991). The databases themselves are described in more detail in the Chapter 3. The CORINE land cover nomenclature has 5 major
categories at the first level, 15 land cover categories and the second level and 44 categories at the third level (See Appendix 4) In section 3.5.1 the CORINE land cover database will be discussed in more details. In Box 1 the most important CORINE land cover classes in relation to the natural and semi-natural habitats are shortly described. In Bossard et al., 2000 a much more extensive description is given for each CORINE land cover class, including detailed descriptions with particularities, inclusions and exclusions, photo's, and visual interpretation characteristics.

## Box 1. Description of the most important CORINE land cover classes. (Source: Bossard, M., J. Feranec, and J. Otahel, 2000).

### 2.3.1 Pastures

Dense grass cover, of floral composition, dominated by graminacea, not under a rotation system. Mainly for grazing, but the fodder may be harvested mechanically. Includes areas with hedges (bocage).

Extension: Grazing used by cattle. Pastures can be described as extensively used grasslands with presence of farm structure such as: fences, shelters, enclosures, watering places, drinking trough, or regular agricultural works: mowing, drainage, hay making, agricultural practices, manuring.

### 2.4.3. Land principally occupied by agriculture with significant natural vegetation

Areas principally occupied by agriculture, interspersed with significant natural areas (including wetlands and water bodies, out crops).

### 2.4.4. Agro-forestry areas

Annual crops or grazing land under the wooded cover of forestry species.

### 3.1.1. Broad-leaved forest

Vegetation formation composed principally of trees, including shrub and bush understoreys, where broad-leaved species predominate.

Extension: this class includes areas with a crown cover of more than $30 \%$ or a 500 subjects/ha density for plantation structure, broad-leaved trees represent more than $75 \%$ of the planting pattern. In case of young plants or seedlings the proportion of broad-leaved plants to be considered is at least $75 \%$ of the total amount of plants.

### 3.1.2 Coniferous forest

Vegetation formation composed principaly of trees, including shrub and bush understoreys, where coniferous species predominate.

Extension: Coniferous trees represent more than $75 \%$ of the formation. In case of young plants or seedlings, the proportion of coniferous plants to be considered is at least $75 \%$ of the total amount of plants and their texture is very similar to a surrounding coniferous forest texture.

### 3.1.3 Mixed forest

Vegetation formation composed principally of trees, including shrub and bush understoreys, where neither broad-leaved nor coniferous species predominate.

Extension: Mixed forests with a crown cover of more than $30 \%$ or a 500 subjects/ha density for plantation structure. The share of coniferous or broad-leaved species does not exceed $25 \%$ in the canopy closure.

### 3.2.1 Natural grasslands

Low productivity grassland. Often situated in areas of rough, uneven ground. Frequently includes rocky areas, briars and heathland.

Extension: Natural grasslands are areas with herbaceous vegetation (maximum height is 150 cm and gramineous species are prevailing) which cover at least $75 \%$ of the surface covered by vegetation which developed under a minimum human interference (not mowed, fertilized or
stimulated by chemicals which might influence production of biomass); here belong for instance grass formations of protected areas, karstic areas, military training fields, etc. (even though the human interference cannot be altogether discarded in quoted areas, it does not suppress the natural development or species composition of the meadows), areas of shrub formations of scattered trees.

### 3.2.2 Moors and heath lands

Vegetation with low and closed cover, dominated by bushes, shrubs and herbaceous plants (heather, briars, broom, gorse, laburnum, etc.).

Extension: This class includes temperate shrubby area vegetation (climax stage of development): includes dwarf forest trees with a 3 m maximum height in climax stage.

### 3.2.3 Sclerophyllous vegetation

Bushy sclerophyllous vegetation, includes maquis and garrigue. In case of shrub vegetation areas composed of sclerophyllous species such as Juniperus oxycedrus and heathland species such as Buxus spp. or Ostrya carpinifolia with no visible dominance (each species occupy about $50 \%$ of the area), priority will be given to sclerophyllous vegetation and the whole area will be assigned class 323.

Extension: This class includes evergreen sclerophyllous bushes and scrubs which compose maquis, garrigue, mattoral and phrygana.

### 3.2.4 Transitional woodland-scrub

Bushy or herbaceous vegetation with scattered trees. Can represent either woodland degradation or forest regeneration/recolonisation.

Extension: Areas of natural developmental forest formations (young broad-leaved and coniferous wood species with herbaceous vegetation and dispersed solitary trees) for instance; in abandoned meadows and pastures or after calamities of various origin, part of this class may be also various degenerative stages of forest caused by industrial pollution, etc.

### 3.3.1 Beaches, sand, dunes

Beaches, dunes and expanses of sand or pebbles in coastal or continental locations, including beds of stream channels with torrential regime.

Extension: This class includes supra-littoral beaches and dunes developed at the back of the beach from high water mark towards land.

### 3.3.2 Bare rocks

Scree, cliffs, rock outcrops, including active erosion, rocks and reef flats situated above the highwater mark.

### 3.3.3 Sparsely vegetated areas

Includes steppes, tundra and badlands. Scattered high-altitude vegetation.
Extension: Scattered vegetation is composed of gramineous and/or ligneous and semi-ligneous species for determining the ground cover percentage, excluding cryptograms.

### 3.3.4 Burnt areas

Areas affected by recent fires, still mainly black.

### 3.3.5 Glaciers and perpetual snow.

## Land covered by glaciers or permanent snowfields.

### 4.1.1 Inland marshes.

Low-lying land usually flooded in winter, and more or less saturated by water all year round.
Extension: This class includes non-forested areas of low-lying land flooded or liable to flooding by fresh, stagnant or circulating water. Covered by specific low ligneous, semi-ligneous or herbaceous vegetation.

### 4.1.2 Peat bogs

Peatland consisting mainly of decomposed moss and vegetable matter. May or may not be
exploited.

### 4.2.1 Salt marshes

Vegetated low-lying areas, above the high-tide line, susceptible to flooding by sea water. Often in the process of filling in, gradually being colonized by halophilic plants.

### 4.2.2 Salines

Salt-pans, active or in process of abandonment. Sections of salt marsh exploited for the production of salt by evaporation. They are clearly distinguishable from the rest of the marsh by their parcellation and embankment systems.
4.2.3 Intertidal flats

Generally unvegetated expanses of mud, sand or rock lying between high and low water marks. 0 m contour on maps.

### 5.1.1 Water courses

Natural or artificial water-courses serving as water drainage channels. Includes canals. Minimum width for inclusion: 100 m .
5.1.2 Water bodies

Natural or artificial stretches of water.

### 5.2.1 Coastal lagoons

Stretches of salt or brackish water in coastal areas which are separated from the sea by a tongue of land or other similar topography. These water bodies can be connected to the sea at limited points, either permanently or for parts of the year only

### 5.2.2 Estuaries

The mouth of a river within which the tide ebbs and flows.
5.2.3 Sea and ocean

Zone seaward of the lowest tide limit.
(Source: Bossard, M., J. Feranec, and J. Otahel, 2000.)

### 2.3 Links between CORINE land cover and various habitat classifications

The CORINE land cover database (CEC, 1994) is a key data source to map the habitats in Europe. Therefore the relations between CORINE land cover and existing habitat classification will be discussed here in more detail. Although the relationships have been described in tables, they are of limited value for analytical purposes due to the fact that many one-to-many relationships exist between the various classifications.

### 2.3.1 Relationship EUNIS Habitat classification and Habitats Directive

Recently Moss and Davies (2002b) have also produced a document that contains cross-references between the EUNIS habitat classification and the habitats included in Annex I of the EC Habitats Directive. An example is given below (Moss and Davies, 2002b).

Table 2.5 Example of the formalised relationship between the EUNIS babitat classification and the Habitats Directive (Moss and Davies, 2002b)

| EUNIS code | EUNIS code + <br> linked <br> classification <br> code | EUNIS Scientific name | Relation of Annex I habitat to EUNIS type (<, >, =, \# or ?) | Annex I <br> Natura2000 <br> code | Palaearctic Class Code | Annex I name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G2 | G2 | Broadleaved evergreen woodland |  |  |  |  |
| G2.1 | G2.1 | Mediterranean evergreen [Quercus] woodland | < | 9330 | 45.2 | Quercus suber forests |
| G2.1 | G2.1 | Mediterranean evergreen [Quercus] woodland | $<$ | 9340 | 45.3 | Quercus ilex and Quercus rotundifolia forests |
| G2.11 | G2.1/P-45.2 | [Quercus suber] woodland | < | 9330 | 45.2 | Quercus suber forests |
| G2.111 | G2.1/P-45.21 | Tyrrhenian [Quercus suber] forests | > | 9330 | 45.2 | Quercus suber forests |
| G2.112 | G2.1/P-45.22 | Southwestern Iberian [Quercus suber] forests | > | 9330 | 45.2 | Quercus suber forests |
| G2.113 | G2.1/P-45.23 | Northwestern Iberian [Quercus suber] woodland | > | 9330 | 45.2 | Quercus suber forests |
| G2.114 | G2.1/P-45.24 | Aquitanian [Quercus suber] woodland | > | 9330 | 45.2 | Quercus suber forests |
| G2.12 | G2.1/P-45.3 | [Quercus ilex] woodland | < | 9340 | 45.3 | Quercus ilex and Quercus rotundifolia forests |
| G2.121 | G2.1/P-45.31 | Meso-Mediterranean [Quercus ilex] forests | > | 9340 | 45.3 | Quercus ilex and Quercus rotundifolia forests |
| G2.122 | G2.1/P-45.32 | Supra-Mediterranean [Quercus ilex] forests | > | 9340 | 45.3 | Quercus ilex and Quercus rotundifolia forests |
| G2.123 | G2.1/P-45.33 | Aquitanian [Quercus ilex] woodland | > | 9340 | 45.3 | Quercus ilex and Quercus rotundifolia forests |
| G2.124 | G2.1/P-45.34 | [Quercus rotundifolia] woodland | > | 9340 | 45.3 | Quercus ilex and Quercus rotundifolia forests |
| G2.3 | G2.3 | Macaronesian [Laurus] woodland | = | *9360 | *45.61-> 45 | Macaronesian laurel forests (Laurus, Ocotea) |
| G2.31 | G2.3/P-45.61 | Azorean laurisilvas | > | *9360 | *45.61-> 45 | Macaronesian laurel forests (Laurus, Ocotea) |
| G2.32 | G2.3/P-45.62 | Madeiran laurisilvas | > | *9360 | *45.61-> 45 | Macaronesian laurel forests (Laurus, Ocotea) |
| G2.33 | G2.3/P-45.63 | Canarian laurisilvas | > | *9360 | *45.61-> 45 | Macaronesian laurel forests (Laurus, Ocotea) |
| G2.4 | G2.4 | [Olea europaea] - [Ceratonia siliqua] woodland | < | 9320 | 45.1 | Olea and Ceratonia forests |
| G2.41 | G2.4/P-45.11 | Wild [Olea europaea] woodland | > | 9320 | 45.1 | Olea and Ceratonia forests |
| G2.42 | G2.4/P-45.12 | [Ceratonia siliqua] woodland | > | 9320 | 45.1 | Olea and Ceratonia forests |
| G2.43 | G2.4/P-45.13 | Canarian [Olea europaea] woodland | $>$ | 9320 | 45.1 | Olea and Ceratonia forests |
| G2.5 | G2.5 | [Phoenix] groves | < | *9370 | *45.7 | Palm groves of Phoenix |
| G2.51 | G2.5/P-45.71 | Cretan [Phoenix theophrasti] groves | > | *9370 | *45.7 | Palm groves of Phoenix |
| G2.52 | G2.5/P-45.72 | Canarian [Phoenix canariensis] groves | > | *9370 | *45.7 | Palm groves of Phoenix |
| G2.6 | G2.6 | [llex aquifolium] woods | $=$ | 9380 | 45.8 | Forests of llex aquifolium |

In addition, the relationship between the EUNIS and Palaearctic Habitat classification has also been established (but will not be discussed here).
Because the relationship between the EUNIS habitat classification and the Habitats Directive is not one to one relationship, the relationships are expressed with: >: wider, <: narrower, =: same, \#: overlap, ?: not determined. For each of the 2490 EUNIS habitat classes the relationship with Annex I is given.

### 2.3.2 Relationship CORINE biotopes and CORINE land cover

Within the CORINE Biotopes project the relationship between CORINE land cover and biotopes has already been carried out. It is stated that "although remote sensing is not capable in distinguishing the degree of detail recorded in the biotopes database, some categories are directly comparable (see table 2.5). The CORINE biotopes sites (CEC, 1991) with their specific habitats have been overlaid with the CORINE land cover database which (CEC, 1994) resulted in the matrixes below.

Table 2.6 Relationship between CORINE land cover and CORINE Biotopes (Source:: CEC, 1991)


### 2.3.3 Relationship EUNIS Habitat classification and CORINE land cover

Recently Moss and Davies (2002a). have produced cross-references between the EUNIS habitat classification and the CORINE land cover database (CEC, 1994). In this document for each CORINE land cover class a long list of related habitats is given. For example, for the CORINE class "natural grassland" there are 155 related EUNIS habitats.

A specific example is given for the CORINE land cover class "Glaciers and perpetual snow" including the following EUNIS habitats (Moss and Davies, 2002a):

| H4 | Snow or ice dominated habitats |
| :--- | :--- |
| H4.1 | Snow packs |
| H4.2 | True glaciers |
| H4.2/P-63.31 | Ice sheets and ice gaps |
| H4.2/P-63.32 | Cirque and valley glaciers |
| H4.2/P-63.23 | Glaciers |
| H4.3 | Rock glaciers and unvegetated ice-dominated moraines |
| H4.3/P-63.21 | Rock glaciers |
| H4.3/P-63.22 | Ice-core moraines |
| H4.33 | Unvegetated glacial moraines in the process of formation |

### 2.3.4 Relationship Habitats Directive and CORINE land cover

Through the EUNIS Habitat Classification there is an indirect relationship between the Habitats Directive and CORINE land cover. The habitat classifications have more details than CORINE land cover. Therefore, an exercise has been done to try to relate the 9 major (level 1) habitat classes of the Habitats Directive to CORINE land cover. In this case 21 CORINE land cover classes have been related to one of the major habitat classes (see Table 2.7). The urban and agricultural classes of CORINE have not been related to the Habitats Directive because these classes are not a target of the Habitats Directive. Each major habitat class is represented by one or more CORINE land cover classes.

Table 2.7 Relationship between the Habitats Directive (level 1) and CORINE land cover


On basis of this matrix maps have been produced for all nine major habitats (Habitats Directive Annex I level 1) based on the information in the CORINE land cover database. These maps are discussed in paragraph 3.6.

## 3 <br> Data sources

The major spatial data sources that are available for pan-Europe or at least for a large part of Europe are discussed below. Most data sources differ in extent, scale, spatial accuracy, thematic accuracy, acquisition date, and in the number of thematic classes. These need therefore be discussed because these characteristics determine also their usefulness. Data sets that can be used for validation such as the CORINE Biotopes database are discussed also in this chapter. Some classifications have already been discussed in the Chapter 2, however, this was strictly related to their legend or typology. In this chapter the spatial data sets will be discussed in terms of their technical features. In Chapter 4 the methodology will be discussed of how these data sets can be used to identify the major European habitats. The following data sets are being discussed in this chapter: administrative, biogeographic, altitude, soils, land cover, Flora Europaeae, Potential Natural Vegetation Map and the CORINE biotopes database. In this chapter there is special attention for the soil and land cover databases because the various sources needed to be integrated to give these databases a pan-European coverage with optimal spatial and thematic detail.

### 3.1 Administrative and topographical data

Within the description of Annex I habitats the geographic distribution is often being described, e.g.: along the coast of the Algarve in South-Portugal. Also in the Flora Europaeae the geographic distribution is described for most species in this way, while in the Atlas Florae Europaeae, concerning a more limited amount of species, the spatial distribution is given on a 50 km by 50 km grid. Therefore administrative data and topographical data can be important in pinpointing the habitats spatially.

For administrative and topographical GIS data over Europe there is a range of sources, such as: the Digital Chart of the World (DCW), the ESRI Data \& Maps and Bartholomew Euromaps. These data sources have a scale of approximately 1:1M. The former mentioned has a low spatial accuracy and the latter one a higher spatial accuracy. In terms of thematic accuracy, no individual data set is ideal. Bartholomew Euromaps distinguishes most thematic classes (Mücher et. al., 2000). For example, to identify all major and medium sized rivers, use has to be made of all three sources because all sources separately do lack some major rivers. In most cases the ESRI spatial data sets are sufficient for displaying e.g. administrative boundaries, national borders, cities, major rivers, major urbanised areas and roads. However, a topographical data set with a spatial scale of 1:250,000 (and a high accuracy and reliability) would be preferred but is lacking for pan-Europe as far as the authors know.

### 3.2 Biogeographic data

### 3.2.1 BRME

The Biogeographical Regions Map of Europe (BRME) contains the official delineations (see Figure 3.1) used in the Habitats Directive (92/43/EEC) and for the Emerald Network. The map of the Biogeographic Regions (EEA, 2002) was developed as a tool for assessment of the Natura 2000 network (EU Council Directive 92/43/EEC). To the originally five regions (Alpine, Atlantic, Continental, Macaronesian and Mediterranean) the Boreal region was added when Finland and Sweden joined the European Union. The BRME is based on the PNV map (Bohn, 2003), taking climate types into account and eliminating edaphic vegetation zones and isolated islands. The current BRME is an extension of the EU15 map made by the Council of Europe (Secretariat of the Bern Convention) used for setting up of the Emerald Network. The non-EU part of the map is based on an aggregation of the units of the Pan-European Map of Natural Vegetation (Bohn, 2003), see also section 3.7. Five regions were added to the EU15 map (Anatolian, Arctic, Pannonian, Black Sea and Steppic), resulting in a total number of eleven biogeographic regions. The same interpretation principles were used as for the EU15 map. It has an equivalent objective of site assessment and reporting on a pan-European scale. EEA uses BRME for reporting on the state of Europe's environment. BRME (version 4) was delivered by ETC/NC in May 1998 to the EEA (EEA, 2002). There have been no quality checks or improvements on the data (i.e. some polygons have no label).


Figure 3.1 The Biogeographical Regions Map of Europe (BRME). Source: EEA (NATLAN)

### 3.2.2 DMEER

The Digital Map of European Ecological Regions (DMEER) is a biogeographic map that illustrates the distribution of ecological regions and sub-regions, on the basis of a unified concept and updated knowledge of climatic, topographic, geobotanical European data. It incorporates information from several European sources but has currently not been published. This map was based on a hierarchical classification, using two major sources: the Potential Natural Vegetation Map of Europe and a European classification of climate and topology delivered by CEH. The hierarchical classification represented 6 aggregation levels from a dendrogram, reaching from 46 to 183 ecological regions (see Appendix 6 for detailed information on the legend), covering all Europe. A final draft of DMEER was composed according to the expert opinions. DMEER was meant to be a useful and efficient step toward setting land management priorities (DMEER, 1997), but has been largely replaced by the increased spatial detail of the data source discussed in the next section.

### 3.2.3 The Environmental Classification of Europe (EnC)

Stratification into relatively homogeneous regions is an essential basis for strategic sampling of ecological variables and consistent modelling exercises. Within a given stratum, changes or effects can be analysed within a relatively homogeneous environment, which then enables variation to be partitioned. Such a process is imperative to produce statistically robust results, which require data to be representative from a defined population. For example, when examining a single class to determine the influence of causal factors of change on species abundance, statistical procedures can ensure that the observed effects are indeed caused by that change and not by inherently different environments. A first statistical approach, carried out by Jones and Bunce (1985), was followed by a grid based European Land Classification by the Institute for Terrestrial Ecology (ITE) - now Centre for Ecology and Hydrology (CEH) - in 1992 (Bunce et al, 1996a, b and c). The grid size of $0.5^{\circ}$ degrees is too coarse for adequate definition at the local level.

When more detailed climate data sets became (Mücher et al, 2003) available, a new version has been produced resulting in an eighty-four class Environmental Classification of Europe (EnC), as shown in Figure 3.2. The EnC has been constructed by Principal Component Analysis (PCA) and statistical clustering of climatic and topographic variables. The EnC is appropriate for strategic random sampling for resource assessment, measurement of change, and modelling. Three levels of aggregation are described to further facilitate analysis within thirteen Environmental Zones that are considered appropriate for summary purposes. The Department of Plant Production of Wageningen University and Alterra were involved in the production of the environmental database (Mücher et al, 2003; Metzger et al., 2004).


Figure 3.2 The Environmental Classification of Europe in eighty-four classes. Where the size of the class permits, the individual classes are labelled within the main Environmental Zones. The classification extends from $11^{\circ}$ west to $32^{\circ}$ east and from $34^{\circ}$ north to $72^{\circ}$ north. It is projected in a Lambert Arimuthal equal area projection. Because certain classes do not necessarily fit traditional experience, in this classification strict statistical rules have been maintained, recognising these apparent inconsistencies, e.g. PAN1 in the Vosges and Schwartzwald and CON2 in southern Norway

The EnC is considered as the most robust and scientifically constructed biogeographical database available and is independent of individual judgement. The only limitation is that the database does not cover pan-Europe entirely.

### 3.3 Digital Elevation Models

GTOPO30 is a global digital elevation model (DEM) resulting from a collaborative effort led by the staff at the U.S. Geological Survey's EROS Data Center in Sioux Falls, South Dakota. Elevations in GTOPO30 are regularly spaced at 30 -arc seconds (approximately 1 kilometre). GTOPO30 was developed to meet the needs of the geospatial data user community for regional and continental scale topographic data. The completion of global coverage of 30 -arc second elevation data finished in 1993. The DEM is based on data from 8 different sources of elevation information, including vector and raster data sets. The data of the European continent originates almost completely from the Digital Chart of the World. Figure 3.3 shows a detail of the global elevation model USGS GTOPO30 for pan-Europe and is displayed as a relief map. GTOPO30 is a global data set covering the full extent of latitude from 90 degrees south to 90 degrees north, and the full extent of longitude from 180 degrees west to 180 degrees east. The horizontal coordinate system is decimal degrees of latitude and longitude referenced to WGS84. The vertical units represent elevation in meters above mean sea level. The elevation values range from - 407 to 8,752 meters. In the DEM, ocean areas have been masked as "no data" and have been assigned a value of -9999. Lowland coastal areas have an elevation of at least 1 metre, so in the event that a user reassigns the ocean value from -9999 to 0 the land boundary portrayal will be maintained. Due to the nature of the raster structure of the DEM, small islands in the ocean less than approximately 1 square kilometre will not be represented. From the Digital Elevation model other parameters can be derived such as slope, aspect and relief. (see also edcdaac.usgs.gov/gtopo30/gtopo30.html).


Figure 3.3 Detail of the global USGS GTOPO30 Digital Elevation Model for Europe

### 3.4 Soils

For pan-Europe there are two major soil databases. The first one is the European Soil Database (CEC, 1985). The second one is the FAO-Unesco Soil Map of the World (FAO, 1991). The former is more detailed than the latter one, but unfortunately, the ESDB (CEC, 1985) does not cover the whole of pan-Europe. Therefore, it is necessary to integrate both databases for the characterisation of the abiotic conditions of European habitats.

### 3.4.1 European Soil Database 1:1M

The Soil Geographical Data Base of Europe at scale 1:1,000,000 (CEC, 1985) is part of the European Soil Data Base. It is the resulting product of a collaborative project involving all the European Union and neighbouring countries. It is a simplified representation of the diversity and spatial variability of soil profiles. The methodology used to differentiate and name the main soil types is based on the terminology of the FAO legend for the Soil Map of the World at scale 1:5,000,000. This terminology has been refined and adapted to take account of the characteristics of the European landscapes. It is based on the distinction of the main pedogenetic processes leading to soil differentiation: brunification, lessivage, podzolisation and hydromorphy (CEC, 1985). The database contains a list of Soil Typological Units (STU). Besides the soil names they represent, these units are described by variables (attributes) specifying the nature and properties of the soils: for example the texture, the water regime, the stoniness, etc. The geographical representation was chosen at a scale corresponding to the $1: 1,000,000$. At this scale, it is not feasible to delineate the STU's. Therefore they are grouped into Soil Mapping Units (SMU) to form soil associations and to illustrate the functioning of pedological systems within the landscapes (CEC, 1985).

Harmonisation of the soil data from the member countries is based on a dictionary giving the definition for each occurrence of the variables. Considering the scale, the precision of the variables is weak. Furthermore, these variables were assessed over large areas by expert judgement rather than actual soil pit measurements. This expertise results from synthesis and generalisation tasks of national or regional maps published at more detailed scales, for example 1:50,000 or 1:25,000 scales. Delineation of the Soil Mapping Units is also the result of expertise and experience. Heterogeneity is high in many European regions, for example cambisols in the mountains can range from fertile soils to peat bogs. The spatial variability of soils is very important and is difficult to express at global levels of precision. Quality indices of the information (purity and confidence level) are included with the data in order to guide usage. Notice that in Figure 3.4, showing the attribute parent material, there is a lot of difference in spatial detail, for example for the Scandinavian regions there is almost no detailed information.


Figure 3.4 The European Soil Database 1:1M (source: European Soil Bureau, EC)

### 3.4.2 FAO-UNESCO soil map of the world

The FAO-UNESCO Soil Map of the world was published between 1974 and 1978 at $1: 5,000,000$ scale (FAO, 1991). The legend comprises an estimated 1650 different map units, which consist of soil units or associations of soil units. The soil units (106 from Af to Zt ) are grouped in 26 major soil groupings. Additionally, soil texture is recognised and digitised with several characteristic classes of relative clay, silt and sand proportions. The dataset is available in the Arc/Info vector format. A template layer containing topographic information (coastlines, islands, lakes, glaciers, double lined rivers and outer sheet boundaries) was prepared and digitised for each map sheet. The legend of the soil map of the World (FAO, 1988) comprises an estimated 1650 different map units, which consist of soil units or associations of soil units. When a map unit is not homogeneous, it is composed of a dominant soil and component soils. The latter are: associated soils, covering at least $20 \%$ of the area; and inclusions, important soils which cover less than $20 \%$ of the area. The list of components for each mapping unit is found on the back of the maps. The relative distribution of dominant and component soils is given by the Composition Rules in the following page (Table 1, 'No.' stands for number of soil units) (FAO, 1988). The term "mapping unit" should not be confused with the ARC/INFO parameter "MAP UNIT" which refers to the unit of length on the digitised maps: meters, inches or degree decimals. The legend of the soil map of the world (FAO, 1991) comprises 106
soil units (from Af to Zt ), grouped in 26 major soil groupings. An alphabetical list of soil unit symbols and their names is given in Appendix 7.

### 3.4.3 Integration of both soil databases

Integration of the two soil databases was necessary to cover pan-Europe entirely with the aim to maintain as much as spatial detail as possible. Maps of abiotic soil conditions indicating specific ecological site factors have been produced for four simple themes: calcareous soils (Figure 3.5), wet soils (Figure 3.6), organic soils (Figure 3.7) and salt areas (Figure 3.8). Concerning the ESDB (CEC, 1985) the calcareous soils have been derived from the parent material attribute table, the wet soils from the water regime attribute table, and the salt and organic soils by their soil type. A difficult part of the integration of the ESDB with the FAO soil database (FAO, 1991) was the fact that the attributes of the ESDB were not consistently available. Some attributes were available for some countries while other attributes were available for other countries. This meant that the integration of the two databases had to be implemented on a single attribute basis. From the FAO soil database a selection of soil types was made for each theme (calcareous, wet, organic, salt) separately (see Appendix 8).


Figure 3.5 Calcareous soils


Figure 3.6 Wet soils


Figure 3.7 Organic soils


Figure 3.8 Soils with salt

### 3.5 Land cover

In this section three land cover databases will be discussed that were integrated into a new pan-European land cover database with the objective of maintaining as much as possible spatial and thematic detail. This meant that the land cover database with the highest spatial and thematic accuracy, in this case the CORINE land cover database (CEC, 1994), formed the base data set. The two other land cover databases that were used in the integration process were the PELCOM (Mücher et al., 2001) and GLC2000 land cover databases (Fritz et al., 2003). The latter is a newly established global land cover database based on the interpretation of SPOT-VEGETATION data of the year 2000.

### 3.5.1 CORINE

The CORINE (Co-ordination of Information on the Environment) programme was initiated by the EU in 1985. A number of databases were created within this framework with the aim to give information on the status and changes of the environment. One of these databases is the CORINE land cover database Figure 3.9). The land cover information (CEC, 1994) is derived from high-resolution satellite data by computer assisted visual interpretation, in combination with ancillary
information. The final CORINE land cover database consists of a geographical database describing vegetation and land use in 44 classes, grouped in a three level nomenclature (see Appendix 4) in order to cover the entire land cover spectrum of Europe (CEC, 1994). The minimum mapping unit is 25 hectares. For line elements the minimum width is 100 metres (Thunnissen and Middelaar, 1995). The scale of the land cover database is $1: 100,000$.


Figure 3.9 Extent of the CORINE land cover database in 2003 (source EEA)

### 3.5.2 PELCOM

The 1 km -resolution pan-European land cover database, called PELCOM (Mücher et al., 2001), contains 16 thematic classes and is based on the interpretation of NOAAAVHRR satellite data of 1997. Only the land cover classes urban areas, wetlands and water bodies have been derived from ancillary data sources. For validation of the PELCOM land cover database high-resolution satellite images have been used. Ideas have been followed from the IGBP-DIS global land cover database validation (Loveland \& Belward, 1997). Due to the amount of work the validation has been limited to confidence site mapping. IGBP-DIS provided 30 Landsat-TM images for Europe. In addition, ten high resolution satellite images were provided by PELCOM partners. This resulted in 40 high-resolution satellite images distributed over panEurope that were interpreted. Visual interpretations of the high-resolution satellite images were done independently of the PELCOM land cover database, but use of ancillary data was allowed (topographic maps, national land cover databases). This resulted in a total area of (interpreted) confidence sites of $7,700 \mathrm{~km}^{2}$. The total
average accuracy was $69.2 \%$, which can be considered as a good result considering the mixed pixel and geo-referencing problems of AVHRR data (Mücher et al., 2001).


Figure 3.10 The PELCOM database: a 1 km pan-European land cover database

### 3.5.3 GLC2000

The co-ordination of the Global Land Cover 2000 project has been carried out under the Fifth Framework Programme 1999-2002 for Research of the European Commission (Fritz et al., 2003). It is part of the project of the European Commission called Global Environment Information System (GEIS). The GLC2000 project was carried out to provide information to the International Conventions on Climate Change, the Convention to Combat Desertification, the Ramsar Convention and the Kyoto Protocol. Furthermore the GLC2000 land cover database has been chosen as a core dataset for the Millennium Ecosystems Assessment. This means in particular that the GLC2000 dataset will be a main input dataset to define the boundaries of the different ecosystems such as forest, urban, grassland, and cultivated systems (Fritz et al, 2003). The global land cover database has 23 classes (see Figure 3.11 and Appendix 9).

In contrast to former global mapping initiatives the GLC2000 project is a bottom up approach to global mapping (Bartholomé et al., 2003). In this project more than 30 research teams have been involved, contributing to 19 regional windows. There were two conditions to be fulfilled by the regional experts to guarantee a certain degree of consistency. The data had to be based on SPOT-4 VEGETATION VEGA2000 dataset, which was made freely available by CNES (Centre National d'Études Spatiales). Secondly the partners agreed to use the Land Cover Classification System
which was provided by FAO (Di Gregorio and Jansen, 2000). The fact that the mapping was carried out by regional experts had a number of benefits. Firstly, since each regional expert has a high level of understanding of their particular region, a certain level of quality can be guaranteed. Secondly, each partner has the freedom to apply their own methods of mapping and define their own regional legend. This allows the partners to apply the classification techniques they find most appropriate for land cover in their respective region. Thirdly the regional mapping approach ensures that access could be gained to reference material (Fritz et al, 2003). For more information on the production of the glc2000 database the website (http://www.gvm.jrc.it/glc2000) should be consulted.


Figure 3.11 GLC2000 global land cover database (Source: JRC)

### 3.5.4 Compilation European Land Cover Database

The CORINE land cover database is the most detailed land cover database covering a large part of Europe. Unfortunately, the CORINE land cover database covers only $37 \%$ of the terrestrial area of pan-Europe, also shown in Figure 3.12. Therefore the CORINE land cover database has to be integrated with other data sources. A compilation was therefore carried out on a country basis according to the figure below, in which $37 \%$ is from CORINE, $10 \%$ is from PELCOM and $53 \%$ is from GLC2000 land cover database. In total pan-Europe covers a terrestrial area of approximately $11 \mathrm{M} \mathrm{km}^{2}$.


Figure 3.12 Overview of the extent of coverage of the various land cover data sources over Europe

Before the three land cover databases could be integrated it was necessary to harmonise the legends as far as possible. Harmonisation of the legends was based on the CORINE legend. The PELCOM (Mücher et al., 2001) and GLC2000 (Fritz et al., 2003) legends had therefore to be transformed according to the CORINE nomenclature. Before this was done the CORINE nomenclature was revised. This lead to the following actions classes 1-11 "artificial surfaces" were recoded to 1 class called "urban", the class "rice fields" (2.1.3) was added to class "permanently irrigated land" (2.1.2), the class "mixed forest" (3.1.3) was added to the class "broadleaf forest" (3.1.1), and the class "transitional woodland-scrub" (3.2.4) to class "sclerophyllous vegetation" (3.2.3). The last two classes were merged because there was too much confusion between these two land cover classes within CORINE.

The recoding of PELCOM and GLC2000 into the CORINE nomenclature was implemented on the basis of expert knowledge and visual comparisons of the databases. In Appendix 9 the recoding schemes are given for the two land cover databases. The result of the recoding and the compilation according to figure 3.12 resulted in a new Pan-European land cover database with a spatial resolution of 250 m and a revised legend according to the CORINE land cover nomenclature, as shown in Figure 3.13.

In Table 3.1 an overview is given of the classes present in the final pan-European land cover database (last column) according to the CORINE land cover nomenclature and from which data sources these classes could be derived. It is very important to note that different data sources have been used in the compilation
process and that this has consequences for the thematic and spatial quality. For example the spatial resolution of the CORINE land cover database is much higher than for PELCOM and GLC2000 land cover database. Compilation into one panEuropean land cover database with a 250 m resolution, as shown in Figure 3.13, is still justified according to the authors due to the fact that in central and especially in western-Europe the landscape is much more fragmented than in eastern-Europe, justifying the aggregation of the CORINE land cover to a 250 m resolution and disaggregation of PELCOM and GCL2000 to a 250 m resolution in the eastern and northern parts of Europe. Concerning the thematic quality the land cover compilation has a much higher impact; CORINE land cover contains much more thematic classes than the other two databases. Still the authors tried to keep as much as possible CORINE land cover classes so that no information would get lost and the knowledge that aggregation in fewer classes stays always a possibility in a later stage. The consequence of this is that a specific classes e.g. moors and heathland is only present where Europe is covered by the CORINE database. Given the fact that most moors and heathland are situated in the Atlantic region this does not hamper the given approach. Nevertheless, if heathland is occurring outside the region covered by CORINE (see Figure 3.12), than it is most likely situated in the class sclerophyllous scrubs or transitional woodland scrub which is covered by PELCOM and GLC2000 (see Table 3.1).

Without a doubt it is possible to aggregate the land cover classes in a limited amount of classes and resample to entire land cover database to a 1 km spatial resolution. However, this would hamper the spatial identification of many habitats which are related to specific Corine land cover classes and are often small in size and highly fragmented.


Figure 3.13 Pan-European land cover database with a spatial resolution of 250 m based on CORINE and PELCOM data sources (source: Alterra)

Table 3.1 The classes present in the final pan-European land cover datase (last column) according to the CORINE land cover nomenclature and from which data sources these classes could be derived

| CORINE |  | Data sources |  |  | Final Present |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Corine | Pelcom | Glc2000 |  |
| continuous urban fabric | 1 | X | X | X | P |
| discontinuous urban fabric | 2 | X |  |  |  |
| industrial and commercial units | 3 | X |  |  |  |
| road and rail networks and associated land | 4 | X |  |  |  |
| port areas | 5 | X |  |  |  |
| airports | 6 | X |  |  |  |
| mineral extraction sites | 7 | X |  |  |  |
| dump sites | 8 | X |  |  |  |
| construction sites | 9 | X |  |  |  |
| green urban areas | 10 | X |  |  |  |
| port and leisure facilities | 11 | X |  |  |  |
| non-irrigated arable land | 12 | X | X | X | P |
| permanently irrigated land | 13 | X | X |  | P |
| rice fields | 14 | X |  |  |  |
| vineyards | 15 | X | X |  | P |
| fruit trees and berry plantation | 16 | X |  |  | P |
| olive groves | 17 | X |  |  | P |
| pastures | 18 | X |  |  | P |
| annual cops associated with permanent crops | 19 | X |  |  | P |
| complex cultivation patterns | 20 | X |  |  | P |
| land principally occupied by agriculture with significant natural vegetation |  | X |  |  | P |
| agro-forestry areas | 22 | X |  |  | P |
| broadleaf forests | 23 | X | X | X | P |
| coniferous forest | 24 | X | X | X | P |
| mixed forest | 25 | X | X | X |  |
| natural grasslands | 26 | X | X | X | P |
| moors and heath lands | 27 | X |  |  | P |
| sclerophyllous vegetation | 28 | X | X |  | P |
| transitional woodland-scrub | 29 | X |  | X |  |
| beaches, sand, dunes | 30 | X |  |  | P |
| bare rocks | 31 | X |  |  | P |
| sparsely vegetated areas | 32 | X | X | X | P |
| burnt areas | 33 | X |  | X | P |
| glaciers and perpetual snow | 34 | X | X | X | P |
| inland marshes | 35 | X | X | X | P |
| peat bogs | 36 | X |  |  | P |
| salt marshes | 37 | X |  |  | P |
| salines | 38 | X |  |  | P |
| intertidal flats | 39 | X |  |  | P |
| water courses | 40 | X |  |  | P |
| water bodies | 41 | X | X | X | P |
| coastal lagoons | 42 | X |  |  | P |
| estuaries | 43 | X |  |  | P |
| sea and ocean | 44 | X | X |  | P |

On basis of this 250 m resolution pan-European land cover database, as shown in 3.1.3 and it's relationship with Annex I of the Habitats Directive as described in paragraph 2.3.4, it is possible produce a map of the Annex I habitats at level 1. This result is shown in Figure 3.14. The statistics of this 250 m resolution European habitat map are shown in Table 3.2. An important remark about this habitat map is that for the moment the pastures (land cover class 2.3.1) have been included within the major habitat "Natural and semi-natural grasslands (6)". The major habitats "Forests (9)" and "Natural and semi-natural grasslands (6)" do have the largest acreage, with respectively $54 \%$ and $24 \%$. So these two major habitats cover almost $80 \%$ of all natural and semi-natural habitats. The habitats "Coastal and halophytic habitats (1)" and "Coastal sand dunes and inland dunes (2)" are the smallest and do cover only $0.5 \%$ of all habitats.

Table 3.2 Statistics of the European habitat map as displayed in Figure 3.14

| Annex I habitat (Natura2000), level 1 | km 2 | Perc (\%) |
| :--- | :--- | :--- |
| 1. Coastal and halophytic habitats | 23845 | 0.4 |
| 2. Coastal sand dunes and inland dunes | 4051 | 0.1 |
| 3. Freshwater habitats | 269979 | 4.1 |
| 4. Temperate heath and scrub | 340089 | 5.2 |
| 5. Sclerophyllous scrub (matorral) | 506875 | 7.8 |
| 6. Natural and semi-natural grasslands | 1540657 | 23.7 |
| 7. Raised bogs, mires and fens | 275055 | 4.2 |
| 8. Rocky habitats and caves | 33100 | 0.5 |
| 9. Forests | 3517707 | 54.0 |
| Total | 6511359 | 100.0 |



Figure 3.14 Map of the level 1 (Natura2000) babitats of Annex I at a 250 m spatial resolution

### 3.6 Atlas Florae Europaeae (AFE)

Atlas Florae Europaeae (AFE) is designed to map the distribution of vascular plants in Europe (Jalas \& Suominen, 1976). The project was launched in 1965 as a collaborative effort of European botanists and, since then, the secretariat has functioned at the Botanical department of the Finnish Museum of Natural History, Helsinki (Www.fmnh.helsinki.fi/map/afe). The principal aim of the AFE is to produce complementary maps with taxonomic notes of species and subspecies based on the taxonomy of the Flora Europaeae. The chorological data are gathered by national collaborators in each European country. Between 1972-1999 the Committee and Societas Biologica Fennica Vanamo have published 12 volumes of the Atlas, including 2039 pages and 3270 maps.

Table 3.3 Overview of published AFE maps and related families

| Volumes of the Atlas Florae Europaeae: | Maps | Year |  |
| :--- | :--- | :--- | :--- |
| 1. Pteridophyta | (Psilotaceae - Azollaceae) | $1-150$ | 1972 |
| 2. Gymnospermae | (Pinaceae - Ephedraceae) | $151-200$ | 1973 |
| 3. Salicaceae to Balanophoracea |  | $201-383$ | 1976 |
| 4. Polygonaceae |  | $384-478$ | 1979 |
| 5. Chenopodiaceae to Basellaceae |  | $479-668$ | 1980 |
| 6. Caryophyllaceae | (Alsinoideae,Paronychioideae) | $669-1011$ | 1983 |
| 7. Caryophyllaceae | (Silenoideae) | $1012-1508$ | 1986 |
| 8. Nymphaeaceae to |  | $1509-1953$ | 1989 |
| Rununculaceae |  |  |  |
| 9. Paeoniaceae to Capparaceae | (Sisymbrium to Aubrieta) | $21954-2109$ | 1991 |
| 10. Cruciferae | (Ricotia to Raphanus) | $2434-2927$ | 1994 |
| 11. Cruciferae |  | $2928-3270$ | 1996 |
| 12. Resedaceae to Plantanaceae |  | 1999 |  |

Currently the maps cover the families which include more than $20 \%$ of the vascular plants of European flora. All the distribution maps published in AFE Volumes 1 to 12 were made manually (Jalas \& Suominen, 1976). Later the maps were scanned into a digital database. The AFE database can be used by means of a free Windows program, which is available from the AFE Database home page www.fmnh.helsinki.fi/map/afe).


Figure 3.15 Example of Atlas Florae Europaeae for Juniperus communis
An important region within pan-Europe that is not covered by the AFE is a part of south-eastern Europe, including; Turkey, Azerbaijan, Armenia, Georgia and the southern part of Russia close to the border of Georgia, as shown in Figure 3.15.

### 3.7 The Map of the Natural Vegetation of Europe

The Map of the Natural Vegetation of Europe, further referred to as PNV map (Potential Natural Vegetation map), as shown in Figure 3.16, was produced in Germany by the Institute für Bundesamt für Naturschutz - BfN (Bohn, 2003). More than 100 geobotanists from 31 European countries co-operated to produce the map, its legend and the explanatory text. The vector map defines the distribution of plant communities and their complexes, which are adapted to existing climatic and edaphic conditions, excluding, as far as possible, human impact. This map consists of 699 mapping units organised into a hierarchical classification. The main groups of the system are 19 physiognomic-structurally and ecologically characterised formations or formation complexes, of which 14 (denoted with the capital letters A to O) represent the macroclimatic zones in the progression from northern to southern and southeastern Europe and their corresponding altitudinal belts in the mountains. The differentiation and spatial progression of these zones is determined primarily by the temperature gradient. The last five formations ( P to U ) represent azonal vegetation types marked by dominant edaphic site factors such as saline or wet soils and are modified only secondarily by macroclimatic factors. The formations are subdivided into sub-groups according to their species composition, finer climatic gradations and large scale habitat factors. These are in turn subdivided according to their nutrient regime, altitudinal belt, moisture regime and geographic location. The 699 mapping units form the basic units of the vegetation map. As a rule, these consist of spatially extensive zonal and azonal natural plant communities in a given area; in special cases they may consist of a combination of equally well-represented vegetation units.


Figure 3.16 Potential Natural Vegetation Map (Source: Bundesamt für Naturscbutz, Bomn)

The map is designed for defining potential natural vegetation and does not necessarily describe the actual vegetation at a given location. For example, for the northern part of France the potential natural vegetation may be a beech forest but actually the land may be used to cultivate maize. However, there is also a comprehensive text description for each mapping unit. This comprehensive text description can be used very well within the present PEENHAB project. An overview of all the attributes and their explanation can be found in the Appendix. 14. Among the many items in the text descriptions there are some that can be used to connect mapping units to Nature 2000 habitat types. These attributes are for example: 'Dominant and most frequent species in different layers', 'Diagnostically important species', and 'Site conditions of the mapping unit' (including geology), see also Appendix 14. How the database is used within the present project in its methodological approach is explained in more detail in Chapter 4.

### 3.8 CORINE biotopes site database

The CORINE Biotopes database (CEC, 1991) is part of the EC CORINE Programme, developed by DG XI during the period 1985-1990, and was maintained by the EEA (Moss et al., 1995). The database now contains details of 7741 sites of European importance for nature conservation in 13 EU Member States, and is in active preparation in ten non-EU countries. The CORINE Biotopes project comprised a number of linked activities: notably, i) the compilation of a database of sites of major importance for nature conservation and ii) the development of a classification of European habitats, which has been discussed in the chapter 2.

The aim of CORINE was to meet the need for better knowledge of the environment. For nature protection the main components of this policy are implemented by:

1. the Directive on the conservation of wild birds (1979)
2. the adoption of the Bern Convention on the Conservation of European Wildlife and Natural Habitats (1981)
3. the adoption of the Bonn Convention on the Conservation of Migratory Species of Wild Animals (1982)
4. the adoption of the Convention on Trade in Endangered Species (CITES) (1984)
5. the Directive on the conservation of fauna, flora and habitats (the Habitats Directive) (1992).

The Biotopes site database was designed to assemble reliable and consistent information about the location and status of ecosystems, habitats and species in need of protection and to make this information accessible to policy-makers. The main methodological approaches were the development of: i) objective criteria which provided a common basis on which to judge the 'importance' of a locality for nature conservation in Europe; ii) a common format for the data, so as to establish an acceptable compromise between the requirement for extensive information about each site and the difficulty of acquiring information at the necessary level of detail in
every Member State of the EC; iii) nomenclatures to describe habitats, species taxonomy and other important site characteristics (CEC, 1991). A limited amount of errors in the databases is due to: general data errors, inadequate site information, inadequate habitat description, and inadequate precise coordinates of the sites.

The site selection criteria, independently of the current protection status, are concerned with; i) the presence of threatened species of plants or animals or of sensitive habitat types; ii) the richness of a site for a taxonomic group of species or a collection of habitat types. The first type of criteria were defined precisely, used systematically in site selection, and recorded explicitly in the database. One of the three following criteria should apply:

1. One of the 100 most important sites in the Community or one of the five most important sites in a region for a threatened species.
2. One of the 100 most important or representative sites in the Community or one of the five most important or representative sites in a region for a sensitive habitat type.
3. The site supports at least $1 \%$ of the Community population of a threatened species.

The database has specific tables for: amphibians, birds, fishes, mammals, plants and invertebrates. Some important descriptive tables for the biotopes sites are cited in Table 3.4, Table 3.5 and Table 3.6.

Table 3.4 Character fields within the table HABEUR of the CORINE biotopes database

| Field Field Name | Type | Width | Definition | Remark |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | HABCODE | Character | 9 | Hierarchical habitat code | Palaearctic | Habitat |
| 2 | LEVEL | Character | 1 | Level in hierarchy of code | Classification codes |  |
| 3 | DESCRIPT | Character | 73 | Brief text description of habitat <br> class |  |  |
| 4 | COM | Memo | 10 | Phytosociological communities |  |  |
| 5 | TXT | Memo | 10 | Text description of habitat class <br> Published documentation for |  |  |
| 6 | REF | Memo | 10 | habitat description |  |  |

Table 3.5 Character fields within the Table HUMANACT of the CORINE biotopes database

| Field Field Name | Type | Width | Definition |  |
| :--- | :--- | :--- | :--- | :--- |
| 1 | ACT_CODE | Character | 2 | Code for human activity affecting site |
| 2 | DESCRIPT | Character | 45 | Text description of human activity |


| Field | Field Name | Type | Width | Definition |
| :--- | :--- | :--- | :--- | :--- |
| 1 | MOTICODE | Character | 2 | Code for motivation for inclusion of site in inventory |
| 2 | DESCRIPT | Character | 45 | Text description of motivation |



COASTAL AND HALOPHYTIC COMMUNITIES

- NON-MARINE WATERS
- SCRUB AND GRASSLAND
- FORESTS
- BOG AND MARSHES
- INLAND ROCKS, SCREES AND SANDS
- AGRICULTURAL LAND AND ARTIFICIAL LANDSCAPES

Figure 3.17 CORINE biotopes database displaying major biotopes types

## 4 Methodology

### 4.1 Introduction

The objective of this project is to map European habitats as defined in Annex I (European Commission, 1999) of the Habitats Directive by using a multi-source integrated methodology that explores the use of European spatial data sets. An example is provided by Earth Observation derived land cover data together with other existing spatial information on the biotic and abiotic conditions, and the use of expert knowledge rules. The Natura 2000 sites, delineated according to guidelines of the Habitats Directive, will have a high reliability but a relatively low accuracy, meaning that only the most precious parts of the exiting habitats are being delineated and protected. As an example, part of Annex I habitat 4010 "Northern Atlantic wet heaths with Erica tetralix" will be situated in designated Natura 2000 sites. However, a large part of this habitat type will also be located outside designated areas. However, the Natura 2000 sites can be used in the validation process. As shown in Figure 4.1 most countries have a much larger area of semi-natural and natural habitats than is being designated by Natura 2000 sites, the only exception is Denmark.


Figure 4.1 Comparison of national figures on natural and semi-natural areas derived from CORINE land cover with the area protected by Natura 2000 sites
As mentioned before, the design of a pan-European ecological network requires a synoptic overview of European habitats since many species are not only depending on designated sites but are rather present in the wider countryside. So far, there is no complete overview of the actual distribution of European habitats. Next to actual
land cover maps, the best available map is the Potential Natural Vegetation (PNV) map that indicates the potential habitats.

### 4.2 Methodological aspects

A methodology has to be developed that enables the spatial identification of individual European habitats on basis of:

- $\quad$ their description in Annex I of the Habitats Directive, in conjunction with
- a set of core spatial data sets such as the CORINE land cover database, topographical data, biogeographical regions, digital elevation models, distribution maps of individual plant species, and the European Soil database.

Each data set is contributing to an improved spatial identification of the actual habitats in what is called a top-down approach, as shown in Figure 4.2.


Figure 4.2 Flowchart of the methodological approach to identify European babitats

The decision rules will consist of a combination of a number of filters on the basis of the selected spatial data sets and their habitat descriptions and will be formalised within graphic models for each habitat type. The methodology will be demonstrated in this chapter for Annex I habitat type 9150 "Medio-European limestone beech forests of the Cephalanthero-Fagion".

### 4.2.1 Habitat description

The habitat description in Annex I (European Commission, 1999) will constitute the basis for the definition of the decision rules or filters for each habitat. In Table 4.1 an example is given of the description for the habitat type 9150 "Medio-European limestone beech forests of the Cephanlanthero-Fagion". Especially, the general description and the characteristic plant species are essential in defining the decision rules for each habitat type. It should be emphasised that not all Annex I habitats have such a precise definition.

Table 4.1 Description of an Annex I habitat type as given in the Habitats Directive Interpretation Manual and with additional information from EUNIS (bttp:/ / mrw.wallonie.be/ dgrne/ sibw/EUNIS/)

## $9150 \quad$ Calcareous beech forests (Cephalanthero-Fagion) (41.16)

## Description

Xero-thermophile [Fagus sylvatica] forests developed on calcareous, often superficial, soils, usually of steep slopes, of the medio-European and Atlantic domaines of Western Europe and of central and northern Central Europe, with a generally abundant herb and shrub undergrowth, characterized by sedges ([Carex digitata, Carex flacca, Carex montana, Carex alba]), grasses ([Sesleria albicans, Brachypodium pinnatum]), orchids ([Cephalanthera] spp., [Neottia nidus-avis, Epipactis leptochila, Epipactis microphylla]) and thermophile species, transgressive of the [Quercetalia pubescentipetraeae]. The bush-layer includes several calcicolous species ([Ligustrum vulgare, Berberis vulgaris]) and [Buxus sempervirens] can dominate.

The following sub-types are included:
Pal., 41.161 Middle European dry-slope limestone beech forests
Middle European sedge and orchid beech woods of slopes with reduced water availability.
Pal., 41.162 North-western Iberian xerophile beech woods
[Fagus sylvatica] forests of relatively low precipitation zones of the southern ranges of the Pais Vasco and of superficially dry calcareous soils of the Cordillera Cantabrica, with [Brachypodium pinnatum ssp. rupestre, Sesleria argentea ssp. hispanica, Carex brevicollis, Carex ornithopoda, Carex sempervirens, Carex caudata, Cephalanthera damasonium, Cephalanthera longifolia, Epipactis helleborine, Epipactis microphylla, Neottia nidus-avis].

## Distribution

Austria, Belgium, Denmark, France, Germany, Greece, Luxemburg, Spain, Sweden.
Plants
Fagus sylvatica, Carex digitata, Carex flacca, Carex montana, Carex alba, Sesleria albicans, Brachypodium pinnatum, Cephalanthera spp., Neottia nidus-avis, Epipactis leptochila, Epipactis microphylla, Buxus semperviren].

## Relationship to EUNIS classification

| $<$ | $\underline{\text { G1.6 }}$ | [Fagus] woodland |
| :--- | :--- | :--- |
| $=$ | $\underline{\text { G1.66 }}$ | Medio-European limestone [Fagus] forests |

## Relationship to other classifications

Nordic classification 1994
? 2.2.2.3 [Fagus sylvatica-Mercurialis perennis-Allium ursinum] -typ
Palaearctic classification 1996

| $?$ | 41.16 | Medio-European limestone beech forests |
| :--- | :--- | :--- |
| $?$ | 41.161 | Middle European dry-slope limestone beech forests |


| $?$ | 41.1611 | Medio-European dry slope sedge beech forests |
| :--- | :--- | :--- |
| $?$ | 41.1612 | Medio-European steep slope yew beech forests |
| $?$ | 41.1613 | Medio-European blue moorgrass beech forests |
| $?$ | 41.1614 | Medio-European naked basiphile beech forests |
| $?$ | 41.1615 | Pannonic limestone beech forests |
| $?$ | 41.162 | North-western Iberian xerophile beech woods |
| Habitat names in different languages |  |  |
| Danish | Bøgeskove på kalkrig bund (Cephalanthero-Fagion) |  |
| German | Orchideen-Buchenwald (Cephalanthero-Fagion) |  |
| English | Medio-European limestone beech forests ([Cephalanthero- |  |
|  | Fagion]) |  |
| Spanish | Hayedos calcícolas (Cephalanthero-Fagion) |  |
| French | Hêtraies calcicoles (Cephalanthero-Fagion) |  |
| Italian | Faggeti calcicoli(Cephalanthero-Fagion) |  |
| Dutch | Kalkminnende beukenbossen (Cephalanthero-Fagion) |  |
| Portuguese | Faiais calcícolas(Cephalenthero-Fagion) |  |

### 4.2.2 Decision rules or filters

At the first stage, indicators species were selected on the basis of the habitat description in Annex I interpretation manual (see also for the Habitats Directive 92/43/EEC website http://mrw.wallonie.be/dgrne/sibw/N2000) and on the basis of expert knowledge. The indicator species are listed in Appendix 11 for each Annex I habitat type. The indicator species have been selected on basis of being characteristic of the habitat type and being as far as possible stable in time. About 120 of the 196 Annex I habitat types (European Commission, 1999) have indicator species that are present in the Atlas Florae Europaeae (AFE). The limited amount of species in the AFE restricts the identification of all habitat types (see also paragraph 3.7). However, there are also other reasons that reduces the ability to determine the spatial identification of European habitats and these are: (1) weak description of the habitat type in Annex I or (2) the habitat is very limited in area and (3) very fragmented, (4) no species available in the AFE. In Appendix 12 an attempt has been made to indicate the mapping possibility of each Annex I habitat type and on basis of which data sources the identification is possible. Appendix 12 lists also the relations between Annex I habitat types and the CORINE land cover nomenclature. There are about a hundred Annex I habitat types for which a European habitat mapping exercise is possible. On the Natura 2000 website (http://mrw.wallonie.be/dgrne/sibw/N2000) it is possible to search the Annex I database on the basis of search criteria such as Natura 2000 habitat code, CORINE habitat code (Palaearctic), text string or country or a combination of these. A list (see Appendix 13) of the present Annex I habitat types per country can be useful to construct filters. However, the country list is limited to the EU15 hampering it's use for a pan-European approach. Nevertheless, it is interesting to see the number of Annex I habitat types per country (EU15) and these are summarised in Figure 4.3.

It is interesting to see that a small country like the Netherlands is quite rich in Annex I habitats compared to large countries as Finland, Sweden and the UK. Especially,
the Mediterranean countries are very rich in Annex I habitats (see Appendix 13 for a full summary). The reason that France is scoring very high is that the country has most biogeographic regions (Atlantic, Continental, Mediterranean and Alpine) that implicitly determines the number of habitat types that can be registered.


Figure 4.3 Number of Annex I babitat types per country (EU15)
As mentioned above the decision rules will consist of a combination of a number of filters on the basis of the selected spatial data sets and their habitat descriptions and will be formalised within graphic models for each habitat type. The exploitation of core data sets will be demonstrated now for the case of Annex I habitat type 9150 "Calcareous beech forests".

### 4.2.3 Core data sets to identify habitat type $\mathbf{9 1 5 0}$

Annex I habitat 9150 "Calcareous beech forests (Cephalanthero-Fagion)" corresponds with the CORINE land cover class 3.1.1 "Broad-leaved forests". This land cover class can be derived from the 250 m spatial resolution pan-European land cover database described in paragraph 3.6.4. Note from this paragraph that the CORINE land cover class 3.1.3 "Mixed forest" was added to the class 3.1.1. "Broadleaved forest. This is considered as the first step in the spatial identification of habitat 9150 "Calcareous beech forests".

The next step is the selection of indicator species. For Annex I habitat 9150 the indicator species are Fagus sylvatica, Cephelanthera spp., Neottia nidus-avis and Carex digitata (See also appendix 11). Unfortunately, the AFE contains only Fagus sylvatica from this list and this species is therefore combined with the land cover to limit the broadleaved forests to the regions where the beech tree (Fagus sylvatica) does occur.


Figure 4.4 Broad-leaved forest derived from the 250 m pan-European land cover database


Figure 4.5 Spatial ditribution of the beech tree (Fagus sylvatica) in Europe according to the Atlas Flora Europaeae

The next step is to introduce the abiotic site conditions of the habitat. In the Annex I description it is mentioned that the xero-thermophile Fagus sylvatica forests develop on calcareous soils, often superficial soils, on steep slopes.


Figure 4.6 Calcareous soils in Europe


Figure 4.7 Digital Elevation Model with areas above 200 m indicated in red

The calcareous soils can be derived from the integrated pan-European soil database. In paragraph 3.5.3. this integrated soil database has been described in detail and in Appendix 8 the soil types are mentioned that have been identified as calcareous (in this case having calcareous parent material).

Since steep slopes are only occuring in regions outside the lowland we can use the 1 km digital elevetion model to exclude those areas. As shown in Figure 4.7 all areas above 200 m are selected and are displayed in red colour.

On the basis of these sequential methodological steps it is already possible to estimate the spatial distribution of the calcareous beech forests in Europe as shown in Figure 4.8.


Figure 4.8 First result on the spatial distribution of calcerous beech forest (babitat 9150) in Europe on the basis of land cover, indicator species, and abiotic site conditions
The next paragraph describes the module predicting Natura 2000 habitat types of SynBioSys Europe. These results are also integrated in the present project to improve the spatial identification of the European habitats. In the final step these results are being combined with the former results, as shown in Figure 4.8.

### 4.2.4 Predicting Natura 2000 habitats using the map of the Natural Vegetation of Europe

One of the data sources that can used to predict Annex I habitat types is the Map of the Natural Vegetation of Europe, further being referred as the PNV map (Potential Natural Vegetation Map of Europe), scale $1: 2.5$ million (Bohn et al. 2001). This map
has been incorporated within the present project with the help of SynBioSys Europe. The screen shot taken from SynBioSys Europe, as shown in Figure 4.9, demonstrates the list of plant species that are considered to be characteristic for 'Medio-European limestone beech forest of the Cephalanthero-Fagion' (Habitat 9150) and has its origin in Annex I habitat description. This list of species can now be compared with the typical species ('Diagnostically important species') mentioned for each mapping unit of the PNV map. Because it is most unlikely that all species mentioned for the habitat type are present in one mapping unit, a threshold must be defined for the minimum number of species that should be present in each mapping unit. For example, a threshold of two means that at least two species from the total list of species typical for the habitat type must be present in a mapping unit. On top of the species composition as criterion it is also possible to refine the selection by using other information. In the case of Habitat type 9150 it is also known that the type is restricted to limestone soils. Therefore an extra criterion can be the word 'limestone' which should be mentioned in the section 'Site conditions of the mapping unit' in the text description of the mapping units (see Appendix 14).


Figure 4.9 Screen shot of SynBioSys Europe showing the bierarchical organisation of Natura 2000 babitat types. At the lowest level the tree is opened at type 9150 showing a list of plant species that are considered to be characteristic for 'Medio-European limestone beach forest of the Cephalanthero-Fagion'. On the right site the threshold for the minimum number of speciesto be found in a mapping unit with in the European Vegetation Map is set to ' 2 '

As a result of the defined criteria the spatial distribution of Annex I habitat 9150 'Medio-European limestone beach forest of the Cephalanthero-Fagion' is shown in Figure 4.10 and is based on the PNV Map. The resulting spatial distribution from SynBioSys Europe is considered as an important extra information layer within the whole methodological approach.


Figure 4.10 Estimated spatial distribution of Habitat 9150 Medio-European limestone beach forest of the Cephalanthero-Fagion' Europe based on the Map of the Natural vegetation of Europe

### 4.2.5 Data infrastructure and graphic modeller

In the next stage, the result from SynBioSys Europe is combined with the 250 m panEuropean land cover database. All the processing steps are formalised within the Graphic modeller of ERDAS Imagine (ERDAS, 1997). All data sets are stored in a organised structure on one computer and are stored in raster format of ERDAS Imagine. The raster format guaranties fast calculation on different layers and the "run-length compression technique" in ERDAS (ERDAS, 1997) guaranties a major reduction in file size. For every Annex I habitat type a graphic model will be made in which the various data sources are being combined and the decisions taken are explicitly stored. When a threshold needs to be adjusted or a better input data layer has been produced, it is relatively easy to adapt the graphic model and run it again. In ArcGis 9 a similar graphic module option is becoming possible. Figure 4.11 is the graphic model that has been used to calculate the final estimate of the spatial
distribution of calcareous beech forests in Europe (habitat 9150) on a 250 m grid basis.


Figure 4.11 Graphic model of Erdas Imagine that has been used to calculate the final result on the spatial distribution of calcareous beech forests in Europe (babitat 9150) on a 250 m grid basis. The circles contain the functions, the other objects the input or output

In the next Chapter the final result for the spatial distribution of calcareous beech forests in Europe (habitat 9150) will be discussed.

## 5 Results

The output of the graphic model is shown in Figure 5.1 for Annex I habitat type 9150 "Medio-European limestone beech forest of the Cephalanthero-Fagion". Class one "PNV habitat", displayed in blue colour, concerns the output result from SynBioSys in combination with the pan-European land cover database (extreme right part of the graphic model in figure 4.10). Class two "PEENHAB" concerns the left part of the graphic model (in figure 4.10) and is based on the combination of land cover, indicator species and abiotic site conditions (as discussed before). Class three "Both", displayed in red colour, indicates the overlap between the two former classes. Table 5.1 indicates that there is an overlap of $25.8 \%$ (class 3).


Figure 5.1 Final results of the proposed methodology concerning Annex I babitat thpe 9150 "Medio-European limestone beach forest of the Cephalanthero-Fagion"" with a 250 m spatial resolution

Table 5.1 Statistics of the Habitat 9150 map (see figure 5.1)

| Class nr | Class name | Count | km2 | \% |
| :--- | :--- | :--- | :--- | :--- |
| 1. | PNV habitat | 1578847 | 98677.94 | 49.2 |
| 2. | PEENHAB | 801753 | 50109.56 | 25.0 |
| 3. | Both | 826052 | 51628.25 | 25.8 |
|  | Sum | 3206652 | 200415.8 | 1 |

To be able to interpret these results some kind of validation has to be performed, which will be discussed in the next paragraph.

### 5.1 Validation

Concerning the validation of the proposed methodology and its results, the Natura 2000 sites are unfortunately still not available for the public for most countries, currently restricting validation using Natura 2000 sites.


Figure 5.2 Visual comparison of the result (on top) with (below) a reference data source (http://Natura 2000.environnement.gouv.fr/ babitats/cabiers.btml) for France

Another possibility for validation is the use of the CORINE biotopes database but is limited because the data set is only available as a point database. A third option, derived from the internet, is the publication of Annex I habitat maps for all forest types in France. As a visual validation exercise, it is surprising to find a good match between the classification result and the reference data, specifically for class 3 (in red colour). This case suggests that the overlap between class 1 and class 2 is indicating a more realistic distribution of calcareous beech forests in France. Class one and two both overestimate the presence of calcareous beech forest in France. This proves that integration of the first two classes really adds information.

A second validation has been implemented by using the CORINE biotopes database. The biotope class 41.16 "Beech forests on limestone" is related to Annex I habitat 9150. A total number of 44 biotopes sites across Europe did have "beech forests on limestone". On basis of their acreage a buffer has been calculated and for each biotope site with buffer it has been checked if pixels of Annex I habitat 9150 (see figure 5.1) were present and to which class they did belong. Of the 44 sites there were 12 sites ( $27 \%$ ) they were not identified by our classification, while $73 \%$ of the biotopes sites were identified by our habitat classification. Of these, only 9 biotopes sites were identified by class 3 . The others were identified by class 1 (13) or class 2 (10).

Table 5.2 The number of CORINE biotopes sites (41.16) that were identified by our habitat classification (babitat 9150)

| Class nr | Class name | Frequency |
| :--- | :--- | :--- |
| 1 | PNV Hab | 13 |
| 2 | PEENHAB | 10 |
| 3 | Both | 9 |
|  | None | 12 |

The most important conclusions can be summarised as follows:

- A flexible methodology has been developed that integrates a top-down approach (starting with land cover) with a bottom-up approach (starting with vegetation relevés) as in the case of the SynBioSys Europe project.
- In the top-down approach the ecotope concept has been used combining vegetation structure with abiotic conditions.
- In the bottom-up approach a module has been made within SynBioSys Europe to predict the Annex I habitats using the Map of the Natural Vegetation of Europe.
- The habitat classes as given in Annex I of the Habitats Directive, better known as Natura 2000 habitats, are taken as the reference.
- On the basis of the Annex I habitat definitions knowledge rules were defined in a flexible manner using graphic models within a GIS environment to optimally combine existing spatial databases (such as land cover, soil data, topographic data and species distribution maps) to identify the spatial distribution of the major European habitats.
- The integration of various data sources to produce a land cover database with a pan-European coverage having a high accuracy and spatial detail did cost a lot of effort. The same holds for the integration of the two soil databases.
- On the basis of the newly established pan-European land cover (Figure 3.13) and the relationship between Annex I habitats and CORINE land cover it was already possible to map the Annex I habitats at the first level using the nine formations (Figure 3.14).
- The first results (Figure 5.1) for Annex I habitat 9150 "Medio-European limestone beech forests of the Cephalanthero-Fagion" are positive and give a well defined overview ( 250 m spatial resolution), although no specific information was available of the spatial distribution of Cephalanthero species.
- Uncertainties in the results are foreseen in the cases of poor descriptions in Annex I habitat types, uncertainties in the core data, and absence of spatial distribution maps of specific indicator species.

Outlook:

- In 200425 major habitat types will be mapped for pan-Europe using the proposed methodology. The selection of these 25 habitat types is based on their priority and their area. Concerning the relative area, the forest and grassland habitats cover more than $75 \%$ of all habitat types.
- Methodology can be improved when also information is used on e.g. bird and butterfly distribution maps next to the current use of spatial distribution maps of specific plant indicator species.
- Abiotic stand factors should be described in such a way that the information is scientifically sound for ecologists but can be derived at the same time from soil data. From the descriptions in the Annex I it is not clear what is exactly meant with e.g. acid, basic, humid, dry, etc.


## References

Bohn, U., Neuhäusl, R., unter Mitarbeit von / with contributions by Gollub, G., Hettwer, C., Neuhäuslová, Z., Raus, Th., Schlüter, H. \& Weber, H., 2003: Karte der natürlichen Vegetation Europas / Map of the Natural Vegetation of Europe. Maßstab / Scale 1:2500 000. Münster (Landwirtschaftsverlag).
Bossard, M., J. Feranec, and J. Otahel, 2000. CORINE land cover technical quide Addenum 2000. EEA Technical report No. 40. EEA, Copenhagen, 2000. 105p.
Bouwma, I.M., R.H.G. Jongman and R.O. Butovsky, 2002. Indicative map of the Pan-European Ecological Network for Central and Eastern Europe: technical background document. European Centre for Nature Conservation (ECNC), Tilburg, 166 pp and 1 A0 map.
Bunce, R.G.H., Barr, C.J., Clarke, R.T., Howard, D.C., \& Lane, A.M.J, 1996a. Land classification for strategic ecological survey. Journal of Environmental Management, 47, 37-60.
Bunce, R.G.H., Barr, C.J., Clarke, R.T., Howard, D.C., \& Lane, A.M.J., 1996b. ITE Merlewood Land Classification of Great Britain. Journal of Biogeography, 23, 625634.

Bunce, R.G.H., Barr, C.J., Gillespie, M.K., \& Howard, D.C., 1996c. The ITE Land Classification: providing an environmental stratification of Great Britain. Environmental Monitoring and Assessment, 39, 39-46.
CEC, 1985. Soil map of the European Communities 1:100.0000 (Tavernier cs). Commission of the European Communities, Luxembourg. 124 pp.
CEC, 1994. CORINE land cover. Technical guide. Office for Official Publications of European Communities, Luxembourg.
CEC, 1991. CORINE biotopes. The design, compilation and use of inventory of sites of major importance for nature conservation in the European Community, 1991. EUR 13231 EN. Brussels, Luxembourg.
Convention on Biological Diversity, 1996. Convention on Biological Diversity : COP-3. Bethesda, MD, Genetic Resources Communications Systems Inc 1996.
Convention of Bern, 1979. Convention on the conservation of European wildlife and natural habitats, Bern, 19-IX-1979.
Council of Europe, UNEP \& European Centre for Nature Conservation , 1996. The Pan-European Biological and Landscape Diversity Strategy, a vision for Europe's natural heritage. Strasbourg/ Tilburg.
DMEER, 1997. Digital Map of European Ecological Regions. Final draft for comments (version September 1997). Produced by the Higher Institute of Statistics and Information Management IISEGI).
Devilliers, P. and Devilliers - Terschuren, J., 1996. A classification of Palaearctic habitats. Strasbourg: Council of Europe Publishing. 194 p.
Di Gregorio, A. and Jansen, L.J.M., 2000. Land Cover Classification System (LCCS) : classification concepts and user manual. FAO, Rome.
European Commission, 1999. Interpretation manual of European Habitats. Document Eur15/2, October 1999.

EEA, 2002. The Biogeographical Regions Map of Europe. European Environment Agency, Copenhagen.
ERDAS, 1997. ERDAS Field Guide, 4th edn. ERDAS Incorporated, Atlanta, USA Georgia. 628 pp .
EU Council Directive, 1992. 92/43/EEC. Natura2000 Network on the conservation of natural babitats and of wild fauna. COUNCIL DIRECTIVE 92/43/EEC (1) of 21 May 1992. The Council of The European Communities.
FAO, 1988, Unesco soil map of the world. World soil Resources Report No 60, Rome.
FAO, 1991. The Digitized Soil Map of the World (Release 1.0), Rep. No. 67/1. Food and Agriculture Organization of the United Nations, Rome.
Fritz, S., Etienne Bartholome, Alan Belward, Andrew Hartley, Hans-Jürgen Stibig, Hugh Eva, Philippe Mayaux, Sergey Bartalev, Rasim Latifovic, Shefali Aggarwal, Susanne Kolmert, Wu Bingfang, Michael Ledwith, Jean-Francois Pekel, Chandra Giri, Sander Mücher, Erik de Badts, Ryutaro Tateishi and JeanLouis Champeaux, 2003. Harmonisation, mosaicing and production of the Global Land Cover 2000 database. EUR 20489. European Commission, Directorate-General, Joint Research Centre (JRC), Ispra. 43 pp.
Jalas, J. \& Suominen, J. (eds.), 1976. Atlas Flora Europaea, distribution of Vascular Plants in Europe. Vol. 3. The Committee for Mapping the Flora of Europe \& Societas Biologica Fennica Vanamo, Helsinki.
Loveland, T.R. and Belward, A.S., 1997. The International Geosphere Biosphere Programme Data and Information System global land cover data set (DISCover). In Acta Astronautica, Vol 41, Issues 4-10, pp 681-689.
Metzger, M.J. R.G.H. Bunce, R.G.H. Jongman, C.A. Mücher and J.W. Watkins. A statistical stratification of the environment of Europe, 2004. Submitted to Journal of Global Ecology and Biogeography.
Ministerie van LNV, 2000. Nota natuur, bos en landschap in de $21^{\text {e }}$ eeuw "Natuur voor mensen, mensen voor natuur". Den Haag.
Moss, D., C. Davies and D. Roy, 1995. CORINE Biotopes Sites - Database Status and Perspectives 1995. Topic report 27/96. European Topic Centre on Nature Conservation.
Moss, D. and C. Davies, 2002a. Cross-references between the EUNIS habitat classification and the nomenclature of the CORINE land cover. CEH project No. CC00389.
Moss, D. and C. Davies, 2002b. Cross references between EUNIS habitat classification and the Habitats Directive.
Petit, S. R. Firbank, B. Wyatt and D. Howard, 2001. MIRABEL: Models for integrated review and assessment of biodiversity in European landscapes. Ambio, 30, 81-88.
Mücher, C.A., J.L. Champeaux, K.T.Steinnocher, S.Griguolo, K.Wester, C.Heunks, W. Winiwater, F.P.Kressler, J.P. Goutorbe, B. ten Brink, V.F. van Katwijk, O.Furberg, V.Perdigao, and G.J.A.Nieuwenhuis, 2001. Development of a consistent methodology to derive land cover information on a European scale from Remote Sensing for environmental monitoring; The PELCOM report. Alterra Report 178, CGI report 6, 178 pp., Wageningen, ALTERRA, Green World Research.

Mücher, C.A., R.G.H. Bunce, R.H.G. Jongman, J.A. Klijn, A. Koomen, M.J. Metzger and D.M. Wascher, 2003. Identification and Characterisation of Environments and Landscapes in Europe. Alterra rapport 832, Alterra, Wageningen.
Opstal, A. van, 1999. The Architecture of the Pan-European Ecological Network:
Suggestions for Concept and Criteria. Discussion report on behalf of the committee of experts of the Pan European Ecological Network. Rapport IKC Natuurbeheer Nr.37, Wageningen, the Netherlands.
Rodwell, J.S., J.H.J. Schamineé, L.Mucina, S. Pignati, J. Dring and D.Moss, 2002. The Diversity of European Vegetation. An overview of phytosociological alliances and their relationships to EUNIS habitats. EC-LNV Report nr. 2002/054. Wageningen, the Netherlands, 168 p .
Runhaar, J. en van 't Zelfde, M., 1996. Vergelijking ecotooptypen - natuurdoeltypen. CML rapport ; 128.Publisher: Leiden : RU Leiden.
Thunnissen, H.A.M. and H.J. Middelaar, van, 1995. The CORINE land cover databasde of the Netherlands. Final report of the CORINE land cover project in the Netherlands. Report 78. SC-DLO (Alterra) Wageningen, the Netherlands.

## Appendix 1 Level I and II of Annex I Habitats Directive

| Annex I HABITATS DIRECTIVE |
| :--- |
| Level II |
| 1. COASTAL AND HALOPHYTIC HABITATS |
| 11. Open sea and tidal areas |
| 12. Sea cliffs and shingle or stony beaches |
| 13. Atlantic and continental salt marshes and salt meadows |
| 14. Mediterranean and thermo-Atlantic salt marshes and salt meadows |
| 15. Salt and gypsum inland steppes |
| 16. Boreal Baltic archipelago, coastal and landupheaval areas |
| 2. COASTAL SAND DUNES AND INLAND DUNES |
| 21. Sea dunes of the Atlantic, North Sea and Baltic coasts |
| 22. Sea dunes of the Mediterranean coast |
| 23. Inland dunes, old and decalcified |
| 3. FRESHWATER HABITATS |
| 31. Standing water |
| 32. Running water |
| 4. TEMPERATE HEATH AND SCRUB |
| 5. SCLEROPHYLLOUS SCRUB (MATORRAL) |
| 51. Sub-Mediterranean and temperate scrub |
| 52. Mediterranean arborescent matorral |
| 53. Thermo-Mediterranean and pre-steppe brush |
| 54. Phrygana |

1. COASTAL AND HALOPHYTIC HABITATS
2. Open sea and tidal areas
. Sea cliffs and shingle or stony beaches
3. Mediterranean and thermo-Atlantic salt marshes and salt meadows
4. Salt and gypsum inland steppes
5. Boreal Baltic archipelago, coastal and landupheaval areas
6. COASTAL SAND DUNES AND INLAND DUNES
7. Sea dunes of the Atlantic, North Sea and Baltic coasts
8. Sea dunes of the Mediterranean coast
9. Inland dunes, old and decalcified
10. Standing water
11. Running water
12. TEMPERATE HEATH AND SCRUB
13. SCLEROPHYLLOUS SCRUB (MATORRAL)

Sub-Mediterranean and temperate
53. Thermo-Mediterranean and pre-steppe brush
54. Phrygana
61. Natural grasslands
62. Semi-natural dry grasslands and scrubland facies
3. Sclerophillous grazed forests (dehesas)
65. Mesophile grasslands
7. RAISED BOGS AND MIRES AND FENS
71. Sphagnum acid bogs
72. Calcareous fens
73. Boreal mires
81. Scree
82. Rocky slopes with chasmophytic vegetation
83. Other rocky habitats
90. Forests of Boreal Europe
.
93. Mediterranean sclerophyllous forests
94. Temperate mountainous coniferous forests
95. Mediterranean and Macaronesian mountainous coniferous forests

## Appendix 2 European Vegetation Survey Formations

The formations on the first level are (Rodwell et al, 2002):
A Coastal mud-flats and brakish waters
B Salt-marsh, sand-dune and sea-cliff vegetation
C Rock crevice, scree and boulder-field vegetation
D Freshwater aquatic vegetation
E Springs, shoreline and swamp vegetation
F Bogs and fens
G Temperate grasslands, heath and fringe vegetation
H Dry grasslands
I Oromediterranean grasslands and shrubs
J Montane tall-herb, grassland, fell-field and snowbed vegetation
K Mediterranean garrigue, maquis, matorral, tomillar and phrygana
L Temperate broadleaved forests and scrub
M Montane heaths and coniferous forests
$\mathrm{N} \quad$ Weed communities
O Zonal and endemic vegetation of Macaronesia

## Appendix 3 The CORINE Biotope classification for the first and second level

| 1. Coastal and halophytic communities | 11 12 13 14 15 16 16 17 18 19 19 | Open sea <br> Sea inlets <br> Tidal rivers and estuaries <br> Mud flats and sand flats <br> Salt marshes, salt pastures, salt steppes <br> Coastal sand dunes and sand beaches <br> Shingle or stony beaches <br> Sea cliffs <br> Islets and rock stacks <br> Machair (1) |
| :---: | :---: | :---: |
| 2. Non-marine waters | 21 22 23 24 | Lagoons <br> Standing waters (fresh) <br> Standing water (brakish) <br> Running water |
| 3. Srub and grasslands | 31 32 33 34 35 36 37 38 | Heath and scrub <br> Sclerophyllous scrub, garrigue and maquis <br> Phrygana <br> Dry calcareous grasslands and pseudosteps <br> Dry siliceous grasslands <br> Alpine and boreal grasslands <br> Humid grasslands and tall herb communities Mesophile grasslands |
| 4. Woodland | 41 42 43 44 45 | Broadleaved decidous forests <br> Native coniferous forests <br> Mixed woodland <br> Alluvial and very wet forest <br> Broadleaved evergreen woodland |
| 5. Bogs and marshes | 51 52 53 54 | Raised bogs <br> Blanket bogs <br> Water-fringe vegetation <br> Other bogs and mires |
| 6. Rocky habitats | 61 62 63 64 65 66 | Scree <br> Exposed bedrock, inland cliffs <br> Permanent ice and snow <br> Inland sand dunes <br> Caves (1) <br> Volcanic features |
| 8. Agricultural landscapes | 81 82 83 84 85 86 87 88 89 | Heavily fertlized, reseeded and improved grasslands Crops <br> Orchards, groves and plantations of poplars or exotic trees <br> Tree lines, hedges, small woods, bocages and parkland Urban parks and large gardens <br> Urban and industrial (2) <br> Fallow, ruderal and disturbed land (1) <br> Mine galleries and other artificial underground habitats <br> (1) <br> Industrail lagoons and reservoirs, canals |

## Appendix 4 Nomenclature of the CORINE land cover database

| Level 1 | level 2 | Level 3 |
| :---: | :---: | :---: |
| 1. Artificial surfaces | 1.1 urban fabric | 1.1.1 Continuous urban fabric <br> 1.1.2 Discontinuous urban fabric |
|  | 1.2 $\begin{array}{l}\text { industrial, commercial and } \\ \text { transport units }\end{array}$ | 1.2.1 Industrial and commercial units <br> 1.2.2 Road and rail networks and associated <br> 1.2.3 Port areas <br> 1.2.4 Airports |
|  | 1.3 $\begin{array}{l}\text { mine, dump and } \\ \text { construction sites }\end{array}$ | 1.3.1 Mineral extraction sites <br> 1.3.2 Dump sites <br> 1.3.3 Construction sites |
|  | 1.4 artificial non-agricultural vegetated areas | $\begin{array}{ll}\text { 1.4.1 } & \text { Green urban areas } \\ \text { 1.4.2 } & \text { Port and leisure facilities }\end{array}$ |
| 2. Agricultural areas | 2.1 arable land | 2.1.1 Non-irrigated arable land <br> 2.1.2 Permanently irrigated land <br> 2.1.3 Rice fields |
|  | 2.2 permanent crops | 2.2.1 Vineyards <br> 2.2.2 Fruit trees and berry plantation <br> 2.2.3 Olive groves |
|  | 2.3 pastures | 2.3.1 Pastures |
|  | 2.4 heterogeneous agricultural | 2.4.1 Annual cops associated with permanent <br> 2.4.2 Complex cultivation patterns <br> 2.4.3 Land principally occupied by agriculture |
|  |  | 2.4.4 $\quad$ Agro-forestry areas |
| 3. Forests and semi-natural Areas | 3.1 forest | 3.1.1 Broad-leaved forest <br> 3.1.2 Coniferous forest <br> 3.1.3 Mixed forest |
|  | 3.2 shrub and/or herbaceous vegetation associations | 3.2.1 Natural grasslands <br> 3.2.2 Moors and heath lands <br> 3.2.3 Sclerophyllous vegetation <br> 3.2.4 Transitional woodland-scrub |
|  | 3.3 open spaces with little or no | 3.3.1 Beaches, sand, dunes <br> 3.3.2 Bare rocks <br> 3.3.3 Sparsely vegetated areas <br> 3.3.4 Burnt areas <br> 3.3.5 Glaciers and perpetual snow |
| 4. Wetlands | 4.1 inland wetlands | 4.1.1 Inland marshes <br> 4.1.2 Peat bogs |
|  | 4.2 coastal wetlands | 4.2.1 Salt marshes <br> 4.2.2 Salines <br> 4.2.3 Intertidal flats |
| 5. Water bodies | 5.1 inland waters | 5.1.1 Water courses <br> 5.1.2 Water bodies |
|  | 5.2 marine waters | 5.2.1 Coastal lagoons <br> 5.2.2 Estuaries <br> 5.2.3 Sea and ocean |

## Appendix 5 Legend Potential Natural Vegetation (PNV) Map

| Zonal and extra zonal vegetation |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: |
| A | Polar deserts and subnival-nival vegetation of high mountains |  |  |  |  |
| B | Arctic tundras and alpine vegetation |  |  |  |  |
| C | Subarctic, boreal and nemoral-montane open woodlands, as well as <br> subalpine and oro-Mediterranean vegetation |  |  |  |  |
| D | Mesophytic and hygromesophytic coniferous and mixed broad- <br> leaved-coniferous forests |  |  |  |  |
| E | Western boreal spruce forests, partly with pine, birch, alder <br> Atlantic dwarf shrub heaths |  |  |  |  |
| F | Mesophytic deciduous broad-leaved and mixed coniferous-broad-leaved |  |  |  |  |
| G forests |  |  |  |  |  |

## Appendix 6 Legend Digital Map of Ecological Regions (DMEER)

| ECOREGION | Count | Ha |
| :---: | :---: | :---: |
| Aegean \& West Turkey sclerophyllous and mixed forest | 144 | 10616261.9 |
| Alps conifer and mixed forests | 1 | 14986285.9 |
| Anatolian conifer and deciduous mixed forests | 7 | 8639020.58 |
| Appenine deciduous montane forests | 39 | 1470344.97 |
| Arabian desert and East Sahero-Arabian xeric shrub | 2 | 5415047.42 |
| Arctic desert | 2 | 64904.7888 |
| Azerbaijan shrub desert and steppe | 1 | 6410144.97 |
| Balkan mixed forests | 1 | 25541622.2 |
| Baltic mixed forests | 42 | 11627276.3 |
| Caledon coniferous forests | 1 | 2211010.56 |
| Cantabrian mixed forests | 6 | 7843772.57 |
| Carpathian montane coniferous forests | 2 | 12533290.8 |
| Caspian Hyrcanian mixed forests | 10 | 597764.391 |
| Caspian Lowland desert | 8 | 16870680.9 |
| Caucasus mixed forests | 1 | 17053681.3 |
| Celtic broadleaf forests | 24 | 21000496.1 |
| Central Anatolian deciduous forests | 1 | 10148752.6 |
| Central Anatolian steppe | 5 | 2493434.77 |
| Central European mixed forests | 6 | 73040782.9 |
| Corsican montane broadleaf and mixed forests | 1 | 363354.906 |
| Crete Mediterranean forests | 4 | 819069.031 |
| Crimean submediterranean forest complex | 2 | 3021515.67 |
| Cyprus Mediterranean forests | 1 | 927075.123 |
| Dinaric Mountains mixed forests | 6 | 5800621.73 |
| East European forest steppe | 15 | 72860226.7 |
| Eastern Anatolian deciduous forests | 3 | 2588047.76 |
| Eastern Anatolian montane steppe | 1 | 8559254.73 |
| Eastern Mediterranean coniferous/sclerophyllous/broadleaf forests | 7 | 6597022.2 |
| Elburz Range forest steppe | 2 | 1223462.58 |
| English Lowlands beech forests | 2 | 4576833.23 |
| Euxine-Colchic deciduous forest | 4 | 7451080.93 |
| Faroe Islands boreal grasslands | 10 | 145652.871 |
| Iberian conifer forests | 13 | 3246338.84 |
| Iberian sclerophyllous and semi-deciduous forests | 2 | 30063804.9 |
| Iceland boreal birch forest and alpine tundra | 25 | 9205460.8 |
| Illyrian deciduous forests | 1 | 4083600.18 |
| Italian sclerophyllous and semi-deciduous forests | 6 | 10960195.2 |
| Kazakh semi-desert | 9 | 13049.7337 |
| Kazakh steppe | 9 | 24977.3701 |
| Kola Peninsula tundra | 8 | 5834746.33 |
| Mesopotamian shrub desert | 2 | 444867.705 |
| Middle East steppe | 6 | 568781.996 |
| North Atlantic moist mixed forests | 65 | 3883163.07 |
| Northeastern Spain \& Southern France Mediterranean | 9 | 9081698.01 |
| Northen Temperate Atlantic | 6 | 11084817 |


| Northern Anatolian conifer and deciduous forests | 2 | 9872469.22 |
| :--- | ---: | ---: |
| Northwest Iberian montane forests | 6 | 5715064.43 |
| Northwest Russian/Novaya Zemlya tundra | 74 | 28080118.9 |
| Pannonian mixed forests | 1 | 30778579.4 |
| Pindus Mountains mixed forests | 6 | 3971926.46 |
| Po Basin mixed forests | 2 | 4245479.34 |
| Pontic steppe | 21 | 92568054.8 |
| Pyrenees conifer and mixed forests | 1 | 2593041.82 |
| Red Sea Nubo-Sindian tropical desert and semi-dese | 1 | 535403.315 |
| Red Sea Nubo-Sindian tropical desert and semi-desert | 1 | 226115.482 |
| Rodope montane mixed forests | 3 | 2823420.8 |
| Sarmatic mixed forests | 148 | 84626534 |
| Scandinavian and Russian taiga | 236 | 221491732 |
| Scandinavian coastal coniferous forests | 194 | 1938654.17 |
| Scandinavian montane birch forest and grasslands | 51 | 24422712.6 |
| South Appenine mixed montane forests | 28 | 824180.746 |
| Southeastern Iberian shrubs and woodlands | 4 | 327648.884 |
| Southern Anatolian montane conifer and deciduous forests | 9 | 7352221.28 |
| Southern Temperate Atlantic | 45 | 29317086 |
| Southwest Iberian Mediterranean sclerophyllous and mixed | 1 | 7169874.33 |
| forests |  |  |
| Tyrrhenian-Adriatic sclerophyllous and mixed forests | 69 | 8398184.89 |
| Urals montane tundra and taiga | 7 | 14937790.4 |
| Western European broadleaf forests | 1 | 49381592.3 |
| Yamalagydanskaja tundra | 2 | 9275.64393 |



## Appendix 7 FAO-UNESCO Soil Units

| A : ACRISOLS | J : FLUVISOLS | S : SOLONETZ |
| :---: | :---: | :---: |
| Ao : Orthic Acrisols | Je : Eutric Fluvisols | So : Orthic Solonetz |
| Af: Ferric Acrisols | Jc: Calcaric Fluvisols | Sm : Mollic Solonetz |
| Ah: Humic Acrisols | Jd : Dystric Fluvisols | Sg : Gleyic Solonetz |
| Ap : Plinthic Acrisols | Jt : Thionic Fluvisols |  |
| Ag : Gleyic Acrisols |  | T : ANDOSOLS |
|  | K : KASTANOZEMS | To : Ochric Andosols |
| B : CAMBISOLS | Kh : Haplic Kastanozems | Tm : Mollic Andosols |
| Be : Eutric Cambisols | Kk: Calcic Kastanozems | Th : Humic Andosols |
| Bd : Dystric Cambisols | Kl : Luvic Kastanozems | Tv : Vitric Andosols |
| Bh : Humic Cambisols |  |  |
| Bg : Gleyic Cambisols | L : LUVISOLS | U : RANKERS |
| Bx : Gelic Cambisols | Lo: Orthic Luvisols |  |
| Bk: Calcic Cambisols | Lc: Chromic Luvisols | V : VERTISOLS |
| Bc : Chromic Cambisols | Lk: Calcic Luvisols | Vp : Pellic Vertisols |
| Bv : Vertic Cambisols | Lv: Vertic Luvisols | Vc : Chromic Vertisols |
| Bf : Ferralic Cambisols | Lf: Ferric Luvisols |  |
|  | La : Albic Luvisols | W : PLANOSOLS |
| C : CHERNOZEMS | Lp : Plinthic Luvisols | We : Eutric Planosols |
| Ch: Haplic Chernozems | Lg: Gleyic Luvisols | Wd : Dystric Planosols |
| Ck: Calcic Chernozems |  | Wm : Mollic Planosols |
| Cl : Luvic Chernozems | M : GREYZEMS | Wh : Humic Planosols |
| Cg : Glossic Chernozems | Mo : Orthic Greyzems | Ws : Solodic Planosols |
|  | Mg : Gleyc Greyzems | Wx : Gelic Planosols |
| D : PODZOLUVISOLS |  |  |
| De : Eutric Podzoluvisols | N : NITOSOLS | X : XEROSOLS |
| Dd : Dystric Podzoluvisols | Ne: Eutric Nitosols | Xh : Haplic Xerosols |
| Dg : Gleyic Podzoluvisols | Nd : Dystric Nitosols | Xk: Calcic Xerosols |
|  | Nh: Humic Nitosols | Xy : Gypsic Xerosols |
| E : RENDZINAS |  | Xl : Luvic Xerosols |
|  | O : HISTOSOLS |  |
| F : FERRALSOLS | Oe : Eutric Histosols | Y : YERMOSOLS |
| Fo: Orthic Ferralsols | Od : Dystric Histosols | Yh: Haplic Yermosols |
| Fx : Xanthic Ferralsols | Ox : Gelic Histosols | Yk: Calcic Yermosols |
| Fr : Rhodic Ferralsols |  | Yy: Gypsic Yermosols |
| Fh : Humic Ferralsols | P : PODZOLS | Yl : Luvic Yermosols |
| Fa : Acric Ferralsols | Po: Orthic Podzols | Yt : Takyric Yermosols |
| Fp : Plinthic Ferralsols | Pl : Leptic Podzols |  |
|  | Pf: Ferric Podzols | Z : SOLONCHAKS |
| G : GLEYSOLS | Ph : Humic Podzols | Zo : Orthic Solonchaks |
| Ge : Eutric Gleysols | Pp : Placic Podzols | Zm : Mollic Solonchaks |
| Gc : Calcaric Gleysols | Pg : Gleyic Podzols | Zt : Takyric Solonchaks |
| Gd : Dystric Gleysols |  | Zg : Gleyic Solonchaks |
| Gm : Mollic Gleysols | Q : ARENOSOLS |  |
| Gh : Humic Gleysols | Qc : Cambic Arenosols |  |
| Gp : Plinthic Gleysols | Q1: Luvic Arenosols | I : LITHOSOLS |
| Gx : Gelic Gleysols | Qf: Ferralic Arenosols <br> Qa : Albic Arenosols |  |
| H : PHAEOZEMS |  |  |
| Hh: Haplic Phaeozems | R : REGOSOLS |  |
| Hc: Calcaric Phaeozems | Re: Eutric Gleysols | Rx: Gelic Regosols |
| Hl : Luvic Phaeozems | Rc: Calcaric Regosols |  |
| Hg : Gleyic Phaeozems | Rd: Dystric Regosols |  |

## Appendix 8 Abiotic soil conditions

Wet soils

| Soil Unit | Soil Name | Wet |
| :--- | :--- | ---: |
| Ap | Plinthic Acrisols | 1 |
| Ag | Gleyic Acrisols | 1 |
| Be | Eutric Cambisols | 1 |
| Bh | Humic Cambisols | 1 |
| Bg | Gleyic Cambisols | 1 |
| Bv | Vertic Cambisols | 1 |
| Ge | Eutric Gleysols | 1 |
| Gc | Calcaric Gleysols | 1 |
| Gd | Dystric Gleysols | 1 |
| Gm | Mollic Gleysols | 1 |
| Gh | Humic Gleysols | 1 |
| Gp | Plinthic Gleysols | 1 |
| Gx | Gelic Gleysols | 1 |
| Je | Eutric Fluvisols | 1 |
| Jc | Calcaric Fluvisols | 1 |
| Jd | Dystric Fluvisols | 1 |
| Jt | Thionic Fluvisols | 1 |
| Lv | Vertic Luvisols | 1 |
| Lg | Gleyic Luvisols | 1 |
| Oe | Eutric Histosols | 1 |


| Soil Unit | Soil Name | Wet |
| :--- | :--- | ---: |
| Od | Dystric Histosols | 1 |
| Ph | Humic Podzols | 1 |
| Pg | Gleyic Podzols | 1 |
| Rd | Dystric Regosols | 1 |
| So | Orthic Solonetz | 1 |
| Sm | Mollic Solonetz | 1 |
| Sg | Gleyic Solonetz | 1 |
| Th | Humic Andosols | 1 |
| U 4 | Rankers | 1 |
| Vp | Pellic Vertisols | 1 |
| We | Eutric Planosols | 1 |
| Wd | Dystric Planosols | 1 |
| Wm | Mollic Planosols | 1 |
| Wh | Humic Planosols | 1 |
| Ws | Solodic Planosols | 1 |
| Zo | Orthic Solonchaks | 1 |
| Zm | Mollic Solonchaks | 1 |
| Zt | Takyric Solonchaks | 1 |
| Zg | Gleyic Solonchaks | 1 |

Calcareous soils

| Soil_Unit | Soil_Name | Calc. |  |
| :--- | :--- | :--- | :--- |
| Be | Eutric Cambisols |  | 1 |
| Bk | Calcic Cambisols |  | 1 |
| Ck | Calcic Chernozems |  | 1 |
| E2 | Rendzinas | 1 |  |
| Gc | Calcaric Gleysols | 1 |  |
| I- | Lithosols | 1 |  |
| Kk | Calcic Kastanozems | 1 |  |
| Lk | Calcic Luvisols | 1 |  |
| Xk | Calcic Xerosols | 1 |  |

Organic soils

| Soil_Unit | Soil_Name | Peat |
| :--- | :--- | ---: |
| Oe | Eutric Histosols | 1 |
| Od | Dystric Histosols | 1 |
| Ox | Gelic Histosols |  |

Soils with salt

| Soil_Unit | Soil_Name | Sal |
| :--- | :--- | :--- |
| So | Orthic Solonetz | 1 |
| Sm | Mollic Solonetz | 1 |
| Sg | Gleyic Solonetz | 1 |
| Zo | Orthic Solonchaks | 1 |
| Zm | Mollic Solonchaks | 1 |
| Zt | Takyric Solonchaks | 1 |
| Zg | Gleyic Solonchaks | 1 |

## Appendix 9 Recoding of PELCOM and GLC2000 into the CORINE land cover nomenclature

Table A9.1 Recoding of the PELCOM land cover database into the CORINE nomenclature.

| PELCOM <br> code classname | Corine <br> code | classname | Class <br> nr |  |
| :--- | :--- | :--- | :--- | :--- |
| 11 | Broadleaf forest | 3.1 .1 | broadleaf forests | 23 |
| 12 | Coniferous forest | 3.1 .2 | coniferous forest | 24 |
| 13 | Mixed Forest | 3.1 .3 | mixed forest | 25 |
| 20 | Grasslands | 3.2 .1 | natural grasslands | 26 |
| 31 | Rainfed-arable | 2.1 .1 | non-irrigated arable land | 12 |
| 32 | Irrigated land | 2.1 .2 | permanently irrigated land | 13 |
| 40 | Permanent crops | 2.2 .1 | vineyards | 15 |
| 50 | Shrubland | 3.2 .3 | sclerophyllous vegetation | 28 |
| 60 | Barren land | 3.3 .3 | sparsely vegetated areas | 32 |
| 70 | Permanent ice and snow | 3.3 .5 | glaciers and perpetual snow | 34 |
| 80 | Wetlands | 4.1 .1 | inland marshes | 35 |
| 91 | Inland waters | 5.1 .2 | water bodies | 41 |
| 92 | Sea | 5.2 .3 | sea and ocean | 44 |
| 100 | Urban areas | 1.1 .1 | continuous urban fabric | 1 |

Table A9.2 Recoding of the GLC2000 land cover database into the CORINE nomenclature.

| GLC <br> code | GLC2000 | Corine <br> code | Corine <br> Classname | Clas <br> nr |
| :--- | :--- | :--- | :--- | :--- |
| 1 | Tree Cover, broadleaved, evergreen | 311 | Broadleaf forests | 23 |
| 2 | Tree Cover, broadleaved, deciduous, closed |  |  |  |
| 3 | Tree Cover, broadleaved, deciduous, open | 311 | Broadleaf forests | 23 |
| 4 | Tree Cover, needle-leaved, evergreen | 311 | Broadleaf forests <br> 5 | Tree Cover, needle-leaved, deciduous |

## Appendix 10 Overview of published volumes of the Atlas Florae Europaeae (AFE)

## (2039 pages and 3270 maps)

## Vol. 1. Pteridophyta (Psilotaceae to Azollaceae).

$121 \mathrm{pp}, 3+150$ maps + folded base map. 1972. Families: Psilotaceae, Lycopodiaceae, Selaginellaceae, Isoetaceae, Equisetaceae, Ophioglossaceae, Osmundaceae, Sinopteridaceae, Adiantaceae, Pteridaceae, Cryptogrammaceae, Hemionitidaceae (Gymnogrammaceae), Dicksoniaceae, Hypolepidaceae, Davalliaceae, Hymenophyllaceae, Thelypteridaceae, Aspleniaceae, Athyriaceae, Aspidiaceae, Elaphoglossaceae, Blechnaceae, Polypodiaceae, Marsileaceae, Salviniaceae and Azollaceae.

## Vol.2. Gymnospermae (Pinaceae to Ephedraceae).

40 pp, 50 maps. 1973. Families: Pinaceae, Cupressaceae, Taxaceae and Ephedraceae.

## Vol.3. Salicaceae to Balanophoraceae

128 pp, $1+183$ maps. 1976. Families: Salicaceae, Myricaceae, Juglandaceae, Betulaceae, Corylaceae, Fagaceae, Ulmaceae, Moraceae, Cannabaceae, Urticaceae, Santalaceae, Loranthaceae, Aristolochiaceae, Rafflesiaceae (Cytinaceae) and Balanophoraceae.

Vol.4. Polygonaceae.
71 pp, 95 maps. 1979.
Vol.5. Chenopodiaceae to Basellaceae.
119 pp, 190 maps. 1980. Families: Chenopodiaceae, Amaranthaceae, Nyctaginaceae, Phytolaccaceae, Aizoaceae, Molluginaceae, Tetragoniaceae, Portulacaceae and Basellaceae.

Vol.6. Caryophyllaceae (Alsinoideae and Paronychioideae).
176 pp, 343 maps. 1983.
Vol.7. Caryophyllaceae (Silenoideae).
229 pp, 497 maps. 1986.
Vol.8. Nymphaeaceae to Ranunculaceae.
261 pp, 445 maps. 1989. Families: Nymphaeaceae, Nelumbonaceae, Ceratophyllaceae and Ranunculaceae.

Vol.9. Paeoniaceae to Capparaceae.
110 pp, 156 maps. 1991. Families: Paeoniaceae, Berberidaceae, Magnoliaceae, Lauraceae, Papaveraceae and Capparaceae.

Vol.10. Cruciferae (Sisymbrium to Aubrieta). 224 pp, 324 maps. 1994.
Vol.11. Cruciferae (Ricotia to Raphanus). 310 pp, 493 maps. 1996.
Vol. 12. Resedeaceae to Platanaceae.
250 pp, 343 maps. 1999. Families: Resedaceae, Sarraceniaceae, Droseraceae, Crassulaceae, Saxifragaceae, Parnassiaceae, Hydrangeaceae, Escalloniaceae, Grossulariaceae, Pittosporaceae and Platanaceae.

## Appendix 11 List of indicator species for each Annex I habitat type

Annex I Habitat types
1110 Sandbanks which are slightly covered by sea water all the time
1120 * Posidonia beds (Posidonion oceanicae)
1130 Estuaries

## Indicator species

AFE
Zostera marina, Potamogeton pectinatus
Posidonia oceanica
Ruppia maritima, Spartina maritima
1140 Mudflats and sandflats not covered by seawater at low tide
1150 *Coastal lagoons Zostera spp., Ruppia maritima
1160 Large shallow inlets and bays
1170 Reefs
1180 Submarine structures made by leaking gases
1210 Annual vegetation of drift lines Cakile maritima, salsola kali, Glaucium flavum
Cakile maritima, salsola kali, Glaucium flavum, Matthiola sinuata
Crambe maritima, Crithmum maritimum
1220 Perennial vegetation of stony banks
1230 Vegetated sea cliffs of the Atlantic and Baltic Coasts
Brassica oleracea, Cochlearia officinalis, Asplenium
marinum, Inula crithmoides
1240 Vegetated sea cliffs of the Mediterranean coasts Crithmum maritimum, Asplenium marinum, Daucus carota with endemic Limonium spp.
1250 Vegetated sea cliffs with endemic flora of the Macaronesian coasts
1310 Salicornia and other annuals colonizing mud and sand
ssp azorica
Crithmum maritimum, Limonium spp.
1320 Spartina swards (Spartinion maritimae)
1330 Atlantic salt meadows (Glauco-Puccinellietalia maritimae)
1340 * Inland salt meadows
1410 Mediterranean salt meadows (Juncetalia maritimi)
1420 Mediterranean and thermo-Atlantic halophilous scrubs (Sarcocornetea fruticosi)
1430 Halo-nitrophilous scrubs (Pegano-Salsoletea)
1510 * Mediterranean salt steppes (Limonietalia)
1520 * Iberian gypsum vegetation (Gypsophiletalia)
Salicornia spp, Suaeda maritima, Sagina maritima, 1
Sagina nodosa, Cochlearia danica
Spartina maritima
Spergularia marina, Potentilla anserina
Aster tripolium, Atriplex hastata, Puccinellia distans, 1
Salicornia spp. Spergularia salina
Juncus maritimus, Aster tripolium
Sarcocornetea fruticosi, Inula critmoides, Sarcocornia perennis
Peganum harmala, Atriplex halimus, Atriplex glauca 1
Limonium spp., Lygeum spartum, Salicornia patula
Centaurea hyssopifolia, Gypsophila hispanica,
Gypsophila hispanica, Gypsophila struthium, Reseda stricta, Teucrium?
1530 * Pannonic salt steppes and salt marshes Artemisia santonicum, Suaeda corniculata, Suaeda pannonica, Puccinellia peisonis
Calluna vulgaris, Empetrum nigrum, Honkenya
peploides, Juniperus communis
Agrostis stolonifera, Allium schoenoprasum, Cochleria 1
danica, Juniperus communis, Silene viscosa
Blysmus rufus, Juncus gerardii, Ophioglossum
vulgatum, Plantago maritima, Spergularia salina Ammophila arenaria, Atriplex littoralis, Cakile maritima
1640 Boreal Baltic sandy beaches with perennial
1650 Boreal Baltic narrow inlets Phragmites australis, Sagittaria sagittifolia
2110 Embryonic shifting dunes Elymus farctus, Pancratium maritimum
2120 Shifting dunes along the shoreline with
Ammophila arenaria, Euphorbia paralias
Ammophila arenaria ('white dunes')
2130 * Fixed coastal dunes with herbaceous
Gentiana campestris, Ononis repens, Carex arenaria,
vegetation ('grey dunes') Salix repens
2140 * Decalcified fixed dunes with Empetrum nigrum Carex arenaria, Empetrum nigrum
2150 * Atlantic decalcified fixed dunes (Calluno- Calluna vulgaris, Carex arenaria
Ulicetea)
2160 Dunes with Hippophaë rhamnoides Hippophae rhamnooides
2170 Dunes with Salix repens ssp. argentea (Salicion Salix repens spp. Argentea arenariae)

## Annex I Habitat types

2180 Wooded dunes of the Atlantic, Continental and Boreal region
2190 Humid dune slacks
21A0 Machairs (* in Ireland)
2210 Crucianellion maritimae fixed beach dunes
2220 Dunes with Euphorbia terracina

## 2230 Malcolmietalia dune grasslands

2240 Brachypodietalia dune grasslands with annuals
2250 * Coastal dunes with Juniperus spp.
2260 Cisto-Lavenduletalia dune sclerophyllous scrubs
2270 * Wooded dunes with Pinus pinea and/or Pinus pinaster
2310 Dry sand heaths with Calluna and Genista
2320 Dry sand heaths with Calluna and Empetrum nigrum
2330 Inland dunes with open Corynephorus and Agrostis grasslands
2340 * Pannonic inland dunes

Indicator species
AFE
Crataegus monogyna, Fraxinus exelsior, Acer pseudoplatanus
Potametum pectinati, Juncenion bufonii, Salix rosmarinifolia, Salix arenaria

Crucianella maritima, Ephedra distachya, Silene nicaeensis
Euphorbia terracina, Ephedra distachya, Silene
nicaeensis
Malcolmia lacera, Anthyllis hamosa
Brachypodium spp.
Juniperus turbinata spp. Turbinata, J. macrocarpa, J. 1
navicularis, J. communis, J. oxycedrus
Pinus pinea, Pinus pinaster (?)
Calluna vulgaris, Genista anglica
Calluna vulgaris, Empetrum nigrum
Corynephorus canescens, Carex arenaria
Thymus serpyllum, Cerastrium semidecandrum,
Spergularia morisonii, Alyssum montanum spp.,
Cynodon dactlylon
3110 Oligotrophic waters containing very few minerals Isoetes lacustris, Isoetus echinospora, Lobelia dortmanna, Deschampsia setacea
Isoetes velata, Isoetes setacea, Serapias spp.
Mediterranean, with Isoetes spp.

Littorella uniflora, Pilularia globulifera, Juncus bulbosus
ssp. Bulbosus, Sparganium minimum
3130 Oligotrophic to mesotrophic standing waters
with vegetation of the Littorelletea uniflorae and/or of the Isoëto-Nanojuncetea
3140 Hard oligo-mesotrophic waters with benthic vegetation of Chara spp.
3150 Natural eutrophic lakes with Magnopotamion or
Hydrocharition - type vegetation
3160 Natural dystrophic lakes and ponds Utricularia minor, Rhynchospora alba, Nuphar lutea, Nuphar pumila, Nymphaea candida
3170 * Mediterranean temporary ponds

3180 * Turloughs
3210 Fennoscandian natural rivers
3220 Alpine rivers and the herbaceous vegetation along their banks
3230 Alpine rivers and their ligneous vegetation with Myricaria germanica, Salix daphnoides, Salix nigricans
Myricaria germanica
3240 Alpine rivers and their ligneous vegetation with
Salix elaeagnos
3250 Constantly flowing Mediterranean rivers with Glaucium flavum
3260 Water courses of plain to montane levels with the Ranunculion fluitantis and Callitricho-
Batrachion vegetation
3270 Rivers with muddy banks with Chenopodion rubri p.p. and Bidention p.p. vegetation
3280 Constantly flowing Mediterranean rivers with Paspalo-Agrostidion species and hanging curtains of Salix and Populus alba 3290 Intermittently flowing Mediterranean rivers of the Paspalo-Agrostidion
4010 Northern Atlantic wet heaths with Erica tetralix
4020 * Temperate Atlantic wet heaths with Erica ciliaris and Erica tetralix 4030 European dry heaths
4040 * Dry Atlantic coastal heaths with Erica vagans
4050 * Endemic macaronesian heaths
4060 Alpine and Boreal heaths

Salix elaeagnos, Salix purpurea ssp. Gracilis

Myricaria germanica, Glaucium flavum 1
Ranunculus fluitans, Ranunculus aquatilis, Callitriche 1 spp. Zannichellia palustris

Chenopodium rubrum, Bidens frondosa, Polygonum
Paspalum paspaloides, Cyperus fuscus

Polygonum amphibium, Ranuncilus fluitans,

Potamogeton natans
Erica tetralix, Narthecium ossifragum
Erica ciliaris, Ulex minor var. Iusitanicus
Caluna vulgaris, Genista anglica, Erica cinerea
Erica vagans, Ulex europaeus
Daboecia azorica, Erica arborea, Teline canarienis

## Annex I Habitat types

4070 * Bushes with Pinus mugo and Rhododendron hirsutum (Mugo-Rhododendretum hirsuti)
4080 Sub-Arctic Salix spp. scrub
4090 Endemic oro-Mediterranean heaths with gorse
5110 Stable xerothermophilous formations with Buxus Buxus sempervirens, Prunus mahaleb sempervirens on rock slopes (Berberidion p.p.)
5120 Mountain Cytisus purgans formations
5130 Juniperus communis formations on heaths or
calcareous grasslands
5140 * Cistus palhinhae formations on maritime wet heaths
5210 Arborescent matorral with Juniperus spp.
5220 * Arborescent matorral with Zyziphus
5230 * Arborescent matorral with Laurus nobilis
5310 Laurus nobilis thickets
5320 Low formations of Euphorbia close to cliffs
5330 Thermo-Mediterranean and pre-desert scrub
5410 West Mediterranean clifftop phryganas
(Astragalo-Plantaginetum subulatae)
5420 Sarcopoterium spinosum phryganas
5430 Endemic phryganas of the Euphorbio-Verbascion
6110 * Rupicolous calcareous or basophilic grasslands of the Alysso-Sedion albi
6120 * Xeric sand calcareous grasslands

6130 Calaminarian grasslands of the Violetalia calaminariae
6140 Siliceous Pyrenean Festuca eskia grasslands
6150 Siliceous alpine and boreal grasslands
6160 Oro-Iberian Festuca indigesta grasslands
6170 Alpine and subalpine calcareous grasslands
6180 Macaronesian mesophile grasslands
6210 Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia) (* important orchid sites)
6220 * Pseudo-steppe with grasses and annuals of the Thero-Brachypodietea
6230 * Species-rich Nardus grasslands, on silicious substrates in mountain areas (and submountain areas in Continental Europe)
6240 * Sub-Pannonic steppic grasslands Alyssum alyssoides, Astragalus austriacus, Iris humilis ssp. Arenaria, Stipa capillata
Artyemesia pontica, Ornithogalum pannonicum, Achillea pannonica
Helychrysum arenarium, Dianthus serotinus, Alyssum
montanum ssp. Gmelinii, Cynodon dactylon
Botrychium spp., Dianthus deltoides, Gentianella
campestris, Primula veris
Asperula tinctoria, Potentilla tabernaemontani,
Saxifraga tridactylites, Hornungia petraea
Quercus suber, Quercus ilex, Quercus rotundifolia
Molininia caerulea, Potentilla erecta

Scirpus holoschoenus, Molinia caerulea, Orchis laxiflora
clayey-silt-laden soils (Molinion caeruleae)
6420 Mediterranean tall humid grasslands of the Molinio-Holoschoenion
6430 Hydrophilous tall herb fringe communities of plains and of the montane to alpine
levels
6440 Alluvial meadows of river valleys of the Cnidion dubii
6450 Northern boreal alluvial meadows

Cnidium dubium, Viola persicifolia
Salix triandra, Thalictrum simplex subsp. Boreale, 1
Annex I Habitat types
Indicator species
AFE

6510 Lowland hay meadows (Alopecurus pratensis, Sanguisorba officinalis)

6530 * Fennoscandian wooded meadows
7110 * Active raised bogs

Trollius europaeus
Orchis mascula, Primula veris, Ranunculus ficaria
1

Andromeda polifolia, Vaccinium oxycoccos, Drosera
anglica, Drosera intermedia

7120 Degraded raised bogs still capable of natural regeneration
7130 Blanket bogs (* if active bog)
Drosera rotundifolia, Eriophorum vaginatum, Empetrum
nigrum, Rubus chamaemorus
Scheuchzeria palustris(?), Carex rostrata, Menyanthes trifoliata
7150 Depressions on peat substrates of the Rhynchosporion
7160 Fennoscandian mineral-rich springs and springfens
7210 * Calcareous fens with Cladium mariscus and Cladium mariscus, Schoenus nigrans, Salix repens species of the Caricion davallianae
7220 * Petrifying springs with tufa formation (Cratoneurion)
7230 Alkaline fens
7240 * Alpine pioneer formations of the Caricion
bicoloris-atrofuscae
7310 * Aapa mires
7320 * Palsa mires
8110 Siliceous scree of the montane to snow levels (Androsacetalia alpinae and Galeopsietalia Iadani)
8120 Calcareous and calcshist screes of the montane to alpine levels (Thlaspietea rotundifolii) 8130 Western Mediterranean and thermophilous scree

8140 Eastern Mediterranean screes Drypis spinosa, Ranunculus brevifolius, Senecio thapsoides, Arenaria serpentini
Epilobium collinum, Galeopsis segetum,
Cryptogramma crispa
Dryopteris robertiania, Rumex scutatus, Petasites 1 paraduxus
Ramonda myconi, Potentilla caulescentis, Cystopteris 1
fragilis, Asplenium thrichomanes, Asplenium viride,
Woodsia glabella
Phyteuma scheuchzeri, Asplenium septentrionale,
Saxifraga pedemontana vegetation
8230 Siliceous rock with pioneer vegetation of the Sedo-Scleranthion or of the Sedo albi-Veronicion dillenii
8240 * Limestone pavements
Gymnocarpium robertianum, Dryopteris villarii
8310 Caves not open to the public
8320 Fields of lava and natural excavations
8330 Submerged or partially submerged sea caves
8340 Permanent glaciers
9010 * Western Taïga
9020 * Fennoscandian hemiboreal natural old broad- Anemone nemorosa, Dentaria bulbifera, Hepatica leaved deciduous forests (Quercus,Tilia, Acer, nobilis, Mercurialis perennis Fraxinus or Ulmus) rich in epiphytes
9030 * Natural forests of primary succession stages of landupheaval coast
9040 Nordic subalpine/subarctic forests with Betula
pubescens ssp. czerepanovii
9050 Fennoscandian herb-rich forests with Picea abies
9060 Coniferous forests on, or connected to, glaciofluvial eskers
9070 Fennoscandian wooded pastures
9080 * Fennoscandian deciduous swamp woods
9110 Luzulo-Fagetum beech forests

Betula pubescens ssp. czerepanovii, Empetrum 1 hermaphroditum, Vaccinium myrtillus, Aconitum lycoctonum
Picea abies, Actaea spicata, Geranium sylvaticum, 1 Paris quadrifolia, Matteuccia struthiopteris Antennaria dioeca, Pteridium aquilinum, Pinus sylvestris

Fraxinus excelsior, Alnus glutinosa, Alnus icana,
Lycopus europaeus, Lysimachia thyrsiflora
Fagus sylvatica, Luzula luzuloides, Pteridium aquilinum, Vaccinium myrtillus

9120 Atlantic acidophilous beech forests with Ilex and Fagus sylvatica, Ilex aquifolium (?), Taxus baccata,
sometimes also Taxus in the shrublayer
(Quercion robori-petraeae or Ilici-Fagenion)
9130 Asperulo-Fagetum beech forests
9140 Medio-European subalpine beech woods with
Acer and Rumex arifolius
9150 Medio-European limestone beech forests of the
Cephalanthero-Fagion
9160 Sub-Atlantic and medio-European oak or oak-
hornbeam forests of the Carpinion betuli
9170 Galio-Carpinetum oak-hornbeam forests
9180 * Tilio-Acerion forests of slopes, screes and ravines
9190 Old acidophilous oak woods with Quercus robur Quercus robur
on sandy plains
91A0 Old sessile oak woods with Ilex and Blechnum
in the British Isles
91B0 Thermophilous Fraxinus angustifolia woods
91C0 * Caledonian forest
91D0 * Bog woodland
91E0 * Alluvial forests with Alnus glutinosa and
Fraxinus excelsior (Alno-Padion, Alnion incanae, Salicion albae)
91F0 Riparian mixed forests of Quercus robur, Ulmus Quercus robur, Ulmus laevis, Ulmus minor, Ulmus
laevis and Ulmus minor, Fraxinus excelsior or glabra, Fraxinus exelsior, Tamus communis, Phalaris
Fraxinus angustifolia, along the great rivers (Ulmenion arundinacea minoris)
91G0 * Pannonic woods with Quercus petraea and Carpinus betulus
91H0 * Pannonian woods with Quercus pubescens
9110 * Euro-Siberian steppic woods with Quercus spp
91J0 * Taxus baccata woods of the British Isles
9210 * Apeninne beech forests with Taxus and Ilex
9220 * Apennine beech forests with Abies alba and beech forests with Abies nebrodensis
9230 Galicio-Portuguese oak woods with Quercus robur and Quercus pyrenaica
9240 Quercus faginea and Quercus canariensis Iberian woods
9250 Quercus trojana woods
9260 Castanea sativa woods
9270 Hellenic beech forests with Abies borisii-regis
9280 Quercus frainetto woods
9290 Cupressus forests (Acero-Cupression)
92A0 Salix alba and Populus alba galleries
92B0 Riparian formations on intermittent
Mediterranean water courses with
Rhododendron ponticum, Salix and others
92C0 Platanus orientalis and Liquidambar orientalis woods (Platanion orientalis)
92D0 Southern riparian galleries and thickets (NerioTamaricetea and Securinegion tinctoriae)
9310 Aegean Quercus brachyphylla woods
9320 Olea and Ceratonia forests
9330 Quercus suber forests
9340 Quercus ilex and Quercus rotundifolia forests
9350 Quercus macrolepis forests
9360 * Macaronesian laurel forests (Laurus, Ocotea)

Quercus petraea, Carpinus betulus
Quercus pubescens, Fraxinus ornus, Sorbus domestica, Cornus mas
. Quercus cerris, Quercus pubescens, Tanacetum corybosum, Vincetoxicum hirundinaria Taxus baccata
Fagus sylvatica, Taxus baccata, Ilex aquifolium
Fagus sylvatica, Abies alba, Abies nebrodensis, Daphne laureola
Quercus robur, Quercus pyrenaica
Quercus faginea, Quercus canariensis
Quercus trojana

Fagus sylvatica, Abies borisii-regis 1
Fagus sylvatica, Quercus frainetto 1
Cupressus atlantica, Cupressus sempervirens 1
Salix alba, Populus alba
Rhodondendron ponticum ssp. Baeticum, Betula parvibracteata

Platanus orientalis, Liquidambar orientalis, Ranunculus Nerium oleander, Tamarix spp.

Quercus brachaphylla
Olea europaea ssp. Sylvestris, Ceratonia siliqua 1
Quercus suber 1
Quercus ilex, Quercus rotundifolia 1
Quercus macrolepsis 1
Laurus azoricae, Hedera canariensis, Prunus lusitanica

| Annex I Habitat types | Indicator species | AFE |
| :---: | :---: | :---: |
| 9370 * Palm groves of Phoenix | Phoenix canariensis, Phoenix theophrasti | 1 |
| 9380 Forests of Ilex aquifolium | Ilex acuifolium | 1 |
| 9410 Acidophilous Picea forests of the montane to alpine levels (Vaccinio-Piceetea) | Picea abies, Picea orientalis | 1 |
| 9420 Alpine Larix decidua and/or Pinus cembra forests | Larix decidua, Pinus cembra, Vaccinium myrtillus | 1 |
| 9430 Subalpine and montane Pinus uncinata forests (* if on gypsum or limestone) | Pinus uncinata, Lycopodium annotium, Huperzia selago, Arctostaphylos alpina, Rodondendrum ferrugineum | 1 |
| 9510 * Southern Apennine Abies alba forests | Abies alba | 1 |
| 9520 Abies pinsapo forests | Abies pinsapo | 1 |
| 9530 * (Sub-) Mediterranean pine forests with endemic black pines | Pinus nigra | 1 |
| 9540 Mediterranean pine forests with endemic | Pinus pinaster ssp. Pinaster, P. halepensis, P. pityusa, | 1 |
| Mesogean pines | P. stankewiczii, P. eldarica, P. brutia |  |
| 9550 Canarian endemic pine forests | Pinus canariensis | 1 |
| 9560 * Endemic forests with Juniperus spp. | Juniperus brevifolia, J. cedrus, J. drupacea, J. exelsa, J. foetidissima, J. oxycedrus, J. phoenicera, J. thurefera | 1 |
| 9570 * Tetraclinis articulata forests | Tetraclinus articulata | 1 |
| 9580 * Mediterranean Taxus baccata woods | Taxus baccata | 1 |

## Appendix 12 List of related CORINE land cover classes and indication of mapping possibility for each Annex I habitat type



| Corin Mapping with e LC | Map ping |
| :---: | :---: |
| 523 with species | +- |
| 523 with species | +- |
| 522 with species | +- |
| 423 with Ic | +- |
| 521 with species | +- |
| 421 with species | - |
| not possible | -- |
| not possible | -- |
| 331 with species+clifs | +- |
| 331 with species | +- |
| 331 with species+clifs | +- |
| 331 with species+clifs | +- |
| 331 clifs+macaronesia | + |
| 421 with mudflats+species | +- |
| 421 S. townsendii expanding | + |
| 421 | + |
| 411 | + |
| 421 with EnC | + |
| 421 with EnC | + |
| 322 | + |
| 321 with species | + |
| 322 | + |
| 321 with species | + |
| 331 with boreal baltic+lc | +- |
|  | +- |
| 231 | +- |
| 331 | +- |
| 523 | +- |
| 331 with species | + |
| 331 with species | + |
| 331 | -- |
| 331 with species | + |
| 331 with species | + |
| 331 with species | ++ |
| 331 with species | ++ |
| 331 with Ic forest+dunes | + |
| 331 with species | + |
| 321 local info | + |
| 331 with species | ++ |

2220 Dunes with Euphorbia terracina
2230 Malcolmietalia dune grasslands
2240 Brachypodietalia dune grasslands with annuals
2250 * Coastal dunes with Juniperus spp.
2260 Cisto-Lavenduletalia dune sclerophyllous scrubs
2270 * Wooded dunes with Pinus pinea and/or Pinus pinaster
2310 Dry sand heaths with Calluna and Genista
2320 Dry sand heaths with Calluna and Empetrum nigrum
2330 Inland dunes with open Corynephorus and Agrostis grasslands
2340 * Pannonic inland dunes
3110 Oligotrophic waters containing very few minerals of sandy plains (Littorelletalia uniflorae)
3120 Oligothrophic waters containing very few minerals generally on sandy soils of the West Mediterranean, with Isoetes spp.
3130 Oligotrophic to mesotrophic standing waters with vegetation of the Littorelletea uniflorae and/or of the Isoëto-Nanojuncetea
3140 Hard oligo-mesotrophic waters with benthic vegetation of Chara spp.
3150 Natural eutrophic lakes with Magnopotamion or Hydrocharition type vegetation
3160 Natural dystrophic lakes and ponds
3170 * Mediterranean temporary ponds
3180 * Turloughs
3210 Fennoscandian natural rivers
3220 Alpine rivers and the herbaceous vegetation along their banks
3230 Alpine rivers and their ligneous vegetation with Myricaria germanica
3240 Alpine rivers and their ligneous vegetation with Salix elaeagnos 3250 Constantly flowing Mediterranean rivers with Glaucium flavum
3260 Water courses of plain to montane levels with the Ranunculion
fluitantis and Callitricho-Batrachion vegetation
3270 Rivers with muddy banks with Chenopodion rubri p.p. and Bidention p.p. vegetation
3280 Constantly flowing Mediterranean rivers with Paspalo-Agrostidion species and hanging curtains of Salix and Populus alba
3290 Intermittently flowing Mediterranean rivers of the Paspalo-
Agrostidion
4010 Northern Atlantic wet heaths with Erica tetralix
4020 * Temperate Atlantic wet heaths with Erica ciliaris and Erica tetralix
4030 European dry heaths
4040 * Dry Atlantic coastal heaths with Erica vagans
4050 * Endemic macaronesian heaths
4060 Alpine and Boreal heaths
4070 * Bushes with Pinus mugo and Rhododendron hirsutum (MugoRhododendretum hirsuti)
4080 Sub-Arctic Salix spp. scrub
4090 Endemic oro-Mediterranean heaths with gorse
5110 Stable xerothermophilous formations with Buxus sempervirens on rock slopes (Berberidion p.p.)
5120 Mountain Cytisus purgans formations
5130 Juniperus communis formations on heaths or calcareous grasslands
5140 * Cistus palhinhae formations on maritime wet heaths
5210 Arborescent matorral with Juniperus spp.
5220 * Arborescent matorral with Zyziphus
5230 * Arborescent matorral with Laurus nobilis
5310 Laurus nobilis thickets

| 331 with species | ++ |
| :---: | :---: |
| 321 with species | ++ |
| 321 which brachypodium spp? | - |
| 331 with species | ++ |
| 323 No info | -- |
| $312 \mathrm{lc}+\mathrm{spp}$ | ++ |
| 322 coastal buffer | +- |
| 322 coastal buffer | +- |
| 321 with species | + |
| 331 with species+pannonic | + |
| 411 lakes+spp | + |
| 411 lakes+spp | +- |
| 411 overlap with 3110 | +- |
| 512 No info | -- |
| 512 lakes+spp | +- |
| 512 lakes+spp, if boreal | +- |
| 512 No spp | -- |
| 512 No spp | -- |
| 511 Biogeo+rivers | + |
| 511 Biogeo+rivers | + |
| 511 with species | +- |
| 511 riv+alp+salix | + |
| 511 riv+med+spp | + |
| 511 spp | + |
| 511 spp | + |
| 511 riv+med+spp | +- |
| 511 riv+med+spp | +- |
| 322 atl+lc+spp | + |
| 322 atl+lc+spp | + |
| 322 Ic+podsolic soils | + |
| 322 coast+spp | + |
| 322 Ic+macaronesian | ++ |
| 322 Ic+biogeo | ++ |
| 322 With spp+EnC | + |
| 322 biogeo+spp | + |
| 322 too many spp to be indicative | - |
| 322 with spp | + |
| 322 with spp | + |
| 322 poorly defined | - |
| 323 with expert info | +- |
| 323 Ic+spp | + |
| 323 Ic+spp | + |
| 323 Ic+spp | + |
| 323 spp | + |


| Low formations of Euphorbia close to cliffs | 323 spp |  |
| :---: | :---: | :---: |
| 5330 Thermo-Mediterranean and pre-desert scrub | 323 regions given+spp | + |
| 5410 West Mediterranean clifftop phryganas (Astragalo-Plantaginetum subulatae) | 323 with spp | + |
| 5420 Sarcopoterium spinosum phryganas | 323 with spp | + |
| 5430 Endemic phryganas of the Euphorbio-Verbascion | 323 regions given, not with spp. | +- |
| 6110 * Rupicolous calcareous or basophilic grasslands of the AlyssoSedion albi | 321 very local |  |
| 6120 * Xeric sand calcareous grasslands | 321 with spp | + |
| 6130 Calaminarian grasslands of the Violetalia calaminariae | 321 very local, too small | - |
| 6140 Siliceous Pyrenean Festuca eskia grasslands | $321 \mathrm{EnC}+$ spp. | + |
| 6150 Siliceous alpine and boreal grasslands | 321 with spp | + |
| 6160 Oro-Iberian Festuca indigesta grasslands | 321 weak info | + |
| 6170 Alpine and subalpine calcareous grasslands | 321 EnC+rocktype | + |
| 6180 Macaronesian mesophile grasslands | 321 macaro+spp | ++ |
| 6210 Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia) (* important orchid sites) | 321 weak indicators |  |
| 6220 * Pseudo-steppe with grasses and annuals of the TheroBrachypodietea | 321 with spp | +- |
| 6230 * Species-rich Nardus grasslands, on silicious substrates in mountain areas (and submountain areas in Continental Europe) | 321 weak info, in Alpine in EUNIS | - |
| 6240 * Sub-Pannonic steppic grasslands | $321 \mathrm{EnC}+$ spp | + |
| 6250 * Pannonic loess steppic grasslands | 321 EnC+spp | + |
| 6260 * Pannonic sand steppes | $321 \mathrm{EnC}+$ spp | + |
| 6270 * Fennoscandian lowland species-rich dry to mesic grasslands | $321 \mathrm{EnC}+$ spp | + |
| 6280 * Nordic alvar and precambrian calcareous flatrocks | 321 may be too small |  |
| 6310 Dehesas with evergreen Quercus spp. | 244 dehesa+spp |  |
| 6410 Molinia meadows on calcareous, peaty or clayey-silt-laden soils (Molinion caeruleae) | 321 with spp |  |
| 6420 Mediterranean tall humid grasslands of the Molinio-Holoschoenion | 321 EnC+spp. | +- |
| 6430 Hydrophilous tall herb fringe communities of plains and of the montane to alpine levels | 321 Too small | -- |
| 6440 Alluvial meadows of river valleys of the Cnidion dubii | 321 May be too small |  |
| 6450 Northern boreal alluvial meadows | 321 Altitude + Rivers +N - Boreal |  |
| 6510 Lowland hay meadows (Alopecurus pratensis, Sanguisorba officinalis) | 321 Largely disappeared, too small |  |
| 6520 Mountain hay meadows | 321 Weak distribution pattern ? |  |
| 6530 * Fennoscandian wooded meadows | 311 Weak distribution pattern ? |  |
| 7110 * Active raised bogs | 412 weak indicators, but indication pot. Loc. |  |
| 7120 Degraded raised bogs still capable of natural regeneration | 412 State required, but indication pot. Loc. | -- |
| 7130 Blanket bogs (* if active bog) | 412 State required, but indication pot. Loc. | -- |
| 7140 Transition mires and quaking bogs | 412 local, weak indicators, but indication pot. Loc. | -- |
| 7150 Depressions on peat substrates of the Rhynchosporion | 412 Too small, but indication pot. Loc. | -- |
| 7160 Fennoscandian mineral-rich springs and springfens | 411 Too small, but indication pot. Loc. | -- |
| 7210 * Calcareous fens with Cladium mariscus and species of the | 411 with spp, but indication | +- |
| 7220 * Petrifying springs with tufa formation (Cratoneurion) | 411 Too small, but indication pot. Loc. | +- |
| 7230 Alkaline fens | 411 with spp., but indication pot. Loc. | +- |
| 7240 * Alpine pioneer formations of the Caricion bicoloris-atrofuscae | 411 too small, but indication pot. Loc. | +- |
| 7310 * Aapa mires | 412 EnvC+peat soils | + |

7320 * Palsa mires
8110 Siliceous scree of the montane to snow levels (Androsacetalia alpinae and Galeopsietalia ladani)
8120 Calcareous and calcshist screes of the montane to alpine levels
(Thlaspietea rotundifolii)
8130 Western Mediterranean and thermophilous scree
8140 Eastern Mediterranean screes
8150 Medio-European upland siliceous screes
8160 * Medio-European calcareous scree of hill and montane levels
8210 Calcareous rocky slopes with chasmophytic vegetation

## 8220 Siliceous rocky slopes with chasmophytic vegetation

8230 Siliceous rock with pioneer vegetation of the Sedo-Scleranthion or of the Sedo albi-Veronicion dillenii
8240 * Limestone pavements
8310 Caves not open to the public
8320 Fields of lava and natural excavations
8330 Submerged or partially submerged sea caves
8340 Permanent glaciers
9010 * Western Taïga
9020 * Fennoscandian hemiboreal natural old broad-leaved deciduous
forests (Quercus,Tilia, Acer, Fraxinus or Ulmus) rich in epiphytes
9030 * Natural forests of primary succession stages of landupheaval coast
9040 Nordic subalpine/subarctic forests with Betula pubescens ssp. czerepanovii
9050 Fennoscandian herb-rich forests with Picea abies
9060 Coniferous forests on, or connected to, glaciofluvial eskers
9070 Fennoscandian wooded pastures
9080 * Fennoscandian deciduous swamp woods
9110 Luzulo-Fagetum beech forests
9120 Atlantic acidophilous beech forests with Ilex and sometimes also Taxus in the shrublayer (Quercion robori-petraeae or lliciFagenion)
9130 Asperulo-Fagetum beech forests
9140 Medio-European subalpine beech woods with Acer and Rumex arifolius
9150 Medio-European limestone beech forests of the CephalantheroFagion
9160 Sub-Atlantic and medio-European oak or oak-hornbeam forests of the Carpinion betuli
9170 Galio-Carpinetum oak-hornbeam forests
9180 * Tilio-Acerion forests of slopes, screes and ravines
9190 Old acidophilous oak woods with Quercus robur on sandy plains
91A0 Old sessile oak woods with Ilex and Blechnum in the British Isles
91B0 Thermophilous Fraxinus angustifolia woods
91C0 * Caledonian forest
91D0 * Bog woodland
91E0 * Alluvial forests with Alnus glutinosa and Fraxinus excelsior
(Alno-Padion, Alnion incanae, Salicion albae)
91F0 Riparian mixed forests of Quercus robur, Ulmus laevis and Ulmus minor, Fraxinus excelsior or Fraxinus angustifolia, along the great rivers (Ulmenion minoris)
91G0 * Pannonic woods with Quercus petraea and Carpinus betulus
91 HO * Pannonian woods with Quercus pubescens
9110 * Euro-Siberian steppic woods with Quercus spp.

412 EnC+peat soils +
332 Ic+spp
+-

332 Ic+spp +-
332 too much info, +EnC+mountains
332 Greece+Mountains+spp +
322 small +
332 too small -
332 weak description, too +wide spread, with spp.
332 weak indicators, with +spp.
332 too small+state required --
332 Rock type+EnC+spp, or -local info

Ic? +-
335 Ic ++

311 with BioGeo, very large +
311 weak indicators -
311 state required, no spp -defined
311 with spp +

312 with spp (+picea abies) +
312 weakly defined -
231 state required --
311 weakly defined (+faxinus +excelsior)
311 with spp +
311 with spp. +

311 with spp +
311 weakly defined -
311 with spp +-
311 with spp ? +
311 weak indicator +-
311 too local --

311 State required --
311 State required, --spp+EnC+soil-> zone 311
-
312 Pinus Sylvestris+EnC ++
312 Peat+spp.+EnC +-
311 small linear +-
311 small linear +-

311 BioGeo+spp +
311 BioGeo+spp +
311 BioGeo+spp +

| 91J0 * Taxus baccata woods of the British Isles | 312 too specific | -- |
| :---: | :---: | :---: |
| 9210 * Apeninne beech forests with Taxus and Ilex | 311 weak info | - |
| 9220 * Apennine beech forests with Abies alba and beech forests with Abies nebrodensis | 312 weak info | + |
| 9230 Galicio-Portuguese oak woods with Quercus robur and Quercus pyrenaica | 311 weak indicators, but good description | + |
| 9240 Quercus faginea and Quercus canariensis Iberian woods | 311 weak info | - |
| 9250 Quercus trojana woods | 311 weak info |  |
| 9260 Castanea sativa woods | 311 weak info | - |
| 9270 Hellenic beech forests with Abies borisii-regis | 311 with spp. | + |
| 9280 Quercus frainetto woods | 311 species may not be in forest | - |
| 9290 Cupressus forests (Acero-Cupression) | 312 species may not be in forest | - |
| 92A0 Salix alba and Populus alba galleries | 311 species may not be in forest | - |
| 92B0 Riparian formations on intermittent Mediterranean water courses with <br> Rhododendron ponticum, Salix and others | 311 with spp. | + |
| 92C0 Platanus orientalis and Liquidambar orientalis woods (Platanion orientalis) | 311 with geog description | + |
| 92D0 Southern riparian galleries and thickets (Nerio-Tamaricetea and Securinegion tinctoriae) | 311 weakly defined | + |
| 9310 Aegean Quercus brachyphylla woods | 311 weakly defined | + |
| 9320 Olea and Ceratonia forests | 311 weakly defined | - |
| 9330 Quercus suber forests | 311 only potential zone | +- |
| 9340 Quercus ilex and Quercus rotundifolia forests | 311 only potential zone | +- |
| 9350 Quercus macrolepis forests | 311 only potential zone | +- |
| 9360 * Macaronesian laurel forests (Laurus, Ocotea) | 311 Laurus azoricae | + |
| 9370 * Palm groves of Phoenix | 311 | ++ |
| 9380 Forests of llex aquifolium | 311 too small | -- |
| 9410 Acidophilous Picea forests of the montane to alpine levels (Vaccinio-Piceetea) | 312 with EnC+soil | + |
| 9420 Alpine Larix decidua and/or Pinus cembra forests | 312 with spp+soil | + |
| 9430 Subalpine and montane Pinus uncinata forests (* if on gypsum or limestone) | 312 | + |
| 9510 * Southern Apennine Abies alba forests | 312 too small | - |
| 9520 Abies pinsapo forests | 312 very local 50 ha | ++ |
| 9530 * (Sub-) Mediterranean pine forests with endemic black pines | 312 with spp. | + |
| 9540 Mediterranean pine forests with endemic Mesogean pines | 312 too much info, potential zone only | + |
| 9550 Canarian endemic pine forests | 312 | + |
| 9560 * Endemic forests with Juniperus spp. | 312 | + |
| 9570 * Tetraclinis articulata forests | 312 | + |
| 9580 * Mediterranean Taxus baccata woods | 312 too small | -- |

## Appendix 13 Summary of Annex I habitat types per country (EU15)








(Source: http://mrw.wallonie.be/dgrne/sibw/N2000/

## Appendix 14 Explanation of the Data Sheets for the Mapping Units

## Formation/number and name of the mapping unit

The Code is composed of the letters of the formation (A-U) and the running number of the Mapping Unit (MU) within the formation. The order of the mapping units as a rule runs from west to east and north to south.

The names of the mapping units contain the dominant vegetation types with characteristic and dominant plant species as well as individual diagnostically important geographical or ecological differential species, along with information on the distribution (mainly phytogeographical regions and provinces, see Map 3 and glossary) and site characteristics. The order of the species in the name generally follows their proportion and frequency in the natural vegetation type. Example: Spruce-fir forest (Abies alba, Picea abies) $=$ predominant fir with interspersed spruce; low creeping shrub-lichen tundra (Cladonia spp., Salix nummularia) $=$ lichen tundra with interspersed low creeping shrubs, where Salix nummularia is the most common low creeping shrub.

- Geographical distribution (country/territory, area covered, frequency) The complete range of a mapping unit is displayed by country, and within each country by state or province (location; natural landscape unit or specific region within a country); total area in $\mathrm{km}^{2}$; number of all polygons on the 1:2.5 million scale map.
- Scientific names of main plant communities and their most common synonyms (with author citation)
Scientific designation of the syntaxa of the main components of the mapping unit, mainly associations, in part also subassociations or alliances, according to the applied phytosociological system with the name of the author(s); synonyms are only given where they can be clearly assigned to a known unit; regional associations of different countries and authors are given often next to each other. Outside of the areas of Braun-Blanquet nomenclature, the locally customary syntaxa are used (mainly species combinations of dominant and sitecharacterising species); applies especially to the United Kingdom, Sweden, Finland, Bulgaria, Turkey, Russia and other countries of the former Soviet Union (Ukraine, Baltic and Caucasus states, Kazakhstan).
The list provides an overview of the plant communities and their scientific names considered to be important and relevant by the various authors. The syntaxa were mainly not checked to see whether or not they are correct under the International Code of Phytosociological Nomenclature (Weber, Moravec \& Theurillat 2000).
- Structural feature of the main community(ies) (layers, life-forms, etc.) Brief description of structural features (stand closure, height of the dominant layer, layering, cover) of the main plant communities and - where it is given - the
composition and spatial distribution of the components of vegetation complexes and mosaics.
- Dominant and most frequent species in different layers

First and second tree layers, shrub layer ( $0.5-5 \mathrm{~m}$ ), lianas (woody or herbaceous), herb layer (dwarf shrubs, grasses and herbs), moss layer (also referred to as the ground or cryptogam layer), including lichens. The species are listed in order of constancy and cover, and in part differentiated according to their habitat indicator attributes or ecological and phytosociological aspects.

- Diagnostically important species

The species list contains the characteristic combination of species for the main plant community/communities of a mapping unit, including dominants, character species, site indicators and as necessary geographical differential species in the order of the layers where they are found. Where several vegetation units dominate a mapping unit, the assignment of the species to the units is indicated with small letters (a, b, c, ...).

## - Ecological variants

Site-related subcommunities (subassociations, variants) and forms of the main vegetation unit(s) with information on their habitat attributes and in part differentiating species. In the case of several subassociations of one association: units are enumerated as 1 ), 2), 3), etc. In the case of several subassociations and several associations in a single mapping unit, small letters are added: a1), a2), a3); b1), b2); c1), c2), etc. The letters refer to the associations and the numbers refer to the subassociations.

- Geographical variants (geogr. differential species)

In the case of geographic deviations within the mapping unit (vicariants, local "races"), naming of the region in question, with the listing of differential species or geographically differentiating communities (in some cases also altitudinal belts).

- Natural accompanying vegetation (most important units in complex with the name giving mapping unit, scientific names)
Listing of the natural vegetation types that occur within the mapping unit on aberrant (azonal or extrazonal) sites and are typical for the mapping unit, or are small pockets of zonal units that can not be displayed due to the map scale.
- Adjoining climax and permanent vegetation (with numbers of mapping units)
Listing of the (most important) mapping units (with code number) that border on the mapping unit in question on the 1:2.5 million scale map.
- Land use, substitute communities

Information on the current land cover and human land use citing typical cultivated plants and widely distributed substitute communities of the natural vegetation (where known).

- forestry (substitute communities, plantations of economic tree-species, scrub)
Stands altered by human influence: coppices with standards, coppices, grazed forest, plantations (planted forest stands composed of primarily non-site-indigenous tree species), scrub, also dwarf shrub heaths, communities of forest clearings.
- grassland (meadows, pastures, herb-rich communities)

Meadows, pastures, hay pastures, unfertilised grasslands, where possible with scientific names (syntaxa) and the most important species.

- arable land (characteristic weed communities)

Information on the most important crops and the accompanying weed communities.

- settlements (typical ruderal vegetation)

The most important non-cultivated plant communities of settlements, industrial and traffic areas.

- Site conditions of the mapping unit
- Landscape type, geomorphology

Lowlands, hills, uplands, high mountains, and further specification of site (whether level, slightly undulating, steep, rough, or characterised by outcrops)

- Altitudinal belt and/or altitudinal range

Assignment to altitudinal belts: lowland (planar), colline, submontane, montane, alti-montane, subalpine, alpine, nival; in the Mediterranean region further thermo-, meso-, supra-, oro-, and cryoro-Mediterranean; also altitudinal range in metres above mean sea level.

- Geology (bedrock)

Various geological maps at scales ranging from $1: 1,000,000$ to 1 : $2,000,000$ served as base maps for the determination of geological parent material, as well as the Geological Overview Map of Europe at the scale 1 : 5,000,000 (see map references under Literature). As much as was possible, the corresponding parent bedrocks were provided for every mapping unit as well as (in parentheses) the geological formation to which they belong. However, because the maps are in many cases not very detailed, the information sometimes had to be limited to simply stating the geological formation.

- Soil conditions
- soil type, also the depth of fine textured earth (soil), stone content; (international nomenclature)
Information on the soils refers exclusively to the soil type, which in turn allows relationships to be inferred on the texture, moisture regime, soil reaction and trophic levels. Owing to the non-uniform approach to soil
systematics in Europe and the differing soil nomenclature that results from this, the names according to the international soil nomenclature of the FAO $(1974,1990)$ were provided in parentheses in addition to the data provided from national contributors and/or the names of the soil types according to German soil systematics. The FAO data were derived from the FAO \& UNESCO "Soil map of the world" (1978) at the scale 1:5,000,000 with the corresponding legend (1974) (for other maps used, see map references under Literature). Since the first edition of the world soil map the soil type groups of the lithosols, rendzinas, rankers and xerosols were replaced by others. The soil types mentioned in the standardised data sheets under the heading soil type as well as the international FAO nomenclature are further explained in the glossary of technical terms.


## soil texture

Information on the texture of the mineral components of the soil: sand, silt, loam, clay; grainy, stony, gravelly, bouldery, rocky.

- Soil moisture, water

Information on the predominant moisture class according to the following list: peaty-swampy, very wet, wet, moist, periodically moist, mesic (fresh), periodically dry, moderately dry, dry, very dry. balance.

- soil reaction

Data on the range of soil pH reactions correspond to established pH classes: extremely acidic ( $\mathrm{pHCCCl} 2<3.0$ ); very strongly acidic (3.0-3.9), strongly acidic (4.0-4.9), moderately acidic (5.0-5.9), weakly acidic (6.0-6.9), neutral (7.0), weakly alkaline (7.1-8.0), moderately alkaline (8.1-9.0), strongly alkaline (9.1-10.0). The categorisation is mostly not very precise and is only an approximation; pH figures are only provided where more exact data were available.

## - soil fertility

Information on the natural nutrient status of the soils of very nutrient-poor and base-poor (dystrophic) to nutrient-rich and base-rich (eutrophic). Established classes are: dystrophic, oligotrophic, oligo-mesotrophic, mesotrophic, meso-eutrophic, eutrophic.

- Climate incl. local climate
- climate type (following Walter \& Lieth)

The climatic data are largely derived from the Klimadiagramm-Weltatlas of Walter \& Lieth (1967) (additional data for the Iberian Peninsula derived from Rivas-Martínez 1987). In this work, ten different climate zones (= climate types) were differentiated and provided with Roman numerals (I-X). Table 1 provides an overview of the relevant climate types for the vegetation map of Europe. In general, there is a good correspondence between climatically defined zones and zonal soil types, which is why both are listed side by side in Table 1.

Table 1: Comparison of the climate types and the corresponding soil type groups (following FAO classification) and the formations of the Map of the Natural Vegetation of Europe (modified from Hintermaier-Erbard \& Zech 1997).

| Climate type | Climatic conditions | Zonal vegetation / formation | Soil type (following FAO 1990) |
| :---: | :---: | :---: | :---: |
| III | arides, subtropisches Wüstenklima, spärliche Regenfälle (Jahresniederschlag <200mm), gelegentlich Strahlungsfr | O p.p. | Calcisols, Gypsisols (= Xerosols, Yermosols); Solonchaks, Solonetz |
| IV | mediterranes Klima mit Winterregen und Sommerdürre, nicht ganz frostfrei, aber keine ausgesprochen kalte Jahreszeit | G, J, K | Chromic, Calcic Cambisols; Chromic Luvisols; Regosols; Andosols; Vertisols; Leptosols; Calcisols, Gypsisols |
| V | Warmtemperiertes Klima, immerfeuchte Zone, oft mit Sommerregenmaximum oder mild-maritim, nur gelegentliche Fröste | H, F p.p. | Acrisols; Luvisols; Cambisols |
| VI | typisch gemäßigtes Klima mit ausgeprägter, aber nicht sehr langer Winterkälte | E, F | Cambisols; Luvisols; Podzols; Leptosols |
| VII | kontinentales Klima mit heißen Sommern und kalten Wintern | $\begin{aligned} & \text { L, M, O, } \\ & \text { P p.p. } \end{aligned}$ | Phaeozems; Greyzems; <br> Chernozems; <br> Kastanozems; <br> Solonchaks; Solonetz; <br> Calcisols, Gypsisols |
| VIII | Boreales, kalt gemäßigtes Klima mit kühlen Sommern und langen, sehr kalten Wintern | C, D | Podzols (mit Übergangsformen zu Cambisols); Podzoluvisols (meist rohhumusreich), Dystric Histosols |
| IX | arktisches Klima mit kurzen Sommern und kurzer frostfreier Jahreszeit (wärmster Monat unter $10^{\circ} \mathrm{C}$ ) und langer, sehr kalter Winternacht | A, B p.p. | Gelic Regosols, Gelic Podzols, Gelic Gleysols, Gelic Histosols (tundra and permafrost soils) |

The climates of higher mountain ranges ( X ) assume a special position that owing to their distinct altitudinal belts deviates from the prevailing zonal climate type. A Roman numeral is typically added to the climate type X in parentheses, from which can be deduced to which climatic zone the mountain range actually belongs (for instance, the climate of the mountain 'Zugspitze' in the northern Alps is characterised as $\mathrm{X}[\mathrm{VI}])$. Since there are as a rule no sharp delineations of climate, there are often fluid transitions between the different climate types. These transitional areas are indicated through the addition of a second Roman numeral in parentheses. The climate type IV(III) indicates for instance a Mediterranean type with low precipitation, while the type $\mathrm{V}(\mathrm{IV})$ corresponds to a warm temperate
climate with predominating winter rains. A further subclassification in the form of Arabic numerals and/or letters (e.g. VI3, VI7a) is viewed by the authors as provisional and is provided where necessary for the relevant overview map in the climate atlas.

The occurence of wide precipitation or temperature spans in the data sheets can have various reasons:

- large scale horizontal extent or widespread distribution of a mapping unit (e.g. D52),
- large vertical distribution of a mapping unit (e.g. C10),
- azonal vegetation, which is spread across different climate types (e.g. formations T and U ).

Since the network of meteorological stations is not evenly distributed, it is often the case that not every mapping unit has exact climatic data. This applies especially for spatially small and locally distributed mapping units in all formations. In these cases the corresponding climatic data were interpolated from the next adjacent climatic stations.

In the case of azonal and geographically little-differentiated formations, specifically $R$ (reed beds and sedge swamps) and T (swamp and fen forests), more specific climatic data than the climate type were not provided, since these would not have made much sense due to the wide distribution of the units (for instance, R1 occurs from the Caspian Sea to the North Sea; T1, T4 from the Atlantic to the Urals).

## - average annual temperature

Span within the area of the mapping unit primarily for the period between 1900 and 1960; where there are large differences within a mapping unit, data are provided separately for individual countries or regions (mainly following Walter \& Lieth 1967).

## - average annual precipitation

Span within the area of the mapping unit primarily for the period between 1900 and 1960; where there are large differences within a mapping unit, data are provided separately for individual countries or regions (mainly following Walter \& Lieth 1967).

## - average temperature of the warmest month

Data for the warmest month and its average temperature (mainly following Walter \& Lieth 1967).

- average temperature of the coldest month

Data for the coldest month and its average temperature (mainly following Walter \& Lieth 1967).
local climate or other climatic peculiarities
Information on macro- or local climatic peculiarities (very diverse comments).

## Importance for nature protection

- Present state and development trend of natural vegetation (degree of endangerment)
Information on the state of preservation (degree of anthropogenic alteration) and the endangerment situation of the natural vegetation is provided as far as known.
- endangered communities, species worthy of protection in natural vegetation
Mostly rather general comments on the various vegetation types within the mapping units and/or on the relevant species.
- causes of endangerment

Causes of the decline, the modification (degradation), threat or destruction of the natural vegetation include logging/clearing, forest pasturing, use of (fire)wood, modern silviculture, agricultural use, development, fire, nutrient and pollution influxes.

- required measures for protection and restitution

Measures required for the conservation or restoration of natural/near-natural vegetation.

- Localities of representative stands (loci typici) with state of protection - of the natural vegetation
- Country, area (state of protection); areas with or without state of protection, in which representative stands of the natural/semi-natural vegetation of the mapping unit are present. Often only very general comments, partly citing protected areas. Categories include: nature reserve (German: NSG), national park (NP), biosphere reserve (BR), natural forest reserve, Bannwald (BW), Zapovednik (strictly protected area in Russia);
- of characteristic substitute communities worthy of protection

Information on areas with representative and protection-worthy/protected substitute communities (e.g. coppices with standards, grazed forests, extensive grasslands, moist meadows, sedge swamps). Country: area (state of protection).

- Most important references (author, year)

Authors listed in alphabetical order. Only the publications that are more directly concerned with the communities of the specific mapping units are given, and which contain species lists or vegetation tables, descriptions of communities and information on the sites and which were used or analysed during filling out of the data sheets.

- Compiled by

Names of the contributors who processed or expanded on the national data sheets and/or the syntheses for the individual mapping units (see list of contributors).

## ADDIN

