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Abstract. A literature review of freshwater (model) ecosystem studies with neurotoxic insecticides was
performed to assess ecological threshold levels, to compare these levels with the first tier approach within
European Union (EU) administration procedures, and to evaluate the ecological consequences of exceeding
these thresholds. Studies published between 1980 and 2001 were reviewed. Most studies covered organo-
phosphates and synthetic pyrethroids in lentic waters. The most sensitive taxa were representatives of
crustaceans, insects and fish. Based on toxic units, threshold values were equivalent for compounds with a
similar mode of action. This also accounted for the nature and magnitude of direct effects at higher
concentrations. Although laboratory single species toxicity tests may not allow predictions on precise
ecological effects, some generalisations on effects and recovery can be made with respect to acute standard
laboratory EC50 data. The NOECecosystem usually is a factor of 10 or more higher than first tier acceptable
concentrations, particularly in the case of single applications and acetylcholinesterase inhibitors. Accept-
able concentrations, as set by the EU first tier approach, appear to be protective. Recovery of sensitive
endpoints usually occurs within 2 months of the (last) application when peak concentrations remain lower
than (0.1–1) · EC50 of the most sensitive standard test species. The consistency of response patterns found
in model ecosystem studies can be useful when estimating the ecological risks of pesticides. The use of an
effect classification system was also helpful in evaluating effects.

Keywords: Organophosphorus insecticides; carbamates; synthetic pyrethroids; freshwater ecosystems; risk
evaluation

Introduction

From their introduction, the use of pesticides has
increased tremendously since the time when they
were successfully deployed in strategies to increase
crop productivity. The quantity of pesticides sold
world wide to the agricultural sector had reached
over 1.3 million metric tons of active ingredients
by 1995 (FAO, http://www.fao.org/statistical

databases/mean of production/pesticide trade/).
Of this amount, 295 thousand metric tons (about
23% of the 1995 total sales) was attributable to
insecticides.

In many situations, aquatic ecosystems form
highly integrated parts of agricultural areas be-
cause they provide water and drainage facilities.
With the pesticide application techniques in use
for crop protection, it is inevitable that fractions
of applied insecticides will enter aquatic ecosys-
tems. Entry routes of pesticides into adjacent
bodies of water resulting from normal agricultural
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usage include spray drift, runoff, and leaching
(e.g., Ganzelmeier et al., 1995; Capri and Trevi-
san, 1998; Van de Zande et al., 2000). Programmes
and studies focusing on the detection of pesticides
in an aquatic environment report traces of these
toxicants in various bodies of water (Wan, 1989;
Thoma and Nicolson, 1989; Frank et al., 1990;
Teunissen-Ordelman and Schrap, 1996; Lahr and
Banister, 1997; Liess and Schulz, 1999; Leonard
et al., 2000). Hence, it is demonstrated that non-
target species living in water catchments of agri-
cultural areas are potentially at risk when they
have similar toxicant receptors as the target
organisms. Pesticide admission and regulatory
authorities have therefore been set up to control
and reduce the undesirable impacts of pesticide
usage on the environment.

Essentially, risk assessment is done by com-
paring concentrations expected, or found, in the
environment with concentrations of that pesticide
considered acceptable by regulatory authorities. In
many countries (e.g., EU countries and the US) a
tiered approach for aquatic risk assessments is
being applied. The concept of this approach is that
when passing through the tiers, the estimates of
exposure and effects become more accurate as
uncertainty is reduced through the acquisition of
more data. The lower tiers are more conservative
while higher ones are more realistic (Campbell
et al., 1999; Solomon, 2001).

In the first tier risk assessment, criteria are
based on the toxicity data of a small set of
standard test species generated in the laboratory
which are then multiplied by a safety factor (EU,
1997; US-EPA, 1998). This method is sometimes
considered to be very strict and has been the
subject of debate (e.g., Maund et al., 1998; Giesy
et al., 1999). Issues concerning the adequacy of
the first tier risk assessment is one of the reasons
calling for higher tier risk evaluation, as this
type of evaluations consider the outcome of
ecotoxicological studies under more realistic
exposure conditions in combination with greater
ecological realism.

Microcosm and mesocosm studies form an
important part of the research that has been
done to validate first tier water quality criteria
for pesticides and/or to assess their ‘regulatory
acceptable concentration’ in surface waters.
These studies have been done with various active

ingredients and under a wide range of condi-
tions. Major differences in conditions between
studies are location (e.g., climatological or
biogeographical regions) and types of natural
and experimental ecosystems used (e.g., plankton
or macrophyte-dominated systems, experimental
ponds or streams). The relatively large amount
of data generated by these freshwater ecosystems
provide the opportunity to detect whether there
are predictable concentration-effect relationships
and/or other generalities in effect patterns
between studies.

The present review focuses on the ecological
impact of neurotoxic insecticides. We considered
two groups: acetylcholinesterase inhibitors (or-
ganophosphates and carbamates) and synthetic
pyrethroids.

Data presented here are based mainly on
experiments in freshwater model ecosystems since
descriptive hydrobiological field research into the
effects of insecticides is scarce. Following the
terminology used by the European Workshop on
Freshwater Field Tests (EWOFFT), these sys-
tems are also called microcosms (tanks/ponds
with a water volume <15 m3 or experimental
streams <15 m in length) or mesocosms (sys-
tems >15 m3 or >15 m, respectively) (Crossland
et al., 1994). An advantage of experimental
ecosystems is that they can be replicated, and
several concentrations of a pollutant can be
tested simultaneously. The pros and cons of
working with model freshwater ecosystems are
discussed by Brock et al. (1995a), ECETOC
(1997), and Caquet et al. (2000).

Objectives of the present literature review are:
(a) to list ecological threshold values (e.g.,
NOECeco and LOECeco) for individual insecti-
cides as established experimentally by means of
freshwater model ecosystems or adequate field
studies, (b) to compare NOECecos with
established first tier water quality criteria for
insecticides in surface water and (c) to assess the
ecological consequences of exceeding the first tier
water quality criteria.

We consider NOECeco to be the highest tested
concentration at which no, or hardly any, effects
on the structure and functioning of the studied
(model) ecosystem are observed. The LOECeco is
the lowest tested concentration at which significant
treatment-related effects occur.
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Methods

Literature reviewed

The literature database available at our Institute
served as a basis for the study. This database has
been built up over the years and kept up-to-date
by means of the literature bulletins ‘Chemical
Abstracts’ and ‘Current Contents’. The existing
database was checked for possible gaps through a
specific literature search, using the program
‘Winspirs’ (version 4.0). This program was used to
search the databases of ‘Agris Current’ (from 1980
onwards), ‘Biological Abstracts’ (from December
1989 onwards), and ‘CAB-Abstracts’ (from 1980
onwards). Publications up to and including June
2001 were included in this search. Furthermore, we
included recent studies done by our own research
group, which are still in the process of being
published (Van Wijngaarden et al., submitted ‘a’;
Roessink et al., in press; Van Wijngaarden et al.,
submitted ‘b’).

Criteria for the selection of suitable microcosm and
mesocosm studies

The yielded ecotoxicological studies were screened
on the following criteria:

1. Test systems used represent a realistic freshwa-
ter community (organisms of various trophic
levels are present).

2. Description of the experimental set-up is ade-
quate and unambiguous.

3. Exposure concentrations relevant to the study
are reported or can be derived (at least nomi-
nal concentrations are known).

4. Investigated endpoints are sensitive to the sub-
stance in that direct effects on these endpoints
are related to the working mechanisms of insec-
ticides. Arthropods and fish are especially con-
sidered to be sensitive endpoints for insecticides
(Hill et al., 1994a;Graney et al., 1994; this paper).

5. The effects are evaluated statistically and show
an unambiguous concentration-effect relation-
ship or, observed effects are in agreement with
a concentration-effect relationship from addi-
tional studies.

6. To establish a NOECeco, at least the lowest
test concentration within the study should not

show a consistent effect attributable to
the treatment. A concentration above the
NOECeco should show a significant treatment-
related effect (LOECeco).

7. To enable a comparison of field concentra-
tions with target concentrations for registra-
tion procedures, toxicity data of standard test
organisms (at least for Daphnia or fish) should
be known.

8. The results of the study were published in
1980 or later.

Subsequently, selected studies were classified
according to the exposure regime (single appli-
cation, multiple applications, or continuous
exposure), type of test system (stagnant or run-
ning water), and working mechanism of the
insecticides.

Comparison between insecticides

To enable comparison of studies using different
insecticides, the reported field concentrations were
normalised by dividing them by the 48 h-EC50 of
the aquatic standard test species Daphnia magna or
by the 96 h-LC50 of a standard test fish (the most
sensitive species was used). The unit of the
resulting variable is defined as TUmso (=Toxic
Unit based on the most sensitive standard test
organism). In the case of EC50s for Daphnia
magna, the effect parameter could also be mor-
tality.

Publications by Crommentuijn et al. (1997),
Mayer and Ellersieck (1986), the AQUIRE data-
base (http://www.epa.gov/ecotox/), and references
in the papers about the evaluated microcosm and
mesocosm studies have been used as a source of
information for the toxicity data. If several EC50s
were available for the same standard test organ-
ism, the geometric mean of these values was cal-
culated and referred to as ‘gm-EC50’ (Table 1).
When gm-EC50s were available, they were used to
calculate TUmso. The toxicity data showed that
Daphnia magna was usually the most sensitive
standard test organism for the evaluated insecti-
cides (Table 1). For some pyrethroids, Daphnia as
well as fish are a representative sensitive standard
test species.
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Criteria for effect classification

Reported endpoints were assigned to one of eight
endpoint categories: (a) ‘Microcrustaceans’
(including Cladocera, Copepoda, Ostracoda), (b)
‘Macrocrustaceans’ (including Amphipoda, Iso-
poda, Anostraca), (c) ‘Insects’, (d) ‘Fish’, (e) ‘Roti-
fers’, (f) ‘Other macroinvertebrates’, (g) ‘Algae &
macrophytes’, and (h) ‘Community metabolism’.
Within each category, the most sensitive endpoint
was decisive for classification into an effect class
(worst case approach). The categories ‘a’ to ‘f’
represent structural endpoints, while category ‘h’
represents functional responses. Structural end-
points concern densities (numbers) and biomass of
populations. Functional endpoints in most cases
concern oxygen balance, water chemistry, and
decomposition of particulate matter. Effects re-
ported on these endpoints were classified into five
classes based on the following criteria:

Class 1: �effect not demonstrated�

� No effects observed as a result of treatment
(primarily, statistical significance plays an
important role for this criterion) and/or,

� Observed differences between treatment and
controls show no clear causal relationship.
Causality in this context is judged through the
use of guidelines similar to those developed for
identifying causative agents of disease (Koch,
1942; Hill, 1965).

Class 2: ‘slight effect’

� Effects only observed on individual samplings,
especially shortly after treatment, and/or

� Short-term and/or quantitatively restricted re-
sponse of sensitive endpoints.

Class 3: ‘pronounced short-term effect’

� Clear response of sensitive endpoints, but full

Table 1. Toxicity data (lg/l) of the most sensitive standard test species used to calculate toxic units (TUmso). First tier acceptable

concentrations (NEC) are derived from the Uniform Principles criteria and based on the toxicity data in this table. D. magna:

Daphnia magna. crust: crustacean. P. promelas: Pimephalus promelas. O. mykiss: Oncorhynchus mykiss. L. macrochirus: Lepomis

macrochirus

Compound Toxicity Species References First tier NEC

Azinphos-methyl gm-L(E)C50=2.0 (48 h) D. magna (crust) 1, 2, 3 0.02

Bendiocarb gm-L(E)C50=74 (48 h) D. magna (crust) 4 0.74

Carbaryl EC50=5.6 (48 h) D. magna (crust) 2 0.056

Carbofuran gm-L(E)C50=33.2 (48 h) D. magna (crust) 5,6 0.33

Chlorpyrifos gm-L(E)C50=1.3 (48 h) D. magna (crust) 7,8 0.013

Cyfluthrin gm-L(E)C50=0.15 (48 h) D. magna (crust) 9 0.0015

Cypermethrin gm-L(E)C50=0.68 (96 h) O. mykiss (fish) 10, 11 0.0068

Deltamethrin gm-L(E)C50=0.04 (48 h) D. magna (crust) 12, 13 0.0004

Diazinon gm-L(E)C50=1.0 (48 h) D. magna (crust) 1, 14 0.01

Esfenvalerate gm-L(E)C50=0.25 (96 h) P. promelas (fish) 15 0.0025

Fenitrothion gm-L(E)C50=11 (48 h) D. magna (crust) 16, 17 0.11

Fenvalerate gm-L(E)C50=0.82 (96 h) O. mykiss (fish) 2 0.008

Lambda-cyhalothrin LC50=0.21 (96 h) L. macrochirus (fish) 2 0.0021

Parathion gm-L(E)C50=1.1 (48 h) D. magna (crust) 1 0.0011

Parathion-methyl gm-L(E)C50=1.4 (48 h) D. magna (crust) 1, 2, 19 0.014

Permethrin gm-L(E)C50=0.65 (48 h) D. magna (crust) 2, 9, 11 0.0065

Phorate gm-L(E)C50=1.5 (48 h) D. magna (crust) 18 0.015

Tralomethrin LC50=0.15 (48 h) D. magna (crust) 9 0.0015

1: Dortland (1980), 2: Mayer and Ellersieck (1986), 3: Giddings et al. (1994), 4: Visser and Linders (1990), 5: Trotter et al. (1991), 6:

Jansma and Linders (1993), 7: Kersting and Van Wijngaarden (1992), 8: McCarthy (1977) in Barron and Woodburn (1995), 9: Mokry

and Hoagland (1990), 10: Stephenson (1982), 11: Crommentuijn et al. (1997), 12: Xiu et al. (1989), 13: Day (1991), 14: AQUIRE

database (http://www.epa.gov/ecotox/), 15: Stay and Jarvinen (1995), 16: Sanders et al. (1983), 17: LeBlanc (1984), 18: Fairchild et al.

(1992a), 19: Oikari et al. (1992).
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recovery within eight weeks after (the last)
application, and

� Effects observed on some subsequent sampling
dates, and

� Effects reported on several sensitive species;
temporary effects on less sensitive species and/
or endpoints.

Class 4: ‘pronounced effect in short-term
study’

� Clear effects observed, but the study is too
short to demonstrate complete recovery within
8 weeks after (the last) application of the insec-
ticide for the endpoint concerned.

Class 5: ‘pronounced long-term effect’

� Clear response on various subsequent sampling
dates, and recovery time of sensitive endpoints
is longer than 8 weeks after the last applica-
tion, and

� Effects reported on many sensitive species and/
or endpoints; elimination of sensitive species;
effects on less sensitive species endpoints and/
or other similar descriptions.

A recovery period of 8 weeks was applied in the
classification to decide whether effects were short-
term or longer-term. In relation to the lifecycles of
macroinvertebrates, fish and macrophytes, it is
common practice in microcosm and mesocosm
studies to sample these groups of organisms on a
biweekly or monthly basis. Consequently, the
typical sampling intervals for macroinvertebrates
may not establish actual times of recovery, but will
be adequate for determining if effects are persisting
beyond the short-term eight-week time frame. For
short-cyclic organisms, such as phytoplankton and
zooplankton, sampling frequencies are generally
on a weekly basis. For this group of organisms
there are enough observation points to establish
the time of actual recovery within this time win-
dow.

Effects were reported in the literature in a
variety of ways, and generally did not fit exactly
into our effect criteria scheme. The process of
assigning reported effects to one of the effect
classes therefore normally consisted of evaluating
both quantitative and qualitative information, and

judging on a case-by-case basis into which com-
bination of criteria this information fitted best. If
in doubt, the information was evaluated by more
than one expert to obtain a consensus answer.

Data analysis

The probability of effects occurring in microcosm
and mesocosm studies was calculated by analysing
the combined data set of the most sensitive end-
points of both the acetylcholinesterase inhibitors
and pyrethroids using logistic regression. For this
purpose, the effect classes were reclassified to a
nominal variable: a ‘no-effect class’ (0) and an
‘effect class’ (1). The ‘effect class’ contained the
former Classes 3, 4 and 5. ‘No-effect class’ analyses
were performed using two definitions; one con-
taining only the data of Effect Class 1, and the
other containing the data of Effect Classes 1 and 2.
The following logistic model was used for these
calculations:

y ¼ 1

1þ e�bðLnðxÞ�aÞ

in which y is the response variable (effect/no
effect), x is the concentration expressed in TUmso;
a is the concentration at which an effect has been
reported for 50% of the studies, and b is the slope
of the sigmoid curve at this concentration. Results
of these analyses were expressed as Field Effect
Concentrations (FEC) at 5, 50 and 95 percentages
of probability. In other words, the model yielded
fitted concentrations (expressed in TUmso) for
which it predicted that for 5, 50 and 95% of the
studies, effects will occur. The calculations were
performed using the GENSTAT statistical pro-
gram (Payne and Lane, 1993).

Comparison of ecological threshold values with
registration criteria

We compared the ecological threshold values
(NOECecos) obtained from microcosm and meso-
cosm studies with the acceptable concentrations
established by the first tier registration criteria
applied in the European Union. According to EU
Uniform Principles (EU, 1997), in the first tier of
the risk assessment, the peak concentration of a
pesticide in surface water as calculated from ref-
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erence tables for spray drift and/or fate models
(Ganzelmeier et al., 1995; FOCUS, 2001), should
not be higher than 0.01· the acute EC50 for the
standard test species of fish or Daphnia and 0.1·
the EC50 for standard test algae. In addition, the
time weighted average exposure concentration
should not be higher than 0.1· the chronic NOEC
of Daphnia (21 days) and fish (28 days) with long-
term exposure. A higher concentration, however,
may be considered acceptable if it can be demon-
strated by using higher tier tests that the real risk
to aquatic organisms is less than predicted by the
first tier criteria (‘unless clauses’).

We established first tier acceptable concentra-
tions on the basis of acute toxicity data for the
standard test organisms mentioned in OECD
protocols (OECD, 1993). This is established by
dividing the gm-EC50 of the most sensitive species
by a factor of 100 (Table 1). We used acute tox-
icity data because: (a) adequate chronic toxicity
data for the substances studied in microcosm and
mesocosm experiments are in many cases not
available in the open literature whereas acute
toxicity data are; (b) in microcosm and mesocosm
studies, only nominal or measured peak concen-
trations of the studied pesticide are usually
reported; and (c) the compounds studied have
relatively low environmental persistence making
comparison of short-term exposures to acute tox-
icity data the most relevant.

Available information

Summaries were first made of the selected studies.
Concise versions of these are given in Brock et al.
(2000b).

Acetylcholinesterase inhibitors

Organophosphorous and carbamate insecticides
inhibit the activity of the enzyme acetylcholines-
terase. Inhibition of this enzyme results in the
accumulation of acetylcholine at choline receptors
and consequently in the disturbance of nerve im-
pulses (Klaassen et al., 1986).

Microcosm and mesocosm experiments were
only conducted on a small number of the 64
organophosphates listed by Tomlin (2000). After
testing against the selection criteria, 26 studies

remained. They yielded adequate information on
ecological risks of seven active ingredients
(Table 2). The selected studies were mainly con-
ducted on chlorpyrifos (twelve studies), fenitro-
thion (five studies), and azinphos-methyl (four
studies). Five microcosm and mesocosm studies
provided adequate information on the active
ingredients bendiocarb, carbaryl, and carbofuran
[three out of the twenty acetylcholinesterase
inhibiting carbamates listed (Tomlin, 2000)]. The
study locations were quite diverse, and done under
climatological conditions ranging from temperate
to subtropical and tropical (Table 2).

Synthetic pyrethroids

Pyrethroids also affect the functioning of the ner-
vous system. Their primary mode of action is by
interference with ion channels in the nerve axon,
resulting in hyperactivity of the nervous system
with a subsequent lack of control of normal
function (Clark and Brooks, 1998).

Eighteen microcosm and mesocosm studies of
eight active ingredients – out of the 39 listed
pyrethroids – (Tomlin, 2000), yielded adequate
information after testing against our selection
criteria. The studies were performed predomi-
nantly in North America and Europe under vari-
ous climatological conditions (Table 3).

Application method and pesticide behaviour

Most studies were conducted using formulated
materials (Tables 2 and 3). Exposure of aquatic
organisms to insecticides, and observed effects
during microcosm and mesocosm studies, are
strongly related to the method of application and
the environmental behaviour of these substances.
Pollution of watercourses by insecticides may be
the result of spray drift. Most studies focusing on
acute risks simulated this entry route and applied
the insecticide by spraying the water surface. In
studies with a chronic exposure regime, insecti-
cides are usually directly mixed into the water
column.

In the studies with organophosphates and car-
bamates, active ingredients were almost always
applied in dissolved form via the aqueous phase
(spray drift or direct mixing in the water column).
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In most studies with pyrethroids, active ingredients
were also applied by spraying onto, or injecting
below, the water surface. In one study with the
organophosphorous compound chlorpyrifos (Gid-
dings et al., 1997) and three studies with pyreth-
roids [lambda-cyhalothrin (Hill et al., 1994b);
tralomethrin (Mayasich et al., 1994); cyfluthrin
(Johnson et al., 1994)], drift as well as runoff
applications were performed in the same test sys-

tem. In the case of runoff applications, the com-
pound is brought into the systems bound to soil
material. In the three pyrethroid studies specifi-
cally, it was not always clear whether the observed
effects were caused by the drift or by the runoff
application. This is to do with the fact that reported
measured concentrations do not always tally,
because of the high disappearance rate of pyreth-
roids from the water and variation in the first

Table 2. Experiments with acetylcholinesterase inhibitors included in this report

Active ingredient Test form Experiment Location Authors

Organophosphorous insecticides

Azinphos-methyl F S-stag USA (lab) Stay and Jarvinen 1995

– F S-stag USA (Minnesota) Tanner and Knuth 1995

– F M-stag USA (Kansas) Giddings et al. 1994

– F S-stag USA (Minnesota) Knuth et al. 1992

Chlorpyrifos F S-stream Australia Pusey et al. 1994

– F L-stag NL (lab) Van den Brink et al. 1995

– F L-stream Australia Ward et al. 1995

– F S-stag USA (Kansas) Biever et al. 1994

– F M-stag USA (Kansas) Giddings et al. 1997

– F S-stag NL Van Wijngaarden et al. 1996,

Van den Brink et al. 1996, Kersting

and Van den Brink 1997

– F S-stag NL (lab) Brock et al. 1992a, b, 1993

– F S-stag NL (lab) Van Donk et al. 1995; Brock et al.

1995b; Cuppen et al. 1995

– F S-stag USA (Minnesota) Siefert et al. 1989, Brazner et al. 1989,

Brazner and Kline 1990

– - S-stag USA (lab) Stay et al. 1989

– F S-stag Canada Hughes et al. 1980

– F S-stag Canada (Manitoba) Zrum et al. 2000

– F S-stag NL (lab) Van Wijngaarden et al. subm. b

Diazinon A M-stag USA (Kansas) Giddings et al. 1996

Fenitrothion F S-stag Senegal Lahr and Diallo 1993

– F M-stag Canada Fairchild and Eidt 1993

– (�) F S-stream UK Morrison and Wells 1981

– (�) F S-stream Canada Poirier and Surgeoner 1988

– (�) F S-stream Japan Yasuno et al. 1981

Parathion-ethyl A L-stag NL Dortland 1980

Parathion-methyl S S-stag UK Crossland 1984, Crossland and Bennett 1984

– S S-stag UK Crossland 1988

Phorate F S-stag USA (S. Dakota) Dieter et al. 1996

Carbamates

Bendiocarb F S-stag Senegal Lahr et al. 1995

Carbaryl F S-stag USA (Ohio) Havens 1994, 1995

– F S-stream Canada (Maine) Courtemanch and Gibbs 1980

Carbofuran F S-stag Canada (Alberta) Wayland 1991

– F S-stag Canada (Alberta) Wayland and Boag 1995

(�) Studies do not meet all criteria but yield information on low exposure concentrations.

Test form: active ingredients (a.i.) were applied as a formulated product (F), or as a.i. in acetone (S), or as a.i. without a solvent (A). –:

not reported. S-stag = single application in a stagnant system; S-stream = single application in a running system; M-stag = multiple

applications in a stagnant system; M-stream = multiple applications in a running system; L-stag = prolonged constant exposure in a

stagnant system; L-stream = prolonged constant exposure in a running system.
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sampling instance after spraying (less than 1 to
24 h). We therefore evaluated effects in these
studies on the nominal concentration caused by
drift application(s) only. In all cases, this is a worst-
case approach since the observed effects may in part
also be attributed to exposure via the runoff-emis-
sion route. The contaminated soil material of the
runoff applications rapidly disappears from the
water column by sedimentation, and bio-avail-
ability of the soil-bound pyrethroids is also lower
(Hill, 1985, 1989; Maund et al., 1997, 1998). These
factors are likely to mitigate the contribution of a
runoff application to the effects of a combined
spray and runoff application.

Particularly in drift simulating applications to
stagnant waters, clear concentration gradients of
insecticides can be found in the first hours post-
treatment (Muir et al., 1992; Fairchild and Eidt,
1993; Crum and Brock, 1994; Farmer et al., 1995;
Van Wijngaarden et al., 1996; Samsøe-Petersen
et al., 2001). Shortly after drift applications, most
of the active ingredient is then found in the
superficial water layer. Also the influence of the
type of formulation and/or additives on the dissi-

pation mechanisms may play a role. Oil-based
formulations are much more likely to retain high
concentrations in superficial water layers than
emulsifiable concentrate formulations which will
dissipate more quickly throughout the water col-
umn.

Hence, superficially, initial concentrations may
be considerably higher than the intended nominal
concentrations. Simultaneously, exposure concen-
trations in subsurface water are then considerably
lower than nominal concentrations. This implies
that species, although they may be equally sensi-
tive in the laboratory, may respond very differently
in the field when they occupy different spatial
niches in their natural environments. This is shown
from a study with lambda-cyhalothrin (Hill et al.,
1994b) in which surface bugs (Gerridae and
Veliidae) reacted more sensitively than water bugs
and beetles such as Notonectidae and Haliplidae.

In time, insecticides usually get mixed in the
water column and often a considerable amount
dissipates from the water. This disappearance,
especially during the first days after application, is
not only caused by physicochemical degradation

Table 3. Experiments with synthetic pyrethroids included in this report

Active ingredient Test form Experiment Location Authors

Cyfluthrin F M-stag USA (Texas) Johnson et al. 1994, Morris et al. 1994

Cypermethrin F M-stag UK unpublished data

– – M-stag UK Farmer et al. 1995

– F M-stag1 USA (N. Carolina) Hill 1985

– F M-stag2 USA (N. Carolina) Hill 1985

Deltamethrin F S-stag Senegal Lahr et al. 1995

– F S-stag Canada Morill and Neal 1990

Esfenvalerate F M-stag USA (Alabama) Webber et al. 1992

– S M-stag USA (Missouri) Fairchild et al. 1992b

– F M-stag USA (Minnesota) Lozano et al. 1992, Tanner and Knuth 1996

– A S-stag USA (lab) Stay and Jarvinen 1995

– F S-stag Denmark Samsøe-Petersen et al. 2001

Fenvalerate F S-stag Canada (Ontario) Day et al. 1987

– F L-stream USA (Iowa) Breneman and Pontasch 1994

Lambda-cyhalothrin – M-stag UK Farmer et al. 1995

– F M-stag USA (N. Carolina) Hill et al. 1994b

– F M-stag NL Roessink et al. in prep

– F M-stag NL Van Wijngaarden et al. in prep a

Permethrin S S-stag Canada (Ontario) Kaushik et al. 1985

Tralomethrin F M-stag USA (Texas) Mayasich et al. 1994

Test form: active ingredients (a.i.) were applied as a formulated product (F), or as a.i. in acetone (S), or as a.i. without a solvent (A). –:

not reported. S-stag = single application in a stagnant system; S-stream = single application in a running system; M-stag = multiple

applications in a stagnant system; M-stream = multiple applications in a running system; L-stag = prolonged constant exposure in a

stagnant system; L-stream = prolonged constant exposure in a running system.
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but also by the distribution of the active ingredient
over different environmental compartments such
as sediment, organic and inorganic particulate
material, aquatic plants (e.g., Hill, 1989; Brock
et al., 1993; Crum and Brock, 1994, Samsøe-Pet-
ersen et al., 2001; Hand et al., 2001) and volatili-
sation from the water (e.g., Larkin and Tjeerdma,
2000).

Initial half-life values of dissolved organo-
phosphates and carbamates in the water of stag-
nant (model) ecosystems are in the order of less
than 1–10 days (Crossland and Bennett, 1984;
Hanazato and Yasuno, 1990; Lahr and Diallo,
1993; Crum and Brock, 1994; Tanner and Knuth,
1995; Wayland and Boag, 1995; Giddings et al.,
1996). In the case of pyrethroids, initial half-life in
the water columns are in the order of less than 1 h
to 3 days (Stephenson et al., 1986; Heinis and
Knuth, 1992; Fairchild et al., 1992b; Johnson et
al., 1994; Farmer et al., 1995; Hand et al., 2001;
Roessink et al., in press). Reported half-life of
sediment-adsorbed pesticides is generally much
longer (days to weeks) in the above-mentioned
studies.

These spatio-temporal processes indicate that
nominal concentrations cannot be directly con-
verted into actual exposure concentrations for
aquatic organisms in the field. The observed initial
stratification of insecticides in the water column
makes it likely that benthic organisms and those
present in internal refugia, such as dense vegeta-
tions, are initially exposed to lower concentrations
than organisms having niches and/or home ranges
close to the water surface. In fact, spatio-temporal
distribution of non-persistent insecticides forms a
major issue in the discussion related to refinements
of ecotoxicological risk assessments (Giesy et al.,
1999; Hendley et al., 2001; Maund et al., 2001;
Travis and Hendley, 2001).

Nevertheless, we have taken nominal concen-
tration as a reference for describing the effects
resulting from peak exposures because: (a) the
applied nominal dose is given in almost all
studies, (b) measured initial concentrations are
not always comparable and/or reliable due to
large differences in the first sampling instance
after treatment (hours to days) in relation to the
relatively high initial disappearance rate of most
insecticides, (c) in registration policies the short-
term exposure as a result of drift is calculated by

assuming instantaneous mixing of the dose over
the water column.

Effects on sensitive endpoints

Effects reported

A distinction between direct and indirect effects is
frequently made in the reported effects of insecti-
cides in microcosm and mesocosm experiments.
However, a decrease in population density of a
species after application of an insecticide cannot,
in advance, be considered as a direct effect; it could
also be the result of an indirect effect due to shifts
in species interactions.

Reductions in population densities at relatively
low insecticide concentrations are found especially
in populations of crustaceans (cluster Amphipoda
– Ostracoda/Anostraca in Tables 4 and 5), insects
(cluster Trichoptera – Coleoptera) and fish (Pis-
ces). Negative effects in these groups were
observed below 1 TUmso after single applications
of acetylcholinesterase inhibitors (Table 4) and
below 0.1 TUmso after repeated applications of
pyrethroids (Table 5). Reductions in numbers of
Rotifera, Mollusca, Annelida and Turbellaria are
only observed at relatively high exposure concen-
trations and in a limited number of studies. Neg-
ative effects on plants are only reported at
exposure concentrations higher than 1–10 TUmso.

When laboratory toxicity tests have been con-
ducted with species that are found in microcosm
and mesocosm experiments, the sensitivities
among these species to insecticide exposures have
been shown to be similar in both test systems
(Dortland, 1980; Crossland, 1984; Van Wijngaar-
den et al., 1996; Lahr, 1998; Maund et al., 1998;
Van den Brink et al., 2002a, b). In addition, re-
sponses found in the evaluated studies for specific
taxonomic groups correspond well with those
found in laboratory single-species toxicity tests
with indigenous species from these groups (e.g.,
Crommentuijn et al., 1997; AQUIRE database,
http://www.epa.gov/ecotox/). This makes it prob-
able that in microcosm and mesocosm experi-
ments, observed reductions in densities of
crustaceans, insects and fish at low concentrations
can generally be considered as direct toxic effects.
One should, however, be aware that insects,

Insecticides in Freshwater Ecosystem 363



Table 5. Reported negative effects on various taxonomic groups as a result of repeated application of pyrethroids in aquatic

microcosms and mesocosms

TUmso

0.001–0.01 0.01–0.1 0.1–1 1–10

Amphipoda – 100% (n = 1) 100% (n = 11) 100% (n = 7)

Isopoda – – 80% (n = 5) 100% (n = 2)

Copepoda 0% (n = 1) 60% (n = 5) 56% (n = 16) 73% (n = 11)

Cladocera 0% (n = 1) 0% (n = 2) 50% (n = 10) 86% (n = 7)

Ostracoda 0% (n = 1) 0% (n = 1) 50% (n = 2) –

Trichoptera 0% (n = 1) 67% (n = 3) 86% (n = 7) 83% (n = 6)

Ephemeroptera 0% (n = 1) 50% (n = 6) 82% (n = 17) 85% (n = 13)

Diptera 0% (n = 1) 33% (n = 6) 82% (n = 17) 100% (n = 13)

Hemiptera 0% (n = 1) 50% (n = 2) 67% (n = 6) 100% (n = 2)

Odonata 0% (n = 1) 33% (n = 3) 36% (n = 11) 50% (n = 10)

Coleoptera 0% (n = 1) 0% (n = 2) 64% (n = 11) 60% (n = 10)

Hydracarina 0% (n = 1) 100% (n = 1) 100% (n = 1) –

Pisces 0% (n = 1) 0% (n = 5) 33% (n = 6) 83% (n = 6)

Rotifera 0% (n = 1) 0% (n = 3) 0% (n = 13) 0% (n = 11)

Mollusca 0% (n = 1) 0% (n = 3) 0% (n = 12) 0% (n = 10)

Annelida 0% (n = 1) 0% (n = 2) 0% (n = 11) 0% (n = 6)

Turbellaria 0% (n = 1) 0% (n = 1) 0% (n = 7) 0% (n = 3)

Plants 0% (n = 1) 0% (n = 5) 0% (n = 13) 8% (n = 12)

The effects are arranged according to toxic units (TUmso) and expressed as a percentage of the cases (n = x) in which a reduction in

numbers or biomass of one or more taxa within a taxonomic group was reported.

Table 4. Reported negative effects on various taxonomic groups as a result of single applications of acetylcholinesterase-inhibiting

insecticides in aquatic microcosms and mesocosms

TUmso

0.01–0.1 0.1–1 1–10 10–100

Amphipoda 0% (n = 4) 43% (n = 7) 100% (n = 7) 100% (n = 7)

Cladocera 0% (n = 5) 83% (n = 12) 100% (n = 17) 100% (n = 11)

Copepoda 20% (n = 5) 30% (n = 10) 38% (n = 13) 63% (n = 8)

Isopoda – – 100% (n = 1) 100% (n = 2)

Ostracoda 0% (n = 3) 14% (n = 7) 38% (n = 8) 67% (n = 6)

Anostraca – – 0% (n = 1) –

Trichoptera ?** (n = 1) 100% (n = 1) 100% (n = 1) 100% (n = 1)

Ephemeroptera 0% (n = 2) 75% (n = 4) 100% (n = 3) 100% (n = 3)

Diptera 0% (n = 3) 71% (n = 7) 100% (n = 7) 100% (n = 8)

Hemiptera – – 100% (n = 1) 100% (n = 5)

Odonata 0% (n = 1) 0% (n = 2) 75% (n = 4) 100% (n = 6)

Coleoptera – – 100% (n = 1) 67% (n = 3)

Hydracarina 0% (n = 1) 0% (n = 2) 50% (n = 4) 33% (n = 3)

Pisces 0% (n = 3) 67%* (n = 3) 83% *(n = 6) 100%* (n = 3)

Rotifera 0% (n = 3) 0% (n = 6) 0% (n = 7) 0% (n = 4)

Mollusca 0% (n = 2) 0% (n = 5) 0% (n = 6) 13% ***(n = 8)

Annelida 0% (n = 2) 0% (n = 3) 0% (n = 6) 13%*** (n = 8)

Turbellaria – 0% (n = 1) 50% (n = 2) 33%*** (n = 3)

Plants 0% (n = 2) 0% (n = 5) 0% (n = 9) 50%*** (n = 6)

The effects are arranged according to toxic units (TUmso) and expressed as a percentage of the cases (n = x) in which a reduction in

numbers or biomass of one or more taxa within a taxonomic group was reported.

*Direct as well as indirect effects reported.

**Data do not allow clear conclusions as to whether or not effects occurred.

***Reported as indirect effects.
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crustaceans and fish may also include relatively
insensitive taxa (e.g., Dortland, 1980; Brock et al.,
1992b; Lahr and Diallo, 1993; Giddings et al.,
1996).

The categories ‘Microcrustaceans’, ‘Macro-
crustaceans’, ‘Insects’ and ‘Fish’ include the sen-
sitive organisms. The categories ‘Rotifers’, ‘Other
macroinvertebrates’ and ‘Algae & macrophytes’
often include organisms that are indirectly affected
but where the occurrence of direct effects cannot
be excluded a priori.

Effects of acetylcholinesterase inhibitors

In stagnant test systems, clear effects (Classes 3, 4
and 5) are observed in the endpoint categories
‘Microcrustaceans’, ‘Macrocrustaceans, ‘Insects’
and ‘Fish’ from about 0.1 TUmso (Fig. 1a–d).
Effects are hardly ever observed at insecticide
concentrations below 0.1 TUmso. One exception
forms a study on a chronic exposure to chlor-
pyrifos (Van den Brink et al., 1995). For the pre-
viously mentioned four categories, more or less
clear concentration-effect relationships are present
(Fig. 1a–d). The data also show that single
applications were studied most often (Fig. 1). Ef-
fects are more severe in studies with repeated or
chronic applications (Fig. 1a, c).

Clear effects on ‘Rotifers’, ‘Other macroinver-
tebrates’, and ‘Algae & macrophytes’ generally
occur from concentrations of 1 TUmso and higher
(Fig. 1e–g). Usually, effects in community metab-
olism endpoints were observed at concentrations
around 10 TUmso and higher (Fig. 1h). This indi-
cates that the structure of the aquatic community
is more sensitive to acetylcholinesterase inhibitors
than functional characteristics of the ecosystem.

Few studies with acetylcholinesterase inhibitors
have been done in running waters. Results are not
incorporated in Fig. 1 because of the deviating
exposure regimes. A pulse of 6 h with a concen-
tration of 0.08 TUmso chlorpyrifos had no effect on
the abundance of fauna in experimental streams
(Pusey et al., 1994). A clear effect on insect pop-
ulations was observed in the same study for an
equally long application of 3.85 TUmso, after
which recovery of the reduced populations
occurred within 8 weeks. Courtemanch and Gibbs
(1980) found a clear decrease in the abundance of
Plecoptera and Ephemeroptera for carbaryl in

streams at a nominal pulse concentration of 5.7
TUmso. Morrison and Wells (1981) studied pulse
applications of fenitrothion in streams. At 0.1
TUmso they found no effect at all, and at 1.7 TUmso

only a slight effect, especially in the form of drift of
insects. Thus, the results of the lotic systems do not
seem to differ very much from that of lentic sys-
tems with regard to the direct impact of acetyl-
cholinesterase-inhibitor concentrations.

Effects of synthetic pyrethroids

The microcosm and mesocosm studies with
pyrethroids in particular, concern effects of
repeated applications in stagnant water. Effects are
observed in the categories ‘Microcrustaceans’ and
‘Insects’ from about 0.01 TUmso and higher
(Fig. 2a, c). In the range 0.01–0.1 TUmso they
relate especially to slight effects (Class 2). At
higher exposure concentrations, in the range 0.1–1
TUmso, clear effects (Classes 3, 4 and 5) are regu-
larly reported for ‘Microcrustaceans’, ‘Macro-
crustaceans’ and ‘Insects’, while for ‘Fish’ slight
effects are reported in a limited number of studies
(Fig. 2a–d). In some studies, clear effects at con-
centrations lower than 1 TUmso are also reported
for the category ‘Rotifers (Fig. 2e). At
concentrations higher than 1 TUmso, effects can be
observed in all categories of structural endpoints
(Fig. 2a–g).

After repeated exposure to pyrethroids and at
final peak concentrations higher than 0.1 TUmso,
long-term (>8 weeks after last application) effects
on – in particular – crustaceans and insects cannot
be excluded (Fig. 2). The pyrethroid studies also
indicated that the structure of the aquatic com-
munity is more sensitive to insecticides than func-
tional characteristics of the ecosystem (Fig. 2a–g
versus 2h).

Responses of the most sensitive endpoints

In a few cases, results clearly deviated from the gen-
eral concentration-effect relationships for the sensi-
tive endpoint categories ‘‘Microcrustaceans’’,
‘‘Macrocrustaceans’’, ‘‘Insects’’, and ‘‘Fish’’
(Figs. 1and2).Forexample, in thestudyofLahrand
Diallo (1993) with fenitrothion, macrocrustaceans
responded by a factor of 10–100 times less sensitive
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Figure 1. Effects of insecticides with an acetylcholinesterase-inhibiting mode of action in microcosm and mesocosm studies. The

figure includes observations of studies in stagnant water (single and multiple applications), and of chronic applications in stagnant

as well as running water test systems. Effects are classified into several categories, structural endpoints (A to G) and a functional

category (community metabolism; H). The effects are also classified (Effect class) according to magnitude and duration. 1 = no

significant effect, 2 = slight effect, 3 = clear short-term effect (<8 weeks), 4 = clear effect in short-term study (recovery moment

unknown), 5 = clear long-term effect (>8 weeks). Closed circles (d) indicate experiments with a single application. Open circles

(s) and squares (h) indicate experiments with multiple applications or chronic exposure, respectively.
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Figure 2. Effects of insecticides with synthetic pyrethroids in microcosm and mesocosm studies. The figure includes observations of

studies in stagnant water (single and multiple applications), and of chronic applications in stagnant as well as running water test

systems. Effects are classified into several categories, structural endpoints (A–G) and a functional category (community metabo-

lism; H). The effects are also classified (Effect class) according to magnitude and duration. 1 = no significant effect, 2 = slight

effect, 3 = clear short-term effect (<8 weeks), 4 = clear effect in short-term study (recovery moment unknown), 5 = clear long-

term effect (>8 weeks). Closed circles (d) indicate experiments with a single application. Open circles (s) and squares (h) indicate

experiments with multiple applications or chronic exposure, respectively.
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than in the other studies (No effects (Class 1) at 7.3
TUmso in Fig. 1b). In this study, macrocrustaceans
were only represented by the anostracan taxon
Streptocephalus spp.which is relatively insensitive to
fenitrothion. Overall, however, the study did not
necessarily give deviating information on the eco-
logical effects in the field because sensitive groups, in
the form of insects and microcrustaceans, were still
present. Lahr et al. (1995) studied the effects of a
single application of deltamethrin at one relatively
high concentration only (67.5 TUmso). Here,
Anostracawas shown to be themost sensitive group
(Class 5, Fig. 2b) while the short-cyclic cladocerans
(Class 3, Fig. 2a) and inflying hemiptera (Class 3,
Fig. 2c) rapidly recolonized the treated natural
ponds.

To reduce the emphasis on slight effects, and to
focus on the realistic worst-case scenario of the
effects observed in the microcosm and mesocosm
studies, we selected the most sensitive endpoints of
each study and plotted observed effects against

studied concentrations (Fig. 3). In the case of
single applications, effects on the most sensitive
endpoints are not usually observed at concentra-
tions of £ 0.1 TUmso (Fig. 3a). At higher doses,
slight to clear effects may be expected. In the case
of microcosm and mesocosm studies, which typi-
cally simulate isolated water systems, there is a
good chance that recovery of sensitive endpoints
takes longer than 8 weeks (Class 5 effects) at single
doses resulting in exposure concentrations of 1
TUmso and higher (Fig. 3a).

For repeated and chronic exposures, concen-
trations below 0.01 TUmso have rarely been the
subject of studies (Fig. 3a and c). Nevertheless,
the results show that below 0.01 TUmso, it is
unlikely for any clear effects to be expected.
Within the concentration range 0.01–0.1 TUmso

mainly slight (Class 2) to short-term clear effects
(Class 3) are reported for the most sensitive
endpoints. Above 0.1 TUmso, clear and prolonged
effects (Class 5) are to be expected in test systems
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Figure 3. Responses of the most sensitive endpoint in microcosm and mesocosm studies performed with acetylcholinesterase inhib-

iting or pyrethroid insecticides, based on the data presented in Figs. 1 and 2. The effects on the most sensitive endpoints are pre-

sented for a single application (a), multiple applications (b), and chronic exposure (c). The effects are also classified (Effect class)

according to magnitude and duration. 1 = no significant effect, 2 = slight effect, 3 = clear short-term effect (<8 weeks),

4 = clear effect in short-term study (recovery moment unknown), 5 = clear long-term effect (>8 weeks).
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that are repeatedly or chronically stressed with
insecticides.

Regression analysis indicates that when com-
paring Class 1 effects with Classes 3, 4 and 5
effects, single applications at concentration levels
of 0.13 TUmso can be expected to induce clear
effects (Classes 3 to 5) in the field in 50% of cases
(Table 6). There is a small probability (FEC-5%)
that effects occur at concentrations below 0.05
TUmso (FEC-5%: Field Effect Concentrations
which will affect the most sensitive endpoints with
a probability of 5%). There is a high probability
(FEC-95%) that clear effects will occur in micro-
cosm and mesocosm situations at concentrations
of 0.34 TUmso and higher.

For the situation where we include slight effects
(Class 2) in the ‘no-effect class’, FEC-50% for
single applications increases to 0.26 TUmso

(Table 6). FEC-5%, however, stays more or less at
the same concentration level, i.e. 0.04 TUmso

against 0.05 TUmso in the previous scenario.
Regarding multiple or chronic applications,

effects can be expected to occur at lower
concentrations (Table 6). FEC-50% levels were

16–33% of those for single applications. Differ-
ences between multiple and chronic exposures
were less significant (Table 6). Probability calcu-
lations for chronic FECs, however, were less
accurate since much less data were available
(Table 6: no calculation possible; high range
confidence limits). Nevertheless, it means that for
an adequate risk analysis it is at least desirable to
distinguish between exposure regimes resulting
from single applications on the one hand, and that
of multiple/chronic applications on the other.

Comparing NOECeco with regulatory criteria

For the acetylcholinesterase inhibitors, most LO-
ECs from the reviewed studies were in Classes 3 to
5 (Table 7). NOECecos could be derived for five
acetylcholinesterase inhibitors, and Class 2-
LOECecos for three compounds (Table 7). These
usually concerned exposure regimes resulting from
single applications. Comparing NOECecos with
first tier Uniform Principles (UP) criteria (EU,
1997) shows that these NOEC values were about a

Table 6. Field Effect Concentrations (FEC) as calculated by means of logistic regression

Estimate (95%-Confidence limits)

No effects versus clear effects

Single FEC5% 0.049 (0.016–0.154)

FEC50% 0.130 (0.068–0.249)

FEC95% 0.341 (0.093–1.257)

Multiple FEC5% 0.016 (0.003–0.095)

FEC50% 0.043 (0.020–0.094)

FEC95% 0.118 (0.043–0.320)

Chronic FEC5% x (x)x)
FEC50% x (x)x)
FEC95% x (x)x)

No slight effects versus clear effects

Single FEC5% 0.036 (0.007–0.198)

FEC50% 0.261 (0.126–0.541)

FEC95% 1.862 (0.502–6.914)

Multiple FEC5% 0.023 (0.007–0.070)

FEC50% 0.052 (0.032–0.085)

FEC95% 0.119 (0.050–0.284)

Chronic FEC5% 0.003 (0.000–4.868)

FEC50% 0.043 (0.003–0.665)

FEC95% 0.544 (0.010–29.01)

FECs, with 95%-confidence limits, are expressed in TUmso. FECs were expressed as 5, 50 and 95 percentages of probability of effects

occurring on the most sensitive endpoints for achetylcholinesterase inhibiting and pyrehtroid insecticides (Fig. 3). FECs were calcu-

lated for two scenarios; one where no effects are placed against clear effects (Effect Class 1 versus Effect Classes 3, 4 and 5) and one

where no and slight effects are placed against clear effects (Classes 1 and 2 versus Classes 3, 4 and 5). Results were based on responses

found in studies using single, multiple and chronic insecticide applications. x = no calculation possible due to a lack of data.
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factor of 10 or more, higher than set acceptable
concentrations (Table 8).

Most of the pyrethroid studies also yielded
Classes 3 to 5-LOECeco values only (Table 9). A
NOECeco could be derived for three pyrethroids.
These NOECs did not deviate much from the first
tierUP criteria (Table 10).NOECswere equal to, or
less than, a factor of five higher than set safety cri-
teria. Hence, the margin between UP criteria and
NOECecos observed in the fieldwas less for synthetic
pyrethroids than for acethylcholinesterase inhibi-
tors. This can be explained by the fact that some
non-target organisms in the field are relatively more
sensitive to pyrethroids than to acetylcholinesterase

inhibitors, at least when compared with the stan-
dard test species ofDaphnia and fish (Schroer et al.,
2004).

Overall, the established NOECecos indicate that
set safety factors and criteria for protecting
aquatic organisms as described in the EU Uniform
Principles seem to be adequate for both groups of
insecticides, and possibly over-protective for single
applications acetylcholinesterase inhibitors.

In this paper we specifically focussed on the reg-
ulatory implications of the outcome of model eco-
system studies for first tier risk assessment
procedures as applied in the EU. Like the
EU-member states, many other countries from all

Table 7. NOECeco and LOECeco values (lg/l) for microcosm and mesocosm studies with single or multiple applications of acetyl-

cholinesterase-inhibiting insecticides

Active ingredient Dose NOECeco (Class 1) LOECeco (Class 2) LOECeco (Class 3, 4, 5) Reference

Stagnant water systems

Azinphos-methyl Single 0.2 0.72 – Stay and Jarvinen 1995

Single 0.2 – 1.0 Knuth et al. 1992

Single – – 1.0 Tanner and Knuth 1995

Multiple 0.22 – 0.95 Giddings et al. 1994

Chlorpyrifos Single 0.1 0.3 1.0 Biever et al. 1994

Single 0.1 – 0.9 Van den Brink et al. 1996

Single 0.1 – 1.0 Van Wijngaarden et al. subm. b

Single – – 0.5 Brazner et al. 1989, Siefert et al.

1989, Brazner and Kline 1990

Single – 0.5 5 Stay et al. 1989

Single – – 5 Brock et al. 1992a, b, 1993

Single – – 10 Hughes et al. 1980

Single – – 35 Van Donk et al. 1995, Brock et al.

1995b, Cuppen et al. 1995

Continuous – – 0.1 Van den Brink et al. 1995

Diazinon Multiple – – 2.4 Giddings et al. 1996

Fenitrothion Single – – 80 Lahr and Diallo 1993

Multiple – – 14.3 Fairchild and Eidt 1993

Parathion-ethyl Continuous 0.2 – 0.5 Dortland 1980

Parathion-methyl Single – – 10 Crossland 1988

Single – – 100 Crossland 1984

Phorate Single – – 23 Dieter et al. 1996

Bendiocarb Single – – 24 Lahr et al. 1995

Carbaryl Single – 2 20 Havens 1994, 1995

Carbofuran Single 5 – 25 Wayland 1991

Running water systems

Chlorpyrifos Single 0.1 – 5 Pusey et al. 1994

Continuous – – 0.1 Ward et al. 1995

Fenitrothion Single 1.1 – 18.7 Morrison and Wells 1981

Single – – 30.8 Poirier and Surgeoner 1988

Single – – 460 Yasuno et al. 1981

Carbaryl Single – – 34 Courtemanch and Gibbs 1980

LOECeco values are divided into slight effects (Class 2) and more severe effects (Classes 3–5). NOECeco represents the ‘no effect class’

(Class 1).
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over the world use OECD guidelines for toxicity
testing and apply safety factors in one way or an-
other as a first step in aquatic risk assessment (e.g.,
US-EPA, 1998). In the case of acetylcholinesterase
inhibitors and synthetic pyrethroids, the OECD
standard test species D. magna and standard test
fishes were good representatives of sensitive species
in the field. When one accepts to rank toxicity of
acetylcholinesterase inhibitors and synthetic py-
rethroids to these standard species, then exposure–
toxicity ratio methods like for example applied in
the USA (hazard quotient method (Urban and
Cook 1986)), also seem to be protective towards
aquatic ecosystems.

General discussion and conclusions

The ecological risk of 18 insecticides in freshwater
ecosystems is discussed in this paper. They form
15% of the 123 pesticides with similar modes of
action that are, or were, available on the market
for agricultural pest management programmes

(Tomlin, 2000). Nevertheless, given the range of
responses reported among these pesticide studies,
they appear to represent general ecological effects
for acetylcholinesterase inhibitors and synthetic
pyrethroids in aquatic ecosystems (Fig. 3).

Normalisation of reported field concentrations
to TUmso enables a comparison to be made
between studies with insecticides that have work-
ing mechanisms in common. The use of TUmso has
been shown to be an adequate reference for esti-
mating field responses due to direct toxic effects. It
should be kept in mind, however, that for these
compounds standard species are relatively good
representatives of sensitive species. If standard
species are not representative of the sensitive tax-
onomic groups, then the choice of TUmso will be
less successful.

The studies were done in various parts of the
world and under various experimental conditions.
However, NOECecos and Class 2-LOECecos were
still shown to be very consistent regardless of study
location, at least when similar exposure regimes
are considered (Table 11). Leeuwangh (1994)

Table 8. Summarised NOECeco and LOECeco values for acetylcholinesterase-inhibiting insecticides in microcosm and mesocosm

studies

Actual nominal concentrations TUR

Active ingredient Exposure regime UP

NOECeco

(Cl 1)

LOECeco

(Cl 2)

LOECeco

(Cl 3–5)

NOECeco

(Cl 1)

LOECeco

(Cl 2)

LOECeco

(Cl 3–5)

Stagnant water systems

Azinphos-methyl Single 0.02 0.2 0.72 1 10 36 50

Multiple 0.02 0.22 – 0.95 11 – 48

Chlorpyrifos Single 0.013 0.1 0.3 0.5 7.7 23.1 38.5

Continuous 0.013 – – 0.1 – – 7.7

Diazinon Multiple 0.01 – – 2.4 – – 240

Fenitrothion Single 0.11 – – 80 – – 727

Multiple 0.11 – – 14.3 – – 130

Parathion Continuous 0.011 0.2 – 0.5 18 – 45.5

Parathion-methyl Single 0.014 – – 10 – – 714

Phorate Single 0.015 – – 23 – – 1533

Bendiocarb Single 0.74 – – 24 – – 32.4

Carbaryl Single 0.056 – 2 20 – 35.7 357

Carbofuran Single 0.33 5 – 25 15 – 76

Running water systems

Chlorpyrifos Single 0.013 0.1 – 5 7.7 – 385

Continuous 0.013 – – 0.1 – – 7.7

Fenitrothion Single 0.11 1.1 – 18.7 10 – 17

Carbaryl Single 0.056 – – 34 – – 607

Concentrations in lg/l. First tier acceptable concentrations (UP) were derived from the EU-Uniform Principles (Table 2). LOECeco

values are divided into slight effects (Class 2) and more severe effects (Classes 3 to 5). NOECeco represents the ‘no effect class’ (Class 1).

Cl = Class. TUR shows the NOECeco or LOECeco –first tier acceptable concentration ratio (Toxicity–UP Ratio).
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compared the outcome of various microcosm and
mesocosm studies done with chlorpyrifos. He
concluded that direct effects on susceptible species
are often concentration-related and not dependent

on system scale or geographical location. Consid-
ering the consistency of the threshold values of
several compounds (Table 11) this conclusion
seems to be applicable to other pesticides as well.

Table 9. NOECeco and LOECeco values (lg/l) for microcosm and mesocosm studies with single or multiple applications of a pyre-

throid insecticide

Active ingredient Dose NOECeco LOECeco (Class 2) LOECeco (Class 3,4,5) Reference

Stagnant water systems

Cyfluthrin Multiple – – 0.036 Johnson et al. 1994, Morris et al. 1994

Cypermethrin Multiple – – 0.07 Farmer et al. 1995

Multiple – – 0.16 Hill 1985

Deltamethrin Single – – 0.2 Morrill and Neal 1990

Single – – 2.7 Lahr et al. 1995

Esfenvalerate Single 0.01 0.05 0.15 Stay and Jarvinen 1995

Multiple 0.01 – 0.25 Webber et al. 1992

Multiple – 0.01 0.08 Lozano et al. 1992

Multiple – – 0.25 Fairchild et al. 1992b

Fenvalerate Single 0.01 – 0.05 Day et al. 1987

Lambda-cyhalothrin Multiple 0.0016 – 0.016 Hill et al. 1994b

Multiple 0.017 Farmer et al. 1995

Multiple – 0.01* 0.025 Roessink et al. in press

Van Wijngaarden et al. subm. a

Multiple – 0.01* 0.025 Roessink et al. in press

Multiple – 0.01* 0.025 Van Wijngaarden et al. subm. a

Permethrin Single – – 0.5 Kaushik et al. 1985

Tralomethrin Multiple – 0.0027 0.0092 Mayasich et al. 1994

Running water systems

Fenvalerate Continuous – 0.01 0.1 Breneman and Pontasch 1994

LOECeco values are divided into slight effects (Class 2) and more severe effects (Classes 3 to 5).

NOECeco represents the ‘no effect class’ (Class 1).

*Longer-term effects on one pre-dominant species. For the community as a whole, NOECs calculated were 0.01 lg/l.

Table 10. Summarised NOECeco and LOECeco values from studies with pyrethroids in microcosm and mesocosm experiments

Actual nominal concentrations TUR

Active ingredient Exposure regime UP

NOECeco

(Cl 1)

LOECeco

(Cl 2)

LOECeco

(Cl 3–5)

NOECeco

(Cl 1)

LOECeco

(Cl 2)

LOECeco

(Cl 3–5)

Stagnant water systems

Cyfluthrin Multiple 0.0015 – – 0.036 – – 24

Cypermethrin Multiple 0.0068 – – 0.07 – – 10

Deltamethrin Single 0.0004 – – 0.2 – – 500

Esfenvalerate Single 0.0025 0.01 0.05 0.15 4 20 60

Multiple 0.0025 0.01 0.01 0. 08 4 4 32

Fenvalerate Single 0.008 0.01 – 0.05 1.25 – 6.25

Lamda-cyhalothrin Multiple 0.0021 0.0016 0.01 0.025 0.76 4.8 11.9

Permethrin single 0.0065 – – 0.5 – – 77

Tralomethrin Multiple 0.0015 – 0.0027 0.0092 – 1.8 6.1

Running water systems

Fenvalerate Continuous 0.008 – 0.01 0.1 – 1.25 12.5

Concentrations in lg/l. First tier acceptable concentrations (UP) were derived from the EU-Uniform Principles (Table 2). LOECeco

values are divided into slight effects (Class 2) and more severe effects (Classes 3 to 5). NOECeco represents the ‘no effect class’ (Class 1).

Cl = Class. TUR shows the NOECeco or LOECeco – first tier acceptable concentration ratio (Toxicity–UP Ratio).
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In the case of acetylcholinesterase inhibitors
and pyrethroids, Arthropoda contain the species
most sensitive to these compounds. In the different
types of ecosystems, both natural and model,
sensitive representatives of this group are usually
available and generally form a predominant part
of aquatic communities. This overall presence of
one or a few sensitive taxa in microcosm and
mesocosm studies carried out with these types of
insecticides, explains why such studies have a cer-
tain robustness and a general predictive value for
ecological risk assessment in the field.

Above threshold levels, studied endpoints show
wide concentration ranges (in TU) per effect class
between experiments. For example, concentrations

inducing Class 3 effects ranged over approximately
two orders of magnitude in TU for the frequently
measured endpoints ‘Microcrustaceans’ and
‘Insects’ (Figs. 1 and 2). This high variability re-
lates to ecological properties of the test systems,
the experimental set-up and frequency of obser-
vations used, organisms studied and taxonomic
level of identification, and ecotoxicological profile
of the insecticides. Differences in environmental
behaviour of the insecticides, resulting in differ-
ences in bioavailability, can be expected to be an-
other source of observed variation in response
concentrations.

Only a limited number of studies appeared to be
suitable for validation of the first tier risk

Table 12. Indirect effects summarised from studies in stagnant waters after a single application of an organophosphorous insecti-

cide, a carbamate, or a pyrethroid

Structural aspects Functional aspects

Range TUmso

Shifts in animal

populations

Shifts in algae and

higher plants

Decrease in

decomposition

Shifts in community

metabolism

10–100 X1,3,4,5,8,9,10 X4,5,8,10 X3,4,5 X3,4

1–10 X1,2,3,4,6,7,10,13,14 X1,10, 14 X14

0.1–1 X1,2,11,13,14 X1,14 X14

0.01–0.1 X12

The nominal concentrations reported in the studies are expressed in TUmso.

Organophosphorous compounds: 1Siefert et al. (1989), Brazner and Kline (1990), 2Biever et al. (1994), 3Van den Brink et al. (1996),

Kersting and Van denBrink (1997), Brock et al. (1992a), (1993b), 5Van Donk et al. (1995), Brock et al. (1995b), Cuppen et al. (1995),
6Hughes et al. (1980), 7Fairchild and Eidt (1993), 8Crossland (1984), 9Crossland (1988), 14Van Wijngaarden et al. (subm. b).

Carbamates: 10Havens (1995), 11Wayland (1991).

Pyrethroids: 12Day et al. (1987), 13Kaushik et al. (1985).

Table 11. Threshold concentrations (NOECeco/Class2-LOECeco) in relation to experimental set-ups and locations of model ecosys-

tem studies with several insecticides

Compound Dose Experiment Location

NOECeco or Class

2-LOECeco (lg/l) References

Azinphos-methyl Single Microcosms Lab 0.2 1

Azinphos-methyl Single Littoral enclosures USA Minnesota 0.2 2

Chlorpyrifos Single Outdoor microcosms USA Kansas 0.1 3

Chlorpyrifos Single Experimental ditches NL 0.1 4

Chlorpyrifos Single Microcosms simulating

Mediterranean conditions

lab 0.1 5

Esfenvalerate Multiple Outdoor mesocosms USA Alabama 0.01 6

Esfenvalerate Multiple Littoral enclosures USA Minnesota 0.01 7

Lambda-cyhalothrin Multiple Outdoor mesocosms USA N-Carolina 0.002 8

Lambda-cyhalothrin Multiple Plankton-dominated enclosures NL 0.01 9

Lambda-cyhalothrin Multiple Macrophyte-dominated enclosures NL 0.01 9

Lambda-cyhalothrin Multiple Enclosures, spring versus late-summer NL 0.01 10

1: Stay and Jarvinen (1995). 2: Tanner and Knuth (1995). 3: Biever et al. (1994). 4: Van den Brink et al. (1996). 5: Van Wijngaarden et

al. (submitted b). 6: Webber et al. (1992). 7: Lozano et al. (1992). 8: Hill et al. (1994b). 9: Roessink et al. (in press). 10: Van

Wijngaarden et al. (submitted a).
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assessment criteria. NOECeco values could be
established for eight compounds only. Many of the
studies were simply not designed to give this type
of information. Obtained NOECecos and Class
2-LOECeco data, however, suggest that the safety
factors as calculated in this paper generally offer
aquatic organisms and ecosystem functions ade-
quate protection against adverse effects related to
usage of organophosphorous and pyrethroid
insecticides. These studies also show that it seems
to be significant to distinguish between exposure
regimes; for a single application of non-persistent
insecticides it seems possible to be a factor of ten
more lenient than for repeated and chronic expo-
sures to the same chemicals.

The most sensitive endpoints for direct effects
of the insecticides studied were structural eco-
system characteristics and usually concerned
population densities of crustaceans and insects.
These direct effects can generally be well pre-
dicted on the basis of laboratory tests with simi-
lar species as studied in the microcosm and
mesocosm experiments (e.g., Crossland and
Wolff, 1985; Fairchild et al., 1992a; Van Wi-
jngaarden et al., 1996; Maund et al., 1998; Sher-
att et al., 1999; Schroer et al., 2004). Different
studies conducted with the same insecticide (e.g.,
chlorpyrifos, esfenvalerate, lambda-cyhalothrin)
also yield similar critical threshold values (Ta-
bles 7 and 9). This may imply that NOECecos and
Class 2-LOECs of adequate model ecosystem
studies can be used to validate the cut-off-values
such as the HC5 or HC10 values of Species Sen-
sitivity Distribution curves (Solomon et al., 2001;
Van den Brink et al., 2002a; Postuma et al., 2002)
based on laboratory tests with standard and
additional species. As it cannot be excluded that
taxa that may be sensitive to a pesticide in a
natural system are not screened in the laboratory
because they are not easily cultured, held or
tested.

Indirect effects of insecticides seem to be much
more variable (e.g., Leeuwangh, 1994; Brock et al.,
1992b, 2000b). Such types of effects are steered
more by experimental conditions and stochastic
processes than in the case of direct effects. How-
ever, when indirect effects were summarised, gen-
eral response patterns could be recognised
(Table 12). The studies show that the frequency of
reported indirect effects increased with increasing

concentrations. Indirect effects on functional end-
points were less frequently reported, which on the
one hand supports the idea that functional aspects
of the ecosystems are less sensitive to toxic stress
by compounds studied. On the other hand, how-
ever, it cannot be excluded that functional end-
points have been less frequently reported because
they are not often measured in these types of
studies. Indirect effects on structural endpoints are
to be expected from exposure concentrations in the
range of 0.1–1 TUmso and higher (Table 12).
Although it seems difficult to predict accurately
which specific species will suffer indirect effects due
to insecticide stress, aggregation of biological taxa
into functional groups allows food-web modelling
and the prediction of overall ecological responses
that will follow direct toxic effects (Traas et al.,
1998; Baird et al., 2001).

Many of the studies evaluated were stopped
before recovery times of sensitive populations
could be established (Class 4 observations in
Figs. 1 and 2). Nevertheless, on the basis of the
remaining studies, a general picture of the recovery
of sensitive invertebrates can be given. In stagnant
waters sensitive species having short life-cycles
(microcrustaceans), usually recovered within
8 weeks after a single exposure of less than 10
TUmso (Fig. 1a). Fewer data are available on the
recovery rate in systems that are repeatedly ex-
posed. Figure 2a, however, suggests that also after
repeated applications, recovery generally occurs
within 8 weeks of the last application as long as this
last application was less than 10 TUmso.

Duration of effects and recovery of stressed
ecosystems is an important issue in higher tier risk
evaluation (Campbell et al., 1999). Testing pesti-
cides in outdoor (model) ecosystems has the
advantage that this type of research may provide
information on the recovery of the systems after
pesticide contamination has ceased. Actual recov-
ery of sensitive populations depends on the instant
that concentrations reach non-toxic levels again, in
combination with an array of biological and eco-
logical characteristics (e.g., Giesy et al., 1999; Brock
and Budde, 1994; Lahr et al., 2000). Themicrocosm
and mesocosm studies demonstrate that recovery
after pesticide contamination is expected to be rapid
in the real world when (a) the compound is not
persistent, (b) the physicochemical environment is
not altered, or is quickly restored, (c) the generation
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times of vulnerable populations are short, and/or
(d) when there is immigration from residual popu-
lations in nearby unaffected areas.

Model ecosystems are generally of smaller
dimensions than the aquatic ecosystems they aim to
simulate. In addition, model ecosystem studies are
restricted in duration (of the 51 evaluated studies, 26
lasted from 2 to 6 months, three made observations
in the following growing season, and the rest lasted
for less than 2 months after the (last) treatment).
Because of these characteristics, it may be expected
that organisms on the microscale (e.g., plankton)
are better adapted to dimensions and time-scale of
the experiments than organisms on the macroscale
(e.g., macroinvertebrates, fish). Hence, predomi-
nantly small-sized species, especially when they also
have short generation times (e.g., plankton, multi-
voltine invertebrates), have an ecological advantage
over other life history traits in these types of studies.
It should therefore be taken into account in the
interpretation of effects and recovery of species
from model ecosystem studies whether or not the
experimental circumstances provide unrestricted
conditions for studying the effects and recovery of
species of interest.

This review of ecological effects studied under
quasi-natural conditions shows that some estima-
tions of direct effects in the field can be made by
taking the acute EC50 of the most sensitive standard
test species (TUmso) as a reference concentration,
and by classifying the effects. Modelling the ob-
served responses of the most sensitive endpoints
(Fig. 3) provides a way of extrapolating results of
microcosm and mesocosm observations to proba-
bilities of effect occurrences in the field at predicted
or measured environmental concentrations
(Table 6). Using the same regression model, the
outcome of low risk concentration values can be
varied by choosing either a strict, or a more lenient,
scenario (considering Effect Class 1 only or, con-
sidering Effect Classes 1 and 2 as the ‘no-effect’
classes). Other options are to choose higher or lower
probability levels (e.g. FEC5% or FEC10%) as a
criterion and/or take the lower 95% confidence limit
into account to set safe concentrations.

Recently, this approach has been further ex-
plored by developing the empirical model PER-
PEST (Van den Brink et al., 2002b). PERPEST
makes use of the database described in this paper,
and that of microcosm and mesocosm data of

insecticides that have other modes of action
(Brock et al., 2000b), plus that of herbicides
(Brock et al., 2000a), to predict ecological effects
of pesticides on freshwater ecosystems. The PER-
PEST model searches for situations in the data-
base that are analogous to a case in question.

Our effect classification system was shown to be
helpful in evaluating treatment-related effects of
different insecticides as observed in various ecosys-
tem experiments that were made available in the
open literature. The effect classification system can
be equally well-applied in future higher tier risk
evaluations. Recently, it was advocated that pro-
tection goals should be formulatedmore specifically
and to specifymore clearly whatmust be considered
as ‘unacceptable damage’ to the ecosystem (Van
Dijk et al., 2000; Giddings et al., 2002). When site-
specific protection goals, and consequently target
images become available, the effect classification
system can be of help in the decision-making pro-
cess. In this context, the classification systemmay be
used to derive more than one ‘regulatory acceptable
concentration’. Eco-ethical principles may be used
to derive acceptable concentrations in a landscape-
ecological context, e.g., dependent on the
functionality and vulnerability of the freshwater
ecosystem concerned (see, e.g., Brock, 2001).
Defining effect classes and differentiated protection
goals, also has the advantage that the different
stake-holders involved in the process of authorising
pesticides, can discuss more transparently the
decision-making of ‘Ecologically Acceptable Con-
centrations (EACs)’ from model ecosystem studies.
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