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Abstract This paper discusses two model-based geosta-
tistical methods for spatial interpolation of the number
of days that ground level ozone exceeds a threshold le-
vel. The first method assumes counts to approximately
follow a Poisson distribution, while the second method
assumes a log-Normal distribution. First, these methods
were compared using an extensive data set covering the
Netherlands, Belgium and Germany. Second, the focus
was placed on only the Netherlands, where only a small
data set was used. Bayesian techniques were used for
parameter estimation and interpolation. Parameter
estimates are comparable due to the log-link in both
models. Incorporating data from adjacent countries
improves parameter estimation. The Poisson model
predicts more accurately (maximum kriging standard
deviation of 2.16 compared to 2.69) but shows smoother
surfaces than the log-Normal model. The log-Normal
approach ensures a better representation of the obser-
vations and gives more realistic patterns (an RMSE of
2.26 compared to 2.44). Model-based geostatistical
procedures are useful to interpolate limited data sets of
counts of ozone exceedance days. Spatial risk estimates
using existing prior information can be made relating
health effects to environmental thresholds.

Keywords Model-based geostatistics Æ Bayesian
inference Æ Count data Æ Ozone Æ Exceedance days

Abbreviations MCMC: Markov chain Monte Carlo

Introduction

Ground level (tropospheric) ozone is a major air pollu-
tant in Western Europe. Tropospheric ozone results
from photochemical reactions with ozone precursors,
volatile organic compounds, nitrogen oxides, carbon
monoxide and methane in the atmosphere. Environ-
mental focus on ozone concentrations has increased as a
result of the possible inflammatory responses and
reduction in lung function caused when humans are
exposed to periods of several days‘ high ozone concen-
tration. Ozone can also affect ecosystems, mainly
through damage to leaves and other parts of plants
(WHO 1996; UNECE 1996).

As a protection instrument for human health, the
European Commission has set several targets and
objectives for ozone levels in the atmosphere. The indi-
cator applied in this study is the number of days per year
in which an 8-h moving average ozone concentration
exceeds 120 lg/m3 (EC 2002).

Currently, rural ozone concentrations in the Nether-
lands are measured hourly within the Netherlands Air
Quality Monitoring Network at 23 stations, spread
across the country (van Elzakker 2001). Each station
registers the annual number of exceedance days. EU
regulations (EC 2002) require the number of exceedance
days to be reported at the measuring sites. Interpolation
of the exceedance days to produce maps for the Neth-
erlands are a basis for assessment studies related to
public health and environmental effects (e.g., see EEA
1998).

Here we analyse the use of geostatistical interpolation
of annual ozone count data. So far, no attention has
been paid in the literature to geostatistical interpolation
of counts for ozone exceedance days. In geostatistics,
spatial data are assumed to be a realisation of a random
field, and often without the assumption of any stochastic
model being declared. Usually, normality is implicitly
assumed (Christakos 1992). The data analysed in this
paper, however, are positively valued count data,
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without constant variance and normally distributed er-
rors. In this case, the normality assumption may no
longer be appropriate. Count data require a different
approach. The question addressed in this paper is then
which interpolation procedure will be most appropriate
and practically applicable for environmental scientists.

The aim of this study is to investigate the applicability
of either a Poisson procedure or a log-Normal model-
based geostatistical procedure (Diggle et al. 1998;
Ribeiro and Diggle 1999) to interpolate the number of
exceedances of the 120 lg/m3 threshold. A complication
is sparseness of the data. Therefore, data from 2000
measured at 120 rural ozone monitoring stations in the
Netherlands, Belgium and Germany were analysed first.
Then there is a focus on the small subset of 23 stations in
the Netherlands.

Materials and methods

Data

Verified hourly data for 2000 were collected from the
Airbase database (ETC-ACC 2003) at 120 rural back-
ground ozone stations for the Netherlands, Belgium and
Germany. These data were then aggregated, first, by
calculating 8-h moving averages, and, second, by taking
the daily maxima. Finally, the days on which these
maxima exceeded the threshold of 120 lg/m3 were
summed to obtain the annual number of exceedance
days. The data were aggregated according to the
guidelines of the European Commission for missing data
(EC 2002). Nine stations had therefore to be excluded. It
was assumed that small differences between measure-
ment techniques in the monitoring networks had not
influenced the annual number of exceedances, since all
observations of ozone had to satisfy the same quality
control specifications (EC 2002).

Figure 1 shows the 111 observations over the whole
study region. The coordinates were obtained by trans-
forming the geographical coordinates with an azimuthal
equidistant projection centred on 51� north and 9� east.
This projection preserves a correct absolute distance
between the stations in the region considered. The
number of exceedances was lower near the North Sea
coast and higher in the south-east of the region. High
ozone concentrations are caused by photochemical
reactions during warm and sunny days, while the strong
dependence on these meteorological conditions caused
the number of exceedance days to fluctuate sharply from
year to year (Feister and Balzer 1991). In and near large
cities, ozone concentrations are usually lower than in
rural areas (see e.g., Gregg et al. 2003). Since this effect
introduces local non-stationarities, only stations in rural
areas were considered in this study.

Next to showing the observations in the data set of
111 stations, the study focused on analysing data from
the national air quality monitoring network of the
Netherlands only. This network consists of 23 rural

ozone stations (van Elzakker 2001), but one station had
to be excluded due to missing data. The reason for
analysing this small subset only is practical: i.e. the
Netherlands Environmental Assessment Agency needs
to report the number of exceedance days to the Euro-
pean Commission as soon as the data has become
available.

Figure 1 shows the number of exceedance days to
increase from the north-west to the south-east. The
spatial variability increases along with this trend, mak-
ing the random field a spatial non-stationary process,
typical behaviour of a Poisson-like process. To gain
more insight into the distribution, the count data were
analysed and simulated at one single point. At other
locations a similar process may occur. Observations of
daily maximum 8-h moving average ozone concentra-
tion from 1991 to 2000 are shown in Fig. 2, at one
particular station, Eibergen, a village in the eastern part
of the Netherlands. Meteorological conditions and hu-
man activities contribute to fluctuations in the concen-
tration. The graph shows extreme concentrations during
the spring/summer season. Circles indicate the days that
the concentration exceeds the threshold of 120 lg/m3.
One particular difficulty in assigning any statistical dis-
tribution to these data is the clustering of the excee-
dances. Such behaviour is typical for extreme events.
This can be described with an extreme value model
(Smith 1989). Shively (1991) models the sequence of
exceedances as a non-homogeneous Poisson process. A
simpler and more straightforward approach assumes the
exceedance days to follow a Poisson process in the limit,
i.e. that the dependence between daily maxima separated
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Fig. 1 The annual number of days where the daily maximum 8-h
moving average ozone concentration exceeds the 120 lg/m3

threshold value in 2000. The rectangle indicates the location of
Eibergen station
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by a given number of days decreases sufficiently fast as
the separation increases.

As an experiment, we simulated the annual number
of exceedance days. We modelled the occurrence of ex-
ceedance days over one ozone season at the Eibergen
station by sampling from the Bernoulli distribution. To
account for temporal dependence, the probabilities were
conditional on the outcome of the previous day. These
conditional probabilities were estimated from the
10 years of observations shown in Fig. 1. Summing the
resulting sequences of zeros and ones yielded the annual
numbers of exceedance days. The distribution of simu-
lated exceedance days is presented as a histogram in
Fig. 3, to which a Poisson distribution was fitted. It
describes the average well (17.9), and is suitable for
handling count data. It shows a smaller variance (17.9
for the Poisson distribution) than the simulated data
(64.4), however. It overestimates the top and underesti-
mates the tails. Also the log-Normal density function
was fitted, which better accounts for the tails and the
mean (18.2) of the simulations. The function however
handles the data as being continuous and overestimates
(105.6) the variance of the simulated data (64.4).

This exploring analysis showed that neither a Poisson
distribution or a log-Normal distribution can describe
ozone exceedance count data very well, but both distri-
butions have properties that do fit the data. On the other
hand, the Bernoulli simulation of the occurrence of ex-
ceedance days might not have been correct, since it was
only a very simple model for the real situation (see the
discussion section). It should also be realised that com-
parison with only one observed datum could be per-
formed, since only one realisation was available.

The Poisson model

Assuming counts to be spatially independent Poisson
distributed, they could be analysed with a generalised
linear model (McCullagh and Nelder 1989). Generalised
linear models allow data to follow any distribution of
the exponential family, accommodating both continuous
and discrete non-Normal distributions. Generalised lin-
ear-mixed models (Breslow and Clayton 1993) allow for
correlated data. Diggle et al. (1998) embedded kriging
into the framework of generalised linear models, pro-
viding a way to analyse spatially correlated Poisson
data. This model was applied in this study.

Considering spatial observations y(x) as realisations
of a random field process Y(x), where x 2 <2, the ran-
dom field process for spatial correlated Poisson data is
written as

Y xð Þ S xð Þ � Poisson M xð Þ½ �:j ð1Þ

The interpretation is that conditional on an underlying
surface S(x), Y(x) is an independent Poisson distributed
spatial variable with the conditional expectation M(x).
M(x) is a stochastic variable containing the deterministic
large-scale trend, l(x), and the underlying surface S(x).
For Poisson data the relation between M(x), l(x), and
S(x) is attenuated by the log link function

log MðxÞ½ � ¼ lðxÞ þ SðxÞ: ð2Þ

The trend l(x) is a linear function d(x)Tb of known
functions of covariates d(x), which, in our study, only
depends on the location variable x, and unknown
regression or trend parameters, b. The underlying
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Fig. 2 Daily maximum 8-h moving average ozone concentration
(lg/m3) at Eibergen station for 1991 – 2000. Days that this
concentration exceeds the threshold of 120 lg/m3 are indicated by
circles
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surface S(x) is modelled by a zero mean second-order
stationary Gaussian process with covariance matrix S

S xð Þ � N 0;
X� �

: ð3Þ

The elements of S depend upon the distance vector hij
between two locations, xi and xj, by means of a per-
missible correlation function q with parameters r2 (the
variance) and a range parameter /. The Poisson model
predicts the intensity in space M(x). For the Poisson
model, intensity and variance are equal. Hence, the
predicted intensity field will always be smoothed because
it can explain deviations from the intensity value by its
corresponding Poisson variance.

The log-Normal model

We considered the log-Normal model (Cressie 1993) as
an alternative method. We now assume the logarithm of
the random field followed a Normal distribution. The
log-Normal model can be written in an equivalent
model-based formulation of a linear mixed model
(Ribeiro and Diggle 1999; Pinheiro and Bates 2000).
Conditional on the underlying surface S(x), the log[Y(x)]
are independently normally distributed, with conditional
expectation M(x) and variance s2

log Y ðxÞ½ � SðxÞ � N MðxÞ; s2
� ��� : ð4Þ

Note that here log[Y(x)] is in fact a noisy version of
M(x), with residual variance s2. The relationship be-
tween M(x), l(x), and S(x) is the identity link for a
Gaussian model so

MðxÞ ¼ lðxÞ þ SðxÞ: ð5Þ

Interpretation of l(x) and S(x) remains unchanged in
comparison to the Poisson model. In conventional
geostatistics, the variance s2 is called the nugget, r2 +
s2, the sill, and r2, the partial sill. The parameter s2 can
be considered to resemble variations that cannot be
attributed to spatial correlation and thus introduces
smoothing. Finally, the log-Normal model makes spatial
predictions of the expected number of exceedance days.
This is a major difference with the Poisson model.

Parameter estimation and spatial prediction

Parameters were estimated using Bayesian inference
(Gelman et al 1995), in particular using Markov Chain
Monte Carlo (MCMC) methods (Gilks et al. 1996)
based upon the Langevin–Hastings algorithm (Besag
1994; Papaspilliopoulus et al. 2003). This is a
Metropolis-Hastings algorithm in which the proposal
distribution uses gradient information from the
log-posterior distribution. The algorithm iteratively
generates a chain, where in each step a proposal is
generated for an update of the current state of the chain.

The update is then accepted or rejected according to a
certain acceptance probability. Proposal variances for r2

and / have to be found manually in such a way that
approximately 60% of the proposals is accepted
(Christensen and Ribeiro 2002). The predictive distri-
bution is obtained by first sampling from the posterior
distributions, and then taking, for each, samples from
the multivariate Gaussian distribution of S(x). This
procedure automatically incorporates parameter uncer-
tainty in the predictions. For the mathematical formu-
lation of the above process we refer to Diggle et al.
(1998) and Gelman et al. (1995).

A re-parameterisation of the nugget s2 as a relative
nugget s2rel = s2 /r2 was carried out to still be able to
write the covariance matrix S as a product between r2

and the correlation matrix. Discrete intervals for /
ands2rel had to be taken, because their posteriors can-
not be written as a standard statistical distribution.
(Ribeiro and Diggle 1999; Christensen and Waagepet-
ersen 2002).

Prior specification and setup of the MCMC algorithm

Bayesian inference needs a specification of prior distri-
butions of the parameters. Prior knowledge was avail-
able (see Fig. 1). To allow modelling of the trend
towards the south-east, we included covariatesd(x) = (1,
x1, x2)

T, where x1 and x2 are the coordinates in the
east-west and north-south directions, respectively, and
associated regression parameter b = (b0,b1,b2)

T. The
variance r2 of the log-data is positive, approximately
equal to 0.1, and the correlation distance / a few hun-
dred kilometres, which is typical for ozone concentra-
tions found in previous years. An exponential variogram
model q(u)=exp(�u) was chosen for the covariance
structure. The resulting priors for both the Poisson and
log-Normal models are:

p b0ð Þ � Nð3; 0:5Þ
p b1ð Þ � Nð0:001; 0:001Þ
p b2ð Þ � Nð�0:002; 0:001Þ
p r2
� �

� v2invð1; 0:1Þ
p /ð Þ � expð1=100Þ
p s2rel
� �

/ 1

We chose Gaussian priors for the trend parameters, an
inverse-v2 distribution with one degree of freedom and a
scale parameter 0.1 forr2 and an exponential prior with
an expectation of 100 km for the range parameter. The
relative nugget s2rel = s2 /r2, only used in the log-Nor-
mal model, was given a uniform prior. The Gaussian
distributions and inverse-v2 distribution are conjugate
priors for the trend and sill parameters, respectively. The
exponential distribution for the range parameter leads to
more equally spaced correlations at a fixed distance
(Ribeiro and Diggle 1999).

The variances of the trend parameters seem rather
strict. They are not however, because these variances are
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scaled by the partial sill parameter. In combination with
the fact that coordinates are given in kilometers, these
priors are relatively flat.

Proposal variances for r2 and / were found to be
0.002 and 100. To check on convergence and mixing, we
considered trace plots of the individual samples and
their corresponding auto-correlation functions. The
samples preferably show stationarity with low auto-
correlation. The chain’s burn-in time was set at 10,000
iterations and it was sampled every 200th iteration to
reduce the auto-correlation.

The prior specification for the subset of 22 observa-
tions for the Netherlands only was based on information
on the full set. Only the intercept parameter was given a
lower value, and no prior trend was specified. The
resulting priors for the subset are:

p b0ð Þ � Nð2; 0:5Þ
p b1ð Þ � Nð0; 0:001Þ
p b2ð Þ � Nð0; 0:001Þ
p r2
� �

� v2invð0:1; 1Þ
p /ð Þ � expð1=100Þ
p s2rel
� �

/ 1

The proposal variances for r2 and / were found to be
0.01 and 300, respectively. The chain’s burn-in time and
thinning remained unchanged.

Validation

A cross validation by ‘‘leaving one out’’ was carried out
to see which interpolation method performs better. The
root-mean-squared error (RMSE) was chosen as the
error measure. The two models do not predict the same
quantity. Therefore, results have to be interpreted with
care.

Results

The data sets were analysed with the software packages
geoR (Ribeiro and Diggle 2001) and its extension,
geoRglm (Christensen and Ribeiro 2002). Both packages
run under the programming environment of R (Ihaka
and Gentleman 1996). The geoR package contains sev-
eral functions for handling (log-)Normal spatial data;
geoRglmcan deal with spatial Poisson data. R and both
packages are available free of charge on the Internet.

The results are presented under three headings: (1)
parameter estimation and interpolation using the full
data set, (2) interpolation results of 1, focusing on the
Netherlands, and (3) parameter estimation and inter-
polation using the subset of the Netherlands only.
Interpolation was done on a 15·15 km grid for the
Netherlands, Belgium and Germany, while for the
Netherlands a 5·5 km grid has been taken.

Part 1: analysis and interpolation using the full set

Posterior densities of the six model parameters are
shown in Fig. 4. Since the Poisson model does not
contain a nugget effect, no posterior is shown. Values of
the modes and standard deviations are given in Table 1.
Since we work with a number of days, sill and nugget
have no units.

The posterior densities of the trend parameter vector
b of both models are practically identical. This is not
surprising since both models estimate the trend on a
log-scale. The modes are b̂= (3.01, 0.0015, �0.0024)T
and b̂= (3.00, 0.0013, �0.0025)T for the Poisson model
and log-Normal model, respectively.

The partial sill r2 of the Poisson model is smaller than
that of the log-Normal model. Their modes are 0.093
and 0.12, respectively. Although they have the same
order of magnitude due to the log-scale, we can under-
stand the difference from distributional assumptions of
both models. The Poisson model predicts the intensity
field. The Poisson model can describe the variation in
the original data by its corresponding Poisson variance.
For this reason, r2 may be smaller than for the log-
Normal model. If simulations of equal probable fields
were made, these fields would be close to the original
data.

For the posterior range distribution for the Poisson
model we have a mode /̂= 102 km and for the log-
Normal model /̂= 68 km. The effective correlation
distance is three times larger, because of the exponential
correlation function. The Poisson posterior is more
uncertain, shown by its smaller peak and wider tail (see
also Table 1). Further, we found the range to be posi-
tively correlated with the partial sill.

The nugget effect is estimated only in the log-
Normal model. Its mode is relatively small, ŝ2=
0.028, but it will introduce smoothing in the interpo-
lation.

Figure 5 shows the predicted spatial fields (left pan-
els) and their corresponding standard deviations (right
panels). Minimum and maximum values are given in
Table 2. From the original number of exceedance days,
the Poisson model (upper panels) predicts the Poisson
intensity of the number of exceedance days, while the
log-Normal model (lower panels) predicts the expected
number of exceedance days. The patterns and values of
both models are rather similar. Both models smoothed
the original data.

The standard deviations clearly show the difference
between what both models predict. Related to its lower
sill and higher range, the Poisson model shows consid-
erable lower values. This indicates the predicted inten-
sity to be more certain than the expected number of
exceedance days. In both models, the log-link yields
larger standard deviations at those locations where
predictions are larger.

Cross validation (Table 3) shows that the RMSE for
the Poisson model was smaller (7.09) than that for log-
Normal model (7.15).
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Part 2: interpolation in the Netherlands using the full set

In the previous section, we showed the most important
properties of both models. Because the effective range
was approximately a few hundred kilometres, we also
incorporated data from the surrounding countries Bel-
gium and Germany. In this section we zoom in on the
interpolation results for the Netherlands only, while
using the parameter estimates from the full set.

Figure 6 shows the predicted fields in the Netherlands
(left panels) and their corresponding standard deviations
(right panels). The presence of observations from Ger-
many leads to higher values near the Netherlands–Ger-
man border. The Poisson model (upper panels) shows
more smoothing than the log-Normal model (lower
panels), as is verified from the minimum and maximum
predicted values (Table 2).

Standard deviations of the Poisson model are smaller
and show less variation. This indicates that the predicted

intensities are more certain than the expected number of
exceedance days predicted by the log-Normal model.
The RMSE of both models are practically equal, 2.28
and 2.27, respectively. The log-Normal model has shown
less smoothing, but this has only a little effect on the
RMSE.

Part 3: analysis and interpolation in the Netherlands
using the subset

This section focuses on the Netherlands only. Parameter
estimation and interpolation has been done using the
subset of 22 observations. Posterior densities are shown
in Fig. 7, with values of the modes and standard devi-
ations given in Table 1. The posterior trend parameter
vector of the Poisson model is again similar to that of
the log-Normal model. Posterior modes are b̂= (2.07,
�0.00010, 0.000076)T and b̂= (2.13, �0.000041,
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Fig. 4 Posterior distributions
of the Poisson model
parameters (solid line) and log-
Normal model (dashed line)
using the full data set

Table 1 Modes and standard
deviations (calculated as 1/4 of
the 95% credible interval) of
the posterior distributions
(Figs. 4, 7)

b0 [�] b1[km
�1 ] b2[km

�1 ] r2 [–] /[km] s2 [–]

Full set Poisson 3.01 0.0015 �0.0024 0.093 102
(0.11) (0.00034) (0.00033) (0.037) (68)

log-Normal 3.00 0.0013 �0.0025 0.12 68 0.028
(0.12) (0.00040) (0.00037) (0.044) (74) (0.014)

Subset Poisson 2.07 �0.00010 0.000076 0.029 63
(0.14) (0.00036) (0.00036) (0.039) (113)

log-Normal 2.13 �0.000041 0.00011 0.073 56 0.013
(0.16) (0.00047) (0.00048) (0.052) (76) (0.011)
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0.00011)T, respectively, indicating no significant trend in
the data. The estimates for the Poisson model are more
certain (Table 1).

The partial sill r2 in both models diminished in
comparison to the values found using the full set.
Posterior modes are 0.029 and 0.073, respectively. In

particular for the Poisson model, the sill value has
become very small, indicating that the Poisson model
will only show little variation around its mean. As for
the trend parameters, differences in uncertainty of r2

between the two models have grown.
The posterior range parameter / has also become

smaller, with modes of 63 and 56 km for the Poisson
model and log-Normal model, respectively. The poster-
ior range of the Poisson model (Fig. 7) has become more
uncertain than the range in Fig. 4 (Table 1). It appeared
to strongly depend on its prior.

The nugget of the log-Normal model has also reduced
(ŝ2= 0.013). Compared to the estimates using the full

10 20 30 40 50 60 70 80 5 10 15 20 25 30

10 20 30 40 50 60 70 80 5 10 15 20 25 30

(a) (b)

(d)(c)

Fig. 5 Predicted number of
ozone exceedance days (left)
and corresponding kriging
standard deviations (right) with
the Poisson model (top) and
log-Normal model (bottom) for
2000 using the full data set

Table 2 Minimum and
maximum values of the data,
model predictions and model
standard deviations

Full set NL-B-D Full set NL Subset NL

Min Max Min Max Min Max

Poisson
Observations 5 79 5 14 5 14
Predictions 6.60 75.84 7.23 13.28 8.11 10.03
Standard deviations 1.40 23.48 1.39 2.60 1.26 2.16
log-Normal
Predictions 5.78 83.71 6.05 13.97 5.85 12.42
Standard deviations 1.20 34.47 1.00 3.56 0.85 2.69

Table 3 Root mean-squared error values of the cross validation

Full set NL-B-D Full set NL Subset NL

Poisson 7.09 2.28 2.44
log-Normal 7.15 2.27 2.26
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set, the standard deviations of all parameters, except the
nugget, have increased (Table 1).

Figure 8 shows the predictions (left panels) and cor-
responding standard deviations (right panels) of both
models. Contrary to Fig. 6, three aspects can be clearly
seen. First, the influence of the observations from the
surrounding countries has disappeared, especially near
the Netherlands–German border. Second, the Poisson
model has larger smoothing, and third, the log-Normal
model has less smoothed. Standard deviations for both
models decreased. Minimum and maximum values are
given in Table 2. Cross validation shows a lower RMSE
for the log-Normal model (2.26) than for the Poisson
model (2.44) (Table 3).

Discussion

The data used in this study represent the annual number
of days in which ozone exceeds a threshold level.

Observations were used from the Netherlands, Belgium
and Germany. One may question the possibility of
pooling data, since different countries may use different
ozone measurement techniques. According to European
quality control specifications (EC 2002) however, mea-
suring was done in a standardised way with calibrated
equipment, but an intercomparison study (Borowiak
et al. 2000) showed that the Netherlands ozone concen-
trations were measured 4% lower than its surrounding
countries. We performed a recalculation of the number of
exceedance days in the Netherlands, and the number of
exceedance days increased from 0 to 5 days, depending
on the station, with an average of 2.05 days. We could
have corrected the data in advance, but on the other
hand, in our research we analysed data that were actually
reported by the Netherlands Environmental Assessment
Agency, without correcting them first. The correction
should be done by the Agency before releasing the data.

The study showed the effective correlation distance to
be approximately a few hundred kilometres. This
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Fig. 6 Predicted number of
ozone exceedance days (left)
and corresponding kriging
standard deviations (right) with
the Poisson model (top) and
log-Normal model (bottom) for
the Netherlands in 2000 using
the full data set
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satisfies analysis of the extensive data set covering the
three countries. It further implies that when interpolat-
ing for the Netherlands only, data from surrounding
countries have to be taken into account. One practical
issue remains important as well: the Netherlands Envi-
ronmental Assessment Agency needs to report the
number of exceedance days as soon as the data has be-
come available. Since data from other agencies can ar-
rive late, analysing only data from the Netherlands is
then the ultimate possibility, but on the other hand,
information from previous years can be used as prior
information.

In the study we chose an explicit model-based geo-
statistical approach to interpolate the annual number of
exceedance days. First, we assumed an approximation
by a Poisson distribution, and second, a log-Normal
distribution. The log-link in both models made model
and parameter comparison easier. The advantage of
using a Poisson model was that data could be analysed
as count data, with corresponding properties. This was
indicated by increasing variance with increasing mean
(Fig. 1) as well as by the simulation study (Fig. 3). Its
disadvantage was that it did not properly fit the simu-
lation study. The variance of the Poisson distribution
was too small as compared to the variance of the sim-
ulation. Occurrences of exceedance days cluster in time,
which weakens the assumption of a Poisson process, and
it predicted the intensity of the annual number of ex-
ceedance days, as such complicating direct comparison
with observations. The log-Normal model better fitted

(Fig. 3). It also showed increasing variance with an
increasing mean and it predicted the expected number of
exceedance days. The disadvantage is that it handled
data as continuous, which was not the case.

The most important difference between the models
was that the Poisson model predicts an intensity field,
whereas the log-Normal model predicted expected val-
ues. For this reason, r2 was smaller for the Poisson
model (Table 2). As kriging standard deviations were
smaller, the spatial predictions by the Poisson model
seemed more accurate. Since expectation and variance
are equal for a Poisson distribution, the Poisson model
could describe more variation in the original data.
Therefore the Poisson model described the original data
by a smoothed intensity field that seemed more accurate.

The nugget of the log-Normal model can be consid-
ered similar to the Poisson variance and has a compa-
rable effect to the smoothing properties of the Poisson
model. This became clear for the full data set. For the
subset, the nugget was lower, resulting in a less smoothed
surface. The log-Normal model described most variation
in the data by the underlying surface. The Poisson
model, on the contrary, described this variation with its
Poisson variance and showed a smoothed surface.

The choice for the prior of the range parameter was
important. Earlier estimates using non-informative
priors resulted in poor convergence in the MCMC
algorithm. The choice of an exponential prior was an
appropriate choice because it has the property that the
correlation at a fixed distance was more uniformly
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distributed (Ribeiro and Diggle 1999). The other
parameters seemed less sensitive and the chains always
converged to reasonable values given our priors. The
priors could be more specified if data from past years
were analysed.

The log-Normal model described the variation in the
original data well and incorporates it into the estimates
of the spatial correlation parameters r2and /. Conse-
quently, the predictions passed practically through the
observations at the monitoring stations. The Poisson
model on the other hand avoided this. Apparently, the
original data could be described by the predicted Pois-
son intensity parameter. When predicting exceedances
near a critical level, e.g. the maximum allowed excee-
dance days per year, the log-Normal model approach
was more appropriate.

As a further extension, the number of exceedance
days may in fact follow a Negative Binomial distribu-
tion. This distribution can account for overdispersion
and may fit the number of exceedance days better than

the Poisson distribution or log-Normal distribution. In
this case, the intensity M(x) is Gamma distributed where
the parameters vary in space.

The question remains how to interpolate this kind of
count data exactly. The real situation is complex. The
conceptual process is as follows: during smog days, the
concentration in one area (a range of a about 100 km)
increases, while in another area it does not. In the first
area, an exceedance may occur, while in the other is does
not. On another day, in the other area an exceedance
may occur, while in the first area it does not. On average,
there will be more exceedances in a certain area, in this
case the southern part of Germany. The data are in fact
a summation of different spatially correlated data over
time. This may introduce large variability in space on
small scales. To avoid interpolation of count data di-
rectly and using the bulk of information in hourly
observations, one could imagine spatial-temporal inter-
polation. This can by done by interpolating hourly ob-
served ozone concentrations (e.g., Guttorp et al. 1994)
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Fig. 8 Predicted number of
ozone exceedance days (left)
and corresponding kriging
standard deviations (right) with
the Poisson model (top) and
log-Normal model (bottom) for
the Netherlands in 2000 using
the subset
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or daily maxima. In a second step, one can determine the
number of days on every grid cell. Not only the inap-
propriate data assumptions or laborious MCMC
parameter estimates can be avoided, but a more detailed
map may also result. The primary interest is still the
creation of an accurate national map showing the actual
number of exceedance days at a certain location.

Conclusion

Two methods were discussed here for a model-based
geostatistical interpolation of the annual number of ex-
ceedance days. The Poisson model was found to give a
better representation of the random field process of the
number of exceedance days. For environmental assess-
ment applications, however, we concluded the log-Nor-
mal model to be the preferred method for interpolation,
considering its capacity to predict the expected number
of exceedance days instead of an intensity field.

When making interpolations for a small area such as
the Netherlands, incorporating observations from sur-
rounding countries in the analysis was beneficial since
the effective correlation distance of the data was
approximately 300 km. This means that predictions near
the Netherlands border still depend on observations far
in Germany. Furthermore, including more observations
improved parameter estimation and led to predictions
that were more accurate.

Use of prior information in the Bayesian inference
procedures avoids problems with convergence of the
MCMC algorithm, which kept on fluctuating if flat
priors were used in the subset. Also, even use of a limited
data set allowed us to map the number of exceedance
days. These maps, including their uncertainties, might be
used in the future to study environmental relations be-
tween ozone and risks for public health, like for example
the economic consequences of environmental health
policies.
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