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Abstract

To study variation in zinc efficiency (ZE) among current Chinese rice genotypes, a pot experiment was
conducted with 15 aerobic and 8 lowland rice genotypes. Aerobic rice is currently bred by crossing lowland
with upland rice genotypes, for growth in an aerobic cultivation system, which is saving water and pro-
ducing high yields. A Zn deficient clay soil was used in our screening. Zn deficiency resulted in a marked
decrease in shoot dry matter production of most genotypes after 28 days of growth. Genotypes were ranked
according to their tolerance to Zn deficiency based on ZE, expressed as the ratio of shoot dry weight at Zn
deficiency over that at adequate Zn supply. Substantial genotypic variation in ZE (50–98%) was found
among both lowland and aerobic genotypes. ZE correlated significantly (P < 0.05) with Zn uptake
(R2 = 0.34), Zn translocation from root to shoot (R2 = 0.19) and shoot Zn concentration (R2 = 0.27).
The correlation with seed Zn content was insignificant. In stepwise multiple regression analyses, variation in
Zn uptake and Zn translocation explained 53% of variation in ZE. Variation in Zn uptake could be
explained only for 32% by root surface area. These results indicate that Zn uptake may be an important
determinant of ZE and that mechanisms other than root surface area are of major importance in deter-
mining Zn uptake by rice.

Introduction

Because of water constraints, rice production in
China is now in transition from the traditional
high water-consuming lowland rice cultivation to
a promising new cultivation system of ‘‘aerobic
rice’’. Aerobic rice varieties are currently devel-
oped by crossing lowland with upland varieties
and grown as a dry field crop in irrigated but
non-flooded and non-puddled fertile soils
(Bouman et al., 2002). Their yield potential is
higher than for traditional upland varieties that

are adapted to infertile soils. The soils that are
used for aerobic cultivation are frequently Zn
deficient. So far, however, breeding has mainly
been focused on the yield of aerobic genotypes
under sufficient Zn supply.

Zn deficiency in cereal plants, including rice,
is a well-known problem that causes reduced
agricultural productivity all over the world
(Fageria et al., 2002). Fertilization is not always
an option to resolve Zn deficiency because of
agronomic and economic factors, such as the rel-
atively high cost of fertilizer (Graham and Ren-
gel, 1993). Alternatively, exploiting genetic
variability to breed staple crops with high Zn
efficiency (ZE) could offer a sustainable and
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cost-effective way to overcome Zn deficiency
problems. The term ZE is defined as the capacity
of a genotype to grow well under Zn-deficient
conditions, and ZE is usually expressed as the
ratio of shoot dry weight under Zn deficiency over
that under adequate Zn supply (Graham et al.,
1992). Hence, it is relevant to investigate whether
there is variation in ZE among aerobic genotypes.

Genotypes of crop plants can vary widely in
ZE, as reported for maize (Ramani and Kannan
1985), wheat (Cakmak et al., 2001), common
bean (Hacisalihoglu et al., 2004) and lowland
rice (Sakal et al., 1989). Mechanisms responsible
for genotypic variation in ZE were thoroughly
reviewed by Rengel (2001) and Hacisalihoglu
and Kochian (2003). There seem to be many
uncertainties on mechanisms that control toler-
ance to Zn deficiency. Most likely, there is no
single mechanism in any crop species. The
expression of high ZE in cereals including
wheat, rye, barley, triticale and oat was related
to enhanced uptake and translocation capacity
of Zn into shoots and higher amounts of physi-
ologically active Zn in leaf tissues (Cakmak
et al., 1998).

For aerobic rice, we previously showed ZE
variation among five aerobic rice genotypes un-
der the field conditions (Gao et al., 2006). The
aim of this study is to assess the variation in ZE
for a larger set of Chinese rice genotypes, includ-
ing some newly developed aerobic genotypes. We
also investigate whether this variation in ZE can
be attributed to seed Zn content, Zn uptake, Zn
translocation from root to shoot and/or shoot
Zn concentration.

Materials and methods

A greenhouse pot experiment was conducted in
Hefei city (117�16¢ E, 31�51¢ N), Anhui province,
China, to determine ZE for different rice (Oryza
sativa L.) genotypes. Treatments include 2 Zn
levels and 23 rice genotypes. Zn levels were )Zn
(no Zn applied) and +Zn (5 mg Zn kg)1 of soil).
Zn was applied together with the other nutrients
as a solution of ZnSO4Æ7H2O, and was equivalent
to 10 kg Zn ha)1. Of the 23 rice genotypes, 15
were aerobic and 8 were lowland genotypes. Of
the aerobic genotypes, K150, Han297, Han72,
89B271-17hun and Han277 had shown ZE in a

previous field experiment ranging from 75%
(K150) to 100% (Han277) (Gao et al., 2006). Of
the lowland genotypes, IR26 and IR8192-31 are
known to be Zn-inefficient and Zn-efficient,
respectively (Doberman and Fairhurst, 2000).
They were used in this experiment as references.
A Zn-deficient soil was collected from Shou city,
Anhui province, China. Some characteristics of
the soils: soil texture clayey, pH (H2O) 6.5, or-
ganic matter 1.7%, and DTPA-extractable Zn
0.32 mg kg)1 soil. The treatments were combined
in a completely randomized design with 3 repli-
cates.

Twenty seeds of one genotype were sown per
plastic pot containing 2 kg soil. At sowing time,
each pot received a basal application of 150 mg
N as Ca(NO3)2, 44 mg P as KH2PO4 and 83 mg
K as KCl. Deionized water was added in
amounts sufficient to bring the soil water content
to 80% of field capacity. After emergence, the
plants were thinned to 12 seedlings per pot. The
pots were watered daily with deionized water to
80% of field capacity. The temperature in the
greenhouse was 30±3 �C during the day and
23±3 �C during the night. Plants were grown
under natural day length and light intensity in
July 2004.

Plants were harvested 28 days after germina-
tion, because Zn deficiency problems are usually
most severe in the first 2–4 weeks of growth
(Doberman and Fairhurst, 2000). Shoots were
cut off at ground level and soil was washed
from the roots with tap water. Digital root ima-
ges were made with a scanner (Epson Expres-
sion/STD 1600 scanner). The resulting grayscale
images were analyzed with WinRHIZO root
analysis software (Regent Instruments, Quebec,
Canada). All root images were analyzed for
root length and surface area. Shoots and roots
were rinsed in deionized water, oven dried at
70 �C for 48 h, and weighed. ZE was calculated
as the ratio of shoot (root) dry weight under Zn
deficiency over that under adequate Zn supply.
Dried plant and seed samples were digested in
acid mixture (HNO3 + HClO4) for Zn analysis
(Jackson, 1973). Zn in plant digests was ana-
lyzed with an atomic absorption spectrophotom-
eter (Pye Unicam SP 9 800, Cambridge, UK).
Zn analyses were checked using the certified Zn
values in standard samples obtained from Wa-
geningen Evaluating Programmes for Analytical
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Laboratories (WEPAL, Wageningen University,
Netherlands).

Statistical analysis of the data was performed
using the SAS analytical software (SAS, 1990).
Multiple regression analysis (stepwise) was em-
ployed and LSD (P<0.05) was used to test the
difference among treatments.

Results

Zn deficiency symptoms

Visual symptoms of Zn deficiency, such as
reduced shoot elongation and whitish-brown
necrotic patches on leaves, appeared 3–4 weeks

after sowing. There were large differences in the
severity of symptoms among 23 rice genotypes.
Genotypes K150, Han297, Yuefu, Xieyou10 and
IR26 showed severe deficiency symptoms and
other genotypes such as Han44, Hon-
gkelaoshuya, Jindao305 and IR8192-31 showed
very light or no symptoms in )Zn treatments. At
+Zn treatments all genotypes grew well and no
symptoms appeared.

Dry matter production and Zn efficiency

Zn deficiency resulted in a marked decrease in
the dry weight of both shoot and root for most
rice genotypes (Table 1). Shoot-based ZE varied
from 50 to 98%. The ranking on shoot ZE was

Table 1. Plant dry weight and Zn efficiency (ZE) of 23 rice genotypes grown in a Zn-deficient soil with (+Zn = 5 mg kg)1) and
without ()Zn) Zn application

Genotypes Shoot (g pot)1) Root (g pot)1)

)Zn +Zn ZE (%) )Zn +Zn ZE (%)

Aerobic rice

K150 0.53 1.05 50 0.13 0.21 62

Han297 1.55 2.23 70 0.18 0.27 67

89B271-muzhuxi 1.85 2.65 70 0.49 0.49 100

89D108-11-1 1.87 2.65 71 0.46 0.62 74

91B)8-30-3 1.71 2.36 72 0.27 0.44 61

Han9 1.87 2.51 75 0.30 0.42 71

Han72 1.30 1.73 75 0.12 0.14 86

91B-te-3 1.97 2.55 77 0.34 0.43 80

89B271-17hun 1.26 1.62 78 0.08 0.13 62

Han502 1.74 2.15 81 0.26 0.33 77

Baxiludao 1.61 1.98 81 0.20 0.21 95

90B-10-1 1.95 2.33 84 0.40 0.42 95

Han277 2.17 2.51 87 0.39 0.41 95

Han44 1.66 1.87 89 0.22 0.26 84

Hongkelaoshuya 1.86 1.99 94 0.37 0.37 100

Mean 1.66 2.15 77 0.28 0.34 81

Lowland rice

Yuefu 0.85 1.14 60 0.11 0.18 61

Xieyou10 1.89 3.09 61 0.20 0.56 36

IR26 1.60 2.50 64 0.15 0.24 63

Qiuguang 1.17 1.79 65 0.19 0.26 73

Guofeng1 2.29 3.46 66 0.27 0.66 41

Shennong99-8 0.65 0.98 67 0.09 0.11 82

Jindao305 1.15 1.28 90 0.13 0.17 78

IR8192-31 2.03 2.06 98 0.17 0.17 100

Mean 1.45 2.04 71 0.16 0.29 67

LSD (0.05) 0.30 0.41 17 0.07 0.08 29

Per pot, 12 plants were grown for 28 days.

255



largely but not fully in accordance with that
based on root ZE. The aerobic genotypes Hon-
gkelaoshuya, Han44 and lowland genotypes
IR8192-31, Jindao305 were genotypes most toler-
ant to Zn deficiency, with ZE values around
95%. The aerobic genotypes K150 and lowland
genotypes Yuefu, Xieyou10, IR26 were the most
intolerant genotypes with ZE values from 50%
to 61%. As a group, lowland genotypes had gen-
erally lower ZE than aerobic genotypes.

Zn efficient genotypes including Hon-
gkelaoshuya, Han44, IR8192-31 could maintain
similar root biomass at the )Zn treatment com-
pared to the +Zn treatment. In contrast, the
inefficient genotypes K150, Han297, Yuefu and

Xieyou10 showed a reduction in root biomass at
Zn deficiency of about 40% (Table 1).

Factors determining ZE

Shoot Zn concentration at the )Zn treatment
was within or below the marginal range of 10–
20 mg kg)1 (Dobermann and Fairhurst, 2000)
for all genotypes (Table 2). Shoot Zn concentra-
tion and ZE were positively and significantly
(P = 0.007) related, with shoot Zn concentration
explaining 27% (adj. R2) of variation in ZE. Zn
application resulted in an increase to on average
93 mg Zn kg)1 dw (Table 2), which is considered
above sufficiency level. In the +Zn treatment, no

Table 2. Zn concentration in shoots and roots of 23 rice genotypes grown in a Zn-deficient soil with (+Zn = 5 mg kg)1) and
without ()Zn) Zn supply

Genotypes Shoots (mg kg)1) Roots (mg kg)1)

)Zn +Zn )Zn +Zn

Aerobic rice

K150 7.8 98 29.0 155

Han297 8.7 87 26.3 202

89B271-muzhuxi 12.9 96 23.4 299

89D108-11-1 8.3 97 22.0 268

91B-8-30-3 11.1 85 28.3 173

Han9 8.3 91 24.0 145

Han72 8.6 84 22.9 133

91B-te-3 11.6 105 26.0 236

89B271-17hun 13.7 67 30.7 183

Han502 15.7 95 24.0 130

Baxiludao 10.8 116 22.3 222

90B-10-1 12.5 85 21.4 192

Han277 9.3 111 25.3 171

Han44 10.7 94 28.0 145

Hongkelaoshuya 13.5 107 23.7 199

Mean 10.9 95 25.2 190

Lowland rice

Yuefu 13.0 89 28.1 123

Xieyou10 9.6 105 22.0 193

IR26 9.6 83 30.7 215

Qiuguang 8.3 83 29.3 252

Guofeng1 8.6 110 27.5 194

Shennong99-8 12.2 85 20.4 174

Jindao305 11.6 87 23.7 233

IR8192-31 17.3 86 24.6 160

Mean 11.3 91 25.8 193

LSD (0.05) 2.4 13 6.1 25

Plants were grown for 28 days.
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Zn toxicity symptoms were found and all geno-
types grew well. This indicates that plant growth
in the )Zn treatment was limited by Zn avail-
ability indeed.

Seed Zn concentration of genotypes ranged
from 9.7 to 15.4 mg kg)1 for aerobic rice and 9.2
to 30.3 mg kg)1 for lowland rice genotypes (Ta-
ble 3). Zn content in the seed ranged from 0.22
to 0.40 lg seed)1 for aerobic rice and 0.20 to
0.63 lg seed)1 for lowland rice genotypes. Two
genotypes from IRRI had higher Zn concentra-
tion and Zn content in seeds than others. Proba-
bly, this is because they originate from fields with
high Zn availability. There was no significant
correlation between ZE and seed Zn concentra-
tion (adj. R2 = )0.02; P = 0.42) or seed Zn
content (adj. R2 = 0.04; P = 0.18).

Zn uptake by plants was calculated as the dif-
ference between total plant Zn content and seed

Zn content. It ranged from 5.2 to 35.3 lg pot)1

for aerobic genotypes and 7.3 to 31.6 lg pot)1

for lowland genotypes under )Zn treatment (Ta-
ble 3). Zn uptake and ZE were positively related
(Figure 1). Zn uptake explained 34% (adj. R2) of
the variation in ZE. Zn application on average
increased Zn uptake by plants with a factor 10–
15 (data not shown).

Root surface area of genotypes under )Zn
treatment ranged from 88 to 560 cm2 pot)1 for
aerobic rice and from 132 to 360 cm2 pot)1 for
lowland rice genotypes (Table 4). Root surface
area correlated significantly with Zn uptake, but
only explained 32% of variation in Zn uptake
(Figure 2).

To assess whether the translocation of Zn
from root to shoot is a factor that is involved in
ZE, the percentage of Zn present in the shoot was
calculated. It varied from 52% to 90% in the

Table 3. Plant parameters related to zinc efficiency (All data are from the )Zn treatment)

Genotypes Seed Zn concentration (mg kg)1) Seed Zn content (lg seed)1) Zn uptake (lg pot)1) Zn in shoot (%)

Aerobic rice

K150 11.1 0.22 5.2 52.4

Han297 12.5 0.37 13.9 73.7

89B271-muzhuxi 11.7 0.29 35.3 61.5

89D108-11-1 9.9 0.26 22.5 60.4

91B)8-30-3 10.9 0.26 23.4 71.4

Han9 9.7 0.26 19.7 68.0

Han72 15.4 0.33 9.9 80.3

91B-te-3 12.7 0.31 28.0 72.2

89B271-17hun 10.8 0.26 16.1 89.9

Han502 15.2 0.40 28.6 81.8

Baxiludao 9.7 0.23 19.2 79.2

90B-10-1 10.0 0.25 29.8 74.2

Han277 14.5 0.37 25.6 67.3

Han44 12.0 0.27 20.6 74.6

Hongkelaoshuya 11.3 0.28 30.4 74.1

Mean 11.8 0.29 21.9 72.1

Lowland rice

Yuefu 9.5 0.21 11.7 78.1

Xieyou10 17.0 0.41 17.6 80.4

IR26 27.8 0.49 14.3 76.4

Qiuguang 10.4 0.23 12.4 63.7

Guofeng1 12.8 0.24 24.3 72.4

Shennong99-8 9.2 0.20 7.3 81.8

Jindao305 9.6 0.21 14.0 80.8

IR8192-31 30.3 0.63 31.6 89.5

Mean 15.8 0.33 16.7 77.9

LSD (0.05) 1.2 0.12 5.4 6.6
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)Zn treatment (Table 3). The Zn efficient geno-
types Hongkelaoshuya, Han44 and Han297 all
translocated around 74% to the shoot. The ineffi-
cient genotype K150 translocated only 52% of
its Zn to the shoot. The regression between Zn
translocation as independent and ZE as dependent
variable was positive and significant (Figure 3).

Multiple regression analysis (stepwise) was
conducted to determine the combination of factors
that best explained the variation in ZE statisti-
cally. The overall regression was significant
(P = 0.01) with the coefficient of determination
(adj. R2) of 0.53. Contributing variables were Zn
uptake (partial R2 = 0.34) and Zn translocation
to the shoot (partial R2 = 0.19). Addition of seed
Zn content and shoot Zn concentration as predic-
tors did not further improve the model. In some
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Figure 1. Relationship between Zn efficiency and Zn uptake
for 15 aerobic rice (m) and 8 lowland rice genotypes (h).

Table 4. Root surface area of 23 rice genotypes grown under
)Zn conditions

Genotypes Root surface area (cm2 pot-1)

Aerobic rice

K150 213

Han297 252

89B271-muzhuxi 549

89D108-11-1 560

91B-8-30-3 267

Han9 460

Han72 220

91B-te-3 383

89B271-17hun 88

Han502 347

Baxiludao 325

90B-10-1 468

Han277 475

Han44 266

Hongkelaoshuya 273

Mean 343

Lowland rice

Yuefu 173

Xieyou10 290

IR26 185

Qiuguang 292

Guofeng1 360

Shennong99-8 134

Jindao305 132

IR8192-31 222

Mean 224

LSD (0.05) 102
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Figure 2. Relationship between Zn uptake and root surface
area for 15 aerobic rice (m) and 8 lowland rice genotypes (h)
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Figure 3. Relationship between Zn efficiency and Zn translo-
cation for 15 aerobic rice (m) and 8 lowland rice genotypes
(h).
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studies, ZE is also expressed by taking into
account the biomass potential of genotypes
[ZE = (Dry weight at low Zn level/Experimental
mean dry weight at low Zn)/(Dry weight at high
Zn level/Experimental mean dry weight at high
Zn)] (Graham, 1984; Fageria, 2001). In current
study, we also tested the multiple stepwise regres-
sions for ZE defined in this way. Similar to the
results described above, adj. R2 is 0.50 and
contributing variables were Zn uptake (partial
R2 = 0.35) and Zn translocation to the shoot
(partial R2 = 0.15).

Discussion

The present study showed a substantial geno-
typic variation in tolerance to Zn deficiency
among rice genotypes, not only for lowland
varieties but also for newly bred aerobic varie-
ties (Table 1). This variation among both low-
land and aerobic genotypes offers opportunities
for breeding as a tool to resolve Zn deficiency
problems in rice. Our previous study showed
variation in ZE among five aerobic rice geno-
types under field conditions (Gao et al., 2006).
The current study confirms these results. The
five genotypes used in the field experiment
showed the same order of ZE in the present
pot experiment, suggesting that the results pre-
sented here are a good reflection of the field
performance of the genotypes.

Multiple regression analysis showed that Zn
uptake is the most important factor statistically
explaining variation in ZE among the considered
rice genotypes. Our results are in agreement with
the results obtained with wheat (Graham et al.,
1992; Cakmak et al., 1997a), chickpea (Khan
et al., 1998) and common bean (Hacisalihoglu
et al., 2004).

The uptake of the relative immobile Zn2+ by
plant roots can be determined by root uptake
surface area, root-induced chemical rhizosphere
changes and the physiological uptake capacity
per g root or per cm2 root. An increase in uptake
surface area can be achieved by either larger root
system or higher mycorrhizal colonization. In the
current study, variation in Zn uptake could only
for 32% be explained by root surface area
(Figure 2), which is consistent with the results on

wheat (Dong et al., 1995). This emphasizes that
there must be important additional mechanisms
that determine Zn uptake. Our study does not
distinguish between rhizosphere effects and
uptake kinetics. The latter did not explain varia-
tion in ZE among wheat cultivars (Hacisalihoglu
et al., 2001). If this is also true for rice, then
rhizosphere effects could play a major role in Zn
uptake. These rhizosphere effects may involve
acidification of the rhizosphere (Kirk and Bajita,
1995) and exudation of Zn chelators (Tolay
et al., 2001). Alternatively, or in addition, mycor-
rhizas could play a role (Purakayastha and
Chhonkar, 2001).

The second statistically significant variable
determining ZE was Zn translocation from root
to shoot. Zn absorbed by roots can be rapidly
transported to the shoots (Longnecker and Rob-
son, 1993). Higher Zn translocation was thought
to be a mechanism to explain the genotypic dif-
ferences in ZE among chickpea (Khan et al.,
1998) and wheat genotypes (Grewal et al., 1996).
Other studies on wheat and common bean, how-
ever, showed that no correlation between Zn
translocation to the shoot and ZE (Kalayci et al.,
1999; Erenoglu et al., 2002; Hacisalihoglu et al.,
2004).

Shoot Zn concentration and ZE were posi-
tively related, contrary to what was found for
wheat (Cakmak et al., 1997a), chickpea (Khan
et al., 1998) and common bean (Hacisalihoglu
et al., 2004). This indicates that low internal
requirement is not a mechanism involved in ZE
of rice. Shoot Zn concentration was not included
in the multiple regression analysis as a contribut-
ing factor to variation in ZE because it correlates
with both Zn uptake and Zn translocations.

We could only explain 53% of variation in
ZE with Zn uptake and Zn translocation to the
shoots. Similarly, a large unexplained variation
in ZE was reported for wheat (Cakmak et al.,
2001). The unexplained variation in ZE might be
related to differences in biochemical Zn utiliza-
tion and Zn retranslocation from older into
younger tissues in shoots (Hacisalihoglu and
Kochian, 2003). ZE was found to be positively
correlated with the activity of the Zn-requiring
enzyme Cu/ZnSOD for wheat (Cakmak et al.,
1997b; Hacisalihoglu et al., 2003) and black
gram (Pandey et al., 2002). This enzyme protects
plants from oxidative damage. This suggests that
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Zn efficient genotypes may be able to maintain
well functioning of this enzyme under low Zn
conditions. Zn retranslocation from old parts to
the young parts of shoot was suggested as one
possible mechanism affecting ZE in common
bean (Hacisalihoglu et al., 2004), wheat (Torun
et al., 2000) and rice (Hajiboland et al., 2001).

In the current study, we only examined the
possible mechanisms of ZE at seedling stage. It is
possible that additional mechanisms of ZE are
operative at later stages in the life cycle of the
plant. A Zn efficient barley genotype was able to
remobilise greater amounts of Zn from vegetative
to reproductive tissues compared with a Zn-ineffi-
cient genotype (Genc et al., 2004).

Our study confirms that tolerance to Zn defi-
ciency is a complex trait in which many plant
characteristics are involved. Even though we took
into account the four characteristics generally con-
sidered to be the most obvious, we could only ex-
plain 53% of variation in ZE. We also confirmed
that a large set of genotypes needs to be consid-
ered in order to get a complete view on crop toler-
ance to Zn deficiency.
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