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[1] We considered dense nonaqueous phase liquid (DNAPL) infiltration into a water-
unsaturated porous medium that consists of two horizontal layers, of which the top layer
has a lower intrinsic permeability than the bottom layer. DNAPL is the intermediate-
wetting fluid with respect to the wetting water and the nonwetting air. The layer interface
forms a barrier to DNAPL flow, which causes the DNAPL to spread out horizontally just
above the interface. An analytical approximation has been developed to estimate the
DNAPL pressure and saturation and the horizontal extension of the DNAPL above the
layer interface at steady state for low water saturations. The analytical approximation
shows that the DNAPL infiltration is determined by five dimensionless numbers: the
heterogeneity factor g, the capillary pressure parameter l, the gravity number Ng, the ratio
of the capillary and gravity numbers Nc/Ng, and the critical DNAPL pressure Po

c. Its
predictions were compared with the results of a numerical three-phase flow simulator for a
number of parameter combinations. For most of these combinations the analytical
approximation predicts the DNAPL pressure and saturation profiles at the interface
adequately. Using the analytical approximation, we carried out a sensitivity study with
respect to the maximum horizontal extension of the plume. The extension of the
plumes appears to be highly sensitive to variation of the dimensionless numbers Po

c,
l and g. INDEX TERMS: 1831 Hydrology: Groundwater quality; 1875 Hydrology: Unsaturated zone;

3210 Mathematical Geophysics: Modeling; 3230 Mathematical Geophysics: Numerical solutions;
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1. Introduction

[2] Infiltration of nonaqueous phase liquid (NAPL) into
the subsurface is a serious environmental problem. Al-
though NAPLs may be considered immiscible with water,
they usually have water solubilities which exceed water
quality standards, and therefore may contribute to ground-
water contamination. Several remediation techniques like
removal by pumping have been developed to remove NAPL
from the subsurface. The effectiveness of these techniques
may be poor due to spatial variation of porous medium
properties like intrinsic permeability (k) and porosity (f).
Understanding the mechanisms that control NAPL behavior
in a heterogeneous porous medium and the ability to predict
the subsurface distribution of NAPL is important for the
success of remediation efforts.

[3] Capillary forces play an important role in NAPL flow
in heterogeneous porous media. In a two-phase system, the
capillary pressure, pc, which is the pressure difference
between the wetting and the nonwetting fluid, can be
written as [Leverett, 1941]:

pc ¼ gnw

ffiffiffi
f
k

r
J Sð Þ ð1Þ

where gnw denotes the interfacial tension between the
wetting fluid and the nonwetting fluid. The Leverett J
function J(S) depends on the wetting fluid saturation S, but
is independent of porous medium and fluid properties.
Consequently, if the permeability or the porosity changes
between two layers in a porous medium, continuity of
capillary pressure forces the fluid saturation to be
discontinuous across the interface between these layers.
In turn, this may lead to discontinuities in the relative
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permeability at the layer interface, as the latter is a function
of the fluid saturation. According to Darcy’s law

ui ¼
�kkri

mi
r pi � rigzð Þ; ð2Þ

the Darcy velocity ui of a given phase i is proportional to
the pressure gradient rpi, according to the mobility (kkri)/
mi, which consists of the intrinsic permeability k, the
relative permeability kri and the viscosity mi. In equation
(2) ri denotes density of phase i and g denotes the
gravitational acceleration, which acts in the direction of the
vertical coordinate z. A strong reduction across a
(horizontal) interface of the relative permeability of a
downward infiltrating fluid may reduce the mobility,
which in turn may reduce the fluid velocity across the
interface. This often leads to accumulation of the fluid
above the interface, as demonstrated by several studies that
are outlined below.
[4] The precise effect of changes of porous medium

properties at the interface between layers depends on the
wetting order of the infiltrating fluid relative to that of the
fluids that are present in the medium. When a nonwetting
fluid infiltrates (drainage) into a high permeable layer that
lies on top of a low permeable layer, fluid will accumulate
above the interface between the two layers. Analyses of the
effect of low permeable layers on the infiltration of non-
wetting fluid have been provided by van Duijn et al. [1995],
de Neef and Molenaar [1997], and van Dijke and van der
Zee [1998]. Van Duijn et al. [1995] mathematically derived
a pressure condition in case of discontinuity of permeability
or porosity, which admits solutions of the corresponding
phase saturations. De Neef and Molenaar [1997] studied
2-D infiltration of nonwetting dense nonaqueous phase
liquid into a water-saturated porous medium containing a
single low permeable lens of finite dimensions with a high
entry pressure. They derived an explicit criterion for
DNAPL infiltration into the lens. Van Dijke and van der
Zee [1998] derived expressions for steady state nonwetting
air flow below and through a low permeable horizontal
layer in an initially water-saturated porous medium (air
sparging). They provided an estimate for the radius of
influence of the injected air. With a few modifications, their
analysis applies also to DNAPL infiltration above a water-
saturated low permeable layer. A similar problem has been
studied by Pritchard et al. [2001] for vertical equilibrium
flow over the interface between two layers in layered porous
media. Contrary to de Neef and Molenaar [1997] and van
Dijke and van der Zee [1998], Pritchard et al. [2001] did not
account for capillary pressure.
[5] On the other hand, when a wetting fluid infiltrates

(imbibition) in a high permeable layer flow may be enhanced
by the high intrinsic permeability, but the wetting fluid
relative permeability in such a layer is often strongly
reduced. Therefore, when a wetting fluid flows downward
from a low permeable layer into a high permeable layer,
its mobility usually decreases. Consequently, the wetting
fluid has the potential to accumulate above the high
permeable layer. This is referred to as the capillary barrier
effect. Capillary barriers have been studied extensively with
respect to water infiltration into dry sand of which an
overview has been provided by Schroth et al. [1998].

[6] In this paper, we consider infiltration of an interme-
diate-wetting fluid in a horizontally layered porous medium
as part of a three-fluid phase system. More precisely, in a
water wet soil where both water, the wetting fluid, and air,
the nonwetting fluid, are present, and DNAPL, the inter-
mediate-wetting fluid, infiltrates. This implies that DNAPL
will display wetting fluid behavior with respect to the
nonwetting air and nonwetting fluid behavior with respect
to the wetting water. The DNAPL infiltrates from a point
source into a horizontal low permeable layer, which is
located on top of a high permeable layer. The porous
medium is unsaturated with water and the water saturation
is assumed to be small near the interface between the layers.
Because of the low water saturation we expect that near the
interface, DNAPL displays mainly wetting fluid behavior,
i.e., in interaction with air. Hence the interface between the
layers acts as a capillary barrier for the infiltrating DNAPL
[Walser et al., 1999;Wipfler et al., 2004]. Note that, if in the
given layer configuration the water saturation increases,
DNAPL flow through the interface may be enhanced, as
DNAPL is nonwetting relative to water.
[7] The objective of this paper is to analyze the DNAPL

spreading above the interface using a three-phase flow
simulator and by developing an analytical approximation
that provides an estimate for DNAPL pressure, saturation
and lateral spreading in the area just above the interface
when DNAPL flow has reached a steady state. The analyt-
ical approximation is compared to numerical calculations
with a discussion of differences in the results. The analytical
approximation clarifies the above mentioned interaction
between capillary forces and heterogeneities in a three-fluid
phase system of DNAPL, water and air, a combination of
fluids that is often found in environmental problems.
[8] The use of analytical solutions alongside numerical

simulations has been fruitful in the above discussed studies
by de Neef and Molenaar [1997] and by van Dijke and
van der Zee [1998]. Van Dijke and van der Zee [1997]
have provided another example of using an approximate
analytical solution to investigate a rather complicated three-
phase flow problem. They investigated the redistribution
(horizontal spreading) of LNAPL on the phreatic surface in
a homogeneous porous medium, while incorporating a
model for NAPL entrapment in the constitutive relations.
However, it should be stressed that the physical problem
and the analytical model are entirely different from the work
presented in the present paper. The agreement between all of
these papers, is that (well defined) simplifications are made
to reduce a physical complicated problem to a problem that
can be solved analytically.
[9] The present work extends the analytical model of van

Dijke and van der Zee [1998] where the nonwetting fluid
(air) spreads below a low permeable layer in the two-phase
system (water and air). The agreement between the papers is
that a layered domain is considered and that the same
hydraulic functions are used. However, van Dijke and van
der Zee [1998] considered injection of the nonwetting fluid
air, whereas the present paper describes infiltration of the
intermediate wetting fluid, i.e., DNAPL in the presence of
water and air. Obviously, the direction of the buoyancy
forces is different in the two papers, since air flows
downward and spreads below the interface. More important,
however, is the difference in the way the mobility of the
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infiltrating fluids changes at the interface, caused by the
difference in wetting order of the fluids, as outlined above.
[10] The analytical approximation identifies the key

parameters that define the redistribution of an intermediate
wetting fluid in case of horizontally layered porous media in
a three-phase system. Furthermore, the analytical approxi-
mation can easily be used for parameter combinations
where the numerical procedure becomes less stable or
requires very long computation times. It may also be helpful
to verify newly developed numerical codes.
[11] The paper is organized as follows. In section 2.1

we formulate the (transient) model equations and in
section 2.2 we discuss an example simulation to support
the analysis of the infiltration problem at steady state. We
reformulate the steady state problem in dimensionless
form and identify the governing dimensionless numbers
in section 3.2. We additionally identify DNAPL flow
regimes in section 3.3, which lead to a number of
assumptions that will be used in the analytical approxi-
mation described in section 3.4. In section 3.4 we derive
an ordinary differential equation for the DNAPL pressures
at the layer interface that governs the DNAPL flow at
steady state, followed by a discussion in section 3.5. In
section 4.1 we show the results of numerical calculations
and verify the accuracy of the analytical model by the
numerical results in section 4.2. In addition, we analyti-
cally perform a sensitivity analysis of the effects of the
dimensionless numbers on the lateral extension of
DNAPL at the interface in section 4.3.

2. Model Equations and Numerical Simulation

2.1. Model Equations

[12] We consider the flow of DNAPL and water in a
water wet soil, where additionally air is present at constant
pressure (pa = 0). Assuming that both fluids are incom-
pressible and immiscible, the governing equations for the
flow of water (w) or DNAPL (o) are the mass balance
equation

f
@Si
@t

þr � ui ¼ 0 i ¼ w; o: ð3Þ

ui denotes the 3-D Darcy velocity vector of phase i, given
by equation (2), where the vertical component z is directed
downward, representing the depth below the soil surface. f
denotes the effective porosity, Si denotes the effective
saturation of phase i and t denotes time. We assume that the
soil consists of two horizontal layers, which are isotropic,
but which have different soil properties. The effective
saturations are related through Sw + So = St and St + Sa = 1,
where Sa and St are the effective air and total liquid
saturations. Effective saturations have been derived from the
actual saturations through

Sw ¼ Sw � Swr

1� Swr
; So ¼

So

1� Swr
; St ¼

St � Swr

1� Swr
; ð4Þ

where Swr is the residual water saturation. In the following
we will use the notation Sw, So and St to denote the effective
saturations. We assume that water is the wetting phase, air is
the nonwetting phase and DNAPL is the intermediate-

wetting phase, i.e., DNAPL is wetting relative to air, but
nonwetting relative to water.
[13] The phase pressures pi are linked through the capil-

lary pressure pc
ij as pc

ij = pi � pj, ij = aw, ao, ow, which in
turn are functions of the effective fluid saturations. For the
latter, we use scaled variants of the empirical function of
Brooks and Corey [1966], which account for a distinct entry
pressure, pe, of the nonwetting fluid. For the two-phase air-
water system this functional relation takes the form

Sw ¼ pe

pawc

� �l

; for pawc > pe; ð5Þ

while Sw = 1 if pc
aw � pe. For the three phase air-DNAPL-

water system the relations are

Sw ¼ pe

bowpowc

� �l

for bowp
ow
c > pe; ð6Þ

while Sw = 1 if bowpc
ow � pe, and

St ¼
pe

baopaoc

� �l

for baop
ao
c > pe; ð7Þ

while St = 1 if baopc
ao � pe. l and pe are Brooks and Corey

parameters that represent the structure of the porous
medium. bow and bao are ratios of the involved interfacial
tensions, whose values are related as 1/bow + 1/bao = 1, thus
ensuring continuity of Sw between the two-phase and three-
phase systems, i.e., when So = 0 [Parker and Lenhard,
1987]. For the functional relation between relative perme-
ability and saturation we use the relationships proposed by
Mualem [1976],

krw ¼ S5=2þ2=l
w ð8Þ

and

kro ¼ St � Swð Þ1=2 S
1þ1=l
t � S1þ1=l

w

� �2
: ð9Þ

These relationships apply to the three-phase system as well
as to the relevant two-phase systems, in the sense that we
use St = 1 in equation (9) for the two-phase water-DNAPL
system and that we only use equation (8) for the two-phase
air-water system. Hysteresis is not included in the analysis.
[14] Equations (3) and (2) are solved in the axially

symmetric domain shown in Figure 1, where r is the radial
coordinate. A low permeable horizontal layer lies on top of
a high permeable layer, separated by the level z = z*. The
level z = h corresponds to the position of the water table.
DNAPL is introduced at z = 0 for 0 < r < 1

2
d with an

infiltration rate of u = uin, where d is the diameter of the
source area.
[15] Denoting the intrinsic permeability in the high

permeable layer as k+ and in the low permeable layer as
k�, we introduce a contrast in soil properties by setting
k+ = g

2k�, g > 1. g is the heterogeneity factor. Then,
in agreement with the scaling theory of Leverett [1941]
(see equation (1)), we additionally introduce contrasting
entry pressures pe

+ and pe
� for the top and bottom layer

respectively, with pe
+ = pe

�/g. At the layer interface two
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conditions apply. Capillary pressure across the interface
must be continuous and in addition, conservation of mass
implies that the normal component of the flux across the
interface must be continuous.

2.2. Example of a Numerical Solution

[16] To get a qualitative picture of the behavior of
infiltrating DNAPL in a layered soil, we have carried out
an example simulation with parameter values presented in
Tables 1 and 2. We will use the results of this calculation to
support the subsequent analysis of the infiltration problem.
Further details of the simulator and additional calculations
are presented in section 4.1. Obviously, the numerical
calculation required a finite domain, of which the horizontal
extension was taken so large that DNAPL did not reach the
right-hand side boundary. At this right-hand side boundary
for water the hydrostatic pressure distribution was imposed,
with pw = 0 at z = h, such that the water saturation near the
interface z = z* was small (Sw = 0.016 for this example
calculation). For DNAPL a no flow condition was imposed
at this boundary. At the left-hand side boundary no-flow
conditions were imposed for both water and DNAPL. The
bottom boundary was taken well below the level of the
water table, where for water the consistent hydrostatic
pressure was prescribed, while for DNAPL a pressure
smaller than pw was prescribed, such that DNAPL could
move out of the domain through this boundary. The top
boundary z = 0 was closed to both water and DNAPL,
except for the area of the source, where the DNAPL flow
rate was imposed as described above.
[17] In Figure 2 we show the numerically obtained

DNAPL saturation contours at steady state, i.e., when the

amount of DNAPL flowing into and out of the domain are
approximately equal and the saturation does not change
anymore. The contours show that just above the interface
the DNAPL has accumulated and spread out horizontally,
indicating that for the present water distribution the high
permeable layer indeed acts as a capillary barrier to the
DNAPL infiltration. At steady state, water pressures were
hydrostatically distributed anywhere in the domain, such
that water did not flow anymore. In the entire domain
DNAPL saturations were low, i.e., so not exceeding So <
0.032.

3. Steady State Flow Analysis

3.1. Assumptions

[18] From the example calculation presented in section 2.2
it has become clear that a steady state situation arises, in
which the amount of DNAPL flowing into and out of the
domain are approximately equal. This steady state allows a
number of approximations for the flow equations, such that
an analytically treatable problem remains. The eventual
analytical flow model, which is discussed in section 3.5
below, deals with the accumulation and horizontal spreading
of DNAPL above the interface between the low and the
high permeable layers.
[19] The assumptions for the analytical treatment of the

steady state DNAPL flow are summarized below. We will
specify the conditions for some of these assumptions in
section 3.4. (1) Flow of water is negligible, only DNAPL
flows. Water pressures are distributed hydrostatically
throughout the domain. (2) Distinct flow regimes arise
above and below the interface, respectively. Below the
interface DNAPL flow is gravity-dominated. Above the
interface DNAPL flow occurs at (vertical) gravity-capillary
equilibrium. (3) In the neighborhood of the interface the
medium is water-unsaturated and water saturations are small.
(4) DNAPL saturations are much smaller than 1, although

Table 1. Geometry and Porous Medium Properties Used in the

Numerical Simulations

Parameter Value

h, cm 28.4
z*, cm 8.1
d, cm 1.92
uin, cm s�1 1.667 	 10�8

f 0.4
k�, cm2 6.3821 	 10�8

pe
�, Pa 215
l 2.3
g 1.9
g, m s�2 9.793

Table 2. Fluid Properties Used in the Numerical Simulations

Parameter Value

mw, Pa s 1.0 	 10�3

mo, Pa s 2.0 	 10�3

rw, kg m�3 1000
ro, kg m�3 1600
bao 1.8
bow 2.25
baw 1

Figure 1. Schematic of the axially symmetric domain with
two horizontal layers, separated by the interface at z = z*.
DNAPL infiltrates at the soil level z = 0 with an infiltration
velocity, uin, between r = 0 and r = 1

2
d, and the water table is

located at z = h. The layers have different soil properties; the
upper layer is a low permeable layer indicated by k�, pe

�,
and the lower layer is a high permeable layer indicated by
k+, pe

+.
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saturations above the interface are significantly larger than
below the interface. For the vertical equilibrium region,
sketched in Figure 3, we assume additionally that (5) the
height of the vertical equilibrium area is small relative to its
width, i.e., the horizontal extension of the DNAPL plume,
and (6) infiltration of DNAPL from the top of the domain is
replaced by horizontal injection from the axis of (radial)
symmetry into the vertical equilibrium region.

3.2. Dimensionless Formulation

[20] To facilitate the analysis of the steady state DNAPL
flow, we introduce the dimensionless variables:

T ¼ tUc

fd
; R ¼ r=d; Z ¼ z=d; Uo ¼ uo=Uc; ð10Þ

where Uc =
k�rog
mo

is the intrinsic DNAPL velocity of the low
permeable layer. The source diameter, d, is chosen as the
characteristic length. Hence we define also the dimension-
less distances H = h/d and Z* = z*/d. Dimensionless
pressures are defined as:

Pi ¼
pi

p�e
I ¼ w; o: ð11Þ

Furthermore, we define the dimensionless constants:

Ng ¼
k�rog
mouin

and Nc ¼
k�p�e
mouind

: ð12Þ

Ng is the gravity number and Nc is the capillary number
(both related to the low permeable layer). According to
assumption 1 the water pressures are distributed as,

Pw Zð Þ ¼ Ng

Nc

rw
ro

Z � Hð Þ: ð13Þ

The governing steady state flow equations for DNAPL,
following from equations (2) and (3), are

r � Uo ¼ 0 ð14Þ

Figure 2. Numerically obtained DNAPL saturation contours at steady state. The horizontal dashed line
indicates the interface between the two layers above which the infiltration DNAPL accumulates and
spreads. Parameters values used in the calculation can be found in Tables 1 and 2. The water table is
located at z = 28.4 m, just below the bottom of the domain.

Figure 3. Schematic of the region just above the interface
Z = Z*, between the low and high permeable layers, where
DNAPL flow is assumed to occur at vertical equilibrium. To
derive an analytical approximation for the extent of this
region, we assume that rather than from the top, DNAPL
enters horizontally via a tube with radius 1/2 located at R =
0 at an (dimensionless) infiltration rate equal to the original
rate of p/4Ng. DNAPL leaves the region through the
boundary Z = Z*, where the (vertical) flow velocity is
determined by flux continuity to the high permeable lower
layer. The region is bounded from above by the (no flow)
free boundary at Z = Zb(R), where the DNAPL saturation is
zero. f denotes the maximum horizontal extension of the
DNAPL plume at Z = Z*.
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with

Uo ¼
kror �Nc

Ng

Po þ Z

� �
for Z < Z*

g2kror �Nc

Ng

Po þ Z

� �
for Z > Z*

8>>><
>>>:

ð15Þ

for the low and the high permeable layers, respectively.
Equations (14) and (15) must be solved for the only
remaining unknown Po, separately on the two subdomains.
The solutions are linked by the continuity conditions at the
interface for the DNAPL pressure and the vertical
component of the DNAPL flux, UZ, respectively, i.e.,

lim
Z#Z* Po ¼ lim

Z"Z* Po

lim
Z#Z* UZ ¼ lim

Z"Z* UZ :
ð16Þ

To solve equations (14) and (15), we only need a
constitutive relation for the DNAPL relative permeability,
kro. Using the definition for the capillary pressures and the
assumption that Pa = 0, we rewrite relations (6) and (7) in
dimensionless form as

Sw ¼
Ŝw Po;Pwð Þ for Z < Z*

Ŝw gPo; gPwð Þ for Z > Z*

8<
: ð17Þ

with Ŝw(Po, Pw) = (bow(Po � Pw))
�l and

St ¼
Ŝt Poð Þ for Z < Z*

Ŝt gPoð Þ for Z > Z*

8<
: ð18Þ

with Ŝt(Po) = (bao(�Po))
�l. The difference in the definitions

for Z < Z* and Z > Z* reflects the contrast in entry pressure
between the two layers, i.e., pe

+ = pe
�/g. Then, the DNAPL

relative permeability can be rewritten as

kro ¼
k̂ro Po;Pwð Þ for Z < Z*

k̂ro gPo; gPwð Þ for Z > Z*

8<
: ð19Þ

with k̂ro(Po, Pw ) = kro(Ŝw(Po, Pw), Ŝt(Po)), while kro is
defined by equation (9).
[21] Notice that the definitions of equations (17)–(19) are

valid for Sw < 1 and St < 1, as we will only consider the
fluid-unsaturated part of the soil in the subsequent analysis
(this is also stated in assumption 3). Consequently, we can
also unambiguously define a critical DNAPL pressure Po

c as
a function of Pw, below which the DNAPL saturation is
zero. Taking So = St � Sw = 0 in relations (17) and (18), this
critical pressure is found as

Pc
o ¼

bowPw

bow þ bao
: ð20Þ

To facilitate the analysis, we have derived in Appendix A an
approximate explicit relation between the reduced NAPL

relative permeability k̂ro and Po, Pw. As a result, the relative
permeability given by equation (19) is approximated as

kro ¼

Ck Pwð Þ Po � Pc
o

� �5
2 for Z < Z*

Ck gPwð Þ g Po � Pc
o

� � �5
2¼

g�
5
2
l�2Ck Pwð Þ Po � Pc

o

� �5
2 for Z > Z*

8>>>><
>>>>:

ð21Þ

which applies for small So, i.e., when Po is close to Po
c, with

Ck(Pw) = l5/2 (1 + 1
l )

2 (bow + bao)
5/2 (�Pw)

�(5/2)l�9/2. Since
for the analytical treatment of the flow problem, we assume
that the DNAPL saturation is much smaller than 1
(assumption 4), we can use equation (21) in the derivations.

3.3. DNAPL Flow Regimes

[22] To derive an analytical approximation for the lateral
extension of the DNAPL at the interface between the high
and the low permeable layers, we analyze the regimes of
DNAPL flow above and below the interface. The aim of this
analysis is to derive the DNAPL pressure distribution within
the vertical equilibrium region and the conditions at the
various boundaries surrounding this region. A schematic of
this vertical equilibrium region is presented in Figure 3,
which we explain in detail below. According to assumption
2, the flow in the high permeable layer just below the
interface is only vertical and is dominated by gravity. Hence
we obtain from equation (15) that

UZ � g2kro for Z > Z*: ð22Þ

Using equation (15), the continuity condition (16) for Uz at
the interface yields

lim
Z"Z*

kro �Nc

Ng

@Po

@Z
þ 1

� �
� lim

Z#Z*
g2kro ð23Þ

According to assumption 4, we may safely assume that the
DNAPL saturation is small, hence we use the approxima-
tion (21) in relation (23) to obtain

lim
Z"Z*

@Po

@Z
� �Ng

Nc

g� 5=2ð Þl � 1
� �

ð24Þ

for the vertical pressure gradient just above the interface.
Since we have l > 1, this gradient is approximately equal to
Ng/Nc for sufficiently large values of the heterogeneity
factor g. If the gradient is exactly equal to Ng/Nc, DNAPL
pressures just above the interface are at vertical equilibrium,
as stated in assumption 2. Because of the relatively large
absolute value of the power (5/2)l, the contrast g > 1 needs
not be very large to yield a good approximation of the
vertical equilibrium condition. Additionally, the pressure
derivatives that we obtained from the example calculation of
section 2.2 confirm this conclusion. Consequently, we
assume that in the region just above the interface, where the
DNAPL has spread out horizontally, DNAPL pressures are
distributed hydrostatically, i.e.,

Po R; Zð Þ ¼ P Rð Þ � Ng

Nc

Z*� Zð Þ: ð25Þ

6 of 12

W10101 WIPFLER ET AL.: DNAPL INFILTRATION IN LAYERED POROUS MEDIA W10101



where P(R) = Po(R, Z*) is the DNAPL pressure at the
interface.
[23] On the basis of this pressure distribution, we may

explicitly define this vertical equilibrium flow region, which
is shown in Figure 3. The region is bounded from above by
the level Z = Zb(R), where the DNAPL saturation is equal to
zero, i.e., Po(Zb) = Po

c. This is a no-flow boundary for
DNAPL. Using equation (25), Zb is linked to P as

Zb Rð Þ ¼ Z*þ Nc

Ng

Pc
o � P Rð Þ

 �
: ð26Þ

We define the maximum extension of the plume f, which
occurs at the interface, i.e., Zb( f ) = Z*. As stated in
assumption 6, instead of infiltration from the top, we
assume that DNAPL is introduced via a tube with radius
1/2, located at R = 0 such that the total dimensionless
infiltration rate is equal to the original rate of p/4Ng. The
tube has a height of Z* � Zb(1/2). Along Z = Z* we
impose a boundary condition for the vertical velocity
component UZ, which by flux continuity across the
interface (equation (16)) follows from equation (22) as

UZ R; Z*ð Þ ¼ g2 lim
Z#Z

kro: ð27Þ

Obviously, at steady state the total flow rate through the
interface equals

Z f

1=2

RUZ R; Z*ð ÞdR ¼ p=4Ng: ð28Þ

Finally, we assume that the height of the vertical
equilibrium area is relatively small compared to the
horizontal extension of the plume (assumption 5) and that
the water saturations are small in this region, as
demonstrated in the numerical example of section 2.2.
Therefore we may consider Pw and Po

c, which according to
equation (20) depends on the hydraulically distributed Pw,
as constant throughout the region. For the water pressure
we take the constant value, Pw*, equal to that at the
interface Z = Z*, which follows from equation (13).
Consequently, the relative permeability defined by Equa-
tion (21) depends on Po only, i.e., kro = k̂ro(Po, Pw*) in the
vertical equilibrium region.

3.4. Analytical Flow Model

[24] Similar to the analysis of van Dijke and van der Zee
[1998], we solve equation (14) combined with the first
expression of equation (15) in the vertical equilibrium
region presented in Figure 3, subject to the above described
boundary conditions, to obtain the DNAPL pressure at the
interface, P(R) = Po(R, Z*). Notice that also the free
boundary Zb(R), hence the maximum extension f, is un-
known and will be part of the solution. First, we integrate
the mass balance equation (14) in radial coordinates over
the height of the region, yielding

Z Z*

Zb

@RUR

@R
þ R

@UZ

@Z

� �
¼ 0: ð29Þ

Using UR(R, Zb) = UZ(R, Zb) = 0, where UR and UZ are the
horizontal and vertical components of the DNAPL velocity,
respectively, equation (29) becomes

@

@R
R

Z Z*

Zb

UR R; Zð ÞdZ
 !

þ RUZ R; Z*ð Þ ¼ 0: ð30Þ

To evaluate the first term of equation (30), we derive from
equation (25):

@Po R; Zð Þ
@R

¼ dP Rð Þ
dR

and dZ ¼ Nc

Ng

dP Rð Þ: ð31Þ

Using equation (15) and the definition of the reduced
relative permeability (21) we find

Z Z*

Zb

UR R; Zð ÞdZ ¼ � Nc

Ng

Z Z*

Zb

k̂ro Po R; Zð Þ;Pw*ð Þ @Po R; Zð Þ
@R

dZ

¼ �N 2
c

N 2
g

D P Rð Þð Þ dP Rð Þ
dR

ð32Þ

whereD is defined asD(P) =
R
Po

c
P k̂ro(x,Pw*)dx.

[25] At the boundary Z = Z* condition (27) applies, where
we use definition (21) to write limZ"Z*kro = limZ"Z* k̂ro(gPo,
gPw) = k̂ro(gP, gPw*). Hence equation (30) is written as

�N 2
c

N 2
g

d

dR
RD Pð Þ dP

dR

� �
þ Rg2k̂ro gP; gPw*ð Þ ¼ 0: ð33Þ

Integration of the mass balance equation (30) over R from
R = 1/2 to R = f, to which we apply condition (28), gives the
flux boundary condition at R = 1/2

�2p
N 2
c

N 2
g

RD Pð Þ dP
dR

�����
R¼1=2

¼ p
4Ng

: ð34Þ

Hence we solve the boundary value problem for P

�N 2
c

N 2
g

d

dR
RD Pð Þ dP

dR

� �
þ Rg2k̂ro gP; gPw*ð Þ ¼ 0 for

1

2
< R < f

�2p
N2
c

N2
g

RD Pð Þ dP
dR

�����
R¼1=2

¼ p
4Ng

; P fð Þ ¼ Pc
o

8>>>><
>>>>:

ð35Þ

Because the maximum horizontal extension, f, of the
DNAPL is unknown, an additional boundary condition is
required to solve problem (35). Van Dijke and van der Zee
[1998] have shown that this condition can be derived
considering that at steady state the free boundary Zb(R) is
tangential to the DNAPL flow direction at R = f. This leads
to the condition for the gradient of P at f

lim
R!f

d P

d R
Rð Þ

� �2

¼ lim
R!f

�g2
N 2
g

N 2
c

k̂ro P;Pw*ð Þ
k̂ro gP; gPw*ð Þ

: ð36Þ
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Since for R ! f P approaches Po
c, we apply the

approximations equation (21) to obtain the boundary
condition

d P

d R
fð Þ ¼ �g�5

4
l Ng

Nc

: ð37Þ

[26] We iteratively solve the differential equation of
problem (35) as an initial value problem starting at R = f,
while varying the values of f, until the condition at R = 1/2
is matched. Further detail of the numerical solution of
problem (35) is given by van Dijke and van der Zee
[1998]. After the solution for P and f is obtained, the full
solution for the DNAPL pressure Po in the vertical equilib-
rium region can immediately be derived from equation (25).

3.5. Discussion

[27] Mathematically, problem (35) is the same as the flow
problem studied by van Dijke and van der Zee [1998].
However, as mentioned in the introduction, the underlying
physical problem exhibits two important differences. On the
one hand, we consider a three-phase system instead of a
two-phase system, in which Po

c reflects the effect of the
presence of the (wetting) water phase on the flow of the
(intermediate wetting) DNAPL phase. In the limiting case,
water is entirely absent, i.e., when Pw ! �1 and, accord-
ing to equation (20), Po

c ! �1, DNAPL will spread
infinitely at the interface. Hence we may expect the DNAPL
spreading to grow with decreasing Po

c.
[28] On the other hand, whereas in the model of van Dijke

and van der Zee [1998] the heterogeneity reduces both the
intrinsic permeability and the relative permeability to cause
the infiltrating fluid to spread near the interface between the
layers, the heterogeneity has opposite effects on these
parameters in the present problem. Going from the low to
the high permeable layer, the effect of the heterogeneity can
easily be illustrated by considering the approximation
for the DNAPL relative permeability, equation (21).
Between the low permeable layer and the high permeable
layer the intrinsic permeability increases with a factor g

2

whereas the relative permeability reduces, according to the
approximation, with a factor g

�(5/2)l�2. Considering the
approximate vertical flux through the interface given by
equation (27), we still find an overall reduction of the
mobility of g�(5/2)l.This mobility reduction illustrates that
increasing either g or l, both of which are always larger
than 1, enhances the spreading of the DNAPL.

[29] Additional to the discussed dimensionless numbers
Po
c, g and l, problem (35) also contains the dimensionless

numbers Ng and Nc representing the ratio between gravity,
viscous forces and capillary forces, although these numbers
appear in the combinations Nc/Ng and 1/Ng. Using the
analytical approximation, we will show the effect of each
of these numbers on the DNAPL spreading in the next
section.

4. Results and Discussion

4.1. Numerical Computations

[30] We have carried out a number of flow calculations
for the full problem of DNAPL infiltration described in
section 2.1 and compare the resulting steady state DNAPL
distributions with those computed from the analytical ap-
proximation of section 3. The simulations have been carried
out using a fully implicit, 2-D axially symmetric, integrated
finite difference multiphase flow code called STOMP with
fully implicit time differencing [White and Oostrom, 1996].
In this code, the set of equations (3) and (2) are solved with
a multivariable, residual based Newton-Raphson iteration
technique. Upwind interfacial averaging is used to approx-
imate the relative permeabilities. Further details of the
simulator are given by White and Oostrom [1996].
[31] The boundary conditions for the simulations have

been imposed as described in section 2. The 2-D computa-
tional domain consisted of 6210 cells. The grid was refined
near the source and the layer interface, with the horizontal
and vertical grid spacing varying from Dr = 0.12 cm to Dr =
0.6 cm and from Dz = 0.04 cm to Dz = 0.8 cm, respectively.
The values of the nontransformed physical soil and fluid
parameters, which were used in the simulator, are presented
in Tables 1 and 2. These have been taken for the base case
(case 1), of which preliminary results have been presented
in section 2.
[32] Compared to this base case, the dimensionless

numbers defined in section 3, have been varied as indicated
in Table 3. In cases 2 and 3 Po

c has been varied by adjusting
the hydrostatic water pressure, i.e., by varying h. In cases 4
and 5 the ratio Nc/Ng has been varied by varying the
source diameter d, in cases 6 and 7 the capillary contrast
g has been varied, in cases 8 and 9 the porous medium
property l has been varied and in cases 10 and 11 Ng has
been varied by varying the infiltration velocity uin. In case
12 the DNAPL has been replaced by an LNAPL. For
this case the NAPL density has been given the value ro =
800 kg m�3. By simultaneously increasing the values of
k� to 1.2764 10�7 cm2 and of d to 3.84 cm, the dimen-
sionless numbers have been kept the same as for case 1.
[33] For the base case, we found that the spreading of the

plume above the interface is sensitive to the vertical
discretization. For example, decreasing the Dz from the
cells around the interface from 0.08 cm to 0.04 cm increased
the spreading of the plume by up to 2.5%. Because of
computational restrictions we have not decreased the grid
size any further. This may imply that the simulator slightly
underpredicts the spreading of the plume. In every case the
flow became stationary. We defined the steady state time as
the time beyond which the flux across the interface is more
than 99.4% of the infiltrating flux. The steady state time for
the cases 1 to 12 varied between 28.4 yr. (case 8) and 80 yr.

Table 3. Dimensionless Parameters and Numbers Used in the

Computations

Case g l Po
c Nc

Ng

1
Ng
, 	 10�6

1 1.9 2.3 �5.126 0.716 3.334
2 1.9 2.3 �3.611 0.716 3.334
3 1.9 2.3 �5.265 0.716 3.334
4 1.9 2.3 �5.126 0.573 3.334
5 1.9 2.3 �5.126 0.955 3.334
6 1.7 2.3 �5.126 0.716 3.334
7 2.05 2.3 �5.126 0.716 3.334
8 1.9 2.0 �5.126 0.716 3.334
9 1.9 2.5 �5.126 0.716 3.334
10 1.9 2.3 �5.126 0.716 2.500
11 1.9 2.3 �5.126 0.716 4.168
12 1.9 2.3 �5.126 0.716 3.334
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(case 9). The computation time was approximately 4 hours
using a 300 MHz processor.
[34] Note that the scale of the simulated flow problems is

smaller than for most realistic problems, because of restric-
tions concerning convergence, grid size and computation
time. However, the dimensionless analysis shows how the
simulations can be scaled up without changing the results.
E.g., multiplication of the extension of the domain, the
diameter of the source, d, the intrinsic permeability of
the low permeable layer, k�, and the entry pressure, pe

�,
by the same factor, keeps the dimensionless numbers the
same as in the presented calculations. Furthermore, a larger
and probably more realistic extension of the plume above
the layer interface can be obtained by increasing g or l, as
discussed in section 3.5. However, increasing these factors
leads to numerical convergence problems and it requires a
much finer grid and significantly larger computation times.
Fortunately, the analytical approximation still provides a
good estimate of the plume extension at steady state as we
will show in the next subsection.

4.2. Comparison of Analytical and Numerical Results

[35] In Figure 4 both the analytical and the numerical
solutions for the DNAPL pressure Po � Po

c at the interface
level Z = Z* are presented as a function of the radial
coordinate R for the parameters of case 1. The maximum
horizontal extension of the plume f is attained where Po �
Po
c = 0. The profiles show good agreement, although near

R = 1/2 the two solutions deviate slightly, which is probably
caused by the different DNAPL inflow conditions. Further-
more, the analytical solution underestimates the extension
of the plume by about 15%. The assumptions in the
analytical approximation of strictly gravity-driven flow
below the layer interface and of complete vertical pressure
equilibrium just above the interface contribute both to this
underestimation. In addition, in the analytical approxima-
tion Po

c has been assumed constant, equal to the value at Z =
Z*, throughout the vertical equilibrium region, which is a
slight overestimation of the numerically obtained values.
[36] For comparison, we present in Figure 5 the analyt-

ically and numerically calculated DNAPL saturation pro-
files at the interface for the parameters of case 1. For the
analytical approximation, this profile has been calculated

from the Po � Po
c values presented in Figure 4, using

equations (17) and (18), where for the water pressure the
value Pw(Z*) has been taken from the hydrostatic distribu-
tion (13). The agreement between the two solutions is
similar to that for the pressure profiles of Figure 4, although
the agreement is worse near R = 1/2 as a result of the
nonlinear relation between saturation and pressure.
[37] To quantify the agreement between the analytically

and numerically obtained solutions, we have compared the
maximum extensions of the plume at Z = Z*, which we refer
to as fa and fn, respectively, through the relative error ( fn �
fa)/fn. In Figure 6 the relative error is presented as a function
of the normalized dimensionless parameters. As shown in
Figures 4 and 5, for case 1 fa = 10.8 and fn = 12.7, such that
the relative error of the reference case was 14.9%. Accord-
ing to Figure 6, increasing either l or g results in a better
agreement of the analytical approximation with the numer-
ical calculation, whereas 1/Ng and Ng/Nc hardly affect the
accuracy of the analytical solution. As discussed in section
3.5 both g and l lead to an increase of the mobility
difference across the interface which increases the agree-
ment with the assumptions underlying the analytical ap-
proximation. Furthermore, if the critical DNAPL pressure
Po
c decreases, the relative error decreases. Notice that a

decrease of Po
c corresponds to an increase of the normalized

value, as Po
c is a negative value. Finally, the analytical

approximation for the LNAPL simulation is equally accu-
rate as for DNAPL. For this case the numerically obtained
extension fn = 12.9, with a relative error of 16.3%.

4.3. Sensitivity Analysis

[38] To quantify the effect of the dimensionless parame-
ters on the spreading of the plume above the interface, we
have performed a sensitivity analysis for the horizontal
extension f of the plume using the analytical approximation.
The analytically calculated extensions fa of the plume are
shown in Figure 7, normalized by the value fa1 = 12.7 for
case 1, as ( fa � fa1)/fa1. Notice that we have considered
extensions for a fairly wide range of the parameters, which
we would not have been able to obtain numerically because
of the computational problems discussed above, although
convergence restrictions of the analytical approximation

Figure 4. Dimensionless numerically and analytically
calculated DNAPL pressure profiles at the interface
between the low and the high permeable layers for the
parameters of case 1. When Po � Po

c = 0, the maximum
extension of the plume is reached.

Figure 5. Numerically and analytically calculated DNAPL
saturations at the interface between the low and the high
permeable layers for the parameters of case 1.
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still require a limited increase of the normalized Po
c and l.

The extension of the plume appears to be particularly
sensitive to l and g, because these parameters strongly
affect the mobility differences across the interface. The
cases with larger l and g values are more interesting than
those with smaller values, as the former give very good
approximations of the numerically obtained plume exten-
sion, according to Figure 6, and are difficult to obtain
numerically. In agreement with the discussion of section
3.5 the value of Po

c has a considerable effect on the plume
extension. When Po

c decreases (i.e., when the normalized
Po
c increases) less water is present and the NAPL can

spread out further. Similarly, increasing the value of Nc/Ng,
which represents the absolute value of the entry pressures,
as Nc/Ng = pe

�/(rog), leads to a larger extension. However,
from Figure 6 we conclude that the corresponding analytical

approximations to the numerical results are not increasingly
more accurate. Finally, 1/Ng, which represents the effect of
the infiltration rate, has only a small effect on the spreading
of the plume.

5. Conclusions

[39] We have considered DNAPL infiltration into a water-
unsaturated porous medium that consists of two horizontal
layers, of which the top layer has a lower intrinsic perme-
ability than the bottom layer. DNAPL is intermediate-
wetting relative to the wetting water and the nonwetting
air. We have demonstrated that the layer interface forms a
barrier to DNAPL flow due to the fact that the DNAPL
mobility is lower in the high permeable layer, which causes
the DNAPL to spread out horizontally just above the

Figure 6. Relative error of the numerically and analytically obtained plume extension as a function of
the dimensionless parameters. The dimensionless parameters are normalized by those of case 1. The
LNAPL simulation has been carried out for the parameters of case 1 but with a different NAPL density.

Figure 7. Sensitivity of the extension of the plume at the interface, f, to dimensionless parameters
relative to the extension for case 1. Also, the dimensionless numbers are normalized by those of case 1.
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interface. As a result, the DNAPL pressure distribution just
above the layer interface is close to vertical equilibrium,
while below the interface DNAPL flow is approximately
gravity driven. On the basis of these observations, we have
developed an analytical approximation to estimate the
DNAPL pressure and saturation and the horizontal extension
of the DNAPL plume just above the layer interface at steady
state for low water saturations.
[40] The analytical approximation shows that the steady

state DNAPL infiltration is determined by 5 dimensionless
numbers: the heterogeneity factor g, the Brooks and Corey
capillary pressure parameter l, the gravity number Ng, the
ratio of the capillary and gravity numbers Nc/Ng, and the
critical DNAPL pressure Po

c, which indicates the effect of
the water saturation on the flow of DNAPL.
[41] To test the validity of the analytical approximation,

we have compared its predictions with the results of a three-
phase flow simulator for a number of parameter combina-
tions. For most of these combinations the analytical
approximation predicts the DNAPL pressure and saturation
profiles at the interface adequately, although it slightly
underestimates the horizontal spreading of the plume at
the interface. We have shown that for increasing g and l,
which lead to larger mobility differences across the layer
interface, the accuracy of the approximation improves. The
approximation improves also for decreasing Po

c, indicating
lower water saturations. In general the analytical approxi-
mation improves when the horizontal spreading is larger.
The analytical model provides an accurate prediction of the
numerically obtained horizontal spreading when the
DNAPL is replaced by an LNAPL under otherwise similar
conditions.
[42] Using the analytical approximation, we have carried

out a sensitivity study with respect to the maximum hori-
zontal extension of the plume. It turns out that the extension
of the plumes appears to be highly sensitive to variation of
the dimensionless numbers Po

c, l and g. The extension
increases for increasing values of l and g and for decreasing
values of Po

c.

Appendix A: Relative Permeability
Approximation

[43] For Po close to the critical NAPL pressure, Po
c,

the reduced NAPL relative permeability k̂ro can be
approximated by an expansion in terms of Po � Po

c. From
equation (18) follows that

Ŝt Poð Þ ¼ �1

baoPo

� �l

¼
�1

baoPc
o

Po�Pc
o

Pc
o

þ 1

0
@

1
A

l

¼ �Pwð Þ�l
1� bao

Po � Pc
o

�Pw

� ��l

; ðA1Þ

where we have used definition (20) for Po
c and the constraint

1/bao + 1/bow = 1 to find Po
c = Pw/bao. Using the binomial

expansion (1 + x)a = 1 + ax + O(x2) for small x, we obtain
for Ŝt the first-order approximation

Ŝt Poð Þ � �Pwð Þ�l
1þ lbao

Po � Pc
o

�Pw

� �
: ðA2Þ

Similarly, we approximate Ŝw, defined in equation (17), by

Ŝw Po;Pwð Þ ¼ �Pwð Þl 1� bow
Po � Pc

o

�Pw

� ��l

� �Pwð Þ�l
1þ lbow

Po � Pc
o

�Pw

� �
ðA3Þ

where we have again used definition (20) for Po
c to find

Po
c � Pw = (�Pw)/bow. Note that by introducing Po

c into
equation (A1) we have obtained an artificial dependence of
St on Pw. We did this to obtain a similar form of the equation
as equation (A3).
[44] To approximate the NAPL relative permeability, we

substitute expressions (A1) and (A3) in equation (9) to find

k̂ro Po;Pwð Þ � l1=2 bao þ bowð Þ1=2 Pwð Þ� 5=2ð Þl�5=2
Po � Pc

o

� �1=2
� 1þ lbao

Po � Pc
o

�Pw

� �1þ1=l
"

� 1þ lbow
Po � Pc

o

�Pw

� �1þ1=l
#2

ðA4Þ

Using again the binomial expansion, we obtain the final
approximation

k̂ro Po;Pwð Þ � Ck Pwð Þ Po � Pc
o

� �5=2 ðA5Þ

where Ck(Pw) = l5/2 (1 + 1
l )

2(bow + bao)
5/2 (�Pw)

�(5/2)l�9/2.

Notation
Ck DNAPL relative permeability coefficient.
d diameter of DNAPL source, m.
D dimensionless relative permeability integral.
f dimensionless radial position of the free boundary

Zb of the DNAPL plume at Z = Z*.
g gravity, m s�2.

h(H) (dimensionless) distance from the soil surface to
the water table, m.

k intrinsic permeability, m2.
kri relative permeability of phase i.
k̂ri reduced relative permeability of phase i.
Nc capillary number.
Ng gravity number.
P dimensionless DNAPL pressure at Z = Z*.

pi(Pi) (dimensionless) pressure phase i, Pa.
pc
ij(Pc

ij) (dimensionless) capillary pressure fluid i and j, Pa.
pe entry pressure, Pa.
Po
c dimensionless critical NAPL pressure, Pa.

r(R) (dimensionless) radial coordinate, m.
Si(Si) (effective) saturation phase i.
t(T) (dimensionless) time, s.

ui(Ui) (dimensionless) velocity of fluid phase i, m s�1.
uin infiltration velocity, m s�1.
Uc characteristic velocity, m s�1.

z(Z) (dimensionless) vertical coordinate, m.
bij scaling coefficients for fluid phase i and j.
g heterogeneity factor.

gnw interfacial tension between the wetting and the
nonwetting fluid, N m�1.
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l Brooks and Corey porous medium parameter.
mi viscosity phase i, Pa s.
ri density phase i, kg m�3.
f effective porosity.

Subscripts
a air.
b boundary.
o DNAPL.
r residual.
R radial direction.
t total.
w water.
Z vertical direction.

Superscripts
c critical.
+ high permeable porous medium.
� low permeable porous medium.

* layer interface.
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