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dynamic ‘metamodelling’ techniques for the soil water and surface water. The implementation 
relies on ‘intelligent’ data that are obtained by a series of computational experiments with 
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low computational cost.  For the drainage of groundwater to surface water a new technique is 
used to combine analytical formulae with a numerical grid. 
 
Keywords:  integrated water management, mechanistic, distributed, dynamic, saturated-
unsaturated flow, surface water, drainage 
 
 
ISSN 1566-7197 
 
 
 
This report can be ordered by paying € 20,- into bank account number 36 70 54 612 in the 
name of Alterra, Wageningen, the Netherlands, with reference to report 913.1. This amount is 
inclusive of VAT and postage. 
 
 



 

Contents 
 

1 Introduction 11 

2 Plant/soil-atmosphere interactions 17 
2.1 Introduction 17 
2.2 Precipitation 17 
2.3 Interception 17 
2.4 Evapotranspiration 19 

2.4.1 Bare soil 20 
2.4.2 Vegetated soil 21 
2.4.3 Inundated area and surface water 22 
2.4.4 Urban area 23 
2.4.5 Total evapotranspiration 23 

2.5 Data summary 24 

3 Soil water 25 
3.1 Introduction 25 
3.2 Theory 26 

3.2.1 Surface runoff 26 
3.2.2 Unsaturated flow 27 

3.3 Model implementation 34 
3.3.1 Surface runoff 34 
3.3.2 Unsaturated flow 36 

3.4 Data summary 48 

4 Groundwater 49 
4.1 Introduction 49 
4.2 Theory 49 

4.2.1 Regional flow 50 
4.2.2 Drainage 52 

4.3 Model implementation 57 
4.3.1 Regional flow 57 
4.3.2 Drainage 63 

4.4 Data summary 67 

5 Surface water 69 
5.1 Introduction 69 
5.2 Theory 69 
5.3 Model implementation 70 

5.3.1 Schematization and hydraulic metafunctions 70 
5.3.2 Dynamics 73 

5.4 Data summary 77 



 

6 Water management 79 
6.1 Introduction 79 
6.2 Land use 79 

6.2.1 Urban areas 79 
6.2.2 Sprinkled crops 80 

6.3 Surface water 82 
6.3.1 Weirs 82 
6.3.2 Surface water supply links 83 
6.3.3 Discharge pumps 84 

 
Literature 85 
 
Appendix 1 Drainage resistances in a multiple layered aquifer system     89 
Appendix 2  Drainage resistance of a short watercourse segment               93 
 
 
 
 



Alterra-report 913.1  7 
 

Preface 

What started with the simple instruction ‘write down what you have got’ soon 
transformed into a creative process, involving a large group of hydrologists at 
Alterra. As we went along new ideas popped up. Sometimes we could not resist the 
temptation to describe them here, even though – as yet – they have only been tested 
in a stand-alone fashion. That applies to the concept for flow in the saturated-
unsaturated zone and drainage of groundwater to surface water. Work is now 
underway to include these new ideas in the SIMGRO-code. More than in the past we 
are trying to make the submodels ‘portable’, allowing a flexible use of the software. 
One of the plans for the immediate future is to couple our soil water and surface 
water concepts to the MODFLOW code. Also the ongoing activity of linking 
SIMGRO modules to SOBEK-CF will greatly benefit by portable submodels. We 
expect that in the medium term most of the modules will be available for 
implementation within modelling frameworks for dynamic simulation models.  
 
In our description we have attempted to make a distinction between ‘theory’ and 
‘implementation’. But where to draw the line is of course a subjective matter, 
depending on the perspective that one has. Nevertheless we hope that it is 
functional, for the reader who only wants to a get quick idea of the conceptuali-
zation, but even more so for the reader who also wants to understand the 
implementation. Anyone with experience in the field of integrated modelling knows 
that the efficiency and tractability of the implementation are the critical success 
factors, and that – in the end – it’s the numbers that do the talking.  
 
The production of this report is part of the upkeep and the maintenance activities of 
‘core’ hydrological models which are financed by DWK-DLO research programme 
417 "Changing water management for a sustainable rural environment". The 
SIMGRO model facilitates the description of the interaction between groundwater 
and surface water systems at sub-regional and regional scale and is therefore an 
important key to reaching the programme's objectives. 
 
More information about the model can be found on the SIMGRO-webpage 
http://www.simgro.alterra.nl to obtain a first impression of the capabilities and 
performance. For questions about the contents of this report concerning the 
modelling concepts the reader is referred to main authors mr. P.E.V. van Walsum 
(paul.vanwalsum@wur.nl) and mr. A.A. Veldhuizen (ab.veldhuizen@wur.nl)   
 
Piet Groenendijk, project leader 
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Summary 

Most regional model codes only partly cover the processes within a region. The 
remedy is then sought by introducing internal boundary conditions. But these 
conditions are more often than not a gross schematization of reality, lacking essential 
feedback mechanisms. For coming to grips with many issues of integrated water 
management it is necessary to have a model that covers the whole (regional) system, 
including plant-atmosphere interactions, soil water, groundwater and surface water. 
SIMGRO (a dated acronym of SIMulation of GROundwater, Querner and Van 
Bakel, 1989, Veldhuizen et al., 1998) was developed for that purpose. 
 
SIMGRO is a mechanistic distributed model with a (nearly) unified saturated-
unsaturated flow description at its core. For the saturated groundwater flow a finite 
element scheme is employed. For the soil water and surface water innovative use is 
made of dynamic ‘metamodelling’ techniques. The implementation relies on 
‘intelligent’ data that are obtained by a series of computational experiments with 
comprehensive models. In this way an acceptable degree of accuracy is achieved at a 
relatively low computational cost.  For the drainage of groundwater to surface water 
a new technique is used to combine analytical formulae with a numerical grid. 
Although setting up a model can as such be an expedient way of understanding a 
region’s hydrology, the goal is usually to simulate the effects of potential measures 
(digging ditches, sprinkling, and so on) on the water-dependent functions. Examples 
of the latter are the production of crops by agriculture and the biodiversity of wet 
natural grasslands. So in a separate chapter attention is paid to the simulation of 
water management. 
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1 Introduction 

The hydrologic cycle operates within a set of constraints and physical laws that control 
the dynamics, storage and disposition of water within it. It is a closed system that satisfies 
the principle of conservation of mass. Regional hydrologic models suffer the deficiency 
that only part of the hydrologic cycle is simulated. In the first place this concerns the 
spatial limitation of a model, which necessitates the making of assumptions with respect 
to external boundary conditions. Furthermore, most models only partly cover the 
processes within a region. The remedy is then sought by introducing internal boundary 
conditions. But these conditions are more often than not a gross schematization of 
reality, lacking essential feedback mechanisms. That even applies to the commonly used 
assumption that the precipitation and evaporative demand of the atmosphere can be seen 
as external boundary conditions: the larger the basin, the less this assumption is valid.  
For coming to grips with many issues of integrated water management it is necessary to 
have a model that covers the whole (regional) system, including plant-atmosphere 
interactions, soil water, groundwater and surface water. SIMGRO (a dated acronym of 
SIMulation of GROundwater, Querner and Van Bakel, 1989, Veldhuizen et al., 1998) 
was developed for that purpose.  
 
The description of an integrated model inevitably has to cover areas of common 
knowledge. We consider innovative the dynamic ‘metamodelling’ of soil water in the 
shallow subsoil in §3, part of the drainage concepts given in §4, the metamodelling of 
surface water in §5, and the modelling of urban water management in §6. The term 
‘metamodelling’ is reserved for model descriptions that rely heavily on making compu-
tational experiments with a comprehensive model. By feeding the metamodels with 
‘intelligent’ data they achieve an acceptable accuracy at a relatively low computational 
cost. 
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Figure 1 Schematization in SIMGRO of the hydrologic system by integration of saturated zone, unsaturated zone and 
surface water (Querner and van Bakel, 1989) 
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Figure 2 Schematization of water flows in SIMGRO, by means of transmission links and storage elements. 

 
SIMGRO is a mechanistic distributed model. An overview of the modelled processes is 
given in Figure 1, and the schematization in terms of transmission links and storage 
elements is given in Figure 2. A finite-element grid is used for the horizontal 
discretisation of the soil and groundwater modelling, involving nodes and their nodal 
subdomains. In the vertical direction a schematization is used in terms of aquitards and 
aquifers, commonly referred to as a ‘quasi-threedimensional’ approach.  
 
Surface water is modelled as a network of watercourse trajectories. Depending on the 
way the model has been implemented, this can involve even the smallest of watercourses. 
But in most applications a certain degree of lumping is done in the headwaters. A 
detailed area from an example model implementation is given in Figure 3. 
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Figure 3 Detail of an example model implementation, showing subcatchments (thematic colouring), main watercourses, 
end points of watercourse trajectories, and nodes of the groundwater model 

 
The used solutions of fundamental underlying differential equations inevitably involve a 
certain degree of simplification. Essential for the practical relevance of the model is that 
it has remained possible to make long simulation runs (30 years) of medium-sized basins 
(75 000 ha) within acceptable computation times (e.g. one hour per simulation year). 
During the model development this has been a guiding principle of the utmost 
consideration. 
 
The model is dynamic, with separate time steps for the surface water system (∆ts) and the 
soil water/groundwater system (∆tg).  Typical time steps used in the current modelling 
practice are ∆ts=0.01 d and ∆tg =0.25 d. These values reflect the large difference between 
the dynamics of surface water and groundwater. An overview of the modelling cycle is 
given in Figure 4. Essential for the integrated modelling is that the feedback between the 
compartments takes place at the appropriate time scale. For instance the influence of the 
surface water level on the drainage fluxes is updated for each time step of the surface 
water model. 
 
In the following sections a description is given of the used conceptualizations, followed 
by more detailed descriptions about the way they have been implemented. Heavy rainfall 
can let a regional hydrologic system undergo a metamorphosis. Such a change of 
appearance can also be caused by extreme water management measures. The division 
into ‘compartments’ of soil water, groundwater and surface water is therefore not a static 
one. So the arrangement of the material will always have a somewhat arbitrary nature, 
whichever way it is done. That also applies to the exchanges of water – they have here 
been described along with the state description of the most naturally associated 
compartment. Given the obvious limitations of a regional model, the atmosphere is not 
described as a separate entity. Instead a separate section is devoted to the interactions 
that it has with the regional system. 

 
Main watercourses 
 
End points of SW trajectories 
Nodes of groundwater model 
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Figure 4 Overview of modelling cycle 
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The simulation of (possible) changes in water management is the goal of most studies. 
Given its crucial importance for the practical relevance of the model, the management 
options are described in a separate section. But of course the distinction between what is 
considered ‘water management’ and what ‘natural functioning’ depends on the 
perspective that one has. Here any type of land-use involving vegetated soil is considered 
to be ‘natural’, even though it is some form of agriculture. In the case of land-use, the 
term water management is reserved for paved areas, involving some form of interference 
in the cycle, e.g. urban areas. The layout of man-made ditches is described as if it were 
part of the natural system, whereas it is of course not. In the case of surface water the 
term ‘management’ is reserved for the manipulation of the water flows and levels 
through the use of structures. 
 
To aid the reader in quickly locating the descriptions, the overview in Figure 2 has been 
furnished with hyper-links to the subsections.  
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2 Plant/soil-atmosphere interactions 

2.1 Introduction 
 
Interactions with the atmosphere are the drivers of the regional system. The recharge is 
sensitive to the water balance of precipitation and evapotranspiration: a relative error or 
change in either of these terms is amplified by a factor 2-3 in the computation of the 
recharge. In this chapter we therefore describe in some detail the manner in which the 
interactions between the plant/soil system and the atmosphere are modelled. 
 
 
2.2 Precipitation 
 
It is well known that the measurement of precipitation usually contains systematic errors 
due to wind-effects. The size of the error is usually in the order of a few % (<5%), but 
should be accounted for. The ‘natural’ precipitation can be augmented by sprinkling. The 
total (gross) precipitation is then given by: 
 

)()()( nets,gross tPtPtP +=                                                 (1) 
 
where 
Pgross(t) = gross precipitation intensity at time t (m d-1) 
P(t)   = natural precipitation intensity at time t (m d-1) 
Ps,net(t) = net sprinkling intensity at time t  (Eq. 101 ) (m d-1) 
 
 
2.3 Interception  
 
Incoming precipitation can either fall directly on the ground surface – as free 
throughfall – or can be intercepted by the vegetation canopy. Subsequently it can either 
directly evaporate, or else reach the ground surface as stemflow and as drops from the 
leaves.  
 
The interception reservoir is assumed to have a known maximum capacity Sic for the 
amount of water that can be stored on a canopy. The capacity is strongly correlated to 
the leaf area, commonly expressed as the Leaf Area Index (which gives the ratio between 
the leaf area and the area of the soil surface). The other two important parameters are the 
‘free throughfall coefficient’ p, which is strongly correlated to the soil cover, and the 
‘stemflow coefficient’ psf. Both these coefficients depend on the type of vegetation and its 
development stage. This parameterization follows that of Gash (1979). The expression 
for the intercepted precipitation is given by (for the case that the capacity of the 
interception reservoir is non-limiting): 
 
 
  )(]1[)( grosssfi tPpptP −−=                                                  (2) 
 
where: 
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Pgross(t) = gross precipitation intensity at time t (m d-1) 
Pi(t)   = intercepted precipitation intensity at time t (m d-1) 
p     = free throughfall coefficient (-) 
psf    = stemflow coefficient (-) 
 
The potential evaporation from the interception reservoir is given by: 
 
  wetspoti, ECE =                                                                        (3)        
 
where: 
Ei,pot  = potential evaporation from interception reservoir (m d-1) 
Cs    = soil cover (-) 
Ewet   = evaporation of a wet surface (m d-1) 
 
An important consideration in the conceptualization for the interception process is the 
role of time intervals, i.e. the interval with which the data are available. Often the data 
have the form of a step-function, with 1 day as the integration interval. In that case it is 
appropriate to use the expression given by Gash (1979) for directly computing the 
interception evaporation. But if the meteorological data are available at a time scale of 
1 hour or less – as they ideally should be – the measurement data can be used in a 
continuous water balance of the interception reservoir for the time interval of the surface 
water  model in the following manner: 
 

  dttEtPttStS
t

tt

)]()([)()( iissisi

s

ss

−+∆−= ∫
∆−

                                     (4) 

where: 
ts     = time at end of current surface water time step (d) 
Pi(t)   = intercepted precipitation intensity at time t (m d-1) 
Si(ts) = water stored in interception reservoir at time ts (m) 
Ei(t)     = (actual) evaporation from the interception reservoir  (m d-1) 
∆ts    = time interval of surface water model (d) 
 
In the implementation of the calculation method provisions are made for ensuring that 
the amount of water in storage does not exceed the maximum capacity Sic. In the final 
step, the net precipitation is computed with: 
 

  sssisisigross
s

snet /)]()([)()(1)(
s

ss

tttStStEdttP
t

tP
t

tt

∆∆−−−−
∆

= ∫
∆−

                     (5) 
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2.4 Evapotranspiration 
 
The evapotranspiration is computed using a reference crop evapotranspiration in combi-
nation with a ‘crop’ factor. This method was originally conceived for modelling the 
evapotranspiration of agricultural crops. But in the course of time it has also been used 
for natural vegetations. For instance Schouwenaars (1990) calibrated the crop factor for 
reed vegetation in Dutch bog relicts. For this reason it will not be referred to as the ‘crop 
factor’ method, as is commonly done, but simply as the ‘vegetation factor’ method. 
 
Typically for agricultural crops, the factors are only available for the growing season. 
When the factors are used in the model, the assumption is made that the factors have 
been calibrated on the basis of field experiments, involving the total evapotranspiration, 
including that of bare soil. So for the vegetated part of the year no separate calculation of 
the bare soil evaporation is made. Outside the growing season a special method is used 
for calculating the evaporation of a bare soil. That does not apply to natural vegetation of 
course. For these (and for agricultural grassland) it is assumed that a vegetation factor is 
available all the year round. 
 
The calibration of the vegetation factors (usually) included the interception evaporation. 
The reason for nevertheless including a separate computation of the interception 
evaporation in the model is that it can have a significant impact on the actual evapo-
transpiration that is simulated: the interception evaporation is not subject to the 
limitations stemming from the soil water pressure head.  That limitation was not active 
during the field experiments for determining the vegetation factors, because it can be 
assumed that the conditions were made optimal for growth. But that of course does 
mean that the routing of the precipitation water (directly to the soil, or first through the 
interception reservoir) should not be taken into account in a model that makes use of the 
vegetation factors. It is important to subtract the interception evaporation from the 
potential evapotranspiration. Otherwise the model can simulate higher values for the 
total evapotranspiration than were measured at the experimental sites under optimal 
conditions. 
 
The followed method makes a clear distinction between the evapotranspiration of the 
crop and evaporation of the intercepted water. This makes the computed evapo-
transpiration a better indicator for the growth of crops. But it should be realised that it 
still contains a substantial term for the bare soil evaporation, which during the growing 
season is implicitly included in the reference crop evapotranspiration. 
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2.4.1 Bare soil 
 
The bare soil evaporation is only computed as a separate entity outside the growing 
season. It is a process involving the very thin upper soil crust layer. When the layer dries 
out, a self-mulching effect occurs, limiting further loss of moisture. Modelling of the soil 
water transport at such a detailed scale is beyond the scope of the regional model 
SIMGRO. Instead, we use the method of Boesten and Stroosnijder (1986).  
 
In the calculation method the sum of the potential evaporation, ΣEp (m) is used as a time 
variable: 
 

   
( )

β

β β

= ≤

= >

∑ ∑ ∑
∑ ∑ ∑

½

2
a p p 2

2
a 2 p p 2

for

for

E E E

E E E
                                                            (6) 

 
where β2 is a soil parameter (m½), which should be determined experimentally. The 
default value of β2= 0.054 m½ and Pmin = 0.005 m d-1. The parameter β2 determines the 
length of the potential evaporation period, as well as the slope of the ΣEa versus (ΣEp)½ 
relationship in the soil limiting stage.   
 
The (default) parameters have been derived for application of the method to the daily 
totals of the meteorological data.  So the method is here also applied on a daily basis. The 
implementation involves several steps. For days with Pnet < Pmin, the following procedure 
is used for the updates of ΣEp. On days of no excess in rainfall (Pnet < Ep), ΣEp follows 
from Eq. 6, that is: 
 
  ( ) ( ) ( )−

= + −∑ ∑
1

p p p net

j j j
E E E P                                                                            (7) 

 
in which superscript j is the day number. (ΣEa)j is calculated from (ΣEp)j with Eq. 6 and 
Ea is calculated with 
 
  ( ) ( ) −

= + −∑ ∑
1

a net a a

j jj jE P E E                                                                                 (8) 
 
On days of excess in rainfall (Pnet > Ep) 
 
 =a p

j jE E                                                                                                                       (9) 
 
and the excess rainfall is subtracted from ΣEa 
 
  ( ) ( ) ( )−

= − −∑ ∑
1

a a net p

jj j
E E P E                                                                           (10) 

 
The next (ΣEp)j is calculated from (ΣEa)j with Eq. 6. If the daily rainfall excess is larger than 
(ΣEp)j-1, then both (ΣEa)j and (ΣEp)j are set at zero. That is also done when Pnet ≥ Pmin. 
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2.4.2 Vegetated soil 
 
The evapotranspiration of  a vegetated soil is computed in three steps by: 
- computing the reference crop evapotranspiration; 
- applying a vegetation factor to obtain the potential evapotranspiration; 
- reducing the potential evapotranspiration to the actual evapotranspiration based on 

the soil moisture content. 
For the reference crop evapotranspiration use can be made of the well-known Penman-
equation for open water or, as is customary in the Netherlands, the reference crop 
evapotranspiration according to Makkink. The latter is computed with (e.g. De Bruin, 
1987): 

  CK
s

sET
λγ
↓

+
= 65.0r                                                                                               (11) 

where: 
ETr = reference crop evapotranspiration according to Makkink (m d-1) 
λ   = latent heat of vaporization of water (J kg-1) 
C  = factor for converting units (m d-1/kg m-2s-1) 
s   = slope of the saturated vapour pressure curve at air temperature 
           (mbar K-1) 
γ   = psychrometer constant (0.66 mbar K-1 at MSL) 
K↓  = global radiation (W m-2) 
 
This equation has been calibrated by means of regression analysis. It should be realized 
that only the summer values were used for this. If the winter values had been included, 
an intercept term of the regression function would have been required (De Bruin, 1987). 
So it should be expected that for the winter period the expression has a large relative 
error. But since the winter evapotranspiration itself is relatively small, the absolute error 
made by using the Makkink-equation also for the winter period is not very substantial.  
 
At moments that there is evaporation from the interception reservoir, the transpiration 
can be assumed halted. This fraction of time can be approximated by Ei/Ei,pot. To 
account for this the following expression is used for the potential evapotranspiration: 
 

   ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

poti,

i
rpot 1

E
EETfET                                                                                         (12) 

 
where: 
ETr   = reference crop evapotranspiration (m d-1) 
f    = vegetation factor (-) 
ETpot = potential evapotranspiration (m d-1) 
Ei   = (actual) interception evaporation (m d-1) 
Ei,pot  = potential interception evaporation (m d-1) 
 
In the above equation the correction for the interception evaporation is time-based (using 
Ei/Ei,pot) instead of energy-based as in Penman-Monteith (see Rijtema (1965) and Kroes 
and Van Dam (2003)).  We use a time-based correction factor because the Makkink-
method is essentially a regression method and not an energy-balance method. The result 
given in Eq. 12 is not equivalent to the transpiration, because (implicitly) soil evaporation 
is included in the vegetation factors themselves. 
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For taking into account the effect of limiting soil moisture conditions on the 
evapotranspiration the function defined by Feddes et al. (1978) is used (Figure 5): 
 
  potEact ETET α=                                                                                                        (13) 
 
where: 
ETact = actual evapotranspiration (m d-1) 
ETpot = potential evapotranspiration (m d-1) 
αE   = soil moisture reduction factor (-) 
 
Water uptake by roots is zero when the soil water pressure head p  is below p4 (Figure 5), 
which is assumed to be the wilting point. Soil water pressure head p3 is called the 
reduction point. In between the wilting point and the reduction point the evapo-
transpiration rate is linearly reduced. The reduction point depends on the potential 
evapotranspiration (see Elow and Ehigh). Between pressure heads p2 and p3 the evapo-
transpiration is at its maximum ('potential'). As a result of oxygen deficiency in the root 
zone, water uptake is hampered for some crops between p2 and p1. 
 
 

 
 
Figure 5 Reduction coefficient for root water uptake, αE, as a function of soil water pressure head p and potential 
transpiration rate Epot (see Ehigh and Elow)  (after Feddes et al., 1978) 

 
 
2.4.3 Inundated area and surface water 
 
For the inundated area the actual evaporation is computed from the reference crop 
evapotranspiration multiplied by a factor that not necessarily is equal to the factor 
commonly used for open water (which is 1.0 for Penman). If the inundation occurs when 
the surface is vegetated, it is more likely that due to the wind-shade effect the 
evaporation is not higher than that of grass.  

Elow

Ehigh 

p4 p3l p3h p2 p1 
p (m)

0.0 

αE(-) 

1.0 
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2.4.4 Urban area 
 
Urban areas are considered to be partly vegetated and partly paved. The paved parts of 
urban areas are considered to have a zero evapotranspiration. The water management of 
urban area is described in §6.2.1. 
 
 
2.4.5 Total evapotranspiration 
 
The total evapotranspiration is computed by multiplying the fractional areas by the 
respective evapotranspiration rates and totalizing: 
 
  rininbssvegact,sintotact, ])1()[1( ETfaECETCaET +−+−=                                       (14) 
 
where: 
ETact,tot = actual evapotranspiration (m d-1) 
ain    = fraction of area that has become inundated (-) 
Cs    = soil cover by vegetation (-) 
ETact,veg = actual evapotranspiration of vegetation (m d-1) 
Ebs   = evaporation of a bare soil (m d-1) 
fin    = ‘vegetation factor’ of inundation water /surface water (m d-1) 
 
This computation does not include the interception evaporation, because in the rest of 
the model we use the net precipitation instead of the gross precipitation.  
 
Since the factor method assumes that the bare soil evapotranspiration has been calibrated 
as part of the total crop evapotranspiration, the value of the soil cover in Eq. 14 is taken 
to be 1.0 in the part of the year for which a vegetation factor is available, and 0.0 for the 
remaining part.  
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2.5 Data summary 
 
For the simulation period, the time series information of the meteorological conditions 
should be available in the form of a step-function (usually per day, but also shorter 
intervals can be handled) of: 
- precipitation; 
- reference crop evapotranspiration. 
These data can be supplied for one than one gauging station in the region. In that case 
the relevant station should be specified for each of the nodal subdomains of the soil 
water /groundwater model. 
 
A number of land-use types and their fractional areas can be specified per nodal 
subdomain. But in the current practice usual only one type is given, in view of the 
relatively small nodal areas. For the calculation of plant-atmosphere relations, four main 
categories of land use have been defined: 
- agricultural areas and natural grasslands; 
- forests; 
- urban areas; 
- surface waters (lakes, ponds); 
Within these main categories any number of specific land-use types can be defined. The 
differentiation should take into account the differences in evapotranspiration, rooting 
depths and irrigation demands of agriculture for sprinkling. 
 
Two categories of urban areas are distinguished: impermeable surfaces (e.g. homes, 
streets) and permeable surfaces (gardens, playgrounds, parks etc., §6.2.2).   
 
It is crucial that the vegetation factors supplied in a file are consistent with the chosen 
method for computing the reference crop evapotranspiration. For agricultural crops in 
combination with the Makkink reference evapotranspiration use can be made of the 
factors supplied by Feddes (1987). 
 
The function defined by Feddes et al. (1978) for the effect of limiting soil moisture 
conditions has to be available for the different crops/ vegetations. 
 
The parameters of the interception reservoir should be given, for each type of vegetated 
land use.  
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3 Soil water 

3.1 Introduction 
 
Soil water is here defined to include small pools that have come into existence by the 
limiting capacity of infiltration into the soil. But when the soil column becomes fully 
saturated, we prefer to consider water on the soil surface as ‘visible’ groundwater, and 
treat it accordingly. The soil water dynamics are described using a series of three control 
boxes: for the root zone, the shallow subsoil and the deep subsoil (Figure 6). The root 
zone is handled with a separate box because the presence of plant roots is a very 
dominating influence, leading to moisture patterns that strongly deviate from that of the 
subsoil. Shallow water tables strongly influence the soil water. That does not only 
concern the moisture content itself, but also the process of capillary rise reaching the 
bottom of the root zone. The moisture supply of plants through capillary rise can make 

 

Figure 6 Conceptualization of the soil water system: a) showing a situation with the water table in the shallow subsoil b) 
showing a situation with the water table in the deep subsoil. Explanation of symbols: Pnet – net precipitation; I – 
infiltration; R - surface runoff; Ebs – evaporation of bare soil; T – transpiration; qp – percolation;  qc – capillary rise.  
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all the difference for surviving a dry period. These influences of the shallow groundwater 
justify a separate control box in the modelling. The box reaches down to the lowest level 
from where capillary rise can reach the root zone; so its extent depends on the type of 
crop (depth of root zone) and type of soil. Very deep water tables are a different matter 
altogether, justifying a third control box. 
 
In the soil water submodel the flow is assumed in the vertical direction only. As can be 
seen the boxes extend into the groundwater. This reflects the dual identity of the water 
just below the unsaturated zone. In fact, the distinction between soil water and 
groundwater is not sharply defined: correct handling of the dual identity thus requires a 
unified approach for the modelling. 
 
 
3.2 Theory 
 
3.2.1 Surface runoff 
 
Surface runoff occurs when for some reason the precipitation can not infiltrate quickly 
enough into the soil, or even can not infiltrate at all. The latter is the case in paved urban 
areas,  but also in situations with a fully saturated soil profile. In these extreme cases all 
of the rainfall remains on the soil surface, where it gathers in pools that can start to 
overflow if the rain persists for a long enough period of time. But only when it finds its 
way to the surface water system does it actually become runoff.  Intermediate situations 
with a semi-permeable ground surface can involve runoff from one spot to another, 
where it can after all infiltrate from a shallow pool. If the rain continues for long enough, 
the infiltration capacity can become limiting due to a decreasing vertical gradient of the 
soil water potential, thus generating runoff after all. Surface runoff is a very complex 
process that depends on: 
- intensity and duration of the rainfall; 
- vegetation cover; 
- soil physical properties; 
- meso- and micro-scale ground surface variations; 
- density, geometry and hierarchical structure of the surface water system; 
- soil water conditions and groundwater level. 
 
In the conceptualization of the runoff process a distinction is made between: 
- runoff that is generated due to a limiting infiltration capacity of the soil surface itself 

(i.e. the soil physical properties and conditions); 
- runoff that is generated due to the full saturation of the soil column.  
In the latter case there is a ‘fusion’ of water in the depression storage and the ‘visible’ 
groundwater in the low-lying parts. This fusion of water storages is important for making 
accurate simulations of shallow groundwater processes. 
 
Since the modelling approach is very much based on the use of empirical functions we 
describe it in §3.3.1 
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3.2.2 Unsaturated flow 
 
A unified three-dimensional modelling of saturated-unsaturated flow in the subsoil is of 
course the ideal. But for application at catchment-scale that is not practical. The first 
simplification is by assuming vertical flow, leading to the Richards’ equation (Richards, 
1931): 
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where: 
θ    = soil water content (-) 
p    = pressure head (m) 
K(p)  = unsaturated conductivity (m d-1) 
C(p)  = differential water capacity (∂θ/∂p) (m-1) 
Sa(p)  = sink term (d-1) 
 
Even this one-dimensional equation is computationally demanding due to the very non-
linear soil hydraulic functions. Its use leads to a model that can only be applied on a 
relatively small scale or for a subregion of special interest. 
 
Here we follow a simplified ‘metamodelling’ approach that uses three storage elements, 
defined by the three ‘control boxes’ given in Figure 6: 
- control box 1 for simulating the water balance of the root zone; 
- control box 2 for simulating the soil water dynamics in the shallow subsoil; 
- control box 3 for simulating the soil water dynamics in the deep subsoil.  
The first two control boxes are tightly coupled in the model; thus for shallow water 
tables a (semi-)unified approach is followed. The coupling between the shallow and deep 
subsoil is less tight: capillary rise is assumed non-existent in the deepest compartment. 
The current concept does not include bypass flow and hysteresis. The non-steady 
dynamics of a wetting front can lead to a retardation of the infiltration compared to the 
steady-state profiles. These aspects will be added in the near future. 
 
Since the dynamics in the root zone and the shallow subsoil are closely interlinked, we 
describe them together in the subsequent section. Then follows the modelling for the 
deep subsoil.  
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3.2.2.1 Root zone and shallow subsoil 
 
The dynamics of the soil water are treated as a stream of transitions between steady-state 
situations, called the ‘quasi’ or ‘pseudo’ steady-state approach.  For describing the flow 
the non-steady term in Eq. 15 is set to zero: 
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In control box 2 the sink term is not present. The (constant) moisture flux qm (sign 
convention ‘upward positive’) is then given by the Darcy equation: 
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Solutions to Eq. 17 can be found by numerical integration. More practical is the use of a 
transient model like SWAP (Kroes and Van Dam (eds.), 2003) and letting the steady state 
be reached for a given top-boundary condition in the form of evapotranspiration or 
precipitation, and a bottom boundary condition in the form of a fixed groundwater level. 
A sequence of model runs yields a family of curves that is specific for a certain soil type 
and root zone depth. A few examples for a root zone thickness of 0.5 m are given in 
Figure 7. 

 
Figure 7 Examples of soil water profiles for steady state percolation/capillary rise (Van der Molen, 1972), generated 
for a root zone depth of 0.5 m; the moisture flux is taken as positive for upward flow 
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Figure 8 Illustration of the method of Rijtema (1971) / De Laat (1980): starting from the equilibrium soil moisture 
profile at t=0 the soil dries out in such a manner that the total moisture extraction during a 10-day period 
(10*1.9=19 mm) equals the release of water from storage in the root zone (14 mm) and the capillary rise (10*0.5 = 5  
mm) from the subsoil 

 
In the past there has been a development in the use of steady-state profiles for dynamic 
soil moisture modelling, see Wesseling (1957), Feitsma (1969), Rijtema (1971) and 
De Laat (1980). A simplified example of the Rijtema method is shown in Figure 8. 
Starting from the equilibrium profile at t=0 a capillary rise of 0.5 mm d-1 is assumed 
available as long as the soil water pressure head has not dropped below the value 
obtained from solving Eq. 17. As can easily be verified the final state at the end of the 
10-day time step has been computed in such a manner that the total extraction of 19 mm 
at the top boundary can be made available by the release of water extraction in the root 
zone (14 mm) and the capillary rise from the subsoil (0.5 mm d-1 * 10 d = 5 mm; for the 
purpose of giving a simplified example we for the moment leave the flux density from 
the water table out of consideration, though the mentioned references of course do also 
take this flux into account). 
 
De Laat (1980) computerized the Rijtema method and extended it for handling the 
transitions from capillary rise profiles to percolation profiles. But for achieving the latter, 
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various amendments had to be made, making the method relatively complex. This 
complexity stems from the chosen starting point in the conceptualization, i.e. that the 
soil moisture pressure head at the bottom of the root zone compartment should at all times 
remain equal to the head at the top of the subsoil. As such that seems to be an obvious 
choice, because it simply follows from ‘sound physics’. So it does not appear to be a 
choice at all. However, it is inevitable that the quasi steady-state method at some point 
makes concessions with respect to the reality of non-steady flow.  Due to the complexity 
of the procedure given by De Laat (1980), these concessions become less obvious, but 
they are there all the same. Not that it disqualifies the method: the results are what count, 
and the method has been shown to have a wide range of applicability. Nevertheless we 
prefer an alternative method. The main justification is the relative simplicity that we have 
achieved in the coupling to the saturated flow module. The coupling method of De Laat 
requires an iterative procedure involving an implicit non-linear expression, whereas the 
current approach is much more straightforward, without loss of accuracy. 
 
In the model formulation given here we use the following state variables: 
- the mean pressure head and water content in the root zone (control box 1), pr and θr; 
- the pressure head and water content at the top of the subsoil (box 2), p2 and θ2 ; 
- the groundwater level h. 
In contrast to the approach of De Laat (1980) and others, we do not under all conditions 
force the equality between the pressure head at the bottom of the root zone and the 
pressure head at the top of the subsoil. Especially in situations following heavy preci-
pitation we accept that there (temporarily) can be a large discontinuity in the pressure 
head profile at the interface between the root zone and the subsoil. An example of such a 
situation is given in Figure 9, where precipitation has caused a sudden increase of the 
root zone water content. In a schematized way, this kind of profile bears a resemblance 
to the non-steady-state profiles found in the field after rainfall on a dry soil. 
 
Like is done by De Laat we assume that the infiltrated rainfall is instantaneously spread 
throughout the root zone. Especially with thick root zones that is of course a very 
schematic assumption. For situations with the soil drying out the assumption is better 
justified. It is then based on the notion that the plant roots develop a certain (negative) 
pressure head, depending on the needs of the situation. All water having a higher 
pressure head is then removed, assuming that the roots are omnipresent in the root zone. 
Also the redistribution of moisture due to the local soil water gradients plays a role in 
creating a near-uniform moisture distribution.  
 
The discontinuity of the pressure head at the boundary between root zone and subsoil 
raises the question of how to compute the percolation/capillary rise flux. We assume that 
(Figure 9): 
- the moisture flux density at the boundary between the root zone (qm,r) and subsoil is 

totally determined by the mean pressure head in the root zone (pr) and the ground-
water level (h); 

- the moisture flux to the water table (qm,2) is determined by the pressure head at the 
top of the subsoil (p2) and the water level (h). 

So the pressure head at the top of the subsoil is not used here for computing the 
interaction with the root zone. That avoids the ‘locking up’ of the model, especially in 
transition situations with high precipitation on a dried out subsoil. The main further justi-
fication for this heuristic computational rule is that the convergence is correct. In the given 
example (of Figure 9, assuming a fixed groundwater level) the converged profile is given 
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Figure 9 Schematizations of the soil water metamodel. The moisture flux qm,r  at the boundary between the root zone 
and the subsoil is determined by the mean root zone water content θr (or pressure head pr) and the groundwater level h. 
The moisture flux qm,2 to the water table is determined by the moisture content θ2 (or pressure head p2) at the top of the 
subsoil and the groundwater level h 

by the dotted line, which is reached when the moisture flux to the water table (qm,2) has 
become equal to the inflow rate from the root zone(qm,r). The above consideration only 
applies in situations with percolation. In situations with the soil slowly drying out we 
revert to the Rijtema-method, which assumes a sequence of steady-state profiles with no 
discontinuity of the pressure head at the bottom of the root zone. 
 
As stated above, the main advantage of the current approach is the simplicity of the 
coupling to the saturated flow module. This coupling consists of two elements: 
- the ‘stress’ at the top of the system, in the form a net inflow (+/-) to the root zone;  
- a piece-wise linear storage function of the groundwater level; the coefficients of the 

function itself are updated at each time step, according to the prevailing conditions in 
the unsaturated zone. 

No iteration is needed between the unsaturated flow module and the saturated module 
(cf. the Newton iterative procedure in the scheme of De Laat (1980, p. 76)). Details are 
given in §3.3.2, including a verification of the results with SWAP. 
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3.2.2.2 Deep subsoil 
 
The above given approach is only justifiable for situations with shallow water tables to 
about 3 m below soil surface. For deeper water tables the dynamics become more 
complex, involving ‘waves’ of percolation water. In literature (e.g. Childs, 1936) many 
examples are known of describing such waves with a diffusion-type equation; in its most 
simplified form the equation is taken as linear, as is done here. But given the very 
nonlinear nature of flow in the unsaturated we refrain from giving a derivation from the 
Richards’ equation as a starting point. Instead we ‘borrow’ a diffusion-type equation for 
describing the response to a unit step-input starting at t=0, for the percolation from 
control box 2 to box 3 (Figure 6). The input is given by: 
 
  1),0(;0)0,0( p,2p,2 == tqq                                           (18) 
 
and we assume that the response at the bottom of control box 3 can be described by: 
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where  
qp,3(z*,t) = percolation that arrives at the deep water table in control box 3 (m d-1); 
z*    = depth to the water table measured from the bottom of control box 2 (m); 
A     = ‘wave celerity’ (m d-1);  
D     = diffusivity (m2 d-1); 
‘1’    = unit step input (m d-1); 
S(z*,t)  = dimensionless function known as the S-curve (-) . 
 
We assume that the response given by Eq. 19 does not differ in time; thus it represents a 
‘linear time invariant system’. Solutions can then be combined by means of simple super-
imposition techniques. A highly efficient way of doing that is by employing the unit 
hydrograph method, as for instance described by Dooge (1959). We now define a unit 
block input of duration T and intensity 1/T  by: 
  
 TttqTtTtqq ppp >=≤<== for,0),0(;0for,/1),0(;0)0,0( 2,2,2,             (20) 
 
Because Eq. 19 describes a linear time invariant system, the response to the unit block 
input can be obtained by superimposition. That is done by subtracting two S-curves 
multiplied by the input intensity (1/T), the one starting at t=0, and the other at t =T: 
 

  TtTtztz
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tTzu ≥−−= for )],,(S),([S1),,( ***                        (21) 

 
where u(z*,T,t) is the so-called T-day unit hydrograph (d-1), also called the pulse response. 
For t<T the term with (t -T) is omitted.  
 
Eq. 19 is of course a gross simplification of reality. Parameters A and D can only be 
determined by some form of calibration, yielding ‘effective’ values. Two examples of the 
pulse responses are given in Figure 10. It should be kept in mind that accuracy in 
predicting the dynamics of deep water tables is usually not critical for the performance of 
the model as a whole. That is because the deep water tables do not make contact with the 
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local drainage system, and neither is there any ecological function directly dependent on 
them. The influence on the rest of the region takes place through feeding the regional 
groundwater flow, which has a long characteristic time. Thus errors in the exact timing of 
the recharge to the groundwater can be relatively large before there are serious 
consequences for the performance of the model as a whole. 
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Figure 10 Examples of a unit pulse responses to a unit block input lasting 1 day, for a  water-table depth of 10 m 
below the bottom of control box 2 (cf. Figure 6 ) 
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3.3 Model implementation 
 
3.3.1 Surface runoff 
 
Surface runoff is calculated at nodal subdomain level. That implies a certain degree of 
‘lumping’. A continuing water balance is made of water held in the depression storage 
(Figure 6). The time step of the surface water model is used because surface runoff is a 
‘fast’ process: 
 
  snetsss )]()()([)()( ttRtItPttStS ∆−−+∆−=                                                           (22) 
 
where: 
Ss(t)  = amount of water stored in depression storage reservoir  (m) 
Pnet(t) = net precipitation  (m d-1) 
I(t)   = infiltration rate from depression reservoir (m d-1) 
R(t)  = runoff rate from depression reservoir (m d-1) 
∆ts   = time interval of surface water submodel (d) 
 
Infiltration can of course only occur if there is water available in the form of net 
precipitation and/or water stored from the preceding period. The maximum infiltration 
rate Imax,i is a function of the soil properties. But infiltration can be blocked due to a 
bottleneck further down in the system, i.e. the amount of storage capacity still available 
in the root zone and the percolation rate from the root zone to the groundwater. 
 
Water held in the depression reservoir in excess of the ‘dead’ storage capacity can 
become runoff. The flow rate is assumed to linearly depend on the amount of water 
stored above the reservoir threshold: 
 
  sdsssds )(for,/])([)( StSStStR ≥−= γ                                        (23) 
 
where: 
Ssd  = ‘dead’ part (maximum) of depression storage reservoir (m) 
γs  = flow resistance of surface runoff (d) 
 
Surface runoff can be become (partly) obstructed by the surface water level in the ditches 
In that case the amount of ‘dead’ storage increases. 
 
The infiltration rate of a non-paved soil is computed at the time step of the soil water 
model. But the runoff itself is computed at the time step of the surface water system, 
because it is a fast process. In order to make the most of the available information, the 
chosen time step of the surface water system should not be larger than that of the 
meteorological data. By using the surface water time step the numerical integration of 
Eq. 23 can be done using an explicit evaluation of the runoff R(t), without much loss of 
accuracy. 
 
Implementation of Eqs. 22 and 23 is done in a number of steps. First a check is made to 
see if there is a bottleneck in the soil-groundwater system for actually absorbing the 
water during the time interval of the soil water model. The maximum rate that can be 
absorbed is given by: 
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where: 
Imax,s  = maximum infiltration rate that the soil can absorb (m d-1) 
Srs   = saturated water content of root zone (m) 
Sr(tg) = water content of root zone (m) 
∆tg   = time step of soil water/ groundwater submodels (d) 
qp,r(tg) = percolation rate from the root zone to the groundwater (m d-1) 
 
The maximum infiltration rate is computed as: 
 
  );min( smax,imax,max III =                                                 (25) 
 
This value remains the same for the surface water time steps within the groundwater 
time step. For each time step of the surface water model the following procedure is 
followed: 
- evaluation of R(t) using Eq. 23; 
- evaluation of the new storage Ss(t) using Eq. 22; 
- if Ss(t) is found to be <0, then  

 first see if the balance can be made square at zero by reducing the runoff; 
 if that (partly) fails, then reduce the infiltration rate so that the new Ss(t) becomes 

zero after all. 
- adding of R(t)∆ts  to the integrated runoff flux R(tg). 
 
So in the case of the depression storage falling dry, the infiltration has priority over the 
runoff. Since this procedure is applied at the small time step of the surface water system, 
the error made by this (arbitrary) prioritization is negligible. 
  
In the case that the soil becomes fully saturated, the amount of water in the depression 
storage reservoir is added to the groundwater, and the runoff is routed though the 
groundwater module as ‘gulley’ drainage. But that can only be done for the new time step 
of the soil water/groundwater model. So the above algorithm is still used after conditions 
become fully saturated at some point in time during the surface water time steps within 
the current groundwater time step. The gulley drainage-resistance for full inundation 
conditions is equal to the resistance for surface runoff; thus no discontinuities occur in 
the runoff computation due to the rerouting of the water in the depression reservoir. The 
depression storage reservoir is activated again as soon as the soil water content falls 
below the saturated value. Then a starting value of zero is given to this storage, even 
though the groundwater model signals that part of the area of a nodal subdomain is 
inundated in its relatively low-lying parts.  
 
 



Alterra-report 913.1  36 

 
3.3.2 Unsaturated flow 
 
3.3.2.1 Schematization 
 
The unsaturated zone is modelled at the nodal subdomain level, with per soil column the 
three control boxes given in Figure 6. For each nodal subdomain the dominant soil 
physical unit should be determined: the model assumes that the soil physical properties 
are uniform in the horizontal sense (but can of course be heterogeneous within a vertical 
column). Root zone depths are assumed to not vary in time. The depth can be specified 
per nodal subdomain for each combination of land use and soil physical unit. Various 
types of land use and root zone depths may exist within a single subdomain. Their exact 
locations are not included in the input files: only the relative surface areas that they 
occupy are known. However, in the current modelling practice the nodal subdomains are 
at field scale, so usually only one type of land use is specified. The used time step is the 
same as that of the groundwater model, ∆tg. 
 
As stated in the introduction (§3.1) we model water on the soil surface as ‘visible’ 
groundwater. This requires taking an extra storage term into account. 
 
 
3.3.2.2 Soil physical metafunctions 
 
The soil physical parameters are not used in a direct way. In the pre-processing stage they 
are converted to metafunctions for the capillary rise /percolation flux density and the 
storage in the shallow subsoil. These functions are derived by making a series of 
simulations with a transient model like SWAP (Kroes and Van Dam (eds.), 2003). The 
runs must be long enough for the steady state to be reached. The use of a steady-state 
model is an alternative, but experience has shown that to be less practical. By using the 
same (transient) model for deriving the metafunctions and for verifying the metamodel 
simulations, consistency in the handling of the nonlinear soil-hydraulic functions is 
ensured.  
 
For each soil physical schematization a series of calculations are done in which the 
following conditions are varied: 
- the root zone depth dr  for 0.10 m, 0.20 m, and so on,  for all of the root-zone depths 

in the land-use schematization;  
- the phreatic level h  in steps of 0.10 m, down to the bottom of control box 2; 
- the flux density at the top of the soil column in steps of 0.5 mm d-1 for the precipita-

tion and 0.05 mm d-1 for the potential evapotranspiration. 
The latter requires some explanation. The goal of the computational experiments is to 
derive functions that cover the full range of (steady-state) conditions that can occur in a 
soil column, including the root zone. That makes it logical to vary the boundary 
condition at the soil surface, and not at the bottom of the root zone. The maximum 
precipitation should be high enough to generate surface runoff, thus ensuring that the 
situation with maximum percolation is covered. The highest evapotranspiration rate 
should equal the highest possible value of the potential evapotranspiration (of forest). 
The root water uptake reduction function given by Figure 5 then plays a role in the 
determining the steady state that is reached.  
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From the series of computational experiments the following tabular functions are derived 
for each soil physical schematization: 
- sr,u(dr,pr,h)  = total storage of water in the root zone (control box 1), as a function 

  of the root zone thickness dr , the mean root zone pressure head pr  
and the groundwater level h (storage in m3 m-2 = m); 

- s2(dr,p2,h)   =  total storage of water in the shallow subsoil (control box 2) as a  
            function of the pressure head at the top of the subsoil p2 and the 
             groundwater level h (m) 
- qm,r(dr,pr,h) =  moisture flux density from the root zone to the shallow subsoil (m d-1) 
- qm,2(dr,p2,h) =  moisture flux density from the shallow subsoil to the water table(m d-1) 
The moisture flux functions of course pertain to the same flux, because the model is 
built on the use of steady-state profiles. So in fact there is only one function in the 
computer code. But for the sake of convenience we use separate notations, involving 
different independent variables. For the root zone we use the mean pressure head 
because we can then directly apply the root water uptake function given in Figure 5. In 
most notations we leave out the dr-variable, for the purpose of being concise. Likewise 
we leave out the dependency on the soil physical unit.  
 
An example of a root zone storage function for a loamy soil is given in Figure 11. As can 
be expected, the storage is nearly completely determined by the mean pressure head in  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 11 Example of a root zone storage function sr(pr,h) for a loamy soil and a root zone depth of 0.30 m. 
Explanation of symbols – pFr = pF of root zone; h = groundwater level (cm b.s.s.) 

sr(pr,h) 
(mm) 

pFr*100 (-) 

   h 
(cm b.s.s.) 
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Figure 12 Example of a moisture flux function obtained from computational experiments with SWAP for a loamy 
soil. Explanation of symbols – pFr = pF of root zone; h = groundwater level (cm b.s.s.) 

 
the root zone; the influence of the groundwater is only felt at extremely high levels. An 
example of a moisture flux function is given in Figure 12. In the example the flux 
densities range from +5 mm d-1 (capillary rise) to -10 mm d-1 (percolation). 
 
When the groundwater level starts to approach the mean soil surface elevation, the nodal 
subdomain will start to become inundated: first the lower parts become submerged, then 
the higher ones. In the model this water is treated as ‘visible’ groundwater. It is essential 
that the inundation water in this way makes contact with the groundwater; otherwise the 
interaction between the head of the inundation water and that of the groundwater can 
not be modelled. The further assumption is made that – when the inundation starts to 
take place – the water level does not have a horizontal gradient within a nodal sub-
domain. Then it is possible to derive the storage function of the inundated water through 
the cumulative frequency distribution of the soil surface. That distribution is determined 
for each nodal subdomain. The storage function of the inundated areas is then given by: 

    

qm (pFr,h) 
 
(mm d-1) 

   h 
(cm b.s.s.) 

pFr*100 (-) 
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  dyyh
h

∫
∞

=
-

iDTM )(F)(s                                                  (26) 

where: 
sDTM(h)  = function for the amount of water stored on the soil surface  (m) 
Fi(h)    = fraction of area that is inundated at a certain mean groundwater level h (-) 
 
 
 

 
Figure 13 Storage coefficient of shallow groundwater (control box 2) for a certain pressure head in the root zone (a); 
storage coefficient of water stored on the soil surface (b), for a situation with a varying level of the soil surface within a 
nodal subdomain 

 
This function is then added to the root zone storage function derived from the SWAP-
experiments, to yield the aggregated storage function for the root zone in control box 1: 
 
  )(s),(s),(s DTMrur,rr hhphp +=                                             (27) 
 
The storage function of shallow subsoil can be converted to a function for the storage 
coefficient by differentiating with respect to the groundwater level: 
 

   ),(s 22 hp
h∂
∂

=µ                                                      (28) 

 
This conversion is useful in the solution scheme for the groundwater model. An example 
is given Figure 13. 
 
For control box 3 the storage function s3(h) is derived from equilibrium soil water 
profiles. 
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3.3.2.3 Root zone and shallow subsoil 
 
Overview of solution scheme 
The update of soil water in the shallow subsoil involves three state variables: 
- the mean pressure head and water content in the root zone (control box 1), pr and θr; 
- the pressure head and water content at the top of the subsoil (box 2), p2 and θ2 ; 
- the groundwater level h. 
The groundwater level is of course only involved in this part of the solution scheme if it 
starts within control box 2. (The scheme for when it starts in box 3 is given in §3.3.2.4.). 
The interdependency of the state variables is governed by the storage and flux functions 
given in the preceding section and in §3.2.2.1). To get an as accurate possible solution for 
a new time step would require an iterative procedure that also involves the groundwater 
submodel. But this would lead to a long algorithm. Therefore we have designed a step-
by-step procedure. The price paid is a slight loss of accuracy, and the requirement that 
the time step should be ≤1 d. But such a short time step is anyhow needed for simulating 
the dynamics of drainage to surface water. And the resulting algorithm is extremely 
efficient. 
 
The solution procedure consists of three steps, in which the state variables are updated in 
the above given order, one at a time: 
1.  the mean pressure head pr of the root zone is updated, using the groundwater level 

h(tg-∆tg)  of the preceding time step as a boundary condition; 
2.  the pressure head p2 at the top of the subsoil is updated, making use of the latest 

information about the situation in the root zone, and the groundwater level of the 
preceding time step; 

3.  the groundwater level is updated to obtain h(tg), in conjunction with the groundwater 
submodel. 

In the case of a slowly drying out soil, the steps 1 and 2 are combined into a single step, 
in which we assume that the soil water profile exactly resembles one of the profiles 
derived in the computational experiments with SWAP (or an interpolation between two 
of them). As will subsequently be seen, the first two steps yield updated storage functions 
which specify the way in which the storage in the shallow subsoil depends on the 
groundwater level, for the prevailing pressure heads in the root zone and at the top of 
the subsoil. So the information supplied by the soil water model to the groundwater 
model consists of an aggregated storage function that is updated at each time step. The 
groundwater model then supplies the new groundwater level, which is then used for 
finalizing the amount of water Sr(tg) stored in control box 1, and the amount S2(tg) stored 
in control box 2.  
 
 
Update of mean root zone pressure head 
The update of the mean root zone pressure head (and water content) is done in step 1 of 
the solution scheme. It is based on the water balance given as: 
 
   ggggrrm,gtotact,ggnetggrgr ]))(),((q)()()([)()(' ttthtptETtRtPttStS ∆∆−+−−+∆−=             (29) 
where:  
Sr(tg -∆tg)  = amount of water stored in the root zone at beginning of time step (m) 
Sr′ (tg)      = first estimate of water stored in the root zone at end of time step (m) 
pr(tg)     = mean pressure head in the root zone (m) 
h(tg- ∆tg)   = groundwater level at the beginning of the time step (m) 
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z (m) 
    0   
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t                t+1 

t       t+1 

 t     t+1 

Step 3 

Pnet (tg)   = net precipitation rate during time step (m d-1) 
R(tg)     = mean runoff rate during time step (m d-1) 
ETact,tot(tg) = actual evapotranspiration rate (m d-1) 
qm,r(pr,h)   = moisture flux density function (m d-1) 
 
The moisture flux density qm,r at the boundary between box 1 and 2 is computed as a 
function of the pressure head in the root zone and the groundwater level, for reasons 
explained in §3.2.2.1. As can be seen from the above equation, we use the water level at 
the beginning of the time step (explicit method) and the mean pressure head at the end of 
the time step (implicit method). This leads to the first estimate of the new storage, 
indicated by Sr ′(tg). The final update of Sr(tg) is done in step 3 of the solution scheme, in 
conjunction with the groundwater submodel. To solve for the new pressure head we first 
rewrite the balance as: 
  
 

 
Figure 14 Transition from one steady-state situation to the next, as a consequence of increased percolation from the root 
zone to the shallow subsoil. In the example there is 40 mm of rainfall in the time interval of 1 day. Of that 40 mm, an 
amount of 30 mm (root zone thickness of 500 mm * change of water content by 0.06) is used for increasing the storage 
in the root zone, and 10 mm flows to the shallow subsoil (step 1):  the root zone water content makes the connection 
with the soil water distribution that has a steady-state percolation flux density of 10 mm d-1. Of that 10 mm, 7.5 mm 
is used (in step 2) for adjusting the water content at the top of the subsoil to the profile that has a steady-state percolation 
flux of 2.5 mm d-1. That 2.5 mm is then used (in step 3) for raising the groundwater level (right-hand figure). 
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  ggtotact,ggnetggrggggrrm,gr )]()()([)())(),((q)(' ttETtRtPttSttthtptS ∆−−+∆−=∆∆−−    (30) 
 
All the terms on the right-hand side are known when the update is done. That makes it 
possible to solve for the unknown Sr′ (tg) and  pr(tg) in the following manner. A function is 
prepared at programme initialization in the form of: 
 
  grrm,rrrr ),(q),(s),(σ thphphp ∆−=                                            (31) 
 
For a given water level h and a given right-hand side value of Eq. 30, the unknown pr(tg) 
can directly be found from an inverse table interpolation of σr(pr,h). The solution also 
yields the new storage Sr′ (tg) and the moisture flux density qm,r. The latter is registered as 
qp,r(tg) in the case of percolation or as qc,r(tg) in the case of capillary rise. This solution 
procedure is analogous to the one used in the surface water model, which is graphically 
explained in §5.3. A simple example for the root zone update is given below. 
 
 
Simple numerical example of the root zone update 
Let us assume that the initial situation involves the equilibrium profile (qm,r=0) of Figure 
7. The total amount of water stored in the root zone is 0.03 (water content)*500 mm 
(thickness root zone) = 15 mm. Then during one day there is 40 mm of rainfall. Our 
knowledge about the soil hydraulics is contained in the percolation profiles of Figure 7. 
We start by trying out each of the profiles, to see what would happen if the water content 
in the root zone changes from the equilibrium value to the value belonging to one of the 
percolation profiles. The moisture content (of the root zone) for the percolation profile 
of 2.5 mm d-1  is 0.06, and the storage thus 30 mm. That means a storage change of 15 
mm. We assume that the percolation during the whole day is equal to the value belonging 
to the soil water content that is reached at the end of the day, the implicit method. In this 
case it means that the increase of the water content also causes a percolation of 1 d* 
2.5 mm d-1 = 2.5 mm. So if we assume that the water content becomes 0.06 at the end of 
the day, then the total amount of water that can be absorbed by the soil is 15 mm 
(storage change) plus 2.5 mm (percolation) = 17.5 mm. Given the rainfall of 40 mm 
during the day, the 0.06 is clearly not the correct solution for the root zone update. We 
therefore also try out the other percolation profiles of Figure 7, and collect the results as 
in Table 1. It then becomes clear that the amount water absorbed by the profile matches 
the rainfall for a new water content of 0.09 (normally this would have to be found by 
interpolation, of course). The mass balance is further illustrated by step 1 in Figure 14. 
  
Table 1 Simple example of a combined storage-flux function used for the root zone update for a time step of 1 day and a 
precipitation of 40 mm. The root zone thickness is 0.5 m. The initial condition is an equilibrium profile, with a water 
content of 0.03(Figure 7), so the initial amount of water stored in the root zone is 0.03* 500 mm = 15 mm. The 
amount of water absorbed by the soil is found by adding the percolation during 1 day to the storage change.  

Percolation profile 
 

(mm d-1) 

Water content of  
root zone 

(-) 

Storage in 
 root zone 

(mm) 

Storage change, 
from initial state 

(mm) 

Total amount of 
water absorbed by 

the soil (mm) 
0.0 0.03 15 - - 
2.5 0.06 30 15 17.5 
10 0.09 45 30 40 
25 0.12 60 45 70 
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Update of pressure head at top of subsoil 
Similar to the root zone, the update of the pressure head at the top of the subsoil is done 
using the groundwater level at the beginning of the time step. The method takes into 
account that part of the percolation from the root zone is needed for making the 
transition to a new steady-state water profile. The remainder is available for percolation 
to the water table. For the update of the pressure head at the top of the subsoil we make 
a water balance in the form of  
 
   gggg2m,2gcgpgg2g2 ))](),((q)()([)()(' ttthtptqtqttStS ∆∆−+−+∆−=                (32) 
 
where 
S2(tg -∆tg)= amount of water stored in shallow subsoil at beginning of time step (m) 
S2′ (tg)     = first estimate of water stored in the shallow subsoil at end of time step (m) 
p2(tg)    = pressure head at top of subsoil (m) 
h(tg- ∆tg)  = groundwater level at the beginning of the time step (m) 
qp (tg)    = percolation from the root zone during time step (m d-1) 
qc (tg)    = capillary rise to the root zone during time step (m d-1) 
qm,2(p2,h)  = moisture flux density function for the flow to the water table (m d-1) 
 
To solve for the pressure head p2(tg) at the top of the subsoil we rearrange Eq. 32 in the 
following manner: 
 
  ggcgpgg2gggg2m,2g2 )]()([)())(),((q)(' ttqtqttSttthtptS ∆−+∆−=∆∆−−             (33) 
 
This equation can then be efficiently solved for p2(tg) by preparing the following function 
for the shallow subsoil, analogous to the root zone algorithm: 
 
  g2m,22222 ),(q),(s),(σ thphphp ∆−=                                         (34) 
 
We then follow the same solution technique as used for the root zone pressure head: first 
the right-hand side of Eq. 33 is evaluated; then an inverse table interpolation is done of 
σ2(p2,h). Apart from yielding an updated p2, that gives values for the storage S2'(tg) and the 
moisture flux density qm,2(p2,h).  
 
A numerical example is given in Figure 14, for a time step of 1 day: the percolation of 
10 mm d-1 from the root zone is used for the transition of the soil water storage (S2'(tg) – 
S2(tg-∆tg) = 7.5 mm) and for the percolation flux to the water table (2.5 mm d-1). So in 
this substep we handle the influence of the unknown p2(tg) in a fully implicit manner 
(based on the value at tg) and the influence of the water table depth in a fully explicit 
manner (based on the value at tg -∆tg).  
 
Once the net moisture flux has been found, it can be registered as either qp,2  in the case 
of percolation or qc,2 in the case of capillary rise. If the groundwater level is in control 
box 3, then the calculation method given below for the new groundwater level is 
skipped. Instead the calculated qp,2 is used as input to the unit hydrograph method given 
in §3.3.2.4.  
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Solution scheme for the shallow groundwater level 
In the third step of the solution scheme the update of the groundwater level is done in 
conjunction with the groundwater submodel. That requires arranging the information 
about the soil water system in an appropriate manner. To that end we make a water 
balance for the whole of the shallow subsoil, comprising boxes 1 and 2: 
 

   
∫
∆−

Σ+∆−−+∆−+∆−

=+
t

tt g

dtqttETtRtPttSttS

tStS

satggtotact,ggnetgg2ggr
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)]()()([)()(

)()(

   (35) 

where qsat is the saturated flow towards the control boxes 1 and 2. We now rewrite Eq. 35 
in a form that makes it possible to solve for the unknown h(tg). To this end we replace 
the unknown Sr(tg) and S2(tg) by the storage functions, with h(tg) as one of the arguments. 
Then after rearranging to a form that is convenient for the coupling of submodels we 
have 
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             (36)  

 
which can be solved for the groundwater level h(tg), in conjunction with the system of 
equations of the groundwater model, as explained further in §4.3.1. Here we suffice by 
stating that at the end of each update of the unsaturated zone the result is available in the 
form of a (piece-wise linear) function of h as given in the left-hand side of Eq. 36. This 
function of h is updated for each time step, to take into account the changing conditions 
in the unsaturated zone. Once the new groundwater level is known, the storage in the 
root zone and subsoil can be finalized by evaluating the storage functions for the new h. 
In the case that the new groundwater level is within the root zone, equilibrium 
conditions are assumed in the part that remains unsaturated. The mean pressure head is 
recomputed accordingly; likewise is done for the pressure head at the top of the subsoil. 
In the computer code this situation is anticipated upon in the construction of the storage 
functions. If the groundwater level starts in the root zone (or even above soil surface) 
and the saturated flow module dictates that it should drop to a level below the bottom of 
the rootzone, then the assumption is made that the pressure head at the top of the 
subsoil is equal to the equilibrium value in the first time step.  
 
In Figure 14 the simplified example is continued for when the saturated flows are zero. 
Then all of the 2.5 mm that flows to the water table is used for the update of the soil 
water distribution at the bottom of the compartment in the form of a slight upward shift.  
 
Verification with SWAP 
In Figure 15  an example is given using the soil hydraulic metafunctions of Figure 11 and 
Figure 12 (expanded to percolation rates of up to 100 mm d-1), for a root zone depth of 
0.3 m, and a drainage system at 2 m b.s.s. with a resistance of 200 d. A time step of 1 d 
was used. In order to test the response to extreme situations a fictitious year was 
constructed. This year was followed by the years 1975 and 1976;  these are less extreme, 
but both are still very dry. The SWAP-model simulates a more dried out root zone in the 
initial phase of drying out, which is due to non-steady conditions in the profile. 
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Figure 15 Verification of the metaSWAP-model with SWAP. The soil profile has a root zone depth of 0.3 m, and a 
drainage system at 2 m b.s.s. with a drainage resistance of 200 d 
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Especially during this period the SWAP model has a higher reduction of the 
evapotranspiration due to relatively more moisture stress. The example demonstrates that 
the rigid coupling of the rootzone to the subsoil (as also employed in the Rijtema/De 
Laat method) has the drawback of leading to an optimistic calculation of the actual 
evapotranspiration.  As can be seen from the water balance terms in Table 2, the 
metaSWAP model overestimates the actual evapotranspiration by 4-5%. That explains 
why the groundwater level takes a few days longer to reach the soil surface after the 
prolonged dry period. But in modelling practice the soil physical properties are not 
known exactly anyhow. Then some form of calibration will be necessary. This calibration 
can easily compensate for the type of ‘modelling error’  shown in the example. 
 
 
Table 2 Comparison between metaSWAP and SWAP for three simulation years 
 

      Year 
Description 19xx 1975 1976 Total 
P (mm) 1806.6 635.0 536.3 2977.9 
ETref (mm) 693.0 577.7 614.8 1885.5 
ETact, SWAP (mm) 495.1 464.2 394.7 1354.0 
ETact, metaSWAP  (mm) 515.0 480.6 413.0 1408.6 
Qsat, SWAP (mm) 1330.3 324.4 131.0 1785.7 
Qsat, metaSWAP (mm) 1314.0 312.7 118.6 1745.3 
∆S, SWAP (mm) -18.9 -153.7 10.6 -162.0 
∆S, metaSWAP (mm) -22.4 -158.3 4.6 -176.1 
h final,  SWAP (m b.s.s.) 1.16 1.94 1.97 1.69 
h final,  metaSWAP  (m b.s.s.) 1.16 1.98 2.03 1.72 

 
 
The run time for a single year is about 0.009 s on a 2.4GHz Pentium computer. That is 
roughly 200 times less than the time neeed by SWAP for the verification (with the IO-
time discounted). 
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3.3.2.4 Deep subsoil 
 
The pulse response function given in Eq. 21 is used in combination with discrete time 
intervals. So it is used in its integrated form, which is known as the ‘distribution graph’: 
 

  ∫
−

=
jT

Tj

dttTzujTzU
)1(

** ),,(),,(                                       (37) 

where U(z*,T, j ) gives the fraction of the percolation pulse that passes z* during the time 
interval [(j -1)T; jT]  (-). The response to a series of percolation pulses from control box 2 
to box 3 can be calculated with the convolution integral (Dooge, 1959). Here it is given 
in its discrete form applied to the distribution graph, with the length of the block input T 
taken as the time step ∆tg of the groundwater model: 
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where 
qp,3(tg) = percolation to the deep water table during time interval [tg-∆tg ; tg ] (m d-1) 
qp,2(tg) = percolation pulse from box 2 to box 3 during time interval [tg-∆tg ; tg ] (m d-1) 
z*d   =  depth of the water table with respect to the top of control box 3 (m) 
Nj    =  number of time steps that have passed since the start of the simulation  
 
The water balance for the deep groundwater is given by: 
 

  ∫
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The interpretation of this water balance is somewhat involved, because the description of 
the percolation wave is superimposed on the equilibrium soil water profile of the deep 
subsoil. The given balance is in fact for the latter, because the dynamic storage involved 
in the percolation wave is contained in the ‘blocks’ of the unit hydrograph model that 
have not yet arrived at the water table.  Thus for water tables in control box 3, the 
storage function is not bivariate like for control box 2 (the function s2(p2,h) given in 
§3.2.2.1) but a univariate function given by s3(h), based on equilibrium profiles  For the 
used U-function we need to make an assumption with respect to the average depth to the 
water table, here indicated by z*d. The actual update of a deep groundwater level is based 
on combining the storage function s3(h) with Eq. 39, and solving for h(tg), as further 
explained in §4.3.1: 
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or, more conveniently for the coupling with the groundwater model submodel: 
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3.4 Data summary 
 
For describing the surface runoff, parameters are needed for 
- maximum infiltration rate; 
- the ‘dead’ storage, Ssd ; 
- the flow resistance of surface runoff, γs. 
 
For the unsaturated flow the soil physical metafunctions should be supplied for: 
- the percolation/capillary rise; 
- the storage in the shallow subsoil (box 2); 
- the storage in the deep subsoil (box 3)   
These functions should be given in tabular form, for discrete steps of: 
- the root zone depth; 
- the soil water content; 
- the phreatic level. 
The given function values are then used as vertices of piece-wise linear functions. 
 
For constructing the contribution of inundated fractions to the storage coefficient, the 
cumulative frequency distribution of the soil surface elevation should be given per nodal 
subdomain. 
 
For simulating the dynamics of the soil water in control box 3 we needed values of the 
diffusivity D and the wave celerity A, and the average depth to the water table z* 
(measured or estimated). 
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4  Groundwater 

4.1 Introduction 
 
For shallow water tables a unified approach is followed in the modelling of the 
soil/groundwater in a vertical column, as explained in the introduction of §3. So if the 
groundwater level is in ‘control box 2’ (Figure 6), the water in that box is seen as 
belonging to both the soil water and the groundwater. If the water level drops below the 
bottom of control box 2, the groundwater simulation uses the simple concept of the unit 
hydrograph for transmitting the outflow from box 2 down to the water table.  
  
At the other extreme, the soil column can become fully saturated. In that case the 
groundwater ‘overrules’ the soil water, and the water on the soil surface is treated as 
‘visible’ groundwater. This overruling can occur on an ephemeral basis or it can be 
permanent, as in the case of a lake. We assume that in a lake the hydraulic head is 
everywhere the same. A lake is of course connected to the surface water system with 
some sort of a link, as described in §5. 
 
 
4.2 Theory 
 
Darcy’s Law for the flow of a homogeneous incompressible fluid through a porous 
medium can be generalized to the three-dimensional form given by (e.g. Bear 1979): 
 
  ϕgrad⋅−=⋅= KJKq                                          (42) 
 
where 
q  = the specific discharge vector (m d-1) 
K  = the so-called conductivity tensor (m d-1) 
φ  = hydraulic head (m) 
J  =  – grad φ, the hydraulic gradient with components Jx = – ∂φ/∂x, Jy = – ∂φ/∂y, and 

 Jz  = – ∂φ/∂z  (-) 
 
The conductivity tensor K is symmetric (see e.g. Bear , 1979). And in the case that x, y, 
and z-axes are (through a transformation) made to correspond with the principal 
directions of the anisotropic medium, only the elements on the diagonal are non-zero, i.e. 
Kxx, Kyy, Kzz. In the following these symbols will be abbreviated to Kx, Ky, Kz. 
 
The experimentally derived Darcy’s Law for groundwater motion has its limitations with 
respect to applicability. But this does not apply to the unconsolidated sediments that the 
SIMGRO-model is intended for.  
 
The equation of motion given by Eq. 42 just describes the flow in a point. (Strictly 
speaking that is not true, of course, due to the irregularities of the soil matrix. But use of 
the ‘representative elementary volume’-concept, allows us to describe the flow in terms 
of continuum mechanics). For making it operational at a finite scale it has to be 
combined with the mass conservation equation. It then becomes possible to scale up the 
flow description to a domain of finite dimensions that is embedded in the surrounding 
environment by means of boundary conditions. The SIMGRO-model is intended for 
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describing the flow at the scale of a drainage basin. That also requires describing the local 
flows to watercourses and wells. But the embedding of detailed descriptions of the local 
flows in the regional model would not be practical. In order to arrive at a manageable 
formulation we decompose the flow into: 
- regional flow components that are described explicitly; 
- local flow components that are described using metafunctions. 
 
We derive the local-flow metafunctions by solving subproblems for the local flows. 
These subproblems are stated in such a manner that they take place within local 
subdomains, involving zero-flux boundaries in the horizontal direction. It is then 
possible to superimpose the local flow formulations on the regional flow, by simply 
adding the metafunctions as extra leakage terms to the regional flow equation.  
 
In the following, the formulation for the regional flow is given first, followed by those 
for the local flows. 
 
 
4.2.1 Regional flow 
 
In the flow formulation we assume that the regional groundwater system can be 
schematised to alternating layers of: 
- aquifers, with essentially horizontal flow; 
- aquitards, with essentially vertical flow. 
In this schematization the top layer can either be an aquitard or an aquifer. The bottom 
layer of the (modelled) system is always an aquifer.  
 
For essentially horizontal flow in an aquifer, the equation of motion can be integrated in 
the vertical direction, and then be written as (Bear, 1979; for x and y in principal 
directions of conductivity): 
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where 
qa(x,y,l)   = the integrated discharge vector for flow through the layer l (m2 d-1) 
qx

a(x,y,l) = x-component of qa(x,y,l) (m2 d-1) 
qy

a(x,y,l)  = y-component of qa(x,y,l) (m2 d-1) 
T(x,y,l)  = transmissivity tensor, with non-zero components Tx and Ty  (m2 d-1) 
Ja(x,y,l)  = gradient of the mean hydraulic head in the vertical section (-) 
 
The validity of this equation hinges on the assumption that “the gradient of the mean 
head in the vertical section”  is the same as “the mean gradient of the head in the vertical 
section” (Bear, 1979). If – within an aquifer – the conductivity does not vary for the z-
coordinate, then the components of the transmissivity tensor can simply be obtained by 
 
  DKTDKT yyxx ; ==                                                (44) 
 
where D(x,y,l) is the thickness of the layer l in m.   
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The flow to and from the aquitards that are above and/or below an aquifer is commonly 
referred to as the ‘leakage’ term. Given the fact that we assume ‘essentially vertical flow’ 
in the aquitards, this flow can described by applying Eq. 42 only in the z-direction. The 
leakage to the aquifer l  is then given by the sum of the vertical flow from the layer above     
and from the layer below it, respectively from (l -1) and from (l +1).  The used sign 
convention is that flows to the layer l  are taken as positive. So we have: 
 

   )1,,()1,,()1,,()1,,(),,( zzz +
∂
∂

++−
∂
∂

−−= lyx
z

lyxKlyx
z

lyxKlyxq ϕϕ         (45) 

where 
qz(x,y,l)    = leakage to layer l  (m d-1) 
φ (x,y,l-1)  = hydraulic head in the middle of layer l - 1  (m) 
φ (x,y,l-1)  = hydraulic head in the middle of layer l+1 (m) 
Kz(x,y,l-1)   = vertical conductivity of layer l -1 (m d-1) 
Kz(x,y,l+1)  = vertical conductivity of layer l+1 (m d-1) 
 
Storage effects in groundwater can be due to elasticity of the soil matrix and of the water 
itself, and due to the desorption/resorption of the soil matrix. The storage effect is 
parameterized in the form of an aggregated storage coefficient given by: 
 
  yp0 SSD +=µ                                                 (46) 
 
where 
µ  = storage coefficient (-) 
S0p = specific storativity (m-1) 
D = layer thickness (m) 
Sy = specific yield of desorption/resorption (-) 
 
The specific yield is not a constant; it depends on the conditions in the unsaturated zone. 
In its integrated form it is implicitly contained in the storage function given §3.3.2.2. In 
that form it is also used in the model. For the top layer the storage coefficient also 
includes the water that is stored on the soil surface. 
 
In the regional flow equation, all flux terms involving leakage and local flow are treated 
as diffuse vertical flux densities. That is because such vertical flux densities satisfy the 
requirement of being ‘local’, i.e. not directly involving lateral flows at the boundaries of 
local subdomains that are used in the model implementation (§4.3.1). That may seem 
trivial, but in fact it is not: it is an essential requirement for performing the 
decomposition that was put forward in §4.2. These flux densities form the link between 
the regional model and the ‘local’ models for flow to watercourses. By combining the 
equation of motion with mass conservation, the flow description can now be stated with: 
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where  
qa(x,y,l)    = the integrated specific discharge vector for flow through the layer l (m2 d-1) 
qz(x,y,l)    = leakage (taken positive for flow towards the domain) (m d-1) 
qd(x,y,l)    = drainage to surface water (negative for flow towards groundwater)(m d-1) 
qs(x,y,l)    = extraction for sprinkling (m d-1) 
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qe(x,y,l)    = extraction for public water supply (m d-1) 
qb(x,y,l)    = boundary flux (taken positive for flows to the domain)(m d-1) 
∑qunsat(x,y,l) = total unsaturated flow to the groundwater (only for l=1) (m d-1) 
 
The unsaturated flow term only applies to the phreatic layer. In the case that the phreatic 
level is in control box 2 (for its definition see Figure 6), it corresponds to the terms for 
the  unsaturated flow in the left-hand side of Eq. 36. In the case that the phreatic level is 
in control box 3, the unsaturated flow terms is the percolation given in Eq. 41. More is 
said about the coupling between the soil water and groundwater submodels in §4.3.1. 
 
 
4.2.2 Drainage 
 
Drainage to a watercourse is a gravity flow involving relatively small differences in the 
hydraulic head. The head differences depend very much on the preceding history of 
events, involving the precipitation, and so on. So the involved fluxes must be simulated 
through time. 
 
In the sense that was expounded in §4.2 the flows to watercourses can be seen as ‘local’ 
if there is a surface water system involving parallel watercourses at equal spacing, in the 
presence of a uniformly distributed recharge from the unsaturated zone to the 
groundwater: in that case the drainage can be seen as a diffuse process that is ‘spread 
over’ the local-flow subdomain, with no boundary effects to the regional system. But the 
conceptualization of the regional model should of course be capable of dealing with 
situations that differ from the mentioned one. Before going into that, the schematized 
situation will be discussed first. 
 
In order to arrive at a manageable numerical implementation for the computation of 
drainage fluxes a number of simplifying assumptions are made. The first is that the local 
flow can be adequately described as a stream of steady-state situations, like is done for 
the soil water modelling. This assumption neglects the fast-flow terms that are present if 
the shallow groundwater receives a heavy percolation pulse. The fast flow terms are due 
to the locally steep hydraulic gradient in the direct vicinity of the watercourse, involving a 
more ‘square’ shape of the water table than under steady-state conditions. These terms 
were given by for instance Dumm (1954), and Kraijenhoff van de Leur (1958).   
 
The second main assumption is that the local flow can be decomposed, using the 
method given by Ernst (1962), as adapted by Van der Molen (1972). The decomposition 
involves the following components, which are illustrated in Figure 16 (adapted from 
Jousma & Massop, 1996): 
- vertical flow from where the percolation water enters the groundwater body, to the 

‘main stream’ of the aquifer; 
- essentially horizontal flow in the aquifer towards the watercourse; 
- radial flow in the vicinity of the watercourse; 
- entrance flow to the watercourse itself (Van der Molen, 1972). 
The assumption is that the total hydraulic head difference between the local groundwater 
culmination point and the water level in the watercourse can be written as the sum of the 
head differences for the separate flow components: 
 
  erhv hhhhh ∆+∆+∆+∆=∆                                         (48) 
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where 
∆h  = total head difference between groundwater culmination point and surface water 
           level (m) 
∆hv = head difference for vertical flow to the ‘main stream’ of the aquifer (m) 
∆hh = head difference for horizontal flow to watercourse (m) 
∆hr = head difference for radial flow to watercourse (m) 
∆he = head difference for entrance flow to watercourse (m) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16 Decomposition of the head loss in the flow towards a watercourse, according to Ernst (1962) and Van der 
Molen (1972); figure  adapted from Jousma & Massop (1996). 

 
The conceptualization thus involves four flow resistances that are connected ‘in series’. 
That is of course an approximation. There is for instance an overlap between the 
horizontal flow and the radial flow, involving the same part of the flow domain. Here we 
give the flow formulation for parallel watercourses. The geometry of the flow situation is 
governed by the following parameters: 
- L = distance between the parallel watercourses (m) 
- D = thickness of the aquifer below the drainage base (m) 
- P  = wetted perimeter of a watercourse (m) 
For the horizontal conductivity a distinction is made between the subdomain above the 
drainage base (Kx,1) and the subdomain below it (Kx,2). 
 
In order to ‘feed’ the lateral flow in the aquifer, the vertical flow must on average travel a 
distance of D/2 (disregarding the flow above the drainage base). Using the one-
dimensional form of Eq. 42, and integrating over the interval [0;D/2],  the head 
difference for the vertical flow can then simply be computed with: 
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where: 
qd = drainage flux (sign positive for flow towards the watercourse) (m d-1) 
Kz = vertical conductivity (m d-1) 
ωv = vertical drainage resistance (d m-1) 
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In situations where the drainage flux stems from upward seepage through the semi-
pervious layer that in Figure 16 forms the lower ‘boundary’ of the flow domain, the 
vertical flow resistance is already taken into account in the regional flow equation. In 
such a situation the head loss given by Eq. 49 should be left out, to avoid double 
counting of this flow resistance. 
  
For the horizontal flow between parallel watercourses, the flow equation reduces to a 
one-dimensional form of Eq. 47, with only the steady-state drainage term. This equation 
is also known as the Dupuit discharge formula (e.g. Bear, 1979).  Here it is written as: 
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where h(x) is the hydraulic head with reference to the bottom of the aquifer (m), at 
distance x from the watercourse. The sign of the drainage term qd is positive for flow to 
surface water. If the breadth of the watercourse itself is neglected, integration between 
x=0 and x=L/2, and insertion of the boundary condition h(0)=hs, then yields  
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Inserting x=L/2 yields the head elevation at the culmination point (hmax), and thus the 
head difference for the horizontal flow: 
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with the horizontal drainage resistance ωh (d m-1) given by:  
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The expression for the drainage flux as a function of the head difference can be made 
explicit by rearranging Eq. 52: 
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For implementation in the model the mean head-elevation is also needed; it is given by: 
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The ratio between the mean head difference and ∆hh is commonly referred to as the form 
factor  (Ernst, 1983): 
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which in the simplified case of only flow below the drainage base (i.e. neglecting the 
quadratic term in Eq. 54) is equal to 2/3. For situations where also the radial and 
entrance flow resistance play a role, the form factor assumes higher values. In the 
extreme case of no vertical or horizontal resistance (∆hv =∆hh=0) the form factor 
approaches unity. 
 
For the radial flow to a watercourse Ernst (1962) gives: 
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where ωr is called the radial drainage resistance (d m-1), and α is a geometry factor that 
depends on the specific configuration of the aquifer in relation to the watercourse.  In 
the presence of anisotropy, the value of the conductivity in the equivalent isotropic 
domain is taken as √(KxKz). The D-value has then to be transformed with: De = 
D√(Kx/Kz); assuming that de wetted perimeter is mostly in the x-direction, the P-value 
has to be transformed with Pe = P√(Kz/Kx). The relevant expressions for field drains are 
e.g. given by Van der Molen (1972). 
 
For the entrance flow Van der Molen (1972) gives: 
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where cb is the local entrance resistance (d), and ωe the entrance resistance (d m-1). This 
description of radial and entrance resistance neglects the presence of a seepage face in 
the watercourse, just above the surface water level.  
 
Summarizing, the total head difference for the mean head between the watercourses can 
be written as: 
 
  )( erhhvds ωωωζω +++=− Lqhh                                     (59) 
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and for the culmination point between the watercourses the head difference can be 
written as: 
 
  )( erhvdsmax ωωωω +++=− Lqhh                                   (60) 
 
For deep watercourses, it is assumed that the above given drainage theory can also be 
applied to the deeper layers of the geohydrologic schematization that are cut into by the 
watercourses. This should not be considered equivalent to applying a multi-layer drainage 
formula, like given in Appendix 1. For situations with relatively small vertical resistances 
to the subsoil, it is relevant to use a multi-layer drainage formula for the local flow: the 
drainage water seeks a route with the lowest flow resistance, which can mean ‘taking a 
detour over the highway’ in the deeper subsoil. Since this flow takes place within the local 
subdomain, it is not a flow that is modelled by the regional flow equation: the local flow 
is superimposed upon the regional one. In comparison to a single layer formula, that can 
lead to a substantial decrease of the computed drainage resistance. 
 
The above given derivations are for a uniformly distributed recharge situation, which also 
applies to situations with seepage from a leaky layer. In a regional model all kinds of 
different situations can occur, of course. The question is whether the above given 
approach can then still be used. Consider for instance the situation with zero recharge 
and regional flow that is locally drained. Depending on the strength of the regional flux, 
the horizontal drainage resistance of the local flow can vary. It thus should be realized 
that the used approach is an approximate one. 
  
When the groundwater level starts to approach the mean soil surface, the lowest-lying 
places start to act as a drainage medium. With increasing level, more parts become 
inundated, thus leading to a sharp reduction of the horizontal flow resistance. Also the 
radial resistance and entrance resistance show a sharp decrease, due to the increase of the 
wetted perimeter involved in the inundation.  
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4.3 Model implementation 
 
4.3.1 Regional flow 
 
The implementation of the regional flow equation for the phreatic layer requires 
rearranging Eq. 47 and integrating over the time step of the groundwater model, ∆tg. A 
number of q-terms are assumed to remain constant during a time interval, so the 
expression simplifies to: 
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Replacing the left-hand side by the left-hand side of Eq. 36 gives: 
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where in the left-hand side the values of pr and p2 for tg are already known, but the value 
of h still has to be found together with the terms in the right-hand side.  The storage 
functions sr(p2,h) and s2(p2,h) are given in the form of piece-wise linear table functions. 
This equation applies to situations with the groundwater level above the bottom of 
‘control box 2’ of the shallow subsoil (Figure 6). If the water level is in the ‘control box 
3’ for the deep subsoil, then the left-hand side is replaced by the left-hand side of Eq. 41: 
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If the water level starts in box 2, then the algorithm takes the possibility into account that 
the water level drops to a position in box 3. If the water level starts in box 3, a rise to box 
2 is a possibility. For handling the smooth transition of the water level from one box to 
the other the storage functions s2 and s3 are extended into the domain of the other box. 
In its original form the storage function s2 remains constant for water levels below the 
bottom of box 2. The extension is done by assuming that below the bottom of box 2 the 
storage change is the same as that of the s3-function for that trajectory. The extension of 
the s3-function into box 2 is done in a similar fashion. 
 
In the case that the phreatic layer is an aquitard, the div qa term in Eq. 61 is not present.  
For the deep aquifers the qunsat-terms are missing, and the equation reduces to (after 
dividing by ∆tg): 
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Since the heads in the deep aquitards are not included in the set of equations, the storage 
change in these layers has to be accounted for in a different manner. That is done by 
adding an extra term to the storage coefficient of the neighbouring aquifers: half of the 
term DS0p (see Eq. 46) is added to the storage coefficient of the aquifer above, and the 
other half to that of the aquifer below. 
 
Integration of the drainage flux involves running the surface water submodel in a 
subloop for the surface water time steps, as follows from the coupling scheme described 
in §1. Since the (new) groundwater levels are not known at the beginning of the time step, 
the integration of the drainage flux is based on the levels at the beginning of the time step 
(explicit method).  For each time step of the surface water model the drainage flux is 
recomputed, based on the most recent update of the surface water level, and adding to 
the integrated drainage flux totalizer. After the subloop has progressed to the new time tg, 
the update of the groundwater submodel can take place, in which the drainage fluxes are 
treated as known constants. 

 
Given the above considerations, the total of the flows that are taken as constant in the 
process of numerically solving Eq.  64  are given by: 
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where the integration over t is numerically performed for the time steps of the surface 
water model.  
 
For the leakage term we use the following expression, derived from integrating the one-
dimensional form of Eq. 42, from the middle of one aquifer to the middle of the next:  
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where (for being concise the x,y-arguments of D and Kz have been left out above): 
qz(x,y,l) = leakage to layer l (m d-1) 
φ(x,y,l) = hydraulic head in the middle of layer l (m) 
D(x,y,l) = thickness of layer l (m) 
Kz(x,y,l) = vertical conductivity of layer l (m d-1) 
 
The above expression includes the vertical flow resistances within the aquifers them-
selves. Usually these terms can be neglected. However, when the used schematization 
involves a large number of layers at set intervals, it is in fact being used as an 
approximation for fully three-dimensional flow. And in that case the resistances in the 
‘aquifers’ are crucial for the validity of the model. 
 
In the case that the first layer is an aquitard, the leakage to the aquifer below it is 
computed using the head in the aquitard itself. Since the flow resistance of the 
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unsaturated zone is accounted for in the soil water submodel, the layer thickness used for 
Eq.66 is based on the saturated part of this aquitard. 
 
The terms for the regional groundwater flow in Eq. 64 are solved using a finite-element 
scheme based on the method of Galerkin (1915). This procedure is a special case of the 
method of weighted residuals (Neuman, 1973; Segerlind, 1984; Wang and Anderson, 
1982). In the implementation used for SIMGRO we use a triangular finite-element 
network, as illustrated by Figure 17.  By drawing connection lines between the midpoints  
 

Figure 17 Discretisation of the solution domain into finite triangular elements. The network is repeated for each layer. 
Piece-wise linear basis functions are used for the’ trial solution’ (after Bear, 1979). Nodal subdomains are also called 
‘influence areas’ 

 
of the ribs and of the centre-points of the triangles, the so-called influence areas are 
constructed. These influence areas serve as nodal subdomains for the vertical flux 
densities in Eqs. 62 and 64. Note that these domains are not the same as so-called 
Thiessen polygons. 
 
In the model implementation the drainage flux is determined in a separate cycle. So Eq. 
64 can be rewritten as 
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The function G(φ) is used in constructing the numerical solution for this equation. For 
solving Eq. 67 with the Galerkin method a ‘trial solution’ is constructed using piece-wise 
linear basis functions as illustrated in Figure 17. The hydraulic head is then approximated 
with: 
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where vi(x,y) is a basis function in the range of [0;1], h(t) the solution of Eq. 67 at the 
nodal points, and φ ~ the piece-wise linear approximation of φ. In the Galerkin method 
the basis functions are not only used for the piece-wise approximation of φ, but also for 
the weighting of the residuals (e.g. Bear, 1979: 
 

i

basis function vi(x,y) 

finite element 
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thickness node 
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where A is the flow domain. The component involving -div qa concerns the net water 
balance of the horizontal flows: 
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where ∑jQji is the net horizontal inflow to a nodal subdomain. Note that the above given 
equation is in terms of a summation. It is incorrect to simply interpret the Qji’s as ‘flows 
from one node to the other’, because we are here dealing with a finite-element solution, 
and not a finite-difference one. The equation gives a statement with respect to the net 
water balance of a nodal subdomain, and not about the individual flows themselves. As 
put by Pinder and Gray (1977): ”The finite element method may be considered as a 
numerical scheme wherein the algebraic equations represent spatially averaged derivative 
approximations”. Strictly speaking, only in the case of a completely regular network (and 
isotropic medium) can the flows be interpreted as if it were (integrated) finite differences. 
But even if that condition is not fulfilled, in most practical applications the interpretation 
in terms of flows is an acceptable approximation. If desired, a more accurate analysis of 
the actual flows and flow paths can be made using the method of Cordes and Kinzelbach 
(1992), which was implemented as post-processing for SIMGRO by Tank and Stuyt 
(1997). 
 
In for instance Kinzelbach (1986) the derivation is given for numerically computing the 
net horizontal flow balance with: 
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where Tji is the (symmetric) transmissivity matrix (m2 d-1). For a phreatic aquifer the 
transmissivities also depend on the head itself.  
 
In the integration of Eq. 69 the leakage term is taken as constant within the nodal 
subdomain, but variable with respect to the time t.  The integration of the leakage 
component then takes on the form: 
 
  ∫∫ ∫∫ ==

A
l

A
l Atqdxdyyxvtqdxdyyxvtlyxq ii,z,ii,z,iz )(),()(),(),,,(                 (72) 

 
for all i=1,2,…N, and all aquifers (always including the top layer, even if it is an aquitard), 
where Ai  is the area of the nodal subdomain, the ‘influence area’. (Note that the basis 
function is a pyramid with a volume of 1/3 Ab h, where Ab  is the area of its base, and h 
its height, with h equal to unity. The area of the base is three times the size of a nodal 
subdomain Ai, because each of the subtriangles is equally shared by three neighbours.) 
 
The integration of Eq. 69 with respect to time (see also Eq. 67) is done with a Crank-
Nicholson (1947) weighting scheme. By inserting the expressions given in Eqs. 70 and 72 
the generated set of equations becomes: 
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for i=1,2,...N,  and all l that are aquifers (always including the top layer, even if it is an 
aquitard), where 
Ai   = area of nodal subdomain i (m2) 
µi,l   = storage coefficient of nodal subdomain i, layer l  (-) 
∆hi,l  = change of hydraulic head over time interval [tg-∆tg ; tg]  in node i, layer l (m) 
W   = Crank-Nicholson weighting parameter (-) 
∑jQji,l = sum of net horizontal fluxes to nodal subdomain i, layer l (m3 d-1) 
qconst,i,l = total of flows that are taken constant within the time interval (m d-1) 
qz,i,l  = leakage term given by Eq. 66 (m d-1) 
 
Rearranging to a convenient form yields: 
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for i =1,2,...N,  and l that are aquifers, where  
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The partial derivatives of qz,i,l are constants, as can directly be seen from Eq. 66. 
Substitution of Eq. 71 then yields the equations in terms of the hydraulic head change: 
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for i=1,2,...N and l that are aquifers. For the deeper aquifers these equations are linear. 
For the phreatic aquifer the left-hand side is given by the left-hand side of Eq. 62 (or 63). 
Since the storage function is nonlinear for the phreatic layer (supplied in the form of a 
piece-wise linear table function), the mean storage coefficient µi,1 over the ∆hi,1-interval is 
not known beforehand. For this reason an iterative scheme is the preferred way of 
obtaining a solution. We currently use a successive-over-relaxation method (SOR), as for 
instance described by Remson et al. (1971). To apply the method, Eq. 76 is rearranged, 
with only ∆hi,l on the left-hand side: 
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Each SOR-iteration consists of first evaluating ∆hi,l 

j using Eq. 77, and then extrapolating 
the result with the over-relaxation factor Ω (all within the same iteration cycle j): 
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The disadvantage of every iterative method is that a certain criterion has to be used for 
halting the iterations; otherwise the computational time becomes excessive. But halting 
the iterations inevitably involves a violation of the water balance. This error can 
especially be significant if the conductivity of an aquifer is high, and the nodal 
subdomains are very small. In order to mend this error, it is first computed by 
rearranging Eq. 76 to: 
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where Qloss,i,l is the amount of water that has been lost during the time step in (m3 d-1). 
The amount of water is accumulated per node with a continuing balance: 
 
  gi,loss,i,loss,i,loss, tQQQ lll ∆+=∑∑                                    (80) 
 
During the next time step part of this water loss is recouped, by adding half of it to the 
water balance on the right-hand side of Eq. 76, and at the same time reducing the 
continuing balance of the loss by: 
 
  ∑∑ = ll QQ i,loss,i,loss, 5.0                                           (81) 
 
It is not advisable to try and recoup all of the accumulated loss straightaway in the next 
time step, because that can lead to oscillations. By each time step recouping half of the 
accumulated loss, any water balance error is redressed within a day or two, if the time 
step of the groundwater model is the commonly used value of 0.25 d. In this way a near-
perfect water balance is maintained throughout the simulation period. 
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4.3.2 Drainage 
 
 
As regards the drainage flow to watercourses, the flow description given in §4.2.2 was for 
the theoretical situation with parallel watercourses that have an equal spacing L. In 
practice, the nodal subdomains are criss-crossed by watercourses having varying 
dimensions, like in the example of Figure 18. A certain watercourse is active as a drainage 
or infiltration medium if either the groundwater level or the surface water level is higher 
than the elevation of the bottom of the watercourse, and if the levels differ from each 
other. In order to apply the given theory in §4.2.2, several adaptations are required.  
 
 

 
 

 

 

 

Figure 18 Example of a nodal subdomain that is criss-crossed by watercourses having vary dimensions: practical 
situation (a), and schematised situation used in the calculation method (b) 

 
 

 
Figure 19 Example of a cross-section of the shallow groundwater for a situation with simultaneous drainage flow to a 
ditch and a main watercourse (see also Figure 18 ) 

 
The first adaptation is to group the watercourses into a number of categories k, having 
similar characteristics in terms of: 
− the cross-section; 
− the entrance resistance; 
− surface water level.  
 
Obviously, in practical situations the watercourses are not parallel, and different types 
can be present. For such situations it is only possible to compute an ‘equivalent’ spacing, 
by dividing the area of a subdomain through the length of watercourse (Ernst, 1978): 

Λk/2 

hs,k 

hmax 

main 
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where 
Lk   = equivalent spacing of watercourses in category k (m)  
Ai  = area of nodal subdomain (m2) 
lk   = total length of watercourses in category k (m). 
 
Ernst (1978) presents and discusses a method for using the equivalent drainage spacing 
in a regional analysis of different flows to watercourses of varying cross-sections and 
spacings. The method takes into account the interdependency of the drainage flows to 
the different categories of watercourses. The route a water droplet takes within the 
groundwater body depends on the total configuration. Even though the method of Ernst 
(1978) is theoretically sound, it is not used here for computational reasons. Instead, we 
use an alternative approach that accounts for combinations of simultaneous infiltration 
and drainage and for the arising combinations of head losses due to ‘horizontal’ and 
‘radial’ flows. 
 
Our approach involves the introduction of an entity the ‘drainage influence span’ as a 
function of the relative strength of the drainage flux towards a certain category of water 
courses. For this we first compute the ‘drainage subarea’ ak of each category of water-
courses according to 
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where Qd,k  is the drainage flux to category of watercourses k within the nodal subdomain 
in [m3 d-1]. The underlying assumption of Eq. 83 is a uniformly distributed recharge over 
the area in the nodal subdomain, whatever the circumstances and the type of drainage 
medium that is involved (small/large watercourse). The absolute values are used, because 
it is also possible that infiltration takes place instead of drainage. And, even more 
complex, it is possible that both drainage and infiltration take place simultaneously within 
the same nodal subdomain. Both directions of flow ‘need’ a certain part of the soil 
volume for the flow, so in that sense both are competing for use of the (same) flow 
medium. For situations with a relatively high density of watercourses, this method entails 
that the situation in a nodal subdomain is schematized to that of (b) in Figure 18. For 
each of the watercourse categories, the mean ‘drainage influence span’ can now be 
calculated with 
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For situations with Λk>√ Ai the schematization as given in Figure 18 becomes 
unrealistic, due to the sideways-elongated form of the drainage subarea. That would lead 
to an over-estimate of the horizontal drainage resistance, because the water would have to 
travel an unrealistic distance in the local flow system. (This does not, however, apply to 
the radial and entrance resistance. The reason for the horizontal resistance being 
different is that Λ itself is in the expression for it, as is evident from Eq. 53.  But Λ is not 
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present in the expressions for the other resistances, as given in Eq. 57 for the radial 
resistance and Eq. 58 for the entrance resistance.) On the other hand, by simply taking 
Λk as  min(ak/lk; √Ai) the estimate would become too low. 
 
In order to arrive at a reasonably sound approximation for the case where Λk exceeds   
√Ai a radial flow formulation can be used as explained in Appendix 2. That method 
yields a correction factor for the horizontal resistance, as compared to the value obtained 
by simply using the value of Λk as given by Eq. 84. Apart from yielding a correction 
factor for the horizontal resistance, the method given in Appendix 2 also yields a form 
factor that differs from the value 2/3 of Eq. 53 (in its simplified linear form). The form 
factor is needed for the drainage calculation, as will be explained subsequently.  
 
Like in the computation of the vertical leakage flux densities we consider the 
groundwater level h  at the nodal point as being representative for a nodal subdomain, 
and we thus interpret it as a mean level. In the case that this level is higher than the 
bottom of a watercourse, one can be sure that the watercourse is active, either involving 
infiltration or drainage. In the case that the level is below the deepest bottom, one can be 
sure that none of the watercourses will be draining. But it is not always so clear-cut. The 
intermediate situation can occur with a watercourse actively draining, even though the 
mean groundwater level is below the bottom of that watercourse. That this possibility 
exists has to do with the local head variation caused by the horizontal drainage resistance. 
For this reason the drainage calculation method also includes the calculation of the 
(unknown) hmax, which is the maximum (local) groundwater level within a nodal 
subdomain. Put more precisely, that is the level at the culmination point between two 
watercourses. Examples of cross-sections of the shallow groundwater are given in Figure 
19 for the line indicated in Figure 18. It is assumed that hmax  is the same for all of the 
drainage subareas, which is of course an approximation. In order to compute it, we first 
formulate the drainage flow equations as if we already know its value, and also the (as yet 
unknown) Λk’s. 
 
For a given hmax and Λk the drainage flux to a category of water courses k can be 
computed as (cf. Eq. 60): 
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where hs,k is the surface water level in water courses of category k, the drainage base. 
Subsequently we can compute the mean head elevation within the drainage subarea ak of 
the nodal subdomain with (cf. Eq. 59): 
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where ζk is the form factor for the horizontal drainage flow of watercourses in category 
k. The weighted mean of hk

m should be equal to the mean groundwater level h in the 
nodal subdomain: 
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In the calculation procedure we have to solve for the following unknowns: hmax and the 
Λk’s, the latter being equivalent to solving for the unknown ak’s. For the solution we use 
an iterative scheme. In the initial step of the very first calculation, we assume that all the 
categories of watercourses have the same ‘drainage influence span’, as given by: 
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For the next steps of the calculation (and for new time steps), we simply use the last 
value as a starting point. The iterative scheme involves the following steps: 
1. Perform the initialization of the drainage spans Λk, the drainage subareas ak, the head 

at the culmination point hmax. 
2. Compute the horizontal drainage resistances ωh. 
3. Compute the Qd,k’s with Eq. 85, and compute the sum of |Qd,k|; then recompute the 

drainage subareas ak  using Eq. 83, and the new drainage spans Λk  using Eq. 84. 
4. Compute the mean head hk

m within the drainage subarea using Eq. 86, and then 
compute the mean level in the nodal subdomain hm,j, using  Eq. 87; compute the new 
hmax. 

5. Now compare the value of hm,j  with the value h obtained of the regional model. 
Return to 2  if convergence of hm,j has not been reached. 

 
Since the drainage flux is recomputed for each surface water time step, the strict 
adherence to the above scheme could lead to a large increase of the computational 
burden. In order to avoid this, a pragmatic approach is followed, involving at most two 
iteration cycles per surface water time step. 
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4.4 Data summary 
 
The input data of the geohydrologic schematization consist of the following parameters 
given per nodal subdomain: 
- thickness of the layers; 
- conductivities in the xy-plane for aquifers, xz-plane for aquitards.  
 
Boundary conditions can be supplied in the form of heads or net fluxes within all nodes 
of the domain. The flow to a well can either involve a head or a flux boundary condition. 
In the latter case we assume that it is always possible to extract the desired amount. In 
order for this assumption to be valid, a separate analysis is required for the detailed 
situation around a well. The extractions are converted to ‘diffuse’ flux densities (dividing 
by area of nodal subdomain). 
 
Drainage characteristics of watercourse categories are supplied in the form of a long list, 
along with the geometry in the separate nodal domains. The watercourses themselves are 
described in §5. Here it is relevant to note that a distinction is made between: 
- watercourses in the conventional sense, with a cross-section; for these the drainage 

characteristics given in terms of: 
- entrance resistance and radial resistance; 
- horizontal resistance; this resistance is optional, because it can also be 

dynamically computed by the model from the basic data (geometry and subsoil 
conductivities) using the iterative scheme given above; 

- field drains, with a radius instead of cross-section; the same resistance data as for 
water courses; 

- gulleys, with the drainage characteristics given in terms of a total drainage resistance 
for the situation when the gulleys just start draining; 

- soil surface, with a drainage depth of zero, and a very low drainage resistance (<1 d). 
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5 Surface water 

5.1 Introduction 
 
Surface water plays a key role in the functioning of many regional hydrologic systems. 
The interaction with the soil water and groundwater can be very complex. Seen from the 
perspective of groundwater, surface water acts as a boundary condition for the 
drainage/infiltration flux; but that flux also influences the surface water dynamics itself. 
Depending on the local conditions, the mobility of the surface water can range widely. In  
lakes and in depressions of the soil surface it is relatively immobile. Therefore lakes are 
modelled as ‘visible’ groundwater (cf. Figure 13). Depression storage is modelled in 
combination with the simplified runoff concept as described in §3.2.1 and §3.3.1.  
 
Large-scale lateral movement of surface water (i.e. transcending the scale of nodal 
subdomains) is assumed to take place through a network of conduits that forms part of 
the model schematization. In the following, we will confine ourselves to this channel 
flow. 
 
 
5.2 Theory 
 
Using the full form of the Saint Venant equations (non-steady gradually varied flow in 
open conduits) for the whole channel network would lead to an unwieldy integrated 
model: compared to the soil water and groundwater submodels the surface water model 
would require a disproportionate amount of computational effort. Therefore a flexible 
modelling concept is used, involving a simplified model for the smaller channels and a 
hydraulic model for the larger ones. Here we confine ourselves to describing the 
simplified concept. 
 
Just like in the soil-water modelling, the dynamics of surface water are simulated with a 
quasi-steady state method, using a stream of steady-state situations. For the steady states 
we assume gradually varied non-uniform flow. The momentum equation can for instance 
be stated as (Chow, 1959) 
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and the continuity (for steady-state flow) as  
 

  latq
dx
dQ

=                                                 (90) 

 
where 
x   = distance along the watercourse (m) 
y   = water depth (m) 
z   = elevation of the channel bottom (m) 
So  = slope of the channel bottom, dz/dx (-) 
Q  = discharge (m3 s-1) 
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α   = energy coefficient (-) 
g   = acceleration due to gravity (m2 s-1) 
C  = Chézy coefficient (m1/2 s-1) 
Af  = cross-sectional area of the water normal to the direction of flow (m2) 
R  = hydraulic radius (Af  divided by the wetted perimeter) (m) 
Dh  = hydraulic depth (Af divided by the width of the free surface) (m) 
qlat  = lateral inflow per unit of length of the channel (m2 s-1) 
 
For handling Eq. 89 we use a dynamic metamodelling method: it is first solved in the 
‘pre-processing’ stage using a hydraulic model, covering a wide range of boundary 
conditions. The results are then stored and subsequently used in the form of hydraulic 
metafunctions. The transitions between the steady-state flow situations are calculated 
using the continuity equation in the form of: 
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5.3 Model implementation 
 
5.3.1 Schematization and hydraulic metafunctions 
 
The watercourses are divided into trajectories. Structures are assumed located at the end 
of a trajectory, with the simulated water level pertaining to the upstream situation just 
before the end. Depending on the detail of the implementation the explicitly modelled 
watercourses can involve even the smallest of ditches.  
 
For a given schematization of watercourses the storage function is used in the form of: 
 
  )( ns,nn hS Ξ=                                              (92) 
 
where S (value) and Ξ (function) represent the storage in the watercourse trajectory n 
(m3) in dependency of the water level hs,n. For deriving the storage function we assume a 
constant cross-section within a trajectory. The function also includes the ‘added storage’ 
in the ditches that are connected to it within a subcatchment (Figure 3). An example is 
given in Figure 20.  
 
In the model implementation we make the assumption that at the end of each trajectory 
there is a unique relationship between the water level and the flow rate. This relationship 
in the form of a metafunction is denoted by: 
 
  )( ns,nn hQ Θ=                                              (93) 
 
where Qn (value) and Θn (hs,n) (function) are the outflow (m3 s-1) from trajectory n.  The 
metafunction Θ(hs,n) can be obtained in various ways, depending on: 
- whether there is a weir or other structure at the end of the trajectory; 
- whether or not a hydraulic model is used for deriving the metafunctions. 
 
 



Alterra-report 913.1  71 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20 Example of a storage function for a trajectory (bottom width 2 m, side slopes 1:1, length 300 m), with 
ditches entering the watercourse at a height of 0.8 m (bottom depth of ditches 0.5 m, side slopes 1:1, total length of 
ditches within subcatchment 1200 m). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21 Example of a discharge function for a trajectory (rectangular short-crested weir with a crest width of 1 m, see 
Eq. 94) 

 
 
Structures 
For structures like weirs and culverts it is possible to use the special relationships 
describing the flow. For a simple rectangular short-crested weir, for instance, one can use 
(see Figure 21 for an example): 
 
  1.5

cns,ns,n )(7.1)( hhwh −=Θ                                      (94) 
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hs,n  = water level in trajectory n (m) 
hc   = elevation of weir crest (m) 
1.7  = weir coefficient (dependent on the type of weir) (m0.5 s-1) 
w   = width of weir crest (m) 
 
For the management of the crest level the model can employ several types of operational 
rules, as described in §6.3.1. In the case of a partially submerged weir the flow becomes 
less than what is given by Eq. 94: both the discharge coefficient and the exponent are 
influenced by the downstream water level. But to stay within the limitations of the model 
code we approximate the flow reduction by inserting the downstream water level hs,n+1 in 
Eq. 94, instead of hc.  Another simplified representation of reality is that if the upstream 
water level rises above the soil surface next to the weir, the water involved in the excess 
head is assumed to flow freely to the next trajectory. 
 
For a culvert, the relationship is given in terms of the head difference: 
 
  )(),( 1ns,ns,1ns,ns,n ++ −=Θ hhchh                                    (95) 
 
where hs,n+1 is the water level in the trajectory downstream of trajectory n, and c is a 
discharge coefficient (m2.5 s-1) depending on the hydrodynamic properties of the culvert 
and the in- and outlet design. In situations with the downstream water level below the 
bottom of the culvert, the bottom-level hc is used instead of hs,n+1.  
 
 
Open water conduits 
For trajectories with unobstructed channel flow the simplest way of deriving the 
metafunctions is by assuming that the flow is uniform and that the influence of the 
trajectories on each other is negligible. By the latter is meant that the flow in the 
trajectories is not influenced by any backwater effects. This method is implemented by 
using the Chézy formula (made explicit by setting dy/dx=0 in Eq. 89) independently for 
each of the trajectories. But in many cases this simplification is inadequate. Then the 
preferred way of deriving the metafunctions is by performing computational experiments 
with a hydraulic model. In an example (Hermans et al., 2004) using SOBEK (WL|Delft 
Hydraulics, 2001) the movable weirs were set to their lowest position. Subsequently, the 
weirs were introduced in SIMGRO using relationships as e.g. given in Eq. 94.  
 
A more sophisticated way of generating the metafunctions is to include the management of 
the weirs in the hydraulic model with which the experiments are made. The disadvantage 
of that method is, however, that each new water management strategy requires doing the 
computational experiments anew. Another point is that the spatial distribution of the 
lateral inflow cannot be accurately foreseen without running the SIMGRO-model first. 
So of course the metamodelling of surface water has its limitations. In addition, to avoid 
anomalies in the simulation results, various amendments have been made to the model 
implementation, as described in §5.3.2.  
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5.3.2 Dynamics 
 
Water balance 
The water balance of a trajectory is written as 
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where  
Sn(ts)   = storage in trajectory n (m3) 
Qout,n(t)  = outflow of trajectory n (m3 d-1) 
Qin,n(t)  = upstream inflow of trajectory n (m3 d-1) 
Qlat,n(t)  = lateral inflow of trajectory n (m3 d-1) 
 
The lateral inflow can be composed of several terms, which can also include extractions. 
The assumption is that these terms are evenly distributed along a trajectory, so that this 
also holds for the net inflow given by Qlat. 
 
Solution scheme 
Solving for the new water levels and discharges is done in two major steps: 
- initially the assumption is made that the outflow from a trajectory (and also the flow 

direction) is uniquely defined for a certain water level, by the outflow metafunction 
Θ as given in Eq. 93 (or Eq. 94/95); 

- the obtained solution is then checked for hydraulic anomalies (like flow to a 
trajectory having a higher water level), and if necessary it is corrected. 

 
Given the assumption in the first solution step that the outflow from a trajectory is 
uniquely defined for a certain water level, it is possible to solve Eq. 96 for each trajectory 
separately, starting from the upstream end to ensure that the solution is based on the 
updated value of Qin. In the case that the outflow metafunction Θ is given as Eq. 95,  the 
downstream water level of the preceding time step is used as the second argument. For 
discharge pumps (§6.3.3), the on/off setting is determined at the start of the time step. If 
a surface water supply link is active (§6.3.2) the extraction and supply rate are also 
determined at the beginning of the time step. For the integration of Qout within the time 
step we use a fully implicit scheme, because it is numerically more stable than a Crank-
Nicholson weighting. The water balance equation is therefore used in the form: 
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where: 
QR,n   = surface runoff from nodes within the subcatchment of the trajectory (m3 d-1); 
QD,n   = drainage to (or infiltration from) the trajectory (m3 d-1); 
QS,n   = extraction of water for sprinkling (m3 d-1); 
QE,n   = extraction of water for water supply to another trajectory (m3 d-1); 
QI,n   = inflow of water supply from another trajectory, using a special link (m3 d-1); 
QU,n  = inflow of water after being processed in a sewage plant (m3 d-1) 
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Figure 22 Combined storage and flux*dt function (Eq. 98, dt=0.01 d) used in solving for the unknown water level 
and outflow:  starting from the evaluated value using Eq. 97 the new water level is found by the inverse table 
interpolation following the arrow; the outflow is then given by  the function shown in Figure 21. 

The surface water system can be highly dynamic, so the time step should be chosen 
accordingly. Typical values used in the implementation of the model are 0.005 – 0.05 d. 
 
No term is included for the precipitation/evaporation, in order to avoid double counting 
with the soil-water submodel. We assume that large tracts of surface water are modelled 
as ‘visible’ groundwater, with the watercourses simply serving as links to the rest of the 
network. 
 
For efficient solving of Eq. 97 we prepare a combined storage-flux function (Figure 22) 
in the form of a table at programme initialization: 
 
  sns,nns,nns,n )()()( thhh ∆Θ+Ξ=σ                                            (98) 
 
For solving Eq. 97 its right-hand side is first evaluated. The solution for hs,n is then found 
through an inverse table interpolation of the storage-flux function (arrows in Figure 22). 
This yields new values for the water level and for the outflow (after inserting the new 
water level in Eq. 93).  
 
It is possible that the outflow from a trajectory n is split at a bifurcation (Figure 23). In 
that case the Θ(hs)-function given by Eq. 93 is a summation of the flows to the manifold 
downstream trajectories of n. After having computed the new water level and the new 
outflow, the outflow is divided over the downstream branches according to the Θn,n+1(hs)-
functions of the separate trajectories diverging from the bifurcation. 
 
Stabilization 
The explicit nature of the over-all solution scheme can lead to instabilities, because the 
levels in the trajectories are solved one-by-one and not as a set. The latter method is 
customary in hydraulic models, which is inherently more stable. However, the dis-
advantage of solving a set of equations is the required computational effort. In SIMGRO 
an alternative way of stabilizing the levels is employed. In the case that the water level 
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wants to rise faster than a pre-set maximum rate (∆hmax), the surplus volume is computed 
and then temporarily stored. All of this volume is then added to the water balance for the 
next time step (as an extra term added to Eq. 97). In Figure 24 an example is given of the 
simulation with and without the described stabilization, for point c of Figure 23. From 
that example it becomes clear that the stabilization is not equivalent to a smoothing 
operation. In this case the over-all model stabilization affects the distribution of the 
discharge at the upstream bifurcation (point b), leading to a systematic shift in the 
discharge that passes the weir at c. 
 

 
Figure 23 Example of a confluence (a) a bifurcation (b), and a weir (c) 

 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24 Example of a simulation with and without the stabilization of the explicit calculation scheme. The systematic 
shift is due to the presence of a bifurcation upstream from the location for which the results are shown. The distribution 
of water over the branches of that bifurcation is affected by the over-all model stabilization, leading to a lower discharge 
in this case 
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Amendments 
Before accepting the new discharge and water level as the final solution, a number of 
checks are made.  Modifications are needed in the following instances, which are further 
explained in the subsequent paragraphs: 
- in the presence of a hydraulic structure, and the computed water level becoming 

higher than the top of the structure, leading to an overflow situation;  
- in the presence of an automated weir, with the computed level lower than the target 

level (see also §6.3.1);  
- if the level is lower than the downstream level; 
- in the presence of a bifurcation and a higher water level (‘flow blocking’) in one or 

more of the branches. 
 
In the presence of a hydraulic structure that gets overflowed (see Hconstr in Figure 28), the 
surplus volume is computed and then added to the outflow. The new water level is made 
exactly equal to the construction height.  
 
In the presence of an automated weir a check is made to see if the target level is reached. 
If not, part of the outflow is used for filling up until the target level. It can happen that 
there is not enough water for doing this; the new water level will then be lower than the 
target, and the outflow is set to zero.  
 
In the case that the downstream water level would otherwise become higher than the 
upstream one, the flow is temporarily ‘put on hold’, or the direction is even reversed. For 
this ‘reverse flow’ we assume that the friction is zero, because it usually will involve only 
relatively small flow rates, that are fed by water supply during dry periods (§6.3.2). The 
frictionless moving of water can be hampered by the discharge function. That is 
especially relevant if there is an obstruction in the watercourse, like a weir or a culvert 
(Eq. 94 and 95). Such a situation is taken into account by assuming that the same 
discharge relationship also holds for flow in the reverse direction, with the up- and 
downstream levels changed around. 
 
A special case of flow blocking can occur at a bifurcation if in one or more of the 
downstream branches the water level becomes higher than that in the upstream 
trajectory. If this occurs the flow to such a branch is (temporarily) set to zero, and 
divided proportionally over the remaining branches. If all of the branches have water 
levels higher than the upstream one, yet another dividing mechanism is brought into 
action: 
- part of the flow is used for raising the water level in the upstream trajectory to that of 

the lowest level in the downstream branches; 
- the remaining part of the flow is sent to the branch with the lowest water level. 



Alterra-report 913.1  77 

 
5.4 Data summary 
 
For practical purposes the following classification into classes of watercourses is used: 
1) primary watercourses, involving canals that traverse the region; the level is 

determined at a supra-regional scale, not in the model; 
2) secondary watercourses, forming the main arteries of the regional system; 
3) tertiary watercourses, usually the ditches; 
4) tile drains; 
5) gulleys/soil surface. 
 
For each surface water trajectory that is explicitly modelled, there must be a specification 
of either: 
- the discharge as a function of the water level (Eq. 93); 
- the discharge as a function of the water level difference with the next trajectory (e.g. 

Eq. 95). 
In the case of a bifurcation there can be several such functions for the flows to the 
multiple downstream  branches. 
 
For specifying the watercourse characteristics, each sub-section traversing a nodal 
subdomain must be specified in a list, with for each segment: 
- the number of the system that is involved (k=0,1,2,..5); k=0 is reserved for 

trajectories that do not have any interaction in the form of drainage, but act only as a 
conduit for the surface water; 

- the length of the segment; 
- the cross-sectional specifications; 
- the nodal subdomain involved; 
- the surface water trajectory that the segment is connected with; 
- the parameters defining the drainage resistance (§4.3.2). 
The use of this table involving the nodal subdomains (instead of a table for the complete 
trajectories themselves) ensures consistency in the model. The parameters are here used 
for making tables of the storage function for the main watercourse (Eq. 92). In the 
groundwater model they are used for the drainage characteristics. 
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6 Water management 

6.1 Introduction 
 
Water management covers many features that have been discussed in the preceding 
chapters. For instance a small waterway that has been dug as a ditch is of course 
‘non-natural’. Its dimensioning is part of the water management scheme. Water 
management is here defined to cover those parts of the system that do not have a 
pendant in the natural world. A fixed weir, for instance, is analogous to a dam-like 
obstruction in a river. Accordingly, its modelling has been discussed in §5. A weir 
that has a movable crest, on the other hand, is distinctly non-natural and therefore 
discussed below.  
 
 
6.2 Land use 
 
6.2.1 Urban areas  
 
The water management of urban areas has evolved in the course of time. Originally it 
was just a question of discharging the rain and sewage water to the surroundings. But 
untreated water led to the spreading of diseases and to eutrophication. This has 
largely been remedied by building treatment plants. Recently the focus has further 
broadened. Whereas in the past urban areas were often considered as a ‘separate 
world’ from the surrounding rural area, there is now an increasing awareness that 
modern water management should be based on an integrated vision. Therefore, the 
SIMGRO-model has an elaborate set of options for modelling the water 
management of urban areas, as depicted by the schematic diagram given in Figure 25. 
 

 
Figure 25 Schematic diagram of storage elements and transmission links in urban areas 
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The fraction of the paved area is specified per nodal subdomain. The model has an 
(optional) rainwater infiltration pond. That is a modern feature of urban water 
management, with the intention of conserving the water by feeding it into the 
groundwater. The inflow is governed by a dividing fraction  (1-fs), and a maximum 
capacity Q2,max. The water can then infiltrate to the subsoil, or else spill over to the 
surface water network (Q3). The other part of the runoff (Q1) goes to the main 
sewage reservoir. This reservoir has a ‘pump over’ capacity (Q4,cap) for transporting 
water to the wastewater treatment plant. In the case of excessive inflow there can be 
direct spilling into the surface water network (Q5). The wastewater treatment plant 
also receives water from housing and industry. After treating the water it is fed back 
into the surface water network (Q7). In theory, a direct spill can also occur; but since 
this is a water quality-calamity, most systems have enough capacity to avoid that 
happening.  
 
 
 
6.2.2 Sprinkled crops 
 
During the growing season, precipitation deficits are likely to occur regularly. If the 
water content of the root zone drops below the reduction point (cf. Figure 5), crop 
growth will be reduced. To avoid this, crops may be irrigated. In the Netherlands, 
sprinkler irrigation is the most common method. Depending on availability and 
legislation, sprinkling is done from surface water and/or groundwater. 
 
In terms of water use efficiency, the performance of sprinkling systems is 
comparatively poor. Water losses due to runoff or percolation to the groundwater 
may be caused by: 
- poor timing of sprinkling; 
- poor dosing of sprinkling; 
- sprinkling irregularities; 
- installation leakage. 
Additional losses are introduced by wind, evaporation and interception.  
 
Sprinkling requirements are determined for each nodal subdomain and land-use type, 
for each time step of the soil water/groundwater model. SIMGRO allows the user to 
specify a sprinkling gift that may be applied with a rotational period. For determining 
the moment to start sprinkling use is made of the mean pressure head in the root 
zone. Sprinkling is triggered when this mean pressure head has fallen below a crop-
related ‘start’ value, and discontinued as soon as it exceeds the ‘stop’ value. Case 
studies, carried out with this modelling concept have shown that these assumptions 
cause realistic amounts of sprinkling water to be simulated (Querner and Van Bakel, 
1989). 
 
The actual sprinkling gift is determined by both demand and capacity, as  
 

   );min( = caps,dems,s QQQ                                            (99) 
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where 
Qs,dem = sprinkling demand (m3 d-1) 
Qs,cap = sprinkling capacity (m3 d-1) 
 
If sprinkling from both groundwater and surface water are enabled, sprinkling from 
surface water has priority. The total sprinkling capacity is calculated as:  
 
  s

caps,
g
caps,caps,    QQQ +=                                          (100) 

 
where: 
Q g

s,cap  = sprinkling capacity from groundwater (m3 d-1) 
Q s

s,cap  = sprinkling capacity from surface water (m3 d-1) 
 
The groundwater extraction capacity is not considered time dependent, or dependent 
on the groundwater conditions. Thus the capacity is simply an input parameter. The 
maximum possible extraction of surface water depends on the prevailing surface 
water conditions. Below a certain critical water level the sprinkling is discontinued. In 
order to effectuate this in the model without causing a water balance violation at the 
moment that the surface water runs dry (or drops below a critical level), the 
sprinkling water is ‘collected’ during the preceding time step of the groundwater 
model, and held in storage until the next one. This algorithm suffices for the time 
steps of less than 1 d that are usually used in SIMGRO (0.25 d is the most common).  
 
During sprinkling the atmospheric conditions are usually hot, as opposed to 
conditions that often prevail when there is natural rainfall. Under normal conditions 
the rainfall of course also evaporates as it falls. However, that has already been 
discounted: only the rain that actually reaches the ground surface is measured at the 
gauging station. Therefore, the evaporation of natural rainfall is not accounted for in 
the model.  With respect to the sprinkling water we assume that a certain fraction is 
lost to evaporation. That is handled as a separate term in the computation of the 
evapotranspiration, for which no discounting is done with respect to the reference 
crop evapotranspiration: 
 
  issprnets,issprspract, /)1(;/ AQfPAQfET −==                      (101) 
 
where  
ETact,spr   = amount of sprinkling water that directly evaporates before  reaching the 
                  vegetated (soil) surface, expressed per unit area of nodal subdomain (m 
d-1) 
fspr (-)    = fraction of the sprinkling water that is lost to evaporation (-) 
Ai      = area of nodal subdomain (m2)  
Ps,net      = the net sprinkling intensity (m d-1) 
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6.3 Surface water 
 
6.3.1 Weirs 
 
Weirs can have advanced technology, including a radio-link to a monitoring point. 
An automated weir has an electro-mechanical gadget for adjusting the height of the 
crest, which can be programmed for achieving a target level at either the upstream or 
downstream side. An upstream control weir can for instance be used in conjunction 
with groundwater management. For that purpose the SIMGRO-code has the 
possibility of letting the weir/target level settings be determined by groundwater 
conditions at a monitoring point.  Then a weir control scheme must be specified in 
the form of a piece-wise linear function, with per record: 
- a groundwater level in the monitoring point i; 
- a target level (or crest level) in trajectory n. 
An example of a target-level control function is given in Figure 26a. The aim of that 
scheme is to achieve ideal conditions for crop growth (Van Walsum and Van Bakel, 
1984; Van Bakel, 1986). In this case the ‘ideal’ groundwater level is thought to be 
4.7 m +MSL, the point where the dashed line (1:1) intersects the function. For 
groundwater levels higher than the ideal one, the target level is lowered in an attempt 
to bring the groundwater level down; for groundwater levels lower than the ideal 
one, the target level is raised.  
 
An example of a downstream control scheme is given in Figure 26b: if the 
downstream level starts to drop below 1.6 m +MSL, the crest level in the upstream 
trajectory is lowered in an attempt to maintain the desired water level. Such a type of  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 26 Weir management schemes: a) upstream control based on groundwater monitoring, aimed at optimizing 
conditions for crop production (soil surface at 5.4 m +MSL); b) downstream control based on surface water 
monitoring, aimed at stabilizing  a downstream water level  
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scheme is commonly used for regulating demand-driven water supply in an irrigation 
channel network. But surface water supply can also be needed for maintaining water 
quality by forcing a certain amount of throughflow, for flushing the system. Then a 
different kind of control is needed as described in the next paragraph. 
 
 
 
6.3.2 Surface water supply links 
 
In SIMGRO it has been made possible to establish special links that involve water 
transfer from one watercourse to the next, as shown in Figure 27.  Such a link does 
not have to involve an existing connection in the network that is used for calculating 
the discharge dynamics as described in §5.3.2; neither is there any constraint on 
creating ‘closed circuits’ in the network in this manner. (Closed circuits are not 
allowed for the discharge dynamics, because the algorithm requires a strict upstream 
to downstream calculation order). No storage is taken into account in the link itself. 
So in order to remain realistic it should not be very long.  
 
The flow regulation is based upon stepwise adjustment of the supply rate, at each 
time step of the surface water model (cf. Figure 27): 
1. By default, the supply rate is incremented each time step as long as the maximum 

supply capacity has not been reached. 
2. Before actually implementing the new supply rate, the following checks are made. 

If one of the following conditions is met the flow rate is decremented instead: 
- if the level in the extraction trajectory n has become lower than the minimum 

level (the source runs dry); 
- if the water level in the supply trajectory m has become higher than the 

maximum allowed level (over-supply); 
- if the desired flow at the flow control trajectory k has been over-stepped 

(over-supply). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 27  Surface water supply link. Water is transferred from trajectory n  to m. Supply control is based on the 
water levels in n and m, and the flow over the weir at k. 
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6.3.3 Discharge pumps 
 
For a pump the management can be specified in the form of a switch, with a ‘start-
level’  and ‘stop-level’ (Hstart and  Hstop, Figure 28). If the water level rises above the 
construction height (Hconstr), the water is free to move over the top. Such a 
construction height is also specified in the input data for weirs and culverts. 
 
 

 
Figure 28 Pumping station, with a start and a stop level for switching the pump on and off. If the water level rises 
above the construction height Hconstr, the structure overflows and the water is free to move over the top
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Appendix 1 Drainage resistances in a multiple layered aquifer 
           system 
 
The schematization used for deriving expressions which relate the phreatic head to 
drain discharge in a multiple aquifer system is depicted in Figure A1.1. 

x=0 x=L/2

c1

cn
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T1

T2

Tn

ϕ1

ϕ2

ϕn

p

ω

R

 
 
Figure A1.1 Schematization used in the derivation of expressions for the drainage resistance in an 
multi-layered aquifer system 
 
 
The set of second order linear differential equations describing the hydraulic heads in 
the aquifers as a function of distance: 
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The general solution to the homogeneous equation can be written as (Ernst, 1983; 
Bruggeman 1999): 
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where λi's are the eigenvalues of the systems equation and βi,j's are elements of the 
transposed eigenmatrix. Note that the first eigenvalue is identical to 0 and yields 
therefore a linear 'x' term in the solution to the homogeneous equation. 
 
The coefficients A1..An-1 and B1..Bn-1 as well as a and b are integration constants to be 
solved by substitution of the boundary conditions  
 
The particular solution is found by elaboration of the recharge term in the systems 
equation and reads (Ernst, 1983): 
 
 
 
 
                                                         (104) 
 
 
 
 
 
So the complete solution is written as: 
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The first boundary to consider is the horizontal flow rate at the water divide at x=0. 
By definition this flow rate equals zero.  This condition is only met when A1 and 
B2..Bn are identical to 0. It reduces the general solution to: 
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The remaining integration constants A2.. An  and b are found by substitution of the 
boundary conditions which hold for x=L/2: 
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where Ω is the combined radial/entry resistance coefficient and p is the surface water 
level. The set of n linear equations with n unknowns Ai is formed by: 
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Solving this equation can be done using an ordinary matrix solver. It is not necessary 
to specify a realistic value for the surface water level, since this parameter is in fact a 
reference level for all the layers. In order to find an expression for the drainage 
resistance the hydraulic head as a function of the distance x to the line drain in the 
upper aquifer is needed: 
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The drainage resistance is defined by: 
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To derive an expression for the 'horizontal' component of the drainage resistance the 
radial resistance coefficient Ω could be set to zero. The hydraulic head in the upper 
aquifer at x=L/2 is identical to the surface water level p. So we have: 
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From Eq. (108)  it can be seen that the constants A1..An-1 are linearly proportional to 
the recharge rate R, hence the ‘horizontal’ component of the drainage resistance 
reads: 
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For application in regional groundwater flow models (e.g. SIMGRO, MODFLOW) 
the drainage resistance is multiplied by the so-called form factor ζ. Then the expression 
should be written as: 
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Appendix 2 Drainage resistance of a short watercourse segment 
 
Here a description is given of the flow within a drainage subarea involving a short 
water course segment. As indicated in section 4.3.2, if the length of a watercourse 
segment is shorter than √ak (with ak as the spatial extent of the drainage subarea in 
m2) the local drainage flow can not be described basing on the assumption that the 
flow takes place within a rectangle along the segment. That is because this 
assumption would imply a sideways-elongated subrea, which is contradictory to the 
idea of the drainage calculation method, involving a droplet taking the shortest route 
to a watercourse. And certainly if it concerns the only segment within a nodal 
subdomain, the assumption of a rectangular flow area is very erroneous, yielding a 
too high estimate of the horizontal drainage resistance. If the on the other extreme 
one would try to remedy this by simply computing the resistance as if the equivalent 
spacing were equal to √ak (or √Ai, in the case of just one segment within the whole 
nodal subdomain), then part of the horizontal resistance would simply be ignored. 
That would yield a too low estimate of the horizontal resistance.  
 
In order to make an intermediate calculation of the resistance with respect to the 
above given extremes, we here follow an approach that does not schematise the 
subarea to a rectangle, but to a quadrant of a circular island, with the watercourse 
segment following a circular course (figure A2.1). In the area on the outside of the 
watercourse (A2), there is converging radial flow towards the watercourse. In the area 
on the inside of the watercourse (A1) there is diverging radial flow. Along the 
boundary we have a zero gradient in the normal direction, and thus a zero boundary 
flux. Inside the area assume a uniform intensity of the drainage flux qd. Thus the 
conditions are satisfied for being able to superimpose the local flow on the regional 
flow (see Section 4.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A2.1 Schematization of the flow within a drainage subarea to flow within a quadrant of a 
‘circular island to a watercourse’ with level hs, involving converging radial flow on the outside of the 
watercourse, and diverging radial flow on the inside of it 
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Let the length of the watercourse segment be given by l. Then the radius R1 of the 
subquadrant enclosed by the watercourse  (Fig. A2.1) is given by: 
 
  ππ /2112

1 lRRl =⇒=                                (114) 
 
The total area A of the quadrant equals the sum of the area on the inside (A1) and 
the area on the outside the watercourse (A2). So we have: 
 
  ππ /22

4
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21 ARRAAA =⇒=+=                         (115) 
 
where R is the radius of the quadrant (m).  For the area on the inside of the 
watercourse we have: 
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In the derivation we use the area A1(r) for calculating the accumulated discharge 
between the origin and radius length r: 
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Similarly, we have for the area on the outside of the watercourse: 
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Now we can describe the flow on the inside of the watercourse with: 
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where the constant C1 is derived from the boundary condition h1(R1) - hs = 0. 
 
For the flow on the outside of the watercourse we have: 
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From the boundary condition h2(R1) - hs = 0 we then obtain: 
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The mean elevation for area A is given by: 
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For area A1 we have: 
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For area A2 we have: 
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Insertion of Eqs. 124 and 125 into Eq. 123 yields for the mean head elevation above 
the surface water level: 
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The form factor is derived by dividing the mean head elevation by h2(R) as given by 
evaluating Eq. 120: 
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For the rectangular drainage subarea we expressed the horizontal drainage resistance 
in the unit [d m-1]. For being able to compare the value with those obtained from a 
radial formula, the resistance is converted to the unit [d], using: 
 
  h

L
h ωγ L=                                             (128) 

 
where ωh is computed with Eq. 53, and the ‘unmodified’ L from Eq. 84. In the case 
that L >√Ai we make a comparison with the value obtained by applying the simple 
‘fix’ of using min(L; √Ai) instead of L in Eq. 128. The latter result we denote by γh

LM. 
For comparing with the method using the radial flow field in a quadrant we compute 
the horizontal resistance by dividing the maximum elevation h2(R) (Eq. 120) through 
the drainage intensity: 
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For the example calculations we use the following fixed parameters: 
A  = 10 000 m2 
R  = 112.8 m 
KD =  10 m2 d-1 
In the calculation examples we compare the results for the ‘rectangular’ drainage 
subarea, and for the radial one as described above.  
 
Table A2.1 Calculation examples, for comparing results obtained with ‘rectangular’ drainage formula and ‘radial’ 
formula. The rectangular formula using unmodified L are given with the superscript L, those with the modified L 
(min(L; √Ai) with the superscript LM, and the ones derived from the radial formula within a quadrant with the 
superscript QUAD 

 
l  
(m) 

R1 
(m) 

γhL 

(d) 
ζhL 

(-) 
γhLM 

(d) 
γhQUAD 

(d) 
ζhQUAD 

(-) 
100.0 63.7 125 0.67 125 147 0.61 
50.0 31.8 500 0.67 250 513 0.74 
25.0 15.9 2000 0.67 500 935 0.84 
12.5 8.0 8000 0.67 1000 1372 0.89 
6.25 4.0 32000 0.67 2000 1812 0.91 

 


