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Abstract. The Monin–Obukhov similarity theory (MOST) functions fe and fT, of the dissipa-
tion rate of turbulent kinetic energy (TKE), e, and the structure parameter of temperature, CT

2,
were determined for the stable atmospheric surface layer using data gathered in the context of

CASES-99. These data cover a relatively wide stability range, i.e. f ¼ z/L of up to 10, where z is
the height and L the Obukhov length. The best fits were given by fe ¼ 0:8þ 2:5f and fT ¼
4:7½1þ 1:6ðfÞ2=3�; which differ somewhat from previously published functions. e was obtained
from spectra of the longitudinal wind velocity using a time series model (ARMA) method

instead of the traditional Fourier transform. The neutral limit fe ¼ 0.8 implies that there is an
imbalance between TKE production and dissipation in the simplified TKE budget equation.
Similarly, we found a production-dissipation imbalance for the temperature fluctuation budget

equation. Correcting for the production-dissipation imbalance, the ‘standard’ MOST functions
for dimensionless wind speed and temperature gradients (/m and /h) were determined from fe
and fT and compared with the /m and /h formulations of Businger and others. We found good

agreement with the Beljaars and Holtslag [J. Appl. Meteorol. 30, 327–341 (1991)] relations.
Lastly, the flux and gradient Richardson numbers are discussed also in terms of fe and fT.

Keywords: CASES99, Monin–Obukhov similarity scaling, Stable boundary layer, Structure

parameter of temperature, TKE dissipation, Turbulent kinetic energy.

1. Introduction

Point source scintillometers have proven to be a good alternative method to
obtain fluxes of heat and momentum in the stable boundary layer (SBL) (De
Bruin et al., 2002; Hartogensis et al., 2002). The main advantage over the
traditional eddy-covariance method is that turbulent fluxes can be obtained
over short averaging intervals (~1 min and less) and close to the surface (less
than 1 m), which are necessary conditions for measuring the often non-sta-
tionary and shallow SBL. Some key publications on scintillometry are
Tatarskii (1961), Andreas (1990), Hill (1997) and De Bruin (2002).

The basic turbulent variables that are measured with scintillometers are
the dissipation of turbulence kinetic energy (TKE), e, and the structure
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parameter of temperatures CT
2. To determine the turbulent fluxes, use is made

of the universal relationships between the dimensionless e, and CT
2 and the

dimensionless height f ¼ z=L, where z denotes height and L the Obukhov
length. These functions exist by virtue of the Monin–Obukhov similarity
theory (MOST).

In spite of their practical relevance, little e and CT
2 data have been pre-

sented in the literature for f > 1. It is the objective of this study to present
experimental e and CT

2 and data for a stability range 0 < f K 10, from
which we will derive new MOST functions. These data have been gathered in
the context of the CASES-99 project (Poulos et al., 2002). We will compare
our findings with previously reported MOST functions for e and CT

2; for
instance Wyngaard (1973), Högström (1990), Thiermann and Grassl (1992),
Frenzen and Vogel (2001), and Pahlow et al. (2001).

Assuming a production-dissipation balance of the TKE and tempera-
ture variance (T-variance) budget, the MOST functions for e and CT

2 are
related to the MOST functions of the non-dimensional horizontal wind
speed and potential temperature gradients, /m and /h respectively (Pan-
ofsky and Dutton, 1984), and through these also to the flux and gradient
Richardson numbers. We will investigate these features and compare the
thus derived /m and /h groups with the functions reported in the litera-
ture, e.g. the well-known /m and /h functions proposed by Businger et al.
(1971).

2. Theory

According to MOST the following relations define the scaling relationships
of e and CT

2 in the atmospheric surface layer:
jze
u3�
¼ feðfÞ ð1Þ

and

C2
Tz

2
3

h2�
¼ fTðfÞ; ð2Þ

where z is the measurement height, j the von Kármán constant (here taken as
0.4), h* the temperature scale, u* the friction velocity, f � z=L is a dimen-
sionless height parameter with L ¼ Tu2�=jgh� is the Obukhov length and fe
and fT are universal MOST functions. In this study we will confine ourselves
to stable conditions, i.e. L > 0.

A working hypothesis that is often used in TKE-budget analyses is that,
close to the surface, the pressure and flux-divergence terms in the TKE
equation are negligible (see e.g. Panofsky and Dutton, 1984). Conse-
quently, the locally produced TKE by buoyancy and mechanical
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turbulence is also locally dissipated, which often referred to as the ‘local
dissipation assumption’. The simplified TKE budget in non-dimensional
form directly relates fe to the dimensionless gradient /m of the mean
horizontal wind speed, �u:

fe ¼ /m � f; ð3Þ
where /m, defined as /mðfÞ ¼ ðjz=u�Þ@�u=@z represents mechanical TKE
production, f represents buoyancy TKE production or destruction depend-
ing on the sign of f, and fe is the dimensionless dissipation rate.

Similar arguments for the T-variance budget equation lead to (Panofsky
and Dutton, 1984):

fT ¼
3

j2=3

/h

f
1=3
e

; ð4Þ

where /h, the dimensionless gradient of mean potential temperature, �h, is
defined as /hðfÞ � ðjz=h�Þ@ �h=@z.

2.1. SIMILARITY FUNCTIONS fe AND fT FOR e AND CT
2

Hill (1997) gives an overview of several fe and fT expressions for stable
conditions that can be found in the literature.

In this study we will consider for fe:

feðfÞ ¼ 1þ 2:3ðfÞ0:6
h i3

2 ð5aÞ

proposed by Wyngaard and Cot _e (1971) and adapted by Andreas (1989) to
account for j ¼ 0.4 instead of 0.35,

feðfÞ ¼ 1þ 4fþ 16ðfÞ2
h i1

2 ð5bÞ

proposed by Thiermann and Grassl (1992),

feðfÞ ¼ 0:85þ 4:26fþ 2:58ðfÞ2 ð5cÞ
proposed by Frenzen and Vogel (2001) and

feðfÞ ¼ ce1 þ ce2f ð5dÞ
proposed by Wyngaard (1973). Several authors used Equation (5d) with
different values for the constants ce1 and ce2; Wyngaard (1973) gave
ce1 ¼ 1 and ce2 ¼ 5, Högström (1990) found ce1 ¼ 1.24 and ce2 ¼ 4.7, and,
recently, Pahlow et al. (2001) obtained ce1 ¼ 0.61 and ce2 ¼ 5. The original
form of Equation (5c) given by Frenzen and Vogel (2001) reads
fe ¼ (0.85 + 0.6f)(/m ) f) with /m ¼ 1 + 5.3f. In Equation (5c), we in-
serted their /m function in the fe expression. Frenzen and Vogel (2001)
also gave a hyperbolic function of fe for the stable and unstable range.
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They argued this function to be the best form since it is continuous for
both the stable and unstable case and represented more closely the tran-
sition region between two regimes. Here we are interested in stable con-
ditions and, therefore, will only consider their stable fe function.

Note that Hill (1997) cited Frenzen and Vogel (1992) wrongly in his lit-
erature overview of fe and fT expressions. He gave fe ¼ 0.84 + 5f for stable
conditions after Frenzen and Vogel (1992), who indeed suggested fe ¼ 0.84
for neutral conditions, but this result was obtained using only unstable data
and no stable data were presented.

For fe(0) „ 1, there is no balance between dissipation and production rates
of TKE at neutral conditions. This follows directly from Equation (3), where
it can be seen that fe(0) ¼ /m(0), and /m(0) is 1 by the definition of the von
Kármán constant. Frenzen and Vogel (1992, 2001) and Pahlow et al. (2001)
found fe(0) < 1, whereas Högström (1990) found fe(0) > 1.

For fT we will consider:

fTðfÞ ¼ cT1 1þ cT2f
2
3

h i
ð6aÞ

after Wyngaard et al. (1971) with cT1 ¼ 4.9 and cT2 ¼ 2.4. We will use
cT2 ¼ 2.2 after Andreas (1989) to account for j ¼ 0.4 instead of j ¼ 0.35
used by Wyngaard. Thiermann and Grassl (1992) found

fTðfÞ ¼ 6:34 1þ 7fþ 20f2
� �1

3: ð6bÞ

2.2. Similarity functions /m AND /h FOR du/dz AND dh/dz

We will also investigate /m and /h expressions derived from fe and fT, using
Equations (3) and (4). As with fe and fT, there is no unanimity in the literature
on the formulations of /m and /h. In this study we will consider the
Businger–Dyer relations (Businger et al., 1971; Dyer, 1974; Fleagle and
Businger, 1980):

/mðfÞ ¼ /hðfÞ ¼ 1þ 5f ð7aÞ
Recently, Andreas (2002) recommended the formulation of Holtslag and De
Bruin (1988):

/mðfÞ ¼ /hðfÞ ¼ 1þ f a1 þ b1 expð�dfÞ � b1d f� c

d

� �
expð�dfÞ

h i
ð7bÞ

with a1 ¼ 0.7 and b1 ¼ 0.75, c ¼ 5 and d ¼ 0.35. Beljaars and Holtslag (1991)
revised these expressions because Equation (7a) leads to flux Richardson
numbers >1 for very stable conditions and arrived at:

/mðfÞ ¼ 1þ f aþ b expð�dfÞ � bd f� c

d

� �
expð�dfÞ

h i
ð7c1Þ
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and

/hðfÞ ¼ 1þ f a 1þ 2

3
af

� �1
2

þb exp �dfð Þ � bd f� c

d

� �
expð�dfÞ

" #
; ð7c2Þ

with a ¼ 1, b ¼ 2/3 , c ¼ 5 and d ¼ 0.35

3. Experimental

3.1. Data description

We will use data gathered during CASES-99. The CASES-99 SBL experi-
ment took place during October 1999 at a grassland site in Kansas, USA
(Poulos et al., 2002). We operated a CSAT3 sonic anemometer from
Campbell Scientific Inc., Logan, USA at 2.65 m. Raw 20 Hz data were stored
on a laptop and processed afterwards with the latest version of the EC-pack
flux-software package, developed by Wageningen University. The source
code and documentation of the software can be found at http://www.met.
wau.nl/projects/jep/index.html.

First, 5-min fluxes were calculated, which were subsequently averaged to
10-min values. The following corrections were performed in calculating the
5-min averaged fluxes:

• axis rotations were performed with the so-called planar fit routine after
Wilczak et al. (2001). This routine fits the sonic’s coordinate system to the
time-averaged wind field that is assumed to be confined to a plane surface,
nominally parallel to the ground. The planar fit rotations are based on a time
interval that is much longer than the flux interval, in our case 24 h. We only
used the planar fit rotations around the x- and y-axes. The rotation into the
mean horizontal wind, around the z-axis, is done for every flux interval;

• sonic temperature was corrected for the influence of humidity and side-
wind on the speed of sound measurement (Schotanus et al., 1983);

• fluxes were corrected for poor frequency response, i.e. flux loss due to
sensor separation and sonic path averaging (Moore, 1986). For H this
correction ranges between 15% for very stable conditions and less than 5%
towards neutral conditions. For u� the correction ranges between 7% for
the very stable case and some 2% towards neutral conditions.

Vickers and Mahrt (2003) show that for stable conditions, more in particular
for the CASES-99 dataset, the cospectral gap time scale of turbulence is
surprisingly short, often only a few minutes. In this study we did not use flux-
averaging periods that are adjusted to the turbulence encountered. Instead,
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we chose to take a fixed flux averaging period of 5 min and assume that, on
average, this time scale is such that we only include the turbulence contri-
bution to the fluxes and exclude, larger scale, non-turbulence influences, such
as gravity waves, drainage flows etc. The study of Vickers and Mahrt (2003)
show that a 5-min averaging period gives less scatter than 30-min averaged
fluxes in scaling relationships. Their gap time scale gives less scatter, however,
and is regularly even shorter than 5 min.

We evaluated u� including both the longitudinal and lateral components of

the stress, i.e. u� ¼ u0w0
2 þ v0w0

2
� �1=4

:

3.2. Determining CT
2

and e from raw time series

CT
2 is a scaling parameter of the temperature spectrum in the inertial range

of turbulence and is defined as (e.g. Stull, 1988):

C2
T ¼

DT

r2=3
¼ ½TðxÞ � Tðxþ rÞ�2

r2=3
; ð8Þ

where DT denotes the structure function, T(x) is the temperature at position
x, T(x+r) the temperature at position x+r, where r should lie within the
inertial range of turbulent length scales. We calculated 10-min CT

2 values
from the 20 Hz sonic data using Taylor’s frozen turbulence hypothesis to
estimate a time lag that approximates best a space separation, r, of 1 m. We
corrected for path averaging of the sonic temperature measurements after
Hill (1991). Hartogensis et al. (2002) describe in more detail the CT

2 calcu-
lation and correction procedure followed here.

Like CT
2, e is also a scaling parameter of spectra in the inertial range, in

this case of TKE. For the longitudinal wind component, u, the inertial range
of the spectrum, Su, is described by

SuðkÞ ¼ ae2=3k�5=3; ð9Þ
whereSu is thespectral energydensity,a is theKolmogorovconstant,andk is the
spatial wavenumber expressed in cycles per unit length. We adopted a ¼ 0.55,
which is mid-range of the values found in literature (e.g. Högström, 1996).

To obtain 10-min values of e from 20 Hz sonic anemometer data the
following procedure was followed:

First, the wind vector was rotated with the planar fit routine (Wilczak
et al., 2001), and aligned to the mean wind direction, similarly as was done
for the eddy-covariance fluxes described in Section 3.1.

Second, 10-min spectra of the longitudinal wind velocity, u, were calculated
with the ARMASA toolbox, developed at the University of Delft, the
Netherlands (Broersen, 2002; De Waele et al., 2002). ARMASA determines
an optimal auto-regression (AR), moving-average (MA) time series model for
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a given dataset from which SuðjÞ can be determined directly. The principle
advantages of spectra determined from ARMA models over conventional
Fourier transforms are that the signal is not treated as a windowed period-
ogram where the first data point is treated as a neighbour of the last data point
in the record, and no arbitrary smoothing of the spectrum is needed.
ARMASA is written for MATLAB and is freely available at www.tn.tudelft.
nl/mmr. We performed our analyses with e determined with ARMASA and
traditional Fourier transforms and found less scatter using ARMASA.

Third, we calculated e using Equation (9) for all points of the spectrum.
Fourth, we performed a quality check on the spectrum and the calculated

e values to determine whether an inertial range was present in the spectrum.
Moving point by point though the data, we determined the slope of the spec-
trum and the root mean square (rms) of e for blocks of 25% of all the spectral
points. An average e was determined for all blocks for which the spectral slope
deviated less than 20% of the theoretical )5/3 slope, and the rms of e was less
than 30% of its block-average value. When none of the blocks fulfilled these
criteria, the e value was rejected for that 10-min period.

Only stable conditions (f > 0) between 1900 and 0700 are considered
in this study. The data were selected on the following criteria: f > 0.0001,
w0T0<)0.0001 K m s�1, and u� > 0:01m s�1. Data with one of these param-
eters falling below the given threshold values were excluded from the analysis.

4. Results and Discussion

Before presenting our results, we want to make a general comment on MOST
scaling in the SBL. Under stable conditions theMOST assumption that g

T w
0T0,

u� and z are the relevant, independent scaling parameters might be ques-
tionable, because g

T w
0T0 and u� are often interrelated, as is illustrated in

Figure 1. Under stable conditions, the longwave radiation balance determines
the ‘strength’ of the buoyancy parameter, g

T w
0T0. Under clear sky conditions

the longwave radiation balance is dominated by the cooling rate at the sur-
face, which, in turn, is strongly affected by wind speed. A high interrela-
tionship between g

T w
0T0 and u� exists therefore under clear sky conditions.

Under cloudy conditions, the longwave radiation balance is also influenced by
incoming radiation from clouds, and g

T w
0T0 and u� will be more independent.

Under these conditions, the stability is expected to be close to neutral.

4.1. Scaling functions for e

Figure 2 shows our data of the e dimensionless group, the fe scaling functions
given by Equations (5a–d), and two fe curves that give a good fit to our data,
namely
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fe ¼ 0:8þ 2:5f; ð10aÞ
which is the Wyngaard (1973) form (Equation (5c)) with adjusted parameters
ce1 and ce2, and a ‘kink’ function

fe ¼
0:8þ 2f for f < 0:1ffiffi

f
pffiffiffiffiffi
0:1
p otherwise:

(
ð10bÞ

In the limit f!1 the formulations of Equations (10a) and (10b) differ.
First, e becomes independent of z in Equation (10a) (Pahlow et al., 2001),
whereas in Equation (10b) e remains a function of z. Second, as we will see
later, the two formulations lead to different flux Richardson numbers.

For near-neutral conditions, we find that fe is less than 1, which implies
there is an imbalance between TKE production and dissipation as was also
reported by Frenzen and Vogel (1992, 2001), and Pahlow et al. (2001). Our fe
neutral limit, fe(0) � 0.8 corresponds to the findings of Frenzen and Vogel
(1992, 2001). Pahlow et al. (2001) found fe(0) ¼ 0.61. Wyngaard et al. (1971)
and Thiermann and Grassl (1992) imposed a production-dissipation balance
in the TKE budget, their neutral limit of fe is therefore 1. Högström (1990)
reported fe(0) to be larger than 1, they found fe(0) ¼ 1.24. When systematic
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Figure 1. Scatter plot of 10-min eddy-covariance values of the buoyancy parameter, g
T w
0T0

against the friction velocity, u�.
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measuring errors are assumed small, the imbalance between TKE production
and dissipation found here implies that the pressure and flux-divergence
terms in the TKE budget are not negligible. Högström (1996) suggests that
the imbalance is most significant under near-neutral conditions where so-
called inactive turbulence is important. Unfortunately, the pressure and flux-
divergence terms of the TKE budget are very difficult to measure. Recently,
Cuxart et al. (2002) presented data of the full TKE budget for one CASES-99
nights, and found that for that night the pressure and flux-divergence terms
were indeed significant.

For stable to very stable conditions, we find that our fe values are lower
than all other reported scaling functions.

There are several issues that play a role in the found differences between
our scaling functions and the ones reported in literature so far.

First, the Kolmogorov constant, a, which we chose as a ¼ 0.55 in
obtaining e from the u spectra. Högström (1996) and Frenzen and Vogel
(2001) give extensive discussions on this constant. The different values that

0.1

1

10

100

10-4 10-3 10-2 10-1 100 101 102

 data
0.8 + 2.5z (Eq.10a)
kink-function (Eq.10b)
Wyngaard&Cote (1971)

Högström (1990)
Thiermann&Grassl (1992)
Frenzen&Vogel (2001)
Pahlow et al. (2001)

f

Figure 2. Dimensionless scaling group fe ¼ jze=u3� of the TKE dissipation rate, e, against the
dimensionless stability parameter, f, for 10-min experimental values and relations found in
literature.
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have been reported in the literature roughly vary between 0.5 and 0.6. The
uncertainty in the Kolmogorov constant gives, relative to the a ¼ 0.55 we
used, an approximate 10% uncertainty in e. Note that the approach of
Pahlow et al. (2001) in determining e is parameter free but might be more
sensitive to measuring errors since they use third order differences. The much
lower fe(0) ¼ 0.61 they found compared to our fe(0) ¼ 0.8, cannot be
explained by our choice of a. To obtain fe(0) ¼ 0.61 from our data, we would
have to use an a outside the range reported in the literature.

Second, since our aim is to find scaling relations for turbulent transport of
momentum and heat, we tried to limit the influence of non-turbulent, non-
local and non-stationary processes, such as drainage flows and gravity waves
by choosing a short, 5-min time interval for our flux calculations and we
ignored data points for which the u spectrum did not have a clear inertial sub-
range (see Section 3.2). The study of Vickers and Mahrt (2003) shows that
longer averaging periods, e.g. the standard 30-min period used by many
investigators, give larger fluxes, but this is mainly attributed to non-turbulent
contributions to the flux.

Third, our fe is based on a dataset that has a much larger f range than most
other functions reported in the literature. This might explain that, apart from
the neutral limit behaviour, fe from Thiermann and Grassl (1992), Frenzen
and Vogel (2001) and Pahlow et al. (2001) are similar to our fe for fK0.5, but
start to deviate for fJ0.5.

We evaluated u� using the planar fit method to rotate the sonic into the
mean wind field and including the lateral stress term v0w0. Instigated by one of
the referees we investigated whether another choice of evaluating u� would
make our results for fe more similar to what others have reported in the
literature. Alternative rotation techniques we used were the double rotation
method (which for each flux interval performs a rotation around the y- and z-
axis of the sonic’s coordinate system such that the average vertical and lateral
wind components, �w and �v, are zero) and the triple rotation method (which in
addition to the double rotation method also performs a rotation around the
x-axis such that the lateral stress, v0w0, is zero). For the three rotation
methods we evaluated u� including and excluding the lateral stress. Note that
for the triple rotation including or excluding the lateral stress makes no
difference, since it is forced to zero. From this exercise the following can be
concluded. The contribution of the lateral stress to the total u� is only
important when u� is small (<0.1) and f is large (>0.8). Then, v0w0 can
contribute up to 80% of the total stress in some cases, whereas for larger u�
(>0.1) and small f (<0.8), the lateral stress contribution is less than 3%.
Comparing u� including the lateral stress for different rotation methods does
not give large differences. The planar fit u� gives marginally higher values,
especially for low u�, compared with the triple rotation method, and very
similar values compared with the double rotation method. The differences
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found for the various evaluations of u� have very little effect on the found fe
functions. The lower u� values obtained when excluding the lateral stress
extend the fe data points to higher f values, but they follow our fe-fit curve.
This is due to the fact that both e and f are scaled with u�3� , by which ‘errors’
in u� appear to cancel when evaluating fe as function of f. This feature is
further discussed in Section 4.3.

Next, we want to evaluate the /m scaling group from e data using
Equations (1) and (3). Equation (3) uses the local dissipation assumption,
which, as discussed above, is violated for our dataset. We accounted for the
TKE production-dissipation imbalance arbitrarily by dividing fe with its
value in the neutral limit, i.e. we used

/m ¼
fe

fe cor
þ f ð11Þ

with fe cor ¼ feð0Þ ¼ 0:8 Note, that by scaling fe with its neutral value we
ignore how the imbalance of TKE production and dissipation, i.e. the
transport terms, may vary with stability. Figure 3 shows the comparison

0.1

1

10

100

10-4 10-3 10-2 10-1 100 101 102

 data with Eqs.(1)+(11)

f  of Eq.(10a) with Eq.(11)

f  of Eq.(10b) with Eq.(11)

Businger-Dyer

Holtslag&DeBruin (1988)

Beljaars&Holtslag (1991)

m

e

e

Figure 3. Dimensionless scaling group /m ¼ ðjz=u�Þ@u=@z of the horizontal wind speed (u)
gradient against the dimensionless stability parameter, f, for 10 min-experimental values
based on fe ¼ jze=u�3� using Equation (11), the fe relations of Equation (10) using Equation

(11), and /m relations found in literature.
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between the /m scaling group derived from e data using Equations (1) and
(11), the /m scaling functions derived from our fe expression of Equations
(10a) and (10b) with Equation (11) and three /m functions found in the
literature.

Now we will consider the ratio of the buoyancy destruction and the shear-
production term, which is the definition of the flux Richardson number, Rf.
Rf should approach a constant value smaller than 1 for very stable conditions
where all turbulent motions are suppressed by buoyancy. Using the same
imbalance correction described above for /m, we calculated Rf from our fe
data and scaling functions using

Rf ¼
f

/m

¼ f
fe

fe cor
þ f

: ð12Þ

In Figure 4, we plotted Rf for the same e data, and fe and /m scaling functions
as in Figure 3.

For f < 1, Figures 3 and 4 show good agreement between /m and Rf from
our adjusted fe functions and derived values from e data, and the /m and
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 data with Eqs.(1)+(12)

f  of Eq.(10a) with Eq.(12)

f  of Eq.(10b) with Eq.(12)

m
 Businger-Dyer with Eq.(12)

m
 Holtslag&DeBruin (1988) with Eq.(12)

m
 Beljaars&Holtslag (1991) with Eq.(12)

R
i f

lu
x

e

e

Figure 4. Flux Richardson number, Riflux, against the dimensionless stability parameter, f, for
10-min experimental values based on fe ¼ jze=u3�, the fe relations of Equation (10), and

/m ¼ ðjz=u�Þ@u=@z relations found in literature (see Equation (12)).
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corresponding Rf functions found in the literature. In the neutral limit, for
f < 0.1, this agreement is forced by the correction we applied on our fe
functions and data.

For f > 1, the different /m curves and related Rf curves start to deviate.
Figure 3 shows that, from the /m functions found in literature, the Businger–
Dyer relation (Equation (7a)) agrees best with the derived values from our e
data. Furthermore, from the /m groups based on our fe functions, fe of
Equation (10a) gives a slightly better fit than fe of Equation (10b). Figure 4, on
the other hand, shows that in the stable limit, both the Businger–Dyer relation
and the relation based on fe of Equation (10a) are well below 1. The Rf’s from
Beljaars and Holtslag (1991) /m function and our fe of Equation (10b) do
approach the Rf limit of 1 for very stable conditions. The Rf of Holtslag and
De Bruin (1988) goes to 1.4 in the very stable limit, which is a physically
impossible value. Note that the data extend to f � 10, where it does not yet
reach the Rf limit of 1.

4.2. Scaling functions for CT
2

Figure 5 shows our data of the CT
2 dimensionless group, the fT scaling

functions given by Equations (6a) and (6b), and two fT curves that give a
good fit to our data, namely

fT ¼ 4:7 1þ 1:6f
2
3

h i
; (13a)

which is the function proposed by Wyngaard et al. (1971) given in Equation
(6a) with different values for the constants cT1 and cT2 , and a ‘kink’ function

fT ¼
5:5 for f < 0:1

5:5 f
0:1

� 	2
5 otherwise:

(
(13b)

It is seen that the scatter of the fT(f) scaling group is much larger than the
scatter of the fe(f) scaling group (Figure 2). In part this is explained by the
difference in the propagation of errors in u� and H for the fT – f data pair
compared to fT – f. This is further explained in Section 4.3. The uncertainty in
fT makes it difficult to discuss the differences between our fT functions and
the ones reported in the literature. As for fe, the chosen, short averaging
period may affect fT for f J 0.1. We did not investigate the effect of inclusion
or exclusion of the lateral stress in u� on Figure 5 as we did for Figure 2. If
this plays a role it is for high f, where we already see a lot of scatter.

The fT function of Thiermann and Grassl (1992) gives higher values than
our observations. This suggests a production-dissipation imbalance of the
T-variance budget in our data, since Thiermann and Grassl (1992) imposed
a production-dissipation balanced budget.
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In evaluating the /h scaling group from CT
2 and e data using Equations

(1), (2) and (4) we use the local dissipation assumption for the T-variance
budget, which, as discussed above, is violated for our dataset. Equivalent to
Equation (11) we therefore impose budget closure by dividing fT with a
constant value defined by its neutral limit value,

/h ¼
j2=3

3

fe
fe cor

� �1
3 fT
fT cor

; ð14Þ

with fT cor ¼ j2=3

3 fTð0Þ this gives fT_cor ¼ 0.85 for fT of Equation (13a) and
fT_cor ¼ 0.99 for fT of Equation (13b). For the /h group from data we use
fT_cor = 0.9.

Analogous to Figure 3, Figure 6 compares the /h scaling group derived
from CT

2 and e data using Equations (1), (2) and (14), the /h scaling func-
tions derived from our fT expression of Equations (13a) and (13b) with
Equation (14), and three /h functions found literature.

Next, using Equations (11) and (14), the gradient Richardson number can
be expressed as

1

10

100

10-2 10-1 100 101 102

C
T

2 data

4.7(1 + 1.6 z 2/3
) (Eq.13a)

kink-function (Eq.13b)

Wyngaard et al. (1971)

Thiermann&Grassl (1992)

f T

Figure 5. Dimensionless scaling group fT ¼ C2
Tz

2=3=h�2 of the structure parameter of tem-

perature, C2
T, against the dimensionless stability parameter, f, for 10-min experimental values

and relations found in literature.
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Ri ¼ /h

/2
m

f ¼ j2=3

3

fT
fT cor

� �
fe

fe cor

� �1=3

fe
fe cor

þ f

� �2
: ð15Þ

In Figure 7, we plotted Ri for the same CT
2 and e data, and fe, fT and /m, /h

scaling functions as in Figures 3 and 6.
For f < 1, Figures 6 and 7 show good agreement between /h and Ri from

our adjusted fe and fT functions and derived vales from C2
T and e data, and

the /m, /h and corresponding Ri functions found in the literature. In the
neutral limit, for f < 0.1, this agreement is forced by the correction we
applied on our fe and fT functions and data.

For f > 1, the different /h curves and related Ri curves start to deviate.
Figure 6 shows that from the /h functions found in literature, the Beljaars–
Holtslag relation (Equation (7c2)) agrees best with the values derived from
our CT

2 and e data. Furthermore, from the /h groups based on our fe and fT

0.1
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100

10-2 10-1 100 101 102

C
T

2
+  data with Eqs.(1)+(2)+(14)

f
T
+f  of Eqs.(10a)+(13a) with Eq.(14)

f
T
+f  of Eqs.(10b)+(13b) with Eq.(14)

Businger-Dyer

Holtslag&DeBruin (1988)

Beljaars&Holtslag (1991)

h

Figure 6. Dimensionless scaling group /h ¼ ðjz=h�Þ@h=@z of the potential temperature (h)
gradient against the dimensionless stability parameter, f, for 10-min experimental values based
on fe ¼ jze=u3� and fT ¼ C2

Tz
2=3=h2� using Equation (14), the fe and fT relations of Equations

(10) and (13) using Equation (14), and /h relations found in literature.
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functions, the fe–fT of Equations (10a) and (13a) give a better fit than fe–fT of
Equations (10b) and (13b).

Recently, Pahlow et al. (2001) determined the dissipation rate of temper-
ature fluctuations, eh, which is related to CT

2 through C2
T ¼ 2ehe�1=3 (Panof-

sky and Dutton, 1984). They found that /eh, which is eh made dimensionless
with jzu�=ðw0T0Þ2, is about constant for f > 0.01. In the case of a balanced
temperature fluctuation budget, /eh and /h are equal. Our /h data group
based on fe–fT formulations, which were forced to give TKE and temperature
fluctuation budget closure in the neutral limit, is not constant for f > 0.01.

Figure 7 shows that Ri seems to level off for f!1 to a limit just below
the value often used for the critical Richardson number, Ric ¼ 0.25. The
value of Ri based on Beljaars and Holtslag (1991) and our fe–fT functions of
Equations (10b) and (13b) do not go to a stable limit value.

Our application of deriving /m and /h functions from single level e and
CT

2 data might be a suitable alternative to /m and /h estimation from @�u=@z
and @ �h=@z for very stable conditions. Firstly, in these conditions gradients
are difficult to determine accurately from discrete profile measurements.
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Figure 7. Gradient Richardson number, Rigradient, against the dimensionless stability
parameter, f, for 10-min experimental values based on fe ¼ jze=u3� and fT ¼ C2

Tz
2=3=h2�, the fe

and fT relations of Equations (10) and (13), and /m ¼ jz=h�@u=@z and /h ¼ jz=u�@h=@z
relations found in the literature (see Equation (15)).
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Secondly, the SBL can be very shallow by which the constant flux approx-
imation can be violated. The strong point of our approach is that we use
single level data only. Obviously, the weak point is that we have to rely on
the assumption that fe and fT both scaled with their neutral value accounts
for the non-closure of the TKE and T-variance budgets for the entire sta-
bility range. Our simple approach to correct for non-closure of the simplified
TKE and T-variance budgets does yield good results; i.e. the derived /m and
/h functions, and Richardson numbers evaluated in this way behave very
similar to the functions found in the literature. Moreover, we were able to
investigate /m and /h functions, and Richardson numbers for very stable
conditions (f > 10). In this study we used sonic measurements close to the
surface, z ¼ 2.65 m, and we already reach f � 10. By doing the same anal-
yses for sonics installed at higher levels, we should be able to extend the f
range substantially.

4.3. Spurious correlations

Spurious correlations cannot be avoided when using MOST scaling (e.g.
Hicks, 1981; De Bruin et al., 1993), since h� and u� are present on both x-
and y-axes of the scaling plots; on the y-axis to make variables dimension-
less, and on the x-axis because h� and u� define the Obukhov length. To test
the scaling functions independently, without spurious correlation, we
compared CT

2 and e, calculated indirectly from the eddy-covariance h� and
u� using the MOST relations given in Equations (10) and (13), with CT

2 and
e determined from the raw data as described in Section 3.2. These two
methods to obtain CT

2 and e are independent. The results depicted in
Figure 8 show that CT

2 and e agree well, and the scatter is comparable to
that of the scaling plots of Figures 2 and 5. This demonstrates that no
significant, additional scatter is introduced due to the removal of the
spurious correlation, and the effect of spurious correlation can therefore
considered to be small.

One of the referees questioned whether the scatter seen in Figure 8a
contains a hidden correlation with f. To demonstrate that this is not the case
we plotted the percentage difference between the two independently derived e
values from Figure 8a as a function of f (not shown here). No systematic
behaviour was found, which implies that the scatter seen in Figure 8a is
indeed random. In addition, we carried out an exercise similar to that pre-
sented by Hicks (1981); i.e. we plotted the fe scaling group for measured u�
and f with random values of e. If spurious correlation between fe and f
dominates the function found then it is expected that the relation between the
two is independent of e. The measured e values lie in a range between 10)3

and 10)1 m2 s)3. A random generator was used to produce the 10-exponent
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values for e between )1 and )3. In a plot similar to Figure 2 (not shown
here), the fe data points with random e do not follow the fitted fe function of
Equation (10a), which demonstrates that the measured e values determine the
fe function found and not the shared u*

)3 term on the x- and y-axes.
Although spurious correlation does not seem to determine the shape of

the fe–f relation, it does affect the scatter found in the fe – f and fT – f plots.
Andreas and Hicks (2002) show how errors in u� affect the scatter in /m

and /h against f plots. Johansson et al. (2002) replied to this by stating that
also the effect of errors in h* should be included. We performed such an
analysis for fe – f and fT – f plots, which shows that errors in u� lead to a
displaced fe – f pair that moves along the fitting curve, while a fT – f pair
moves normal to it. In other words, because of spurious correlation, errors
in u� result in enhanced scatter in fT, and reduced scatter for fe. Errors in H
only affect f in the fe – f plot, resulting in scatter along f axis. For fT, errors
in H result in a fT – f pair that moves normal to the fitting curve, i.e. more
scatter. In reality, the combined effect of errors in u� and H on fe and fT is
more complex. Depending on the sign and size of the H and u� errors, their
individual effect on fe – f and fT – f described above can either partly cancel
out or enhance each other. If the errors in u� and H are dependent these
effects are systematic. In the absence of quantitative error estimates of u�
and H, we conclude that, based on the discussion here and the scatter
found in Figures 2 and 5, the low scatter found for fe and high scatter
found for fT is due to spurious correlation.
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Figure 8. Comparison for the TKE dissipation rate, e (a), and the structure parameter of
temperature, CT

2 (b) between values obtained from eddy-covariance fluxes using MOST and
independent methods obtaining e and CT

2 from raw time series data.
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4.4. Direct flux estimates from e and CT
2

We recall that our main motivation for this study was to find suitable MOST
functions for CT

2 and e to obtain fluxes of heat and momentum using scin-
tillometer measurements of CT

2 and e. Calculating these fluxes requires a
numerical iteration of the fe and fT functions. To be able to calculate the
fluxes directly, without iteration, we introduce the dimensionless length scale,
Z, derived from CT

2 and e

Z ¼ gjz
T

TC

U2
e

; ð16Þ

in which TC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

Tz
2=3

q
and Ue ¼

ffiffiffiffiffiffiffi
jze3
p

are a temperature and a wind speed
scale.

Next, we searched for a relationship between Z and f and found the best fit
for f ¼ 0:55Z1:15. By substituting this empirical expression in the fe and fT
functions, one can directly calculate h� and u�, and from these the kinematic
sensible heat flux, w0T0 ¼ u�h�:

Figure 9 compares u� and w0T0 calculated from e and CT
2 with this sim-

plified approach against u� and w0T0 from e and CT
2 calculated by means of

iteration. For both approaches the fe and fT functions of Equations (10a) and
(13a) are used. It is seen that the simplified approach can be used with little
error.
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Figure 9. Comparison for the friction velocity, u� (a) and kinematic heat flux, �w0T0 (b)
determined from the TKE dissipation rate, e, and structure parameter of temperature, CT

2,
calculated directly with the alternative dimensionless height parameter, Z, of Equation (16),
against the values calculated by means of numerical iteration of the MOST relationships given

by Equations (10a) and (13a).
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4.5. Fluxes from e and CT
2

in intermittent turbulent conditions

A typical characteristic of turbulence in the SBL is that it is often intermit-
tent, i.e. periods of laminar flow alternate with turbulent bursts. Hartogensis
et al. (2002) showed an intermittent case during CASES-99, where a dis-
placed-beam scintillometer was able to, at least qualitatively, measure the
fluxes at a short enough time scale to resolve this phenomenon in great detail.
In Figure 10 we compare, for that same night of 4 to 5 October, u� and w0T0

calculated from e and CT
2 using the fe and fT functions of Equations (10a)

and (13a) with the eddy-covariance u� and w0T0. It is seen that the e and CT
2

scaling performs well under these circumstances. De Bruin and Hartogensis
(2005) show the same plot for the scaling of the standard deviation of tem-
perature and longitudinal component of the wind speed, rT and ru, i.e. the
variance method, which give less good results than the e and CT

2 scaling.

5. Conclusions

In this study we analysed the MOST scaling functions fe and fT of the dissi-
pation rate of TKE, e, and the structure parameter of temperature,CT

2, for the
stable atmospheric surface layer using data we gathered in the context of
CASES-99 (Poulos et al., 2002). These data cover a relatively wide stability
range, i.e. f up to 10.

We found that fe ¼ 0:8þ 2:5f and fT ¼ 4:7½1þ 1:6f2=3� gave a good fit
with our data. The alternative ‘kink’ functions, fe ¼ 0:8þ 2f and fT ¼ 5:5 for
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Figure 10. The friction velocity, u� (a) and kinematic heat flux, �w0T0 (b) determined from the

TKE dissipation rate, e, and structure parameter of temperature, CT
2, using MOST and from

eddy covariance as a function of time for the ‘intermittent’ night of 4 to 5 October.
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f < 0.1, and fe ¼
ffiffiffiffiffi
f
0:1

q
and fT ¼ 5:5 f

0:1

� 	2
5 for f > 0.1 gave a good fit also.

Our results differ somewhat from those obtained by others such as Wyng-
aard and Coté (1971), Wyngaard (1973), Frenzen and Vogel (1992, 2001),
Thiermann and Grassl (1992) and Pahlow et al. (2001). This might be related
to a different data treatment – we used a short flux-averaging interval to
exclude non-turbulent contributions to the flux (Vickers and Mahrt, 2003),
and filtered our data based on inertial range behaviour in the longitudinal
wind speed, and the fact that our f range was much larger than that used
elsewhere.

Spurious correlation does not determine the shape of the fe function, but
does affect the scatter seen in the fe – f and fT – f plots. The propagation of
errors in u� and H leads to enhanced scatter in the fT – f data pair and
reduced scatter in the fe–f data pair because of spurious correlation.

In determining e from the raw time series, we found that the ARMASA
toolbox developed at the University of Delft (Boersen, 2002) is very suitable
to obtain spectra from atmospheric turbulence time series. This approach has
several advantages over the traditional Fourier transform method.

Since fe (0) is found to be about 0.8 there is no balance between the
production and dissipation terms in the TKE budget equations. Also, our
results suggest a production-dissipation imbalance in the budget equation for
temperature variance. This has been reported earlier by others.

Accounting for these imbalances using simple correction factors, we
derived alternative expressions for the ‘standard’ MOST functions for
dimensionless wind speed and temperature gradients, /m and /h from fe
and fT through the simplified budget equations for TKE and T variance.
These compare well with the formulations proposed by Beljaars and
Holtslag (1991). Note that our data cover a much wider stability range
than most datasets using measured @u=@z and @h=@z to determine /m and
/h. For instance, the Kansas dataset from which Businger et al. (1971)
determined their /m and /h functions refer to f < 0.5. Our results show
that using e and CT

2 obtained from a single level sonic anemometer to
derive /m and /h for very stable conditions is a good alternative, since, in
that stability region, the measurement errors of gradients, especially @u=@z,
are large.

Our dataset did not allow us to study the very stable-limit value of the flux
Richardson number, Rf, and the gradient Richardson number, Ri; i.e. a limit
value was not reached for f � 10. The different formulations for Rf, either
derived from @u=@z and @h=@z or from e data predict Rf limit values ranging
from about 0.3 (Businger–Dyer) to 1 (Beljaars and Holtslag, 1991). Ri derived
from fe and fT through the budget equations for TKE and T variance appears
to approach a limit just below the value often used for the critical Richardson
number, Ric ¼ 0.25. This issue needs further research, i.e. the analyses need to
be repeated for a wider f range.
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For intermittent conditions, we found fe and fT functions to perform very
well in the estimation of u� and w0T0 from e and CT

2 measurements.
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