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[1] Different trends of soil moisture variability with mean
moisture content have been reported from field
observations. Here we explain these trends for three
different data sets by showing how vegetation, soil and
topography controls interact to either create or destroy
spatial variance. Improved understanding of these processes
is needed for the transformation of point-scale
measurements and parameterizations to scales required for
climate studies, operational weather forecasting, and large
scale hydrological modeling. Citation: Teuling, A. J., and

P. A. Troch (2005), Improved understanding of soil moisture

variability dynamics, Geophys. Res. Lett., 32, L05404,

doi:10.1029/2004GL021935.

1. Introduction

[2] Although the quantitative contribution of soil mois-
ture to the global water budget is negligible, it plays a
central role in the global water cycle by controlling the
partitioning of water and energy fluxes at the earth’s surface,
and may control the continental water distribution through
land-surface atmosphere feedback mechanisms [Koster et
al., 2003]. The ability of coupled models to reproduce these
processes will strongly depend on the parameterization of
soil moisture state-flux relationships at the regional scale.
The lack of accurate observations of land surface states and
fluxes at this scale, combined with the variability of soil
moisture and the high non-linearity of land-surface processes
at the small scale, requires aggregation of small scale
processes to larger scales in order to prevent systematic
biases in modeled water- and energy fluxes [Crow and
Wood, 2002]. For successful aggregation, knowledge on soil
moisture variability controls is indispensable.
[3] Several scientists have reported soil moisture vari-

ability to increase with decreasing mean moisture content
[e.g., Famiglietti et al., 1999; Hupet and Vanclooster,
2002]. Other scientists reported opposite trends [e.g.,
Western and Grayson, 1998; Famiglietti et al., 1998], were
unable to detect a trend [e.g., Hawley et al., 1983;
Charpentier and Groffman, 1992], or found the trend to
depend on the mean soil moisture state [e.g., Owe et al.,
1982; Albertson and Montaldo, 2003]. Although many
scientists have speculated about the origin of soil moisture
variability, there have been only few quantitative studies
looking at how different processes act to either increase or
decrease the spatial variability of soil moisture. By using
the similar media concept, Salvucci [1998] showed how
variability in soil texture leads to different soil moisture
variability states in different limiting cases. Albertson and
Montaldo [2003] showed how covariances between soil

moisture and fluxes, originating from variability in soil
moisture, forcing and/or land surface properties, can lead to
either an increase or decrease in soil moisture variability.
[4] Here we develop a simple model that is able to

reproduce the different observed soil moisture variability
trends for the three different data sets that were used in this
study (see Figures 1 and top panels of Figure 2). We also
show that the apparent contradictory observations can be
explained by the temporal dynamics of the interaction
between soil, vegetation, and topography controls.

2. Data

[5] Soil moisture (0–20 cm) variability was measured at
an agricultural field in Louvain-la-Neuve (Belgium) on
60 days between 30 May 1999 and 13 September 1999 as
part of a campaign with the objective to investigate the
within-field spatial variability of transpiration [Hupet and
Vanclooster, 2002]. The soils in the field are classified as
well-drained silty-loam and there is little relief. During the
campaign the field was cropped with maize. The climate is
moderate humid. Meteorological observations are available
from 1 January 1999 till 31 December 1999.
[6] From 24 June 1998 to 26 January 1999, soil moisture

(0–30 cm) was measured with 36 TDR sensors (spacing
1 m) at a gently sloping field transect at the Virginia Coastal
Reserve Long Term Ecological Research (VCR-LTER) site
on the eastern shore of Virginia [Albertson and Montaldo,
2003]. The sandy loam soils were covered by Johnson
grass. Meteorological observations are available for the
period 30 June 1998 till 27 September 1998.
[7] The Australian Tarrawarra dataset results from an

experiment that aimed at investigating the spatial pattern
of soil moisture at the small catchment scale. Between
27 September 1995 and 29 November 1996 a total of 13
soil moisture (0–30 cm) patterns were measured [Western
and Grayson, 1998]. Additional measurements are summa-
rized by Western et al. [2004]. The soils in the catchment
are silty-loam to clay, and the topography is undulating with
a maximum relief of 27 m. The climate is temperate. Land
use is perennial pastures used for grazing. Meteorological
observations are available for the period 10 August 1995 till
25 October 1997.

3. Modeling Variability

3.1. Point-Scale Soil Moisture Dynamics

[8] Under most conditions, lateral flow in the upper part
of the soil can be neglected, and the vertically integrated soil
moisture balance over a depth L can be written as:

dq
dt

¼ 1

L
T � R� q� Sð Þ ð1Þ

GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L05404, doi:10.1029/2004GL021935, 2005

Copyright 2005 by the American Geophysical Union.
0094-8276/05/2004GL021935$05.00

L05404 1 of 4

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Wageningen University & Research Publications

https://core.ac.uk/display/29280412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


where q is the volumetric soil moisture content averaged
over a depth L, T the throughfall, R the saturation excess
runoff, q the deep drainage, and S the root water uptake.
Here L = 0.5 m. Throughfall is the rainfall P that is not
intercepted by vegetation. The size of the interception
reservoir is taken proportional to the leaf area index x, with
a proportionality constant of 0.2 mm, and the reservoir is
assumed to evaporate every day. Since 0� q� f, where f is
the porosity, R equals T for q = f and is 0 for q < f. We
assume bare soil evaporation to be small in comparison to
the root uptake over the entire profile. Drainage is
calculated using Darcy’s law with the unit-gradient
assumption. Using the Campbell [1974] parameterization
yields:

q ¼ ks
q
f

� �2bþ3

ð2Þ

where ks is the saturated hydraulic conductivity, and b a
pore size distribution parameter. We write the vertically
integrated root water uptake S as:

S ¼ frb 1� exp �cxð Þ½ �Ep ð3Þ

where fr is the root fraction in the layer of depth L, b a soil
moisture stress function, c a light use efficiency parameter,
and Ep the potential evapotranspiration. The factor 1 �
exp(�cx) allows for spatially variable response of un-
stressed transpiration to atmospheric boundary layer condi-
tions [Al-Kaisi et al., 1989]. For Louvain-la-Neuve, the
positive relation between x and S was confirmed by Hupet
and Vanclooster [2004]. Soil moisture stress is modeled as:

b ¼ max 0;min 1;
q� qw
qc � qw

� �� �
ð4Þ

where the critical moisture content qc defines the transition
between unstressed and stressed transpiration, and the
wilting point qw the point below which plants are no longer
able to extract water from the soil matrix. Land cover (or x)
is modeled with a spatial and temporal component:

x ¼ xmax c1 � 1� c1ð Þ sin 2p
DOY� c2

c3
þ p

2

� �� �
ð5Þ

where xmax is the local maximum of x, and ci specify the
seasonal development of x. The model defined by (1)–(5)
sufficiently captures the non-linearities and dynamics of the
soil moisture loss processes, and similar models have
proven successful in reproducing point scale soil moisture
dynamics [e.g., Albertson and Kiely, 2001; Laio et al.,
2001]. Here we choose a simple model since adding more
complexity to the model as presented would result in an
increasing number of (generally unknown) covariances
between the parameters. In order to match the observed
forcing, the model was integrated to yield daily values.

3.2. Spatial Closure

[9] We reproduce the first and second order spatial
moments of q (q and sm

2 ) by running a large ensemble of
the model defined by (1)–(5) with variable parameters.
Initial conditions of q are set by adjusting q to a spatially
uniform q of 1 mm d�1. We assume both ln(ks) and xmax to
follow a normal distribution with parameters mk,x and sk,x.
Since f and b are generally correlated with ks, we related
these to ks by linear regression with ln(ks), fitted to the data
provided by Clapp and Hornberger [1978]. This yields f =
�0.0147ln(ks) + 0.545 and b = �1.24ln(ks) + 15.3. Due to
the positive effect of high ks on canopy growth through better
aeration, soil temperature and water transport to roots, we
assume a (perfect) positive linear correlation between ln(ks)
and xmax. Other vegetation parameters are taken as constants.
Atmospheric forcing (P andEp)was calculated fromavailable
observations and assumed to be constant in space.

3.3. Total Simulated Variability

[10] In order to account for spatial differences in the
water balance caused by differences in exposure due to
sloping of the landscape, we follow Svetlitchnyi et al.

Figure 1. Location of observation sites: (a) Louvain-la-
Neuve, with 0.5 m contour lines, (b) VCR-LTER site,
(c) Tarrawarra, with 2 m contour lines.

Figure 2. Observed (so) and simulated (ss) soil moisture
variability versus mean soil moisture content (q).
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[2003] and write the non-local effect of topography (sub-
script t) on the distribution of available soil moisture q* =
q � qw in the top 0.5 m of the soil in terms of a wetness
coefficient h and the expected value of q* for a flat surface:

qt* ¼ hq* ð6Þ

[11] In (6), local values of h depend on slope profile
shape, slope aspect, distance from the divide, and slope
gradient [Svetlitchnyi et al., 2003], and can be derived from
a digital elevation model. As a first order approach, we add
the variance caused by (6) to sm

2 , assuming h = 1. To allow
direct comparison with observations, we also account for
apparent variability due to a (bias-free and stationary)
measurement error �. The total simulated soil moisture
variance ss

2 can now be written as:

s2s tð Þ ¼ s2m tð Þ þ s2hq*
2
tð Þ þ �2 ð7Þ

[12] The parameters used in the simulations of ss are
summarized in Table 1.

4. Analysis

[13] Figure 2 shows that both the range of q as well as the
magnitude, trend, and hysteresis effects of ss for the
different data sets compare well to the observations. In
order to distinguish the contribution of different controls on
the time evolution of ss, we derive an expression for dss

2/dt
as a function of these controls. Subtracting the spatial
average equivalent of (1) from (1) yields an expression
for the time evolution of a local soil moisture anomaly:

dq0

dt
¼ 1

L
T 0 � R0 � q0 � S0ð Þ ð8Þ

where 0 denotes a deviation from the spatial average.
Multiplying (8) by 2q0, performing a chain rule operation to
the left hand side, and averaging the result yields:

dq02

dt
¼ ds2m

dt
¼ 2

L
q0T 0 � q0R0 � q0q0 � q0S0

� �
ð9Þ

which is the expression for the time evolution of the spatial
soil moisture variance derived by Albertson and Montaldo
[2003] but applied to our balance equation (1). Since the
right-hand side of (9) consists of covariance terms, their
contribution depends on both the magnitude of soil moisture
and flux anomalies as well as their mutual correlation. The
sign of the correlation controls whether the different
processes act to create or destroy spatial soil moisture
variance (for synthetic examples, see Albertson and
Montaldo [2003]). Combining (9) with the time derivative
of (7) yields:

ds2s
dt

¼ 2

L
q0T 0 � q0S0

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Vegetation

� 2

L
q0R0 þ q0q0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Soil

þs2h
dq

2

dt|fflfflfflffl{zfflfflfflffl}
Landscape

ð10Þ

[14] In stead of evaluating all terms separately, we group
the correlated terms as (local) vegetation and soil controls,
and non-local landscape control. Figure 3 explains the
different trends in Figure 2 by evaluating the contribution
of the different groups in (10). For clarity the terms have
been converted to monthly averages. Note that inherently to
our stochastic approach, the numbers in Figure 3 should be
considered as indicative rather than exact. Since drainage is
generally a fast process compared to evapotranspiration
[Albertson and Kiely, 2001], much of the soil contributions
in Figure 3 take place within days following major precip-
itation events. Daily values of the vegetation contribution
are of lower magnitude, but show less spread.
[15] In the Louvain-la-Neuve dataset, soil moisture var-

iability increases during the growing season. During winter
and spring (December–April), precipitation surplus causes

Table 1. Parameter Values Used in the Simulation of ss
Parameter Louvain-la-Nev VCR-LTER Tarrawarra

mk, sk ln[mm d�1] 5.6, 0.63a 6.5, 1.0 5.2, 0.96a

qw [-] 0.15f 0.22fb 0.35f
qc [-] 0.44f 0.50fb 0.67f
mx,sx [-] 3.6,0.50a 3.6,0.50 6.0,1.0c

c [-] 0.55d 0.40 0.40
fr [-] 0.90 0.80 1
c1, c2, c3 [-,d,d] 0.5,114,260e 1,-,- 0.5,139,365c

sh [-] N/A N/A 0.1530f

� [-] 0.005 0.005 0.013g

aFitted from observations.
bAdapted from Albertson and Kiely [2001].
cEstimated from biomass measurements assuming a specific leaf area of

0.02 m2 g�1.
dFrom Al-Kaisi et al. [1989].
eFor 114 � DOY � 283, else 0.
fDerived from a 5 
 5 m digital elevation model.
gFrom Western and Grayson [1998].

Figure 3. Monthly average vegetation, soil, and landscape
contributions to ds2s=dt, as in (10), and mean soil moisture
content (q).
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soil moisture to remain near field capacity, and the variance
is fully adjusted to the soil footprint (Figure 3a). Here the
soil footprint is the soil moisture variance under constant q.
Until July, increases in variance due to heterogeneous
transpiration are effectively (although not entirely) can-
celled out by drainage. When drainage becomes negligible
(August–September), spatially variable water uptake by
vegetation acts to create additional variance. This increase
is only destroyed during the first rainfall events in the late
growing season (October–November), when the variance is
‘‘reset’’ to that of the soil footprint (q0q0 > 0). It should be
noted that even during summer root water uptake is not
limited by the availability of soil moisture (q > qc). Since
high S will ultimately lead to low q, q0S0 < 0.
[16] For the VCR-LTER data, this behavior is almost

opposite (Figure 3b). The (small) initial increase in ss
during July (Figures 2 and 3), is due to heterogeneous but
unstressed transpiration (q0S0 < 0). However, the coarse
grained soils in combination with high Ep lead to rapid soil
moisture limitation on S. This causes a sharp decrease in
variance (q0S0 > 0) during August. Similar to the Louvain-la-
Neuve case, rainfall events in September force ss to readjust
to the soil footprint, causing q0q0 < 0. Here a spatially
variable q causes an increase rather than a decrease in
spatial variance of q.
[17] Tarrawarra shows amore complex pattern (Figure 3c).

In southern hemisphere spring (September–November),
vegetation controls act to create variance (q0S0 < 0). This
variance is initially destroyed by drainage of rainfall. In this
period, drying of the soil (dq2/dt < 0) causes a transition
from non-local to local controls on ss [Grayson et al.,
1997]. This can be seen by the negative landscape contri-
butions. Later during summer (December–February), soil
and landscape controls become effectively zero due to
advanced drying. The strong soil controlled root water
uptake (q < qc) causes a transition of the sign of the
correlation between S and q (q0S0 > 0) resulting in a strong
decrease in ss

2. The readjustment to the winter soil moisture
state is accompanied by an increase in ss

2 caused by both
soil and (non-local) landscape controls.

5. Discussion

[18] Our simulations show that both soil and vegetation
controls can act to either create or destroy spatial variance.
The main discriminating factor between both behaviors is
whether or not the soil dries below qc. This depends on the
soil texture as well as on the maximum precipitation deficit,
which can show considerable interannual variability in
many regions. Including the effects of interannual variabil-
ity in meteorological forcing on soil moisture variability
might be subject of future research. The fact that much of
the observed soil moisture variability is actually created by
vegetation anomalies (and thus r(q, x) 6¼ 0) calls for new
approaches to the soil moisture aggregation problem. This
suggests that future field campaigns can further contribute
to our understanding of the soil-vegetation-atmosphere

system not only by looking at soil moisture variability,
but also at how this variability is related to anomalies in soil
and vegetation characteristics.

[19] Acknowledgment. François Hupet and JohnAlbertson are greatly
acknowledged for providing access to their data sets.
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